1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <net/netlabel.h>
51
52 #include "flask.h"
53 #include "avc.h"
54 #include "avc_ss.h"
55 #include "security.h"
56 #include "context.h"
57 #include "policydb.h"
58 #include "sidtab.h"
59 #include "services.h"
60 #include "conditional.h"
61 #include "mls.h"
62 #include "objsec.h"
63 #include "netlabel.h"
64 #include "xfrm.h"
65 #include "ebitmap.h"
66 #include "audit.h"
67 #include "policycap_names.h"
68
69 #include <trace/hooks/selinux.h>
70
71 struct convert_context_args {
72 struct selinux_state *state;
73 struct policydb *oldp;
74 struct policydb *newp;
75 };
76
77 struct selinux_policy_convert_data {
78 struct convert_context_args args;
79 struct sidtab_convert_params sidtab_params;
80 };
81
82 /* Forward declaration. */
83 static int context_struct_to_string(struct policydb *policydb,
84 struct context *context,
85 char **scontext,
86 u32 *scontext_len);
87
88 static int sidtab_entry_to_string(struct policydb *policydb,
89 struct sidtab *sidtab,
90 struct sidtab_entry *entry,
91 char **scontext,
92 u32 *scontext_len);
93
94 static void context_struct_compute_av(struct policydb *policydb,
95 struct context *scontext,
96 struct context *tcontext,
97 u16 tclass,
98 struct av_decision *avd,
99 struct extended_perms *xperms);
100
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_map * out_map)101 static int selinux_set_mapping(struct policydb *pol,
102 struct security_class_mapping *map,
103 struct selinux_map *out_map)
104 {
105 u16 i, j;
106 unsigned k;
107 bool print_unknown_handle = false;
108
109 /* Find number of classes in the input mapping */
110 if (!map)
111 return -EINVAL;
112 i = 0;
113 while (map[i].name)
114 i++;
115
116 /* Allocate space for the class records, plus one for class zero */
117 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
118 if (!out_map->mapping)
119 return -ENOMEM;
120
121 /* Store the raw class and permission values */
122 j = 0;
123 while (map[j].name) {
124 struct security_class_mapping *p_in = map + (j++);
125 struct selinux_mapping *p_out = out_map->mapping + j;
126
127 /* An empty class string skips ahead */
128 if (!strcmp(p_in->name, "")) {
129 p_out->num_perms = 0;
130 continue;
131 }
132
133 p_out->value = string_to_security_class(pol, p_in->name);
134 if (!p_out->value) {
135 pr_info("SELinux: Class %s not defined in policy.\n",
136 p_in->name);
137 if (pol->reject_unknown)
138 goto err;
139 p_out->num_perms = 0;
140 print_unknown_handle = true;
141 continue;
142 }
143
144 k = 0;
145 while (p_in->perms[k]) {
146 /* An empty permission string skips ahead */
147 if (!*p_in->perms[k]) {
148 k++;
149 continue;
150 }
151 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
152 p_in->perms[k]);
153 if (!p_out->perms[k]) {
154 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
155 p_in->perms[k], p_in->name);
156 if (pol->reject_unknown)
157 goto err;
158 print_unknown_handle = true;
159 }
160
161 k++;
162 }
163 p_out->num_perms = k;
164 }
165
166 if (print_unknown_handle)
167 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
168 pol->allow_unknown ? "allowed" : "denied");
169
170 out_map->size = i;
171 return 0;
172 err:
173 kfree(out_map->mapping);
174 out_map->mapping = NULL;
175 return -EINVAL;
176 }
177
178 /*
179 * Get real, policy values from mapped values
180 */
181
unmap_class(struct selinux_map * map,u16 tclass)182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
183 {
184 if (tclass < map->size)
185 return map->mapping[tclass].value;
186
187 return tclass;
188 }
189
190 /*
191 * Get kernel value for class from its policy value
192 */
map_class(struct selinux_map * map,u16 pol_value)193 static u16 map_class(struct selinux_map *map, u16 pol_value)
194 {
195 u16 i;
196
197 for (i = 1; i < map->size; i++) {
198 if (map->mapping[i].value == pol_value)
199 return i;
200 }
201
202 return SECCLASS_NULL;
203 }
204
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)205 static void map_decision(struct selinux_map *map,
206 u16 tclass, struct av_decision *avd,
207 int allow_unknown)
208 {
209 if (tclass < map->size) {
210 struct selinux_mapping *mapping = &map->mapping[tclass];
211 unsigned int i, n = mapping->num_perms;
212 u32 result;
213
214 for (i = 0, result = 0; i < n; i++) {
215 if (avd->allowed & mapping->perms[i])
216 result |= 1<<i;
217 if (allow_unknown && !mapping->perms[i])
218 result |= 1<<i;
219 }
220 avd->allowed = result;
221
222 for (i = 0, result = 0; i < n; i++)
223 if (avd->auditallow & mapping->perms[i])
224 result |= 1<<i;
225 avd->auditallow = result;
226
227 for (i = 0, result = 0; i < n; i++) {
228 if (avd->auditdeny & mapping->perms[i])
229 result |= 1<<i;
230 if (!allow_unknown && !mapping->perms[i])
231 result |= 1<<i;
232 }
233 /*
234 * In case the kernel has a bug and requests a permission
235 * between num_perms and the maximum permission number, we
236 * should audit that denial
237 */
238 for (; i < (sizeof(u32)*8); i++)
239 result |= 1<<i;
240 avd->auditdeny = result;
241 }
242 }
243
security_mls_enabled(struct selinux_state * state)244 int security_mls_enabled(struct selinux_state *state)
245 {
246 int mls_enabled;
247 struct selinux_policy *policy;
248
249 if (!selinux_initialized(state))
250 return 0;
251
252 rcu_read_lock();
253 policy = rcu_dereference(state->policy);
254 mls_enabled = policy->policydb.mls_enabled;
255 rcu_read_unlock();
256 return mls_enabled;
257 }
258
259 /*
260 * Return the boolean value of a constraint expression
261 * when it is applied to the specified source and target
262 * security contexts.
263 *
264 * xcontext is a special beast... It is used by the validatetrans rules
265 * only. For these rules, scontext is the context before the transition,
266 * tcontext is the context after the transition, and xcontext is the context
267 * of the process performing the transition. All other callers of
268 * constraint_expr_eval should pass in NULL for xcontext.
269 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)270 static int constraint_expr_eval(struct policydb *policydb,
271 struct context *scontext,
272 struct context *tcontext,
273 struct context *xcontext,
274 struct constraint_expr *cexpr)
275 {
276 u32 val1, val2;
277 struct context *c;
278 struct role_datum *r1, *r2;
279 struct mls_level *l1, *l2;
280 struct constraint_expr *e;
281 int s[CEXPR_MAXDEPTH];
282 int sp = -1;
283
284 for (e = cexpr; e; e = e->next) {
285 switch (e->expr_type) {
286 case CEXPR_NOT:
287 BUG_ON(sp < 0);
288 s[sp] = !s[sp];
289 break;
290 case CEXPR_AND:
291 BUG_ON(sp < 1);
292 sp--;
293 s[sp] &= s[sp + 1];
294 break;
295 case CEXPR_OR:
296 BUG_ON(sp < 1);
297 sp--;
298 s[sp] |= s[sp + 1];
299 break;
300 case CEXPR_ATTR:
301 if (sp == (CEXPR_MAXDEPTH - 1))
302 return 0;
303 switch (e->attr) {
304 case CEXPR_USER:
305 val1 = scontext->user;
306 val2 = tcontext->user;
307 break;
308 case CEXPR_TYPE:
309 val1 = scontext->type;
310 val2 = tcontext->type;
311 break;
312 case CEXPR_ROLE:
313 val1 = scontext->role;
314 val2 = tcontext->role;
315 r1 = policydb->role_val_to_struct[val1 - 1];
316 r2 = policydb->role_val_to_struct[val2 - 1];
317 switch (e->op) {
318 case CEXPR_DOM:
319 s[++sp] = ebitmap_get_bit(&r1->dominates,
320 val2 - 1);
321 continue;
322 case CEXPR_DOMBY:
323 s[++sp] = ebitmap_get_bit(&r2->dominates,
324 val1 - 1);
325 continue;
326 case CEXPR_INCOMP:
327 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
328 val2 - 1) &&
329 !ebitmap_get_bit(&r2->dominates,
330 val1 - 1));
331 continue;
332 default:
333 break;
334 }
335 break;
336 case CEXPR_L1L2:
337 l1 = &(scontext->range.level[0]);
338 l2 = &(tcontext->range.level[0]);
339 goto mls_ops;
340 case CEXPR_L1H2:
341 l1 = &(scontext->range.level[0]);
342 l2 = &(tcontext->range.level[1]);
343 goto mls_ops;
344 case CEXPR_H1L2:
345 l1 = &(scontext->range.level[1]);
346 l2 = &(tcontext->range.level[0]);
347 goto mls_ops;
348 case CEXPR_H1H2:
349 l1 = &(scontext->range.level[1]);
350 l2 = &(tcontext->range.level[1]);
351 goto mls_ops;
352 case CEXPR_L1H1:
353 l1 = &(scontext->range.level[0]);
354 l2 = &(scontext->range.level[1]);
355 goto mls_ops;
356 case CEXPR_L2H2:
357 l1 = &(tcontext->range.level[0]);
358 l2 = &(tcontext->range.level[1]);
359 goto mls_ops;
360 mls_ops:
361 switch (e->op) {
362 case CEXPR_EQ:
363 s[++sp] = mls_level_eq(l1, l2);
364 continue;
365 case CEXPR_NEQ:
366 s[++sp] = !mls_level_eq(l1, l2);
367 continue;
368 case CEXPR_DOM:
369 s[++sp] = mls_level_dom(l1, l2);
370 continue;
371 case CEXPR_DOMBY:
372 s[++sp] = mls_level_dom(l2, l1);
373 continue;
374 case CEXPR_INCOMP:
375 s[++sp] = mls_level_incomp(l2, l1);
376 continue;
377 default:
378 BUG();
379 return 0;
380 }
381 break;
382 default:
383 BUG();
384 return 0;
385 }
386
387 switch (e->op) {
388 case CEXPR_EQ:
389 s[++sp] = (val1 == val2);
390 break;
391 case CEXPR_NEQ:
392 s[++sp] = (val1 != val2);
393 break;
394 default:
395 BUG();
396 return 0;
397 }
398 break;
399 case CEXPR_NAMES:
400 if (sp == (CEXPR_MAXDEPTH-1))
401 return 0;
402 c = scontext;
403 if (e->attr & CEXPR_TARGET)
404 c = tcontext;
405 else if (e->attr & CEXPR_XTARGET) {
406 c = xcontext;
407 if (!c) {
408 BUG();
409 return 0;
410 }
411 }
412 if (e->attr & CEXPR_USER)
413 val1 = c->user;
414 else if (e->attr & CEXPR_ROLE)
415 val1 = c->role;
416 else if (e->attr & CEXPR_TYPE)
417 val1 = c->type;
418 else {
419 BUG();
420 return 0;
421 }
422
423 switch (e->op) {
424 case CEXPR_EQ:
425 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
426 break;
427 case CEXPR_NEQ:
428 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
429 break;
430 default:
431 BUG();
432 return 0;
433 }
434 break;
435 default:
436 BUG();
437 return 0;
438 }
439 }
440
441 BUG_ON(sp != 0);
442 return s[0];
443 }
444
445 /*
446 * security_dump_masked_av - dumps masked permissions during
447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448 */
dump_masked_av_helper(void * k,void * d,void * args)449 static int dump_masked_av_helper(void *k, void *d, void *args)
450 {
451 struct perm_datum *pdatum = d;
452 char **permission_names = args;
453
454 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
455
456 permission_names[pdatum->value - 1] = (char *)k;
457
458 return 0;
459 }
460
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)461 static void security_dump_masked_av(struct policydb *policydb,
462 struct context *scontext,
463 struct context *tcontext,
464 u16 tclass,
465 u32 permissions,
466 const char *reason)
467 {
468 struct common_datum *common_dat;
469 struct class_datum *tclass_dat;
470 struct audit_buffer *ab;
471 char *tclass_name;
472 char *scontext_name = NULL;
473 char *tcontext_name = NULL;
474 char *permission_names[32];
475 int index;
476 u32 length;
477 bool need_comma = false;
478
479 if (!permissions)
480 return;
481
482 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
483 tclass_dat = policydb->class_val_to_struct[tclass - 1];
484 common_dat = tclass_dat->comdatum;
485
486 /* init permission_names */
487 if (common_dat &&
488 hashtab_map(&common_dat->permissions.table,
489 dump_masked_av_helper, permission_names) < 0)
490 goto out;
491
492 if (hashtab_map(&tclass_dat->permissions.table,
493 dump_masked_av_helper, permission_names) < 0)
494 goto out;
495
496 /* get scontext/tcontext in text form */
497 if (context_struct_to_string(policydb, scontext,
498 &scontext_name, &length) < 0)
499 goto out;
500
501 if (context_struct_to_string(policydb, tcontext,
502 &tcontext_name, &length) < 0)
503 goto out;
504
505 /* audit a message */
506 ab = audit_log_start(audit_context(),
507 GFP_ATOMIC, AUDIT_SELINUX_ERR);
508 if (!ab)
509 goto out;
510
511 audit_log_format(ab, "op=security_compute_av reason=%s "
512 "scontext=%s tcontext=%s tclass=%s perms=",
513 reason, scontext_name, tcontext_name, tclass_name);
514
515 for (index = 0; index < 32; index++) {
516 u32 mask = (1 << index);
517
518 if ((mask & permissions) == 0)
519 continue;
520
521 audit_log_format(ab, "%s%s",
522 need_comma ? "," : "",
523 permission_names[index]
524 ? permission_names[index] : "????");
525 need_comma = true;
526 }
527 audit_log_end(ab);
528 out:
529 /* release scontext/tcontext */
530 kfree(tcontext_name);
531 kfree(scontext_name);
532
533 return;
534 }
535
536 /*
537 * security_boundary_permission - drops violated permissions
538 * on boundary constraint.
539 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)540 static void type_attribute_bounds_av(struct policydb *policydb,
541 struct context *scontext,
542 struct context *tcontext,
543 u16 tclass,
544 struct av_decision *avd)
545 {
546 struct context lo_scontext;
547 struct context lo_tcontext, *tcontextp = tcontext;
548 struct av_decision lo_avd;
549 struct type_datum *source;
550 struct type_datum *target;
551 u32 masked = 0;
552
553 source = policydb->type_val_to_struct[scontext->type - 1];
554 BUG_ON(!source);
555
556 if (!source->bounds)
557 return;
558
559 target = policydb->type_val_to_struct[tcontext->type - 1];
560 BUG_ON(!target);
561
562 memset(&lo_avd, 0, sizeof(lo_avd));
563
564 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
565 lo_scontext.type = source->bounds;
566
567 if (target->bounds) {
568 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
569 lo_tcontext.type = target->bounds;
570 tcontextp = &lo_tcontext;
571 }
572
573 context_struct_compute_av(policydb, &lo_scontext,
574 tcontextp,
575 tclass,
576 &lo_avd,
577 NULL);
578
579 masked = ~lo_avd.allowed & avd->allowed;
580
581 if (likely(!masked))
582 return; /* no masked permission */
583
584 /* mask violated permissions */
585 avd->allowed &= ~masked;
586
587 /* audit masked permissions */
588 security_dump_masked_av(policydb, scontext, tcontext,
589 tclass, masked, "bounds");
590 }
591
592 /*
593 * flag which drivers have permissions
594 * only looking for ioctl based extended permssions
595 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)596 void services_compute_xperms_drivers(
597 struct extended_perms *xperms,
598 struct avtab_node *node)
599 {
600 unsigned int i;
601
602 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
603 /* if one or more driver has all permissions allowed */
604 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
605 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
606 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
607 /* if allowing permissions within a driver */
608 security_xperm_set(xperms->drivers.p,
609 node->datum.u.xperms->driver);
610 }
611
612 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
613 if (node->key.specified & AVTAB_XPERMS_ALLOWED)
614 xperms->len = 1;
615 }
616
617 /*
618 * Compute access vectors and extended permissions based on a context
619 * structure pair for the permissions in a particular class.
620 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)621 static void context_struct_compute_av(struct policydb *policydb,
622 struct context *scontext,
623 struct context *tcontext,
624 u16 tclass,
625 struct av_decision *avd,
626 struct extended_perms *xperms)
627 {
628 struct constraint_node *constraint;
629 struct role_allow *ra;
630 struct avtab_key avkey;
631 struct avtab_node *node;
632 struct class_datum *tclass_datum;
633 struct ebitmap *sattr, *tattr;
634 struct ebitmap_node *snode, *tnode;
635 unsigned int i, j;
636
637 avd->allowed = 0;
638 avd->auditallow = 0;
639 avd->auditdeny = 0xffffffff;
640 if (xperms) {
641 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
642 xperms->len = 0;
643 }
644
645 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
646 if (printk_ratelimit())
647 pr_warn("SELinux: Invalid class %hu\n", tclass);
648 return;
649 }
650
651 tclass_datum = policydb->class_val_to_struct[tclass - 1];
652
653 /*
654 * If a specific type enforcement rule was defined for
655 * this permission check, then use it.
656 */
657 avkey.target_class = tclass;
658 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
659 sattr = &policydb->type_attr_map_array[scontext->type - 1];
660 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
661 ebitmap_for_each_positive_bit(sattr, snode, i) {
662 ebitmap_for_each_positive_bit(tattr, tnode, j) {
663 avkey.source_type = i + 1;
664 avkey.target_type = j + 1;
665 for (node = avtab_search_node(&policydb->te_avtab,
666 &avkey);
667 node;
668 node = avtab_search_node_next(node, avkey.specified)) {
669 if (node->key.specified == AVTAB_ALLOWED)
670 avd->allowed |= node->datum.u.data;
671 else if (node->key.specified == AVTAB_AUDITALLOW)
672 avd->auditallow |= node->datum.u.data;
673 else if (node->key.specified == AVTAB_AUDITDENY)
674 avd->auditdeny &= node->datum.u.data;
675 else if (xperms && (node->key.specified & AVTAB_XPERMS))
676 services_compute_xperms_drivers(xperms, node);
677 }
678
679 /* Check conditional av table for additional permissions */
680 cond_compute_av(&policydb->te_cond_avtab, &avkey,
681 avd, xperms);
682
683 }
684 }
685
686 /*
687 * Remove any permissions prohibited by a constraint (this includes
688 * the MLS policy).
689 */
690 constraint = tclass_datum->constraints;
691 while (constraint) {
692 if ((constraint->permissions & (avd->allowed)) &&
693 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
694 constraint->expr)) {
695 avd->allowed &= ~(constraint->permissions);
696 }
697 constraint = constraint->next;
698 }
699
700 /*
701 * If checking process transition permission and the
702 * role is changing, then check the (current_role, new_role)
703 * pair.
704 */
705 if (tclass == policydb->process_class &&
706 (avd->allowed & policydb->process_trans_perms) &&
707 scontext->role != tcontext->role) {
708 for (ra = policydb->role_allow; ra; ra = ra->next) {
709 if (scontext->role == ra->role &&
710 tcontext->role == ra->new_role)
711 break;
712 }
713 if (!ra)
714 avd->allowed &= ~policydb->process_trans_perms;
715 }
716
717 /*
718 * If the given source and target types have boundary
719 * constraint, lazy checks have to mask any violated
720 * permission and notice it to userspace via audit.
721 */
722 type_attribute_bounds_av(policydb, scontext, tcontext,
723 tclass, avd);
724 }
725
security_validtrans_handle_fail(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)726 static int security_validtrans_handle_fail(struct selinux_state *state,
727 struct selinux_policy *policy,
728 struct sidtab_entry *oentry,
729 struct sidtab_entry *nentry,
730 struct sidtab_entry *tentry,
731 u16 tclass)
732 {
733 struct policydb *p = &policy->policydb;
734 struct sidtab *sidtab = policy->sidtab;
735 char *o = NULL, *n = NULL, *t = NULL;
736 u32 olen, nlen, tlen;
737
738 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
739 goto out;
740 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
741 goto out;
742 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
743 goto out;
744 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
745 "op=security_validate_transition seresult=denied"
746 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
747 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
748 out:
749 kfree(o);
750 kfree(n);
751 kfree(t);
752
753 if (!enforcing_enabled(state))
754 return 0;
755 return -EPERM;
756 }
757
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)758 static int security_compute_validatetrans(struct selinux_state *state,
759 u32 oldsid, u32 newsid, u32 tasksid,
760 u16 orig_tclass, bool user)
761 {
762 struct selinux_policy *policy;
763 struct policydb *policydb;
764 struct sidtab *sidtab;
765 struct sidtab_entry *oentry;
766 struct sidtab_entry *nentry;
767 struct sidtab_entry *tentry;
768 struct class_datum *tclass_datum;
769 struct constraint_node *constraint;
770 u16 tclass;
771 int rc = 0;
772
773
774 if (!selinux_initialized(state))
775 return 0;
776
777 rcu_read_lock();
778
779 policy = rcu_dereference(state->policy);
780 policydb = &policy->policydb;
781 sidtab = policy->sidtab;
782
783 if (!user)
784 tclass = unmap_class(&policy->map, orig_tclass);
785 else
786 tclass = orig_tclass;
787
788 if (!tclass || tclass > policydb->p_classes.nprim) {
789 rc = -EINVAL;
790 goto out;
791 }
792 tclass_datum = policydb->class_val_to_struct[tclass - 1];
793
794 oentry = sidtab_search_entry(sidtab, oldsid);
795 if (!oentry) {
796 pr_err("SELinux: %s: unrecognized SID %d\n",
797 __func__, oldsid);
798 rc = -EINVAL;
799 goto out;
800 }
801
802 nentry = sidtab_search_entry(sidtab, newsid);
803 if (!nentry) {
804 pr_err("SELinux: %s: unrecognized SID %d\n",
805 __func__, newsid);
806 rc = -EINVAL;
807 goto out;
808 }
809
810 tentry = sidtab_search_entry(sidtab, tasksid);
811 if (!tentry) {
812 pr_err("SELinux: %s: unrecognized SID %d\n",
813 __func__, tasksid);
814 rc = -EINVAL;
815 goto out;
816 }
817
818 constraint = tclass_datum->validatetrans;
819 while (constraint) {
820 if (!constraint_expr_eval(policydb, &oentry->context,
821 &nentry->context, &tentry->context,
822 constraint->expr)) {
823 if (user)
824 rc = -EPERM;
825 else
826 rc = security_validtrans_handle_fail(state,
827 policy,
828 oentry,
829 nentry,
830 tentry,
831 tclass);
832 goto out;
833 }
834 constraint = constraint->next;
835 }
836
837 out:
838 rcu_read_unlock();
839 return rc;
840 }
841
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)842 int security_validate_transition_user(struct selinux_state *state,
843 u32 oldsid, u32 newsid, u32 tasksid,
844 u16 tclass)
845 {
846 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
847 tclass, true);
848 }
849
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)850 int security_validate_transition(struct selinux_state *state,
851 u32 oldsid, u32 newsid, u32 tasksid,
852 u16 orig_tclass)
853 {
854 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
855 orig_tclass, false);
856 }
857
858 /*
859 * security_bounded_transition - check whether the given
860 * transition is directed to bounded, or not.
861 * It returns 0, if @newsid is bounded by @oldsid.
862 * Otherwise, it returns error code.
863 *
864 * @oldsid : current security identifier
865 * @newsid : destinated security identifier
866 */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)867 int security_bounded_transition(struct selinux_state *state,
868 u32 old_sid, u32 new_sid)
869 {
870 struct selinux_policy *policy;
871 struct policydb *policydb;
872 struct sidtab *sidtab;
873 struct sidtab_entry *old_entry, *new_entry;
874 struct type_datum *type;
875 int index;
876 int rc;
877
878 if (!selinux_initialized(state))
879 return 0;
880
881 rcu_read_lock();
882 policy = rcu_dereference(state->policy);
883 policydb = &policy->policydb;
884 sidtab = policy->sidtab;
885
886 rc = -EINVAL;
887 old_entry = sidtab_search_entry(sidtab, old_sid);
888 if (!old_entry) {
889 pr_err("SELinux: %s: unrecognized SID %u\n",
890 __func__, old_sid);
891 goto out;
892 }
893
894 rc = -EINVAL;
895 new_entry = sidtab_search_entry(sidtab, new_sid);
896 if (!new_entry) {
897 pr_err("SELinux: %s: unrecognized SID %u\n",
898 __func__, new_sid);
899 goto out;
900 }
901
902 rc = 0;
903 /* type/domain unchanged */
904 if (old_entry->context.type == new_entry->context.type)
905 goto out;
906
907 index = new_entry->context.type;
908 while (true) {
909 type = policydb->type_val_to_struct[index - 1];
910 BUG_ON(!type);
911
912 /* not bounded anymore */
913 rc = -EPERM;
914 if (!type->bounds)
915 break;
916
917 /* @newsid is bounded by @oldsid */
918 rc = 0;
919 if (type->bounds == old_entry->context.type)
920 break;
921
922 index = type->bounds;
923 }
924
925 if (rc) {
926 char *old_name = NULL;
927 char *new_name = NULL;
928 u32 length;
929
930 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
931 &old_name, &length) &&
932 !sidtab_entry_to_string(policydb, sidtab, new_entry,
933 &new_name, &length)) {
934 audit_log(audit_context(),
935 GFP_ATOMIC, AUDIT_SELINUX_ERR,
936 "op=security_bounded_transition "
937 "seresult=denied "
938 "oldcontext=%s newcontext=%s",
939 old_name, new_name);
940 }
941 kfree(new_name);
942 kfree(old_name);
943 }
944 out:
945 rcu_read_unlock();
946
947 return rc;
948 }
949
avd_init(struct selinux_policy * policy,struct av_decision * avd)950 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
951 {
952 avd->allowed = 0;
953 avd->auditallow = 0;
954 avd->auditdeny = 0xffffffff;
955 if (policy)
956 avd->seqno = policy->latest_granting;
957 else
958 avd->seqno = 0;
959 avd->flags = 0;
960 }
961
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)962 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
963 struct avtab_node *node)
964 {
965 unsigned int i;
966
967 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
968 if (xpermd->driver != node->datum.u.xperms->driver)
969 return;
970 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
971 if (!security_xperm_test(node->datum.u.xperms->perms.p,
972 xpermd->driver))
973 return;
974 } else {
975 BUG();
976 }
977
978 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
979 xpermd->used |= XPERMS_ALLOWED;
980 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
981 memset(xpermd->allowed->p, 0xff,
982 sizeof(xpermd->allowed->p));
983 }
984 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
985 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
986 xpermd->allowed->p[i] |=
987 node->datum.u.xperms->perms.p[i];
988 }
989 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
990 xpermd->used |= XPERMS_AUDITALLOW;
991 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
992 memset(xpermd->auditallow->p, 0xff,
993 sizeof(xpermd->auditallow->p));
994 }
995 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
996 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
997 xpermd->auditallow->p[i] |=
998 node->datum.u.xperms->perms.p[i];
999 }
1000 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1001 xpermd->used |= XPERMS_DONTAUDIT;
1002 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1003 memset(xpermd->dontaudit->p, 0xff,
1004 sizeof(xpermd->dontaudit->p));
1005 }
1006 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1007 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1008 xpermd->dontaudit->p[i] |=
1009 node->datum.u.xperms->perms.p[i];
1010 }
1011 } else {
1012 BUG();
1013 }
1014 }
1015
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1016 void security_compute_xperms_decision(struct selinux_state *state,
1017 u32 ssid,
1018 u32 tsid,
1019 u16 orig_tclass,
1020 u8 driver,
1021 struct extended_perms_decision *xpermd)
1022 {
1023 struct selinux_policy *policy;
1024 struct policydb *policydb;
1025 struct sidtab *sidtab;
1026 u16 tclass;
1027 struct context *scontext, *tcontext;
1028 struct avtab_key avkey;
1029 struct avtab_node *node;
1030 struct ebitmap *sattr, *tattr;
1031 struct ebitmap_node *snode, *tnode;
1032 unsigned int i, j;
1033
1034 xpermd->driver = driver;
1035 xpermd->used = 0;
1036 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1037 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1038 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1039
1040 rcu_read_lock();
1041 if (!selinux_initialized(state))
1042 goto allow;
1043
1044 policy = rcu_dereference(state->policy);
1045 policydb = &policy->policydb;
1046 sidtab = policy->sidtab;
1047
1048 scontext = sidtab_search(sidtab, ssid);
1049 if (!scontext) {
1050 pr_err("SELinux: %s: unrecognized SID %d\n",
1051 __func__, ssid);
1052 goto out;
1053 }
1054
1055 tcontext = sidtab_search(sidtab, tsid);
1056 if (!tcontext) {
1057 pr_err("SELinux: %s: unrecognized SID %d\n",
1058 __func__, tsid);
1059 goto out;
1060 }
1061
1062 tclass = unmap_class(&policy->map, orig_tclass);
1063 if (unlikely(orig_tclass && !tclass)) {
1064 if (policydb->allow_unknown)
1065 goto allow;
1066 goto out;
1067 }
1068
1069
1070 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1071 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1072 goto out;
1073 }
1074
1075 avkey.target_class = tclass;
1076 avkey.specified = AVTAB_XPERMS;
1077 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1078 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1079 ebitmap_for_each_positive_bit(sattr, snode, i) {
1080 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1081 avkey.source_type = i + 1;
1082 avkey.target_type = j + 1;
1083 for (node = avtab_search_node(&policydb->te_avtab,
1084 &avkey);
1085 node;
1086 node = avtab_search_node_next(node, avkey.specified))
1087 services_compute_xperms_decision(xpermd, node);
1088
1089 cond_compute_xperms(&policydb->te_cond_avtab,
1090 &avkey, xpermd);
1091 }
1092 }
1093 out:
1094 rcu_read_unlock();
1095 return;
1096 allow:
1097 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1098 goto out;
1099 }
1100
1101 /**
1102 * security_compute_av - Compute access vector decisions.
1103 * @ssid: source security identifier
1104 * @tsid: target security identifier
1105 * @tclass: target security class
1106 * @avd: access vector decisions
1107 * @xperms: extended permissions
1108 *
1109 * Compute a set of access vector decisions based on the
1110 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1111 */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1112 void security_compute_av(struct selinux_state *state,
1113 u32 ssid,
1114 u32 tsid,
1115 u16 orig_tclass,
1116 struct av_decision *avd,
1117 struct extended_perms *xperms)
1118 {
1119 struct selinux_policy *policy;
1120 struct policydb *policydb;
1121 struct sidtab *sidtab;
1122 u16 tclass;
1123 struct context *scontext = NULL, *tcontext = NULL;
1124
1125 rcu_read_lock();
1126 policy = rcu_dereference(state->policy);
1127 avd_init(policy, avd);
1128 xperms->len = 0;
1129 if (!selinux_initialized(state))
1130 goto allow;
1131
1132 policydb = &policy->policydb;
1133 sidtab = policy->sidtab;
1134
1135 scontext = sidtab_search(sidtab, ssid);
1136 if (!scontext) {
1137 pr_err("SELinux: %s: unrecognized SID %d\n",
1138 __func__, ssid);
1139 goto out;
1140 }
1141
1142 /* permissive domain? */
1143 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1144 avd->flags |= AVD_FLAGS_PERMISSIVE;
1145
1146 tcontext = sidtab_search(sidtab, tsid);
1147 if (!tcontext) {
1148 pr_err("SELinux: %s: unrecognized SID %d\n",
1149 __func__, tsid);
1150 goto out;
1151 }
1152
1153 tclass = unmap_class(&policy->map, orig_tclass);
1154 if (unlikely(orig_tclass && !tclass)) {
1155 if (policydb->allow_unknown)
1156 goto allow;
1157 goto out;
1158 }
1159 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1160 xperms);
1161 map_decision(&policy->map, orig_tclass, avd,
1162 policydb->allow_unknown);
1163 out:
1164 rcu_read_unlock();
1165 return;
1166 allow:
1167 avd->allowed = 0xffffffff;
1168 goto out;
1169 }
1170
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1171 void security_compute_av_user(struct selinux_state *state,
1172 u32 ssid,
1173 u32 tsid,
1174 u16 tclass,
1175 struct av_decision *avd)
1176 {
1177 struct selinux_policy *policy;
1178 struct policydb *policydb;
1179 struct sidtab *sidtab;
1180 struct context *scontext = NULL, *tcontext = NULL;
1181
1182 rcu_read_lock();
1183 policy = rcu_dereference(state->policy);
1184 avd_init(policy, avd);
1185 if (!selinux_initialized(state))
1186 goto allow;
1187
1188 policydb = &policy->policydb;
1189 sidtab = policy->sidtab;
1190
1191 scontext = sidtab_search(sidtab, ssid);
1192 if (!scontext) {
1193 pr_err("SELinux: %s: unrecognized SID %d\n",
1194 __func__, ssid);
1195 goto out;
1196 }
1197
1198 /* permissive domain? */
1199 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1200 avd->flags |= AVD_FLAGS_PERMISSIVE;
1201
1202 tcontext = sidtab_search(sidtab, tsid);
1203 if (!tcontext) {
1204 pr_err("SELinux: %s: unrecognized SID %d\n",
1205 __func__, tsid);
1206 goto out;
1207 }
1208
1209 if (unlikely(!tclass)) {
1210 if (policydb->allow_unknown)
1211 goto allow;
1212 goto out;
1213 }
1214
1215 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1216 NULL);
1217 out:
1218 rcu_read_unlock();
1219 return;
1220 allow:
1221 avd->allowed = 0xffffffff;
1222 goto out;
1223 }
1224
1225 /*
1226 * Write the security context string representation of
1227 * the context structure `context' into a dynamically
1228 * allocated string of the correct size. Set `*scontext'
1229 * to point to this string and set `*scontext_len' to
1230 * the length of the string.
1231 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1232 static int context_struct_to_string(struct policydb *p,
1233 struct context *context,
1234 char **scontext, u32 *scontext_len)
1235 {
1236 char *scontextp;
1237
1238 if (scontext)
1239 *scontext = NULL;
1240 *scontext_len = 0;
1241
1242 if (context->len) {
1243 *scontext_len = context->len;
1244 if (scontext) {
1245 *scontext = kstrdup(context->str, GFP_ATOMIC);
1246 if (!(*scontext))
1247 return -ENOMEM;
1248 }
1249 return 0;
1250 }
1251
1252 /* Compute the size of the context. */
1253 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1254 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1255 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1256 *scontext_len += mls_compute_context_len(p, context);
1257
1258 if (!scontext)
1259 return 0;
1260
1261 /* Allocate space for the context; caller must free this space. */
1262 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1263 if (!scontextp)
1264 return -ENOMEM;
1265 *scontext = scontextp;
1266
1267 /*
1268 * Copy the user name, role name and type name into the context.
1269 */
1270 scontextp += sprintf(scontextp, "%s:%s:%s",
1271 sym_name(p, SYM_USERS, context->user - 1),
1272 sym_name(p, SYM_ROLES, context->role - 1),
1273 sym_name(p, SYM_TYPES, context->type - 1));
1274
1275 mls_sid_to_context(p, context, &scontextp);
1276
1277 *scontextp = 0;
1278
1279 return 0;
1280 }
1281
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1282 static int sidtab_entry_to_string(struct policydb *p,
1283 struct sidtab *sidtab,
1284 struct sidtab_entry *entry,
1285 char **scontext, u32 *scontext_len)
1286 {
1287 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1288
1289 if (rc != -ENOENT)
1290 return rc;
1291
1292 rc = context_struct_to_string(p, &entry->context, scontext,
1293 scontext_len);
1294 if (!rc && scontext)
1295 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1296 return rc;
1297 }
1298
1299 #include "initial_sid_to_string.h"
1300
security_sidtab_hash_stats(struct selinux_state * state,char * page)1301 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1302 {
1303 struct selinux_policy *policy;
1304 int rc;
1305
1306 if (!selinux_initialized(state)) {
1307 pr_err("SELinux: %s: called before initial load_policy\n",
1308 __func__);
1309 return -EINVAL;
1310 }
1311
1312 rcu_read_lock();
1313 policy = rcu_dereference(state->policy);
1314 rc = sidtab_hash_stats(policy->sidtab, page);
1315 rcu_read_unlock();
1316
1317 return rc;
1318 }
1319
security_get_initial_sid_context(u32 sid)1320 const char *security_get_initial_sid_context(u32 sid)
1321 {
1322 if (unlikely(sid > SECINITSID_NUM))
1323 return NULL;
1324 return initial_sid_to_string[sid];
1325 }
1326
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1327 static int security_sid_to_context_core(struct selinux_state *state,
1328 u32 sid, char **scontext,
1329 u32 *scontext_len, int force,
1330 int only_invalid)
1331 {
1332 struct selinux_policy *policy;
1333 struct policydb *policydb;
1334 struct sidtab *sidtab;
1335 struct sidtab_entry *entry;
1336 int rc = 0;
1337
1338 if (scontext)
1339 *scontext = NULL;
1340 *scontext_len = 0;
1341
1342 if (!selinux_initialized(state)) {
1343 if (sid <= SECINITSID_NUM) {
1344 char *scontextp;
1345 const char *s = initial_sid_to_string[sid];
1346
1347 if (!s)
1348 return -EINVAL;
1349 *scontext_len = strlen(s) + 1;
1350 if (!scontext)
1351 return 0;
1352 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1353 if (!scontextp)
1354 return -ENOMEM;
1355 *scontext = scontextp;
1356 return 0;
1357 }
1358 pr_err("SELinux: %s: called before initial "
1359 "load_policy on unknown SID %d\n", __func__, sid);
1360 return -EINVAL;
1361 }
1362 rcu_read_lock();
1363 policy = rcu_dereference(state->policy);
1364 policydb = &policy->policydb;
1365 sidtab = policy->sidtab;
1366
1367 if (force)
1368 entry = sidtab_search_entry_force(sidtab, sid);
1369 else
1370 entry = sidtab_search_entry(sidtab, sid);
1371 if (!entry) {
1372 pr_err("SELinux: %s: unrecognized SID %d\n",
1373 __func__, sid);
1374 rc = -EINVAL;
1375 goto out_unlock;
1376 }
1377 if (only_invalid && !entry->context.len)
1378 goto out_unlock;
1379
1380 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1381 scontext_len);
1382
1383 out_unlock:
1384 rcu_read_unlock();
1385 return rc;
1386
1387 }
1388
1389 /**
1390 * security_sid_to_context - Obtain a context for a given SID.
1391 * @sid: security identifier, SID
1392 * @scontext: security context
1393 * @scontext_len: length in bytes
1394 *
1395 * Write the string representation of the context associated with @sid
1396 * into a dynamically allocated string of the correct size. Set @scontext
1397 * to point to this string and set @scontext_len to the length of the string.
1398 */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1399 int security_sid_to_context(struct selinux_state *state,
1400 u32 sid, char **scontext, u32 *scontext_len)
1401 {
1402 return security_sid_to_context_core(state, sid, scontext,
1403 scontext_len, 0, 0);
1404 }
1405
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1406 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1407 char **scontext, u32 *scontext_len)
1408 {
1409 return security_sid_to_context_core(state, sid, scontext,
1410 scontext_len, 1, 0);
1411 }
1412
1413 /**
1414 * security_sid_to_context_inval - Obtain a context for a given SID if it
1415 * is invalid.
1416 * @sid: security identifier, SID
1417 * @scontext: security context
1418 * @scontext_len: length in bytes
1419 *
1420 * Write the string representation of the context associated with @sid
1421 * into a dynamically allocated string of the correct size, but only if the
1422 * context is invalid in the current policy. Set @scontext to point to
1423 * this string (or NULL if the context is valid) and set @scontext_len to
1424 * the length of the string (or 0 if the context is valid).
1425 */
security_sid_to_context_inval(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1426 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1427 char **scontext, u32 *scontext_len)
1428 {
1429 return security_sid_to_context_core(state, sid, scontext,
1430 scontext_len, 1, 1);
1431 }
1432
1433 /*
1434 * Caveat: Mutates scontext.
1435 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1436 static int string_to_context_struct(struct policydb *pol,
1437 struct sidtab *sidtabp,
1438 char *scontext,
1439 struct context *ctx,
1440 u32 def_sid)
1441 {
1442 struct role_datum *role;
1443 struct type_datum *typdatum;
1444 struct user_datum *usrdatum;
1445 char *scontextp, *p, oldc;
1446 int rc = 0;
1447
1448 context_init(ctx);
1449
1450 /* Parse the security context. */
1451
1452 rc = -EINVAL;
1453 scontextp = (char *) scontext;
1454
1455 /* Extract the user. */
1456 p = scontextp;
1457 while (*p && *p != ':')
1458 p++;
1459
1460 if (*p == 0)
1461 goto out;
1462
1463 *p++ = 0;
1464
1465 usrdatum = symtab_search(&pol->p_users, scontextp);
1466 if (!usrdatum)
1467 goto out;
1468
1469 ctx->user = usrdatum->value;
1470
1471 /* Extract role. */
1472 scontextp = p;
1473 while (*p && *p != ':')
1474 p++;
1475
1476 if (*p == 0)
1477 goto out;
1478
1479 *p++ = 0;
1480
1481 role = symtab_search(&pol->p_roles, scontextp);
1482 if (!role)
1483 goto out;
1484 ctx->role = role->value;
1485
1486 /* Extract type. */
1487 scontextp = p;
1488 while (*p && *p != ':')
1489 p++;
1490 oldc = *p;
1491 *p++ = 0;
1492
1493 typdatum = symtab_search(&pol->p_types, scontextp);
1494 if (!typdatum || typdatum->attribute)
1495 goto out;
1496
1497 ctx->type = typdatum->value;
1498
1499 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1500 if (rc)
1501 goto out;
1502
1503 /* Check the validity of the new context. */
1504 rc = -EINVAL;
1505 if (!policydb_context_isvalid(pol, ctx))
1506 goto out;
1507 rc = 0;
1508 out:
1509 if (rc)
1510 context_destroy(ctx);
1511 return rc;
1512 }
1513
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1514 static int security_context_to_sid_core(struct selinux_state *state,
1515 const char *scontext, u32 scontext_len,
1516 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1517 int force)
1518 {
1519 struct selinux_policy *policy;
1520 struct policydb *policydb;
1521 struct sidtab *sidtab;
1522 char *scontext2, *str = NULL;
1523 struct context context;
1524 int rc = 0;
1525
1526 /* An empty security context is never valid. */
1527 if (!scontext_len)
1528 return -EINVAL;
1529
1530 /* Copy the string to allow changes and ensure a NUL terminator */
1531 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1532 if (!scontext2)
1533 return -ENOMEM;
1534
1535 if (!selinux_initialized(state)) {
1536 int i;
1537
1538 for (i = 1; i < SECINITSID_NUM; i++) {
1539 const char *s = initial_sid_to_string[i];
1540
1541 if (s && !strcmp(s, scontext2)) {
1542 *sid = i;
1543 goto out;
1544 }
1545 }
1546 *sid = SECINITSID_KERNEL;
1547 goto out;
1548 }
1549 *sid = SECSID_NULL;
1550
1551 if (force) {
1552 /* Save another copy for storing in uninterpreted form */
1553 rc = -ENOMEM;
1554 str = kstrdup(scontext2, gfp_flags);
1555 if (!str)
1556 goto out;
1557 }
1558 retry:
1559 rcu_read_lock();
1560 policy = rcu_dereference(state->policy);
1561 policydb = &policy->policydb;
1562 sidtab = policy->sidtab;
1563 rc = string_to_context_struct(policydb, sidtab, scontext2,
1564 &context, def_sid);
1565 if (rc == -EINVAL && force) {
1566 context.str = str;
1567 context.len = strlen(str) + 1;
1568 str = NULL;
1569 } else if (rc)
1570 goto out_unlock;
1571 rc = sidtab_context_to_sid(sidtab, &context, sid);
1572 if (rc == -ESTALE) {
1573 rcu_read_unlock();
1574 if (context.str) {
1575 str = context.str;
1576 context.str = NULL;
1577 }
1578 context_destroy(&context);
1579 goto retry;
1580 }
1581 context_destroy(&context);
1582 out_unlock:
1583 rcu_read_unlock();
1584 out:
1585 kfree(scontext2);
1586 kfree(str);
1587 return rc;
1588 }
1589
1590 /**
1591 * security_context_to_sid - Obtain a SID for a given security context.
1592 * @scontext: security context
1593 * @scontext_len: length in bytes
1594 * @sid: security identifier, SID
1595 * @gfp: context for the allocation
1596 *
1597 * Obtains a SID associated with the security context that
1598 * has the string representation specified by @scontext.
1599 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1600 * memory is available, or 0 on success.
1601 */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1602 int security_context_to_sid(struct selinux_state *state,
1603 const char *scontext, u32 scontext_len, u32 *sid,
1604 gfp_t gfp)
1605 {
1606 return security_context_to_sid_core(state, scontext, scontext_len,
1607 sid, SECSID_NULL, gfp, 0);
1608 }
1609
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1610 int security_context_str_to_sid(struct selinux_state *state,
1611 const char *scontext, u32 *sid, gfp_t gfp)
1612 {
1613 return security_context_to_sid(state, scontext, strlen(scontext),
1614 sid, gfp);
1615 }
1616
1617 /**
1618 * security_context_to_sid_default - Obtain a SID for a given security context,
1619 * falling back to specified default if needed.
1620 *
1621 * @scontext: security context
1622 * @scontext_len: length in bytes
1623 * @sid: security identifier, SID
1624 * @def_sid: default SID to assign on error
1625 *
1626 * Obtains a SID associated with the security context that
1627 * has the string representation specified by @scontext.
1628 * The default SID is passed to the MLS layer to be used to allow
1629 * kernel labeling of the MLS field if the MLS field is not present
1630 * (for upgrading to MLS without full relabel).
1631 * Implicitly forces adding of the context even if it cannot be mapped yet.
1632 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1633 * memory is available, or 0 on success.
1634 */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1635 int security_context_to_sid_default(struct selinux_state *state,
1636 const char *scontext, u32 scontext_len,
1637 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1638 {
1639 return security_context_to_sid_core(state, scontext, scontext_len,
1640 sid, def_sid, gfp_flags, 1);
1641 }
1642
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1643 int security_context_to_sid_force(struct selinux_state *state,
1644 const char *scontext, u32 scontext_len,
1645 u32 *sid)
1646 {
1647 return security_context_to_sid_core(state, scontext, scontext_len,
1648 sid, SECSID_NULL, GFP_KERNEL, 1);
1649 }
1650
compute_sid_handle_invalid_context(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1651 static int compute_sid_handle_invalid_context(
1652 struct selinux_state *state,
1653 struct selinux_policy *policy,
1654 struct sidtab_entry *sentry,
1655 struct sidtab_entry *tentry,
1656 u16 tclass,
1657 struct context *newcontext)
1658 {
1659 struct policydb *policydb = &policy->policydb;
1660 struct sidtab *sidtab = policy->sidtab;
1661 char *s = NULL, *t = NULL, *n = NULL;
1662 u32 slen, tlen, nlen;
1663 struct audit_buffer *ab;
1664
1665 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1666 goto out;
1667 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1668 goto out;
1669 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1670 goto out;
1671 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1672 audit_log_format(ab,
1673 "op=security_compute_sid invalid_context=");
1674 /* no need to record the NUL with untrusted strings */
1675 audit_log_n_untrustedstring(ab, n, nlen - 1);
1676 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1677 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1678 audit_log_end(ab);
1679 out:
1680 kfree(s);
1681 kfree(t);
1682 kfree(n);
1683 if (!enforcing_enabled(state))
1684 return 0;
1685 return -EACCES;
1686 }
1687
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1688 static void filename_compute_type(struct policydb *policydb,
1689 struct context *newcontext,
1690 u32 stype, u32 ttype, u16 tclass,
1691 const char *objname)
1692 {
1693 struct filename_trans_key ft;
1694 struct filename_trans_datum *datum;
1695
1696 /*
1697 * Most filename trans rules are going to live in specific directories
1698 * like /dev or /var/run. This bitmap will quickly skip rule searches
1699 * if the ttype does not contain any rules.
1700 */
1701 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1702 return;
1703
1704 ft.ttype = ttype;
1705 ft.tclass = tclass;
1706 ft.name = objname;
1707
1708 datum = policydb_filenametr_search(policydb, &ft);
1709 while (datum) {
1710 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1711 newcontext->type = datum->otype;
1712 return;
1713 }
1714 datum = datum->next;
1715 }
1716 }
1717
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1718 static int security_compute_sid(struct selinux_state *state,
1719 u32 ssid,
1720 u32 tsid,
1721 u16 orig_tclass,
1722 u32 specified,
1723 const char *objname,
1724 u32 *out_sid,
1725 bool kern)
1726 {
1727 struct selinux_policy *policy;
1728 struct policydb *policydb;
1729 struct sidtab *sidtab;
1730 struct class_datum *cladatum;
1731 struct context *scontext, *tcontext, newcontext;
1732 struct sidtab_entry *sentry, *tentry;
1733 struct avtab_key avkey;
1734 struct avtab_datum *avdatum;
1735 struct avtab_node *node;
1736 u16 tclass;
1737 int rc = 0;
1738 bool sock;
1739
1740 if (!selinux_initialized(state)) {
1741 switch (orig_tclass) {
1742 case SECCLASS_PROCESS: /* kernel value */
1743 *out_sid = ssid;
1744 break;
1745 default:
1746 *out_sid = tsid;
1747 break;
1748 }
1749 goto out;
1750 }
1751
1752 retry:
1753 cladatum = NULL;
1754 context_init(&newcontext);
1755
1756 rcu_read_lock();
1757
1758 policy = rcu_dereference(state->policy);
1759
1760 if (kern) {
1761 tclass = unmap_class(&policy->map, orig_tclass);
1762 sock = security_is_socket_class(orig_tclass);
1763 } else {
1764 tclass = orig_tclass;
1765 sock = security_is_socket_class(map_class(&policy->map,
1766 tclass));
1767 }
1768
1769 policydb = &policy->policydb;
1770 sidtab = policy->sidtab;
1771
1772 sentry = sidtab_search_entry(sidtab, ssid);
1773 if (!sentry) {
1774 pr_err("SELinux: %s: unrecognized SID %d\n",
1775 __func__, ssid);
1776 rc = -EINVAL;
1777 goto out_unlock;
1778 }
1779 tentry = sidtab_search_entry(sidtab, tsid);
1780 if (!tentry) {
1781 pr_err("SELinux: %s: unrecognized SID %d\n",
1782 __func__, tsid);
1783 rc = -EINVAL;
1784 goto out_unlock;
1785 }
1786
1787 scontext = &sentry->context;
1788 tcontext = &tentry->context;
1789
1790 if (tclass && tclass <= policydb->p_classes.nprim)
1791 cladatum = policydb->class_val_to_struct[tclass - 1];
1792
1793 /* Set the user identity. */
1794 switch (specified) {
1795 case AVTAB_TRANSITION:
1796 case AVTAB_CHANGE:
1797 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1798 newcontext.user = tcontext->user;
1799 } else {
1800 /* notice this gets both DEFAULT_SOURCE and unset */
1801 /* Use the process user identity. */
1802 newcontext.user = scontext->user;
1803 }
1804 break;
1805 case AVTAB_MEMBER:
1806 /* Use the related object owner. */
1807 newcontext.user = tcontext->user;
1808 break;
1809 }
1810
1811 /* Set the role to default values. */
1812 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1813 newcontext.role = scontext->role;
1814 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1815 newcontext.role = tcontext->role;
1816 } else {
1817 if ((tclass == policydb->process_class) || sock)
1818 newcontext.role = scontext->role;
1819 else
1820 newcontext.role = OBJECT_R_VAL;
1821 }
1822
1823 /* Set the type to default values. */
1824 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1825 newcontext.type = scontext->type;
1826 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1827 newcontext.type = tcontext->type;
1828 } else {
1829 if ((tclass == policydb->process_class) || sock) {
1830 /* Use the type of process. */
1831 newcontext.type = scontext->type;
1832 } else {
1833 /* Use the type of the related object. */
1834 newcontext.type = tcontext->type;
1835 }
1836 }
1837
1838 /* Look for a type transition/member/change rule. */
1839 avkey.source_type = scontext->type;
1840 avkey.target_type = tcontext->type;
1841 avkey.target_class = tclass;
1842 avkey.specified = specified;
1843 avdatum = avtab_search(&policydb->te_avtab, &avkey);
1844
1845 /* If no permanent rule, also check for enabled conditional rules */
1846 if (!avdatum) {
1847 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1848 for (; node; node = avtab_search_node_next(node, specified)) {
1849 if (node->key.specified & AVTAB_ENABLED) {
1850 avdatum = &node->datum;
1851 break;
1852 }
1853 }
1854 }
1855
1856 if (avdatum) {
1857 /* Use the type from the type transition/member/change rule. */
1858 newcontext.type = avdatum->u.data;
1859 }
1860
1861 /* if we have a objname this is a file trans check so check those rules */
1862 if (objname)
1863 filename_compute_type(policydb, &newcontext, scontext->type,
1864 tcontext->type, tclass, objname);
1865
1866 /* Check for class-specific changes. */
1867 if (specified & AVTAB_TRANSITION) {
1868 /* Look for a role transition rule. */
1869 struct role_trans_datum *rtd;
1870 struct role_trans_key rtk = {
1871 .role = scontext->role,
1872 .type = tcontext->type,
1873 .tclass = tclass,
1874 };
1875
1876 rtd = policydb_roletr_search(policydb, &rtk);
1877 if (rtd)
1878 newcontext.role = rtd->new_role;
1879 }
1880
1881 /* Set the MLS attributes.
1882 This is done last because it may allocate memory. */
1883 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1884 &newcontext, sock);
1885 if (rc)
1886 goto out_unlock;
1887
1888 /* Check the validity of the context. */
1889 if (!policydb_context_isvalid(policydb, &newcontext)) {
1890 rc = compute_sid_handle_invalid_context(state, policy, sentry,
1891 tentry, tclass,
1892 &newcontext);
1893 if (rc)
1894 goto out_unlock;
1895 }
1896 /* Obtain the sid for the context. */
1897 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1898 if (rc == -ESTALE) {
1899 rcu_read_unlock();
1900 context_destroy(&newcontext);
1901 goto retry;
1902 }
1903 out_unlock:
1904 rcu_read_unlock();
1905 context_destroy(&newcontext);
1906 out:
1907 return rc;
1908 }
1909
1910 /**
1911 * security_transition_sid - Compute the SID for a new subject/object.
1912 * @ssid: source security identifier
1913 * @tsid: target security identifier
1914 * @tclass: target security class
1915 * @out_sid: security identifier for new subject/object
1916 *
1917 * Compute a SID to use for labeling a new subject or object in the
1918 * class @tclass based on a SID pair (@ssid, @tsid).
1919 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1920 * if insufficient memory is available, or %0 if the new SID was
1921 * computed successfully.
1922 */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1923 int security_transition_sid(struct selinux_state *state,
1924 u32 ssid, u32 tsid, u16 tclass,
1925 const struct qstr *qstr, u32 *out_sid)
1926 {
1927 return security_compute_sid(state, ssid, tsid, tclass,
1928 AVTAB_TRANSITION,
1929 qstr ? qstr->name : NULL, out_sid, true);
1930 }
1931
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1932 int security_transition_sid_user(struct selinux_state *state,
1933 u32 ssid, u32 tsid, u16 tclass,
1934 const char *objname, u32 *out_sid)
1935 {
1936 return security_compute_sid(state, ssid, tsid, tclass,
1937 AVTAB_TRANSITION,
1938 objname, out_sid, false);
1939 }
1940
1941 /**
1942 * security_member_sid - Compute the SID for member selection.
1943 * @ssid: source security identifier
1944 * @tsid: target security identifier
1945 * @tclass: target security class
1946 * @out_sid: security identifier for selected member
1947 *
1948 * Compute a SID to use when selecting a member of a polyinstantiated
1949 * object of class @tclass based on a SID pair (@ssid, @tsid).
1950 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1951 * if insufficient memory is available, or %0 if the SID was
1952 * computed successfully.
1953 */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1954 int security_member_sid(struct selinux_state *state,
1955 u32 ssid,
1956 u32 tsid,
1957 u16 tclass,
1958 u32 *out_sid)
1959 {
1960 return security_compute_sid(state, ssid, tsid, tclass,
1961 AVTAB_MEMBER, NULL,
1962 out_sid, false);
1963 }
1964
1965 /**
1966 * security_change_sid - Compute the SID for object relabeling.
1967 * @ssid: source security identifier
1968 * @tsid: target security identifier
1969 * @tclass: target security class
1970 * @out_sid: security identifier for selected member
1971 *
1972 * Compute a SID to use for relabeling an object of class @tclass
1973 * based on a SID pair (@ssid, @tsid).
1974 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1975 * if insufficient memory is available, or %0 if the SID was
1976 * computed successfully.
1977 */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1978 int security_change_sid(struct selinux_state *state,
1979 u32 ssid,
1980 u32 tsid,
1981 u16 tclass,
1982 u32 *out_sid)
1983 {
1984 return security_compute_sid(state,
1985 ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1986 out_sid, false);
1987 }
1988
convert_context_handle_invalid_context(struct selinux_state * state,struct policydb * policydb,struct context * context)1989 static inline int convert_context_handle_invalid_context(
1990 struct selinux_state *state,
1991 struct policydb *policydb,
1992 struct context *context)
1993 {
1994 char *s;
1995 u32 len;
1996
1997 if (enforcing_enabled(state))
1998 return -EINVAL;
1999
2000 if (!context_struct_to_string(policydb, context, &s, &len)) {
2001 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
2002 s);
2003 kfree(s);
2004 }
2005 return 0;
2006 }
2007
2008 /*
2009 * Convert the values in the security context
2010 * structure `oldc' from the values specified
2011 * in the policy `p->oldp' to the values specified
2012 * in the policy `p->newp', storing the new context
2013 * in `newc'. Verify that the context is valid
2014 * under the new policy.
2015 */
convert_context(struct context * oldc,struct context * newc,void * p,gfp_t gfp_flags)2016 static int convert_context(struct context *oldc, struct context *newc, void *p,
2017 gfp_t gfp_flags)
2018 {
2019 struct convert_context_args *args;
2020 struct ocontext *oc;
2021 struct role_datum *role;
2022 struct type_datum *typdatum;
2023 struct user_datum *usrdatum;
2024 char *s;
2025 u32 len;
2026 int rc;
2027
2028 args = p;
2029
2030 if (oldc->str) {
2031 s = kstrdup(oldc->str, gfp_flags);
2032 if (!s)
2033 return -ENOMEM;
2034
2035 rc = string_to_context_struct(args->newp, NULL, s,
2036 newc, SECSID_NULL);
2037 if (rc == -EINVAL) {
2038 /*
2039 * Retain string representation for later mapping.
2040 *
2041 * IMPORTANT: We need to copy the contents of oldc->str
2042 * back into s again because string_to_context_struct()
2043 * may have garbled it.
2044 */
2045 memcpy(s, oldc->str, oldc->len);
2046 context_init(newc);
2047 newc->str = s;
2048 newc->len = oldc->len;
2049 return 0;
2050 }
2051 kfree(s);
2052 if (rc) {
2053 /* Other error condition, e.g. ENOMEM. */
2054 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2055 oldc->str, -rc);
2056 return rc;
2057 }
2058 pr_info("SELinux: Context %s became valid (mapped).\n",
2059 oldc->str);
2060 return 0;
2061 }
2062
2063 context_init(newc);
2064
2065 /* Convert the user. */
2066 rc = -EINVAL;
2067 usrdatum = symtab_search(&args->newp->p_users,
2068 sym_name(args->oldp,
2069 SYM_USERS, oldc->user - 1));
2070 if (!usrdatum)
2071 goto bad;
2072 newc->user = usrdatum->value;
2073
2074 /* Convert the role. */
2075 rc = -EINVAL;
2076 role = symtab_search(&args->newp->p_roles,
2077 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2078 if (!role)
2079 goto bad;
2080 newc->role = role->value;
2081
2082 /* Convert the type. */
2083 rc = -EINVAL;
2084 typdatum = symtab_search(&args->newp->p_types,
2085 sym_name(args->oldp,
2086 SYM_TYPES, oldc->type - 1));
2087 if (!typdatum)
2088 goto bad;
2089 newc->type = typdatum->value;
2090
2091 /* Convert the MLS fields if dealing with MLS policies */
2092 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2093 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2094 if (rc)
2095 goto bad;
2096 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2097 /*
2098 * Switching between non-MLS and MLS policy:
2099 * ensure that the MLS fields of the context for all
2100 * existing entries in the sidtab are filled in with a
2101 * suitable default value, likely taken from one of the
2102 * initial SIDs.
2103 */
2104 oc = args->newp->ocontexts[OCON_ISID];
2105 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2106 oc = oc->next;
2107 rc = -EINVAL;
2108 if (!oc) {
2109 pr_err("SELinux: unable to look up"
2110 " the initial SIDs list\n");
2111 goto bad;
2112 }
2113 rc = mls_range_set(newc, &oc->context[0].range);
2114 if (rc)
2115 goto bad;
2116 }
2117
2118 /* Check the validity of the new context. */
2119 if (!policydb_context_isvalid(args->newp, newc)) {
2120 rc = convert_context_handle_invalid_context(args->state,
2121 args->oldp,
2122 oldc);
2123 if (rc)
2124 goto bad;
2125 }
2126
2127 return 0;
2128 bad:
2129 /* Map old representation to string and save it. */
2130 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2131 if (rc)
2132 return rc;
2133 context_destroy(newc);
2134 newc->str = s;
2135 newc->len = len;
2136 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2137 newc->str);
2138 return 0;
2139 }
2140
security_load_policycaps(struct selinux_state * state,struct selinux_policy * policy)2141 static void security_load_policycaps(struct selinux_state *state,
2142 struct selinux_policy *policy)
2143 {
2144 struct policydb *p;
2145 unsigned int i;
2146 struct ebitmap_node *node;
2147
2148 p = &policy->policydb;
2149
2150 for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2151 WRITE_ONCE(state->policycap[i],
2152 ebitmap_get_bit(&p->policycaps, i));
2153
2154 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2155 pr_info("SELinux: policy capability %s=%d\n",
2156 selinux_policycap_names[i],
2157 ebitmap_get_bit(&p->policycaps, i));
2158
2159 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2160 if (i >= ARRAY_SIZE(selinux_policycap_names))
2161 pr_info("SELinux: unknown policy capability %u\n",
2162 i);
2163 }
2164
2165 state->android_netlink_route = p->android_netlink_route;
2166 state->android_netlink_getneigh = p->android_netlink_getneigh;
2167 selinux_nlmsg_init();
2168 }
2169
2170 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2171 struct selinux_policy *newpolicy);
2172
selinux_policy_free(struct selinux_policy * policy)2173 static void selinux_policy_free(struct selinux_policy *policy)
2174 {
2175 if (!policy)
2176 return;
2177
2178 sidtab_destroy(policy->sidtab);
2179 kfree(policy->map.mapping);
2180 policydb_destroy(&policy->policydb);
2181 kfree(policy->sidtab);
2182 kfree(policy);
2183 }
2184
selinux_policy_cond_free(struct selinux_policy * policy)2185 static void selinux_policy_cond_free(struct selinux_policy *policy)
2186 {
2187 cond_policydb_destroy_dup(&policy->policydb);
2188 kfree(policy);
2189 }
2190
selinux_policy_cancel(struct selinux_state * state,struct selinux_load_state * load_state)2191 void selinux_policy_cancel(struct selinux_state *state,
2192 struct selinux_load_state *load_state)
2193 {
2194 struct selinux_policy *oldpolicy;
2195
2196 oldpolicy = rcu_dereference_protected(state->policy,
2197 lockdep_is_held(&state->policy_mutex));
2198
2199 sidtab_cancel_convert(oldpolicy->sidtab);
2200 selinux_policy_free(load_state->policy);
2201 kfree(load_state->convert_data);
2202 }
2203
selinux_notify_policy_change(struct selinux_state * state,u32 seqno)2204 static void selinux_notify_policy_change(struct selinux_state *state,
2205 u32 seqno)
2206 {
2207 /* Flush external caches and notify userspace of policy load */
2208 avc_ss_reset(state->avc, seqno);
2209 selnl_notify_policyload(seqno);
2210 selinux_status_update_policyload(state, seqno);
2211 selinux_netlbl_cache_invalidate();
2212 selinux_xfrm_notify_policyload();
2213 }
2214
selinux_policy_commit(struct selinux_state * state,struct selinux_load_state * load_state)2215 void selinux_policy_commit(struct selinux_state *state,
2216 struct selinux_load_state *load_state)
2217 {
2218 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2219 unsigned long flags;
2220 u32 seqno;
2221
2222 oldpolicy = rcu_dereference_protected(state->policy,
2223 lockdep_is_held(&state->policy_mutex));
2224
2225 /* If switching between different policy types, log MLS status */
2226 if (oldpolicy) {
2227 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2228 pr_info("SELinux: Disabling MLS support...\n");
2229 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2230 pr_info("SELinux: Enabling MLS support...\n");
2231 }
2232
2233 /* Set latest granting seqno for new policy. */
2234 if (oldpolicy)
2235 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2236 else
2237 newpolicy->latest_granting = 1;
2238 seqno = newpolicy->latest_granting;
2239
2240 /* Install the new policy. */
2241 if (oldpolicy) {
2242 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2243 rcu_assign_pointer(state->policy, newpolicy);
2244 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2245 } else {
2246 rcu_assign_pointer(state->policy, newpolicy);
2247 }
2248
2249 /* Load the policycaps from the new policy */
2250 security_load_policycaps(state, newpolicy);
2251
2252 if (!selinux_initialized(state)) {
2253 /*
2254 * After first policy load, the security server is
2255 * marked as initialized and ready to handle requests and
2256 * any objects created prior to policy load are then labeled.
2257 */
2258 selinux_mark_initialized(state);
2259 selinux_complete_init();
2260 trace_android_vh_selinux_is_initialized(state);
2261 }
2262
2263 /* Free the old policy */
2264 synchronize_rcu();
2265 selinux_policy_free(oldpolicy);
2266 kfree(load_state->convert_data);
2267
2268 /* Notify others of the policy change */
2269 selinux_notify_policy_change(state, seqno);
2270 }
2271
2272 /**
2273 * security_load_policy - Load a security policy configuration.
2274 * @data: binary policy data
2275 * @len: length of data in bytes
2276 *
2277 * Load a new set of security policy configuration data,
2278 * validate it and convert the SID table as necessary.
2279 * This function will flush the access vector cache after
2280 * loading the new policy.
2281 */
security_load_policy(struct selinux_state * state,void * data,size_t len,struct selinux_load_state * load_state)2282 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2283 struct selinux_load_state *load_state)
2284 {
2285 struct selinux_policy *newpolicy, *oldpolicy;
2286 struct selinux_policy_convert_data *convert_data;
2287 int rc = 0;
2288 struct policy_file file = { data, len }, *fp = &file;
2289
2290 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2291 if (!newpolicy)
2292 return -ENOMEM;
2293
2294 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2295 if (!newpolicy->sidtab) {
2296 rc = -ENOMEM;
2297 goto err_policy;
2298 }
2299
2300 rc = policydb_read(&newpolicy->policydb, fp);
2301 if (rc)
2302 goto err_sidtab;
2303
2304 newpolicy->policydb.len = len;
2305 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2306 &newpolicy->map);
2307 if (rc)
2308 goto err_policydb;
2309
2310 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2311 if (rc) {
2312 pr_err("SELinux: unable to load the initial SIDs\n");
2313 goto err_mapping;
2314 }
2315
2316 if (!selinux_initialized(state)) {
2317 /* First policy load, so no need to preserve state from old policy */
2318 load_state->policy = newpolicy;
2319 load_state->convert_data = NULL;
2320 return 0;
2321 }
2322
2323 oldpolicy = rcu_dereference_protected(state->policy,
2324 lockdep_is_held(&state->policy_mutex));
2325
2326 /* Preserve active boolean values from the old policy */
2327 rc = security_preserve_bools(oldpolicy, newpolicy);
2328 if (rc) {
2329 pr_err("SELinux: unable to preserve booleans\n");
2330 goto err_free_isids;
2331 }
2332
2333 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2334 if (!convert_data) {
2335 rc = -ENOMEM;
2336 goto err_free_isids;
2337 }
2338
2339 /*
2340 * Convert the internal representations of contexts
2341 * in the new SID table.
2342 */
2343 convert_data->args.state = state;
2344 convert_data->args.oldp = &oldpolicy->policydb;
2345 convert_data->args.newp = &newpolicy->policydb;
2346
2347 convert_data->sidtab_params.func = convert_context;
2348 convert_data->sidtab_params.args = &convert_data->args;
2349 convert_data->sidtab_params.target = newpolicy->sidtab;
2350
2351 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2352 if (rc) {
2353 pr_err("SELinux: unable to convert the internal"
2354 " representation of contexts in the new SID"
2355 " table\n");
2356 goto err_free_convert_data;
2357 }
2358
2359 load_state->policy = newpolicy;
2360 load_state->convert_data = convert_data;
2361 return 0;
2362
2363 err_free_convert_data:
2364 kfree(convert_data);
2365 err_free_isids:
2366 sidtab_destroy(newpolicy->sidtab);
2367 err_mapping:
2368 kfree(newpolicy->map.mapping);
2369 err_policydb:
2370 policydb_destroy(&newpolicy->policydb);
2371 err_sidtab:
2372 kfree(newpolicy->sidtab);
2373 err_policy:
2374 kfree(newpolicy);
2375
2376 return rc;
2377 }
2378
2379 /**
2380 * ocontext_to_sid - Helper to safely get sid for an ocontext
2381 * @sidtab: SID table
2382 * @c: ocontext structure
2383 * @index: index of the context entry (0 or 1)
2384 * @out_sid: pointer to the resulting SID value
2385 *
2386 * For all ocontexts except OCON_ISID the SID fields are populated
2387 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2388 * operation, this helper must be used to do that safely.
2389 *
2390 * WARNING: This function may return -ESTALE, indicating that the caller
2391 * must retry the operation after re-acquiring the policy pointer!
2392 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2393 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2394 size_t index, u32 *out_sid)
2395 {
2396 int rc;
2397 u32 sid;
2398
2399 /* Ensure the associated sidtab entry is visible to this thread. */
2400 sid = smp_load_acquire(&c->sid[index]);
2401 if (!sid) {
2402 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2403 if (rc)
2404 return rc;
2405
2406 /*
2407 * Ensure the new sidtab entry is visible to other threads
2408 * when they see the SID.
2409 */
2410 smp_store_release(&c->sid[index], sid);
2411 }
2412 *out_sid = sid;
2413 return 0;
2414 }
2415
2416 /**
2417 * security_port_sid - Obtain the SID for a port.
2418 * @protocol: protocol number
2419 * @port: port number
2420 * @out_sid: security identifier
2421 */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2422 int security_port_sid(struct selinux_state *state,
2423 u8 protocol, u16 port, u32 *out_sid)
2424 {
2425 struct selinux_policy *policy;
2426 struct policydb *policydb;
2427 struct sidtab *sidtab;
2428 struct ocontext *c;
2429 int rc;
2430
2431 if (!selinux_initialized(state)) {
2432 *out_sid = SECINITSID_PORT;
2433 return 0;
2434 }
2435
2436 retry:
2437 rc = 0;
2438 rcu_read_lock();
2439 policy = rcu_dereference(state->policy);
2440 policydb = &policy->policydb;
2441 sidtab = policy->sidtab;
2442
2443 c = policydb->ocontexts[OCON_PORT];
2444 while (c) {
2445 if (c->u.port.protocol == protocol &&
2446 c->u.port.low_port <= port &&
2447 c->u.port.high_port >= port)
2448 break;
2449 c = c->next;
2450 }
2451
2452 if (c) {
2453 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2454 if (rc == -ESTALE) {
2455 rcu_read_unlock();
2456 goto retry;
2457 }
2458 if (rc)
2459 goto out;
2460 } else {
2461 *out_sid = SECINITSID_PORT;
2462 }
2463
2464 out:
2465 rcu_read_unlock();
2466 return rc;
2467 }
2468
2469 /**
2470 * security_pkey_sid - Obtain the SID for a pkey.
2471 * @subnet_prefix: Subnet Prefix
2472 * @pkey_num: pkey number
2473 * @out_sid: security identifier
2474 */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2475 int security_ib_pkey_sid(struct selinux_state *state,
2476 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2477 {
2478 struct selinux_policy *policy;
2479 struct policydb *policydb;
2480 struct sidtab *sidtab;
2481 struct ocontext *c;
2482 int rc;
2483
2484 if (!selinux_initialized(state)) {
2485 *out_sid = SECINITSID_UNLABELED;
2486 return 0;
2487 }
2488
2489 retry:
2490 rc = 0;
2491 rcu_read_lock();
2492 policy = rcu_dereference(state->policy);
2493 policydb = &policy->policydb;
2494 sidtab = policy->sidtab;
2495
2496 c = policydb->ocontexts[OCON_IBPKEY];
2497 while (c) {
2498 if (c->u.ibpkey.low_pkey <= pkey_num &&
2499 c->u.ibpkey.high_pkey >= pkey_num &&
2500 c->u.ibpkey.subnet_prefix == subnet_prefix)
2501 break;
2502
2503 c = c->next;
2504 }
2505
2506 if (c) {
2507 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2508 if (rc == -ESTALE) {
2509 rcu_read_unlock();
2510 goto retry;
2511 }
2512 if (rc)
2513 goto out;
2514 } else
2515 *out_sid = SECINITSID_UNLABELED;
2516
2517 out:
2518 rcu_read_unlock();
2519 return rc;
2520 }
2521
2522 /**
2523 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2524 * @dev_name: device name
2525 * @port: port number
2526 * @out_sid: security identifier
2527 */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2528 int security_ib_endport_sid(struct selinux_state *state,
2529 const char *dev_name, u8 port_num, u32 *out_sid)
2530 {
2531 struct selinux_policy *policy;
2532 struct policydb *policydb;
2533 struct sidtab *sidtab;
2534 struct ocontext *c;
2535 int rc;
2536
2537 if (!selinux_initialized(state)) {
2538 *out_sid = SECINITSID_UNLABELED;
2539 return 0;
2540 }
2541
2542 retry:
2543 rc = 0;
2544 rcu_read_lock();
2545 policy = rcu_dereference(state->policy);
2546 policydb = &policy->policydb;
2547 sidtab = policy->sidtab;
2548
2549 c = policydb->ocontexts[OCON_IBENDPORT];
2550 while (c) {
2551 if (c->u.ibendport.port == port_num &&
2552 !strncmp(c->u.ibendport.dev_name,
2553 dev_name,
2554 IB_DEVICE_NAME_MAX))
2555 break;
2556
2557 c = c->next;
2558 }
2559
2560 if (c) {
2561 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2562 if (rc == -ESTALE) {
2563 rcu_read_unlock();
2564 goto retry;
2565 }
2566 if (rc)
2567 goto out;
2568 } else
2569 *out_sid = SECINITSID_UNLABELED;
2570
2571 out:
2572 rcu_read_unlock();
2573 return rc;
2574 }
2575
2576 /**
2577 * security_netif_sid - Obtain the SID for a network interface.
2578 * @name: interface name
2579 * @if_sid: interface SID
2580 */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2581 int security_netif_sid(struct selinux_state *state,
2582 char *name, u32 *if_sid)
2583 {
2584 struct selinux_policy *policy;
2585 struct policydb *policydb;
2586 struct sidtab *sidtab;
2587 int rc;
2588 struct ocontext *c;
2589
2590 if (!selinux_initialized(state)) {
2591 *if_sid = SECINITSID_NETIF;
2592 return 0;
2593 }
2594
2595 retry:
2596 rc = 0;
2597 rcu_read_lock();
2598 policy = rcu_dereference(state->policy);
2599 policydb = &policy->policydb;
2600 sidtab = policy->sidtab;
2601
2602 c = policydb->ocontexts[OCON_NETIF];
2603 while (c) {
2604 if (strcmp(name, c->u.name) == 0)
2605 break;
2606 c = c->next;
2607 }
2608
2609 if (c) {
2610 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2611 if (rc == -ESTALE) {
2612 rcu_read_unlock();
2613 goto retry;
2614 }
2615 if (rc)
2616 goto out;
2617 } else
2618 *if_sid = SECINITSID_NETIF;
2619
2620 out:
2621 rcu_read_unlock();
2622 return rc;
2623 }
2624
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2625 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2626 {
2627 int i, fail = 0;
2628
2629 for (i = 0; i < 4; i++)
2630 if (addr[i] != (input[i] & mask[i])) {
2631 fail = 1;
2632 break;
2633 }
2634
2635 return !fail;
2636 }
2637
2638 /**
2639 * security_node_sid - Obtain the SID for a node (host).
2640 * @domain: communication domain aka address family
2641 * @addrp: address
2642 * @addrlen: address length in bytes
2643 * @out_sid: security identifier
2644 */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2645 int security_node_sid(struct selinux_state *state,
2646 u16 domain,
2647 void *addrp,
2648 u32 addrlen,
2649 u32 *out_sid)
2650 {
2651 struct selinux_policy *policy;
2652 struct policydb *policydb;
2653 struct sidtab *sidtab;
2654 int rc;
2655 struct ocontext *c;
2656
2657 if (!selinux_initialized(state)) {
2658 *out_sid = SECINITSID_NODE;
2659 return 0;
2660 }
2661
2662 retry:
2663 rcu_read_lock();
2664 policy = rcu_dereference(state->policy);
2665 policydb = &policy->policydb;
2666 sidtab = policy->sidtab;
2667
2668 switch (domain) {
2669 case AF_INET: {
2670 u32 addr;
2671
2672 rc = -EINVAL;
2673 if (addrlen != sizeof(u32))
2674 goto out;
2675
2676 addr = *((u32 *)addrp);
2677
2678 c = policydb->ocontexts[OCON_NODE];
2679 while (c) {
2680 if (c->u.node.addr == (addr & c->u.node.mask))
2681 break;
2682 c = c->next;
2683 }
2684 break;
2685 }
2686
2687 case AF_INET6:
2688 rc = -EINVAL;
2689 if (addrlen != sizeof(u64) * 2)
2690 goto out;
2691 c = policydb->ocontexts[OCON_NODE6];
2692 while (c) {
2693 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2694 c->u.node6.mask))
2695 break;
2696 c = c->next;
2697 }
2698 break;
2699
2700 default:
2701 rc = 0;
2702 *out_sid = SECINITSID_NODE;
2703 goto out;
2704 }
2705
2706 if (c) {
2707 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2708 if (rc == -ESTALE) {
2709 rcu_read_unlock();
2710 goto retry;
2711 }
2712 if (rc)
2713 goto out;
2714 } else {
2715 *out_sid = SECINITSID_NODE;
2716 }
2717
2718 rc = 0;
2719 out:
2720 rcu_read_unlock();
2721 return rc;
2722 }
2723
2724 #define SIDS_NEL 25
2725
2726 /**
2727 * security_get_user_sids - Obtain reachable SIDs for a user.
2728 * @fromsid: starting SID
2729 * @username: username
2730 * @sids: array of reachable SIDs for user
2731 * @nel: number of elements in @sids
2732 *
2733 * Generate the set of SIDs for legal security contexts
2734 * for a given user that can be reached by @fromsid.
2735 * Set *@sids to point to a dynamically allocated
2736 * array containing the set of SIDs. Set *@nel to the
2737 * number of elements in the array.
2738 */
2739
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2740 int security_get_user_sids(struct selinux_state *state,
2741 u32 fromsid,
2742 char *username,
2743 u32 **sids,
2744 u32 *nel)
2745 {
2746 struct selinux_policy *policy;
2747 struct policydb *policydb;
2748 struct sidtab *sidtab;
2749 struct context *fromcon, usercon;
2750 u32 *mysids = NULL, *mysids2, sid;
2751 u32 i, j, mynel, maxnel = SIDS_NEL;
2752 struct user_datum *user;
2753 struct role_datum *role;
2754 struct ebitmap_node *rnode, *tnode;
2755 int rc;
2756
2757 *sids = NULL;
2758 *nel = 0;
2759
2760 if (!selinux_initialized(state))
2761 return 0;
2762
2763 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2764 if (!mysids)
2765 return -ENOMEM;
2766
2767 retry:
2768 mynel = 0;
2769 rcu_read_lock();
2770 policy = rcu_dereference(state->policy);
2771 policydb = &policy->policydb;
2772 sidtab = policy->sidtab;
2773
2774 context_init(&usercon);
2775
2776 rc = -EINVAL;
2777 fromcon = sidtab_search(sidtab, fromsid);
2778 if (!fromcon)
2779 goto out_unlock;
2780
2781 rc = -EINVAL;
2782 user = symtab_search(&policydb->p_users, username);
2783 if (!user)
2784 goto out_unlock;
2785
2786 usercon.user = user->value;
2787
2788 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2789 role = policydb->role_val_to_struct[i];
2790 usercon.role = i + 1;
2791 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2792 usercon.type = j + 1;
2793
2794 if (mls_setup_user_range(policydb, fromcon, user,
2795 &usercon))
2796 continue;
2797
2798 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2799 if (rc == -ESTALE) {
2800 rcu_read_unlock();
2801 goto retry;
2802 }
2803 if (rc)
2804 goto out_unlock;
2805 if (mynel < maxnel) {
2806 mysids[mynel++] = sid;
2807 } else {
2808 rc = -ENOMEM;
2809 maxnel += SIDS_NEL;
2810 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2811 if (!mysids2)
2812 goto out_unlock;
2813 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2814 kfree(mysids);
2815 mysids = mysids2;
2816 mysids[mynel++] = sid;
2817 }
2818 }
2819 }
2820 rc = 0;
2821 out_unlock:
2822 rcu_read_unlock();
2823 if (rc || !mynel) {
2824 kfree(mysids);
2825 return rc;
2826 }
2827
2828 rc = -ENOMEM;
2829 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2830 if (!mysids2) {
2831 kfree(mysids);
2832 return rc;
2833 }
2834 for (i = 0, j = 0; i < mynel; i++) {
2835 struct av_decision dummy_avd;
2836 rc = avc_has_perm_noaudit(state,
2837 fromsid, mysids[i],
2838 SECCLASS_PROCESS, /* kernel value */
2839 PROCESS__TRANSITION, AVC_STRICT,
2840 &dummy_avd);
2841 if (!rc)
2842 mysids2[j++] = mysids[i];
2843 cond_resched();
2844 }
2845 kfree(mysids);
2846 *sids = mysids2;
2847 *nel = j;
2848 return 0;
2849 }
2850
2851 /**
2852 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2853 * @fstype: filesystem type
2854 * @path: path from root of mount
2855 * @sclass: file security class
2856 * @sid: SID for path
2857 *
2858 * Obtain a SID to use for a file in a filesystem that
2859 * cannot support xattr or use a fixed labeling behavior like
2860 * transition SIDs or task SIDs.
2861 *
2862 * WARNING: This function may return -ESTALE, indicating that the caller
2863 * must retry the operation after re-acquiring the policy pointer!
2864 */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2865 static inline int __security_genfs_sid(struct selinux_policy *policy,
2866 const char *fstype,
2867 char *path,
2868 u16 orig_sclass,
2869 u32 *sid)
2870 {
2871 struct policydb *policydb = &policy->policydb;
2872 struct sidtab *sidtab = policy->sidtab;
2873 int len;
2874 u16 sclass;
2875 struct genfs *genfs;
2876 struct ocontext *c;
2877 int cmp = 0;
2878
2879 while (path[0] == '/' && path[1] == '/')
2880 path++;
2881
2882 sclass = unmap_class(&policy->map, orig_sclass);
2883 *sid = SECINITSID_UNLABELED;
2884
2885 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2886 cmp = strcmp(fstype, genfs->fstype);
2887 if (cmp <= 0)
2888 break;
2889 }
2890
2891 if (!genfs || cmp)
2892 return -ENOENT;
2893
2894 for (c = genfs->head; c; c = c->next) {
2895 len = strlen(c->u.name);
2896 if ((!c->v.sclass || sclass == c->v.sclass) &&
2897 (strncmp(c->u.name, path, len) == 0))
2898 break;
2899 }
2900
2901 if (!c)
2902 return -ENOENT;
2903
2904 return ocontext_to_sid(sidtab, c, 0, sid);
2905 }
2906
2907 /**
2908 * security_genfs_sid - Obtain a SID for a file in a filesystem
2909 * @fstype: filesystem type
2910 * @path: path from root of mount
2911 * @sclass: file security class
2912 * @sid: SID for path
2913 *
2914 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2915 * it afterward.
2916 */
security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2917 int security_genfs_sid(struct selinux_state *state,
2918 const char *fstype,
2919 char *path,
2920 u16 orig_sclass,
2921 u32 *sid)
2922 {
2923 struct selinux_policy *policy;
2924 int retval;
2925
2926 if (!selinux_initialized(state)) {
2927 *sid = SECINITSID_UNLABELED;
2928 return 0;
2929 }
2930
2931 do {
2932 rcu_read_lock();
2933 policy = rcu_dereference(state->policy);
2934 retval = __security_genfs_sid(policy, fstype, path,
2935 orig_sclass, sid);
2936 rcu_read_unlock();
2937 } while (retval == -ESTALE);
2938 return retval;
2939 }
2940
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2941 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2942 const char *fstype,
2943 char *path,
2944 u16 orig_sclass,
2945 u32 *sid)
2946 {
2947 /* no lock required, policy is not yet accessible by other threads */
2948 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2949 }
2950
2951 /**
2952 * security_fs_use - Determine how to handle labeling for a filesystem.
2953 * @sb: superblock in question
2954 */
security_fs_use(struct selinux_state * state,struct super_block * sb)2955 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2956 {
2957 struct selinux_policy *policy;
2958 struct policydb *policydb;
2959 struct sidtab *sidtab;
2960 int rc;
2961 struct ocontext *c;
2962 struct superblock_security_struct *sbsec = sb->s_security;
2963 const char *fstype = sb->s_type->name;
2964
2965 if (!selinux_initialized(state)) {
2966 sbsec->behavior = SECURITY_FS_USE_NONE;
2967 sbsec->sid = SECINITSID_UNLABELED;
2968 return 0;
2969 }
2970
2971 retry:
2972 rc = 0;
2973 rcu_read_lock();
2974 policy = rcu_dereference(state->policy);
2975 policydb = &policy->policydb;
2976 sidtab = policy->sidtab;
2977
2978 c = policydb->ocontexts[OCON_FSUSE];
2979 while (c) {
2980 if (strcmp(fstype, c->u.name) == 0)
2981 break;
2982 c = c->next;
2983 }
2984
2985 if (c) {
2986 sbsec->behavior = c->v.behavior;
2987 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2988 if (rc == -ESTALE) {
2989 rcu_read_unlock();
2990 goto retry;
2991 }
2992 if (rc)
2993 goto out;
2994 } else {
2995 rc = __security_genfs_sid(policy, fstype, "/",
2996 SECCLASS_DIR, &sbsec->sid);
2997 if (rc == -ESTALE) {
2998 rcu_read_unlock();
2999 goto retry;
3000 }
3001 if (rc) {
3002 sbsec->behavior = SECURITY_FS_USE_NONE;
3003 rc = 0;
3004 } else {
3005 sbsec->behavior = SECURITY_FS_USE_GENFS;
3006 }
3007 }
3008
3009 out:
3010 rcu_read_unlock();
3011 return rc;
3012 }
3013
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3014 int security_get_bools(struct selinux_policy *policy,
3015 u32 *len, char ***names, int **values)
3016 {
3017 struct policydb *policydb;
3018 u32 i;
3019 int rc;
3020
3021 policydb = &policy->policydb;
3022
3023 *names = NULL;
3024 *values = NULL;
3025
3026 rc = 0;
3027 *len = policydb->p_bools.nprim;
3028 if (!*len)
3029 goto out;
3030
3031 rc = -ENOMEM;
3032 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3033 if (!*names)
3034 goto err;
3035
3036 rc = -ENOMEM;
3037 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3038 if (!*values)
3039 goto err;
3040
3041 for (i = 0; i < *len; i++) {
3042 (*values)[i] = policydb->bool_val_to_struct[i]->state;
3043
3044 rc = -ENOMEM;
3045 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3046 GFP_ATOMIC);
3047 if (!(*names)[i])
3048 goto err;
3049 }
3050 rc = 0;
3051 out:
3052 return rc;
3053 err:
3054 if (*names) {
3055 for (i = 0; i < *len; i++)
3056 kfree((*names)[i]);
3057 kfree(*names);
3058 }
3059 kfree(*values);
3060 *len = 0;
3061 *names = NULL;
3062 *values = NULL;
3063 goto out;
3064 }
3065
3066
security_set_bools(struct selinux_state * state,u32 len,int * values)3067 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3068 {
3069 struct selinux_policy *newpolicy, *oldpolicy;
3070 int rc;
3071 u32 i, seqno = 0;
3072
3073 if (!selinux_initialized(state))
3074 return -EINVAL;
3075
3076 oldpolicy = rcu_dereference_protected(state->policy,
3077 lockdep_is_held(&state->policy_mutex));
3078
3079 /* Consistency check on number of booleans, should never fail */
3080 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3081 return -EINVAL;
3082
3083 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3084 if (!newpolicy)
3085 return -ENOMEM;
3086
3087 /*
3088 * Deep copy only the parts of the policydb that might be
3089 * modified as a result of changing booleans.
3090 */
3091 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3092 if (rc) {
3093 kfree(newpolicy);
3094 return -ENOMEM;
3095 }
3096
3097 /* Update the boolean states in the copy */
3098 for (i = 0; i < len; i++) {
3099 int new_state = !!values[i];
3100 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3101
3102 if (new_state != old_state) {
3103 audit_log(audit_context(), GFP_ATOMIC,
3104 AUDIT_MAC_CONFIG_CHANGE,
3105 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3106 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3107 new_state,
3108 old_state,
3109 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3110 audit_get_sessionid(current));
3111 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3112 }
3113 }
3114
3115 /* Re-evaluate the conditional rules in the copy */
3116 evaluate_cond_nodes(&newpolicy->policydb);
3117
3118 /* Set latest granting seqno for new policy */
3119 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3120 seqno = newpolicy->latest_granting;
3121
3122 /* Install the new policy */
3123 rcu_assign_pointer(state->policy, newpolicy);
3124
3125 /*
3126 * Free the conditional portions of the old policydb
3127 * that were copied for the new policy, and the oldpolicy
3128 * structure itself but not what it references.
3129 */
3130 synchronize_rcu();
3131 selinux_policy_cond_free(oldpolicy);
3132
3133 /* Notify others of the policy change */
3134 selinux_notify_policy_change(state, seqno);
3135 return 0;
3136 }
3137
security_get_bool_value(struct selinux_state * state,u32 index)3138 int security_get_bool_value(struct selinux_state *state,
3139 u32 index)
3140 {
3141 struct selinux_policy *policy;
3142 struct policydb *policydb;
3143 int rc;
3144 u32 len;
3145
3146 if (!selinux_initialized(state))
3147 return 0;
3148
3149 rcu_read_lock();
3150 policy = rcu_dereference(state->policy);
3151 policydb = &policy->policydb;
3152
3153 rc = -EFAULT;
3154 len = policydb->p_bools.nprim;
3155 if (index >= len)
3156 goto out;
3157
3158 rc = policydb->bool_val_to_struct[index]->state;
3159 out:
3160 rcu_read_unlock();
3161 return rc;
3162 }
3163
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3164 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3165 struct selinux_policy *newpolicy)
3166 {
3167 int rc, *bvalues = NULL;
3168 char **bnames = NULL;
3169 struct cond_bool_datum *booldatum;
3170 u32 i, nbools = 0;
3171
3172 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3173 if (rc)
3174 goto out;
3175 for (i = 0; i < nbools; i++) {
3176 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3177 bnames[i]);
3178 if (booldatum)
3179 booldatum->state = bvalues[i];
3180 }
3181 evaluate_cond_nodes(&newpolicy->policydb);
3182
3183 out:
3184 if (bnames) {
3185 for (i = 0; i < nbools; i++)
3186 kfree(bnames[i]);
3187 }
3188 kfree(bnames);
3189 kfree(bvalues);
3190 return rc;
3191 }
3192
3193 /*
3194 * security_sid_mls_copy() - computes a new sid based on the given
3195 * sid and the mls portion of mls_sid.
3196 */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)3197 int security_sid_mls_copy(struct selinux_state *state,
3198 u32 sid, u32 mls_sid, u32 *new_sid)
3199 {
3200 struct selinux_policy *policy;
3201 struct policydb *policydb;
3202 struct sidtab *sidtab;
3203 struct context *context1;
3204 struct context *context2;
3205 struct context newcon;
3206 char *s;
3207 u32 len;
3208 int rc;
3209
3210 if (!selinux_initialized(state)) {
3211 *new_sid = sid;
3212 return 0;
3213 }
3214
3215 retry:
3216 rc = 0;
3217 context_init(&newcon);
3218
3219 rcu_read_lock();
3220 policy = rcu_dereference(state->policy);
3221 policydb = &policy->policydb;
3222 sidtab = policy->sidtab;
3223
3224 if (!policydb->mls_enabled) {
3225 *new_sid = sid;
3226 goto out_unlock;
3227 }
3228
3229 rc = -EINVAL;
3230 context1 = sidtab_search(sidtab, sid);
3231 if (!context1) {
3232 pr_err("SELinux: %s: unrecognized SID %d\n",
3233 __func__, sid);
3234 goto out_unlock;
3235 }
3236
3237 rc = -EINVAL;
3238 context2 = sidtab_search(sidtab, mls_sid);
3239 if (!context2) {
3240 pr_err("SELinux: %s: unrecognized SID %d\n",
3241 __func__, mls_sid);
3242 goto out_unlock;
3243 }
3244
3245 newcon.user = context1->user;
3246 newcon.role = context1->role;
3247 newcon.type = context1->type;
3248 rc = mls_context_cpy(&newcon, context2);
3249 if (rc)
3250 goto out_unlock;
3251
3252 /* Check the validity of the new context. */
3253 if (!policydb_context_isvalid(policydb, &newcon)) {
3254 rc = convert_context_handle_invalid_context(state, policydb,
3255 &newcon);
3256 if (rc) {
3257 if (!context_struct_to_string(policydb, &newcon, &s,
3258 &len)) {
3259 struct audit_buffer *ab;
3260
3261 ab = audit_log_start(audit_context(),
3262 GFP_ATOMIC,
3263 AUDIT_SELINUX_ERR);
3264 audit_log_format(ab,
3265 "op=security_sid_mls_copy invalid_context=");
3266 /* don't record NUL with untrusted strings */
3267 audit_log_n_untrustedstring(ab, s, len - 1);
3268 audit_log_end(ab);
3269 kfree(s);
3270 }
3271 goto out_unlock;
3272 }
3273 }
3274 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3275 if (rc == -ESTALE) {
3276 rcu_read_unlock();
3277 context_destroy(&newcon);
3278 goto retry;
3279 }
3280 out_unlock:
3281 rcu_read_unlock();
3282 context_destroy(&newcon);
3283 return rc;
3284 }
3285
3286 /**
3287 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3288 * @nlbl_sid: NetLabel SID
3289 * @nlbl_type: NetLabel labeling protocol type
3290 * @xfrm_sid: XFRM SID
3291 *
3292 * Description:
3293 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3294 * resolved into a single SID it is returned via @peer_sid and the function
3295 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3296 * returns a negative value. A table summarizing the behavior is below:
3297 *
3298 * | function return | @sid
3299 * ------------------------------+-----------------+-----------------
3300 * no peer labels | 0 | SECSID_NULL
3301 * single peer label | 0 | <peer_label>
3302 * multiple, consistent labels | 0 | <peer_label>
3303 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3304 *
3305 */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3306 int security_net_peersid_resolve(struct selinux_state *state,
3307 u32 nlbl_sid, u32 nlbl_type,
3308 u32 xfrm_sid,
3309 u32 *peer_sid)
3310 {
3311 struct selinux_policy *policy;
3312 struct policydb *policydb;
3313 struct sidtab *sidtab;
3314 int rc;
3315 struct context *nlbl_ctx;
3316 struct context *xfrm_ctx;
3317
3318 *peer_sid = SECSID_NULL;
3319
3320 /* handle the common (which also happens to be the set of easy) cases
3321 * right away, these two if statements catch everything involving a
3322 * single or absent peer SID/label */
3323 if (xfrm_sid == SECSID_NULL) {
3324 *peer_sid = nlbl_sid;
3325 return 0;
3326 }
3327 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3328 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3329 * is present */
3330 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3331 *peer_sid = xfrm_sid;
3332 return 0;
3333 }
3334
3335 if (!selinux_initialized(state))
3336 return 0;
3337
3338 rcu_read_lock();
3339 policy = rcu_dereference(state->policy);
3340 policydb = &policy->policydb;
3341 sidtab = policy->sidtab;
3342
3343 /*
3344 * We don't need to check initialized here since the only way both
3345 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3346 * security server was initialized and state->initialized was true.
3347 */
3348 if (!policydb->mls_enabled) {
3349 rc = 0;
3350 goto out;
3351 }
3352
3353 rc = -EINVAL;
3354 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3355 if (!nlbl_ctx) {
3356 pr_err("SELinux: %s: unrecognized SID %d\n",
3357 __func__, nlbl_sid);
3358 goto out;
3359 }
3360 rc = -EINVAL;
3361 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3362 if (!xfrm_ctx) {
3363 pr_err("SELinux: %s: unrecognized SID %d\n",
3364 __func__, xfrm_sid);
3365 goto out;
3366 }
3367 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3368 if (rc)
3369 goto out;
3370
3371 /* at present NetLabel SIDs/labels really only carry MLS
3372 * information so if the MLS portion of the NetLabel SID
3373 * matches the MLS portion of the labeled XFRM SID/label
3374 * then pass along the XFRM SID as it is the most
3375 * expressive */
3376 *peer_sid = xfrm_sid;
3377 out:
3378 rcu_read_unlock();
3379 return rc;
3380 }
3381
get_classes_callback(void * k,void * d,void * args)3382 static int get_classes_callback(void *k, void *d, void *args)
3383 {
3384 struct class_datum *datum = d;
3385 char *name = k, **classes = args;
3386 int value = datum->value - 1;
3387
3388 classes[value] = kstrdup(name, GFP_ATOMIC);
3389 if (!classes[value])
3390 return -ENOMEM;
3391
3392 return 0;
3393 }
3394
security_get_classes(struct selinux_policy * policy,char *** classes,int * nclasses)3395 int security_get_classes(struct selinux_policy *policy,
3396 char ***classes, int *nclasses)
3397 {
3398 struct policydb *policydb;
3399 int rc;
3400
3401 policydb = &policy->policydb;
3402
3403 rc = -ENOMEM;
3404 *nclasses = policydb->p_classes.nprim;
3405 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3406 if (!*classes)
3407 goto out;
3408
3409 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3410 *classes);
3411 if (rc) {
3412 int i;
3413 for (i = 0; i < *nclasses; i++)
3414 kfree((*classes)[i]);
3415 kfree(*classes);
3416 }
3417
3418 out:
3419 return rc;
3420 }
3421
get_permissions_callback(void * k,void * d,void * args)3422 static int get_permissions_callback(void *k, void *d, void *args)
3423 {
3424 struct perm_datum *datum = d;
3425 char *name = k, **perms = args;
3426 int value = datum->value - 1;
3427
3428 perms[value] = kstrdup(name, GFP_ATOMIC);
3429 if (!perms[value])
3430 return -ENOMEM;
3431
3432 return 0;
3433 }
3434
security_get_permissions(struct selinux_policy * policy,char * class,char *** perms,int * nperms)3435 int security_get_permissions(struct selinux_policy *policy,
3436 char *class, char ***perms, int *nperms)
3437 {
3438 struct policydb *policydb;
3439 int rc, i;
3440 struct class_datum *match;
3441
3442 policydb = &policy->policydb;
3443
3444 rc = -EINVAL;
3445 match = symtab_search(&policydb->p_classes, class);
3446 if (!match) {
3447 pr_err("SELinux: %s: unrecognized class %s\n",
3448 __func__, class);
3449 goto out;
3450 }
3451
3452 rc = -ENOMEM;
3453 *nperms = match->permissions.nprim;
3454 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3455 if (!*perms)
3456 goto out;
3457
3458 if (match->comdatum) {
3459 rc = hashtab_map(&match->comdatum->permissions.table,
3460 get_permissions_callback, *perms);
3461 if (rc)
3462 goto err;
3463 }
3464
3465 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3466 *perms);
3467 if (rc)
3468 goto err;
3469
3470 out:
3471 return rc;
3472
3473 err:
3474 for (i = 0; i < *nperms; i++)
3475 kfree((*perms)[i]);
3476 kfree(*perms);
3477 return rc;
3478 }
3479
security_get_reject_unknown(struct selinux_state * state)3480 int security_get_reject_unknown(struct selinux_state *state)
3481 {
3482 struct selinux_policy *policy;
3483 int value;
3484
3485 if (!selinux_initialized(state))
3486 return 0;
3487
3488 rcu_read_lock();
3489 policy = rcu_dereference(state->policy);
3490 value = policy->policydb.reject_unknown;
3491 rcu_read_unlock();
3492 return value;
3493 }
3494
security_get_allow_unknown(struct selinux_state * state)3495 int security_get_allow_unknown(struct selinux_state *state)
3496 {
3497 struct selinux_policy *policy;
3498 int value;
3499
3500 if (!selinux_initialized(state))
3501 return 0;
3502
3503 rcu_read_lock();
3504 policy = rcu_dereference(state->policy);
3505 value = policy->policydb.allow_unknown;
3506 rcu_read_unlock();
3507 return value;
3508 }
3509
3510 /**
3511 * security_policycap_supported - Check for a specific policy capability
3512 * @req_cap: capability
3513 *
3514 * Description:
3515 * This function queries the currently loaded policy to see if it supports the
3516 * capability specified by @req_cap. Returns true (1) if the capability is
3517 * supported, false (0) if it isn't supported.
3518 *
3519 */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3520 int security_policycap_supported(struct selinux_state *state,
3521 unsigned int req_cap)
3522 {
3523 struct selinux_policy *policy;
3524 int rc;
3525
3526 if (!selinux_initialized(state))
3527 return 0;
3528
3529 rcu_read_lock();
3530 policy = rcu_dereference(state->policy);
3531 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3532 rcu_read_unlock();
3533
3534 return rc;
3535 }
3536
3537 struct selinux_audit_rule {
3538 u32 au_seqno;
3539 struct context au_ctxt;
3540 };
3541
selinux_audit_rule_free(void * vrule)3542 void selinux_audit_rule_free(void *vrule)
3543 {
3544 struct selinux_audit_rule *rule = vrule;
3545
3546 if (rule) {
3547 context_destroy(&rule->au_ctxt);
3548 kfree(rule);
3549 }
3550 }
3551
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3552 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3553 {
3554 struct selinux_state *state = &selinux_state;
3555 struct selinux_policy *policy;
3556 struct policydb *policydb;
3557 struct selinux_audit_rule *tmprule;
3558 struct role_datum *roledatum;
3559 struct type_datum *typedatum;
3560 struct user_datum *userdatum;
3561 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3562 int rc = 0;
3563
3564 *rule = NULL;
3565
3566 if (!selinux_initialized(state))
3567 return -EOPNOTSUPP;
3568
3569 switch (field) {
3570 case AUDIT_SUBJ_USER:
3571 case AUDIT_SUBJ_ROLE:
3572 case AUDIT_SUBJ_TYPE:
3573 case AUDIT_OBJ_USER:
3574 case AUDIT_OBJ_ROLE:
3575 case AUDIT_OBJ_TYPE:
3576 /* only 'equals' and 'not equals' fit user, role, and type */
3577 if (op != Audit_equal && op != Audit_not_equal)
3578 return -EINVAL;
3579 break;
3580 case AUDIT_SUBJ_SEN:
3581 case AUDIT_SUBJ_CLR:
3582 case AUDIT_OBJ_LEV_LOW:
3583 case AUDIT_OBJ_LEV_HIGH:
3584 /* we do not allow a range, indicated by the presence of '-' */
3585 if (strchr(rulestr, '-'))
3586 return -EINVAL;
3587 break;
3588 default:
3589 /* only the above fields are valid */
3590 return -EINVAL;
3591 }
3592
3593 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3594 if (!tmprule)
3595 return -ENOMEM;
3596
3597 context_init(&tmprule->au_ctxt);
3598
3599 rcu_read_lock();
3600 policy = rcu_dereference(state->policy);
3601 policydb = &policy->policydb;
3602
3603 tmprule->au_seqno = policy->latest_granting;
3604
3605 switch (field) {
3606 case AUDIT_SUBJ_USER:
3607 case AUDIT_OBJ_USER:
3608 rc = -EINVAL;
3609 userdatum = symtab_search(&policydb->p_users, rulestr);
3610 if (!userdatum)
3611 goto out;
3612 tmprule->au_ctxt.user = userdatum->value;
3613 break;
3614 case AUDIT_SUBJ_ROLE:
3615 case AUDIT_OBJ_ROLE:
3616 rc = -EINVAL;
3617 roledatum = symtab_search(&policydb->p_roles, rulestr);
3618 if (!roledatum)
3619 goto out;
3620 tmprule->au_ctxt.role = roledatum->value;
3621 break;
3622 case AUDIT_SUBJ_TYPE:
3623 case AUDIT_OBJ_TYPE:
3624 rc = -EINVAL;
3625 typedatum = symtab_search(&policydb->p_types, rulestr);
3626 if (!typedatum)
3627 goto out;
3628 tmprule->au_ctxt.type = typedatum->value;
3629 break;
3630 case AUDIT_SUBJ_SEN:
3631 case AUDIT_SUBJ_CLR:
3632 case AUDIT_OBJ_LEV_LOW:
3633 case AUDIT_OBJ_LEV_HIGH:
3634 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3635 GFP_ATOMIC);
3636 if (rc)
3637 goto out;
3638 break;
3639 }
3640 rc = 0;
3641 out:
3642 rcu_read_unlock();
3643
3644 if (rc) {
3645 selinux_audit_rule_free(tmprule);
3646 tmprule = NULL;
3647 }
3648
3649 *rule = tmprule;
3650
3651 return rc;
3652 }
3653
3654 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3655 int selinux_audit_rule_known(struct audit_krule *rule)
3656 {
3657 int i;
3658
3659 for (i = 0; i < rule->field_count; i++) {
3660 struct audit_field *f = &rule->fields[i];
3661 switch (f->type) {
3662 case AUDIT_SUBJ_USER:
3663 case AUDIT_SUBJ_ROLE:
3664 case AUDIT_SUBJ_TYPE:
3665 case AUDIT_SUBJ_SEN:
3666 case AUDIT_SUBJ_CLR:
3667 case AUDIT_OBJ_USER:
3668 case AUDIT_OBJ_ROLE:
3669 case AUDIT_OBJ_TYPE:
3670 case AUDIT_OBJ_LEV_LOW:
3671 case AUDIT_OBJ_LEV_HIGH:
3672 return 1;
3673 }
3674 }
3675
3676 return 0;
3677 }
3678
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3679 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3680 {
3681 struct selinux_state *state = &selinux_state;
3682 struct selinux_policy *policy;
3683 struct context *ctxt;
3684 struct mls_level *level;
3685 struct selinux_audit_rule *rule = vrule;
3686 int match = 0;
3687
3688 if (unlikely(!rule)) {
3689 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3690 return -ENOENT;
3691 }
3692
3693 if (!selinux_initialized(state))
3694 return 0;
3695
3696 rcu_read_lock();
3697
3698 policy = rcu_dereference(state->policy);
3699
3700 if (rule->au_seqno < policy->latest_granting) {
3701 match = -ESTALE;
3702 goto out;
3703 }
3704
3705 ctxt = sidtab_search(policy->sidtab, sid);
3706 if (unlikely(!ctxt)) {
3707 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3708 sid);
3709 match = -ENOENT;
3710 goto out;
3711 }
3712
3713 /* a field/op pair that is not caught here will simply fall through
3714 without a match */
3715 switch (field) {
3716 case AUDIT_SUBJ_USER:
3717 case AUDIT_OBJ_USER:
3718 switch (op) {
3719 case Audit_equal:
3720 match = (ctxt->user == rule->au_ctxt.user);
3721 break;
3722 case Audit_not_equal:
3723 match = (ctxt->user != rule->au_ctxt.user);
3724 break;
3725 }
3726 break;
3727 case AUDIT_SUBJ_ROLE:
3728 case AUDIT_OBJ_ROLE:
3729 switch (op) {
3730 case Audit_equal:
3731 match = (ctxt->role == rule->au_ctxt.role);
3732 break;
3733 case Audit_not_equal:
3734 match = (ctxt->role != rule->au_ctxt.role);
3735 break;
3736 }
3737 break;
3738 case AUDIT_SUBJ_TYPE:
3739 case AUDIT_OBJ_TYPE:
3740 switch (op) {
3741 case Audit_equal:
3742 match = (ctxt->type == rule->au_ctxt.type);
3743 break;
3744 case Audit_not_equal:
3745 match = (ctxt->type != rule->au_ctxt.type);
3746 break;
3747 }
3748 break;
3749 case AUDIT_SUBJ_SEN:
3750 case AUDIT_SUBJ_CLR:
3751 case AUDIT_OBJ_LEV_LOW:
3752 case AUDIT_OBJ_LEV_HIGH:
3753 level = ((field == AUDIT_SUBJ_SEN ||
3754 field == AUDIT_OBJ_LEV_LOW) ?
3755 &ctxt->range.level[0] : &ctxt->range.level[1]);
3756 switch (op) {
3757 case Audit_equal:
3758 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3759 level);
3760 break;
3761 case Audit_not_equal:
3762 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3763 level);
3764 break;
3765 case Audit_lt:
3766 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3767 level) &&
3768 !mls_level_eq(&rule->au_ctxt.range.level[0],
3769 level));
3770 break;
3771 case Audit_le:
3772 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3773 level);
3774 break;
3775 case Audit_gt:
3776 match = (mls_level_dom(level,
3777 &rule->au_ctxt.range.level[0]) &&
3778 !mls_level_eq(level,
3779 &rule->au_ctxt.range.level[0]));
3780 break;
3781 case Audit_ge:
3782 match = mls_level_dom(level,
3783 &rule->au_ctxt.range.level[0]);
3784 break;
3785 }
3786 }
3787
3788 out:
3789 rcu_read_unlock();
3790 return match;
3791 }
3792
3793 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3794
aurule_avc_callback(u32 event)3795 static int aurule_avc_callback(u32 event)
3796 {
3797 int err = 0;
3798
3799 if (event == AVC_CALLBACK_RESET && aurule_callback)
3800 err = aurule_callback();
3801 return err;
3802 }
3803
aurule_init(void)3804 static int __init aurule_init(void)
3805 {
3806 int err;
3807
3808 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3809 if (err)
3810 panic("avc_add_callback() failed, error %d\n", err);
3811
3812 return err;
3813 }
3814 __initcall(aurule_init);
3815
3816 #ifdef CONFIG_NETLABEL
3817 /**
3818 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3819 * @secattr: the NetLabel packet security attributes
3820 * @sid: the SELinux SID
3821 *
3822 * Description:
3823 * Attempt to cache the context in @ctx, which was derived from the packet in
3824 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3825 * already been initialized.
3826 *
3827 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3828 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3829 u32 sid)
3830 {
3831 u32 *sid_cache;
3832
3833 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3834 if (sid_cache == NULL)
3835 return;
3836 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3837 if (secattr->cache == NULL) {
3838 kfree(sid_cache);
3839 return;
3840 }
3841
3842 *sid_cache = sid;
3843 secattr->cache->free = kfree;
3844 secattr->cache->data = sid_cache;
3845 secattr->flags |= NETLBL_SECATTR_CACHE;
3846 }
3847
3848 /**
3849 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3850 * @secattr: the NetLabel packet security attributes
3851 * @sid: the SELinux SID
3852 *
3853 * Description:
3854 * Convert the given NetLabel security attributes in @secattr into a
3855 * SELinux SID. If the @secattr field does not contain a full SELinux
3856 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3857 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3858 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3859 * conversion for future lookups. Returns zero on success, negative values on
3860 * failure.
3861 *
3862 */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3863 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3864 struct netlbl_lsm_secattr *secattr,
3865 u32 *sid)
3866 {
3867 struct selinux_policy *policy;
3868 struct policydb *policydb;
3869 struct sidtab *sidtab;
3870 int rc;
3871 struct context *ctx;
3872 struct context ctx_new;
3873
3874 if (!selinux_initialized(state)) {
3875 *sid = SECSID_NULL;
3876 return 0;
3877 }
3878
3879 retry:
3880 rc = 0;
3881 rcu_read_lock();
3882 policy = rcu_dereference(state->policy);
3883 policydb = &policy->policydb;
3884 sidtab = policy->sidtab;
3885
3886 if (secattr->flags & NETLBL_SECATTR_CACHE)
3887 *sid = *(u32 *)secattr->cache->data;
3888 else if (secattr->flags & NETLBL_SECATTR_SECID)
3889 *sid = secattr->attr.secid;
3890 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3891 rc = -EIDRM;
3892 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3893 if (ctx == NULL)
3894 goto out;
3895
3896 context_init(&ctx_new);
3897 ctx_new.user = ctx->user;
3898 ctx_new.role = ctx->role;
3899 ctx_new.type = ctx->type;
3900 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3901 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3902 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3903 if (rc)
3904 goto out;
3905 }
3906 rc = -EIDRM;
3907 if (!mls_context_isvalid(policydb, &ctx_new)) {
3908 ebitmap_destroy(&ctx_new.range.level[0].cat);
3909 goto out;
3910 }
3911
3912 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3913 ebitmap_destroy(&ctx_new.range.level[0].cat);
3914 if (rc == -ESTALE) {
3915 rcu_read_unlock();
3916 goto retry;
3917 }
3918 if (rc)
3919 goto out;
3920
3921 security_netlbl_cache_add(secattr, *sid);
3922 } else
3923 *sid = SECSID_NULL;
3924
3925 out:
3926 rcu_read_unlock();
3927 return rc;
3928 }
3929
3930 /**
3931 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3932 * @sid: the SELinux SID
3933 * @secattr: the NetLabel packet security attributes
3934 *
3935 * Description:
3936 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3937 * Returns zero on success, negative values on failure.
3938 *
3939 */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3940 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3941 u32 sid, struct netlbl_lsm_secattr *secattr)
3942 {
3943 struct selinux_policy *policy;
3944 struct policydb *policydb;
3945 int rc;
3946 struct context *ctx;
3947
3948 if (!selinux_initialized(state))
3949 return 0;
3950
3951 rcu_read_lock();
3952 policy = rcu_dereference(state->policy);
3953 policydb = &policy->policydb;
3954
3955 rc = -ENOENT;
3956 ctx = sidtab_search(policy->sidtab, sid);
3957 if (ctx == NULL)
3958 goto out;
3959
3960 rc = -ENOMEM;
3961 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3962 GFP_ATOMIC);
3963 if (secattr->domain == NULL)
3964 goto out;
3965
3966 secattr->attr.secid = sid;
3967 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3968 mls_export_netlbl_lvl(policydb, ctx, secattr);
3969 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3970 out:
3971 rcu_read_unlock();
3972 return rc;
3973 }
3974 #endif /* CONFIG_NETLABEL */
3975
3976 /**
3977 * security_read_policy - read the policy.
3978 * @data: binary policy data
3979 * @len: length of data in bytes
3980 *
3981 */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)3982 int security_read_policy(struct selinux_state *state,
3983 void **data, size_t *len)
3984 {
3985 struct selinux_policy *policy;
3986 int rc;
3987 struct policy_file fp;
3988
3989 policy = rcu_dereference_protected(
3990 state->policy, lockdep_is_held(&state->policy_mutex));
3991 if (!policy)
3992 return -EINVAL;
3993
3994 *len = policy->policydb.len;
3995 *data = vmalloc_user(*len);
3996 if (!*data)
3997 return -ENOMEM;
3998
3999 fp.data = *data;
4000 fp.len = *len;
4001
4002 rc = policydb_write(&policy->policydb, &fp);
4003 if (rc)
4004 return rc;
4005
4006 *len = (unsigned long)fp.data - (unsigned long)*data;
4007 return 0;
4008
4009 }
4010