xref: /OK3568_Linux_fs/kernel/drivers/input/sensors/sensor-dev.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* drivers/input/sensors/sensor-dev.c - handle all gsensor in this file
2  *
3  * Copyright (C) 2012-2015 ROCKCHIP.
4  * Author: luowei <lw@rock-chips.com>
5  *
6  * This software is licensed under the terms of the GNU General Public
7  * License version 2, as published by the Free Software Foundation, and
8  * may be copied, distributed, and modified under those terms.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 #include <linux/interrupt.h>
18 #include <linux/i2c.h>
19 #include <linux/slab.h>
20 #include <linux/irq.h>
21 #include <linux/miscdevice.h>
22 #include <linux/gpio.h>
23 #include <linux/uaccess.h>
24 #include <asm/atomic.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/workqueue.h>
28 #include <linux/freezer.h>
29 #include <linux/proc_fs.h>
30 #include <linux/gpio.h>
31 #include <linux/of_gpio.h>
32 #include <linux/of.h>
33 #ifdef CONFIG_HAS_EARLYSUSPEND
34 #include <linux/earlysuspend.h>
35 #endif
36 #include <linux/l3g4200d.h>
37 #include <linux/sensor-dev.h>
38 #include <linux/module.h>
39 #ifdef CONFIG_COMPAT
40 #include <linux/compat.h>
41 #endif
42 #include <linux/soc/rockchip/rk_vendor_storage.h>
43 
44 #define SENSOR_CALIBRATION_LEN 64
45 struct sensor_calibration_data {
46 	s32 accel_offset[3];
47 	s32 gyro_offset[3];
48 	u8 is_accel_calibrated;
49 	u8 is_gyro_calibrated;
50 };
51 
52 static struct sensor_private_data *g_sensor[SENSOR_NUM_TYPES];
53 static struct sensor_operate *sensor_ops[SENSOR_NUM_ID];
54 static int sensor_probe_times[SENSOR_NUM_ID];
55 static struct class *sensor_class;
56 static struct sensor_calibration_data sensor_cali_data;
57 
sensor_calibration_data_write(struct sensor_calibration_data * calibration_data)58 static int sensor_calibration_data_write(struct sensor_calibration_data *calibration_data)
59 {
60 	int ret;
61 	u8 data[SENSOR_CALIBRATION_LEN] = {0};
62 
63 	memcpy(data, (u8 *)calibration_data, sizeof(struct sensor_calibration_data));
64 
65 	ret = rk_vendor_write(SENSOR_CALIBRATION_ID, (void *)data, SENSOR_CALIBRATION_LEN);
66 	if (ret < 0) {
67 		printk(KERN_ERR "%s failed\n", __func__);
68 		return ret;
69 	}
70 
71 	return 0;
72 }
73 
sensor_calibration_data_read(struct sensor_calibration_data * calibration_data)74 static int sensor_calibration_data_read(struct sensor_calibration_data *calibration_data)
75 {
76 	int ret;
77 	u8 data[SENSOR_CALIBRATION_LEN] = {0};
78 	struct sensor_calibration_data *cdata = (struct sensor_calibration_data *)data;
79 
80 	ret = rk_vendor_read(SENSOR_CALIBRATION_ID, (void *)data, SENSOR_CALIBRATION_LEN);
81 	if (ret < 0) {
82 		printk(KERN_ERR "%s failed\n", __func__);
83 		return ret;
84 	}
85 	if (cdata->is_accel_calibrated == 1) {
86 		calibration_data->accel_offset[0] = cdata->accel_offset[0];
87 		calibration_data->accel_offset[1] = cdata->accel_offset[1];
88 		calibration_data->accel_offset[2] = cdata->accel_offset[2];
89 		calibration_data->is_accel_calibrated = 1;
90 	}
91 	if (cdata->is_gyro_calibrated == 1) {
92 		calibration_data->gyro_offset[0] = cdata->gyro_offset[0];
93 		calibration_data->gyro_offset[1] = cdata->gyro_offset[1];
94 		calibration_data->gyro_offset[2] = cdata->gyro_offset[2];
95 		calibration_data->is_gyro_calibrated = 1;
96 	}
97 
98 	return 0;
99 }
100 
accel_calibration_show(struct class * class,struct class_attribute * attr,char * buf)101 static ssize_t accel_calibration_show(struct class *class,
102 		struct class_attribute *attr, char *buf)
103 {
104 	int ret;
105 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_ACCEL];
106 
107 	if (sensor == NULL)
108 		return sprintf(buf, "no accel sensor find\n");
109 
110 	if (sensor_cali_data.is_accel_calibrated == 1)
111 		return sprintf(buf, "accel calibration: %d, %d, %d\n", sensor_cali_data.accel_offset[0],
112 				sensor_cali_data.accel_offset[1], sensor_cali_data.accel_offset[2]);
113 
114 	ret = sensor_calibration_data_read(&sensor_cali_data);
115 	if (ret) {
116 		dev_err(&sensor->client->dev, "read accel sensor calibration data failed\n");
117 		return sprintf(buf, "read error\n");
118 	}
119 
120 	if (sensor_cali_data.is_accel_calibrated == 1)
121 		return sprintf(buf, "accel calibration: %d, %d, %d\n", sensor_cali_data.accel_offset[0],
122 			sensor_cali_data.accel_offset[1], sensor_cali_data.accel_offset[2]);
123 
124 	return sprintf(buf, "read error\n");
125 }
126 
127 #define ACCEL_CAPTURE_TIMES 20
128 #define ACCEL_SENSITIVE 16384
129 /* +-1 * 16384 / 9.8 */
130 #define ACCEL_OFFSET_MAX 1600
accel_do_calibration(struct sensor_private_data * sensor)131 static int accel_do_calibration(struct sensor_private_data *sensor)
132 {
133 	int i;
134 	int ret;
135 	int max_try_times = 20;
136 	long int sum_accel[3] = {0, 0, 0};
137 
138 	mutex_lock(&sensor->operation_mutex);
139 	for (i = 0; i < ACCEL_CAPTURE_TIMES; ) {
140 		ret = sensor->ops->report(sensor->client);
141 		if (ret < 0)
142 			dev_err(&sensor->client->dev, "in %s read accel data error\n", __func__);
143 		if (abs(sensor->axis.x) > ACCEL_OFFSET_MAX ||
144 			abs(sensor->axis.y) > ACCEL_OFFSET_MAX ||
145 			abs(abs(sensor->axis.z) - ACCEL_SENSITIVE) > ACCEL_OFFSET_MAX) {
146 			sum_accel[0] = 0;
147 			sum_accel[1] = 0;
148 			sum_accel[2] = 0;
149 			i = 0;
150 			max_try_times--;
151 		} else {
152 			sum_accel[0] += sensor->axis.x;
153 			sum_accel[1] += sensor->axis.y;
154 			sum_accel[2] += sensor->axis.z;
155 			i++;
156 		}
157 		if (max_try_times == 0) {
158 			mutex_unlock(&sensor->operation_mutex);
159 			return -1;
160 		}
161 		dev_info(&sensor->client->dev, "%d times, read accel data is %d, %d, %d\n",
162 			i, sensor->axis.x, sensor->axis.y, sensor->axis.z);
163 		msleep(sensor->pdata->poll_delay_ms);
164 	}
165 	mutex_unlock(&sensor->operation_mutex);
166 
167 	sensor_cali_data.accel_offset[0] = sum_accel[0] / ACCEL_CAPTURE_TIMES;
168 	sensor_cali_data.accel_offset[1] = sum_accel[1] / ACCEL_CAPTURE_TIMES;
169 	sensor_cali_data.accel_offset[2] = sum_accel[2] / ACCEL_CAPTURE_TIMES;
170 
171 	sensor_cali_data.accel_offset[2] = sensor_cali_data.accel_offset[2] > 0
172 		? sensor_cali_data.accel_offset[2] - ACCEL_SENSITIVE : sensor_cali_data.accel_offset[2] + ACCEL_SENSITIVE;
173 
174 	sensor_cali_data.is_accel_calibrated = 1;
175 
176 	dev_info(&sensor->client->dev, "accel offset is %d, %d, %d\n", sensor_cali_data.accel_offset[0],
177 		sensor_cali_data.accel_offset[1], sensor_cali_data.accel_offset[2]);
178 
179 	return 0;
180 }
181 
accel_calibration_store(struct class * class,struct class_attribute * attr,const char * buf,size_t count)182 static ssize_t accel_calibration_store(struct class *class,
183 		struct class_attribute *attr, const char *buf, size_t count)
184 {
185 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_ACCEL];
186 	int val, ret;
187 	int pre_status;
188 
189 	if (sensor == NULL)
190 		return -1;
191 
192 	ret = kstrtoint(buf, 10, &val);
193 	if (ret) {
194 		dev_err(&sensor->client->dev, "%s: kstrtoint error return %d\n", __func__, ret);
195 		return -1;
196 	}
197 	if (val != 1) {
198 		dev_err(&sensor->client->dev, "%s: error value\n", __func__);
199 		return -1;
200 	}
201 	atomic_set(&sensor->is_factory, 1);
202 
203 	pre_status = sensor->status_cur;
204 	if (pre_status == SENSOR_OFF) {
205 		mutex_lock(&sensor->operation_mutex);
206 		sensor->ops->active(sensor->client, SENSOR_ON, sensor->pdata->poll_delay_ms);
207 		mutex_unlock(&sensor->operation_mutex);
208 	} else {
209 		sensor->stop_work = 1;
210 		if (sensor->pdata->irq_enable)
211 			disable_irq_nosync(sensor->client->irq);
212 		else
213 			cancel_delayed_work_sync(&sensor->delaywork);
214 	}
215 
216 	ret = accel_do_calibration(sensor);
217 	if (ret < 0) {
218 		dev_err(&sensor->client->dev, "accel do calibration failed\n");
219 		goto OUT;
220 	}
221 	ret = sensor_calibration_data_write(&sensor_cali_data);
222 	if (ret)
223 		dev_err(&sensor->client->dev, "write accel sensor calibration data failed\n");
224 
225 OUT:
226 	if (pre_status == SENSOR_ON) {
227 		sensor->stop_work = 0;
228 		if (sensor->pdata->irq_enable)
229 			enable_irq(sensor->client->irq);
230 		else
231 			schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
232 	} else {
233 		mutex_lock(&sensor->operation_mutex);
234 		sensor->ops->active(sensor->client, SENSOR_OFF, sensor->pdata->poll_delay_ms);
235 		mutex_unlock(&sensor->operation_mutex);
236 	}
237 
238 	atomic_set(&sensor->is_factory, 0);
239 	wake_up(&sensor->is_factory_ok);
240 
241 	return ret ? ret : count;
242 }
243 
244 static CLASS_ATTR_RW(accel_calibration);
245 
gyro_calibration_show(struct class * class,struct class_attribute * attr,char * buf)246 static ssize_t gyro_calibration_show(struct class *class,
247 		struct class_attribute *attr, char *buf)
248 {
249 	int ret;
250 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_GYROSCOPE];
251 
252 	if (sensor == NULL)
253 		return sprintf(buf, "no gyro sensor find\n");
254 
255 	if (sensor_cali_data.is_gyro_calibrated == 1)
256 		return sprintf(buf, "gyro calibration: %d, %d, %d\n", sensor_cali_data.gyro_offset[0],
257 				sensor_cali_data.gyro_offset[1], sensor_cali_data.gyro_offset[2]);
258 
259 	ret = sensor_calibration_data_read(&sensor_cali_data);
260 	if (ret) {
261 		dev_err(&sensor->client->dev, "read gyro sensor calibration data failed\n");
262 		return sprintf(buf, "read error\n");
263 	}
264 
265 	if (sensor_cali_data.is_gyro_calibrated == 1)
266 		return sprintf(buf, "gyro calibration: %d, %d, %d\n", sensor_cali_data.gyro_offset[0],
267 				sensor_cali_data.gyro_offset[1], sensor_cali_data.gyro_offset[2]);
268 
269 	return sprintf(buf, "read error\n");
270 }
271 
272 #define GYRO_CAPTURE_TIMES 20
gyro_do_calibration(struct sensor_private_data * sensor)273 static int gyro_do_calibration(struct sensor_private_data *sensor)
274 {
275 	int i;
276 	int ret;
277 	long int sum_gyro[3] = {0, 0, 0};
278 
279 	mutex_lock(&sensor->operation_mutex);
280 	for (i = 0; i < GYRO_CAPTURE_TIMES; i++) {
281 		ret = sensor->ops->report(sensor->client);
282 		if (ret < 0) {
283 			dev_err(&sensor->client->dev, "in %s read gyro data error\n", __func__);
284 			mutex_unlock(&sensor->operation_mutex);
285 			return -1;
286 		}
287 		sum_gyro[0] += sensor->axis.x;
288 		sum_gyro[1] += sensor->axis.y;
289 		sum_gyro[2] += sensor->axis.z;
290 		dev_info(&sensor->client->dev, "%d times, read gyro data is %d, %d, %d\n",
291 			i, sensor->axis.x, sensor->axis.y, sensor->axis.z);
292 		msleep(sensor->pdata->poll_delay_ms);
293 	}
294 	mutex_unlock(&sensor->operation_mutex);
295 
296 	sensor_cali_data.gyro_offset[0] = sum_gyro[0] / GYRO_CAPTURE_TIMES;
297 	sensor_cali_data.gyro_offset[1] = sum_gyro[1] / GYRO_CAPTURE_TIMES;
298 	sensor_cali_data.gyro_offset[2] = sum_gyro[2] / GYRO_CAPTURE_TIMES;
299 	sensor_cali_data.is_gyro_calibrated = 1;
300 
301 	dev_info(&sensor->client->dev, "gyro offset is %d, %d, %d\n", sensor_cali_data.gyro_offset[0],
302 		sensor_cali_data.gyro_offset[1], sensor_cali_data.gyro_offset[2]);
303 
304 	return 0;
305 }
306 
gyro_calibration_store(struct class * class,struct class_attribute * attr,const char * buf,size_t count)307 static ssize_t gyro_calibration_store(struct class *class,
308 		struct class_attribute *attr, const char *buf, size_t count)
309 {
310 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_GYROSCOPE];
311 	int val, ret;
312 	int pre_status;
313 
314 	if (sensor == NULL)
315 		return -1;
316 
317 	ret = kstrtoint(buf, 10, &val);
318 	if (ret) {
319 		dev_err(&sensor->client->dev, "%s: kstrtoint error return %d\n", __func__, ret);
320 		return -1;
321 	}
322 	if (val != 1) {
323 		dev_err(&sensor->client->dev, "%s error value\n", __func__);
324 		return -1;
325 	}
326 	atomic_set(&sensor->is_factory, 1);
327 
328 	pre_status = sensor->status_cur;
329 	if (pre_status == SENSOR_OFF) {
330 		mutex_lock(&sensor->operation_mutex);
331 		sensor->ops->active(sensor->client, SENSOR_ON, sensor->pdata->poll_delay_ms);
332 		mutex_unlock(&sensor->operation_mutex);
333 	} else {
334 		sensor->stop_work = 1;
335 		if (sensor->pdata->irq_enable)
336 			disable_irq_nosync(sensor->client->irq);
337 		else
338 			cancel_delayed_work_sync(&sensor->delaywork);
339 	}
340 
341 	ret = gyro_do_calibration(sensor);
342 	if (ret < 0) {
343 		dev_err(&sensor->client->dev, "gyro do calibration failed\n");
344 		goto OUT;
345 	}
346 
347 	ret = sensor_calibration_data_write(&sensor_cali_data);
348 	if (ret)
349 		dev_err(&sensor->client->dev, "write gyro sensor calibration data failed\n");
350 
351 OUT:
352 	if (pre_status == SENSOR_ON) {
353 		sensor->stop_work = 0;
354 		if (sensor->pdata->irq_enable)
355 			enable_irq(sensor->client->irq);
356 		else
357 			schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
358 	} else {
359 		mutex_lock(&sensor->operation_mutex);
360 		sensor->ops->active(sensor->client, SENSOR_OFF, sensor->pdata->poll_delay_ms);
361 		mutex_unlock(&sensor->operation_mutex);
362 	}
363 
364 	atomic_set(&sensor->is_factory, 0);
365 	wake_up(&sensor->is_factory_ok);
366 
367 	return ret ? ret : count;
368 }
369 
370 static CLASS_ATTR_RW(gyro_calibration);
371 
sensor_class_init(void)372 static int sensor_class_init(void)
373 {
374 	int ret ;
375 
376 	sensor_class = class_create(THIS_MODULE, "sensor_class");
377 	ret = class_create_file(sensor_class, &class_attr_accel_calibration);
378 	if (ret) {
379 		printk(KERN_ERR "%s:Fail to creat accel class file\n", __func__);
380 		return ret;
381 	}
382 
383 	ret = class_create_file(sensor_class, &class_attr_gyro_calibration);
384 	if (ret) {
385 		printk(KERN_ERR "%s:Fail to creat gyro class file\n", __func__);
386 		return ret;
387 	}
388 
389 	return 0;
390 }
391 
sensor_get_id(struct i2c_client * client,int * value)392 static int sensor_get_id(struct i2c_client *client, int *value)
393 {
394 	struct sensor_private_data *sensor = (struct sensor_private_data *) i2c_get_clientdata(client);
395 	int result = 0;
396 	char temp = sensor->ops->id_reg;
397 	int i = 0;
398 
399 	if (sensor->ops->id_reg >= 0) {
400 		for (i = 0; i < 3; i++) {
401 			result = sensor_rx_data(client, &temp, 1);
402 			*value = temp;
403 			if (!result)
404 				break;
405 		}
406 
407 		if (result)
408 			return result;
409 
410 		if (*value != sensor->ops->id_data) {
411 			dev_err(&client->dev, "%s:id=0x%x is not 0x%x\n", __func__, *value, sensor->ops->id_data);
412 			result = -1;
413 		}
414 	}
415 
416 	return result;
417 }
418 
sensor_initial(struct i2c_client * client)419 static int sensor_initial(struct i2c_client *client)
420 {
421 	struct sensor_private_data *sensor = (struct sensor_private_data *) i2c_get_clientdata(client);
422 	int result = 0;
423 
424 	/* register setting according to chip datasheet */
425 	result = sensor->ops->init(client);
426 	if (result < 0) {
427 		dev_err(&client->dev, "%s:fail to init sensor\n", __func__);
428 		return result;
429 	}
430 
431 	return result;
432 }
433 
sensor_chip_init(struct i2c_client * client)434 static int sensor_chip_init(struct i2c_client *client)
435 {
436 	struct sensor_private_data *sensor = (struct sensor_private_data *) i2c_get_clientdata(client);
437 	struct sensor_operate *ops = sensor_ops[(int)sensor->i2c_id->driver_data];
438 	int result = 0;
439 
440 	if (ops) {
441 		sensor->ops = ops;
442 	} else {
443 		dev_err(&client->dev, "%s:ops is null,sensor name is %s\n", __func__, sensor->i2c_id->name);
444 		result = -1;
445 		goto error;
446 	}
447 
448 	if ((sensor->type != ops->type) || ((int)sensor->i2c_id->driver_data != ops->id_i2c)) {
449 		dev_err(&client->dev, "%s:type or id is different:type=%d,%d,id=%d,%d\n", __func__, sensor->type, ops->type, (int)sensor->i2c_id->driver_data, ops->id_i2c);
450 		result = -1;
451 		goto error;
452 	}
453 
454 	if (!ops->init || !ops->active || !ops->report) {
455 		dev_err(&client->dev, "%s:error:some function is needed\n", __func__);
456 		result = -1;
457 		goto error;
458 	}
459 
460 	result = sensor_get_id(sensor->client, &sensor->devid);
461 	if (result < 0) {
462 		dev_err(&client->dev, "%s:fail to read %s devid:0x%x\n", __func__, sensor->i2c_id->name, sensor->devid);
463 		result = -2;
464 		goto error;
465 	}
466 
467 	dev_info(&client->dev, "%s:%s:devid=0x%x,ops=0x%p\n", __func__, sensor->i2c_id->name, sensor->devid, sensor->ops);
468 
469 	result = sensor_initial(sensor->client);
470 	if (result < 0) {
471 		dev_err(&client->dev, "%s:fail to init sensor\n", __func__);
472 		result = -2;
473 		goto error;
474 	}
475 	return 0;
476 
477 error:
478 	return result;
479 }
480 
sensor_reset_rate(struct i2c_client * client,int rate)481 static int sensor_reset_rate(struct i2c_client *client, int rate)
482 {
483 	struct sensor_private_data *sensor = (struct sensor_private_data *) i2c_get_clientdata(client);
484 	int result = 0;
485 
486 	if (rate < 5)
487 		rate = 5;
488 	else if (rate > 200)
489 		rate = 200;
490 
491 	dev_info(&client->dev, "set sensor poll time to %dms\n", rate);
492 
493 	/* work queue is always slow, we need more quickly to match hal rate */
494 	if (sensor->pdata->poll_delay_ms == (rate - 4))
495 		return 0;
496 
497 	sensor->pdata->poll_delay_ms = rate - 4;
498 
499 	if (sensor->status_cur == SENSOR_ON) {
500 		if (!sensor->pdata->irq_enable) {
501 			sensor->stop_work = 1;
502 			cancel_delayed_work_sync(&sensor->delaywork);
503 		}
504 		sensor->ops->active(client, SENSOR_OFF, rate);
505 		result = sensor->ops->active(client, SENSOR_ON, rate);
506 		if (!sensor->pdata->irq_enable) {
507 			sensor->stop_work = 0;
508 			schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
509 		}
510 	}
511 
512 	return result;
513 }
514 
sensor_delaywork_func(struct work_struct * work)515 static void  sensor_delaywork_func(struct work_struct *work)
516 {
517 	struct delayed_work *delaywork = container_of(work, struct delayed_work, work);
518 	struct sensor_private_data *sensor = container_of(delaywork, struct sensor_private_data, delaywork);
519 	struct i2c_client *client = sensor->client;
520 	int result;
521 
522 	mutex_lock(&sensor->sensor_mutex);
523 	result = sensor->ops->report(client);
524 	if (result < 0)
525 		dev_err(&client->dev, "%s: Get data failed\n", __func__);
526 	mutex_unlock(&sensor->sensor_mutex);
527 
528 	if ((!sensor->pdata->irq_enable) && (sensor->stop_work == 0))
529 		schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
530 }
531 
532 /*
533  * This is a threaded IRQ handler so can access I2C/SPI.  Since all
534  * interrupts are clear on read the IRQ line will be reasserted and
535  * the physical IRQ will be handled again if another interrupt is
536  * asserted while we run - in the normal course of events this is a
537  * rare occurrence so we save I2C/SPI reads.  We're also assuming that
538  * it's rare to get lots of interrupts firing simultaneously so try to
539  * minimise I/O.
540  */
sensor_interrupt(int irq,void * dev_id)541 static irqreturn_t sensor_interrupt(int irq, void *dev_id)
542 {
543 	struct sensor_private_data *sensor =
544 			(struct sensor_private_data *)dev_id;
545 	struct i2c_client *client = sensor->client;
546 
547 	mutex_lock(&sensor->sensor_mutex);
548 	if (sensor->ops->report(client) < 0)
549 		dev_err(&client->dev, "%s: Get data failed\n", __func__);
550 	mutex_unlock(&sensor->sensor_mutex);
551 
552 	return IRQ_HANDLED;
553 }
554 
sensor_irq_init(struct i2c_client * client)555 static int sensor_irq_init(struct i2c_client *client)
556 {
557 	struct sensor_private_data *sensor =
558 			(struct sensor_private_data *) i2c_get_clientdata(client);
559 	int result = 0;
560 	int irq;
561 
562 	if ((sensor->pdata->irq_enable) && (sensor->pdata->irq_flags != SENSOR_UNKNOW_DATA)) {
563 		if (sensor->pdata->poll_delay_ms <= 0)
564 			sensor->pdata->poll_delay_ms = 30;
565 		result = gpio_request(client->irq, sensor->i2c_id->name);
566 		if (result)
567 			dev_err(&client->dev, "%s:fail to request gpio :%d\n", __func__, client->irq);
568 
569 		irq = gpio_to_irq(client->irq);
570 		result = devm_request_threaded_irq(&client->dev, irq, NULL, sensor_interrupt, sensor->pdata->irq_flags | IRQF_ONESHOT, sensor->ops->name, sensor);
571 		if (result) {
572 			dev_err(&client->dev, "%s:fail to request irq = %d, ret = 0x%x\n", __func__, irq, result);
573 			goto error;
574 		}
575 
576 		client->irq = irq;
577 		disable_irq_nosync(client->irq);
578 
579 		dev_info(&client->dev, "%s:use irq=%d\n", __func__, irq);
580 	} else if (!sensor->pdata->irq_enable) {
581 		INIT_DELAYED_WORK(&sensor->delaywork, sensor_delaywork_func);
582 		sensor->stop_work = 1;
583 		if (sensor->pdata->poll_delay_ms <= 0)
584 			sensor->pdata->poll_delay_ms = 30;
585 
586 		dev_info(&client->dev, "%s:use polling,delay=%d ms\n", __func__, sensor->pdata->poll_delay_ms);
587 	}
588 
589 error:
590 	return result;
591 }
592 
sensor_shutdown(struct i2c_client * client)593 void sensor_shutdown(struct i2c_client *client)
594 {
595 #ifdef CONFIG_HAS_EARLYSUSPEND
596 	struct sensor_private_data *sensor =
597 		(struct sensor_private_data *) i2c_get_clientdata(client);
598 
599 	if ((sensor->ops->suspend) && (sensor->ops->resume))
600 		unregister_early_suspend(&sensor->early_suspend);
601 #endif
602 }
603 EXPORT_SYMBOL(sensor_shutdown);
604 
605 #ifdef CONFIG_HAS_EARLYSUSPEND
sensor_suspend(struct early_suspend * h)606 static void sensor_suspend(struct early_suspend *h)
607 {
608 	struct sensor_private_data *sensor =
609 			container_of(h, struct sensor_private_data, early_suspend);
610 
611 	if (sensor->ops->suspend)
612 		sensor->ops->suspend(sensor->client);
613 }
614 
sensor_resume(struct early_suspend * h)615 static void sensor_resume(struct early_suspend *h)
616 {
617 	struct sensor_private_data *sensor =
618 			container_of(h, struct sensor_private_data, early_suspend);
619 
620 	if (sensor->ops->resume)
621 		sensor->ops->resume(sensor->client);
622 }
623 #endif
624 
625 #ifdef CONFIG_PM
sensor_of_suspend(struct device * dev)626 static int __maybe_unused sensor_of_suspend(struct device *dev)
627 {
628 	struct sensor_private_data *sensor = dev_get_drvdata(dev);
629 
630 	if (sensor->ops->suspend)
631 		sensor->ops->suspend(sensor->client);
632 
633 	return 0;
634 }
635 
sensor_of_resume(struct device * dev)636 static int __maybe_unused sensor_of_resume(struct device *dev)
637 {
638 	struct sensor_private_data *sensor = dev_get_drvdata(dev);
639 
640 	if (sensor->ops->resume)
641 		sensor->ops->resume(sensor->client);
642 	if (sensor->pdata->power_off_in_suspend)
643 		sensor_initial(sensor->client);
644 
645 	return 0;
646 }
647 
648 const struct dev_pm_ops sensor_pm_ops = {
649 	SET_SYSTEM_SLEEP_PM_OPS(sensor_of_suspend, sensor_of_resume)
650 };
651 EXPORT_SYMBOL(sensor_pm_ops);
652 
653 #define SENSOR_PM_OPS (&sensor_pm_ops)
654 #else
655 #define SENSOR_PM_OPS NULL
656 #endif
657 
angle_dev_open(struct inode * inode,struct file * file)658 static int angle_dev_open(struct inode *inode, struct file *file)
659 {
660 	return 0;
661 }
662 
angle_dev_release(struct inode * inode,struct file * file)663 static int angle_dev_release(struct inode *inode, struct file *file)
664 {
665 	return 0;
666 }
667 
sensor_enable(struct sensor_private_data * sensor,int enable)668 static int sensor_enable(struct sensor_private_data *sensor, int enable)
669 {
670 	int result = 0;
671 	struct i2c_client *client = sensor->client;
672 
673 	if (enable == SENSOR_ON) {
674 		result = sensor->ops->active(client, 1, sensor->pdata->poll_delay_ms);
675 		if (result < 0) {
676 			dev_err(&client->dev, "%s:fail to active sensor,ret=%d\n", __func__, result);
677 			return result;
678 		}
679 		sensor->status_cur = SENSOR_ON;
680 		sensor->stop_work = 0;
681 		if (sensor->pdata->irq_enable)
682 			enable_irq(client->irq);
683 		else
684 			schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
685 		dev_info(&client->dev, "sensor on: starting poll sensor data %dms\n", sensor->pdata->poll_delay_ms);
686 	} else {
687 		sensor->stop_work = 1;
688 		if (sensor->pdata->irq_enable)
689 			disable_irq_nosync(client->irq);
690 		else
691 			cancel_delayed_work_sync(&sensor->delaywork);
692 		result = sensor->ops->active(client, 0, sensor->pdata->poll_delay_ms);
693 		if (result < 0) {
694 			dev_err(&client->dev, "%s:fail to disable sensor,ret=%d\n", __func__, result);
695 			return result;
696 		}
697 		sensor->status_cur = SENSOR_OFF;
698 	}
699 
700 	return result;
701 }
702 
703 /* ioctl - I/O control */
angle_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)704 static long angle_dev_ioctl(struct file *file,
705 			  unsigned int cmd, unsigned long arg)
706 {
707 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_ANGLE];
708 	struct i2c_client *client = sensor->client;
709 	void __user *argp = (void __user *)arg;
710 	struct sensor_axis axis = {0};
711 	short rate;
712 	int result = 0;
713 
714 	switch (cmd) {
715 	case GSENSOR_IOCTL_APP_SET_RATE:
716 		if (copy_from_user(&rate, argp, sizeof(rate))) {
717 			result = -EFAULT;
718 			goto error;
719 		}
720 		break;
721 	default:
722 		break;
723 	}
724 
725 	switch (cmd) {
726 	case GSENSOR_IOCTL_START:
727 		mutex_lock(&sensor->operation_mutex);
728 		if (++sensor->start_count == 1)	{
729 			if (sensor->status_cur == SENSOR_OFF) {
730 				sensor_enable(sensor, SENSOR_ON);
731 			}
732 		}
733 		mutex_unlock(&sensor->operation_mutex);
734 		break;
735 
736 	case GSENSOR_IOCTL_CLOSE:
737 		mutex_lock(&sensor->operation_mutex);
738 		if (--sensor->start_count == 0) {
739 			if (sensor->status_cur == SENSOR_ON) {
740 				sensor_enable(sensor, SENSOR_OFF);
741 			}
742 		}
743 		mutex_unlock(&sensor->operation_mutex);
744 		break;
745 
746 	case GSENSOR_IOCTL_APP_SET_RATE:
747 		mutex_lock(&sensor->operation_mutex);
748 		result = sensor_reset_rate(client, rate);
749 		if (result < 0) {
750 			mutex_unlock(&sensor->operation_mutex);
751 			goto error;
752 		}
753 		mutex_unlock(&sensor->operation_mutex);
754 		break;
755 
756 	case GSENSOR_IOCTL_GETDATA:
757 		mutex_lock(&sensor->data_mutex);
758 		memcpy(&axis, &sensor->axis, sizeof(sensor->axis));
759 		mutex_unlock(&sensor->data_mutex);
760 		break;
761 
762 	default:
763 		result = -ENOTTY;
764 
765 	goto error;
766 	}
767 
768 	switch (cmd) {
769 	case GSENSOR_IOCTL_GETDATA:
770 		if (copy_to_user(argp, &axis, sizeof(axis))) {
771 			dev_err(&client->dev, "failed to copy sense data to user space.\n");
772 			result = -EFAULT;
773 			goto error;
774 		}
775 		break;
776 	default:
777 		break;
778 	}
779 
780 error:
781 	return result;
782 }
783 
784 
gsensor_dev_open(struct inode * inode,struct file * file)785 static int gsensor_dev_open(struct inode *inode, struct file *file)
786 {
787 	return 0;
788 }
789 
gsensor_dev_release(struct inode * inode,struct file * file)790 static int gsensor_dev_release(struct inode *inode, struct file *file)
791 {
792 	return 0;
793 }
794 
795 /* ioctl - I/O control */
gsensor_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)796 static long gsensor_dev_ioctl(struct file *file,
797 			  unsigned int cmd, unsigned long arg)
798 {
799 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_ACCEL];
800 	struct i2c_client *client = sensor->client;
801 	void __user *argp = (void __user *)arg;
802 	struct sensor_axis axis = {0};
803 	short rate;
804 	int result = 0;
805 
806 	wait_event_interruptible(sensor->is_factory_ok, (atomic_read(&sensor->is_factory) == 0));
807 
808 	switch (cmd) {
809 	case GSENSOR_IOCTL_APP_SET_RATE:
810 		if (copy_from_user(&rate, argp, sizeof(rate))) {
811 			result = -EFAULT;
812 			goto error;
813 		}
814 		break;
815 	default:
816 		break;
817 	}
818 
819 	switch (cmd) {
820 	case GSENSOR_IOCTL_START:
821 		mutex_lock(&sensor->operation_mutex);
822 		if (++sensor->start_count == 1) {
823 			if (sensor->status_cur == SENSOR_OFF) {
824 				sensor_enable(sensor, SENSOR_ON);
825 			}
826 		}
827 		mutex_unlock(&sensor->operation_mutex);
828 		break;
829 
830 	case GSENSOR_IOCTL_CLOSE:
831 		mutex_lock(&sensor->operation_mutex);
832 		if (--sensor->start_count == 0) {
833 			if (sensor->status_cur == SENSOR_ON) {
834 				sensor_enable(sensor, SENSOR_OFF);
835 			}
836 		}
837 		mutex_unlock(&sensor->operation_mutex);
838 		break;
839 
840 	case GSENSOR_IOCTL_APP_SET_RATE:
841 		mutex_lock(&sensor->operation_mutex);
842 		result = sensor_reset_rate(client, rate);
843 		if (result < 0) {
844 			mutex_unlock(&sensor->operation_mutex);
845 			goto error;
846 		}
847 		mutex_unlock(&sensor->operation_mutex);
848 		break;
849 
850 	case GSENSOR_IOCTL_GETDATA:
851 		mutex_lock(&sensor->data_mutex);
852 		memcpy(&axis, &sensor->axis, sizeof(sensor->axis));
853 		mutex_unlock(&sensor->data_mutex);
854 		break;
855 
856 	case GSENSOR_IOCTL_GET_CALIBRATION:
857 		if (sensor_cali_data.is_accel_calibrated != 1) {
858 			if (sensor_calibration_data_read(&sensor_cali_data)) {
859 				dev_err(&client->dev, "failed to read accel offset data from storage\n");
860 				result = -EFAULT;
861 				goto error;
862 			}
863 		}
864 		if (sensor_cali_data.is_accel_calibrated == 1) {
865 			if (copy_to_user(argp, sensor_cali_data.accel_offset, sizeof(sensor_cali_data.accel_offset))) {
866 				dev_err(&client->dev, "failed to copy accel offset data to user\n");
867 				result = -EFAULT;
868 				goto error;
869 			}
870 		}
871 		break;
872 
873 	default:
874 		result = -ENOTTY;
875 	goto error;
876 	}
877 
878 	switch (cmd) {
879 	case GSENSOR_IOCTL_GETDATA:
880 		if (copy_to_user(argp, &axis, sizeof(axis))) {
881 			dev_err(&client->dev, "failed to copy sense data to user space.\n");
882 			result = -EFAULT;
883 			goto error;
884 		}
885 		break;
886 	default:
887 		break;
888 	}
889 
890 error:
891 	return result;
892 }
893 
compass_dev_open(struct inode * inode,struct file * file)894 static int compass_dev_open(struct inode *inode, struct file *file)
895 {
896 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_COMPASS];
897 	int flag = 0;
898 
899 	flag = atomic_read(&sensor->flags.open_flag);
900 	if (!flag) {
901 		atomic_set(&sensor->flags.open_flag, 1);
902 		wake_up(&sensor->flags.open_wq);
903 	}
904 
905 	return 0;
906 }
907 
compass_dev_release(struct inode * inode,struct file * file)908 static int compass_dev_release(struct inode *inode, struct file *file)
909 {
910 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_COMPASS];
911 	int flag = 0;
912 
913 	flag = atomic_read(&sensor->flags.open_flag);
914 	if (flag) {
915 		atomic_set(&sensor->flags.open_flag, 0);
916 		wake_up(&sensor->flags.open_wq);
917 	}
918 
919 	return 0;
920 }
921 
922 #ifdef CONFIG_COMPAT
923 /* ioctl - I/O control */
compass_dev_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)924 static long compass_dev_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
925 {
926 	void __user *arg64 = compat_ptr(arg);
927 	int result = 0;
928 
929 	if (!file->f_op || !file->f_op->unlocked_ioctl) {
930 		printk(KERN_ERR "file->f_op or file->f_op->unlocked_ioctl is null\n");
931 		return -ENOTTY;
932 	}
933 
934 	switch (cmd) {
935 	case COMPAT_ECS_IOCTL_APP_SET_MFLAG:
936 		if (file->f_op->unlocked_ioctl)
937 			result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_SET_MFLAG, (unsigned long)arg64);
938 		break;
939 	case COMPAT_ECS_IOCTL_APP_GET_MFLAG:
940 		if (file->f_op->unlocked_ioctl)
941 			result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_GET_MFLAG, (unsigned long)arg64);
942 		break;
943 	case COMPAT_ECS_IOCTL_APP_SET_AFLAG:
944 		if (file->f_op->unlocked_ioctl)
945 			result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_SET_AFLAG, (unsigned long)arg64);
946 		break;
947 	case COMPAT_ECS_IOCTL_APP_GET_AFLAG:
948 		if (file->f_op->unlocked_ioctl)
949 			result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_GET_AFLAG, (unsigned long)arg64);
950 		break;
951 	case COMPAT_ECS_IOCTL_APP_SET_MVFLAG:
952 		if (file->f_op->unlocked_ioctl)
953 			result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_SET_MVFLAG, (unsigned long)arg64);
954 		break;
955 	case COMPAT_ECS_IOCTL_APP_GET_MVFLAG:
956 		if (file->f_op->unlocked_ioctl)
957 			result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_GET_MVFLAG, (unsigned long)arg64);
958 		break;
959 	case COMPAT_ECS_IOCTL_APP_SET_DELAY:
960 		if (file->f_op->unlocked_ioctl)
961 			result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_SET_DELAY, (unsigned long)arg64);
962 		break;
963 	case COMPAT_ECS_IOCTL_APP_GET_DELAY:
964 		if (file->f_op->unlocked_ioctl)
965 			result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_GET_DELAY, (unsigned long)arg64);
966 		break;
967 	default:
968 		break;
969 	}
970 
971 	return result;
972 }
973 #endif
974 
975 /* ioctl - I/O control */
compass_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)976 static long compass_dev_ioctl(struct file *file,
977 			  unsigned int cmd, unsigned long arg)
978 {
979 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_COMPASS];
980 	struct i2c_client *client = sensor->client;
981 	void __user *argp = (void __user *)arg;
982 	int result = 0;
983 	short flag;
984 
985 	switch (cmd) {
986 	case ECS_IOCTL_APP_SET_MFLAG:
987 	case ECS_IOCTL_APP_SET_AFLAG:
988 	case ECS_IOCTL_APP_SET_MVFLAG:
989 		if (copy_from_user(&flag, argp, sizeof(flag)))
990 			return -EFAULT;
991 		if (flag < 0 || flag > 1)
992 			return -EINVAL;
993 		break;
994 	case ECS_IOCTL_APP_SET_DELAY:
995 		if (copy_from_user(&flag, argp, sizeof(flag)))
996 			return -EFAULT;
997 		break;
998 	default:
999 		break;
1000 	}
1001 
1002 	switch (cmd) {
1003 	case ECS_IOCTL_APP_SET_MFLAG:
1004 		atomic_set(&sensor->flags.m_flag, flag);
1005 		break;
1006 	case ECS_IOCTL_APP_GET_MFLAG:
1007 		flag = atomic_read(&sensor->flags.m_flag);
1008 		break;
1009 	case ECS_IOCTL_APP_SET_AFLAG:
1010 		atomic_set(&sensor->flags.a_flag, flag);
1011 		break;
1012 	case ECS_IOCTL_APP_GET_AFLAG:
1013 		flag = atomic_read(&sensor->flags.a_flag);
1014 		break;
1015 	case ECS_IOCTL_APP_SET_MVFLAG:
1016 		atomic_set(&sensor->flags.mv_flag, flag);
1017 		break;
1018 	case ECS_IOCTL_APP_GET_MVFLAG:
1019 		flag = atomic_read(&sensor->flags.mv_flag);
1020 		break;
1021 	case ECS_IOCTL_APP_SET_DELAY:
1022 		sensor->flags.delay = flag;
1023 		mutex_lock(&sensor->operation_mutex);
1024 		result = sensor_reset_rate(client, flag);
1025 		if (result < 0) {
1026 			mutex_unlock(&sensor->operation_mutex);
1027 			return result;
1028 		}
1029 		mutex_unlock(&sensor->operation_mutex);
1030 		break;
1031 	case ECS_IOCTL_APP_GET_DELAY:
1032 		flag = sensor->flags.delay;
1033 		break;
1034 	default:
1035 		return -ENOTTY;
1036 	}
1037 
1038 	switch (cmd) {
1039 	case ECS_IOCTL_APP_GET_MFLAG:
1040 	case ECS_IOCTL_APP_GET_AFLAG:
1041 	case ECS_IOCTL_APP_GET_MVFLAG:
1042 	case ECS_IOCTL_APP_GET_DELAY:
1043 		if (copy_to_user(argp, &flag, sizeof(flag)))
1044 			return -EFAULT;
1045 		break;
1046 	default:
1047 		break;
1048 	}
1049 
1050 	return result;
1051 }
1052 
gyro_dev_open(struct inode * inode,struct file * file)1053 static int gyro_dev_open(struct inode *inode, struct file *file)
1054 {
1055 	return 0;
1056 }
1057 
1058 
gyro_dev_release(struct inode * inode,struct file * file)1059 static int gyro_dev_release(struct inode *inode, struct file *file)
1060 {
1061 	return 0;
1062 }
1063 
1064 /* ioctl - I/O control */
gyro_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1065 static long gyro_dev_ioctl(struct file *file,
1066 			  unsigned int cmd, unsigned long arg)
1067 {
1068 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_GYROSCOPE];
1069 	struct i2c_client *client = sensor->client;
1070 	void __user *argp = (void __user *)arg;
1071 	int result = 0;
1072 	int rate;
1073 
1074 	wait_event_interruptible(sensor->is_factory_ok, (atomic_read(&sensor->is_factory) == 0));
1075 
1076 	switch (cmd) {
1077 	case L3G4200D_IOCTL_GET_ENABLE:
1078 		result = !sensor->status_cur;
1079 		if (copy_to_user(argp, &result, sizeof(result))) {
1080 			dev_err(&client->dev, "%s:failed to copy status to user space.\n", __func__);
1081 			return -EFAULT;
1082 		}
1083 		break;
1084 	case L3G4200D_IOCTL_SET_ENABLE:
1085 		if (copy_from_user(&result, argp, sizeof(result))) {
1086 			dev_err(&client->dev, "%s:failed to copy gyro sensor status from user space.\n", __func__);
1087 			return -EFAULT;
1088 		}
1089 		mutex_lock(&sensor->operation_mutex);
1090 		if (result) {
1091 			if (sensor->status_cur == SENSOR_OFF)
1092 				sensor_enable(sensor, SENSOR_ON);
1093 		} else {
1094 			if (sensor->status_cur == SENSOR_ON)
1095 				sensor_enable(sensor, SENSOR_OFF);
1096 		}
1097 		result = sensor->status_cur;
1098 		if (copy_to_user(argp, &result, sizeof(result))) {
1099 			mutex_unlock(&sensor->operation_mutex);
1100 			dev_err(&client->dev, "%s:failed to copy sense data to user space.\n", __func__);
1101 			return -EFAULT;
1102 		}
1103 		mutex_unlock(&sensor->operation_mutex);
1104 		break;
1105 	case L3G4200D_IOCTL_SET_DELAY:
1106 		if (copy_from_user(&rate, argp, sizeof(rate))) {
1107 			dev_err(&client->dev, "L3G4200D_IOCTL_SET_DELAY: copy form user failed\n");
1108 			return -EFAULT;
1109 		}
1110 		mutex_lock(&sensor->operation_mutex);
1111 		result = sensor_reset_rate(client, rate);
1112 		if (result < 0) {
1113 			dev_err(&client->dev, "gyro reset rate failed\n");
1114 			mutex_unlock(&sensor->operation_mutex);
1115 			goto error;
1116 		}
1117 		mutex_unlock(&sensor->operation_mutex);
1118 		break;
1119 	case L3G4200D_IOCTL_GET_CALIBRATION:
1120 		if (sensor_cali_data.is_gyro_calibrated != 1) {
1121 			if (sensor_calibration_data_read(&sensor_cali_data)) {
1122 				dev_err(&client->dev, "failed to read gyro offset data from storage\n");
1123 				result = -EFAULT;
1124 				goto error;
1125 			}
1126 		}
1127 		if (sensor_cali_data.is_gyro_calibrated == 1) {
1128 			if (copy_to_user(argp, sensor_cali_data.gyro_offset, sizeof(sensor_cali_data.gyro_offset))) {
1129 				dev_err(&client->dev, "failed to copy gyro offset data to user\n");
1130 				result = -EFAULT;
1131 				goto error;
1132 			}
1133 		}
1134 		break;
1135 	default:
1136 		return -ENOTTY;
1137 	}
1138 
1139 error:
1140 	return result;
1141 }
1142 
light_dev_open(struct inode * inode,struct file * file)1143 static int light_dev_open(struct inode *inode, struct file *file)
1144 {
1145 	return 0;
1146 }
1147 
light_dev_release(struct inode * inode,struct file * file)1148 static int light_dev_release(struct inode *inode, struct file *file)
1149 {
1150 	return 0;
1151 }
1152 
1153 #ifdef CONFIG_COMPAT
light_dev_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1154 static long light_dev_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1155 {
1156 	long ret = 0;
1157 	void __user *arg64 = compat_ptr(arg);
1158 
1159 	if (!file->f_op || !file->f_op->unlocked_ioctl) {
1160 		printk(KERN_ERR "[DEBUG] file->f_op or file->f_op->unlocked_ioctl is null\n");
1161 		return -ENOTTY;
1162 	}
1163 
1164 	switch (cmd) {
1165 	case COMPAT_LIGHTSENSOR_IOCTL_GET_ENABLED:
1166 		if (file->f_op->unlocked_ioctl)
1167 			ret = file->f_op->unlocked_ioctl(file, LIGHTSENSOR_IOCTL_GET_ENABLED, (unsigned long)arg64);
1168 		break;
1169 	case COMPAT_LIGHTSENSOR_IOCTL_ENABLE:
1170 		if (file->f_op->unlocked_ioctl)
1171 			ret = file->f_op->unlocked_ioctl(file, LIGHTSENSOR_IOCTL_ENABLE, (unsigned long)arg64);
1172 		break;
1173 	case COMPAT_LIGHTSENSOR_IOCTL_SET_RATE:
1174 		if (file->f_op->unlocked_ioctl)
1175 			ret = file->f_op->unlocked_ioctl(file, LIGHTSENSOR_IOCTL_SET_RATE, (unsigned long)arg64);
1176 		break;
1177 	default:
1178 		break;
1179 	}
1180 
1181 	return ret;
1182 }
1183 #endif
1184 
1185 /* ioctl - I/O control */
light_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1186 static long light_dev_ioctl(struct file *file,
1187 			  unsigned int cmd, unsigned long arg)
1188 {
1189 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_LIGHT];
1190 	struct i2c_client *client = sensor->client;
1191 	void __user *argp = (void __user *)arg;
1192 	int result = 0;
1193 	short rate;
1194 
1195 	switch (cmd) {
1196 	case LIGHTSENSOR_IOCTL_SET_RATE:
1197 		if (copy_from_user(&rate, argp, sizeof(rate))) {
1198 			dev_err(&client->dev, "%s:failed to copy light sensor rate from user space.\n", __func__);
1199 			return -EFAULT;
1200 		}
1201 		mutex_lock(&sensor->operation_mutex);
1202 		result = sensor_reset_rate(client, rate);
1203 		if (result < 0) {
1204 			mutex_unlock(&sensor->operation_mutex);
1205 			goto error;
1206 		}
1207 		mutex_unlock(&sensor->operation_mutex);
1208 		break;
1209 	case LIGHTSENSOR_IOCTL_GET_ENABLED:
1210 		result = sensor->status_cur;
1211 		if (copy_to_user(argp, &result, sizeof(result))) {
1212 			dev_err(&client->dev, "%s:failed to copy light sensor status to user space.\n", __func__);
1213 			return -EFAULT;
1214 		}
1215 		break;
1216 	case LIGHTSENSOR_IOCTL_ENABLE:
1217 		if (copy_from_user(&result, argp, sizeof(result))) {
1218 			dev_err(&client->dev, "%s:failed to copy light sensor status from user space.\n", __func__);
1219 			return -EFAULT;
1220 		}
1221 
1222 		mutex_lock(&sensor->operation_mutex);
1223 		if (result) {
1224 			if (sensor->status_cur == SENSOR_OFF)
1225 				sensor_enable(sensor, SENSOR_ON);
1226 		} else {
1227 			if (sensor->status_cur == SENSOR_ON)
1228 				sensor_enable(sensor, SENSOR_OFF);
1229 		}
1230 		mutex_unlock(&sensor->operation_mutex);
1231 		break;
1232 
1233 	default:
1234 		break;
1235 	}
1236 
1237 error:
1238 	return result;
1239 }
1240 
proximity_dev_open(struct inode * inode,struct file * file)1241 static int proximity_dev_open(struct inode *inode, struct file *file)
1242 {
1243 	return 0;
1244 }
1245 
proximity_dev_release(struct inode * inode,struct file * file)1246 static int proximity_dev_release(struct inode *inode, struct file *file)
1247 {
1248 	return 0;
1249 }
1250 
1251 #ifdef CONFIG_COMPAT
proximity_dev_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1252 static long proximity_dev_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1253 {
1254 	long ret = 0;
1255 	void __user *arg64 = compat_ptr(arg);
1256 
1257 	if (!file->f_op || !file->f_op->unlocked_ioctl) {
1258 		printk(KERN_ERR "file->f_op or file->f_op->unlocked_ioctl is null\n");
1259 		return -ENOTTY;
1260 	}
1261 
1262 	switch (cmd) {
1263 	case COMPAT_PSENSOR_IOCTL_GET_ENABLED:
1264 		if (file->f_op->unlocked_ioctl)
1265 			ret = file->f_op->unlocked_ioctl(file, PSENSOR_IOCTL_GET_ENABLED, (unsigned long)arg64);
1266 		break;
1267 	case COMPAT_PSENSOR_IOCTL_ENABLE:
1268 		if (file->f_op->unlocked_ioctl)
1269 			ret = file->f_op->unlocked_ioctl(file, PSENSOR_IOCTL_ENABLE, (unsigned long)arg64);
1270 		break;
1271 	default:
1272 		break;
1273 	}
1274 
1275 	return ret;
1276 }
1277 #endif
1278 
1279 /* ioctl - I/O control */
proximity_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1280 static long proximity_dev_ioctl(struct file *file,
1281 			  unsigned int cmd, unsigned long arg)
1282 {
1283 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_PROXIMITY];
1284 	void __user *argp = (void __user *)arg;
1285 	int result = 0;
1286 
1287 	switch (cmd) {
1288 	case PSENSOR_IOCTL_GET_ENABLED:
1289 		result = sensor->status_cur;
1290 		if (copy_to_user(argp, &result, sizeof(result))) {
1291 			dev_err(&sensor->client->dev, "%s:failed to copy psensor status to user space.\n", __func__);
1292 			return -EFAULT;
1293 		}
1294 		break;
1295 	case PSENSOR_IOCTL_ENABLE:
1296 		if (copy_from_user(&result, argp, sizeof(result))) {
1297 			dev_err(&sensor->client->dev, "%s:failed to copy psensor status from user space.\n", __func__);
1298 			return -EFAULT;
1299 		}
1300 		mutex_lock(&sensor->operation_mutex);
1301 		if (result) {
1302 			if (sensor->status_cur == SENSOR_OFF)
1303 				sensor_enable(sensor, SENSOR_ON);
1304 		} else {
1305 			if (sensor->status_cur == SENSOR_ON)
1306 				sensor_enable(sensor, SENSOR_OFF);
1307 		}
1308 		mutex_unlock(&sensor->operation_mutex);
1309 		break;
1310 
1311 	default:
1312 		break;
1313 	}
1314 
1315 	return result;
1316 }
1317 
temperature_dev_open(struct inode * inode,struct file * file)1318 static int temperature_dev_open(struct inode *inode, struct file *file)
1319 {
1320 	return 0;
1321 }
1322 
temperature_dev_release(struct inode * inode,struct file * file)1323 static int temperature_dev_release(struct inode *inode, struct file *file)
1324 {
1325 	return 0;
1326 }
1327 
1328 /* ioctl - I/O control */
temperature_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1329 static long temperature_dev_ioctl(struct file *file,
1330 			  unsigned int cmd, unsigned long arg)
1331 {
1332 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_TEMPERATURE];
1333 	void __user *argp = (void __user *)arg;
1334 	int result = 0;
1335 
1336 	switch (cmd) {
1337 	case TEMPERATURE_IOCTL_GET_ENABLED:
1338 		result = sensor->status_cur;
1339 		if (copy_to_user(argp, &result, sizeof(result))) {
1340 			dev_err(&sensor->client->dev, "%s:failed to copy temperature sensor status to user space.\n", __func__);
1341 			return -EFAULT;
1342 		}
1343 		break;
1344 	case TEMPERATURE_IOCTL_ENABLE:
1345 		if (copy_from_user(&result, argp, sizeof(result))) {
1346 			dev_err(&sensor->client->dev, "%s:failed to copy temperature sensor status from user space.\n", __func__);
1347 			return -EFAULT;
1348 		}
1349 		mutex_lock(&sensor->operation_mutex);
1350 		if (result) {
1351 			if (sensor->status_cur == SENSOR_OFF)
1352 				sensor_enable(sensor, SENSOR_ON);
1353 		} else {
1354 			if (sensor->status_cur == SENSOR_ON)
1355 				sensor_enable(sensor, SENSOR_OFF);
1356 		}
1357 		mutex_unlock(&sensor->operation_mutex);
1358 		break;
1359 
1360 	default:
1361 		break;
1362 	}
1363 
1364 	return result;
1365 }
1366 
1367 
pressure_dev_open(struct inode * inode,struct file * file)1368 static int pressure_dev_open(struct inode *inode, struct file *file)
1369 {
1370 	return 0;
1371 }
1372 
1373 
pressure_dev_release(struct inode * inode,struct file * file)1374 static int pressure_dev_release(struct inode *inode, struct file *file)
1375 {
1376 	return 0;
1377 }
1378 
1379 
1380 /* ioctl - I/O control */
pressure_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1381 static long pressure_dev_ioctl(struct file *file,
1382 			  unsigned int cmd, unsigned long arg)
1383 {
1384 	struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_PRESSURE];
1385 	void __user *argp = (void __user *)arg;
1386 	int result = 0;
1387 
1388 	switch (cmd) {
1389 	case PRESSURE_IOCTL_GET_ENABLED:
1390 		result = sensor->status_cur;
1391 		if (copy_to_user(argp, &result, sizeof(result))) {
1392 			dev_err(&sensor->client->dev, "%s:failed to copy pressure sensor status to user space.\n", __func__);
1393 			return -EFAULT;
1394 		}
1395 		break;
1396 	case PRESSURE_IOCTL_ENABLE:
1397 		if (copy_from_user(&result, argp, sizeof(result))) {
1398 			dev_err(&sensor->client->dev, "%s:failed to copy pressure sensor status from user space.\n", __func__);
1399 			return -EFAULT;
1400 		}
1401 		mutex_lock(&sensor->operation_mutex);
1402 		if (result) {
1403 			if (sensor->status_cur == SENSOR_OFF)
1404 				sensor_enable(sensor, SENSOR_ON);
1405 		} else {
1406 			if (sensor->status_cur == SENSOR_ON)
1407 				sensor_enable(sensor, SENSOR_OFF);
1408 		}
1409 		mutex_unlock(&sensor->operation_mutex);
1410 		break;
1411 
1412 	default:
1413 		break;
1414 	}
1415 
1416 	return result;
1417 }
1418 
sensor_misc_device_register(struct sensor_private_data * sensor,int type)1419 static int sensor_misc_device_register(struct sensor_private_data *sensor, int type)
1420 {
1421 	int result = 0;
1422 
1423 	switch (type) {
1424 	case SENSOR_TYPE_ANGLE:
1425 		if (!sensor->ops->misc_dev) {
1426 			sensor->fops.owner = THIS_MODULE;
1427 			sensor->fops.unlocked_ioctl = angle_dev_ioctl;
1428 			sensor->fops.open = angle_dev_open;
1429 			sensor->fops.release = angle_dev_release;
1430 
1431 			sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
1432 			sensor->miscdev.name = "angle";
1433 			sensor->miscdev.fops = &sensor->fops;
1434 		} else {
1435 			memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
1436 		}
1437 		break;
1438 
1439 	case SENSOR_TYPE_ACCEL:
1440 		if (!sensor->ops->misc_dev) {
1441 			sensor->fops.owner = THIS_MODULE;
1442 			sensor->fops.unlocked_ioctl = gsensor_dev_ioctl;
1443 			#ifdef CONFIG_COMPAT
1444 			sensor->fops.compat_ioctl = gsensor_dev_ioctl;
1445 			#endif
1446 			sensor->fops.open = gsensor_dev_open;
1447 			sensor->fops.release = gsensor_dev_release;
1448 
1449 			sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
1450 			sensor->miscdev.name = "mma8452_daemon";
1451 			sensor->miscdev.fops = &sensor->fops;
1452 		} else {
1453 			memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
1454 		}
1455 		break;
1456 
1457 	case SENSOR_TYPE_COMPASS:
1458 		if (!sensor->ops->misc_dev) {
1459 			sensor->fops.owner = THIS_MODULE;
1460 			sensor->fops.unlocked_ioctl = compass_dev_ioctl;
1461 			#ifdef CONFIG_COMPAT
1462 			sensor->fops.compat_ioctl = compass_dev_compat_ioctl;
1463 			#endif
1464 			sensor->fops.open = compass_dev_open;
1465 			sensor->fops.release = compass_dev_release;
1466 
1467 			sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
1468 			sensor->miscdev.name = "compass";
1469 			sensor->miscdev.fops = &sensor->fops;
1470 		} else {
1471 			memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
1472 		}
1473 		break;
1474 
1475 	case SENSOR_TYPE_GYROSCOPE:
1476 		if (!sensor->ops->misc_dev) {
1477 			sensor->fops.owner = THIS_MODULE;
1478 			sensor->fops.unlocked_ioctl = gyro_dev_ioctl;
1479 			sensor->fops.open = gyro_dev_open;
1480 			sensor->fops.release = gyro_dev_release;
1481 
1482 			sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
1483 			sensor->miscdev.name = "gyrosensor";
1484 			sensor->miscdev.fops = &sensor->fops;
1485 		} else {
1486 			memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
1487 		}
1488 		break;
1489 
1490 	case SENSOR_TYPE_LIGHT:
1491 		if (!sensor->ops->misc_dev) {
1492 			sensor->fops.owner = THIS_MODULE;
1493 			sensor->fops.unlocked_ioctl = light_dev_ioctl;
1494 			#ifdef CONFIG_COMPAT
1495 			sensor->fops.compat_ioctl = light_dev_compat_ioctl;
1496 			#endif
1497 			sensor->fops.open = light_dev_open;
1498 			sensor->fops.release = light_dev_release;
1499 
1500 			sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
1501 			sensor->miscdev.name = "lightsensor";
1502 			sensor->miscdev.fops = &sensor->fops;
1503 		} else {
1504 			memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
1505 		}
1506 		break;
1507 
1508 	case SENSOR_TYPE_PROXIMITY:
1509 		if (!sensor->ops->misc_dev) {
1510 			sensor->fops.owner = THIS_MODULE;
1511 			sensor->fops.unlocked_ioctl = proximity_dev_ioctl;
1512 			#ifdef CONFIG_COMPAT
1513 			sensor->fops.compat_ioctl = proximity_dev_compat_ioctl;
1514 			#endif
1515 			sensor->fops.open = proximity_dev_open;
1516 			sensor->fops.release = proximity_dev_release;
1517 
1518 			sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
1519 			sensor->miscdev.name = "psensor";
1520 			sensor->miscdev.fops = &sensor->fops;
1521 		} else {
1522 			memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
1523 		}
1524 		break;
1525 
1526 	case SENSOR_TYPE_TEMPERATURE:
1527 		if (!sensor->ops->misc_dev) {
1528 			sensor->fops.owner = THIS_MODULE;
1529 			sensor->fops.unlocked_ioctl = temperature_dev_ioctl;
1530 			sensor->fops.open = temperature_dev_open;
1531 			sensor->fops.release = temperature_dev_release;
1532 
1533 			sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
1534 			sensor->miscdev.name = "temperature";
1535 			sensor->miscdev.fops = &sensor->fops;
1536 		} else {
1537 			memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
1538 		}
1539 		break;
1540 
1541 	case SENSOR_TYPE_PRESSURE:
1542 		if (!sensor->ops->misc_dev) {
1543 			sensor->fops.owner = THIS_MODULE;
1544 			sensor->fops.unlocked_ioctl = pressure_dev_ioctl;
1545 			sensor->fops.open = pressure_dev_open;
1546 			sensor->fops.release = pressure_dev_release;
1547 
1548 			sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
1549 			sensor->miscdev.name = "pressure";
1550 			sensor->miscdev.fops = &sensor->fops;
1551 		} else {
1552 			memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
1553 		}
1554 		break;
1555 
1556 	default:
1557 		dev_err(&sensor->client->dev, "%s:unknow sensor type=%d\n", __func__, type);
1558 		result = -1;
1559 		goto error;
1560 	}
1561 
1562 	sensor->miscdev.parent = &sensor->client->dev;
1563 	result = misc_register(&sensor->miscdev);
1564 	if (result < 0) {
1565 		dev_err(&sensor->client->dev,
1566 			"fail to register misc device %s\n", sensor->miscdev.name);
1567 		goto error;
1568 	}
1569 	dev_info(&sensor->client->dev, "%s:miscdevice: %s\n", __func__, sensor->miscdev.name);
1570 
1571 error:
1572 	return result;
1573 }
1574 
sensor_probe(struct i2c_client * client,const struct i2c_device_id * devid)1575 static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *devid)
1576 {
1577 	struct sensor_private_data *sensor;
1578 	struct sensor_platform_data *pdata;
1579 	struct device_node *np = client->dev.of_node;
1580 	enum of_gpio_flags rst_flags, pwr_flags;
1581 	unsigned long irq_flags;
1582 	int result = 0;
1583 	int type = 0;
1584 	int reprobe_en = 0;
1585 
1586 	dev_info(&client->adapter->dev, "%s: %s,%p\n", __func__, devid->name, client);
1587 
1588 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1589 		result = -ENODEV;
1590 		goto out_no_free;
1591 	}
1592 	if (!np) {
1593 		dev_err(&client->dev, "no device tree\n");
1594 		return -EINVAL;
1595 	}
1596 	pdata = devm_kzalloc(&client->dev, sizeof(*pdata), GFP_KERNEL);
1597 	if (!pdata) {
1598 		result = -ENOMEM;
1599 		goto out_no_free;
1600 	}
1601 	sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
1602 	if (!sensor) {
1603 		result = -ENOMEM;
1604 		goto out_no_free;
1605 	}
1606 
1607 	of_property_read_u32(np, "type", &(pdata->type));
1608 
1609 	pdata->irq_pin = of_get_named_gpio_flags(np, "irq-gpio", 0, (enum of_gpio_flags *)&irq_flags);
1610 	pdata->reset_pin = of_get_named_gpio_flags(np, "reset-gpio", 0, &rst_flags);
1611 	pdata->power_pin = of_get_named_gpio_flags(np, "power-gpio", 0, &pwr_flags);
1612 
1613 	of_property_read_u32(np, "irq_enable", &(pdata->irq_enable));
1614 	of_property_read_u32(np, "poll_delay_ms", &(pdata->poll_delay_ms));
1615 
1616 	of_property_read_u32(np, "x_min", &(pdata->x_min));
1617 	of_property_read_u32(np, "y_min", &(pdata->y_min));
1618 	of_property_read_u32(np, "z_min", &(pdata->z_min));
1619 	of_property_read_u32(np, "factory", &(pdata->factory));
1620 	of_property_read_u32(np, "layout", &(pdata->layout));
1621 	of_property_read_u32(np, "reprobe_en", &reprobe_en);
1622 
1623 	of_property_read_u8(np, "address", &(pdata->address));
1624 	of_get_property(np, "project_name", pdata->project_name);
1625 
1626 	of_property_read_u32(np, "power-off-in-suspend",
1627 			     &pdata->power_off_in_suspend);
1628 
1629 	switch (pdata->layout) {
1630 	case 1:
1631 		pdata->orientation[0] = 1;
1632 		pdata->orientation[1] = 0;
1633 		pdata->orientation[2] = 0;
1634 
1635 		pdata->orientation[3] = 0;
1636 		pdata->orientation[4] = 1;
1637 		pdata->orientation[5] = 0;
1638 
1639 		pdata->orientation[6] = 0;
1640 		pdata->orientation[7] = 0;
1641 		pdata->orientation[8] = 1;
1642 		break;
1643 
1644 	case 2:
1645 		pdata->orientation[0] = 0;
1646 		pdata->orientation[1] = -1;
1647 		pdata->orientation[2] = 0;
1648 
1649 		pdata->orientation[3] = 1;
1650 		pdata->orientation[4] = 0;
1651 		pdata->orientation[5] = 0;
1652 
1653 		pdata->orientation[6] = 0;
1654 		pdata->orientation[7] = 0;
1655 		pdata->orientation[8] = 1;
1656 		break;
1657 
1658 	case 3:
1659 		pdata->orientation[0] = -1;
1660 		pdata->orientation[1] = 0;
1661 		pdata->orientation[2] = 0;
1662 
1663 		pdata->orientation[3] = 0;
1664 		pdata->orientation[4] = -1;
1665 		pdata->orientation[5] = 0;
1666 
1667 		pdata->orientation[6] = 0;
1668 		pdata->orientation[7] = 0;
1669 		pdata->orientation[8] = 1;
1670 		break;
1671 
1672 	case 4:
1673 		pdata->orientation[0] = 0;
1674 		pdata->orientation[1] = 1;
1675 		pdata->orientation[2] = 0;
1676 
1677 		pdata->orientation[3] = -1;
1678 		pdata->orientation[4] = 0;
1679 		pdata->orientation[5] = 0;
1680 
1681 		pdata->orientation[6] = 0;
1682 		pdata->orientation[7] = 0;
1683 		pdata->orientation[8] = 1;
1684 		break;
1685 
1686 	case 5:
1687 		pdata->orientation[0] = 1;
1688 		pdata->orientation[1] = 0;
1689 		pdata->orientation[2] = 0;
1690 
1691 		pdata->orientation[3] = 0;
1692 		pdata->orientation[4] = -1;
1693 		pdata->orientation[5] = 0;
1694 
1695 		pdata->orientation[6] = 0;
1696 		pdata->orientation[7] = 0;
1697 		pdata->orientation[8] = -1;
1698 		break;
1699 
1700 	case 6:
1701 		pdata->orientation[0] = 0;
1702 		pdata->orientation[1] = -1;
1703 		pdata->orientation[2] = 0;
1704 
1705 		pdata->orientation[3] = -1;
1706 		pdata->orientation[4] = 0;
1707 		pdata->orientation[5] = 0;
1708 
1709 		pdata->orientation[6] = 0;
1710 		pdata->orientation[7] = 0;
1711 		pdata->orientation[8] = -1;
1712 		break;
1713 
1714 	case 7:
1715 		pdata->orientation[0] = -1;
1716 		pdata->orientation[1] = 0;
1717 		pdata->orientation[2] = 0;
1718 
1719 		pdata->orientation[3] = 0;
1720 		pdata->orientation[4] = 1;
1721 		pdata->orientation[5] = 0;
1722 
1723 		pdata->orientation[6] = 0;
1724 		pdata->orientation[7] = 0;
1725 		pdata->orientation[8] = -1;
1726 		break;
1727 
1728 	case 8:
1729 		pdata->orientation[0] = 0;
1730 		pdata->orientation[1] = 1;
1731 		pdata->orientation[2] = 0;
1732 
1733 		pdata->orientation[3] = 1;
1734 		pdata->orientation[4] = 0;
1735 		pdata->orientation[5] = 0;
1736 
1737 		pdata->orientation[6] = 0;
1738 		pdata->orientation[7] = 0;
1739 		pdata->orientation[8] = -1;
1740 		break;
1741 
1742 	case 9:
1743 		pdata->orientation[0] = -1;
1744 		pdata->orientation[1] = 0;
1745 		pdata->orientation[2] = 0;
1746 
1747 		pdata->orientation[3] = 0;
1748 		pdata->orientation[4] = -1;
1749 		pdata->orientation[5] = 0;
1750 
1751 		pdata->orientation[6] = 0;
1752 		pdata->orientation[7] = 0;
1753 		pdata->orientation[8] = -1;
1754 		break;
1755 
1756 	default:
1757 		pdata->orientation[0] = 1;
1758 		pdata->orientation[1] = 0;
1759 		pdata->orientation[2] = 0;
1760 
1761 		pdata->orientation[3] = 0;
1762 		pdata->orientation[4] = 1;
1763 		pdata->orientation[5] = 0;
1764 
1765 		pdata->orientation[6] = 0;
1766 		pdata->orientation[7] = 0;
1767 		pdata->orientation[8] = 1;
1768 		break;
1769 	}
1770 
1771 	client->irq = pdata->irq_pin;
1772 	type = pdata->type;
1773 	pdata->irq_flags = irq_flags;
1774 	pdata->poll_delay_ms = 30;
1775 
1776 	if ((type >= SENSOR_NUM_TYPES) || (type <= SENSOR_TYPE_NULL)) {
1777 		dev_err(&client->adapter->dev, "sensor type is error %d\n", type);
1778 		result = -EFAULT;
1779 		goto out_no_free;
1780 	}
1781 	if (((int)devid->driver_data >= SENSOR_NUM_ID) || ((int)devid->driver_data <= ID_INVALID)) {
1782 		dev_err(&client->adapter->dev, "sensor id is error %d\n", (int)devid->driver_data);
1783 		result = -EFAULT;
1784 		goto out_no_free;
1785 	}
1786 	i2c_set_clientdata(client, sensor);
1787 	sensor->client = client;
1788 	sensor->pdata = pdata;
1789 	sensor->type = type;
1790 	sensor->i2c_id = (struct i2c_device_id *)devid;
1791 
1792 	memset(&(sensor->axis), 0, sizeof(struct sensor_axis));
1793 	mutex_init(&sensor->data_mutex);
1794 	mutex_init(&sensor->operation_mutex);
1795 	mutex_init(&sensor->sensor_mutex);
1796 	mutex_init(&sensor->i2c_mutex);
1797 
1798 	atomic_set(&sensor->is_factory, 0);
1799 	init_waitqueue_head(&sensor->is_factory_ok);
1800 
1801 	/* As default, report all information */
1802 	atomic_set(&sensor->flags.m_flag, 1);
1803 	atomic_set(&sensor->flags.a_flag, 1);
1804 	atomic_set(&sensor->flags.mv_flag, 1);
1805 	atomic_set(&sensor->flags.open_flag, 0);
1806 	atomic_set(&sensor->flags.debug_flag, 1);
1807 	init_waitqueue_head(&sensor->flags.open_wq);
1808 	sensor->flags.delay = 100;
1809 
1810 	sensor->status_cur = SENSOR_OFF;
1811 	sensor->axis.x = 0;
1812 	sensor->axis.y = 0;
1813 	sensor->axis.z = 0;
1814 
1815 	result = sensor_chip_init(sensor->client);
1816 	if (result < 0) {
1817 		if (reprobe_en && (result == -2)) {
1818 			sensor_probe_times[sensor->ops->id_i2c]++;
1819 			if (sensor_probe_times[sensor->ops->id_i2c] < 3)
1820 				result = -EPROBE_DEFER;
1821 		}
1822 		goto out_free_memory;
1823 	}
1824 
1825 	sensor->input_dev = devm_input_allocate_device(&client->dev);
1826 	if (!sensor->input_dev) {
1827 		result = -ENOMEM;
1828 		dev_err(&client->dev,
1829 			"Failed to allocate input device\n");
1830 		goto out_free_memory;
1831 	}
1832 
1833 	switch (type) {
1834 	case SENSOR_TYPE_ANGLE:
1835 		sensor->input_dev->name = "angle";
1836 		set_bit(EV_ABS, sensor->input_dev->evbit);
1837 		/* x-axis acceleration */
1838 		input_set_abs_params(sensor->input_dev, ABS_X, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1839 		/* y-axis acceleration */
1840 		input_set_abs_params(sensor->input_dev, ABS_Y, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1841 		/* z-axis acceleration */
1842 		input_set_abs_params(sensor->input_dev, ABS_Z, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1843 		break;
1844 	case SENSOR_TYPE_ACCEL:
1845 		sensor->input_dev->name = "gsensor";
1846 		set_bit(EV_ABS, sensor->input_dev->evbit);
1847 		/* x-axis acceleration */
1848 		input_set_abs_params(sensor->input_dev, ABS_X, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1849 		/* y-axis acceleration */
1850 		input_set_abs_params(sensor->input_dev, ABS_Y, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1851 		/* z-axis acceleration */
1852 		input_set_abs_params(sensor->input_dev, ABS_Z, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1853 		break;
1854 	case SENSOR_TYPE_COMPASS:
1855 		sensor->input_dev->name = "compass";
1856 		/* Setup input device */
1857 		set_bit(EV_ABS, sensor->input_dev->evbit);
1858 		/* yaw (0, 360) */
1859 		input_set_abs_params(sensor->input_dev, ABS_RX, 0, 23040, 0, 0);
1860 		/* pitch (-180, 180) */
1861 		input_set_abs_params(sensor->input_dev, ABS_RY, -11520, 11520, 0, 0);
1862 		/* roll (-90, 90) */
1863 		input_set_abs_params(sensor->input_dev, ABS_RZ, -5760, 5760, 0, 0);
1864 		/* x-axis acceleration (720 x 8G) */
1865 		input_set_abs_params(sensor->input_dev, ABS_X, -5760, 5760, 0, 0);
1866 		/* y-axis acceleration (720 x 8G) */
1867 		input_set_abs_params(sensor->input_dev, ABS_Y, -5760, 5760, 0, 0);
1868 		/* z-axis acceleration (720 x 8G) */
1869 		input_set_abs_params(sensor->input_dev, ABS_Z, -5760, 5760, 0, 0);
1870 		/* status of magnetic sensor */
1871 		input_set_abs_params(sensor->input_dev, ABS_RUDDER, -32768, 3, 0, 0);
1872 		/* status of acceleration sensor */
1873 		input_set_abs_params(sensor->input_dev, ABS_WHEEL, -32768, 3, 0, 0);
1874 		/* x-axis of raw magnetic vector (-4096, 4095) */
1875 		input_set_abs_params(sensor->input_dev, ABS_HAT0X, -20480, 20479, 0, 0);
1876 		/* y-axis of raw magnetic vector (-4096, 4095) */
1877 		input_set_abs_params(sensor->input_dev, ABS_HAT0Y, -20480, 20479, 0, 0);
1878 		/* z-axis of raw magnetic vector (-4096, 4095) */
1879 		input_set_abs_params(sensor->input_dev, ABS_BRAKE, -20480, 20479, 0, 0);
1880 		break;
1881 	case SENSOR_TYPE_GYROSCOPE:
1882 		sensor->input_dev->name = "gyro";
1883 		/* x-axis acceleration */
1884 		input_set_capability(sensor->input_dev, EV_REL, REL_RX);
1885 		input_set_abs_params(sensor->input_dev, ABS_RX, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1886 		/* y-axis acceleration */
1887 		input_set_capability(sensor->input_dev, EV_REL, REL_RY);
1888 		input_set_abs_params(sensor->input_dev, ABS_RY, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1889 		/* z-axis acceleration */
1890 		input_set_capability(sensor->input_dev, EV_REL, REL_RZ);
1891 		input_set_abs_params(sensor->input_dev, ABS_RZ, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1892 		break;
1893 	case SENSOR_TYPE_LIGHT:
1894 		sensor->input_dev->name = "lightsensor-level";
1895 		set_bit(EV_ABS, sensor->input_dev->evbit);
1896 		input_set_abs_params(sensor->input_dev, ABS_MISC, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1897 		input_set_abs_params(sensor->input_dev, ABS_TOOL_WIDTH,  sensor->ops->brightness[0], sensor->ops->brightness[1], 0, 0);
1898 		break;
1899 	case SENSOR_TYPE_PROXIMITY:
1900 		sensor->input_dev->name = "proximity";
1901 		set_bit(EV_ABS, sensor->input_dev->evbit);
1902 		input_set_abs_params(sensor->input_dev, ABS_DISTANCE, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1903 		break;
1904 	case SENSOR_TYPE_TEMPERATURE:
1905 		sensor->input_dev->name = "temperature";
1906 		set_bit(EV_ABS, sensor->input_dev->evbit);
1907 		input_set_abs_params(sensor->input_dev, ABS_THROTTLE, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1908 		break;
1909 	case SENSOR_TYPE_PRESSURE:
1910 		sensor->input_dev->name = "pressure";
1911 		set_bit(EV_ABS, sensor->input_dev->evbit);
1912 		input_set_abs_params(sensor->input_dev, ABS_PRESSURE, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
1913 		break;
1914 	default:
1915 		dev_err(&client->dev, "%s:unknow sensor type=%d\n", __func__, type);
1916 		break;
1917 	}
1918 	sensor->input_dev->dev.parent = &client->dev;
1919 
1920 	result = input_register_device(sensor->input_dev);
1921 	if (result) {
1922 		dev_err(&client->dev,
1923 			"Unable to register input device %s\n", sensor->input_dev->name);
1924 		goto out_input_register_device_failed;
1925 	}
1926 
1927 	result = sensor_irq_init(sensor->client);
1928 	if (result) {
1929 		dev_err(&client->dev,
1930 			"fail to init sensor irq,ret=%d\n", result);
1931 		goto out_input_register_device_failed;
1932 	}
1933 
1934 	sensor->miscdev.parent = &client->dev;
1935 	result = sensor_misc_device_register(sensor, type);
1936 	if (result) {
1937 		dev_err(&client->dev,
1938 			"fail to register misc device %s\n", sensor->miscdev.name);
1939 		goto out_misc_device_register_device_failed;
1940 	}
1941 
1942 	g_sensor[type] = sensor;
1943 
1944 #ifdef CONFIG_HAS_EARLYSUSPEND
1945 	if ((sensor->ops->suspend) && (sensor->ops->resume)) {
1946 		sensor->early_suspend.suspend = sensor_suspend;
1947 		sensor->early_suspend.resume = sensor_resume;
1948 		sensor->early_suspend.level = 0x02;
1949 		register_early_suspend(&sensor->early_suspend);
1950 	}
1951 #endif
1952 
1953 	dev_info(&client->dev, "%s:initialized ok,sensor name:%s,type:%d,id=%d\n\n", __func__, sensor->ops->name, type, (int)sensor->i2c_id->driver_data);
1954 
1955 	return result;
1956 
1957 out_misc_device_register_device_failed:
1958 out_input_register_device_failed:
1959 out_free_memory:
1960 out_no_free:
1961 	dev_err(&client->adapter->dev, "%s failed %d\n\n", __func__, result);
1962 	return result;
1963 }
1964 
sensor_remove(struct i2c_client * client)1965 static int sensor_remove(struct i2c_client *client)
1966 {
1967 	struct sensor_private_data *sensor =
1968 	    (struct sensor_private_data *) i2c_get_clientdata(client);
1969 
1970 	sensor->stop_work = 1;
1971 	cancel_delayed_work_sync(&sensor->delaywork);
1972 	misc_deregister(&sensor->miscdev);
1973 #ifdef CONFIG_HAS_EARLYSUSPEND
1974 	if ((sensor->ops->suspend) && (sensor->ops->resume))
1975 		unregister_early_suspend(&sensor->early_suspend);
1976 #endif
1977 
1978 	return 0;
1979 }
1980 
sensor_register_device(struct i2c_client * client,struct sensor_platform_data * slave_pdata,const struct i2c_device_id * devid,struct sensor_operate * ops)1981 int sensor_register_device(struct i2c_client *client,
1982 			struct sensor_platform_data *slave_pdata,
1983 			const struct i2c_device_id *devid,
1984 			struct sensor_operate *ops)
1985 {
1986 	int result = 0;
1987 
1988 	if (!client || !ops) {
1989 		dev_err(&client->dev, "%s: no device or ops.\n", __func__);
1990 		return -ENODEV;
1991 	}
1992 
1993 	if ((ops->id_i2c >= SENSOR_NUM_ID) || (ops->id_i2c <= ID_INVALID) ||
1994 		(((int)devid->driver_data) != ops->id_i2c)) {
1995 		dev_err(&client->dev, "%s: %s id is error %d\n",
1996 			__func__, ops->name, ops->id_i2c);
1997 		return -EINVAL;
1998 	}
1999 
2000 	sensor_ops[ops->id_i2c] = ops;
2001 	dev_info(&client->dev, "%s: %s, id = %d\n",
2002 		 __func__, sensor_ops[ops->id_i2c]->name, ops->id_i2c);
2003 
2004 	sensor_probe(client, devid);
2005 
2006 	return result;
2007 }
2008 EXPORT_SYMBOL(sensor_register_device);
2009 
sensor_unregister_device(struct i2c_client * client,struct sensor_platform_data * slave_pdata,struct sensor_operate * ops)2010 int sensor_unregister_device(struct i2c_client *client,
2011 		struct sensor_platform_data *slave_pdata,
2012 		struct sensor_operate *ops)
2013 {
2014 	int result = 0;
2015 
2016 	if (!client || !ops) {
2017 		dev_err(&client->dev, "%s: no device or ops.\n", __func__);
2018 		return -ENODEV;
2019 	}
2020 
2021 	if ((ops->id_i2c >= SENSOR_NUM_ID) || (ops->id_i2c <= ID_INVALID)) {
2022 		dev_err(&client->dev, "%s: %s id is error %d\n",
2023 			 __func__, ops->name, ops->id_i2c);
2024 		return -EINVAL;
2025 	}
2026 
2027 	sensor_remove(client);
2028 
2029 	dev_info(&client->dev, "%s: %s, id = %d\n",
2030 		 __func__, sensor_ops[ops->id_i2c]->name, ops->id_i2c);
2031 	sensor_ops[ops->id_i2c] = NULL;
2032 
2033 	return result;
2034 }
2035 EXPORT_SYMBOL(sensor_unregister_device);
2036 
sensor_init(void)2037 static int __init sensor_init(void)
2038 {
2039 	sensor_class_init();
2040 
2041 	return 0;
2042 }
2043 
sensor_exit(void)2044 static void __exit sensor_exit(void)
2045 {
2046 	class_remove_file(sensor_class, &class_attr_gyro_calibration);
2047 	class_remove_file(sensor_class, &class_attr_accel_calibration);
2048 	class_destroy(sensor_class);
2049 }
2050 
2051 module_init(sensor_init);
2052 module_exit(sensor_exit);
2053 
2054 MODULE_AUTHOR("ROCKCHIP Corporation:lw@rock-chips.com");
2055 MODULE_DESCRIPTION("User space character device interface for sensors");
2056 MODULE_LICENSE("GPL");
2057