xref: /OK3568_Linux_fs/kernel/fs/f2fs/f2fs.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_NID,
47 	FAULT_ORPHAN,
48 	FAULT_BLOCK,
49 	FAULT_DIR_DEPTH,
50 	FAULT_EVICT_INODE,
51 	FAULT_TRUNCATE,
52 	FAULT_READ_IO,
53 	FAULT_CHECKPOINT,
54 	FAULT_DISCARD,
55 	FAULT_WRITE_IO,
56 	FAULT_MAX,
57 };
58 
59 #ifdef CONFIG_F2FS_FAULT_INJECTION
60 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern const char *f2fs_fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 #define MIN_ROOT_RESERVED_BLOCKS (128 * 1024 * 1024)
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
78 #define F2FS_MOUNT_DISCARD		0x00000004
79 #define F2FS_MOUNT_NOHEAP		0x00000008
80 #define F2FS_MOUNT_XATTR_USER		0x00000010
81 #define F2FS_MOUNT_POSIX_ACL		0x00000020
82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
83 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
84 #define F2FS_MOUNT_INLINE_DATA		0x00000100
85 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
86 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
87 #define F2FS_MOUNT_NOBARRIER		0x00000800
88 #define F2FS_MOUNT_FASTBOOT		0x00001000
89 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00002000
90 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
92 #define F2FS_MOUNT_USRQUOTA		0x00080000
93 #define F2FS_MOUNT_GRPQUOTA		0x00100000
94 #define F2FS_MOUNT_PRJQUOTA		0x00200000
95 #define F2FS_MOUNT_QUOTA		0x00400000
96 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
97 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
98 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
99 #define F2FS_MOUNT_NORECOVERY		0x04000000
100 #define F2FS_MOUNT_ATGC			0x08000000
101 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
102 #define	F2FS_MOUNT_GC_MERGE		0x20000000
103 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
104 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x80000000
105 
106 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
107 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
108 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
109 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
110 
111 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
112 		typecheck(unsigned long long, b) &&			\
113 		((long long)((a) - (b)) > 0))
114 
115 typedef u32 block_t;	/*
116 			 * should not change u32, since it is the on-disk block
117 			 * address format, __le32.
118 			 */
119 typedef u32 nid_t;
120 
121 #define COMPRESS_EXT_NUM		16
122 
123 /*
124  * An implementation of an rwsem that is explicitly unfair to readers. This
125  * prevents priority inversion when a low-priority reader acquires the read lock
126  * while sleeping on the write lock but the write lock is needed by
127  * higher-priority clients.
128  */
129 
130 struct f2fs_rwsem {
131         struct rw_semaphore internal_rwsem;
132         wait_queue_head_t read_waiters;
133 };
134 
135 struct f2fs_mount_info {
136 	unsigned int opt;
137 	int write_io_size_bits;		/* Write IO size bits */
138 	block_t root_reserved_blocks;	/* root reserved blocks */
139 	kuid_t s_resuid;		/* reserved blocks for uid */
140 	kgid_t s_resgid;		/* reserved blocks for gid */
141 	int active_logs;		/* # of active logs */
142 	int inline_xattr_size;		/* inline xattr size */
143 #ifdef CONFIG_F2FS_FAULT_INJECTION
144 	struct f2fs_fault_info fault_info;	/* For fault injection */
145 #endif
146 #ifdef CONFIG_QUOTA
147 	/* Names of quota files with journalled quota */
148 	char *s_qf_names[MAXQUOTAS];
149 	int s_jquota_fmt;			/* Format of quota to use */
150 #endif
151 	/* For which write hints are passed down to block layer */
152 	int whint_mode;
153 	int alloc_mode;			/* segment allocation policy */
154 	int fsync_mode;			/* fsync policy */
155 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
156 	int bggc_mode;			/* bggc mode: off, on or sync */
157 	int memory_mode;		/* memory mode */
158 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
159 	block_t unusable_cap_perc;	/* percentage for cap */
160 	block_t unusable_cap;		/* Amount of space allowed to be
161 					 * unusable when disabling checkpoint
162 					 */
163 
164 	/* For compression */
165 	unsigned char compress_algorithm;	/* algorithm type */
166 	unsigned char compress_log_size;	/* cluster log size */
167 	unsigned char compress_level;		/* compress level */
168 	bool compress_chksum;			/* compressed data chksum */
169 	unsigned char compress_ext_cnt;		/* extension count */
170 	int compress_mode;			/* compression mode */
171 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
172 };
173 
174 #define F2FS_FEATURE_ENCRYPT		0x0001
175 #define F2FS_FEATURE_BLKZONED		0x0002
176 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
177 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
178 #define F2FS_FEATURE_PRJQUOTA		0x0010
179 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
180 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
181 #define F2FS_FEATURE_QUOTA_INO		0x0080
182 #define F2FS_FEATURE_INODE_CRTIME	0x0100
183 #define F2FS_FEATURE_LOST_FOUND		0x0200
184 #define F2FS_FEATURE_VERITY		0x0400
185 #define F2FS_FEATURE_SB_CHKSUM		0x0800
186 #define F2FS_FEATURE_CASEFOLD		0x1000
187 #define F2FS_FEATURE_COMPRESSION	0x2000
188 #define F2FS_FEATURE_RO			0x4000
189 
190 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
191 	((raw_super->feature & cpu_to_le32(mask)) != 0)
192 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
193 #define F2FS_SET_FEATURE(sbi, mask)					\
194 	(sbi->raw_super->feature |= cpu_to_le32(mask))
195 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
196 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
197 
198 /*
199  * Default values for user and/or group using reserved blocks
200  */
201 #define	F2FS_DEF_RESUID		0
202 #define	F2FS_DEF_RESGID		0
203 
204 /*
205  * For checkpoint manager
206  */
207 enum {
208 	NAT_BITMAP,
209 	SIT_BITMAP
210 };
211 
212 #define	CP_UMOUNT	0x00000001
213 #define	CP_FASTBOOT	0x00000002
214 #define	CP_SYNC		0x00000004
215 #define	CP_RECOVERY	0x00000008
216 #define	CP_DISCARD	0x00000010
217 #define CP_TRIMMED	0x00000020
218 #define CP_PAUSE	0x00000040
219 #define CP_RESIZE 	0x00000080
220 
221 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
222 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
223 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
224 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
225 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
226 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
227 #define DEF_CP_INTERVAL			60	/* 60 secs */
228 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
229 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
230 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
231 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
232 
233 struct cp_control {
234 	int reason;
235 	__u64 trim_start;
236 	__u64 trim_end;
237 	__u64 trim_minlen;
238 };
239 
240 /*
241  * indicate meta/data type
242  */
243 enum {
244 	META_CP,
245 	META_NAT,
246 	META_SIT,
247 	META_SSA,
248 	META_MAX,
249 	META_POR,
250 	DATA_GENERIC,		/* check range only */
251 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
252 	DATA_GENERIC_ENHANCE_READ,	/*
253 					 * strong check on range and segment
254 					 * bitmap but no warning due to race
255 					 * condition of read on truncated area
256 					 * by extent_cache
257 					 */
258 	DATA_GENERIC_ENHANCE_UPDATE,	/*
259 					 * strong check on range and segment
260 					 * bitmap for update case
261 					 */
262 	META_GENERIC,
263 };
264 
265 /* for the list of ino */
266 enum {
267 	ORPHAN_INO,		/* for orphan ino list */
268 	APPEND_INO,		/* for append ino list */
269 	UPDATE_INO,		/* for update ino list */
270 	TRANS_DIR_INO,		/* for trasactions dir ino list */
271 	FLUSH_INO,		/* for multiple device flushing */
272 	MAX_INO_ENTRY,		/* max. list */
273 };
274 
275 struct ino_entry {
276 	struct list_head list;		/* list head */
277 	nid_t ino;			/* inode number */
278 	unsigned int dirty_device;	/* dirty device bitmap */
279 };
280 
281 /* for the list of inodes to be GCed */
282 struct inode_entry {
283 	struct list_head list;	/* list head */
284 	struct inode *inode;	/* vfs inode pointer */
285 };
286 
287 struct fsync_node_entry {
288 	struct list_head list;	/* list head */
289 	struct page *page;	/* warm node page pointer */
290 	unsigned int seq_id;	/* sequence id */
291 };
292 
293 struct ckpt_req {
294 	struct completion wait;		/* completion for checkpoint done */
295 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
296 	int ret;			/* return code of checkpoint */
297 	ktime_t queue_time;		/* request queued time */
298 };
299 
300 struct ckpt_req_control {
301 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
302 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
303 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
304 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
305 	atomic_t total_ckpt;		/* # of total ckpts */
306 	atomic_t queued_ckpt;		/* # of queued ckpts */
307 	struct llist_head issue_list;	/* list for command issue */
308 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
309 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
310 	unsigned int peak_time;		/* peak wait time in msec until now */
311 };
312 
313 /* for the bitmap indicate blocks to be discarded */
314 struct discard_entry {
315 	struct list_head list;	/* list head */
316 	block_t start_blkaddr;	/* start blockaddr of current segment */
317 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
318 };
319 
320 /* default discard granularity of inner discard thread, unit: block count */
321 #define DEFAULT_DISCARD_GRANULARITY		16
322 
323 /* max discard pend list number */
324 #define MAX_PLIST_NUM		512
325 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
326 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
327 
328 enum {
329 	D_PREP,			/* initial */
330 	D_PARTIAL,		/* partially submitted */
331 	D_SUBMIT,		/* all submitted */
332 	D_DONE,			/* finished */
333 };
334 
335 struct discard_info {
336 	block_t lstart;			/* logical start address */
337 	block_t len;			/* length */
338 	block_t start;			/* actual start address in dev */
339 };
340 
341 struct discard_cmd {
342 	struct rb_node rb_node;		/* rb node located in rb-tree */
343 	union {
344 		struct {
345 			block_t lstart;	/* logical start address */
346 			block_t len;	/* length */
347 			block_t start;	/* actual start address in dev */
348 		};
349 		struct discard_info di;	/* discard info */
350 
351 	};
352 	struct list_head list;		/* command list */
353 	struct completion wait;		/* compleation */
354 	struct block_device *bdev;	/* bdev */
355 	unsigned short ref;		/* reference count */
356 	unsigned char state;		/* state */
357 	unsigned char queued;		/* queued discard */
358 	int error;			/* bio error */
359 	spinlock_t lock;		/* for state/bio_ref updating */
360 	unsigned short bio_ref;		/* bio reference count */
361 };
362 
363 enum {
364 	DPOLICY_BG,
365 	DPOLICY_FORCE,
366 	DPOLICY_FSTRIM,
367 	DPOLICY_UMOUNT,
368 	MAX_DPOLICY,
369 };
370 
371 struct discard_policy {
372 	int type;			/* type of discard */
373 	unsigned int min_interval;	/* used for candidates exist */
374 	unsigned int mid_interval;	/* used for device busy */
375 	unsigned int max_interval;	/* used for candidates not exist */
376 	unsigned int max_requests;	/* # of discards issued per round */
377 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
378 	bool io_aware;			/* issue discard in idle time */
379 	bool sync;			/* submit discard with REQ_SYNC flag */
380 	bool ordered;			/* issue discard by lba order */
381 	bool timeout;			/* discard timeout for put_super */
382 	unsigned int granularity;	/* discard granularity */
383 };
384 
385 struct discard_cmd_control {
386 	struct task_struct *f2fs_issue_discard;	/* discard thread */
387 	struct list_head entry_list;		/* 4KB discard entry list */
388 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
389 	struct list_head wait_list;		/* store on-flushing entries */
390 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
391 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
392 	unsigned int discard_wake;		/* to wake up discard thread */
393 	struct mutex cmd_lock;
394 	unsigned int nr_discards;		/* # of discards in the list */
395 	unsigned int max_discards;		/* max. discards to be issued */
396 	unsigned int discard_granularity;	/* discard granularity */
397 	unsigned int undiscard_blks;		/* # of undiscard blocks */
398 	unsigned int next_pos;			/* next discard position */
399 	atomic_t issued_discard;		/* # of issued discard */
400 	atomic_t queued_discard;		/* # of queued discard */
401 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
402 	struct rb_root_cached root;		/* root of discard rb-tree */
403 	bool rbtree_check;			/* config for consistence check */
404 };
405 
406 /* for the list of fsync inodes, used only during recovery */
407 struct fsync_inode_entry {
408 	struct list_head list;	/* list head */
409 	struct inode *inode;	/* vfs inode pointer */
410 	block_t blkaddr;	/* block address locating the last fsync */
411 	block_t last_dentry;	/* block address locating the last dentry */
412 };
413 
414 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
415 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
416 
417 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
418 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
419 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
420 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
421 
422 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
423 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
424 
update_nats_in_cursum(struct f2fs_journal * journal,int i)425 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
426 {
427 	int before = nats_in_cursum(journal);
428 
429 	journal->n_nats = cpu_to_le16(before + i);
430 	return before;
431 }
432 
update_sits_in_cursum(struct f2fs_journal * journal,int i)433 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
434 {
435 	int before = sits_in_cursum(journal);
436 
437 	journal->n_sits = cpu_to_le16(before + i);
438 	return before;
439 }
440 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)441 static inline bool __has_cursum_space(struct f2fs_journal *journal,
442 							int size, int type)
443 {
444 	if (type == NAT_JOURNAL)
445 		return size <= MAX_NAT_JENTRIES(journal);
446 	return size <= MAX_SIT_JENTRIES(journal);
447 }
448 
449 /* for inline stuff */
450 #define DEF_INLINE_RESERVED_SIZE	1
451 static inline int get_extra_isize(struct inode *inode);
452 static inline int get_inline_xattr_addrs(struct inode *inode);
453 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
454 				(CUR_ADDRS_PER_INODE(inode) -		\
455 				get_inline_xattr_addrs(inode) -	\
456 				DEF_INLINE_RESERVED_SIZE))
457 
458 /* for inline dir */
459 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
460 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
461 				BITS_PER_BYTE + 1))
462 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
463 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
464 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
465 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
466 				NR_INLINE_DENTRY(inode) + \
467 				INLINE_DENTRY_BITMAP_SIZE(inode)))
468 
469 /*
470  * For INODE and NODE manager
471  */
472 /* for directory operations */
473 
474 struct f2fs_filename {
475 	/*
476 	 * The filename the user specified.  This is NULL for some
477 	 * filesystem-internal operations, e.g. converting an inline directory
478 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
479 	 */
480 	const struct qstr *usr_fname;
481 
482 	/*
483 	 * The on-disk filename.  For encrypted directories, this is encrypted.
484 	 * This may be NULL for lookups in an encrypted dir without the key.
485 	 */
486 	struct fscrypt_str disk_name;
487 
488 	/* The dirhash of this filename */
489 	f2fs_hash_t hash;
490 
491 #ifdef CONFIG_FS_ENCRYPTION
492 	/*
493 	 * For lookups in encrypted directories: either the buffer backing
494 	 * disk_name, or a buffer that holds the decoded no-key name.
495 	 */
496 	struct fscrypt_str crypto_buf;
497 #endif
498 #ifdef CONFIG_UNICODE
499 	/*
500 	 * For casefolded directories: the casefolded name, but it's left NULL
501 	 * if the original name is not valid Unicode, if the original name is
502 	 * "." or "..", if the directory is both casefolded and encrypted and
503 	 * its encryption key is unavailable, or if the filesystem is doing an
504 	 * internal operation where usr_fname is also NULL.  In all these cases
505 	 * we fall back to treating the name as an opaque byte sequence.
506 	 */
507 	struct fscrypt_str cf_name;
508 #endif
509 };
510 
511 struct f2fs_dentry_ptr {
512 	struct inode *inode;
513 	void *bitmap;
514 	struct f2fs_dir_entry *dentry;
515 	__u8 (*filename)[F2FS_SLOT_LEN];
516 	int max;
517 	int nr_bitmap;
518 };
519 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)520 static inline void make_dentry_ptr_block(struct inode *inode,
521 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
522 {
523 	d->inode = inode;
524 	d->max = NR_DENTRY_IN_BLOCK;
525 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
526 	d->bitmap = t->dentry_bitmap;
527 	d->dentry = t->dentry;
528 	d->filename = t->filename;
529 }
530 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)531 static inline void make_dentry_ptr_inline(struct inode *inode,
532 					struct f2fs_dentry_ptr *d, void *t)
533 {
534 	int entry_cnt = NR_INLINE_DENTRY(inode);
535 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
536 	int reserved_size = INLINE_RESERVED_SIZE(inode);
537 
538 	d->inode = inode;
539 	d->max = entry_cnt;
540 	d->nr_bitmap = bitmap_size;
541 	d->bitmap = t;
542 	d->dentry = t + bitmap_size + reserved_size;
543 	d->filename = t + bitmap_size + reserved_size +
544 					SIZE_OF_DIR_ENTRY * entry_cnt;
545 }
546 
547 /*
548  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
549  * as its node offset to distinguish from index node blocks.
550  * But some bits are used to mark the node block.
551  */
552 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
553 				>> OFFSET_BIT_SHIFT)
554 enum {
555 	ALLOC_NODE,			/* allocate a new node page if needed */
556 	LOOKUP_NODE,			/* look up a node without readahead */
557 	LOOKUP_NODE_RA,			/*
558 					 * look up a node with readahead called
559 					 * by get_data_block.
560 					 */
561 };
562 
563 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
564 
565 /* congestion wait timeout value, default: 20ms */
566 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
567 
568 /* maximum retry quota flush count */
569 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
570 
571 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
572 
573 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
574 
575 /* for in-memory extent cache entry */
576 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
577 
578 /* number of extent info in extent cache we try to shrink */
579 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
580 
581 /* number of age extent info in extent cache we try to shrink */
582 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
583 #define LAST_AGE_WEIGHT			30
584 #define SAME_AGE_REGION			1024
585 
586 /*
587  * Define data block with age less than 1GB as hot data
588  * define data block with age less than 10GB but more than 1GB as warm data
589  */
590 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
591 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
592 
593 /* extent cache type */
594 enum extent_type {
595 	EX_READ,
596 	EX_BLOCK_AGE,
597 	NR_EXTENT_CACHES,
598 };
599 
600 struct rb_entry {
601 	struct rb_node rb_node;		/* rb node located in rb-tree */
602 	union {
603 		struct {
604 			unsigned int ofs;	/* start offset of the entry */
605 			unsigned int len;	/* length of the entry */
606 		};
607 		unsigned long long key;		/* 64-bits key */
608 	} __packed;
609 };
610 
611 struct extent_info {
612 	unsigned int fofs;		/* start offset in a file */
613 	unsigned int len;		/* length of the extent */
614 	union {
615 		/* read extent_cache */
616 		struct {
617 			/* start block address of the extent */
618 			block_t blk;
619 #ifdef CONFIG_F2FS_FS_COMPRESSION
620 			/* physical extent length of compressed blocks */
621 			unsigned int c_len;
622 #endif
623 		};
624 		/* block age extent_cache */
625 		struct {
626 			/* block age of the extent */
627 			unsigned long long age;
628 			/* last total blocks allocated */
629 			unsigned long long last_blocks;
630 		};
631 	};
632 };
633 
634 struct extent_node {
635 	struct rb_node rb_node;		/* rb node located in rb-tree */
636 	struct extent_info ei;		/* extent info */
637 	struct list_head list;		/* node in global extent list of sbi */
638 	struct extent_tree *et;		/* extent tree pointer */
639 };
640 
641 struct extent_tree {
642 	nid_t ino;			/* inode number */
643 	enum extent_type type;		/* keep the extent tree type */
644 	struct rb_root_cached root;	/* root of extent info rb-tree */
645 	struct extent_node *cached_en;	/* recently accessed extent node */
646 	struct list_head list;		/* to be used by sbi->zombie_list */
647 	rwlock_t lock;			/* protect extent info rb-tree */
648 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
649 	bool largest_updated;		/* largest extent updated */
650 	struct extent_info largest;	/* largest cached extent for EX_READ */
651 };
652 
653 struct extent_tree_info {
654 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
655 	struct mutex extent_tree_lock;	/* locking extent radix tree */
656 	struct list_head extent_list;		/* lru list for shrinker */
657 	spinlock_t extent_lock;			/* locking extent lru list */
658 	atomic_t total_ext_tree;		/* extent tree count */
659 	struct list_head zombie_list;		/* extent zombie tree list */
660 	atomic_t total_zombie_tree;		/* extent zombie tree count */
661 	atomic_t total_ext_node;		/* extent info count */
662 };
663 
664 /*
665  * This structure is taken from ext4_map_blocks.
666  *
667  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
668  */
669 #define F2FS_MAP_NEW		(1 << BH_New)
670 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
671 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
672 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
673 				F2FS_MAP_UNWRITTEN)
674 
675 struct f2fs_map_blocks {
676 	block_t m_pblk;
677 	block_t m_lblk;
678 	unsigned int m_len;
679 	unsigned int m_flags;
680 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
681 	pgoff_t *m_next_extent;		/* point to next possible extent */
682 	int m_seg_type;
683 	bool m_may_create;		/* indicate it is from write path */
684 };
685 
686 /* for flag in get_data_block */
687 enum {
688 	F2FS_GET_BLOCK_DEFAULT,
689 	F2FS_GET_BLOCK_FIEMAP,
690 	F2FS_GET_BLOCK_BMAP,
691 	F2FS_GET_BLOCK_DIO,
692 	F2FS_GET_BLOCK_PRE_DIO,
693 	F2FS_GET_BLOCK_PRE_AIO,
694 	F2FS_GET_BLOCK_PRECACHE,
695 };
696 
697 /*
698  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
699  */
700 #define FADVISE_COLD_BIT	0x01
701 #define FADVISE_LOST_PINO_BIT	0x02
702 #define FADVISE_ENCRYPT_BIT	0x04
703 #define FADVISE_ENC_NAME_BIT	0x08
704 #define FADVISE_KEEP_SIZE_BIT	0x10
705 #define FADVISE_HOT_BIT		0x20
706 #define FADVISE_VERITY_BIT	0x40
707 
708 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
709 
710 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
711 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
712 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
713 
714 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
715 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
716 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
717 
718 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
719 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
720 
721 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
722 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
723 
724 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
725 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
726 
727 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
728 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
729 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
730 
731 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
732 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
733 
734 #define DEF_DIR_LEVEL		0
735 
736 enum {
737 	GC_FAILURE_PIN,
738 	GC_FAILURE_ATOMIC,
739 	MAX_GC_FAILURE
740 };
741 
742 /* used for f2fs_inode_info->flags */
743 enum {
744 	FI_NEW_INODE,		/* indicate newly allocated inode */
745 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
746 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
747 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
748 	FI_INC_LINK,		/* need to increment i_nlink */
749 	FI_ACL_MODE,		/* indicate acl mode */
750 	FI_NO_ALLOC,		/* should not allocate any blocks */
751 	FI_FREE_NID,		/* free allocated nide */
752 	FI_NO_EXTENT,		/* not to use the extent cache */
753 	FI_INLINE_XATTR,	/* used for inline xattr */
754 	FI_INLINE_DATA,		/* used for inline data*/
755 	FI_INLINE_DENTRY,	/* used for inline dentry */
756 	FI_APPEND_WRITE,	/* inode has appended data */
757 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
758 	FI_NEED_IPU,		/* used for ipu per file */
759 	FI_ATOMIC_FILE,		/* indicate atomic file */
760 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
761 	FI_VOLATILE_FILE,	/* indicate volatile file */
762 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
763 	FI_DROP_CACHE,		/* drop dirty page cache */
764 	FI_DATA_EXIST,		/* indicate data exists */
765 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
766 	FI_SKIP_WRITES,		/* should skip data page writeback */
767 	FI_OPU_WRITE,		/* used for opu per file */
768 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
769 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
770 	FI_HOT_DATA,		/* indicate file is hot */
771 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
772 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
773 	FI_PIN_FILE,		/* indicate file should not be gced */
774 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
775 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
776 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
777 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
778 	FI_MMAP_FILE,		/* indicate file was mmapped */
779 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
780 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
781 	FI_ALIGNED_WRITE,	/* enable aligned write */
782 	FI_MAX,			/* max flag, never be used */
783 };
784 
785 struct f2fs_inode_info {
786 	struct inode vfs_inode;		/* serve a vfs inode */
787 	unsigned long i_flags;		/* keep an inode flags for ioctl */
788 	unsigned char i_advise;		/* use to give file attribute hints */
789 	unsigned char i_dir_level;	/* use for dentry level for large dir */
790 	unsigned int i_current_depth;	/* only for directory depth */
791 	/* for gc failure statistic */
792 	unsigned int i_gc_failures[MAX_GC_FAILURE];
793 	unsigned int i_pino;		/* parent inode number */
794 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
795 
796 	/* Use below internally in f2fs*/
797 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
798 	struct f2fs_rwsem i_sem;	/* protect fi info */
799 	atomic_t dirty_pages;		/* # of dirty pages */
800 	f2fs_hash_t chash;		/* hash value of given file name */
801 	unsigned int clevel;		/* maximum level of given file name */
802 	struct task_struct *task;	/* lookup and create consistency */
803 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
804 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
805 	nid_t i_xattr_nid;		/* node id that contains xattrs */
806 	loff_t	last_disk_size;		/* lastly written file size */
807 	spinlock_t i_size_lock;		/* protect last_disk_size */
808 
809 #ifdef CONFIG_QUOTA
810 	struct dquot *i_dquot[MAXQUOTAS];
811 
812 	/* quota space reservation, managed internally by quota code */
813 	qsize_t i_reserved_quota;
814 #endif
815 	struct list_head dirty_list;	/* dirty list for dirs and files */
816 	struct list_head gdirty_list;	/* linked in global dirty list */
817 	struct list_head inmem_ilist;	/* list for inmem inodes */
818 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
819 	struct task_struct *inmem_task;	/* store inmemory task */
820 	struct mutex inmem_lock;	/* lock for inmemory pages */
821 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
822 					/* cached extent_tree entry */
823 
824 	/* avoid racing between foreground op and gc */
825 	struct f2fs_rwsem i_gc_rwsem[2];
826 	struct f2fs_rwsem i_mmap_sem;
827 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
828 
829 	int i_extra_isize;		/* size of extra space located in i_addr */
830 	kprojid_t i_projid;		/* id for project quota */
831 	int i_inline_xattr_size;	/* inline xattr size */
832 	struct timespec64 i_crtime;	/* inode creation time */
833 	struct timespec64 i_disk_time[4];/* inode disk times */
834 
835 	/* for file compress */
836 	atomic_t i_compr_blocks;		/* # of compressed blocks */
837 	unsigned char i_compress_algorithm;	/* algorithm type */
838 	unsigned char i_log_cluster_size;	/* log of cluster size */
839 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
840 	unsigned short i_compress_flag;		/* compress flag */
841 	unsigned int i_cluster_size;		/* cluster size */
842 };
843 
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)844 static inline void get_read_extent_info(struct extent_info *ext,
845 					struct f2fs_extent *i_ext)
846 {
847 	ext->fofs = le32_to_cpu(i_ext->fofs);
848 	ext->blk = le32_to_cpu(i_ext->blk);
849 	ext->len = le32_to_cpu(i_ext->len);
850 }
851 
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)852 static inline void set_raw_read_extent(struct extent_info *ext,
853 					struct f2fs_extent *i_ext)
854 {
855 	i_ext->fofs = cpu_to_le32(ext->fofs);
856 	i_ext->blk = cpu_to_le32(ext->blk);
857 	i_ext->len = cpu_to_le32(ext->len);
858 }
859 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)860 static inline bool __is_discard_mergeable(struct discard_info *back,
861 			struct discard_info *front, unsigned int max_len)
862 {
863 	return (back->lstart + back->len == front->lstart) &&
864 		(back->len + front->len <= max_len);
865 }
866 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)867 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
868 			struct discard_info *back, unsigned int max_len)
869 {
870 	return __is_discard_mergeable(back, cur, max_len);
871 }
872 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)873 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
874 			struct discard_info *front, unsigned int max_len)
875 {
876 	return __is_discard_mergeable(cur, front, max_len);
877 }
878 
879 /*
880  * For free nid management
881  */
882 enum nid_state {
883 	FREE_NID,		/* newly added to free nid list */
884 	PREALLOC_NID,		/* it is preallocated */
885 	MAX_NID_STATE,
886 };
887 
888 enum nat_state {
889 	TOTAL_NAT,
890 	DIRTY_NAT,
891 	RECLAIMABLE_NAT,
892 	MAX_NAT_STATE,
893 };
894 
895 struct f2fs_nm_info {
896 	block_t nat_blkaddr;		/* base disk address of NAT */
897 	nid_t max_nid;			/* maximum possible node ids */
898 	nid_t available_nids;		/* # of available node ids */
899 	nid_t next_scan_nid;		/* the next nid to be scanned */
900 	unsigned int ram_thresh;	/* control the memory footprint */
901 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
902 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
903 
904 	/* NAT cache management */
905 	struct radix_tree_root nat_root;/* root of the nat entry cache */
906 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
907 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
908 	struct list_head nat_entries;	/* cached nat entry list (clean) */
909 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
910 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
911 	unsigned int nat_blocks;	/* # of nat blocks */
912 
913 	/* free node ids management */
914 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
915 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
916 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
917 	spinlock_t nid_list_lock;	/* protect nid lists ops */
918 	struct mutex build_lock;	/* lock for build free nids */
919 	unsigned char **free_nid_bitmap;
920 	unsigned char *nat_block_bitmap;
921 	unsigned short *free_nid_count;	/* free nid count of NAT block */
922 
923 	/* for checkpoint */
924 	char *nat_bitmap;		/* NAT bitmap pointer */
925 
926 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
927 	unsigned char *nat_bits;	/* NAT bits blocks */
928 	unsigned char *full_nat_bits;	/* full NAT pages */
929 	unsigned char *empty_nat_bits;	/* empty NAT pages */
930 #ifdef CONFIG_F2FS_CHECK_FS
931 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
932 #endif
933 	int bitmap_size;		/* bitmap size */
934 };
935 
936 /*
937  * this structure is used as one of function parameters.
938  * all the information are dedicated to a given direct node block determined
939  * by the data offset in a file.
940  */
941 struct dnode_of_data {
942 	struct inode *inode;		/* vfs inode pointer */
943 	struct page *inode_page;	/* its inode page, NULL is possible */
944 	struct page *node_page;		/* cached direct node page */
945 	nid_t nid;			/* node id of the direct node block */
946 	unsigned int ofs_in_node;	/* data offset in the node page */
947 	bool inode_page_locked;		/* inode page is locked or not */
948 	bool node_changed;		/* is node block changed */
949 	char cur_level;			/* level of hole node page */
950 	char max_level;			/* level of current page located */
951 	block_t	data_blkaddr;		/* block address of the node block */
952 };
953 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)954 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
955 		struct page *ipage, struct page *npage, nid_t nid)
956 {
957 	memset(dn, 0, sizeof(*dn));
958 	dn->inode = inode;
959 	dn->inode_page = ipage;
960 	dn->node_page = npage;
961 	dn->nid = nid;
962 }
963 
964 /*
965  * For SIT manager
966  *
967  * By default, there are 6 active log areas across the whole main area.
968  * When considering hot and cold data separation to reduce cleaning overhead,
969  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
970  * respectively.
971  * In the current design, you should not change the numbers intentionally.
972  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
973  * logs individually according to the underlying devices. (default: 6)
974  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
975  * data and 8 for node logs.
976  */
977 #define	NR_CURSEG_DATA_TYPE	(3)
978 #define NR_CURSEG_NODE_TYPE	(3)
979 #define NR_CURSEG_INMEM_TYPE	(2)
980 #define NR_CURSEG_RO_TYPE	(2)
981 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
982 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
983 
984 enum {
985 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
986 	CURSEG_WARM_DATA,	/* data blocks */
987 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
988 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
989 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
990 	CURSEG_COLD_NODE,	/* indirect node blocks */
991 	NR_PERSISTENT_LOG,	/* number of persistent log */
992 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
993 				/* pinned file that needs consecutive block address */
994 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
995 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
996 };
997 
998 struct flush_cmd {
999 	struct completion wait;
1000 	struct llist_node llnode;
1001 	nid_t ino;
1002 	int ret;
1003 };
1004 
1005 struct flush_cmd_control {
1006 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1007 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1008 	atomic_t issued_flush;			/* # of issued flushes */
1009 	atomic_t queued_flush;			/* # of queued flushes */
1010 	struct llist_head issue_list;		/* list for command issue */
1011 	struct llist_node *dispatch_list;	/* list for command dispatch */
1012 };
1013 
1014 struct f2fs_sm_info {
1015 	struct sit_info *sit_info;		/* whole segment information */
1016 	struct free_segmap_info *free_info;	/* free segment information */
1017 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1018 	struct curseg_info *curseg_array;	/* active segment information */
1019 
1020 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1021 
1022 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1023 	block_t main_blkaddr;		/* start block address of main area */
1024 	block_t ssa_blkaddr;		/* start block address of SSA area */
1025 
1026 	unsigned int segment_count;	/* total # of segments */
1027 	unsigned int main_segments;	/* # of segments in main area */
1028 	unsigned int reserved_segments;	/* # of reserved segments */
1029 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1030 	unsigned int ovp_segments;	/* # of overprovision segments */
1031 
1032 	/* a threshold to reclaim prefree segments */
1033 	unsigned int rec_prefree_segments;
1034 
1035 	/* for batched trimming */
1036 	unsigned int trim_sections;		/* # of sections to trim */
1037 
1038 	struct list_head sit_entry_set;	/* sit entry set list */
1039 
1040 	unsigned int ipu_policy;	/* in-place-update policy */
1041 	unsigned int min_ipu_util;	/* in-place-update threshold */
1042 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1043 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1044 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1045 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1046 
1047 	/* for flush command control */
1048 	struct flush_cmd_control *fcc_info;
1049 
1050 	/* for discard command control */
1051 	struct discard_cmd_control *dcc_info;
1052 };
1053 
1054 /*
1055  * For superblock
1056  */
1057 /*
1058  * COUNT_TYPE for monitoring
1059  *
1060  * f2fs monitors the number of several block types such as on-writeback,
1061  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1062  */
1063 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1064 enum count_type {
1065 	F2FS_DIRTY_DENTS,
1066 	F2FS_DIRTY_DATA,
1067 	F2FS_DIRTY_QDATA,
1068 	F2FS_DIRTY_NODES,
1069 	F2FS_DIRTY_META,
1070 	F2FS_INMEM_PAGES,
1071 	F2FS_DIRTY_IMETA,
1072 	F2FS_WB_CP_DATA,
1073 	F2FS_WB_DATA,
1074 	F2FS_RD_DATA,
1075 	F2FS_RD_NODE,
1076 	F2FS_RD_META,
1077 	F2FS_DIO_WRITE,
1078 	F2FS_DIO_READ,
1079 	NR_COUNT_TYPE,
1080 };
1081 
1082 /*
1083  * The below are the page types of bios used in submit_bio().
1084  * The available types are:
1085  * DATA			User data pages. It operates as async mode.
1086  * NODE			Node pages. It operates as async mode.
1087  * META			FS metadata pages such as SIT, NAT, CP.
1088  * NR_PAGE_TYPE		The number of page types.
1089  * META_FLUSH		Make sure the previous pages are written
1090  *			with waiting the bio's completion
1091  * ...			Only can be used with META.
1092  */
1093 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1094 enum page_type {
1095 	DATA = 0,
1096 	NODE = 1,	/* should not change this */
1097 	META,
1098 	NR_PAGE_TYPE,
1099 	META_FLUSH,
1100 	INMEM,		/* the below types are used by tracepoints only. */
1101 	INMEM_DROP,
1102 	INMEM_INVALIDATE,
1103 	INMEM_REVOKE,
1104 	IPU,
1105 	OPU,
1106 };
1107 
1108 enum temp_type {
1109 	HOT = 0,	/* must be zero for meta bio */
1110 	WARM,
1111 	COLD,
1112 	NR_TEMP_TYPE,
1113 };
1114 
1115 enum need_lock_type {
1116 	LOCK_REQ = 0,
1117 	LOCK_DONE,
1118 	LOCK_RETRY,
1119 };
1120 
1121 enum cp_reason_type {
1122 	CP_NO_NEEDED,
1123 	CP_NON_REGULAR,
1124 	CP_COMPRESSED,
1125 	CP_HARDLINK,
1126 	CP_SB_NEED_CP,
1127 	CP_WRONG_PINO,
1128 	CP_NO_SPC_ROLL,
1129 	CP_NODE_NEED_CP,
1130 	CP_FASTBOOT_MODE,
1131 	CP_SPEC_LOG_NUM,
1132 	CP_RECOVER_DIR,
1133 };
1134 
1135 enum iostat_type {
1136 	/* WRITE IO */
1137 	APP_DIRECT_IO,			/* app direct write IOs */
1138 	APP_BUFFERED_IO,		/* app buffered write IOs */
1139 	APP_WRITE_IO,			/* app write IOs */
1140 	APP_MAPPED_IO,			/* app mapped IOs */
1141 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1142 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1143 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1144 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1145 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1146 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1147 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1148 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1149 
1150 	/* READ IO */
1151 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1152 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1153 	APP_READ_IO,			/* app read IOs */
1154 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1155 	FS_DATA_READ_IO,		/* data read IOs */
1156 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1157 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1158 	FS_NODE_READ_IO,		/* node read IOs */
1159 	FS_META_READ_IO,		/* meta read IOs */
1160 
1161 	/* other */
1162 	FS_DISCARD,			/* discard */
1163 	NR_IO_TYPE,
1164 };
1165 
1166 struct f2fs_io_info {
1167 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1168 	nid_t ino;		/* inode number */
1169 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1170 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1171 	int op;			/* contains REQ_OP_ */
1172 	int op_flags;		/* req_flag_bits */
1173 	block_t new_blkaddr;	/* new block address to be written */
1174 	block_t old_blkaddr;	/* old block address before Cow */
1175 	struct page *page;	/* page to be written */
1176 	struct page *encrypted_page;	/* encrypted page */
1177 	struct page *compressed_page;	/* compressed page */
1178 	struct list_head list;		/* serialize IOs */
1179 	bool submitted;		/* indicate IO submission */
1180 	int need_lock;		/* indicate we need to lock cp_rwsem */
1181 	bool in_list;		/* indicate fio is in io_list */
1182 	bool is_por;		/* indicate IO is from recovery or not */
1183 	bool retry;		/* need to reallocate block address */
1184 	int compr_blocks;	/* # of compressed block addresses */
1185 	bool encrypted;		/* indicate file is encrypted */
1186 	bool post_read;		/* require post read */
1187 	enum iostat_type io_type;	/* io type */
1188 	struct writeback_control *io_wbc; /* writeback control */
1189 	struct bio **bio;		/* bio for ipu */
1190 	sector_t *last_block;		/* last block number in bio */
1191 	unsigned char version;		/* version of the node */
1192 };
1193 
1194 struct bio_entry {
1195 	struct bio *bio;
1196 	struct list_head list;
1197 };
1198 
1199 #define is_read_io(rw) ((rw) == READ)
1200 struct f2fs_bio_info {
1201 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1202 	struct bio *bio;		/* bios to merge */
1203 	sector_t last_block_in_bio;	/* last block number */
1204 	struct f2fs_io_info fio;	/* store buffered io info. */
1205 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1206 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1207 	struct list_head io_list;	/* track fios */
1208 	struct list_head bio_list;	/* bio entry list head */
1209 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1210 };
1211 
1212 #define FDEV(i)				(sbi->devs[i])
1213 #define RDEV(i)				(raw_super->devs[i])
1214 struct f2fs_dev_info {
1215 	struct block_device *bdev;
1216 	char path[MAX_PATH_LEN];
1217 	unsigned int total_segments;
1218 	block_t start_blk;
1219 	block_t end_blk;
1220 #ifdef CONFIG_BLK_DEV_ZONED
1221 	unsigned int nr_blkz;		/* Total number of zones */
1222 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1223 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1224 #endif
1225 };
1226 
1227 enum inode_type {
1228 	DIR_INODE,			/* for dirty dir inode */
1229 	FILE_INODE,			/* for dirty regular/symlink inode */
1230 	DIRTY_META,			/* for all dirtied inode metadata */
1231 	ATOMIC_FILE,			/* for all atomic files */
1232 	NR_INODE_TYPE,
1233 };
1234 
1235 /* for inner inode cache management */
1236 struct inode_management {
1237 	struct radix_tree_root ino_root;	/* ino entry array */
1238 	spinlock_t ino_lock;			/* for ino entry lock */
1239 	struct list_head ino_list;		/* inode list head */
1240 	unsigned long ino_num;			/* number of entries */
1241 };
1242 
1243 /* for GC_AT */
1244 struct atgc_management {
1245 	bool atgc_enabled;			/* ATGC is enabled or not */
1246 	struct rb_root_cached root;		/* root of victim rb-tree */
1247 	struct list_head victim_list;		/* linked with all victim entries */
1248 	unsigned int victim_count;		/* victim count in rb-tree */
1249 	unsigned int candidate_ratio;		/* candidate ratio */
1250 	unsigned int max_candidate_count;	/* max candidate count */
1251 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1252 	unsigned long long age_threshold;	/* age threshold */
1253 };
1254 
1255 /* For s_flag in struct f2fs_sb_info */
1256 enum {
1257 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1258 	SBI_IS_CLOSE,				/* specify unmounting */
1259 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1260 	SBI_POR_DOING,				/* recovery is doing or not */
1261 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1262 	SBI_NEED_CP,				/* need to checkpoint */
1263 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1264 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1265 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1266 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1267 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1268 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1269 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1270 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1271 	SBI_IS_FREEZING,			/* freezefs is in process */
1272 };
1273 
1274 enum {
1275 	CP_TIME,
1276 	REQ_TIME,
1277 	DISCARD_TIME,
1278 	GC_TIME,
1279 	DISABLE_TIME,
1280 	UMOUNT_DISCARD_TIMEOUT,
1281 	MAX_TIME,
1282 };
1283 
1284 enum {
1285 	GC_NORMAL,
1286 	GC_IDLE_CB,
1287 	GC_IDLE_GREEDY,
1288 	GC_IDLE_AT,
1289 	GC_URGENT_HIGH,
1290 	GC_URGENT_LOW,
1291 	MAX_GC_MODE,
1292 };
1293 
1294 enum {
1295 	BGGC_MODE_ON,		/* background gc is on */
1296 	BGGC_MODE_OFF,		/* background gc is off */
1297 	BGGC_MODE_SYNC,		/*
1298 				 * background gc is on, migrating blocks
1299 				 * like foreground gc
1300 				 */
1301 };
1302 
1303 enum {
1304 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1305 	FS_MODE_LFS,		/* use lfs allocation only */
1306 };
1307 
1308 enum {
1309 	WHINT_MODE_OFF,		/* not pass down write hints */
1310 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1311 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1312 };
1313 
1314 enum {
1315 	ALLOC_MODE_DEFAULT,	/* stay default */
1316 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1317 };
1318 
1319 enum fsync_mode {
1320 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1321 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1322 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1323 };
1324 
1325 enum {
1326 	COMPR_MODE_FS,		/*
1327 				 * automatically compress compression
1328 				 * enabled files
1329 				 */
1330 	COMPR_MODE_USER,	/*
1331 				 * automatical compression is disabled.
1332 				 * user can control the file compression
1333 				 * using ioctls
1334 				 */
1335 };
1336 
1337 enum {
1338 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1339 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1340 };
1341 
1342 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1343 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1344 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1345 
1346 /*
1347  * Layout of f2fs page.private:
1348  *
1349  * Layout A: lowest bit should be 1
1350  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1351  * bit 0	PAGE_PRIVATE_NOT_POINTER
1352  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1353  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1354  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1355  * bit 4	PAGE_PRIVATE_INLINE_INODE
1356  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1357  * bit 6-	f2fs private data
1358  *
1359  * Layout B: lowest bit should be 0
1360  * page.private is a wrapped pointer.
1361  */
1362 enum {
1363 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1364 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1365 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1366 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1367 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1368 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1369 	PAGE_PRIVATE_MAX
1370 };
1371 
1372 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1373 static inline bool page_private_##name(struct page *page) \
1374 { \
1375 	return PagePrivate(page) && \
1376 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1377 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1378 }
1379 
1380 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1381 static inline void set_page_private_##name(struct page *page) \
1382 { \
1383 	if (!PagePrivate(page)) { \
1384 		get_page(page); \
1385 		SetPagePrivate(page); \
1386 		set_page_private(page, 0); \
1387 	} \
1388 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1389 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1390 }
1391 
1392 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1393 static inline void clear_page_private_##name(struct page *page) \
1394 { \
1395 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1396 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1397 		set_page_private(page, 0); \
1398 		if (PagePrivate(page)) { \
1399 			ClearPagePrivate(page); \
1400 			put_page(page); \
1401 		}\
1402 	} \
1403 }
1404 
1405 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1406 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1407 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1408 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1409 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1410 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1411 
1412 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1413 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1414 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1415 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1416 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1417 
1418 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1419 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1420 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1421 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1422 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1423 
get_page_private_data(struct page * page)1424 static inline unsigned long get_page_private_data(struct page *page)
1425 {
1426 	unsigned long data = page_private(page);
1427 
1428 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1429 		return 0;
1430 	return data >> PAGE_PRIVATE_MAX;
1431 }
1432 
set_page_private_data(struct page * page,unsigned long data)1433 static inline void set_page_private_data(struct page *page, unsigned long data)
1434 {
1435 	if (!PagePrivate(page)) {
1436 		get_page(page);
1437 		SetPagePrivate(page);
1438 		set_page_private(page, 0);
1439 	}
1440 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1441 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1442 }
1443 
clear_page_private_data(struct page * page)1444 static inline void clear_page_private_data(struct page *page)
1445 {
1446 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1447 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1448 		set_page_private(page, 0);
1449 		if (PagePrivate(page)) {
1450 			ClearPagePrivate(page);
1451 			put_page(page);
1452 		}
1453 	}
1454 }
1455 
1456 /* For compression */
1457 enum compress_algorithm_type {
1458 	COMPRESS_LZO,
1459 	COMPRESS_LZ4,
1460 	COMPRESS_ZSTD,
1461 	COMPRESS_LZORLE,
1462 	COMPRESS_MAX,
1463 };
1464 
1465 enum compress_flag {
1466 	COMPRESS_CHKSUM,
1467 	COMPRESS_MAX_FLAG,
1468 };
1469 
1470 #define	COMPRESS_WATERMARK			20
1471 #define	COMPRESS_PERCENT			20
1472 
1473 #define COMPRESS_DATA_RESERVED_SIZE		4
1474 struct compress_data {
1475 	__le32 clen;			/* compressed data size */
1476 	__le32 chksum;			/* compressed data chksum */
1477 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1478 	u8 cdata[];			/* compressed data */
1479 };
1480 
1481 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1482 
1483 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1484 
1485 #define	COMPRESS_LEVEL_OFFSET	8
1486 
1487 /* compress context */
1488 struct compress_ctx {
1489 	struct inode *inode;		/* inode the context belong to */
1490 	pgoff_t cluster_idx;		/* cluster index number */
1491 	unsigned int cluster_size;	/* page count in cluster */
1492 	unsigned int log_cluster_size;	/* log of cluster size */
1493 	struct page **rpages;		/* pages store raw data in cluster */
1494 	unsigned int nr_rpages;		/* total page number in rpages */
1495 	struct page **cpages;		/* pages store compressed data in cluster */
1496 	unsigned int nr_cpages;		/* total page number in cpages */
1497 	void *rbuf;			/* virtual mapped address on rpages */
1498 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1499 	size_t rlen;			/* valid data length in rbuf */
1500 	size_t clen;			/* valid data length in cbuf */
1501 	void *private;			/* payload buffer for specified compression algorithm */
1502 	void *private2;			/* extra payload buffer */
1503 };
1504 
1505 /* compress context for write IO path */
1506 struct compress_io_ctx {
1507 	u32 magic;			/* magic number to indicate page is compressed */
1508 	struct inode *inode;		/* inode the context belong to */
1509 	struct page **rpages;		/* pages store raw data in cluster */
1510 	unsigned int nr_rpages;		/* total page number in rpages */
1511 	atomic_t pending_pages;		/* in-flight compressed page count */
1512 };
1513 
1514 /* Context for decompressing one cluster on the read IO path */
1515 struct decompress_io_ctx {
1516 	u32 magic;			/* magic number to indicate page is compressed */
1517 	struct inode *inode;		/* inode the context belong to */
1518 	pgoff_t cluster_idx;		/* cluster index number */
1519 	unsigned int cluster_size;	/* page count in cluster */
1520 	unsigned int log_cluster_size;	/* log of cluster size */
1521 	struct page **rpages;		/* pages store raw data in cluster */
1522 	unsigned int nr_rpages;		/* total page number in rpages */
1523 	struct page **cpages;		/* pages store compressed data in cluster */
1524 	unsigned int nr_cpages;		/* total page number in cpages */
1525 	struct page **tpages;		/* temp pages to pad holes in cluster */
1526 	void *rbuf;			/* virtual mapped address on rpages */
1527 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1528 	size_t rlen;			/* valid data length in rbuf */
1529 	size_t clen;			/* valid data length in cbuf */
1530 
1531 	/*
1532 	 * The number of compressed pages remaining to be read in this cluster.
1533 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1534 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1535 	 * is decompressed (or an error is reported).
1536 	 *
1537 	 * If an error occurs before all the pages have been submitted for I/O,
1538 	 * then this will never reach 0.  In this case the I/O submitter is
1539 	 * responsible for calling f2fs_decompress_end_io() instead.
1540 	 */
1541 	atomic_t remaining_pages;
1542 
1543 	/*
1544 	 * Number of references to this decompress_io_ctx.
1545 	 *
1546 	 * One reference is held for I/O completion.  This reference is dropped
1547 	 * after the pagecache pages are updated and unlocked -- either after
1548 	 * decompression (and verity if enabled), or after an error.
1549 	 *
1550 	 * In addition, each compressed page holds a reference while it is in a
1551 	 * bio.  These references are necessary prevent compressed pages from
1552 	 * being freed while they are still in a bio.
1553 	 */
1554 	refcount_t refcnt;
1555 
1556 	bool failed;			/* IO error occurred before decompression? */
1557 	bool need_verity;		/* need fs-verity verification after decompression? */
1558 	void *private;			/* payload buffer for specified decompression algorithm */
1559 	void *private2;			/* extra payload buffer */
1560 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1561 	struct work_struct free_work;	/* work for late free this structure itself */
1562 };
1563 
1564 #define NULL_CLUSTER			((unsigned int)(~0))
1565 #define MIN_COMPRESS_LOG_SIZE		2
1566 #define MAX_COMPRESS_LOG_SIZE		8
1567 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1568 
1569 struct f2fs_sb_info {
1570 	struct super_block *sb;			/* pointer to VFS super block */
1571 	struct proc_dir_entry *s_proc;		/* proc entry */
1572 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1573 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1574 	int valid_super_block;			/* valid super block no */
1575 	unsigned long s_flag;				/* flags for sbi */
1576 	struct mutex writepages;		/* mutex for writepages() */
1577 
1578 #ifdef CONFIG_BLK_DEV_ZONED
1579 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1580 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1581 #endif
1582 
1583 	/* for node-related operations */
1584 	struct f2fs_nm_info *nm_info;		/* node manager */
1585 	struct inode *node_inode;		/* cache node blocks */
1586 
1587 	/* for segment-related operations */
1588 	struct f2fs_sm_info *sm_info;		/* segment manager */
1589 
1590 	/* for bio operations */
1591 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1592 	/* keep migration IO order for LFS mode */
1593 	struct f2fs_rwsem io_order_lock;
1594 	mempool_t *write_io_dummy;		/* Dummy pages */
1595 
1596 	/* for checkpoint */
1597 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1598 	int cur_cp_pack;			/* remain current cp pack */
1599 	spinlock_t cp_lock;			/* for flag in ckpt */
1600 	struct inode *meta_inode;		/* cache meta blocks */
1601 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1602 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1603 	struct f2fs_rwsem node_write;		/* locking node writes */
1604 	struct f2fs_rwsem node_change;	/* locking node change */
1605 	wait_queue_head_t cp_wait;
1606 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1607 	long interval_time[MAX_TIME];		/* to store thresholds */
1608 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1609 
1610 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1611 
1612 	spinlock_t fsync_node_lock;		/* for node entry lock */
1613 	struct list_head fsync_node_list;	/* node list head */
1614 	unsigned int fsync_seg_id;		/* sequence id */
1615 	unsigned int fsync_node_num;		/* number of node entries */
1616 
1617 	/* for orphan inode, use 0'th array */
1618 	unsigned int max_orphans;		/* max orphan inodes */
1619 
1620 	/* for inode management */
1621 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1622 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1623 	struct mutex flush_lock;		/* for flush exclusion */
1624 
1625 	/* for extent tree cache */
1626 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1627 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1628 
1629 	/* The threshold used for hot and warm data seperation*/
1630 	unsigned int hot_data_age_threshold;
1631 	unsigned int warm_data_age_threshold;
1632 	unsigned int last_age_weight;
1633 
1634 	/* basic filesystem units */
1635 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1636 	unsigned int log_blocksize;		/* log2 block size */
1637 	unsigned int blocksize;			/* block size */
1638 	unsigned int root_ino_num;		/* root inode number*/
1639 	unsigned int node_ino_num;		/* node inode number*/
1640 	unsigned int meta_ino_num;		/* meta inode number*/
1641 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1642 	unsigned int blocks_per_seg;		/* blocks per segment */
1643 	unsigned int segs_per_sec;		/* segments per section */
1644 	unsigned int secs_per_zone;		/* sections per zone */
1645 	unsigned int total_sections;		/* total section count */
1646 	unsigned int total_node_count;		/* total node block count */
1647 	unsigned int total_valid_node_count;	/* valid node block count */
1648 	int dir_level;				/* directory level */
1649 	int readdir_ra;				/* readahead inode in readdir */
1650 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1651 
1652 	block_t user_block_count;		/* # of user blocks */
1653 	block_t total_valid_block_count;	/* # of valid blocks */
1654 	block_t discard_blks;			/* discard command candidats */
1655 	block_t last_valid_block_count;		/* for recovery */
1656 	block_t reserved_blocks;		/* configurable reserved blocks */
1657 	block_t current_reserved_blocks;	/* current reserved blocks */
1658 
1659 	/* Additional tracking for no checkpoint mode */
1660 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1661 
1662 	unsigned int nquota_files;		/* # of quota sysfile */
1663 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1664 
1665 	/* # of pages, see count_type */
1666 	atomic_t nr_pages[NR_COUNT_TYPE];
1667 	/* # of allocated blocks */
1668 	struct percpu_counter alloc_valid_block_count;
1669 
1670 	/* writeback control */
1671 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1672 
1673 	/* valid inode count */
1674 	struct percpu_counter total_valid_inode_count;
1675 
1676 	struct f2fs_mount_info mount_opt;	/* mount options */
1677 
1678 	/* for cleaning operations */
1679 	struct f2fs_rwsem gc_lock;		/*
1680 						 * semaphore for GC, avoid
1681 						 * race between GC and GC or CP
1682 						 */
1683 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1684 	struct atgc_management am;		/* atgc management */
1685 	unsigned int cur_victim_sec;		/* current victim section num */
1686 	unsigned int gc_mode;			/* current GC state */
1687 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1688 
1689 	/* for skip statistic */
1690 	unsigned int atomic_files;		/* # of opened atomic file */
1691 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1692 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1693 
1694 	/* threshold for gc trials on pinned files */
1695 	u64 gc_pin_file_threshold;
1696 	struct f2fs_rwsem pin_sem;
1697 
1698 	/* maximum # of trials to find a victim segment for SSR and GC */
1699 	unsigned int max_victim_search;
1700 	/* migration granularity of garbage collection, unit: segment */
1701 	unsigned int migration_granularity;
1702 
1703 	atomic_t no_cp_fsync_pages;
1704 
1705 	/*
1706 	 * for stat information.
1707 	 * one is for the LFS mode, and the other is for the SSR mode.
1708 	 */
1709 #ifdef CONFIG_F2FS_STAT_FS
1710 	struct f2fs_stat_info *stat_info;	/* FS status information */
1711 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1712 	unsigned int segment_count[2];		/* # of allocated segments */
1713 	unsigned int block_count[2];		/* # of allocated blocks */
1714 	atomic_t inplace_count;		/* # of inplace update */
1715 	/* # of lookup extent cache */
1716 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1717 	/* # of hit rbtree extent node */
1718 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1719 	/* # of hit cached extent node */
1720 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1721 	/* # of hit largest extent node in read extent cache */
1722 	atomic64_t read_hit_largest;
1723 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1724 	atomic_t inline_inode;			/* # of inline_data inodes */
1725 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1726 	atomic_t compr_inode;			/* # of compressed inodes */
1727 	atomic64_t compr_blocks;		/* # of compressed blocks */
1728 	atomic_t vw_cnt;			/* # of volatile writes */
1729 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1730 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1731 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1732 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1733 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1734 #endif
1735 	spinlock_t stat_lock;			/* lock for stat operations */
1736 
1737 	/* For app/fs IO statistics */
1738 	spinlock_t iostat_lock;
1739 	unsigned long long rw_iostat[NR_IO_TYPE];
1740 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1741 	bool iostat_enable;
1742 	unsigned long iostat_next_period;
1743 	unsigned int iostat_period_ms;
1744 
1745 	/* to attach REQ_META|REQ_FUA flags */
1746 	unsigned int data_io_flag;
1747 	unsigned int node_io_flag;
1748 
1749 	/* For sysfs suppport */
1750 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1751 	struct completion s_kobj_unregister;
1752 
1753 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1754 	struct completion s_stat_kobj_unregister;
1755 
1756 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1757 	struct completion s_feature_list_kobj_unregister;
1758 
1759 	/* For shrinker support */
1760 	struct list_head s_list;
1761 	int s_ndevs;				/* number of devices */
1762 	struct f2fs_dev_info *devs;		/* for device list */
1763 	unsigned int dirty_device;		/* for checkpoint data flush */
1764 	spinlock_t dev_lock;			/* protect dirty_device */
1765 	struct mutex umount_mutex;
1766 	unsigned int shrinker_run_no;
1767 
1768 	/* For write statistics */
1769 	u64 sectors_written_start;
1770 	u64 kbytes_written;
1771 
1772 	/* Reference to checksum algorithm driver via cryptoapi */
1773 	struct crypto_shash *s_chksum_driver;
1774 
1775 	/* Precomputed FS UUID checksum for seeding other checksums */
1776 	__u32 s_chksum_seed;
1777 
1778 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1779 
1780 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1781 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1782 
1783 	/* For reclaimed segs statistics per each GC mode */
1784 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1785 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1786 
1787 #ifdef CONFIG_F2FS_FS_COMPRESSION
1788 	struct kmem_cache *page_array_slab;	/* page array entry */
1789 	unsigned int page_array_slab_size;	/* default page array slab size */
1790 
1791 	/* For runtime compression statistics */
1792 	u64 compr_written_block;
1793 	u64 compr_saved_block;
1794 	u32 compr_new_inode;
1795 
1796 	/* For compressed block cache */
1797 	struct inode *compress_inode;		/* cache compressed blocks */
1798 	unsigned int compress_percent;		/* cache page percentage */
1799 	unsigned int compress_watermark;	/* cache page watermark */
1800 	atomic_t compress_page_hit;		/* cache hit count */
1801 #endif
1802 };
1803 
1804 struct f2fs_private_dio {
1805 	struct inode *inode;
1806 	void *orig_private;
1807 	bio_end_io_t *orig_end_io;
1808 	bool write;
1809 };
1810 
1811 #ifdef CONFIG_F2FS_FAULT_INJECTION
1812 #define f2fs_show_injection_info(sbi, type)					\
1813 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1814 		KERN_INFO, sbi->sb->s_id,				\
1815 		f2fs_fault_name[type],					\
1816 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1817 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1818 {
1819 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1820 
1821 	if (!ffi->inject_rate)
1822 		return false;
1823 
1824 	if (!IS_FAULT_SET(ffi, type))
1825 		return false;
1826 
1827 	atomic_inc(&ffi->inject_ops);
1828 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1829 		atomic_set(&ffi->inject_ops, 0);
1830 		return true;
1831 	}
1832 	return false;
1833 }
1834 #else
1835 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1836 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1837 {
1838 	return false;
1839 }
1840 #endif
1841 
1842 /*
1843  * Test if the mounted volume is a multi-device volume.
1844  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1845  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1846  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1847  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1848 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1849 {
1850 	return sbi->s_ndevs > 1;
1851 }
1852 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1853 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1854 {
1855 	unsigned long now = jiffies;
1856 
1857 	sbi->last_time[type] = now;
1858 
1859 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1860 	if (type == REQ_TIME) {
1861 		sbi->last_time[DISCARD_TIME] = now;
1862 		sbi->last_time[GC_TIME] = now;
1863 	}
1864 }
1865 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1866 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1867 {
1868 	unsigned long interval = sbi->interval_time[type] * HZ;
1869 
1870 	return time_after(jiffies, sbi->last_time[type] + interval);
1871 }
1872 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1873 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1874 						int type)
1875 {
1876 	unsigned long interval = sbi->interval_time[type] * HZ;
1877 	unsigned int wait_ms = 0;
1878 	long delta;
1879 
1880 	delta = (sbi->last_time[type] + interval) - jiffies;
1881 	if (delta > 0)
1882 		wait_ms = jiffies_to_msecs(delta);
1883 
1884 	return wait_ms;
1885 }
1886 
1887 /*
1888  * Inline functions
1889  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1890 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1891 			      const void *address, unsigned int length)
1892 {
1893 	struct {
1894 		struct shash_desc shash;
1895 		char ctx[4];
1896 	} desc;
1897 	int err;
1898 
1899 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1900 
1901 	desc.shash.tfm = sbi->s_chksum_driver;
1902 	*(u32 *)desc.ctx = crc;
1903 
1904 	err = crypto_shash_update(&desc.shash, address, length);
1905 	BUG_ON(err);
1906 
1907 	return *(u32 *)desc.ctx;
1908 }
1909 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1910 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1911 			   unsigned int length)
1912 {
1913 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1914 }
1915 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1916 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1917 				  void *buf, size_t buf_size)
1918 {
1919 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1920 }
1921 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1922 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1923 			      const void *address, unsigned int length)
1924 {
1925 	return __f2fs_crc32(sbi, crc, address, length);
1926 }
1927 
F2FS_I(struct inode * inode)1928 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1929 {
1930 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1931 }
1932 
F2FS_SB(struct super_block * sb)1933 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1934 {
1935 	return sb->s_fs_info;
1936 }
1937 
F2FS_I_SB(struct inode * inode)1938 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1939 {
1940 	return F2FS_SB(inode->i_sb);
1941 }
1942 
F2FS_M_SB(struct address_space * mapping)1943 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1944 {
1945 	return F2FS_I_SB(mapping->host);
1946 }
1947 
F2FS_P_SB(struct page * page)1948 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1949 {
1950 	return F2FS_M_SB(page_file_mapping(page));
1951 }
1952 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1953 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1954 {
1955 	return (struct f2fs_super_block *)(sbi->raw_super);
1956 }
1957 
F2FS_CKPT(struct f2fs_sb_info * sbi)1958 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1959 {
1960 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1961 }
1962 
F2FS_NODE(struct page * page)1963 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1964 {
1965 	return (struct f2fs_node *)page_address(page);
1966 }
1967 
F2FS_INODE(struct page * page)1968 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1969 {
1970 	return &((struct f2fs_node *)page_address(page))->i;
1971 }
1972 
NM_I(struct f2fs_sb_info * sbi)1973 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1974 {
1975 	return (struct f2fs_nm_info *)(sbi->nm_info);
1976 }
1977 
SM_I(struct f2fs_sb_info * sbi)1978 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1979 {
1980 	return (struct f2fs_sm_info *)(sbi->sm_info);
1981 }
1982 
SIT_I(struct f2fs_sb_info * sbi)1983 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1984 {
1985 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1986 }
1987 
FREE_I(struct f2fs_sb_info * sbi)1988 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1989 {
1990 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1991 }
1992 
DIRTY_I(struct f2fs_sb_info * sbi)1993 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1994 {
1995 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1996 }
1997 
META_MAPPING(struct f2fs_sb_info * sbi)1998 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1999 {
2000 	return sbi->meta_inode->i_mapping;
2001 }
2002 
NODE_MAPPING(struct f2fs_sb_info * sbi)2003 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2004 {
2005 	return sbi->node_inode->i_mapping;
2006 }
2007 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2008 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2009 {
2010 	return test_bit(type, &sbi->s_flag);
2011 }
2012 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2013 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2014 {
2015 	set_bit(type, &sbi->s_flag);
2016 }
2017 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2018 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2019 {
2020 	clear_bit(type, &sbi->s_flag);
2021 }
2022 
cur_cp_version(struct f2fs_checkpoint * cp)2023 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2024 {
2025 	return le64_to_cpu(cp->checkpoint_ver);
2026 }
2027 
f2fs_qf_ino(struct super_block * sb,int type)2028 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2029 {
2030 	if (type < F2FS_MAX_QUOTAS)
2031 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2032 	return 0;
2033 }
2034 
cur_cp_crc(struct f2fs_checkpoint * cp)2035 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2036 {
2037 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2038 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2039 }
2040 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2041 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2042 {
2043 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2044 
2045 	return ckpt_flags & f;
2046 }
2047 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2048 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2049 {
2050 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2051 }
2052 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2053 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2054 {
2055 	unsigned int ckpt_flags;
2056 
2057 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2058 	ckpt_flags |= f;
2059 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2060 }
2061 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2062 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2063 {
2064 	unsigned long flags;
2065 
2066 	spin_lock_irqsave(&sbi->cp_lock, flags);
2067 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2068 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2069 }
2070 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2071 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2072 {
2073 	unsigned int ckpt_flags;
2074 
2075 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2076 	ckpt_flags &= (~f);
2077 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2078 }
2079 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2080 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2081 {
2082 	unsigned long flags;
2083 
2084 	spin_lock_irqsave(&sbi->cp_lock, flags);
2085 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2086 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2087 }
2088 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)2089 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2090 {
2091 	unsigned long flags;
2092 	unsigned char *nat_bits;
2093 
2094 	/*
2095 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
2096 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2097 	 * so let's rely on regular fsck or unclean shutdown.
2098 	 */
2099 
2100 	if (lock)
2101 		spin_lock_irqsave(&sbi->cp_lock, flags);
2102 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2103 	nat_bits = NM_I(sbi)->nat_bits;
2104 	NM_I(sbi)->nat_bits = NULL;
2105 	if (lock)
2106 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
2107 
2108 	kvfree(nat_bits);
2109 }
2110 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)2111 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2112 					struct cp_control *cpc)
2113 {
2114 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2115 
2116 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2117 }
2118 
2119 #define init_f2fs_rwsem(sem)					\
2120 do {								\
2121 	static struct lock_class_key __key;			\
2122 								\
2123 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2124 } while (0)
2125 
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2126 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2127 		const char *sem_name, struct lock_class_key *key)
2128 {
2129 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2130 	init_waitqueue_head(&sem->read_waiters);
2131 }
2132 
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2133 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2134 {
2135 	return rwsem_is_locked(&sem->internal_rwsem);
2136 }
2137 
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2138 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2139 {
2140 	return rwsem_is_contended(&sem->internal_rwsem);
2141 }
2142 
f2fs_down_read(struct f2fs_rwsem * sem)2143 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2144 {
2145 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2146 }
2147 
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2148 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2149 {
2150 	return down_read_trylock(&sem->internal_rwsem);
2151 }
2152 
2153 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2154 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2155 {
2156 	down_read_nested(&sem->internal_rwsem, subclass);
2157 }
2158 #else
2159 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2160 #endif
2161 
f2fs_up_read(struct f2fs_rwsem * sem)2162 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2163 {
2164 	up_read(&sem->internal_rwsem);
2165 }
2166 
f2fs_down_write(struct f2fs_rwsem * sem)2167 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2168 {
2169 	down_write(&sem->internal_rwsem);
2170 }
2171 
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2172 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2173 {
2174 	return down_write_trylock(&sem->internal_rwsem);
2175 }
2176 
f2fs_up_write(struct f2fs_rwsem * sem)2177 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2178 {
2179 	up_write(&sem->internal_rwsem);
2180 	wake_up_all(&sem->read_waiters);
2181 }
2182 
f2fs_lock_op(struct f2fs_sb_info * sbi)2183 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2184 {
2185 	f2fs_down_read(&sbi->cp_rwsem);
2186 }
2187 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2188 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2189 {
2190 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2191 }
2192 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2193 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2194 {
2195 	f2fs_up_read(&sbi->cp_rwsem);
2196 }
2197 
f2fs_lock_all(struct f2fs_sb_info * sbi)2198 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2199 {
2200 	f2fs_down_write(&sbi->cp_rwsem);
2201 }
2202 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2203 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2204 {
2205 	f2fs_up_write(&sbi->cp_rwsem);
2206 }
2207 
__get_cp_reason(struct f2fs_sb_info * sbi)2208 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2209 {
2210 	int reason = CP_SYNC;
2211 
2212 	if (test_opt(sbi, FASTBOOT))
2213 		reason = CP_FASTBOOT;
2214 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2215 		reason = CP_UMOUNT;
2216 	return reason;
2217 }
2218 
__remain_node_summaries(int reason)2219 static inline bool __remain_node_summaries(int reason)
2220 {
2221 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2222 }
2223 
__exist_node_summaries(struct f2fs_sb_info * sbi)2224 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2225 {
2226 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2227 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2228 }
2229 
2230 /*
2231  * Check whether the inode has blocks or not
2232  */
F2FS_HAS_BLOCKS(struct inode * inode)2233 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2234 {
2235 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2236 
2237 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2238 }
2239 
f2fs_has_xattr_block(unsigned int ofs)2240 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2241 {
2242 	return ofs == XATTR_NODE_OFFSET;
2243 }
2244 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2245 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2246 					struct inode *inode, bool cap)
2247 {
2248 	if (!inode)
2249 		return true;
2250 	if (!test_opt(sbi, RESERVE_ROOT))
2251 		return false;
2252 	if (IS_NOQUOTA(inode))
2253 		return true;
2254 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2255 		return true;
2256 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2257 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2258 		return true;
2259 	if (cap && capable(CAP_SYS_RESOURCE))
2260 		return true;
2261 	return false;
2262 }
2263 
2264 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2265 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2266 				 struct inode *inode, blkcnt_t *count)
2267 {
2268 	blkcnt_t diff = 0, release = 0;
2269 	block_t avail_user_block_count;
2270 	int ret;
2271 
2272 	ret = dquot_reserve_block(inode, *count);
2273 	if (ret)
2274 		return ret;
2275 
2276 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2277 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2278 		release = *count;
2279 		goto release_quota;
2280 	}
2281 
2282 	/*
2283 	 * let's increase this in prior to actual block count change in order
2284 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2285 	 */
2286 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2287 
2288 	spin_lock(&sbi->stat_lock);
2289 	sbi->total_valid_block_count += (block_t)(*count);
2290 	avail_user_block_count = sbi->user_block_count -
2291 					sbi->current_reserved_blocks;
2292 
2293 	if (!__allow_reserved_blocks(sbi, inode, true))
2294 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2295 
2296 	if (F2FS_IO_ALIGNED(sbi))
2297 		avail_user_block_count -= sbi->blocks_per_seg *
2298 				SM_I(sbi)->additional_reserved_segments;
2299 
2300 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2301 		if (avail_user_block_count > sbi->unusable_block_count)
2302 			avail_user_block_count -= sbi->unusable_block_count;
2303 		else
2304 			avail_user_block_count = 0;
2305 	}
2306 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2307 		diff = sbi->total_valid_block_count - avail_user_block_count;
2308 		if (diff > *count)
2309 			diff = *count;
2310 		*count -= diff;
2311 		release = diff;
2312 		sbi->total_valid_block_count -= diff;
2313 		if (!*count) {
2314 			spin_unlock(&sbi->stat_lock);
2315 			goto enospc;
2316 		}
2317 	}
2318 	spin_unlock(&sbi->stat_lock);
2319 
2320 	if (unlikely(release)) {
2321 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2322 		dquot_release_reservation_block(inode, release);
2323 	}
2324 	f2fs_i_blocks_write(inode, *count, true, true);
2325 	return 0;
2326 
2327 enospc:
2328 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2329 release_quota:
2330 	dquot_release_reservation_block(inode, release);
2331 	return -ENOSPC;
2332 }
2333 
2334 __printf(2, 3)
2335 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2336 
2337 #define f2fs_err(sbi, fmt, ...)						\
2338 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2339 #define f2fs_warn(sbi, fmt, ...)					\
2340 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2341 #define f2fs_notice(sbi, fmt, ...)					\
2342 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2343 #define f2fs_info(sbi, fmt, ...)					\
2344 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2345 #define f2fs_debug(sbi, fmt, ...)					\
2346 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2347 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2348 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2349 						struct inode *inode,
2350 						block_t count)
2351 {
2352 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2353 
2354 	spin_lock(&sbi->stat_lock);
2355 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2356 	sbi->total_valid_block_count -= (block_t)count;
2357 	if (sbi->reserved_blocks &&
2358 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2359 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2360 					sbi->current_reserved_blocks + count);
2361 	spin_unlock(&sbi->stat_lock);
2362 	if (unlikely(inode->i_blocks < sectors)) {
2363 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2364 			  inode->i_ino,
2365 			  (unsigned long long)inode->i_blocks,
2366 			  (unsigned long long)sectors);
2367 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2368 		return;
2369 	}
2370 	f2fs_i_blocks_write(inode, count, false, true);
2371 }
2372 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2373 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2374 {
2375 	atomic_inc(&sbi->nr_pages[count_type]);
2376 
2377 	if (count_type == F2FS_DIRTY_DENTS ||
2378 			count_type == F2FS_DIRTY_NODES ||
2379 			count_type == F2FS_DIRTY_META ||
2380 			count_type == F2FS_DIRTY_QDATA ||
2381 			count_type == F2FS_DIRTY_IMETA)
2382 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2383 }
2384 
inode_inc_dirty_pages(struct inode * inode)2385 static inline void inode_inc_dirty_pages(struct inode *inode)
2386 {
2387 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2388 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2389 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2390 	if (IS_NOQUOTA(inode))
2391 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2392 }
2393 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2394 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2395 {
2396 	atomic_dec(&sbi->nr_pages[count_type]);
2397 }
2398 
inode_dec_dirty_pages(struct inode * inode)2399 static inline void inode_dec_dirty_pages(struct inode *inode)
2400 {
2401 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2402 			!S_ISLNK(inode->i_mode))
2403 		return;
2404 
2405 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2406 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2407 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2408 	if (IS_NOQUOTA(inode))
2409 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2410 }
2411 
get_pages(struct f2fs_sb_info * sbi,int count_type)2412 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2413 {
2414 	return atomic_read(&sbi->nr_pages[count_type]);
2415 }
2416 
get_dirty_pages(struct inode * inode)2417 static inline int get_dirty_pages(struct inode *inode)
2418 {
2419 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2420 }
2421 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2422 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2423 {
2424 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2425 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2426 						sbi->log_blocks_per_seg;
2427 
2428 	return segs / sbi->segs_per_sec;
2429 }
2430 
valid_user_blocks(struct f2fs_sb_info * sbi)2431 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2432 {
2433 	return sbi->total_valid_block_count;
2434 }
2435 
discard_blocks(struct f2fs_sb_info * sbi)2436 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2437 {
2438 	return sbi->discard_blks;
2439 }
2440 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2441 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2442 {
2443 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2444 
2445 	/* return NAT or SIT bitmap */
2446 	if (flag == NAT_BITMAP)
2447 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2448 	else if (flag == SIT_BITMAP)
2449 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2450 
2451 	return 0;
2452 }
2453 
__cp_payload(struct f2fs_sb_info * sbi)2454 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2455 {
2456 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2457 }
2458 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2459 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2460 {
2461 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2462 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2463 	int offset;
2464 
2465 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2466 		offset = (flag == SIT_BITMAP) ?
2467 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2468 		/*
2469 		 * if large_nat_bitmap feature is enabled, leave checksum
2470 		 * protection for all nat/sit bitmaps.
2471 		 */
2472 		return tmp_ptr + offset + sizeof(__le32);
2473 	}
2474 
2475 	if (__cp_payload(sbi) > 0) {
2476 		if (flag == NAT_BITMAP)
2477 			return &ckpt->sit_nat_version_bitmap;
2478 		else
2479 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2480 	} else {
2481 		offset = (flag == NAT_BITMAP) ?
2482 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2483 		return tmp_ptr + offset;
2484 	}
2485 }
2486 
__start_cp_addr(struct f2fs_sb_info * sbi)2487 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2488 {
2489 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2490 
2491 	if (sbi->cur_cp_pack == 2)
2492 		start_addr += sbi->blocks_per_seg;
2493 	return start_addr;
2494 }
2495 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2496 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2497 {
2498 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2499 
2500 	if (sbi->cur_cp_pack == 1)
2501 		start_addr += sbi->blocks_per_seg;
2502 	return start_addr;
2503 }
2504 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2505 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2506 {
2507 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2508 }
2509 
__start_sum_addr(struct f2fs_sb_info * sbi)2510 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2511 {
2512 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2513 }
2514 
2515 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2516 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2517 					struct inode *inode, bool is_inode)
2518 {
2519 	block_t	valid_block_count;
2520 	unsigned int valid_node_count, user_block_count;
2521 	int err;
2522 
2523 	if (is_inode) {
2524 		if (inode) {
2525 			err = dquot_alloc_inode(inode);
2526 			if (err)
2527 				return err;
2528 		}
2529 	} else {
2530 		err = dquot_reserve_block(inode, 1);
2531 		if (err)
2532 			return err;
2533 	}
2534 
2535 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2536 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2537 		goto enospc;
2538 	}
2539 
2540 	spin_lock(&sbi->stat_lock);
2541 
2542 	valid_block_count = sbi->total_valid_block_count +
2543 					sbi->current_reserved_blocks + 1;
2544 
2545 	if (!__allow_reserved_blocks(sbi, inode, false))
2546 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2547 
2548 	if (F2FS_IO_ALIGNED(sbi))
2549 		valid_block_count += sbi->blocks_per_seg *
2550 				SM_I(sbi)->additional_reserved_segments;
2551 
2552 	user_block_count = sbi->user_block_count;
2553 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2554 		user_block_count -= sbi->unusable_block_count;
2555 
2556 	if (unlikely(valid_block_count > user_block_count)) {
2557 		spin_unlock(&sbi->stat_lock);
2558 		goto enospc;
2559 	}
2560 
2561 	valid_node_count = sbi->total_valid_node_count + 1;
2562 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2563 		spin_unlock(&sbi->stat_lock);
2564 		goto enospc;
2565 	}
2566 
2567 	sbi->total_valid_node_count++;
2568 	sbi->total_valid_block_count++;
2569 	spin_unlock(&sbi->stat_lock);
2570 
2571 	if (inode) {
2572 		if (is_inode)
2573 			f2fs_mark_inode_dirty_sync(inode, true);
2574 		else
2575 			f2fs_i_blocks_write(inode, 1, true, true);
2576 	}
2577 
2578 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2579 	return 0;
2580 
2581 enospc:
2582 	if (is_inode) {
2583 		if (inode)
2584 			dquot_free_inode(inode);
2585 	} else {
2586 		dquot_release_reservation_block(inode, 1);
2587 	}
2588 	return -ENOSPC;
2589 }
2590 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2591 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2592 					struct inode *inode, bool is_inode)
2593 {
2594 	spin_lock(&sbi->stat_lock);
2595 
2596 	if (unlikely(!sbi->total_valid_block_count ||
2597 			!sbi->total_valid_node_count)) {
2598 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2599 			  sbi->total_valid_block_count,
2600 			  sbi->total_valid_node_count);
2601 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2602 	} else {
2603 		sbi->total_valid_block_count--;
2604 		sbi->total_valid_node_count--;
2605 	}
2606 
2607 	if (sbi->reserved_blocks &&
2608 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2609 		sbi->current_reserved_blocks++;
2610 
2611 	spin_unlock(&sbi->stat_lock);
2612 
2613 	if (is_inode) {
2614 		dquot_free_inode(inode);
2615 	} else {
2616 		if (unlikely(inode->i_blocks == 0)) {
2617 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2618 				  inode->i_ino,
2619 				  (unsigned long long)inode->i_blocks);
2620 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2621 			return;
2622 		}
2623 		f2fs_i_blocks_write(inode, 1, false, true);
2624 	}
2625 }
2626 
valid_node_count(struct f2fs_sb_info * sbi)2627 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2628 {
2629 	return sbi->total_valid_node_count;
2630 }
2631 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2632 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2633 {
2634 	percpu_counter_inc(&sbi->total_valid_inode_count);
2635 }
2636 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2637 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2638 {
2639 	percpu_counter_dec(&sbi->total_valid_inode_count);
2640 }
2641 
valid_inode_count(struct f2fs_sb_info * sbi)2642 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2643 {
2644 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2645 }
2646 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2647 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2648 						pgoff_t index, bool for_write)
2649 {
2650 	struct page *page;
2651 
2652 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2653 		if (!for_write)
2654 			page = find_get_page_flags(mapping, index,
2655 							FGP_LOCK | FGP_ACCESSED);
2656 		else
2657 			page = find_lock_page(mapping, index);
2658 		if (page)
2659 			return page;
2660 
2661 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2662 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2663 							FAULT_PAGE_ALLOC);
2664 			return NULL;
2665 		}
2666 	}
2667 
2668 	if (!for_write)
2669 		return grab_cache_page(mapping, index);
2670 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2671 }
2672 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2673 static inline struct page *f2fs_pagecache_get_page(
2674 				struct address_space *mapping, pgoff_t index,
2675 				int fgp_flags, gfp_t gfp_mask)
2676 {
2677 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2678 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2679 		return NULL;
2680 	}
2681 
2682 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2683 }
2684 
f2fs_copy_page(struct page * src,struct page * dst)2685 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2686 {
2687 	char *src_kaddr = kmap(src);
2688 	char *dst_kaddr = kmap(dst);
2689 
2690 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2691 	kunmap(dst);
2692 	kunmap(src);
2693 }
2694 
f2fs_put_page(struct page * page,int unlock)2695 static inline void f2fs_put_page(struct page *page, int unlock)
2696 {
2697 	if (!page)
2698 		return;
2699 
2700 	if (unlock) {
2701 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2702 		unlock_page(page);
2703 	}
2704 	put_page(page);
2705 }
2706 
f2fs_put_dnode(struct dnode_of_data * dn)2707 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2708 {
2709 	if (dn->node_page)
2710 		f2fs_put_page(dn->node_page, 1);
2711 	if (dn->inode_page && dn->node_page != dn->inode_page)
2712 		f2fs_put_page(dn->inode_page, 0);
2713 	dn->node_page = NULL;
2714 	dn->inode_page = NULL;
2715 }
2716 
f2fs_kmem_cache_create(const char * name,size_t size)2717 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2718 					size_t size)
2719 {
2720 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2721 }
2722 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2723 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2724 						gfp_t flags)
2725 {
2726 	void *entry;
2727 
2728 	entry = kmem_cache_alloc(cachep, flags);
2729 	if (!entry)
2730 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2731 	return entry;
2732 }
2733 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2734 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2735 {
2736 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2737 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2738 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2739 		get_pages(sbi, F2FS_DIO_READ) ||
2740 		get_pages(sbi, F2FS_DIO_WRITE))
2741 		return true;
2742 
2743 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2744 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2745 		return true;
2746 
2747 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2748 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2749 		return true;
2750 	return false;
2751 }
2752 
is_idle(struct f2fs_sb_info * sbi,int type)2753 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2754 {
2755 	if (sbi->gc_mode == GC_URGENT_HIGH)
2756 		return true;
2757 
2758 	if (is_inflight_io(sbi, type))
2759 		return false;
2760 
2761 	if (sbi->gc_mode == GC_URGENT_LOW &&
2762 			(type == DISCARD_TIME || type == GC_TIME))
2763 		return true;
2764 
2765 	return f2fs_time_over(sbi, type);
2766 }
2767 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2768 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2769 				unsigned long index, void *item)
2770 {
2771 	while (radix_tree_insert(root, index, item))
2772 		cond_resched();
2773 }
2774 
2775 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2776 
IS_INODE(struct page * page)2777 static inline bool IS_INODE(struct page *page)
2778 {
2779 	struct f2fs_node *p = F2FS_NODE(page);
2780 
2781 	return RAW_IS_INODE(p);
2782 }
2783 
offset_in_addr(struct f2fs_inode * i)2784 static inline int offset_in_addr(struct f2fs_inode *i)
2785 {
2786 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2787 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2788 }
2789 
blkaddr_in_node(struct f2fs_node * node)2790 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2791 {
2792 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2793 }
2794 
2795 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2796 static inline block_t data_blkaddr(struct inode *inode,
2797 			struct page *node_page, unsigned int offset)
2798 {
2799 	struct f2fs_node *raw_node;
2800 	__le32 *addr_array;
2801 	int base = 0;
2802 	bool is_inode = IS_INODE(node_page);
2803 
2804 	raw_node = F2FS_NODE(node_page);
2805 
2806 	if (is_inode) {
2807 		if (!inode)
2808 			/* from GC path only */
2809 			base = offset_in_addr(&raw_node->i);
2810 		else if (f2fs_has_extra_attr(inode))
2811 			base = get_extra_isize(inode);
2812 	}
2813 
2814 	addr_array = blkaddr_in_node(raw_node);
2815 	return le32_to_cpu(addr_array[base + offset]);
2816 }
2817 
f2fs_data_blkaddr(struct dnode_of_data * dn)2818 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2819 {
2820 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2821 }
2822 
f2fs_test_bit(unsigned int nr,char * addr)2823 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2824 {
2825 	int mask;
2826 
2827 	addr += (nr >> 3);
2828 	mask = 1 << (7 - (nr & 0x07));
2829 	return mask & *addr;
2830 }
2831 
f2fs_set_bit(unsigned int nr,char * addr)2832 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2833 {
2834 	int mask;
2835 
2836 	addr += (nr >> 3);
2837 	mask = 1 << (7 - (nr & 0x07));
2838 	*addr |= mask;
2839 }
2840 
f2fs_clear_bit(unsigned int nr,char * addr)2841 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2842 {
2843 	int mask;
2844 
2845 	addr += (nr >> 3);
2846 	mask = 1 << (7 - (nr & 0x07));
2847 	*addr &= ~mask;
2848 }
2849 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2850 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2851 {
2852 	int mask;
2853 	int ret;
2854 
2855 	addr += (nr >> 3);
2856 	mask = 1 << (7 - (nr & 0x07));
2857 	ret = mask & *addr;
2858 	*addr |= mask;
2859 	return ret;
2860 }
2861 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2862 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2863 {
2864 	int mask;
2865 	int ret;
2866 
2867 	addr += (nr >> 3);
2868 	mask = 1 << (7 - (nr & 0x07));
2869 	ret = mask & *addr;
2870 	*addr &= ~mask;
2871 	return ret;
2872 }
2873 
f2fs_change_bit(unsigned int nr,char * addr)2874 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2875 {
2876 	int mask;
2877 
2878 	addr += (nr >> 3);
2879 	mask = 1 << (7 - (nr & 0x07));
2880 	*addr ^= mask;
2881 }
2882 
2883 /*
2884  * On-disk inode flags (f2fs_inode::i_flags)
2885  */
2886 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2887 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2888 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2889 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2890 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2891 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2892 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2893 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2894 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2895 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2896 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2897 
2898 /* Flags that should be inherited by new inodes from their parent. */
2899 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2900 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2901 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2902 
2903 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2904 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2905 				F2FS_CASEFOLD_FL))
2906 
2907 /* Flags that are appropriate for non-directories/regular files. */
2908 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2909 
f2fs_mask_flags(umode_t mode,__u32 flags)2910 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2911 {
2912 	if (S_ISDIR(mode))
2913 		return flags;
2914 	else if (S_ISREG(mode))
2915 		return flags & F2FS_REG_FLMASK;
2916 	else
2917 		return flags & F2FS_OTHER_FLMASK;
2918 }
2919 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2920 static inline void __mark_inode_dirty_flag(struct inode *inode,
2921 						int flag, bool set)
2922 {
2923 	switch (flag) {
2924 	case FI_INLINE_XATTR:
2925 	case FI_INLINE_DATA:
2926 	case FI_INLINE_DENTRY:
2927 	case FI_NEW_INODE:
2928 		if (set)
2929 			return;
2930 		fallthrough;
2931 	case FI_DATA_EXIST:
2932 	case FI_INLINE_DOTS:
2933 	case FI_PIN_FILE:
2934 	case FI_COMPRESS_RELEASED:
2935 		f2fs_mark_inode_dirty_sync(inode, true);
2936 	}
2937 }
2938 
set_inode_flag(struct inode * inode,int flag)2939 static inline void set_inode_flag(struct inode *inode, int flag)
2940 {
2941 	set_bit(flag, F2FS_I(inode)->flags);
2942 	__mark_inode_dirty_flag(inode, flag, true);
2943 }
2944 
is_inode_flag_set(struct inode * inode,int flag)2945 static inline int is_inode_flag_set(struct inode *inode, int flag)
2946 {
2947 	return test_bit(flag, F2FS_I(inode)->flags);
2948 }
2949 
clear_inode_flag(struct inode * inode,int flag)2950 static inline void clear_inode_flag(struct inode *inode, int flag)
2951 {
2952 	clear_bit(flag, F2FS_I(inode)->flags);
2953 	__mark_inode_dirty_flag(inode, flag, false);
2954 }
2955 
f2fs_verity_in_progress(struct inode * inode)2956 static inline bool f2fs_verity_in_progress(struct inode *inode)
2957 {
2958 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2959 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2960 }
2961 
set_acl_inode(struct inode * inode,umode_t mode)2962 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2963 {
2964 	F2FS_I(inode)->i_acl_mode = mode;
2965 	set_inode_flag(inode, FI_ACL_MODE);
2966 	f2fs_mark_inode_dirty_sync(inode, false);
2967 }
2968 
f2fs_i_links_write(struct inode * inode,bool inc)2969 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2970 {
2971 	if (inc)
2972 		inc_nlink(inode);
2973 	else
2974 		drop_nlink(inode);
2975 	f2fs_mark_inode_dirty_sync(inode, true);
2976 }
2977 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2978 static inline void f2fs_i_blocks_write(struct inode *inode,
2979 					block_t diff, bool add, bool claim)
2980 {
2981 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2982 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2983 
2984 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2985 	if (add) {
2986 		if (claim)
2987 			dquot_claim_block(inode, diff);
2988 		else
2989 			dquot_alloc_block_nofail(inode, diff);
2990 	} else {
2991 		dquot_free_block(inode, diff);
2992 	}
2993 
2994 	f2fs_mark_inode_dirty_sync(inode, true);
2995 	if (clean || recover)
2996 		set_inode_flag(inode, FI_AUTO_RECOVER);
2997 }
2998 
f2fs_i_size_write(struct inode * inode,loff_t i_size)2999 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3000 {
3001 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3002 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3003 
3004 	if (i_size_read(inode) == i_size)
3005 		return;
3006 
3007 	i_size_write(inode, i_size);
3008 	f2fs_mark_inode_dirty_sync(inode, true);
3009 	if (clean || recover)
3010 		set_inode_flag(inode, FI_AUTO_RECOVER);
3011 }
3012 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3013 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3014 {
3015 	F2FS_I(inode)->i_current_depth = depth;
3016 	f2fs_mark_inode_dirty_sync(inode, true);
3017 }
3018 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3019 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3020 					unsigned int count)
3021 {
3022 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3023 	f2fs_mark_inode_dirty_sync(inode, true);
3024 }
3025 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3026 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3027 {
3028 	F2FS_I(inode)->i_xattr_nid = xnid;
3029 	f2fs_mark_inode_dirty_sync(inode, true);
3030 }
3031 
f2fs_i_pino_write(struct inode * inode,nid_t pino)3032 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3033 {
3034 	F2FS_I(inode)->i_pino = pino;
3035 	f2fs_mark_inode_dirty_sync(inode, true);
3036 }
3037 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3038 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3039 {
3040 	struct f2fs_inode_info *fi = F2FS_I(inode);
3041 
3042 	if (ri->i_inline & F2FS_INLINE_XATTR)
3043 		set_bit(FI_INLINE_XATTR, fi->flags);
3044 	if (ri->i_inline & F2FS_INLINE_DATA)
3045 		set_bit(FI_INLINE_DATA, fi->flags);
3046 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3047 		set_bit(FI_INLINE_DENTRY, fi->flags);
3048 	if (ri->i_inline & F2FS_DATA_EXIST)
3049 		set_bit(FI_DATA_EXIST, fi->flags);
3050 	if (ri->i_inline & F2FS_INLINE_DOTS)
3051 		set_bit(FI_INLINE_DOTS, fi->flags);
3052 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3053 		set_bit(FI_EXTRA_ATTR, fi->flags);
3054 	if (ri->i_inline & F2FS_PIN_FILE)
3055 		set_bit(FI_PIN_FILE, fi->flags);
3056 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3057 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3058 }
3059 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3060 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3061 {
3062 	ri->i_inline = 0;
3063 
3064 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3065 		ri->i_inline |= F2FS_INLINE_XATTR;
3066 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3067 		ri->i_inline |= F2FS_INLINE_DATA;
3068 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3069 		ri->i_inline |= F2FS_INLINE_DENTRY;
3070 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3071 		ri->i_inline |= F2FS_DATA_EXIST;
3072 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3073 		ri->i_inline |= F2FS_INLINE_DOTS;
3074 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3075 		ri->i_inline |= F2FS_EXTRA_ATTR;
3076 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3077 		ri->i_inline |= F2FS_PIN_FILE;
3078 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3079 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3080 }
3081 
f2fs_has_extra_attr(struct inode * inode)3082 static inline int f2fs_has_extra_attr(struct inode *inode)
3083 {
3084 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3085 }
3086 
f2fs_has_inline_xattr(struct inode * inode)3087 static inline int f2fs_has_inline_xattr(struct inode *inode)
3088 {
3089 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3090 }
3091 
f2fs_compressed_file(struct inode * inode)3092 static inline int f2fs_compressed_file(struct inode *inode)
3093 {
3094 	return S_ISREG(inode->i_mode) &&
3095 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3096 }
3097 
f2fs_need_compress_data(struct inode * inode)3098 static inline bool f2fs_need_compress_data(struct inode *inode)
3099 {
3100 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3101 
3102 	if (!f2fs_compressed_file(inode))
3103 		return false;
3104 
3105 	if (compress_mode == COMPR_MODE_FS)
3106 		return true;
3107 	else if (compress_mode == COMPR_MODE_USER &&
3108 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3109 		return true;
3110 
3111 	return false;
3112 }
3113 
addrs_per_inode(struct inode * inode)3114 static inline unsigned int addrs_per_inode(struct inode *inode)
3115 {
3116 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3117 				get_inline_xattr_addrs(inode);
3118 
3119 	if (!f2fs_compressed_file(inode))
3120 		return addrs;
3121 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3122 }
3123 
addrs_per_block(struct inode * inode)3124 static inline unsigned int addrs_per_block(struct inode *inode)
3125 {
3126 	if (!f2fs_compressed_file(inode))
3127 		return DEF_ADDRS_PER_BLOCK;
3128 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3129 }
3130 
inline_xattr_addr(struct inode * inode,struct page * page)3131 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3132 {
3133 	struct f2fs_inode *ri = F2FS_INODE(page);
3134 
3135 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3136 					get_inline_xattr_addrs(inode)]);
3137 }
3138 
inline_xattr_size(struct inode * inode)3139 static inline int inline_xattr_size(struct inode *inode)
3140 {
3141 	if (f2fs_has_inline_xattr(inode))
3142 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3143 	return 0;
3144 }
3145 
f2fs_has_inline_data(struct inode * inode)3146 static inline int f2fs_has_inline_data(struct inode *inode)
3147 {
3148 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3149 }
3150 
f2fs_exist_data(struct inode * inode)3151 static inline int f2fs_exist_data(struct inode *inode)
3152 {
3153 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3154 }
3155 
f2fs_has_inline_dots(struct inode * inode)3156 static inline int f2fs_has_inline_dots(struct inode *inode)
3157 {
3158 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3159 }
3160 
f2fs_is_mmap_file(struct inode * inode)3161 static inline int f2fs_is_mmap_file(struct inode *inode)
3162 {
3163 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3164 }
3165 
f2fs_is_pinned_file(struct inode * inode)3166 static inline bool f2fs_is_pinned_file(struct inode *inode)
3167 {
3168 	return is_inode_flag_set(inode, FI_PIN_FILE);
3169 }
3170 
f2fs_is_atomic_file(struct inode * inode)3171 static inline bool f2fs_is_atomic_file(struct inode *inode)
3172 {
3173 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3174 }
3175 
f2fs_is_commit_atomic_write(struct inode * inode)3176 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3177 {
3178 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3179 }
3180 
f2fs_is_volatile_file(struct inode * inode)3181 static inline bool f2fs_is_volatile_file(struct inode *inode)
3182 {
3183 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3184 }
3185 
f2fs_is_first_block_written(struct inode * inode)3186 static inline bool f2fs_is_first_block_written(struct inode *inode)
3187 {
3188 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3189 }
3190 
f2fs_is_drop_cache(struct inode * inode)3191 static inline bool f2fs_is_drop_cache(struct inode *inode)
3192 {
3193 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3194 }
3195 
inline_data_addr(struct inode * inode,struct page * page)3196 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3197 {
3198 	struct f2fs_inode *ri = F2FS_INODE(page);
3199 	int extra_size = get_extra_isize(inode);
3200 
3201 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3202 }
3203 
f2fs_has_inline_dentry(struct inode * inode)3204 static inline int f2fs_has_inline_dentry(struct inode *inode)
3205 {
3206 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3207 }
3208 
is_file(struct inode * inode,int type)3209 static inline int is_file(struct inode *inode, int type)
3210 {
3211 	return F2FS_I(inode)->i_advise & type;
3212 }
3213 
set_file(struct inode * inode,int type)3214 static inline void set_file(struct inode *inode, int type)
3215 {
3216 	F2FS_I(inode)->i_advise |= type;
3217 	f2fs_mark_inode_dirty_sync(inode, true);
3218 }
3219 
clear_file(struct inode * inode,int type)3220 static inline void clear_file(struct inode *inode, int type)
3221 {
3222 	F2FS_I(inode)->i_advise &= ~type;
3223 	f2fs_mark_inode_dirty_sync(inode, true);
3224 }
3225 
f2fs_is_time_consistent(struct inode * inode)3226 static inline bool f2fs_is_time_consistent(struct inode *inode)
3227 {
3228 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3229 		return false;
3230 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3231 		return false;
3232 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3233 		return false;
3234 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3235 						&F2FS_I(inode)->i_crtime))
3236 		return false;
3237 	return true;
3238 }
3239 
f2fs_skip_inode_update(struct inode * inode,int dsync)3240 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3241 {
3242 	bool ret;
3243 
3244 	if (dsync) {
3245 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3246 
3247 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3248 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3249 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3250 		return ret;
3251 	}
3252 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3253 			file_keep_isize(inode) ||
3254 			i_size_read(inode) & ~PAGE_MASK)
3255 		return false;
3256 
3257 	if (!f2fs_is_time_consistent(inode))
3258 		return false;
3259 
3260 	spin_lock(&F2FS_I(inode)->i_size_lock);
3261 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3262 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3263 
3264 	return ret;
3265 }
3266 
f2fs_readonly(struct super_block * sb)3267 static inline bool f2fs_readonly(struct super_block *sb)
3268 {
3269 	return sb_rdonly(sb);
3270 }
3271 
f2fs_cp_error(struct f2fs_sb_info * sbi)3272 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3273 {
3274 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3275 }
3276 
is_dot_dotdot(const u8 * name,size_t len)3277 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3278 {
3279 	if (len == 1 && name[0] == '.')
3280 		return true;
3281 
3282 	if (len == 2 && name[0] == '.' && name[1] == '.')
3283 		return true;
3284 
3285 	return false;
3286 }
3287 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3288 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3289 					size_t size, gfp_t flags)
3290 {
3291 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3292 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3293 		return NULL;
3294 	}
3295 
3296 	return kmalloc(size, flags);
3297 }
3298 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3299 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3300 					size_t size, gfp_t flags)
3301 {
3302 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3303 }
3304 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3305 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3306 					size_t size, gfp_t flags)
3307 {
3308 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3309 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3310 		return NULL;
3311 	}
3312 
3313 	return kvmalloc(size, flags);
3314 }
3315 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3316 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3317 					size_t size, gfp_t flags)
3318 {
3319 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3320 }
3321 
get_extra_isize(struct inode * inode)3322 static inline int get_extra_isize(struct inode *inode)
3323 {
3324 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3325 }
3326 
get_inline_xattr_addrs(struct inode * inode)3327 static inline int get_inline_xattr_addrs(struct inode *inode)
3328 {
3329 	return F2FS_I(inode)->i_inline_xattr_size;
3330 }
3331 
3332 #define f2fs_get_inode_mode(i) \
3333 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3334 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3335 
3336 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3337 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3338 	offsetof(struct f2fs_inode, i_extra_isize))	\
3339 
3340 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3341 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3342 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3343 		sizeof((f2fs_inode)->field))			\
3344 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3345 
3346 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3347 #define MIN_IOSTAT_PERIOD_MS		100
3348 /* maximum period of iostat tracing is 1 day */
3349 #define MAX_IOSTAT_PERIOD_MS		8640000
3350 
f2fs_reset_iostat(struct f2fs_sb_info * sbi)3351 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3352 {
3353 	int i;
3354 
3355 	spin_lock(&sbi->iostat_lock);
3356 	for (i = 0; i < NR_IO_TYPE; i++) {
3357 		sbi->rw_iostat[i] = 0;
3358 		sbi->prev_rw_iostat[i] = 0;
3359 	}
3360 	spin_unlock(&sbi->iostat_lock);
3361 }
3362 
3363 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3364 
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)3365 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3366 			enum iostat_type type, unsigned long long io_bytes)
3367 {
3368 	if (!sbi->iostat_enable)
3369 		return;
3370 	spin_lock(&sbi->iostat_lock);
3371 	sbi->rw_iostat[type] += io_bytes;
3372 
3373 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3374 		sbi->rw_iostat[APP_BUFFERED_IO] =
3375 			sbi->rw_iostat[APP_WRITE_IO] -
3376 			sbi->rw_iostat[APP_DIRECT_IO];
3377 
3378 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3379 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3380 			sbi->rw_iostat[APP_READ_IO] -
3381 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3382 	spin_unlock(&sbi->iostat_lock);
3383 
3384 	f2fs_record_iostat(sbi);
3385 }
3386 
3387 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3388 
3389 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3390 
3391 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3392 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3393 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3394 					block_t blkaddr, int type)
3395 {
3396 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3397 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3398 			 blkaddr, type);
3399 		f2fs_bug_on(sbi, 1);
3400 	}
3401 }
3402 
__is_valid_data_blkaddr(block_t blkaddr)3403 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3404 {
3405 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3406 			blkaddr == COMPRESS_ADDR)
3407 		return false;
3408 	return true;
3409 }
3410 
3411 /*
3412  * file.c
3413  */
3414 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3415 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3416 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3417 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3418 int f2fs_truncate(struct inode *inode);
3419 int f2fs_getattr(const struct path *path, struct kstat *stat,
3420 			u32 request_mask, unsigned int flags);
3421 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3422 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3423 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3424 int f2fs_precache_extents(struct inode *inode);
3425 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3426 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3427 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3428 int f2fs_pin_file_control(struct inode *inode, bool inc);
3429 
3430 /*
3431  * inode.c
3432  */
3433 void f2fs_set_inode_flags(struct inode *inode);
3434 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3435 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3436 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3437 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3438 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3439 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3440 void f2fs_update_inode_page(struct inode *inode);
3441 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3442 void f2fs_evict_inode(struct inode *inode);
3443 void f2fs_handle_failed_inode(struct inode *inode);
3444 
3445 /*
3446  * namei.c
3447  */
3448 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3449 							bool hot, bool set);
3450 struct dentry *f2fs_get_parent(struct dentry *child);
3451 
3452 /*
3453  * dir.c
3454  */
3455 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3456 int f2fs_init_casefolded_name(const struct inode *dir,
3457 			      struct f2fs_filename *fname);
3458 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3459 			int lookup, struct f2fs_filename *fname);
3460 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3461 			struct f2fs_filename *fname);
3462 void f2fs_free_filename(struct f2fs_filename *fname);
3463 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3464 			const struct f2fs_filename *fname, int *max_slots);
3465 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3466 			unsigned int start_pos, struct fscrypt_str *fstr);
3467 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3468 			struct f2fs_dentry_ptr *d);
3469 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3470 			const struct f2fs_filename *fname, struct page *dpage);
3471 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3472 			unsigned int current_depth);
3473 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3474 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3475 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3476 					 const struct f2fs_filename *fname,
3477 					 struct page **res_page);
3478 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3479 			const struct qstr *child, struct page **res_page);
3480 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3481 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3482 			struct page **page);
3483 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3484 			struct page *page, struct inode *inode);
3485 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3486 			  const struct f2fs_filename *fname);
3487 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3488 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3489 			unsigned int bit_pos);
3490 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3491 			struct inode *inode, nid_t ino, umode_t mode);
3492 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3493 			struct inode *inode, nid_t ino, umode_t mode);
3494 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3495 			struct inode *inode, nid_t ino, umode_t mode);
3496 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3497 			struct inode *dir, struct inode *inode);
3498 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3499 bool f2fs_empty_dir(struct inode *dir);
3500 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3501 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3502 {
3503 	if (fscrypt_is_nokey_name(dentry))
3504 		return -ENOKEY;
3505 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3506 				inode, inode->i_ino, inode->i_mode);
3507 }
3508 
3509 /*
3510  * super.c
3511  */
3512 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3513 void f2fs_inode_synced(struct inode *inode);
3514 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3515 int f2fs_quota_sync(struct super_block *sb, int type);
3516 loff_t max_file_blocks(struct inode *inode);
3517 void f2fs_quota_off_umount(struct super_block *sb);
3518 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3519 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3520 int f2fs_sync_fs(struct super_block *sb, int sync);
3521 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3522 
3523 /*
3524  * hash.c
3525  */
3526 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3527 
3528 /*
3529  * node.c
3530  */
3531 struct node_info;
3532 
3533 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3534 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3535 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3536 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3537 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3538 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3539 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3540 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3541 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3542 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3543 				struct node_info *ni, bool checkpoint_context);
3544 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3545 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3546 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3547 int f2fs_truncate_xattr_node(struct inode *inode);
3548 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3549 					unsigned int seq_id);
3550 int f2fs_remove_inode_page(struct inode *inode);
3551 struct page *f2fs_new_inode_page(struct inode *inode);
3552 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3553 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3554 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3555 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3556 int f2fs_move_node_page(struct page *node_page, int gc_type);
3557 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3558 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3559 			struct writeback_control *wbc, bool atomic,
3560 			unsigned int *seq_id);
3561 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3562 			struct writeback_control *wbc,
3563 			bool do_balance, enum iostat_type io_type);
3564 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3565 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3566 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3567 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3568 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3569 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3570 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3571 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3572 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3573 			unsigned int segno, struct f2fs_summary_block *sum);
3574 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3575 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3576 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3577 int __init f2fs_create_node_manager_caches(void);
3578 void f2fs_destroy_node_manager_caches(void);
3579 
3580 /*
3581  * segment.c
3582  */
3583 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3584 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3585 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3586 void f2fs_drop_inmem_pages(struct inode *inode);
3587 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3588 int f2fs_commit_inmem_pages(struct inode *inode);
3589 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3590 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3591 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3592 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3593 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3594 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3595 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3596 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3597 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3598 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3599 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3600 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3601 					struct cp_control *cpc);
3602 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3603 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3604 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3605 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3606 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3607 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3608 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3609 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3610 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3611 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3612 			unsigned int *newseg, bool new_sec, int dir);
3613 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3614 					unsigned int start, unsigned int end);
3615 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3616 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3617 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3618 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3619 					struct cp_control *cpc);
3620 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3621 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3622 					block_t blk_addr);
3623 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3624 						enum iostat_type io_type);
3625 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3626 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3627 			struct f2fs_io_info *fio);
3628 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3629 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3630 			block_t old_blkaddr, block_t new_blkaddr,
3631 			bool recover_curseg, bool recover_newaddr,
3632 			bool from_gc);
3633 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3634 			block_t old_addr, block_t new_addr,
3635 			unsigned char version, bool recover_curseg,
3636 			bool recover_newaddr);
3637 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3638 			block_t old_blkaddr, block_t *new_blkaddr,
3639 			struct f2fs_summary *sum, int type,
3640 			struct f2fs_io_info *fio);
3641 void f2fs_wait_on_page_writeback(struct page *page,
3642 			enum page_type type, bool ordered, bool locked);
3643 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3644 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3645 								block_t len);
3646 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3647 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3648 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3649 			unsigned int val, int alloc);
3650 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3651 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3652 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3653 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3654 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3655 int __init f2fs_create_segment_manager_caches(void);
3656 void f2fs_destroy_segment_manager_caches(void);
3657 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3658 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3659 			enum page_type type, enum temp_type temp);
3660 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3661 			unsigned int segno);
3662 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3663 			unsigned int segno);
3664 
3665 /*
3666  * checkpoint.c
3667  */
3668 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3669 							unsigned char reason);
3670 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3671 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3672 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3673 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3674 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3675 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3676 					block_t blkaddr, int type);
3677 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3678 			int type, bool sync);
3679 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3680 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3681 			long nr_to_write, enum iostat_type io_type);
3682 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3683 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3684 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3685 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3686 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3687 					unsigned int devidx, int type);
3688 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3689 					unsigned int devidx, int type);
3690 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3691 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3692 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3693 void f2fs_add_orphan_inode(struct inode *inode);
3694 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3695 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3696 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3697 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3698 void f2fs_remove_dirty_inode(struct inode *inode);
3699 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3700 								bool from_cp);
3701 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3702 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3703 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3704 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3705 int __init f2fs_create_checkpoint_caches(void);
3706 void f2fs_destroy_checkpoint_caches(void);
3707 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3708 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3709 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3710 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3711 
3712 /*
3713  * data.c
3714  */
3715 int __init f2fs_init_bioset(void);
3716 void f2fs_destroy_bioset(void);
3717 int f2fs_init_bio_entry_cache(void);
3718 void f2fs_destroy_bio_entry_cache(void);
3719 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3720 				struct bio *bio, enum page_type type);
3721 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3722 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3723 				struct inode *inode, struct page *page,
3724 				nid_t ino, enum page_type type);
3725 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3726 					struct bio **bio, struct page *page);
3727 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3728 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3729 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3730 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3731 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3732 			block_t blk_addr, struct bio *bio);
3733 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3734 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3735 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3736 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3737 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3738 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3739 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3740 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3741 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3742 			int op_flags, bool for_write);
3743 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3744 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3745 			bool for_write);
3746 struct page *f2fs_get_new_data_page(struct inode *inode,
3747 			struct page *ipage, pgoff_t index, bool new_i_size);
3748 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3749 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3750 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3751 			int create, int flag);
3752 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3753 			u64 start, u64 len);
3754 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3755 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3756 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3757 int f2fs_write_single_data_page(struct page *page, int *submitted,
3758 				struct bio **bio, sector_t *last_block,
3759 				struct writeback_control *wbc,
3760 				enum iostat_type io_type,
3761 				int compr_blocks, bool allow_balance);
3762 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3763 			unsigned int length);
3764 int f2fs_release_page(struct page *page, gfp_t wait);
3765 #ifdef CONFIG_MIGRATION
3766 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3767 			struct page *page, enum migrate_mode mode);
3768 #endif
3769 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3770 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3771 int f2fs_init_post_read_processing(void);
3772 void f2fs_destroy_post_read_processing(void);
3773 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3774 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3775 
3776 /*
3777  * gc.c
3778  */
3779 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3780 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3781 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3782 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3783 			unsigned int segno);
3784 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3785 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3786 int __init f2fs_create_garbage_collection_cache(void);
3787 void f2fs_destroy_garbage_collection_cache(void);
3788 
3789 /*
3790  * recovery.c
3791  */
3792 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3793 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3794 int __init f2fs_create_recovery_cache(void);
3795 void f2fs_destroy_recovery_cache(void);
3796 
3797 /*
3798  * debug.c
3799  */
3800 #ifdef CONFIG_F2FS_STAT_FS
3801 struct f2fs_stat_info {
3802 	struct list_head stat_list;
3803 	struct f2fs_sb_info *sbi;
3804 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3805 	int main_area_segs, main_area_sections, main_area_zones;
3806 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3807 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3808 	unsigned long long total_ext[NR_EXTENT_CACHES];
3809 	unsigned long long hit_total[NR_EXTENT_CACHES];
3810 	int ext_tree[NR_EXTENT_CACHES];
3811 	int zombie_tree[NR_EXTENT_CACHES];
3812 	int ext_node[NR_EXTENT_CACHES];
3813 	/* to count memory footprint */
3814 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3815 	/* for read extent cache */
3816 	unsigned long long hit_largest;
3817 	/* for block age extent cache */
3818 	unsigned long long allocated_data_blocks;
3819 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3820 	int ndirty_data, ndirty_qdata;
3821 	int inmem_pages;
3822 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3823 	int nats, dirty_nats, sits, dirty_sits;
3824 	int free_nids, avail_nids, alloc_nids;
3825 	int total_count, utilization;
3826 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3827 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3828 	int nr_dio_read, nr_dio_write;
3829 	unsigned int io_skip_bggc, other_skip_bggc;
3830 	int nr_flushing, nr_flushed, flush_list_empty;
3831 	int nr_discarding, nr_discarded;
3832 	int nr_discard_cmd;
3833 	unsigned int undiscard_blks;
3834 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3835 	unsigned int cur_ckpt_time, peak_ckpt_time;
3836 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3837 	int compr_inode;
3838 	unsigned long long compr_blocks;
3839 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3840 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3841 	unsigned int bimodal, avg_vblocks;
3842 	int util_free, util_valid, util_invalid;
3843 	int rsvd_segs, overp_segs;
3844 	int dirty_count, node_pages, meta_pages, compress_pages;
3845 	int compress_page_hit;
3846 	int prefree_count, call_count, cp_count, bg_cp_count;
3847 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3848 	int bg_node_segs, bg_data_segs;
3849 	int tot_blks, data_blks, node_blks;
3850 	int bg_data_blks, bg_node_blks;
3851 	unsigned long long skipped_atomic_files[2];
3852 	int curseg[NR_CURSEG_TYPE];
3853 	int cursec[NR_CURSEG_TYPE];
3854 	int curzone[NR_CURSEG_TYPE];
3855 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3856 	unsigned int full_seg[NR_CURSEG_TYPE];
3857 	unsigned int valid_blks[NR_CURSEG_TYPE];
3858 
3859 	unsigned int meta_count[META_MAX];
3860 	unsigned int segment_count[2];
3861 	unsigned int block_count[2];
3862 	unsigned int inplace_count;
3863 	unsigned long long base_mem, cache_mem, page_mem;
3864 };
3865 
F2FS_STAT(struct f2fs_sb_info * sbi)3866 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3867 {
3868 	return (struct f2fs_stat_info *)sbi->stat_info;
3869 }
3870 
3871 #define stat_inc_cp_count(si)		((si)->cp_count++)
3872 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3873 #define stat_inc_call_count(si)		((si)->call_count++)
3874 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3875 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3876 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3877 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3878 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3879 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3880 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3881 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3882 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3883 #define stat_inc_inline_xattr(inode)					\
3884 	do {								\
3885 		if (f2fs_has_inline_xattr(inode))			\
3886 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3887 	} while (0)
3888 #define stat_dec_inline_xattr(inode)					\
3889 	do {								\
3890 		if (f2fs_has_inline_xattr(inode))			\
3891 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3892 	} while (0)
3893 #define stat_inc_inline_inode(inode)					\
3894 	do {								\
3895 		if (f2fs_has_inline_data(inode))			\
3896 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3897 	} while (0)
3898 #define stat_dec_inline_inode(inode)					\
3899 	do {								\
3900 		if (f2fs_has_inline_data(inode))			\
3901 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3902 	} while (0)
3903 #define stat_inc_inline_dir(inode)					\
3904 	do {								\
3905 		if (f2fs_has_inline_dentry(inode))			\
3906 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3907 	} while (0)
3908 #define stat_dec_inline_dir(inode)					\
3909 	do {								\
3910 		if (f2fs_has_inline_dentry(inode))			\
3911 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3912 	} while (0)
3913 #define stat_inc_compr_inode(inode)					\
3914 	do {								\
3915 		if (f2fs_compressed_file(inode))			\
3916 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3917 	} while (0)
3918 #define stat_dec_compr_inode(inode)					\
3919 	do {								\
3920 		if (f2fs_compressed_file(inode))			\
3921 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3922 	} while (0)
3923 #define stat_add_compr_blocks(inode, blocks)				\
3924 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3925 #define stat_sub_compr_blocks(inode, blocks)				\
3926 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3927 #define stat_inc_meta_count(sbi, blkaddr)				\
3928 	do {								\
3929 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3930 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3931 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3932 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3933 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3934 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3935 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3936 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3937 	} while (0)
3938 #define stat_inc_seg_type(sbi, curseg)					\
3939 		((sbi)->segment_count[(curseg)->alloc_type]++)
3940 #define stat_inc_block_count(sbi, curseg)				\
3941 		((sbi)->block_count[(curseg)->alloc_type]++)
3942 #define stat_inc_inplace_blocks(sbi)					\
3943 		(atomic_inc(&(sbi)->inplace_count))
3944 #define stat_update_max_atomic_write(inode)				\
3945 	do {								\
3946 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3947 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3948 		if (cur > max)						\
3949 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3950 	} while (0)
3951 #define stat_inc_volatile_write(inode)					\
3952 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3953 #define stat_dec_volatile_write(inode)					\
3954 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3955 #define stat_update_max_volatile_write(inode)				\
3956 	do {								\
3957 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3958 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3959 		if (cur > max)						\
3960 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3961 	} while (0)
3962 #define stat_inc_seg_count(sbi, type, gc_type)				\
3963 	do {								\
3964 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3965 		si->tot_segs++;						\
3966 		if ((type) == SUM_TYPE_DATA) {				\
3967 			si->data_segs++;				\
3968 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3969 		} else {						\
3970 			si->node_segs++;				\
3971 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3972 		}							\
3973 	} while (0)
3974 
3975 #define stat_inc_tot_blk_count(si, blks)				\
3976 	((si)->tot_blks += (blks))
3977 
3978 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3979 	do {								\
3980 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3981 		stat_inc_tot_blk_count(si, blks);			\
3982 		si->data_blks += (blks);				\
3983 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3984 	} while (0)
3985 
3986 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3987 	do {								\
3988 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3989 		stat_inc_tot_blk_count(si, blks);			\
3990 		si->node_blks += (blks);				\
3991 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3992 	} while (0)
3993 
3994 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3995 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3996 void __init f2fs_create_root_stats(void);
3997 void f2fs_destroy_root_stats(void);
3998 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3999 #else
4000 #define stat_inc_cp_count(si)				do { } while (0)
4001 #define stat_inc_bg_cp_count(si)			do { } while (0)
4002 #define stat_inc_call_count(si)				do { } while (0)
4003 #define stat_inc_bggc_count(si)				do { } while (0)
4004 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4005 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4006 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4007 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4008 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4009 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4010 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4011 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4012 #define stat_inc_inline_xattr(inode)			do { } while (0)
4013 #define stat_dec_inline_xattr(inode)			do { } while (0)
4014 #define stat_inc_inline_inode(inode)			do { } while (0)
4015 #define stat_dec_inline_inode(inode)			do { } while (0)
4016 #define stat_inc_inline_dir(inode)			do { } while (0)
4017 #define stat_dec_inline_dir(inode)			do { } while (0)
4018 #define stat_inc_compr_inode(inode)			do { } while (0)
4019 #define stat_dec_compr_inode(inode)			do { } while (0)
4020 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4021 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4022 #define stat_update_max_atomic_write(inode)		do { } while (0)
4023 #define stat_inc_volatile_write(inode)			do { } while (0)
4024 #define stat_dec_volatile_write(inode)			do { } while (0)
4025 #define stat_update_max_volatile_write(inode)		do { } while (0)
4026 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4027 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4028 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4029 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4030 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4031 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4032 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4033 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4034 
f2fs_build_stats(struct f2fs_sb_info * sbi)4035 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4036 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4037 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4038 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4039 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4040 #endif
4041 
4042 extern const struct file_operations f2fs_dir_operations;
4043 extern const struct file_operations f2fs_file_operations;
4044 extern const struct inode_operations f2fs_file_inode_operations;
4045 extern const struct address_space_operations f2fs_dblock_aops;
4046 extern const struct address_space_operations f2fs_node_aops;
4047 extern const struct address_space_operations f2fs_meta_aops;
4048 extern const struct inode_operations f2fs_dir_inode_operations;
4049 extern const struct inode_operations f2fs_symlink_inode_operations;
4050 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4051 extern const struct inode_operations f2fs_special_inode_operations;
4052 extern struct kmem_cache *f2fs_inode_entry_slab;
4053 
4054 /*
4055  * inline.c
4056  */
4057 bool f2fs_may_inline_data(struct inode *inode);
4058 bool f2fs_sanity_check_inline_data(struct inode *inode);
4059 bool f2fs_may_inline_dentry(struct inode *inode);
4060 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4061 void f2fs_truncate_inline_inode(struct inode *inode,
4062 						struct page *ipage, u64 from);
4063 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4064 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4065 int f2fs_convert_inline_inode(struct inode *inode);
4066 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4067 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4068 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4069 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4070 					const struct f2fs_filename *fname,
4071 					struct page **res_page);
4072 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4073 			struct page *ipage);
4074 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4075 			struct inode *inode, nid_t ino, umode_t mode);
4076 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4077 				struct page *page, struct inode *dir,
4078 				struct inode *inode);
4079 bool f2fs_empty_inline_dir(struct inode *dir);
4080 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4081 			struct fscrypt_str *fstr);
4082 int f2fs_inline_data_fiemap(struct inode *inode,
4083 			struct fiemap_extent_info *fieinfo,
4084 			__u64 start, __u64 len);
4085 
4086 /*
4087  * shrinker.c
4088  */
4089 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4090 			struct shrink_control *sc);
4091 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4092 			struct shrink_control *sc);
4093 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4094 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4095 
4096 /*
4097  * extent_cache.c
4098  */
4099 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4100 				struct rb_entry *cached_re, unsigned int ofs);
4101 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4102 				struct rb_root_cached *root,
4103 				struct rb_node **parent,
4104 				unsigned long long key, bool *left_most);
4105 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4106 				struct rb_root_cached *root,
4107 				struct rb_node **parent,
4108 				unsigned int ofs, bool *leftmost);
4109 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4110 		struct rb_entry *cached_re, unsigned int ofs,
4111 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4112 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4113 		bool force, bool *leftmost);
4114 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4115 				struct rb_root_cached *root, bool check_key);
4116 void f2fs_init_extent_tree(struct inode *inode);
4117 void f2fs_drop_extent_tree(struct inode *inode);
4118 void f2fs_destroy_extent_node(struct inode *inode);
4119 void f2fs_destroy_extent_tree(struct inode *inode);
4120 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4121 int __init f2fs_create_extent_cache(void);
4122 void f2fs_destroy_extent_cache(void);
4123 
4124 /* read extent cache ops */
4125 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4126 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4127 			struct extent_info *ei);
4128 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4129 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4130 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4131 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4132 			int nr_shrink);
4133 
4134 /* block age extent cache ops */
4135 void f2fs_init_age_extent_tree(struct inode *inode);
4136 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4137 			struct extent_info *ei);
4138 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4139 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4140 			pgoff_t fofs, unsigned int len);
4141 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4142 			int nr_shrink);
4143 
4144 /*
4145  * sysfs.c
4146  */
4147 int __init f2fs_init_sysfs(void);
4148 void f2fs_exit_sysfs(void);
4149 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4150 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4151 
4152 /* verity.c */
4153 extern const struct fsverity_operations f2fs_verityops;
4154 
4155 /*
4156  * crypto support
4157  */
f2fs_encrypted_file(struct inode * inode)4158 static inline bool f2fs_encrypted_file(struct inode *inode)
4159 {
4160 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4161 }
4162 
f2fs_set_encrypted_inode(struct inode * inode)4163 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4164 {
4165 #ifdef CONFIG_FS_ENCRYPTION
4166 	file_set_encrypt(inode);
4167 	f2fs_set_inode_flags(inode);
4168 #endif
4169 }
4170 
4171 /*
4172  * Returns true if the reads of the inode's data need to undergo some
4173  * postprocessing step, like decryption or authenticity verification.
4174  */
f2fs_post_read_required(struct inode * inode)4175 static inline bool f2fs_post_read_required(struct inode *inode)
4176 {
4177 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4178 		f2fs_compressed_file(inode);
4179 }
4180 
4181 /*
4182  * compress.c
4183  */
4184 #ifdef CONFIG_F2FS_FS_COMPRESSION
4185 bool f2fs_is_compressed_page(struct page *page);
4186 struct page *f2fs_compress_control_page(struct page *page);
4187 int f2fs_prepare_compress_overwrite(struct inode *inode,
4188 			struct page **pagep, pgoff_t index, void **fsdata);
4189 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4190 					pgoff_t index, unsigned copied);
4191 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4192 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4193 bool f2fs_is_compress_backend_ready(struct inode *inode);
4194 int f2fs_init_compress_mempool(void);
4195 void f2fs_destroy_compress_mempool(void);
4196 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4197 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4198 				block_t blkaddr, bool in_task);
4199 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4200 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4201 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4202 int f2fs_write_multi_pages(struct compress_ctx *cc,
4203 						int *submitted,
4204 						struct writeback_control *wbc,
4205 						enum iostat_type io_type);
4206 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4207 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4208 				pgoff_t fofs, block_t blkaddr,
4209 				unsigned int llen, unsigned int c_len);
4210 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4211 				unsigned nr_pages, sector_t *last_block_in_bio,
4212 				bool is_readahead, bool for_write);
4213 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4214 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4215 				bool in_task);
4216 void f2fs_put_page_dic(struct page *page, bool in_task);
4217 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4218 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4219 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4220 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4221 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4222 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4223 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4224 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4225 int __init f2fs_init_compress_cache(void);
4226 void f2fs_destroy_compress_cache(void);
4227 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4228 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4229 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4230 						nid_t ino, block_t blkaddr);
4231 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4232 								block_t blkaddr);
4233 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4234 #define inc_compr_inode_stat(inode)					\
4235 	do {								\
4236 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4237 		sbi->compr_new_inode++;					\
4238 	} while (0)
4239 #define add_compr_block_stat(inode, blocks)				\
4240 	do {								\
4241 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4242 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4243 		sbi->compr_written_block += blocks;			\
4244 		sbi->compr_saved_block += diff;				\
4245 	} while (0)
4246 #else
f2fs_is_compressed_page(struct page * page)4247 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4248 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4249 {
4250 	if (!f2fs_compressed_file(inode))
4251 		return true;
4252 	/* not support compression */
4253 	return false;
4254 }
f2fs_compress_control_page(struct page * page)4255 static inline struct page *f2fs_compress_control_page(struct page *page)
4256 {
4257 	WARN_ON_ONCE(1);
4258 	return ERR_PTR(-EINVAL);
4259 }
f2fs_init_compress_mempool(void)4260 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4261 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4262 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4263 				bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4264 static inline void f2fs_end_read_compressed_page(struct page *page,
4265 				bool failed, block_t blkaddr, bool in_task)
4266 {
4267 	WARN_ON_ONCE(1);
4268 }
f2fs_put_page_dic(struct page * page,bool in_task)4269 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4270 {
4271 	WARN_ON_ONCE(1);
4272 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4273 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4274 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4275 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4276 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4277 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4278 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4279 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4280 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4281 				block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4282 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4283 				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4284 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4285 				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4286 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4287 							nid_t ino) { }
4288 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4289 static inline void f2fs_update_read_extent_tree_range_compressed(
4290 				struct inode *inode,
4291 				pgoff_t fofs, block_t blkaddr,
4292 				unsigned int llen, unsigned int c_len) { }
4293 #endif
4294 
set_compress_context(struct inode * inode)4295 static inline int set_compress_context(struct inode *inode)
4296 {
4297 #ifdef CONFIG_F2FS_FS_COMPRESSION
4298 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4299 
4300 	F2FS_I(inode)->i_compress_algorithm =
4301 			F2FS_OPTION(sbi).compress_algorithm;
4302 	F2FS_I(inode)->i_log_cluster_size =
4303 			F2FS_OPTION(sbi).compress_log_size;
4304 	F2FS_I(inode)->i_compress_flag =
4305 			F2FS_OPTION(sbi).compress_chksum ?
4306 				1 << COMPRESS_CHKSUM : 0;
4307 	F2FS_I(inode)->i_cluster_size =
4308 			1 << F2FS_I(inode)->i_log_cluster_size;
4309 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 &&
4310 			F2FS_OPTION(sbi).compress_level)
4311 		F2FS_I(inode)->i_compress_flag |=
4312 				F2FS_OPTION(sbi).compress_level <<
4313 				COMPRESS_LEVEL_OFFSET;
4314 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4315 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4316 	stat_inc_compr_inode(inode);
4317 	inc_compr_inode_stat(inode);
4318 	f2fs_mark_inode_dirty_sync(inode, true);
4319 	return 0;
4320 #else
4321 	return -EOPNOTSUPP;
4322 #endif
4323 }
4324 
f2fs_disable_compressed_file(struct inode * inode)4325 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4326 {
4327 	struct f2fs_inode_info *fi = F2FS_I(inode);
4328 
4329 	if (!f2fs_compressed_file(inode))
4330 		return true;
4331 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4332 		return false;
4333 
4334 	fi->i_flags &= ~F2FS_COMPR_FL;
4335 	stat_dec_compr_inode(inode);
4336 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4337 	f2fs_mark_inode_dirty_sync(inode, true);
4338 	return true;
4339 }
4340 
4341 #define F2FS_FEATURE_FUNCS(name, flagname) \
4342 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4343 { \
4344 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4345 }
4346 
4347 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4348 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4349 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4350 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4351 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4352 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4353 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4354 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4355 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4356 F2FS_FEATURE_FUNCS(verity, VERITY);
4357 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4358 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4359 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4360 F2FS_FEATURE_FUNCS(readonly, RO);
4361 
4362 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4363 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4364 				    block_t blkaddr)
4365 {
4366 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4367 
4368 	return test_bit(zno, FDEV(devi).blkz_seq);
4369 }
4370 #endif
4371 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4372 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4373 {
4374 	return f2fs_sb_has_blkzoned(sbi);
4375 }
4376 
f2fs_bdev_support_discard(struct block_device * bdev)4377 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4378 {
4379 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4380 	       bdev_is_zoned(bdev);
4381 }
4382 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4383 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4384 {
4385 	int i;
4386 
4387 	if (!f2fs_is_multi_device(sbi))
4388 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4389 
4390 	for (i = 0; i < sbi->s_ndevs; i++)
4391 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4392 			return true;
4393 	return false;
4394 }
4395 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4396 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4397 {
4398 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4399 					f2fs_hw_should_discard(sbi);
4400 }
4401 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4402 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4403 {
4404 	int i;
4405 
4406 	if (!f2fs_is_multi_device(sbi))
4407 		return bdev_read_only(sbi->sb->s_bdev);
4408 
4409 	for (i = 0; i < sbi->s_ndevs; i++)
4410 		if (bdev_read_only(FDEV(i).bdev))
4411 			return true;
4412 	return false;
4413 }
4414 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4415 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4416 {
4417 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4418 }
4419 
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4420 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4421 {
4422 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4423 }
4424 
f2fs_may_compress(struct inode * inode)4425 static inline bool f2fs_may_compress(struct inode *inode)
4426 {
4427 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4428 				f2fs_is_atomic_file(inode) ||
4429 				f2fs_is_volatile_file(inode))
4430 		return false;
4431 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4432 }
4433 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4434 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4435 						u64 blocks, bool add)
4436 {
4437 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4438 	struct f2fs_inode_info *fi = F2FS_I(inode);
4439 
4440 	/* don't update i_compr_blocks if saved blocks were released */
4441 	if (!add && !atomic_read(&fi->i_compr_blocks))
4442 		return;
4443 
4444 	if (add) {
4445 		atomic_add(diff, &fi->i_compr_blocks);
4446 		stat_add_compr_blocks(inode, diff);
4447 	} else {
4448 		atomic_sub(diff, &fi->i_compr_blocks);
4449 		stat_sub_compr_blocks(inode, diff);
4450 	}
4451 	f2fs_mark_inode_dirty_sync(inode, true);
4452 }
4453 
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4454 static inline int block_unaligned_IO(struct inode *inode,
4455 				struct kiocb *iocb, struct iov_iter *iter)
4456 {
4457 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4458 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4459 	loff_t offset = iocb->ki_pos;
4460 	unsigned long align = offset | iov_iter_alignment(iter);
4461 
4462 	return align & blocksize_mask;
4463 }
4464 
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4465 static inline int allow_outplace_dio(struct inode *inode,
4466 				struct kiocb *iocb, struct iov_iter *iter)
4467 {
4468 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4469 	int rw = iov_iter_rw(iter);
4470 
4471 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4472 				!block_unaligned_IO(inode, iocb, iter));
4473 }
4474 
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4475 static inline bool f2fs_force_buffered_io(struct inode *inode,
4476 				struct kiocb *iocb, struct iov_iter *iter)
4477 {
4478 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4479 	int rw = iov_iter_rw(iter);
4480 
4481 	if (!fscrypt_dio_supported(iocb, iter))
4482 		return true;
4483 	if (fsverity_active(inode))
4484 		return true;
4485 	if (f2fs_compressed_file(inode))
4486 		return true;
4487 	if (f2fs_is_multi_device(sbi))
4488 		return true;
4489 	/*
4490 	 * for blkzoned device, fallback direct IO to buffered IO, so
4491 	 * all IOs can be serialized by log-structured write.
4492 	 */
4493 	if (f2fs_sb_has_blkzoned(sbi))
4494 		return true;
4495 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4496 		if (block_unaligned_IO(inode, iocb, iter))
4497 			return true;
4498 		if (F2FS_IO_ALIGNED(sbi))
4499 			return true;
4500 	}
4501 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4502 		return true;
4503 
4504 	return false;
4505 }
4506 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4507 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4508 {
4509 	return fsverity_active(inode) &&
4510 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4511 }
4512 
4513 #ifdef CONFIG_F2FS_FAULT_INJECTION
4514 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4515 							unsigned int type);
4516 #else
4517 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4518 #endif
4519 
is_journalled_quota(struct f2fs_sb_info * sbi)4520 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4521 {
4522 #ifdef CONFIG_QUOTA
4523 	if (f2fs_sb_has_quota_ino(sbi))
4524 		return true;
4525 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4526 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4527 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4528 		return true;
4529 #endif
4530 	return false;
4531 }
4532 
4533 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4534 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4535 
4536 #endif /* _LINUX_F2FS_H */
4537