xref: /OK3568_Linux_fs/kernel/kernel/fork.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/cpufreq_times.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 #undef CREATE_TRACE_POINTS
113 #include <trace/hooks/sched.h>
114 /*
115  * Minimum number of threads to boot the kernel
116  */
117 #define MIN_THREADS 20
118 
119 /*
120  * Maximum number of threads
121  */
122 #define MAX_THREADS FUTEX_TID_MASK
123 
124 EXPORT_TRACEPOINT_SYMBOL_GPL(task_newtask);
125 
126 /*
127  * Protected counters by write_lock_irq(&tasklist_lock)
128  */
129 unsigned long total_forks;	/* Handle normal Linux uptimes. */
130 int nr_threads;			/* The idle threads do not count.. */
131 
132 static int max_threads;		/* tunable limit on nr_threads */
133 
134 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
135 
136 static const char * const resident_page_types[] = {
137 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
138 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
139 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
140 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
141 };
142 
143 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
144 
145 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
146 EXPORT_SYMBOL_GPL(tasklist_lock);
147 
148 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)149 int lockdep_tasklist_lock_is_held(void)
150 {
151 	return lockdep_is_held(&tasklist_lock);
152 }
153 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
154 #endif /* #ifdef CONFIG_PROVE_RCU */
155 
nr_processes(void)156 int nr_processes(void)
157 {
158 	int cpu;
159 	int total = 0;
160 
161 	for_each_possible_cpu(cpu)
162 		total += per_cpu(process_counts, cpu);
163 
164 	return total;
165 }
166 
arch_release_task_struct(struct task_struct * tsk)167 void __weak arch_release_task_struct(struct task_struct *tsk)
168 {
169 }
170 
171 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
172 static struct kmem_cache *task_struct_cachep;
173 
alloc_task_struct_node(int node)174 static inline struct task_struct *alloc_task_struct_node(int node)
175 {
176 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
177 }
178 
free_task_struct(struct task_struct * tsk)179 static inline void free_task_struct(struct task_struct *tsk)
180 {
181 	kmem_cache_free(task_struct_cachep, tsk);
182 }
183 #endif
184 
185 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
186 
187 /*
188  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
189  * kmemcache based allocator.
190  */
191 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
192 
193 #ifdef CONFIG_VMAP_STACK
194 /*
195  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
196  * flush.  Try to minimize the number of calls by caching stacks.
197  */
198 #define NR_CACHED_STACKS 2
199 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
200 
free_vm_stack_cache(unsigned int cpu)201 static int free_vm_stack_cache(unsigned int cpu)
202 {
203 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
204 	int i;
205 
206 	for (i = 0; i < NR_CACHED_STACKS; i++) {
207 		struct vm_struct *vm_stack = cached_vm_stacks[i];
208 
209 		if (!vm_stack)
210 			continue;
211 
212 		vfree(vm_stack->addr);
213 		cached_vm_stacks[i] = NULL;
214 	}
215 
216 	return 0;
217 }
218 #endif
219 
alloc_thread_stack_node(struct task_struct * tsk,int node)220 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
221 {
222 #ifdef CONFIG_VMAP_STACK
223 	void *stack;
224 	int i;
225 
226 	for (i = 0; i < NR_CACHED_STACKS; i++) {
227 		struct vm_struct *s;
228 
229 		s = this_cpu_xchg(cached_stacks[i], NULL);
230 
231 		if (!s)
232 			continue;
233 
234 		/* Mark stack accessible for KASAN. */
235 		kasan_unpoison_range(s->addr, THREAD_SIZE);
236 
237 		/* Clear stale pointers from reused stack. */
238 		memset(s->addr, 0, THREAD_SIZE);
239 
240 		tsk->stack_vm_area = s;
241 		tsk->stack = s->addr;
242 		return s->addr;
243 	}
244 
245 	/*
246 	 * Allocated stacks are cached and later reused by new threads,
247 	 * so memcg accounting is performed manually on assigning/releasing
248 	 * stacks to tasks. Drop __GFP_ACCOUNT.
249 	 */
250 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
251 				     VMALLOC_START, VMALLOC_END,
252 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
253 				     PAGE_KERNEL,
254 				     0, node, __builtin_return_address(0));
255 
256 	/*
257 	 * We can't call find_vm_area() in interrupt context, and
258 	 * free_thread_stack() can be called in interrupt context,
259 	 * so cache the vm_struct.
260 	 */
261 	if (stack) {
262 		tsk->stack_vm_area = find_vm_area(stack);
263 		tsk->stack = stack;
264 	}
265 	return stack;
266 #else
267 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
268 					     THREAD_SIZE_ORDER);
269 
270 	if (likely(page)) {
271 		tsk->stack = kasan_reset_tag(page_address(page));
272 		return tsk->stack;
273 	}
274 	return NULL;
275 #endif
276 }
277 
free_thread_stack(struct task_struct * tsk)278 static inline void free_thread_stack(struct task_struct *tsk)
279 {
280 #ifdef CONFIG_VMAP_STACK
281 	struct vm_struct *vm = task_stack_vm_area(tsk);
282 
283 	if (vm) {
284 		int i;
285 
286 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
287 			memcg_kmem_uncharge_page(vm->pages[i], 0);
288 
289 		for (i = 0; i < NR_CACHED_STACKS; i++) {
290 			if (this_cpu_cmpxchg(cached_stacks[i],
291 					NULL, tsk->stack_vm_area) != NULL)
292 				continue;
293 
294 			return;
295 		}
296 
297 		vfree_atomic(tsk->stack);
298 		return;
299 	}
300 #endif
301 
302 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
303 }
304 # else
305 static struct kmem_cache *thread_stack_cache;
306 
alloc_thread_stack_node(struct task_struct * tsk,int node)307 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
308 						  int node)
309 {
310 	unsigned long *stack;
311 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
312 	stack = kasan_reset_tag(stack);
313 	tsk->stack = stack;
314 	return stack;
315 }
316 
free_thread_stack(struct task_struct * tsk)317 static void free_thread_stack(struct task_struct *tsk)
318 {
319 	kmem_cache_free(thread_stack_cache, tsk->stack);
320 }
321 
thread_stack_cache_init(void)322 void thread_stack_cache_init(void)
323 {
324 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
325 					THREAD_SIZE, THREAD_SIZE, 0, 0,
326 					THREAD_SIZE, NULL);
327 	BUG_ON(thread_stack_cache == NULL);
328 }
329 # endif
330 #endif
331 
332 /* SLAB cache for signal_struct structures (tsk->signal) */
333 static struct kmem_cache *signal_cachep;
334 
335 /* SLAB cache for sighand_struct structures (tsk->sighand) */
336 struct kmem_cache *sighand_cachep;
337 
338 /* SLAB cache for files_struct structures (tsk->files) */
339 struct kmem_cache *files_cachep;
340 
341 /* SLAB cache for fs_struct structures (tsk->fs) */
342 struct kmem_cache *fs_cachep;
343 
344 /* SLAB cache for vm_area_struct structures */
345 static struct kmem_cache *vm_area_cachep;
346 
347 /* SLAB cache for mm_struct structures (tsk->mm) */
348 static struct kmem_cache *mm_cachep;
349 
vm_area_alloc(struct mm_struct * mm)350 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
351 {
352 	struct vm_area_struct *vma;
353 
354 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
355 	if (vma)
356 		vma_init(vma, mm);
357 	return vma;
358 }
359 
vm_area_dup(struct vm_area_struct * orig)360 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
361 {
362 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363 
364 	if (new) {
365 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
366 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
367 		/*
368 		 * orig->shared.rb may be modified concurrently, but the clone
369 		 * will be reinitialized.
370 		 */
371 		*new = data_race(*orig);
372 		INIT_VMA(new);
373 		new->vm_next = new->vm_prev = NULL;
374 	}
375 	return new;
376 }
377 
vm_area_free(struct vm_area_struct * vma)378 void vm_area_free(struct vm_area_struct *vma)
379 {
380 	kmem_cache_free(vm_area_cachep, vma);
381 }
382 
account_kernel_stack(struct task_struct * tsk,int account)383 static void account_kernel_stack(struct task_struct *tsk, int account)
384 {
385 	void *stack = task_stack_page(tsk);
386 	struct vm_struct *vm = task_stack_vm_area(tsk);
387 
388 
389 	/* All stack pages are in the same node. */
390 	if (vm)
391 		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
392 				      account * (THREAD_SIZE / 1024));
393 	else
394 		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
395 				      account * (THREAD_SIZE / 1024));
396 }
397 
memcg_charge_kernel_stack(struct task_struct * tsk)398 static int memcg_charge_kernel_stack(struct task_struct *tsk)
399 {
400 #ifdef CONFIG_VMAP_STACK
401 	struct vm_struct *vm = task_stack_vm_area(tsk);
402 	int ret;
403 
404 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
405 
406 	if (vm) {
407 		int i;
408 
409 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
410 
411 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
412 			/*
413 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
414 			 * pointer is NULL, and memcg_kmem_uncharge_page() in
415 			 * free_thread_stack() will ignore this page.
416 			 */
417 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
418 						     0);
419 			if (ret)
420 				return ret;
421 		}
422 	}
423 #endif
424 	return 0;
425 }
426 
release_task_stack(struct task_struct * tsk)427 static void release_task_stack(struct task_struct *tsk)
428 {
429 	if (WARN_ON(tsk->state != TASK_DEAD))
430 		return;  /* Better to leak the stack than to free prematurely */
431 
432 	account_kernel_stack(tsk, -1);
433 	free_thread_stack(tsk);
434 	tsk->stack = NULL;
435 #ifdef CONFIG_VMAP_STACK
436 	tsk->stack_vm_area = NULL;
437 #endif
438 }
439 
440 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)441 void put_task_stack(struct task_struct *tsk)
442 {
443 	if (refcount_dec_and_test(&tsk->stack_refcount))
444 		release_task_stack(tsk);
445 }
446 EXPORT_SYMBOL_GPL(put_task_stack);
447 #endif
448 
free_task(struct task_struct * tsk)449 void free_task(struct task_struct *tsk)
450 {
451 	cpufreq_task_times_exit(tsk);
452 	scs_release(tsk);
453 
454 	trace_android_vh_free_task(tsk);
455 #ifndef CONFIG_THREAD_INFO_IN_TASK
456 	/*
457 	 * The task is finally done with both the stack and thread_info,
458 	 * so free both.
459 	 */
460 	release_task_stack(tsk);
461 #else
462 	/*
463 	 * If the task had a separate stack allocation, it should be gone
464 	 * by now.
465 	 */
466 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
467 #endif
468 	rt_mutex_debug_task_free(tsk);
469 	ftrace_graph_exit_task(tsk);
470 	arch_release_task_struct(tsk);
471 	if (tsk->flags & PF_KTHREAD)
472 		free_kthread_struct(tsk);
473 	free_task_struct(tsk);
474 }
475 EXPORT_SYMBOL(free_task);
476 
477 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)478 static __latent_entropy int dup_mmap(struct mm_struct *mm,
479 					struct mm_struct *oldmm)
480 {
481 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev, *last = NULL;
482 	struct rb_node **rb_link, *rb_parent;
483 	int retval;
484 	unsigned long charge;
485 	LIST_HEAD(uf);
486 
487 	uprobe_start_dup_mmap();
488 	if (mmap_write_lock_killable(oldmm)) {
489 		retval = -EINTR;
490 		goto fail_uprobe_end;
491 	}
492 	flush_cache_dup_mm(oldmm);
493 	uprobe_dup_mmap(oldmm, mm);
494 	/*
495 	 * Not linked in yet - no deadlock potential:
496 	 */
497 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
498 
499 	/* No ordering required: file already has been exposed. */
500 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
501 
502 	mm->total_vm = oldmm->total_vm;
503 	mm->data_vm = oldmm->data_vm;
504 	mm->exec_vm = oldmm->exec_vm;
505 	mm->stack_vm = oldmm->stack_vm;
506 
507 	rb_link = &mm->mm_rb.rb_node;
508 	rb_parent = NULL;
509 	pprev = &mm->mmap;
510 	retval = ksm_fork(mm, oldmm);
511 	if (retval)
512 		goto out;
513 	retval = khugepaged_fork(mm, oldmm);
514 	if (retval)
515 		goto out;
516 
517 	prev = NULL;
518 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
519 		struct file *file;
520 
521 		if (mpnt->vm_flags & VM_DONTCOPY) {
522 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
523 			continue;
524 		}
525 		charge = 0;
526 		/*
527 		 * Don't duplicate many vmas if we've been oom-killed (for
528 		 * example)
529 		 */
530 		if (fatal_signal_pending(current)) {
531 			retval = -EINTR;
532 			goto out;
533 		}
534 		if (mpnt->vm_flags & VM_ACCOUNT) {
535 			unsigned long len = vma_pages(mpnt);
536 
537 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
538 				goto fail_nomem;
539 			charge = len;
540 		}
541 		tmp = vm_area_dup(mpnt);
542 		if (!tmp)
543 			goto fail_nomem;
544 		retval = vma_dup_policy(mpnt, tmp);
545 		if (retval)
546 			goto fail_nomem_policy;
547 		tmp->vm_mm = mm;
548 		retval = dup_userfaultfd(tmp, &uf);
549 		if (retval)
550 			goto fail_nomem_anon_vma_fork;
551 		if (tmp->vm_flags & VM_WIPEONFORK) {
552 			/*
553 			 * VM_WIPEONFORK gets a clean slate in the child.
554 			 * Don't prepare anon_vma until fault since we don't
555 			 * copy page for current vma.
556 			 */
557 			tmp->anon_vma = NULL;
558 		} else if (anon_vma_fork(tmp, mpnt))
559 			goto fail_nomem_anon_vma_fork;
560 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
561 		file = tmp->vm_file;
562 		if (file) {
563 			struct inode *inode = file_inode(file);
564 			struct address_space *mapping = file->f_mapping;
565 
566 			get_file(file);
567 			if (tmp->vm_flags & VM_DENYWRITE)
568 				put_write_access(inode);
569 			i_mmap_lock_write(mapping);
570 			if (tmp->vm_flags & VM_SHARED)
571 				mapping_allow_writable(mapping);
572 			flush_dcache_mmap_lock(mapping);
573 			/* insert tmp into the share list, just after mpnt */
574 			vma_interval_tree_insert_after(tmp, mpnt,
575 					&mapping->i_mmap);
576 			flush_dcache_mmap_unlock(mapping);
577 			i_mmap_unlock_write(mapping);
578 		}
579 
580 		/*
581 		 * Clear hugetlb-related page reserves for children. This only
582 		 * affects MAP_PRIVATE mappings. Faults generated by the child
583 		 * are not guaranteed to succeed, even if read-only
584 		 */
585 		if (is_vm_hugetlb_page(tmp))
586 			reset_vma_resv_huge_pages(tmp);
587 
588 		/*
589 		 * Link in the new vma and copy the page table entries.
590 		 */
591 		*pprev = tmp;
592 		pprev = &tmp->vm_next;
593 		tmp->vm_prev = prev;
594 		prev = tmp;
595 
596 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
597 		rb_link = &tmp->vm_rb.rb_right;
598 		rb_parent = &tmp->vm_rb;
599 
600 		mm->map_count++;
601 		if (!(tmp->vm_flags & VM_WIPEONFORK)) {
602 			if (IS_ENABLED(CONFIG_SPECULATIVE_PAGE_FAULT)) {
603 				/*
604 				 * Mark this VMA as changing to prevent the
605 				 * speculative page fault hanlder to process
606 				 * it until the TLB are flushed below.
607 				 */
608 				last = mpnt;
609 				vm_write_begin(mpnt);
610 			}
611 			retval = copy_page_range(tmp, mpnt);
612 		}
613 
614 		if (tmp->vm_ops && tmp->vm_ops->open)
615 			tmp->vm_ops->open(tmp);
616 
617 		if (retval)
618 			goto out;
619 	}
620 	/* a new mm has just been created */
621 	retval = arch_dup_mmap(oldmm, mm);
622 out:
623 	mmap_write_unlock(mm);
624 	flush_tlb_mm(oldmm);
625 
626 	if (IS_ENABLED(CONFIG_SPECULATIVE_PAGE_FAULT)) {
627 		/*
628 		 * Since the TLB has been flush, we can safely unmark the
629 		 * copied VMAs and allows the speculative page fault handler to
630 		 * process them again.
631 		 * Walk back the VMA list from the last marked VMA.
632 		 */
633 		for (; last; last = last->vm_prev) {
634 			if (last->vm_flags & VM_DONTCOPY)
635 				continue;
636 			if (!(last->vm_flags & VM_WIPEONFORK))
637 				vm_write_end(last);
638 		}
639 	}
640 
641 	mmap_write_unlock(oldmm);
642 	dup_userfaultfd_complete(&uf);
643 fail_uprobe_end:
644 	uprobe_end_dup_mmap();
645 	return retval;
646 fail_nomem_anon_vma_fork:
647 	mpol_put(vma_policy(tmp));
648 fail_nomem_policy:
649 	vm_area_free(tmp);
650 fail_nomem:
651 	retval = -ENOMEM;
652 	vm_unacct_memory(charge);
653 	goto out;
654 }
655 
mm_alloc_pgd(struct mm_struct * mm)656 static inline int mm_alloc_pgd(struct mm_struct *mm)
657 {
658 	mm->pgd = pgd_alloc(mm);
659 	if (unlikely(!mm->pgd))
660 		return -ENOMEM;
661 	return 0;
662 }
663 
mm_free_pgd(struct mm_struct * mm)664 static inline void mm_free_pgd(struct mm_struct *mm)
665 {
666 	pgd_free(mm, mm->pgd);
667 }
668 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)669 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
670 {
671 	mmap_write_lock(oldmm);
672 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
673 	mmap_write_unlock(oldmm);
674 	return 0;
675 }
676 #define mm_alloc_pgd(mm)	(0)
677 #define mm_free_pgd(mm)
678 #endif /* CONFIG_MMU */
679 
check_mm(struct mm_struct * mm)680 static void check_mm(struct mm_struct *mm)
681 {
682 	int i;
683 
684 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
685 			 "Please make sure 'struct resident_page_types[]' is updated as well");
686 
687 	for (i = 0; i < NR_MM_COUNTERS; i++) {
688 		long x = atomic_long_read(&mm->rss_stat.count[i]);
689 
690 		if (unlikely(x))
691 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
692 				 mm, resident_page_types[i], x);
693 	}
694 
695 	if (mm_pgtables_bytes(mm))
696 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
697 				mm_pgtables_bytes(mm));
698 
699 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
700 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
701 #endif
702 }
703 
704 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
705 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
706 
707 /*
708  * Called when the last reference to the mm
709  * is dropped: either by a lazy thread or by
710  * mmput. Free the page directory and the mm.
711  */
__mmdrop(struct mm_struct * mm)712 void __mmdrop(struct mm_struct *mm)
713 {
714 	BUG_ON(mm == &init_mm);
715 	WARN_ON_ONCE(mm == current->mm);
716 	WARN_ON_ONCE(mm == current->active_mm);
717 	mm_free_pgd(mm);
718 	destroy_context(mm);
719 	mmu_notifier_subscriptions_destroy(mm);
720 	check_mm(mm);
721 	put_user_ns(mm->user_ns);
722 	free_mm(mm);
723 }
724 EXPORT_SYMBOL_GPL(__mmdrop);
725 
mmdrop_async_fn(struct work_struct * work)726 static void mmdrop_async_fn(struct work_struct *work)
727 {
728 	struct mm_struct *mm;
729 
730 	mm = container_of(work, struct mm_struct, async_put_work);
731 	__mmdrop(mm);
732 }
733 
mmdrop_async(struct mm_struct * mm)734 static void mmdrop_async(struct mm_struct *mm)
735 {
736 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
737 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
738 		schedule_work(&mm->async_put_work);
739 	}
740 }
741 
free_signal_struct(struct signal_struct * sig)742 static inline void free_signal_struct(struct signal_struct *sig)
743 {
744 	taskstats_tgid_free(sig);
745 	sched_autogroup_exit(sig);
746 	/*
747 	 * __mmdrop is not safe to call from softirq context on x86 due to
748 	 * pgd_dtor so postpone it to the async context
749 	 */
750 	if (sig->oom_mm)
751 		mmdrop_async(sig->oom_mm);
752 	kmem_cache_free(signal_cachep, sig);
753 }
754 
put_signal_struct(struct signal_struct * sig)755 static inline void put_signal_struct(struct signal_struct *sig)
756 {
757 	if (refcount_dec_and_test(&sig->sigcnt))
758 		free_signal_struct(sig);
759 }
760 
__put_task_struct(struct task_struct * tsk)761 void __put_task_struct(struct task_struct *tsk)
762 {
763 	WARN_ON(!tsk->exit_state);
764 	WARN_ON(refcount_read(&tsk->usage));
765 	WARN_ON(tsk == current);
766 
767 	io_uring_free(tsk);
768 	cgroup_free(tsk);
769 	task_numa_free(tsk, true);
770 	security_task_free(tsk);
771 	exit_creds(tsk);
772 	delayacct_tsk_free(tsk);
773 	put_signal_struct(tsk->signal);
774 
775 	if (!profile_handoff_task(tsk))
776 		free_task(tsk);
777 }
778 EXPORT_SYMBOL_GPL(__put_task_struct);
779 
arch_task_cache_init(void)780 void __init __weak arch_task_cache_init(void) { }
781 
782 /*
783  * set_max_threads
784  */
set_max_threads(unsigned int max_threads_suggested)785 static void set_max_threads(unsigned int max_threads_suggested)
786 {
787 	u64 threads;
788 	unsigned long nr_pages = totalram_pages();
789 
790 	/*
791 	 * The number of threads shall be limited such that the thread
792 	 * structures may only consume a small part of the available memory.
793 	 */
794 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
795 		threads = MAX_THREADS;
796 	else
797 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
798 				    (u64) THREAD_SIZE * 8UL);
799 
800 	if (threads > max_threads_suggested)
801 		threads = max_threads_suggested;
802 
803 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
804 }
805 
806 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
807 /* Initialized by the architecture: */
808 int arch_task_struct_size __read_mostly;
809 #endif
810 
811 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)812 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
813 {
814 	/* Fetch thread_struct whitelist for the architecture. */
815 	arch_thread_struct_whitelist(offset, size);
816 
817 	/*
818 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
819 	 * adjust offset to position of thread_struct in task_struct.
820 	 */
821 	if (unlikely(*size == 0))
822 		*offset = 0;
823 	else
824 		*offset += offsetof(struct task_struct, thread);
825 }
826 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
827 
fork_init(void)828 void __init fork_init(void)
829 {
830 	int i;
831 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
832 #ifndef ARCH_MIN_TASKALIGN
833 #define ARCH_MIN_TASKALIGN	0
834 #endif
835 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
836 	unsigned long useroffset, usersize;
837 
838 	/* create a slab on which task_structs can be allocated */
839 	task_struct_whitelist(&useroffset, &usersize);
840 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
841 			arch_task_struct_size, align,
842 			SLAB_PANIC|SLAB_ACCOUNT,
843 			useroffset, usersize, NULL);
844 #endif
845 
846 	/* do the arch specific task caches init */
847 	arch_task_cache_init();
848 
849 	set_max_threads(MAX_THREADS);
850 
851 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
852 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
853 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
854 		init_task.signal->rlim[RLIMIT_NPROC];
855 
856 	for (i = 0; i < UCOUNT_COUNTS; i++) {
857 		init_user_ns.ucount_max[i] = max_threads/2;
858 	}
859 
860 #ifdef CONFIG_VMAP_STACK
861 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
862 			  NULL, free_vm_stack_cache);
863 #endif
864 
865 	scs_init();
866 
867 	lockdep_init_task(&init_task);
868 	uprobes_init();
869 }
870 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)871 int __weak arch_dup_task_struct(struct task_struct *dst,
872 					       struct task_struct *src)
873 {
874 	*dst = *src;
875 	return 0;
876 }
877 
set_task_stack_end_magic(struct task_struct * tsk)878 void set_task_stack_end_magic(struct task_struct *tsk)
879 {
880 	unsigned long *stackend;
881 
882 	stackend = end_of_stack(tsk);
883 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
884 }
885 
dup_task_struct(struct task_struct * orig,int node)886 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
887 {
888 	struct task_struct *tsk;
889 	unsigned long *stack;
890 	struct vm_struct *stack_vm_area __maybe_unused;
891 	int err;
892 
893 	if (node == NUMA_NO_NODE)
894 		node = tsk_fork_get_node(orig);
895 	tsk = alloc_task_struct_node(node);
896 	if (!tsk)
897 		return NULL;
898 
899 	stack = alloc_thread_stack_node(tsk, node);
900 	if (!stack)
901 		goto free_tsk;
902 
903 	if (memcg_charge_kernel_stack(tsk))
904 		goto free_stack;
905 
906 	stack_vm_area = task_stack_vm_area(tsk);
907 
908 	err = arch_dup_task_struct(tsk, orig);
909 
910 	/*
911 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
912 	 * sure they're properly initialized before using any stack-related
913 	 * functions again.
914 	 */
915 	tsk->stack = stack;
916 #ifdef CONFIG_VMAP_STACK
917 	tsk->stack_vm_area = stack_vm_area;
918 #endif
919 #ifdef CONFIG_THREAD_INFO_IN_TASK
920 	refcount_set(&tsk->stack_refcount, 1);
921 #endif
922 
923 	if (err)
924 		goto free_stack;
925 
926 	err = scs_prepare(tsk, node);
927 	if (err)
928 		goto free_stack;
929 
930 #ifdef CONFIG_SECCOMP
931 	/*
932 	 * We must handle setting up seccomp filters once we're under
933 	 * the sighand lock in case orig has changed between now and
934 	 * then. Until then, filter must be NULL to avoid messing up
935 	 * the usage counts on the error path calling free_task.
936 	 */
937 	tsk->seccomp.filter = NULL;
938 #endif
939 
940 	setup_thread_stack(tsk, orig);
941 	clear_user_return_notifier(tsk);
942 	clear_tsk_need_resched(tsk);
943 	set_task_stack_end_magic(tsk);
944 
945 #ifdef CONFIG_STACKPROTECTOR
946 	tsk->stack_canary = get_random_canary();
947 #endif
948 	if (orig->cpus_ptr == &orig->cpus_mask)
949 		tsk->cpus_ptr = &tsk->cpus_mask;
950 
951 	/*
952 	 * One for the user space visible state that goes away when reaped.
953 	 * One for the scheduler.
954 	 */
955 	refcount_set(&tsk->rcu_users, 2);
956 	/* One for the rcu users */
957 	refcount_set(&tsk->usage, 1);
958 #ifdef CONFIG_BLK_DEV_IO_TRACE
959 	tsk->btrace_seq = 0;
960 #endif
961 	tsk->splice_pipe = NULL;
962 	tsk->task_frag.page = NULL;
963 	tsk->wake_q.next = NULL;
964 	tsk->pf_io_worker = NULL;
965 
966 	account_kernel_stack(tsk, 1);
967 
968 	kcov_task_init(tsk);
969 
970 #ifdef CONFIG_FAULT_INJECTION
971 	tsk->fail_nth = 0;
972 #endif
973 
974 #ifdef CONFIG_BLK_CGROUP
975 	tsk->throttle_queue = NULL;
976 	tsk->use_memdelay = 0;
977 #endif
978 
979 #ifdef CONFIG_MEMCG
980 	tsk->active_memcg = NULL;
981 #endif
982 
983 	android_init_vendor_data(tsk, 1);
984 	android_init_oem_data(tsk, 1);
985 
986 	trace_android_vh_dup_task_struct(tsk, orig);
987 	return tsk;
988 
989 free_stack:
990 	free_thread_stack(tsk);
991 free_tsk:
992 	free_task_struct(tsk);
993 	return NULL;
994 }
995 
996 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
997 
998 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
999 
coredump_filter_setup(char * s)1000 static int __init coredump_filter_setup(char *s)
1001 {
1002 	default_dump_filter =
1003 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1004 		MMF_DUMP_FILTER_MASK;
1005 	return 1;
1006 }
1007 
1008 __setup("coredump_filter=", coredump_filter_setup);
1009 
1010 #include <linux/init_task.h>
1011 
mm_init_aio(struct mm_struct * mm)1012 static void mm_init_aio(struct mm_struct *mm)
1013 {
1014 #ifdef CONFIG_AIO
1015 	spin_lock_init(&mm->ioctx_lock);
1016 	mm->ioctx_table = NULL;
1017 #endif
1018 }
1019 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1020 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1021 					   struct task_struct *p)
1022 {
1023 #ifdef CONFIG_MEMCG
1024 	if (mm->owner == p)
1025 		WRITE_ONCE(mm->owner, NULL);
1026 #endif
1027 }
1028 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1029 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1030 {
1031 #ifdef CONFIG_MEMCG
1032 	mm->owner = p;
1033 #endif
1034 }
1035 
mm_init_pasid(struct mm_struct * mm)1036 static void mm_init_pasid(struct mm_struct *mm)
1037 {
1038 #ifdef CONFIG_IOMMU_SUPPORT
1039 	mm->pasid = INIT_PASID;
1040 #endif
1041 }
1042 
mm_init_uprobes_state(struct mm_struct * mm)1043 static void mm_init_uprobes_state(struct mm_struct *mm)
1044 {
1045 #ifdef CONFIG_UPROBES
1046 	mm->uprobes_state.xol_area = NULL;
1047 #endif
1048 }
1049 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1050 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1051 	struct user_namespace *user_ns)
1052 {
1053 	mm->mmap = NULL;
1054 	mm->mm_rb = RB_ROOT;
1055 	mm->vmacache_seqnum = 0;
1056 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
1057 	rwlock_init(&mm->mm_rb_lock);
1058 #endif
1059 	atomic_set(&mm->mm_users, 1);
1060 	atomic_set(&mm->mm_count, 1);
1061 	seqcount_init(&mm->write_protect_seq);
1062 	mmap_init_lock(mm);
1063 	INIT_LIST_HEAD(&mm->mmlist);
1064 	mm->core_state = NULL;
1065 	mm_pgtables_bytes_init(mm);
1066 	mm->map_count = 0;
1067 	mm->locked_vm = 0;
1068 	atomic_set(&mm->has_pinned, 0);
1069 	atomic64_set(&mm->pinned_vm, 0);
1070 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1071 	spin_lock_init(&mm->page_table_lock);
1072 	spin_lock_init(&mm->arg_lock);
1073 	mm_init_cpumask(mm);
1074 	mm_init_aio(mm);
1075 	mm_init_owner(mm, p);
1076 	mm_init_pasid(mm);
1077 	RCU_INIT_POINTER(mm->exe_file, NULL);
1078 	if (!mmu_notifier_subscriptions_init(mm))
1079 		goto fail_nopgd;
1080 	init_tlb_flush_pending(mm);
1081 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1082 	mm->pmd_huge_pte = NULL;
1083 #endif
1084 	mm_init_uprobes_state(mm);
1085 	hugetlb_count_init(mm);
1086 
1087 	if (current->mm) {
1088 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1089 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1090 	} else {
1091 		mm->flags = default_dump_filter;
1092 		mm->def_flags = 0;
1093 	}
1094 
1095 	if (mm_alloc_pgd(mm))
1096 		goto fail_nopgd;
1097 
1098 	if (init_new_context(p, mm))
1099 		goto fail_nocontext;
1100 
1101 	mm->user_ns = get_user_ns(user_ns);
1102 	return mm;
1103 
1104 fail_nocontext:
1105 	mm_free_pgd(mm);
1106 fail_nopgd:
1107 	free_mm(mm);
1108 	return NULL;
1109 }
1110 
1111 /*
1112  * Allocate and initialize an mm_struct.
1113  */
mm_alloc(void)1114 struct mm_struct *mm_alloc(void)
1115 {
1116 	struct mm_struct *mm;
1117 
1118 	mm = allocate_mm();
1119 	if (!mm)
1120 		return NULL;
1121 
1122 	memset(mm, 0, sizeof(*mm));
1123 	return mm_init(mm, current, current_user_ns());
1124 }
1125 
__mmput(struct mm_struct * mm)1126 static inline void __mmput(struct mm_struct *mm)
1127 {
1128 	VM_BUG_ON(atomic_read(&mm->mm_users));
1129 
1130 	uprobe_clear_state(mm);
1131 	exit_aio(mm);
1132 	ksm_exit(mm);
1133 	khugepaged_exit(mm); /* must run before exit_mmap */
1134 	exit_mmap(mm);
1135 	mm_put_huge_zero_page(mm);
1136 	set_mm_exe_file(mm, NULL);
1137 	if (!list_empty(&mm->mmlist)) {
1138 		spin_lock(&mmlist_lock);
1139 		list_del(&mm->mmlist);
1140 		spin_unlock(&mmlist_lock);
1141 	}
1142 	if (mm->binfmt)
1143 		module_put(mm->binfmt->module);
1144 	mmdrop(mm);
1145 }
1146 
1147 /*
1148  * Decrement the use count and release all resources for an mm.
1149  */
mmput(struct mm_struct * mm)1150 void mmput(struct mm_struct *mm)
1151 {
1152 	might_sleep();
1153 
1154 	if (atomic_dec_and_test(&mm->mm_users)) {
1155 		trace_android_vh_mmput(NULL);
1156 		__mmput(mm);
1157 	}
1158 }
1159 EXPORT_SYMBOL_GPL(mmput);
1160 
1161 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1162 static void mmput_async_fn(struct work_struct *work)
1163 {
1164 	struct mm_struct *mm = container_of(work, struct mm_struct,
1165 					    async_put_work);
1166 
1167 	__mmput(mm);
1168 }
1169 
mmput_async(struct mm_struct * mm)1170 void mmput_async(struct mm_struct *mm)
1171 {
1172 	if (atomic_dec_and_test(&mm->mm_users)) {
1173 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1174 		schedule_work(&mm->async_put_work);
1175 	}
1176 }
1177 EXPORT_SYMBOL_GPL(mmput_async);
1178 #endif
1179 
1180 /**
1181  * set_mm_exe_file - change a reference to the mm's executable file
1182  *
1183  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1184  *
1185  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1186  * invocations: in mmput() nobody alive left, in execve task is single
1187  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1188  * mm->exe_file, but does so without using set_mm_exe_file() in order
1189  * to do avoid the need for any locks.
1190  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1191 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1192 {
1193 	struct file *old_exe_file;
1194 
1195 	/*
1196 	 * It is safe to dereference the exe_file without RCU as
1197 	 * this function is only called if nobody else can access
1198 	 * this mm -- see comment above for justification.
1199 	 */
1200 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1201 
1202 	if (new_exe_file)
1203 		get_file(new_exe_file);
1204 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1205 	if (old_exe_file)
1206 		fput(old_exe_file);
1207 }
1208 
1209 /**
1210  * get_mm_exe_file - acquire a reference to the mm's executable file
1211  *
1212  * Returns %NULL if mm has no associated executable file.
1213  * User must release file via fput().
1214  */
get_mm_exe_file(struct mm_struct * mm)1215 struct file *get_mm_exe_file(struct mm_struct *mm)
1216 {
1217 	struct file *exe_file;
1218 
1219 	rcu_read_lock();
1220 	exe_file = rcu_dereference(mm->exe_file);
1221 	if (exe_file && !get_file_rcu(exe_file))
1222 		exe_file = NULL;
1223 	rcu_read_unlock();
1224 	return exe_file;
1225 }
1226 EXPORT_SYMBOL(get_mm_exe_file);
1227 
1228 /**
1229  * get_task_exe_file - acquire a reference to the task's executable file
1230  *
1231  * Returns %NULL if task's mm (if any) has no associated executable file or
1232  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1233  * User must release file via fput().
1234  */
get_task_exe_file(struct task_struct * task)1235 struct file *get_task_exe_file(struct task_struct *task)
1236 {
1237 	struct file *exe_file = NULL;
1238 	struct mm_struct *mm;
1239 
1240 	task_lock(task);
1241 	mm = task->mm;
1242 	if (mm) {
1243 		if (!(task->flags & PF_KTHREAD))
1244 			exe_file = get_mm_exe_file(mm);
1245 	}
1246 	task_unlock(task);
1247 	return exe_file;
1248 }
1249 EXPORT_SYMBOL(get_task_exe_file);
1250 
1251 /**
1252  * get_task_mm - acquire a reference to the task's mm
1253  *
1254  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1255  * this kernel workthread has transiently adopted a user mm with use_mm,
1256  * to do its AIO) is not set and if so returns a reference to it, after
1257  * bumping up the use count.  User must release the mm via mmput()
1258  * after use.  Typically used by /proc and ptrace.
1259  */
get_task_mm(struct task_struct * task)1260 struct mm_struct *get_task_mm(struct task_struct *task)
1261 {
1262 	struct mm_struct *mm;
1263 
1264 	task_lock(task);
1265 	mm = task->mm;
1266 	if (mm) {
1267 		if (task->flags & PF_KTHREAD)
1268 			mm = NULL;
1269 		else
1270 			mmget(mm);
1271 	}
1272 	task_unlock(task);
1273 	return mm;
1274 }
1275 EXPORT_SYMBOL_GPL(get_task_mm);
1276 
mm_access(struct task_struct * task,unsigned int mode)1277 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1278 {
1279 	struct mm_struct *mm;
1280 	int err;
1281 
1282 	err =  down_read_killable(&task->signal->exec_update_lock);
1283 	if (err)
1284 		return ERR_PTR(err);
1285 
1286 	mm = get_task_mm(task);
1287 	if (mm && mm != current->mm &&
1288 			!ptrace_may_access(task, mode)) {
1289 		mmput(mm);
1290 		mm = ERR_PTR(-EACCES);
1291 	}
1292 	up_read(&task->signal->exec_update_lock);
1293 
1294 	return mm;
1295 }
1296 
complete_vfork_done(struct task_struct * tsk)1297 static void complete_vfork_done(struct task_struct *tsk)
1298 {
1299 	struct completion *vfork;
1300 
1301 	task_lock(tsk);
1302 	vfork = tsk->vfork_done;
1303 	if (likely(vfork)) {
1304 		tsk->vfork_done = NULL;
1305 		complete(vfork);
1306 	}
1307 	task_unlock(tsk);
1308 }
1309 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1310 static int wait_for_vfork_done(struct task_struct *child,
1311 				struct completion *vfork)
1312 {
1313 	int killed;
1314 
1315 	freezer_do_not_count();
1316 	cgroup_enter_frozen();
1317 	killed = wait_for_completion_killable(vfork);
1318 	cgroup_leave_frozen(false);
1319 	freezer_count();
1320 
1321 	if (killed) {
1322 		task_lock(child);
1323 		child->vfork_done = NULL;
1324 		task_unlock(child);
1325 	}
1326 
1327 	put_task_struct(child);
1328 	return killed;
1329 }
1330 
1331 /* Please note the differences between mmput and mm_release.
1332  * mmput is called whenever we stop holding onto a mm_struct,
1333  * error success whatever.
1334  *
1335  * mm_release is called after a mm_struct has been removed
1336  * from the current process.
1337  *
1338  * This difference is important for error handling, when we
1339  * only half set up a mm_struct for a new process and need to restore
1340  * the old one.  Because we mmput the new mm_struct before
1341  * restoring the old one. . .
1342  * Eric Biederman 10 January 1998
1343  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1344 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1345 {
1346 	uprobe_free_utask(tsk);
1347 
1348 	/* Get rid of any cached register state */
1349 	deactivate_mm(tsk, mm);
1350 
1351 	/*
1352 	 * Signal userspace if we're not exiting with a core dump
1353 	 * because we want to leave the value intact for debugging
1354 	 * purposes.
1355 	 */
1356 	if (tsk->clear_child_tid) {
1357 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1358 		    atomic_read(&mm->mm_users) > 1) {
1359 			/*
1360 			 * We don't check the error code - if userspace has
1361 			 * not set up a proper pointer then tough luck.
1362 			 */
1363 			put_user(0, tsk->clear_child_tid);
1364 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1365 					1, NULL, NULL, 0, 0);
1366 		}
1367 		tsk->clear_child_tid = NULL;
1368 	}
1369 
1370 	/*
1371 	 * All done, finally we can wake up parent and return this mm to him.
1372 	 * Also kthread_stop() uses this completion for synchronization.
1373 	 */
1374 	if (tsk->vfork_done)
1375 		complete_vfork_done(tsk);
1376 }
1377 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1378 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1379 {
1380 	futex_exit_release(tsk);
1381 	mm_release(tsk, mm);
1382 }
1383 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1384 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1385 {
1386 	futex_exec_release(tsk);
1387 	mm_release(tsk, mm);
1388 }
1389 
1390 /**
1391  * dup_mm() - duplicates an existing mm structure
1392  * @tsk: the task_struct with which the new mm will be associated.
1393  * @oldmm: the mm to duplicate.
1394  *
1395  * Allocates a new mm structure and duplicates the provided @oldmm structure
1396  * content into it.
1397  *
1398  * Return: the duplicated mm or NULL on failure.
1399  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1400 static struct mm_struct *dup_mm(struct task_struct *tsk,
1401 				struct mm_struct *oldmm)
1402 {
1403 	struct mm_struct *mm;
1404 	int err;
1405 
1406 	mm = allocate_mm();
1407 	if (!mm)
1408 		goto fail_nomem;
1409 
1410 	memcpy(mm, oldmm, sizeof(*mm));
1411 
1412 	if (!mm_init(mm, tsk, mm->user_ns))
1413 		goto fail_nomem;
1414 
1415 	err = dup_mmap(mm, oldmm);
1416 	if (err)
1417 		goto free_pt;
1418 
1419 	mm->hiwater_rss = get_mm_rss(mm);
1420 	mm->hiwater_vm = mm->total_vm;
1421 
1422 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1423 		goto free_pt;
1424 
1425 	return mm;
1426 
1427 free_pt:
1428 	/* don't put binfmt in mmput, we haven't got module yet */
1429 	mm->binfmt = NULL;
1430 	mm_init_owner(mm, NULL);
1431 	mmput(mm);
1432 
1433 fail_nomem:
1434 	return NULL;
1435 }
1436 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1437 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1438 {
1439 	struct mm_struct *mm, *oldmm;
1440 	int retval;
1441 
1442 	tsk->min_flt = tsk->maj_flt = 0;
1443 	tsk->nvcsw = tsk->nivcsw = 0;
1444 #ifdef CONFIG_DETECT_HUNG_TASK
1445 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1446 	tsk->last_switch_time = 0;
1447 #endif
1448 
1449 	tsk->mm = NULL;
1450 	tsk->active_mm = NULL;
1451 
1452 	/*
1453 	 * Are we cloning a kernel thread?
1454 	 *
1455 	 * We need to steal a active VM for that..
1456 	 */
1457 	oldmm = current->mm;
1458 	if (!oldmm)
1459 		return 0;
1460 
1461 	/* initialize the new vmacache entries */
1462 	vmacache_flush(tsk);
1463 
1464 	if (clone_flags & CLONE_VM) {
1465 		mmget(oldmm);
1466 		mm = oldmm;
1467 		goto good_mm;
1468 	}
1469 
1470 	retval = -ENOMEM;
1471 	mm = dup_mm(tsk, current->mm);
1472 	if (!mm)
1473 		goto fail_nomem;
1474 
1475 good_mm:
1476 	tsk->mm = mm;
1477 	tsk->active_mm = mm;
1478 	return 0;
1479 
1480 fail_nomem:
1481 	return retval;
1482 }
1483 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1484 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1485 {
1486 	struct fs_struct *fs = current->fs;
1487 	if (clone_flags & CLONE_FS) {
1488 		/* tsk->fs is already what we want */
1489 		spin_lock(&fs->lock);
1490 		if (fs->in_exec) {
1491 			spin_unlock(&fs->lock);
1492 			return -EAGAIN;
1493 		}
1494 		fs->users++;
1495 		spin_unlock(&fs->lock);
1496 		return 0;
1497 	}
1498 	tsk->fs = copy_fs_struct(fs);
1499 	if (!tsk->fs)
1500 		return -ENOMEM;
1501 	return 0;
1502 }
1503 
copy_files(unsigned long clone_flags,struct task_struct * tsk)1504 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1505 {
1506 	struct files_struct *oldf, *newf;
1507 	int error = 0;
1508 
1509 	/*
1510 	 * A background process may not have any files ...
1511 	 */
1512 	oldf = current->files;
1513 	if (!oldf)
1514 		goto out;
1515 
1516 	if (clone_flags & CLONE_FILES) {
1517 		atomic_inc(&oldf->count);
1518 		goto out;
1519 	}
1520 
1521 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1522 	if (!newf)
1523 		goto out;
1524 
1525 	tsk->files = newf;
1526 	error = 0;
1527 out:
1528 	return error;
1529 }
1530 
copy_io(unsigned long clone_flags,struct task_struct * tsk)1531 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1532 {
1533 #ifdef CONFIG_BLOCK
1534 	struct io_context *ioc = current->io_context;
1535 	struct io_context *new_ioc;
1536 
1537 	if (!ioc)
1538 		return 0;
1539 	/*
1540 	 * Share io context with parent, if CLONE_IO is set
1541 	 */
1542 	if (clone_flags & CLONE_IO) {
1543 		ioc_task_link(ioc);
1544 		tsk->io_context = ioc;
1545 	} else if (ioprio_valid(ioc->ioprio)) {
1546 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1547 		if (unlikely(!new_ioc))
1548 			return -ENOMEM;
1549 
1550 		new_ioc->ioprio = ioc->ioprio;
1551 		put_io_context(new_ioc);
1552 	}
1553 #endif
1554 	return 0;
1555 }
1556 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1557 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1558 {
1559 	struct sighand_struct *sig;
1560 
1561 	if (clone_flags & CLONE_SIGHAND) {
1562 		refcount_inc(&current->sighand->count);
1563 		return 0;
1564 	}
1565 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1566 	RCU_INIT_POINTER(tsk->sighand, sig);
1567 	if (!sig)
1568 		return -ENOMEM;
1569 
1570 	refcount_set(&sig->count, 1);
1571 	spin_lock_irq(&current->sighand->siglock);
1572 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1573 	spin_unlock_irq(&current->sighand->siglock);
1574 
1575 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1576 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1577 		flush_signal_handlers(tsk, 0);
1578 
1579 	return 0;
1580 }
1581 
__cleanup_sighand(struct sighand_struct * sighand)1582 void __cleanup_sighand(struct sighand_struct *sighand)
1583 {
1584 	if (refcount_dec_and_test(&sighand->count)) {
1585 		signalfd_cleanup(sighand);
1586 		/*
1587 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1588 		 * without an RCU grace period, see __lock_task_sighand().
1589 		 */
1590 		kmem_cache_free(sighand_cachep, sighand);
1591 	}
1592 }
1593 
1594 /*
1595  * Initialize POSIX timer handling for a thread group.
1596  */
posix_cpu_timers_init_group(struct signal_struct * sig)1597 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1598 {
1599 	struct posix_cputimers *pct = &sig->posix_cputimers;
1600 	unsigned long cpu_limit;
1601 
1602 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1603 	posix_cputimers_group_init(pct, cpu_limit);
1604 }
1605 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1606 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1607 {
1608 	struct signal_struct *sig;
1609 
1610 	if (clone_flags & CLONE_THREAD)
1611 		return 0;
1612 
1613 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1614 	tsk->signal = sig;
1615 	if (!sig)
1616 		return -ENOMEM;
1617 
1618 	sig->nr_threads = 1;
1619 	atomic_set(&sig->live, 1);
1620 	refcount_set(&sig->sigcnt, 1);
1621 
1622 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1623 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1624 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1625 
1626 	init_waitqueue_head(&sig->wait_chldexit);
1627 	sig->curr_target = tsk;
1628 	init_sigpending(&sig->shared_pending);
1629 	INIT_HLIST_HEAD(&sig->multiprocess);
1630 	seqlock_init(&sig->stats_lock);
1631 	prev_cputime_init(&sig->prev_cputime);
1632 
1633 #ifdef CONFIG_POSIX_TIMERS
1634 	INIT_LIST_HEAD(&sig->posix_timers);
1635 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1636 	sig->real_timer.function = it_real_fn;
1637 #endif
1638 
1639 	task_lock(current->group_leader);
1640 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1641 	task_unlock(current->group_leader);
1642 
1643 	posix_cpu_timers_init_group(sig);
1644 
1645 	tty_audit_fork(sig);
1646 	sched_autogroup_fork(sig);
1647 
1648 	sig->oom_score_adj = current->signal->oom_score_adj;
1649 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1650 
1651 	mutex_init(&sig->cred_guard_mutex);
1652 	init_rwsem(&sig->exec_update_lock);
1653 
1654 	return 0;
1655 }
1656 
copy_seccomp(struct task_struct * p)1657 static void copy_seccomp(struct task_struct *p)
1658 {
1659 #ifdef CONFIG_SECCOMP
1660 	/*
1661 	 * Must be called with sighand->lock held, which is common to
1662 	 * all threads in the group. Holding cred_guard_mutex is not
1663 	 * needed because this new task is not yet running and cannot
1664 	 * be racing exec.
1665 	 */
1666 	assert_spin_locked(&current->sighand->siglock);
1667 
1668 	/* Ref-count the new filter user, and assign it. */
1669 	get_seccomp_filter(current);
1670 	p->seccomp = current->seccomp;
1671 
1672 	/*
1673 	 * Explicitly enable no_new_privs here in case it got set
1674 	 * between the task_struct being duplicated and holding the
1675 	 * sighand lock. The seccomp state and nnp must be in sync.
1676 	 */
1677 	if (task_no_new_privs(current))
1678 		task_set_no_new_privs(p);
1679 
1680 	/*
1681 	 * If the parent gained a seccomp mode after copying thread
1682 	 * flags and between before we held the sighand lock, we have
1683 	 * to manually enable the seccomp thread flag here.
1684 	 */
1685 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1686 		set_tsk_thread_flag(p, TIF_SECCOMP);
1687 #endif
1688 }
1689 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1690 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1691 {
1692 	current->clear_child_tid = tidptr;
1693 
1694 	return task_pid_vnr(current);
1695 }
1696 
rt_mutex_init_task(struct task_struct * p)1697 static void rt_mutex_init_task(struct task_struct *p)
1698 {
1699 	raw_spin_lock_init(&p->pi_lock);
1700 #ifdef CONFIG_RT_MUTEXES
1701 	p->pi_waiters = RB_ROOT_CACHED;
1702 	p->pi_top_task = NULL;
1703 	p->pi_blocked_on = NULL;
1704 #endif
1705 }
1706 
init_task_pid_links(struct task_struct * task)1707 static inline void init_task_pid_links(struct task_struct *task)
1708 {
1709 	enum pid_type type;
1710 
1711 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1712 		INIT_HLIST_NODE(&task->pid_links[type]);
1713 	}
1714 }
1715 
1716 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1717 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1718 {
1719 	if (type == PIDTYPE_PID)
1720 		task->thread_pid = pid;
1721 	else
1722 		task->signal->pids[type] = pid;
1723 }
1724 
rcu_copy_process(struct task_struct * p)1725 static inline void rcu_copy_process(struct task_struct *p)
1726 {
1727 #ifdef CONFIG_PREEMPT_RCU
1728 	p->rcu_read_lock_nesting = 0;
1729 	p->rcu_read_unlock_special.s = 0;
1730 	p->rcu_blocked_node = NULL;
1731 	INIT_LIST_HEAD(&p->rcu_node_entry);
1732 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1733 #ifdef CONFIG_TASKS_RCU
1734 	p->rcu_tasks_holdout = false;
1735 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1736 	p->rcu_tasks_idle_cpu = -1;
1737 #endif /* #ifdef CONFIG_TASKS_RCU */
1738 #ifdef CONFIG_TASKS_TRACE_RCU
1739 	p->trc_reader_nesting = 0;
1740 	p->trc_reader_special.s = 0;
1741 	INIT_LIST_HEAD(&p->trc_holdout_list);
1742 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1743 }
1744 
pidfd_pid(const struct file * file)1745 struct pid *pidfd_pid(const struct file *file)
1746 {
1747 	if (file->f_op == &pidfd_fops)
1748 		return file->private_data;
1749 
1750 	return ERR_PTR(-EBADF);
1751 }
1752 
pidfd_release(struct inode * inode,struct file * file)1753 static int pidfd_release(struct inode *inode, struct file *file)
1754 {
1755 	struct pid *pid = file->private_data;
1756 
1757 	file->private_data = NULL;
1758 	put_pid(pid);
1759 	return 0;
1760 }
1761 
1762 #ifdef CONFIG_PROC_FS
1763 /**
1764  * pidfd_show_fdinfo - print information about a pidfd
1765  * @m: proc fdinfo file
1766  * @f: file referencing a pidfd
1767  *
1768  * Pid:
1769  * This function will print the pid that a given pidfd refers to in the
1770  * pid namespace of the procfs instance.
1771  * If the pid namespace of the process is not a descendant of the pid
1772  * namespace of the procfs instance 0 will be shown as its pid. This is
1773  * similar to calling getppid() on a process whose parent is outside of
1774  * its pid namespace.
1775  *
1776  * NSpid:
1777  * If pid namespaces are supported then this function will also print
1778  * the pid of a given pidfd refers to for all descendant pid namespaces
1779  * starting from the current pid namespace of the instance, i.e. the
1780  * Pid field and the first entry in the NSpid field will be identical.
1781  * If the pid namespace of the process is not a descendant of the pid
1782  * namespace of the procfs instance 0 will be shown as its first NSpid
1783  * entry and no others will be shown.
1784  * Note that this differs from the Pid and NSpid fields in
1785  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1786  * the  pid namespace of the procfs instance. The difference becomes
1787  * obvious when sending around a pidfd between pid namespaces from a
1788  * different branch of the tree, i.e. where no ancestoral relation is
1789  * present between the pid namespaces:
1790  * - create two new pid namespaces ns1 and ns2 in the initial pid
1791  *   namespace (also take care to create new mount namespaces in the
1792  *   new pid namespace and mount procfs)
1793  * - create a process with a pidfd in ns1
1794  * - send pidfd from ns1 to ns2
1795  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1796  *   have exactly one entry, which is 0
1797  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1798 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1799 {
1800 	struct pid *pid = f->private_data;
1801 	struct pid_namespace *ns;
1802 	pid_t nr = -1;
1803 
1804 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1805 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1806 		nr = pid_nr_ns(pid, ns);
1807 	}
1808 
1809 	seq_put_decimal_ll(m, "Pid:\t", nr);
1810 
1811 #ifdef CONFIG_PID_NS
1812 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1813 	if (nr > 0) {
1814 		int i;
1815 
1816 		/* If nr is non-zero it means that 'pid' is valid and that
1817 		 * ns, i.e. the pid namespace associated with the procfs
1818 		 * instance, is in the pid namespace hierarchy of pid.
1819 		 * Start at one below the already printed level.
1820 		 */
1821 		for (i = ns->level + 1; i <= pid->level; i++)
1822 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1823 	}
1824 #endif
1825 	seq_putc(m, '\n');
1826 }
1827 #endif
1828 
1829 /*
1830  * Poll support for process exit notification.
1831  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1832 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1833 {
1834 	struct pid *pid = file->private_data;
1835 	__poll_t poll_flags = 0;
1836 
1837 	poll_wait(file, &pid->wait_pidfd, pts);
1838 
1839 	/*
1840 	 * Inform pollers only when the whole thread group exits.
1841 	 * If the thread group leader exits before all other threads in the
1842 	 * group, then poll(2) should block, similar to the wait(2) family.
1843 	 */
1844 	if (thread_group_exited(pid))
1845 		poll_flags = EPOLLIN | EPOLLRDNORM;
1846 
1847 	return poll_flags;
1848 }
1849 
1850 const struct file_operations pidfd_fops = {
1851 	.release = pidfd_release,
1852 	.poll = pidfd_poll,
1853 #ifdef CONFIG_PROC_FS
1854 	.show_fdinfo = pidfd_show_fdinfo,
1855 #endif
1856 };
1857 
__delayed_free_task(struct rcu_head * rhp)1858 static void __delayed_free_task(struct rcu_head *rhp)
1859 {
1860 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1861 
1862 	free_task(tsk);
1863 }
1864 
delayed_free_task(struct task_struct * tsk)1865 static __always_inline void delayed_free_task(struct task_struct *tsk)
1866 {
1867 	if (IS_ENABLED(CONFIG_MEMCG))
1868 		call_rcu(&tsk->rcu, __delayed_free_task);
1869 	else
1870 		free_task(tsk);
1871 }
1872 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1873 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1874 {
1875 	/* Skip if kernel thread */
1876 	if (!tsk->mm)
1877 		return;
1878 
1879 	/* Skip if spawning a thread or using vfork */
1880 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1881 		return;
1882 
1883 	/* We need to synchronize with __set_oom_adj */
1884 	mutex_lock(&oom_adj_mutex);
1885 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1886 	/* Update the values in case they were changed after copy_signal */
1887 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1888 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1889 	mutex_unlock(&oom_adj_mutex);
1890 }
1891 
1892 /*
1893  * This creates a new process as a copy of the old one,
1894  * but does not actually start it yet.
1895  *
1896  * It copies the registers, and all the appropriate
1897  * parts of the process environment (as per the clone
1898  * flags). The actual kick-off is left to the caller.
1899  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1900 static __latent_entropy struct task_struct *copy_process(
1901 					struct pid *pid,
1902 					int trace,
1903 					int node,
1904 					struct kernel_clone_args *args)
1905 {
1906 	int pidfd = -1, retval;
1907 	struct task_struct *p;
1908 	struct multiprocess_signals delayed;
1909 	struct file *pidfile = NULL;
1910 	u64 clone_flags = args->flags;
1911 	struct nsproxy *nsp = current->nsproxy;
1912 
1913 	/*
1914 	 * Don't allow sharing the root directory with processes in a different
1915 	 * namespace
1916 	 */
1917 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1918 		return ERR_PTR(-EINVAL);
1919 
1920 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1921 		return ERR_PTR(-EINVAL);
1922 
1923 	/*
1924 	 * Thread groups must share signals as well, and detached threads
1925 	 * can only be started up within the thread group.
1926 	 */
1927 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1928 		return ERR_PTR(-EINVAL);
1929 
1930 	/*
1931 	 * Shared signal handlers imply shared VM. By way of the above,
1932 	 * thread groups also imply shared VM. Blocking this case allows
1933 	 * for various simplifications in other code.
1934 	 */
1935 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1936 		return ERR_PTR(-EINVAL);
1937 
1938 	/*
1939 	 * Siblings of global init remain as zombies on exit since they are
1940 	 * not reaped by their parent (swapper). To solve this and to avoid
1941 	 * multi-rooted process trees, prevent global and container-inits
1942 	 * from creating siblings.
1943 	 */
1944 	if ((clone_flags & CLONE_PARENT) &&
1945 				current->signal->flags & SIGNAL_UNKILLABLE)
1946 		return ERR_PTR(-EINVAL);
1947 
1948 	/*
1949 	 * If the new process will be in a different pid or user namespace
1950 	 * do not allow it to share a thread group with the forking task.
1951 	 */
1952 	if (clone_flags & CLONE_THREAD) {
1953 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1954 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1955 			return ERR_PTR(-EINVAL);
1956 	}
1957 
1958 	/*
1959 	 * If the new process will be in a different time namespace
1960 	 * do not allow it to share VM or a thread group with the forking task.
1961 	 */
1962 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1963 		if (nsp->time_ns != nsp->time_ns_for_children)
1964 			return ERR_PTR(-EINVAL);
1965 	}
1966 
1967 	if (clone_flags & CLONE_PIDFD) {
1968 		/*
1969 		 * - CLONE_DETACHED is blocked so that we can potentially
1970 		 *   reuse it later for CLONE_PIDFD.
1971 		 * - CLONE_THREAD is blocked until someone really needs it.
1972 		 */
1973 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1974 			return ERR_PTR(-EINVAL);
1975 	}
1976 
1977 	/*
1978 	 * Force any signals received before this point to be delivered
1979 	 * before the fork happens.  Collect up signals sent to multiple
1980 	 * processes that happen during the fork and delay them so that
1981 	 * they appear to happen after the fork.
1982 	 */
1983 	sigemptyset(&delayed.signal);
1984 	INIT_HLIST_NODE(&delayed.node);
1985 
1986 	spin_lock_irq(&current->sighand->siglock);
1987 	if (!(clone_flags & CLONE_THREAD))
1988 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1989 	recalc_sigpending();
1990 	spin_unlock_irq(&current->sighand->siglock);
1991 	retval = -ERESTARTNOINTR;
1992 	if (task_sigpending(current))
1993 		goto fork_out;
1994 
1995 	retval = -ENOMEM;
1996 	p = dup_task_struct(current, node);
1997 	if (!p)
1998 		goto fork_out;
1999 	if (args->io_thread) {
2000 		/*
2001 		 * Mark us an IO worker, and block any signal that isn't
2002 		 * fatal or STOP
2003 		 */
2004 		p->flags |= PF_IO_WORKER;
2005 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2006 	}
2007 
2008 	cpufreq_task_times_init(p);
2009 
2010 	/*
2011 	 * This _must_ happen before we call free_task(), i.e. before we jump
2012 	 * to any of the bad_fork_* labels. This is to avoid freeing
2013 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
2014 	 * kernel threads (PF_KTHREAD).
2015 	 */
2016 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2017 	/*
2018 	 * Clear TID on mm_release()?
2019 	 */
2020 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2021 
2022 	ftrace_graph_init_task(p);
2023 
2024 	rt_mutex_init_task(p);
2025 
2026 	lockdep_assert_irqs_enabled();
2027 #ifdef CONFIG_PROVE_LOCKING
2028 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2029 #endif
2030 	retval = -EAGAIN;
2031 	if (atomic_read(&p->real_cred->user->processes) >=
2032 			task_rlimit(p, RLIMIT_NPROC)) {
2033 		if (p->real_cred->user != INIT_USER &&
2034 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2035 			goto bad_fork_free;
2036 	}
2037 	current->flags &= ~PF_NPROC_EXCEEDED;
2038 
2039 	retval = copy_creds(p, clone_flags);
2040 	if (retval < 0)
2041 		goto bad_fork_free;
2042 
2043 	/*
2044 	 * If multiple threads are within copy_process(), then this check
2045 	 * triggers too late. This doesn't hurt, the check is only there
2046 	 * to stop root fork bombs.
2047 	 */
2048 	retval = -EAGAIN;
2049 	if (data_race(nr_threads >= max_threads))
2050 		goto bad_fork_cleanup_count;
2051 
2052 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2053 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2054 	p->flags |= PF_FORKNOEXEC;
2055 	INIT_LIST_HEAD(&p->children);
2056 	INIT_LIST_HEAD(&p->sibling);
2057 	rcu_copy_process(p);
2058 	p->vfork_done = NULL;
2059 	spin_lock_init(&p->alloc_lock);
2060 
2061 	init_sigpending(&p->pending);
2062 
2063 	p->utime = p->stime = p->gtime = 0;
2064 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2065 	p->utimescaled = p->stimescaled = 0;
2066 #endif
2067 	prev_cputime_init(&p->prev_cputime);
2068 
2069 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2070 	seqcount_init(&p->vtime.seqcount);
2071 	p->vtime.starttime = 0;
2072 	p->vtime.state = VTIME_INACTIVE;
2073 #endif
2074 
2075 #ifdef CONFIG_IO_URING
2076 	p->io_uring = NULL;
2077 #endif
2078 
2079 #if defined(SPLIT_RSS_COUNTING)
2080 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2081 #endif
2082 
2083 	p->default_timer_slack_ns = current->timer_slack_ns;
2084 
2085 #ifdef CONFIG_PSI
2086 	p->psi_flags = 0;
2087 #endif
2088 
2089 	task_io_accounting_init(&p->ioac);
2090 	acct_clear_integrals(p);
2091 
2092 	posix_cputimers_init(&p->posix_cputimers);
2093 
2094 	p->io_context = NULL;
2095 	audit_set_context(p, NULL);
2096 	cgroup_fork(p);
2097 #ifdef CONFIG_NUMA
2098 	p->mempolicy = mpol_dup(p->mempolicy);
2099 	if (IS_ERR(p->mempolicy)) {
2100 		retval = PTR_ERR(p->mempolicy);
2101 		p->mempolicy = NULL;
2102 		goto bad_fork_cleanup_threadgroup_lock;
2103 	}
2104 #endif
2105 #ifdef CONFIG_CPUSETS
2106 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2107 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2108 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2109 #endif
2110 #ifdef CONFIG_TRACE_IRQFLAGS
2111 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2112 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2113 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2114 	p->softirqs_enabled		= 1;
2115 	p->softirq_context		= 0;
2116 #endif
2117 
2118 	p->pagefault_disabled = 0;
2119 
2120 #ifdef CONFIG_LOCKDEP
2121 	lockdep_init_task(p);
2122 #endif
2123 
2124 #ifdef CONFIG_DEBUG_MUTEXES
2125 	p->blocked_on = NULL; /* not blocked yet */
2126 #endif
2127 #ifdef CONFIG_BCACHE
2128 	p->sequential_io	= 0;
2129 	p->sequential_io_avg	= 0;
2130 #endif
2131 
2132 	/* Perform scheduler related setup. Assign this task to a CPU. */
2133 	retval = sched_fork(clone_flags, p);
2134 	if (retval)
2135 		goto bad_fork_cleanup_policy;
2136 
2137 	retval = perf_event_init_task(p);
2138 	if (retval)
2139 		goto bad_fork_cleanup_policy;
2140 	retval = audit_alloc(p);
2141 	if (retval)
2142 		goto bad_fork_cleanup_perf;
2143 	/* copy all the process information */
2144 	shm_init_task(p);
2145 	retval = security_task_alloc(p, clone_flags);
2146 	if (retval)
2147 		goto bad_fork_cleanup_audit;
2148 	retval = copy_semundo(clone_flags, p);
2149 	if (retval)
2150 		goto bad_fork_cleanup_security;
2151 	retval = copy_files(clone_flags, p);
2152 	if (retval)
2153 		goto bad_fork_cleanup_semundo;
2154 	retval = copy_fs(clone_flags, p);
2155 	if (retval)
2156 		goto bad_fork_cleanup_files;
2157 	retval = copy_sighand(clone_flags, p);
2158 	if (retval)
2159 		goto bad_fork_cleanup_fs;
2160 	retval = copy_signal(clone_flags, p);
2161 	if (retval)
2162 		goto bad_fork_cleanup_sighand;
2163 	retval = copy_mm(clone_flags, p);
2164 	if (retval)
2165 		goto bad_fork_cleanup_signal;
2166 	retval = copy_namespaces(clone_flags, p);
2167 	if (retval)
2168 		goto bad_fork_cleanup_mm;
2169 	retval = copy_io(clone_flags, p);
2170 	if (retval)
2171 		goto bad_fork_cleanup_namespaces;
2172 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2173 	if (retval)
2174 		goto bad_fork_cleanup_io;
2175 
2176 	stackleak_task_init(p);
2177 
2178 	if (pid != &init_struct_pid) {
2179 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2180 				args->set_tid_size);
2181 		if (IS_ERR(pid)) {
2182 			retval = PTR_ERR(pid);
2183 			goto bad_fork_cleanup_thread;
2184 		}
2185 	}
2186 
2187 	/*
2188 	 * This has to happen after we've potentially unshared the file
2189 	 * descriptor table (so that the pidfd doesn't leak into the child
2190 	 * if the fd table isn't shared).
2191 	 */
2192 	if (clone_flags & CLONE_PIDFD) {
2193 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2194 		if (retval < 0)
2195 			goto bad_fork_free_pid;
2196 
2197 		pidfd = retval;
2198 
2199 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2200 					      O_RDWR | O_CLOEXEC);
2201 		if (IS_ERR(pidfile)) {
2202 			put_unused_fd(pidfd);
2203 			retval = PTR_ERR(pidfile);
2204 			goto bad_fork_free_pid;
2205 		}
2206 		get_pid(pid);	/* held by pidfile now */
2207 
2208 		retval = put_user(pidfd, args->pidfd);
2209 		if (retval)
2210 			goto bad_fork_put_pidfd;
2211 	}
2212 
2213 #ifdef CONFIG_BLOCK
2214 	p->plug = NULL;
2215 #endif
2216 	futex_init_task(p);
2217 
2218 	/*
2219 	 * sigaltstack should be cleared when sharing the same VM
2220 	 */
2221 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2222 		sas_ss_reset(p);
2223 
2224 	/*
2225 	 * Syscall tracing and stepping should be turned off in the
2226 	 * child regardless of CLONE_PTRACE.
2227 	 */
2228 	user_disable_single_step(p);
2229 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2230 #ifdef TIF_SYSCALL_EMU
2231 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2232 #endif
2233 	clear_tsk_latency_tracing(p);
2234 
2235 	/* ok, now we should be set up.. */
2236 	p->pid = pid_nr(pid);
2237 	if (clone_flags & CLONE_THREAD) {
2238 		p->group_leader = current->group_leader;
2239 		p->tgid = current->tgid;
2240 	} else {
2241 		p->group_leader = p;
2242 		p->tgid = p->pid;
2243 	}
2244 
2245 	p->nr_dirtied = 0;
2246 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2247 	p->dirty_paused_when = 0;
2248 
2249 	p->pdeath_signal = 0;
2250 	INIT_LIST_HEAD(&p->thread_group);
2251 	p->task_works = NULL;
2252 	clear_posix_cputimers_work(p);
2253 
2254 	/*
2255 	 * Ensure that the cgroup subsystem policies allow the new process to be
2256 	 * forked. It should be noted that the new process's css_set can be changed
2257 	 * between here and cgroup_post_fork() if an organisation operation is in
2258 	 * progress.
2259 	 */
2260 	retval = cgroup_can_fork(p, args);
2261 	if (retval)
2262 		goto bad_fork_put_pidfd;
2263 
2264 	/*
2265 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2266 	 * the new task on the correct runqueue. All this *before* the task
2267 	 * becomes visible.
2268 	 *
2269 	 * This isn't part of ->can_fork() because while the re-cloning is
2270 	 * cgroup specific, it unconditionally needs to place the task on a
2271 	 * runqueue.
2272 	 */
2273 	sched_cgroup_fork(p, args);
2274 
2275 	/*
2276 	 * From this point on we must avoid any synchronous user-space
2277 	 * communication until we take the tasklist-lock. In particular, we do
2278 	 * not want user-space to be able to predict the process start-time by
2279 	 * stalling fork(2) after we recorded the start_time but before it is
2280 	 * visible to the system.
2281 	 */
2282 
2283 	p->start_time = ktime_get_ns();
2284 	p->start_boottime = ktime_get_boottime_ns();
2285 
2286 	/*
2287 	 * Make it visible to the rest of the system, but dont wake it up yet.
2288 	 * Need tasklist lock for parent etc handling!
2289 	 */
2290 	write_lock_irq(&tasklist_lock);
2291 
2292 	/* CLONE_PARENT re-uses the old parent */
2293 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2294 		p->real_parent = current->real_parent;
2295 		p->parent_exec_id = current->parent_exec_id;
2296 		if (clone_flags & CLONE_THREAD)
2297 			p->exit_signal = -1;
2298 		else
2299 			p->exit_signal = current->group_leader->exit_signal;
2300 	} else {
2301 		p->real_parent = current;
2302 		p->parent_exec_id = current->self_exec_id;
2303 		p->exit_signal = args->exit_signal;
2304 	}
2305 
2306 	klp_copy_process(p);
2307 
2308 	spin_lock(&current->sighand->siglock);
2309 
2310 	/*
2311 	 * Copy seccomp details explicitly here, in case they were changed
2312 	 * before holding sighand lock.
2313 	 */
2314 	copy_seccomp(p);
2315 
2316 	rseq_fork(p, clone_flags);
2317 
2318 	/* Don't start children in a dying pid namespace */
2319 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2320 		retval = -ENOMEM;
2321 		goto bad_fork_cancel_cgroup;
2322 	}
2323 
2324 	/* Let kill terminate clone/fork in the middle */
2325 	if (fatal_signal_pending(current)) {
2326 		retval = -EINTR;
2327 		goto bad_fork_cancel_cgroup;
2328 	}
2329 
2330 	init_task_pid_links(p);
2331 	if (likely(p->pid)) {
2332 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2333 
2334 		init_task_pid(p, PIDTYPE_PID, pid);
2335 		if (thread_group_leader(p)) {
2336 			init_task_pid(p, PIDTYPE_TGID, pid);
2337 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2338 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2339 
2340 			if (is_child_reaper(pid)) {
2341 				ns_of_pid(pid)->child_reaper = p;
2342 				p->signal->flags |= SIGNAL_UNKILLABLE;
2343 			}
2344 			p->signal->shared_pending.signal = delayed.signal;
2345 			p->signal->tty = tty_kref_get(current->signal->tty);
2346 			/*
2347 			 * Inherit has_child_subreaper flag under the same
2348 			 * tasklist_lock with adding child to the process tree
2349 			 * for propagate_has_child_subreaper optimization.
2350 			 */
2351 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2352 							 p->real_parent->signal->is_child_subreaper;
2353 			list_add_tail(&p->sibling, &p->real_parent->children);
2354 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2355 			attach_pid(p, PIDTYPE_TGID);
2356 			attach_pid(p, PIDTYPE_PGID);
2357 			attach_pid(p, PIDTYPE_SID);
2358 			__this_cpu_inc(process_counts);
2359 		} else {
2360 			current->signal->nr_threads++;
2361 			atomic_inc(&current->signal->live);
2362 			refcount_inc(&current->signal->sigcnt);
2363 			task_join_group_stop(p);
2364 			list_add_tail_rcu(&p->thread_group,
2365 					  &p->group_leader->thread_group);
2366 			list_add_tail_rcu(&p->thread_node,
2367 					  &p->signal->thread_head);
2368 		}
2369 		attach_pid(p, PIDTYPE_PID);
2370 		nr_threads++;
2371 	}
2372 	total_forks++;
2373 	hlist_del_init(&delayed.node);
2374 	spin_unlock(&current->sighand->siglock);
2375 	syscall_tracepoint_update(p);
2376 	write_unlock_irq(&tasklist_lock);
2377 
2378 	if (pidfile)
2379 		fd_install(pidfd, pidfile);
2380 
2381 	proc_fork_connector(p);
2382 	sched_post_fork(p);
2383 	cgroup_post_fork(p, args);
2384 	perf_event_fork(p);
2385 
2386 	trace_task_newtask(p, clone_flags);
2387 	uprobe_copy_process(p, clone_flags);
2388 
2389 	copy_oom_score_adj(clone_flags, p);
2390 
2391 	return p;
2392 
2393 bad_fork_cancel_cgroup:
2394 	spin_unlock(&current->sighand->siglock);
2395 	write_unlock_irq(&tasklist_lock);
2396 	cgroup_cancel_fork(p, args);
2397 bad_fork_put_pidfd:
2398 	if (clone_flags & CLONE_PIDFD) {
2399 		fput(pidfile);
2400 		put_unused_fd(pidfd);
2401 	}
2402 bad_fork_free_pid:
2403 	if (pid != &init_struct_pid)
2404 		free_pid(pid);
2405 bad_fork_cleanup_thread:
2406 	exit_thread(p);
2407 bad_fork_cleanup_io:
2408 	if (p->io_context)
2409 		exit_io_context(p);
2410 bad_fork_cleanup_namespaces:
2411 	exit_task_namespaces(p);
2412 bad_fork_cleanup_mm:
2413 	if (p->mm) {
2414 		mm_clear_owner(p->mm, p);
2415 		mmput(p->mm);
2416 	}
2417 bad_fork_cleanup_signal:
2418 	if (!(clone_flags & CLONE_THREAD))
2419 		free_signal_struct(p->signal);
2420 bad_fork_cleanup_sighand:
2421 	__cleanup_sighand(p->sighand);
2422 bad_fork_cleanup_fs:
2423 	exit_fs(p); /* blocking */
2424 bad_fork_cleanup_files:
2425 	exit_files(p); /* blocking */
2426 bad_fork_cleanup_semundo:
2427 	exit_sem(p);
2428 bad_fork_cleanup_security:
2429 	security_task_free(p);
2430 bad_fork_cleanup_audit:
2431 	audit_free(p);
2432 bad_fork_cleanup_perf:
2433 	perf_event_free_task(p);
2434 bad_fork_cleanup_policy:
2435 	lockdep_free_task(p);
2436 #ifdef CONFIG_NUMA
2437 	mpol_put(p->mempolicy);
2438 bad_fork_cleanup_threadgroup_lock:
2439 #endif
2440 	delayacct_tsk_free(p);
2441 bad_fork_cleanup_count:
2442 	atomic_dec(&p->cred->user->processes);
2443 	exit_creds(p);
2444 bad_fork_free:
2445 	p->state = TASK_DEAD;
2446 	put_task_stack(p);
2447 	delayed_free_task(p);
2448 fork_out:
2449 	spin_lock_irq(&current->sighand->siglock);
2450 	hlist_del_init(&delayed.node);
2451 	spin_unlock_irq(&current->sighand->siglock);
2452 	return ERR_PTR(retval);
2453 }
2454 
init_idle_pids(struct task_struct * idle)2455 static inline void init_idle_pids(struct task_struct *idle)
2456 {
2457 	enum pid_type type;
2458 
2459 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2460 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2461 		init_task_pid(idle, type, &init_struct_pid);
2462 	}
2463 }
2464 
fork_idle(int cpu)2465 struct task_struct * __init fork_idle(int cpu)
2466 {
2467 	struct task_struct *task;
2468 	struct kernel_clone_args args = {
2469 		.flags = CLONE_VM,
2470 	};
2471 
2472 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2473 	if (!IS_ERR(task)) {
2474 		init_idle_pids(task);
2475 		init_idle(task, cpu);
2476 	}
2477 
2478 	return task;
2479 }
2480 
copy_init_mm(void)2481 struct mm_struct *copy_init_mm(void)
2482 {
2483 	return dup_mm(NULL, &init_mm);
2484 }
2485 
2486 /*
2487  * This is like kernel_clone(), but shaved down and tailored to just
2488  * creating io_uring workers. It returns a created task, or an error pointer.
2489  * The returned task is inactive, and the caller must fire it up through
2490  * wake_up_new_task(p). All signals are blocked in the created task.
2491  */
create_io_thread(int (* fn)(void *),void * arg,int node)2492 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2493 {
2494 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2495 				CLONE_IO;
2496 	struct kernel_clone_args args = {
2497 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2498 				    CLONE_UNTRACED) & ~CSIGNAL),
2499 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2500 		.stack		= (unsigned long)fn,
2501 		.stack_size	= (unsigned long)arg,
2502 		.io_thread	= 1,
2503 	};
2504 
2505 	return copy_process(NULL, 0, node, &args);
2506 }
2507 
2508 /*
2509  *  Ok, this is the main fork-routine.
2510  *
2511  * It copies the process, and if successful kick-starts
2512  * it and waits for it to finish using the VM if required.
2513  *
2514  * args->exit_signal is expected to be checked for sanity by the caller.
2515  */
kernel_clone(struct kernel_clone_args * args)2516 pid_t kernel_clone(struct kernel_clone_args *args)
2517 {
2518 	u64 clone_flags = args->flags;
2519 	struct completion vfork;
2520 	struct pid *pid;
2521 	struct task_struct *p;
2522 	int trace = 0;
2523 	pid_t nr;
2524 
2525 	/*
2526 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2527 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2528 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2529 	 * field in struct clone_args and it still doesn't make sense to have
2530 	 * them both point at the same memory location. Performing this check
2531 	 * here has the advantage that we don't need to have a separate helper
2532 	 * to check for legacy clone().
2533 	 */
2534 	if ((args->flags & CLONE_PIDFD) &&
2535 	    (args->flags & CLONE_PARENT_SETTID) &&
2536 	    (args->pidfd == args->parent_tid))
2537 		return -EINVAL;
2538 
2539 	/*
2540 	 * Determine whether and which event to report to ptracer.  When
2541 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2542 	 * requested, no event is reported; otherwise, report if the event
2543 	 * for the type of forking is enabled.
2544 	 */
2545 	if (!(clone_flags & CLONE_UNTRACED)) {
2546 		if (clone_flags & CLONE_VFORK)
2547 			trace = PTRACE_EVENT_VFORK;
2548 		else if (args->exit_signal != SIGCHLD)
2549 			trace = PTRACE_EVENT_CLONE;
2550 		else
2551 			trace = PTRACE_EVENT_FORK;
2552 
2553 		if (likely(!ptrace_event_enabled(current, trace)))
2554 			trace = 0;
2555 	}
2556 
2557 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2558 	add_latent_entropy();
2559 
2560 	if (IS_ERR(p))
2561 		return PTR_ERR(p);
2562 
2563 	cpufreq_task_times_alloc(p);
2564 
2565 	/*
2566 	 * Do this prior waking up the new thread - the thread pointer
2567 	 * might get invalid after that point, if the thread exits quickly.
2568 	 */
2569 	trace_sched_process_fork(current, p);
2570 
2571 	pid = get_task_pid(p, PIDTYPE_PID);
2572 	nr = pid_vnr(pid);
2573 
2574 	if (clone_flags & CLONE_PARENT_SETTID)
2575 		put_user(nr, args->parent_tid);
2576 
2577 	if (clone_flags & CLONE_VFORK) {
2578 		p->vfork_done = &vfork;
2579 		init_completion(&vfork);
2580 		get_task_struct(p);
2581 	}
2582 
2583 	wake_up_new_task(p);
2584 
2585 	/* forking complete and child started to run, tell ptracer */
2586 	if (unlikely(trace))
2587 		ptrace_event_pid(trace, pid);
2588 
2589 	if (clone_flags & CLONE_VFORK) {
2590 		if (!wait_for_vfork_done(p, &vfork))
2591 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2592 	}
2593 
2594 	put_pid(pid);
2595 	return nr;
2596 }
2597 
2598 /*
2599  * Create a kernel thread.
2600  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2601 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2602 {
2603 	struct kernel_clone_args args = {
2604 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2605 				    CLONE_UNTRACED) & ~CSIGNAL),
2606 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2607 		.stack		= (unsigned long)fn,
2608 		.stack_size	= (unsigned long)arg,
2609 	};
2610 
2611 	return kernel_clone(&args);
2612 }
2613 
2614 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2615 SYSCALL_DEFINE0(fork)
2616 {
2617 #ifdef CONFIG_MMU
2618 	struct kernel_clone_args args = {
2619 		.exit_signal = SIGCHLD,
2620 	};
2621 
2622 	return kernel_clone(&args);
2623 #else
2624 	/* can not support in nommu mode */
2625 	return -EINVAL;
2626 #endif
2627 }
2628 #endif
2629 
2630 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2631 SYSCALL_DEFINE0(vfork)
2632 {
2633 	struct kernel_clone_args args = {
2634 		.flags		= CLONE_VFORK | CLONE_VM,
2635 		.exit_signal	= SIGCHLD,
2636 	};
2637 
2638 	return kernel_clone(&args);
2639 }
2640 #endif
2641 
2642 #ifdef __ARCH_WANT_SYS_CLONE
2643 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2644 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2645 		 int __user *, parent_tidptr,
2646 		 unsigned long, tls,
2647 		 int __user *, child_tidptr)
2648 #elif defined(CONFIG_CLONE_BACKWARDS2)
2649 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2650 		 int __user *, parent_tidptr,
2651 		 int __user *, child_tidptr,
2652 		 unsigned long, tls)
2653 #elif defined(CONFIG_CLONE_BACKWARDS3)
2654 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2655 		int, stack_size,
2656 		int __user *, parent_tidptr,
2657 		int __user *, child_tidptr,
2658 		unsigned long, tls)
2659 #else
2660 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2661 		 int __user *, parent_tidptr,
2662 		 int __user *, child_tidptr,
2663 		 unsigned long, tls)
2664 #endif
2665 {
2666 	struct kernel_clone_args args = {
2667 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2668 		.pidfd		= parent_tidptr,
2669 		.child_tid	= child_tidptr,
2670 		.parent_tid	= parent_tidptr,
2671 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2672 		.stack		= newsp,
2673 		.tls		= tls,
2674 	};
2675 
2676 	return kernel_clone(&args);
2677 }
2678 #endif
2679 
2680 #ifdef __ARCH_WANT_SYS_CLONE3
2681 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2682 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2683 					      struct clone_args __user *uargs,
2684 					      size_t usize)
2685 {
2686 	int err;
2687 	struct clone_args args;
2688 	pid_t *kset_tid = kargs->set_tid;
2689 
2690 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2691 		     CLONE_ARGS_SIZE_VER0);
2692 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2693 		     CLONE_ARGS_SIZE_VER1);
2694 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2695 		     CLONE_ARGS_SIZE_VER2);
2696 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2697 
2698 	if (unlikely(usize > PAGE_SIZE))
2699 		return -E2BIG;
2700 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2701 		return -EINVAL;
2702 
2703 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2704 	if (err)
2705 		return err;
2706 
2707 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2708 		return -EINVAL;
2709 
2710 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2711 		return -EINVAL;
2712 
2713 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2714 		return -EINVAL;
2715 
2716 	/*
2717 	 * Verify that higher 32bits of exit_signal are unset and that
2718 	 * it is a valid signal
2719 	 */
2720 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2721 		     !valid_signal(args.exit_signal)))
2722 		return -EINVAL;
2723 
2724 	if ((args.flags & CLONE_INTO_CGROUP) &&
2725 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2726 		return -EINVAL;
2727 
2728 	*kargs = (struct kernel_clone_args){
2729 		.flags		= args.flags,
2730 		.pidfd		= u64_to_user_ptr(args.pidfd),
2731 		.child_tid	= u64_to_user_ptr(args.child_tid),
2732 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2733 		.exit_signal	= args.exit_signal,
2734 		.stack		= args.stack,
2735 		.stack_size	= args.stack_size,
2736 		.tls		= args.tls,
2737 		.set_tid_size	= args.set_tid_size,
2738 		.cgroup		= args.cgroup,
2739 	};
2740 
2741 	if (args.set_tid &&
2742 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2743 			(kargs->set_tid_size * sizeof(pid_t))))
2744 		return -EFAULT;
2745 
2746 	kargs->set_tid = kset_tid;
2747 
2748 	return 0;
2749 }
2750 
2751 /**
2752  * clone3_stack_valid - check and prepare stack
2753  * @kargs: kernel clone args
2754  *
2755  * Verify that the stack arguments userspace gave us are sane.
2756  * In addition, set the stack direction for userspace since it's easy for us to
2757  * determine.
2758  */
clone3_stack_valid(struct kernel_clone_args * kargs)2759 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2760 {
2761 	if (kargs->stack == 0) {
2762 		if (kargs->stack_size > 0)
2763 			return false;
2764 	} else {
2765 		if (kargs->stack_size == 0)
2766 			return false;
2767 
2768 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2769 			return false;
2770 
2771 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2772 		kargs->stack += kargs->stack_size;
2773 #endif
2774 	}
2775 
2776 	return true;
2777 }
2778 
clone3_args_valid(struct kernel_clone_args * kargs)2779 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2780 {
2781 	/* Verify that no unknown flags are passed along. */
2782 	if (kargs->flags &
2783 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2784 		return false;
2785 
2786 	/*
2787 	 * - make the CLONE_DETACHED bit reuseable for clone3
2788 	 * - make the CSIGNAL bits reuseable for clone3
2789 	 */
2790 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2791 		return false;
2792 
2793 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2794 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2795 		return false;
2796 
2797 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2798 	    kargs->exit_signal)
2799 		return false;
2800 
2801 	if (!clone3_stack_valid(kargs))
2802 		return false;
2803 
2804 	return true;
2805 }
2806 
2807 /**
2808  * clone3 - create a new process with specific properties
2809  * @uargs: argument structure
2810  * @size:  size of @uargs
2811  *
2812  * clone3() is the extensible successor to clone()/clone2().
2813  * It takes a struct as argument that is versioned by its size.
2814  *
2815  * Return: On success, a positive PID for the child process.
2816  *         On error, a negative errno number.
2817  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2818 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2819 {
2820 	int err;
2821 
2822 	struct kernel_clone_args kargs;
2823 	pid_t set_tid[MAX_PID_NS_LEVEL];
2824 
2825 	kargs.set_tid = set_tid;
2826 
2827 	err = copy_clone_args_from_user(&kargs, uargs, size);
2828 	if (err)
2829 		return err;
2830 
2831 	if (!clone3_args_valid(&kargs))
2832 		return -EINVAL;
2833 
2834 	return kernel_clone(&kargs);
2835 }
2836 #endif
2837 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2838 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2839 {
2840 	struct task_struct *leader, *parent, *child;
2841 	int res;
2842 
2843 	read_lock(&tasklist_lock);
2844 	leader = top = top->group_leader;
2845 down:
2846 	for_each_thread(leader, parent) {
2847 		list_for_each_entry(child, &parent->children, sibling) {
2848 			res = visitor(child, data);
2849 			if (res) {
2850 				if (res < 0)
2851 					goto out;
2852 				leader = child;
2853 				goto down;
2854 			}
2855 up:
2856 			;
2857 		}
2858 	}
2859 
2860 	if (leader != top) {
2861 		child = leader;
2862 		parent = child->real_parent;
2863 		leader = parent->group_leader;
2864 		goto up;
2865 	}
2866 out:
2867 	read_unlock(&tasklist_lock);
2868 }
2869 
2870 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2871 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2872 #endif
2873 
sighand_ctor(void * data)2874 static void sighand_ctor(void *data)
2875 {
2876 	struct sighand_struct *sighand = data;
2877 
2878 	spin_lock_init(&sighand->siglock);
2879 	init_waitqueue_head(&sighand->signalfd_wqh);
2880 }
2881 
proc_caches_init(void)2882 void __init proc_caches_init(void)
2883 {
2884 	unsigned int mm_size;
2885 
2886 	sighand_cachep = kmem_cache_create("sighand_cache",
2887 			sizeof(struct sighand_struct), 0,
2888 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2889 			SLAB_ACCOUNT, sighand_ctor);
2890 	signal_cachep = kmem_cache_create("signal_cache",
2891 			sizeof(struct signal_struct), 0,
2892 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2893 			NULL);
2894 	files_cachep = kmem_cache_create("files_cache",
2895 			sizeof(struct files_struct), 0,
2896 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2897 			NULL);
2898 	fs_cachep = kmem_cache_create("fs_cache",
2899 			sizeof(struct fs_struct), 0,
2900 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2901 			NULL);
2902 
2903 	/*
2904 	 * The mm_cpumask is located at the end of mm_struct, and is
2905 	 * dynamically sized based on the maximum CPU number this system
2906 	 * can have, taking hotplug into account (nr_cpu_ids).
2907 	 */
2908 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2909 
2910 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2911 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2912 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2913 			offsetof(struct mm_struct, saved_auxv),
2914 			sizeof_field(struct mm_struct, saved_auxv),
2915 			NULL);
2916 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2917 	mmap_init();
2918 	nsproxy_cache_init();
2919 }
2920 
2921 /*
2922  * Check constraints on flags passed to the unshare system call.
2923  */
check_unshare_flags(unsigned long unshare_flags)2924 static int check_unshare_flags(unsigned long unshare_flags)
2925 {
2926 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2927 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2928 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2929 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2930 				CLONE_NEWTIME))
2931 		return -EINVAL;
2932 	/*
2933 	 * Not implemented, but pretend it works if there is nothing
2934 	 * to unshare.  Note that unsharing the address space or the
2935 	 * signal handlers also need to unshare the signal queues (aka
2936 	 * CLONE_THREAD).
2937 	 */
2938 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2939 		if (!thread_group_empty(current))
2940 			return -EINVAL;
2941 	}
2942 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2943 		if (refcount_read(&current->sighand->count) > 1)
2944 			return -EINVAL;
2945 	}
2946 	if (unshare_flags & CLONE_VM) {
2947 		if (!current_is_single_threaded())
2948 			return -EINVAL;
2949 	}
2950 
2951 	return 0;
2952 }
2953 
2954 /*
2955  * Unshare the filesystem structure if it is being shared
2956  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2957 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2958 {
2959 	struct fs_struct *fs = current->fs;
2960 
2961 	if (!(unshare_flags & CLONE_FS) || !fs)
2962 		return 0;
2963 
2964 	/* don't need lock here; in the worst case we'll do useless copy */
2965 	if (fs->users == 1)
2966 		return 0;
2967 
2968 	*new_fsp = copy_fs_struct(fs);
2969 	if (!*new_fsp)
2970 		return -ENOMEM;
2971 
2972 	return 0;
2973 }
2974 
2975 /*
2976  * Unshare file descriptor table if it is being shared
2977  */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)2978 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2979 	       struct files_struct **new_fdp)
2980 {
2981 	struct files_struct *fd = current->files;
2982 	int error = 0;
2983 
2984 	if ((unshare_flags & CLONE_FILES) &&
2985 	    (fd && atomic_read(&fd->count) > 1)) {
2986 		*new_fdp = dup_fd(fd, max_fds, &error);
2987 		if (!*new_fdp)
2988 			return error;
2989 	}
2990 
2991 	return 0;
2992 }
2993 
2994 /*
2995  * unshare allows a process to 'unshare' part of the process
2996  * context which was originally shared using clone.  copy_*
2997  * functions used by kernel_clone() cannot be used here directly
2998  * because they modify an inactive task_struct that is being
2999  * constructed. Here we are modifying the current, active,
3000  * task_struct.
3001  */
ksys_unshare(unsigned long unshare_flags)3002 int ksys_unshare(unsigned long unshare_flags)
3003 {
3004 	struct fs_struct *fs, *new_fs = NULL;
3005 	struct files_struct *fd, *new_fd = NULL;
3006 	struct cred *new_cred = NULL;
3007 	struct nsproxy *new_nsproxy = NULL;
3008 	int do_sysvsem = 0;
3009 	int err;
3010 
3011 	/*
3012 	 * If unsharing a user namespace must also unshare the thread group
3013 	 * and unshare the filesystem root and working directories.
3014 	 */
3015 	if (unshare_flags & CLONE_NEWUSER)
3016 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3017 	/*
3018 	 * If unsharing vm, must also unshare signal handlers.
3019 	 */
3020 	if (unshare_flags & CLONE_VM)
3021 		unshare_flags |= CLONE_SIGHAND;
3022 	/*
3023 	 * If unsharing a signal handlers, must also unshare the signal queues.
3024 	 */
3025 	if (unshare_flags & CLONE_SIGHAND)
3026 		unshare_flags |= CLONE_THREAD;
3027 	/*
3028 	 * If unsharing namespace, must also unshare filesystem information.
3029 	 */
3030 	if (unshare_flags & CLONE_NEWNS)
3031 		unshare_flags |= CLONE_FS;
3032 
3033 	err = check_unshare_flags(unshare_flags);
3034 	if (err)
3035 		goto bad_unshare_out;
3036 	/*
3037 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3038 	 * to a new ipc namespace, the semaphore arrays from the old
3039 	 * namespace are unreachable.
3040 	 */
3041 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3042 		do_sysvsem = 1;
3043 	err = unshare_fs(unshare_flags, &new_fs);
3044 	if (err)
3045 		goto bad_unshare_out;
3046 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3047 	if (err)
3048 		goto bad_unshare_cleanup_fs;
3049 	err = unshare_userns(unshare_flags, &new_cred);
3050 	if (err)
3051 		goto bad_unshare_cleanup_fd;
3052 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3053 					 new_cred, new_fs);
3054 	if (err)
3055 		goto bad_unshare_cleanup_cred;
3056 
3057 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3058 		if (do_sysvsem) {
3059 			/*
3060 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3061 			 */
3062 			exit_sem(current);
3063 		}
3064 		if (unshare_flags & CLONE_NEWIPC) {
3065 			/* Orphan segments in old ns (see sem above). */
3066 			exit_shm(current);
3067 			shm_init_task(current);
3068 		}
3069 
3070 		if (new_nsproxy)
3071 			switch_task_namespaces(current, new_nsproxy);
3072 
3073 		task_lock(current);
3074 
3075 		if (new_fs) {
3076 			fs = current->fs;
3077 			spin_lock(&fs->lock);
3078 			current->fs = new_fs;
3079 			if (--fs->users)
3080 				new_fs = NULL;
3081 			else
3082 				new_fs = fs;
3083 			spin_unlock(&fs->lock);
3084 		}
3085 
3086 		if (new_fd) {
3087 			fd = current->files;
3088 			current->files = new_fd;
3089 			new_fd = fd;
3090 		}
3091 
3092 		task_unlock(current);
3093 
3094 		if (new_cred) {
3095 			/* Install the new user namespace */
3096 			commit_creds(new_cred);
3097 			new_cred = NULL;
3098 		}
3099 	}
3100 
3101 	perf_event_namespaces(current);
3102 
3103 bad_unshare_cleanup_cred:
3104 	if (new_cred)
3105 		put_cred(new_cred);
3106 bad_unshare_cleanup_fd:
3107 	if (new_fd)
3108 		put_files_struct(new_fd);
3109 
3110 bad_unshare_cleanup_fs:
3111 	if (new_fs)
3112 		free_fs_struct(new_fs);
3113 
3114 bad_unshare_out:
3115 	return err;
3116 }
3117 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3118 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3119 {
3120 	return ksys_unshare(unshare_flags);
3121 }
3122 
3123 /*
3124  *	Helper to unshare the files of the current task.
3125  *	We don't want to expose copy_files internals to
3126  *	the exec layer of the kernel.
3127  */
3128 
unshare_files(struct files_struct ** displaced)3129 int unshare_files(struct files_struct **displaced)
3130 {
3131 	struct task_struct *task = current;
3132 	struct files_struct *copy = NULL;
3133 	int error;
3134 
3135 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3136 	if (error || !copy) {
3137 		*displaced = NULL;
3138 		return error;
3139 	}
3140 	*displaced = task->files;
3141 	task_lock(task);
3142 	task->files = copy;
3143 	task_unlock(task);
3144 	return 0;
3145 }
3146 
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3147 int sysctl_max_threads(struct ctl_table *table, int write,
3148 		       void *buffer, size_t *lenp, loff_t *ppos)
3149 {
3150 	struct ctl_table t;
3151 	int ret;
3152 	int threads = max_threads;
3153 	int min = 1;
3154 	int max = MAX_THREADS;
3155 
3156 	t = *table;
3157 	t.data = &threads;
3158 	t.extra1 = &min;
3159 	t.extra2 = &max;
3160 
3161 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3162 	if (ret || !write)
3163 		return ret;
3164 
3165 	max_threads = threads;
3166 
3167 	return 0;
3168 }
3169