xref: /OK3568_Linux_fs/external/security/librkcrypto/test/c_mode/sm4_core.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  *  FIPS-46-3 compliant Triple-DES implementation
3  *
4  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  *
19  *  This file is part of mbed TLS (https://tls.mbed.org)
20  */
21 /*
22  *  DES, on which TDES is based, was originally designed by Horst Feistel
23  *  at IBM in 1974, and was adopted as a standard by NIST (formerly NBS).
24  *
25  *  http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
26  */
27 
28 #include "sm4_core.h"
29 
30 #include <string.h>
31 #include <stdio.h>
32 
33 /*
34  * 32-bit integer manipulation macros (big endian)
35  */
36 #ifndef GET_ULONG_BE
37 #define GET_ULONG_BE(n,b,i)                             \
38 {                                                       \
39     (n) = ( (unsigned long) (b)[(i)    ] << 24 )        \
40         | ( (unsigned long) (b)[(i) + 1] << 16 )        \
41         | ( (unsigned long) (b)[(i) + 2] <<  8 )        \
42         | ( (unsigned long) (b)[(i) + 3]       );       \
43 }
44 #endif
45 
46 #ifndef PUT_ULONG_BE
47 #define PUT_ULONG_BE(n,b,i)                             \
48 {                                                       \
49     (b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \
50     (b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \
51     (b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \
52     (b)[(i) + 3] = (unsigned char) ( (n)       );       \
53 }
54 #endif
55 
56 /*
57  *rotate shift left marco definition
58  *
59  */
60 #define  SHL(x,n) (((x) & 0xFFFFFFFF) << n)
61 #define ROTL(x,n) (SHL((x),n) | ((x) >> (32 - n)))
62 
63 #define SWAP(a,b) { unsigned long t = a; a = b; b = t; t = 0; }
64 
65 /*
66  * Expanded SM4 S-boxes
67 */
68  /* Sbox table: 8bits input convert to 8 bits output*/
69 
70 static const unsigned char SboxTable[16][16] =
71 {
72 {0xd6,0x90,0xe9,0xfe,0xcc,0xe1,0x3d,0xb7,0x16,0xb6,0x14,0xc2,0x28,0xfb,0x2c,0x05},
73 {0x2b,0x67,0x9a,0x76,0x2a,0xbe,0x04,0xc3,0xaa,0x44,0x13,0x26,0x49,0x86,0x06,0x99},
74 {0x9c,0x42,0x50,0xf4,0x91,0xef,0x98,0x7a,0x33,0x54,0x0b,0x43,0xed,0xcf,0xac,0x62},
75 {0xe4,0xb3,0x1c,0xa9,0xc9,0x08,0xe8,0x95,0x80,0xdf,0x94,0xfa,0x75,0x8f,0x3f,0xa6},
76 {0x47,0x07,0xa7,0xfc,0xf3,0x73,0x17,0xba,0x83,0x59,0x3c,0x19,0xe6,0x85,0x4f,0xa8},
77 {0x68,0x6b,0x81,0xb2,0x71,0x64,0xda,0x8b,0xf8,0xeb,0x0f,0x4b,0x70,0x56,0x9d,0x35},
78 {0x1e,0x24,0x0e,0x5e,0x63,0x58,0xd1,0xa2,0x25,0x22,0x7c,0x3b,0x01,0x21,0x78,0x87},
79 {0xd4,0x00,0x46,0x57,0x9f,0xd3,0x27,0x52,0x4c,0x36,0x02,0xe7,0xa0,0xc4,0xc8,0x9e},
80 {0xea,0xbf,0x8a,0xd2,0x40,0xc7,0x38,0xb5,0xa3,0xf7,0xf2,0xce,0xf9,0x61,0x15,0xa1},
81 {0xe0,0xae,0x5d,0xa4,0x9b,0x34,0x1a,0x55,0xad,0x93,0x32,0x30,0xf5,0x8c,0xb1,0xe3},
82 {0x1d,0xf6,0xe2,0x2e,0x82,0x66,0xca,0x60,0xc0,0x29,0x23,0xab,0x0d,0x53,0x4e,0x6f},
83 {0xd5,0xdb,0x37,0x45,0xde,0xfd,0x8e,0x2f,0x03,0xff,0x6a,0x72,0x6d,0x6c,0x5b,0x51},
84 {0x8d,0x1b,0xaf,0x92,0xbb,0xdd,0xbc,0x7f,0x11,0xd9,0x5c,0x41,0x1f,0x10,0x5a,0xd8},
85 {0x0a,0xc1,0x31,0x88,0xa5,0xcd,0x7b,0xbd,0x2d,0x74,0xd0,0x12,0xb8,0xe5,0xb4,0xb0},
86 {0x89,0x69,0x97,0x4a,0x0c,0x96,0x77,0x7e,0x65,0xb9,0xf1,0x09,0xc5,0x6e,0xc6,0x84},
87 {0x18,0xf0,0x7d,0xec,0x3a,0xdc,0x4d,0x20,0x79,0xee,0x5f,0x3e,0xd7,0xcb,0x39,0x48}
88 };
89 
90 /* System parameter */
91 static const unsigned long FK[4] = {0xa3b1bac6,0x56aa3350,0x677d9197,0xb27022dc};
92 
93 /* fixed parameter */
94 static const unsigned long CK[32] =
95 {
96 0x00070e15,0x1c232a31,0x383f464d,0x545b6269,
97 0x70777e85,0x8c939aa1,0xa8afb6bd,0xc4cbd2d9,
98 0xe0e7eef5,0xfc030a11,0x181f262d,0x343b4249,
99 0x50575e65,0x6c737a81,0x888f969d,0xa4abb2b9,
100 0xc0c7ced5,0xdce3eaf1,0xf8ff060d,0x141b2229,
101 0x30373e45,0x4c535a61,0x686f767d,0x848b9299,
102 0xa0a7aeb5,0xbcc3cad1,0xd8dfe6ed,0xf4fb0209,
103 0x10171e25,0x2c333a41,0x484f565d,0x646b7279
104 };
105 
106 
107 /*
108  * private function:
109  * look up in SboxTable and get the related value.
110  * args:    [in] inch: 0x00~0xFF (8 bits unsigned value).
111  */
sm4Sbox(unsigned char inch)112 static unsigned char sm4Sbox(unsigned char inch)
113 {
114     unsigned char *pTable = (unsigned char *)SboxTable;
115     unsigned char retVal = (unsigned char)(pTable[inch]);
116     return retVal;
117 }
118 
119 /*
120  * private F(Lt) function:
121  * "T algorithm" == "L algorithm" + "t algorithm".
122  * args:    [in] a: a is a 32 bits unsigned value;
123  * return: c: c is calculated with line algorithm "L" and nonline algorithm "t"
124  */
sm4Lt(unsigned long ka)125 static unsigned long sm4Lt(unsigned long ka)
126 {
127     unsigned long bb = 0;
128     unsigned long c = 0;
129     unsigned char a[4];
130 	unsigned char b[4];
131     PUT_ULONG_BE(ka,a,0)
132     b[0] = sm4Sbox(a[0]);
133     b[1] = sm4Sbox(a[1]);
134     b[2] = sm4Sbox(a[2]);
135     b[3] = sm4Sbox(a[3]);
136 	GET_ULONG_BE(bb,b,0)
137     c =bb^(ROTL(bb, 2))^(ROTL(bb, 10))^(ROTL(bb, 18))^(ROTL(bb, 24));
138     return c;
139 }
140 
141 /*
142  * private F function:
143  * Calculating and getting encryption/decryption contents.
144  * args:    [in] x0: original contents;
145  * args:    [in] x1: original contents;
146  * args:    [in] x2: original contents;
147  * args:    [in] x3: original contents;
148  * args:    [in] rk: encryption/decryption key;
149  * return the contents of encryption/decryption contents.
150  */
sm4F(unsigned long x0,unsigned long x1,unsigned long x2,unsigned long x3,unsigned long rk)151 static unsigned long sm4F(unsigned long x0, unsigned long x1, unsigned long x2, unsigned long x3, unsigned long rk)
152 {
153     return (x0^sm4Lt(x1^x2^x3^rk));
154 }
155 
156 
157 /* private function:
158  * Calculating round encryption key.
159  * args:    [in] a: a is a 32 bits unsigned value;
160  * return: sk[i]: i{0,1,2,3,...31}.
161  */
sm4CalciRK(unsigned long ka)162 static unsigned long sm4CalciRK(unsigned long ka)
163 {
164     unsigned long bb = 0;
165     unsigned long rk = 0;
166     unsigned char a[4];
167     unsigned char b[4];
168     PUT_ULONG_BE(ka,a,0)
169     b[0] = sm4Sbox(a[0]);
170     b[1] = sm4Sbox(a[1]);
171     b[2] = sm4Sbox(a[2]);
172     b[3] = sm4Sbox(a[3]);
173 	GET_ULONG_BE(bb,b,0)
174     rk = bb^(ROTL(bb, 13))^(ROTL(bb, 23));
175     return rk;
176 }
177 
sm4_setkey(unsigned long SK[32],const unsigned char key[16])178 static void sm4_setkey( unsigned long SK[32], const unsigned char key[16] )
179 {
180     unsigned long MK[4];
181     unsigned long k[36];
182     unsigned long i = 0;
183 
184     GET_ULONG_BE( MK[0], key, 0 );
185     GET_ULONG_BE( MK[1], key, 4 );
186     GET_ULONG_BE( MK[2], key, 8 );
187     GET_ULONG_BE( MK[3], key, 12 );
188     k[0] = MK[0]^FK[0];
189     k[1] = MK[1]^FK[1];
190     k[2] = MK[2]^FK[2];
191     k[3] = MK[3]^FK[3];
192     for(; i<32; i++)
193     {
194         k[i+4] = k[i] ^ (sm4CalciRK(k[i+1]^k[i+2]^k[i+3]^CK[i]));
195         SK[i] = k[i+4];
196 	}
197 
198 }
199 
200 /*
201  * SM4 standard one round processing
202  *
203  */
sm4_one_round(unsigned long sk[32],const unsigned char input[16],unsigned char output[16])204 static void sm4_one_round( unsigned long sk[32],
205                     const unsigned char input[16],
206                     unsigned char output[16] )
207 {
208     unsigned long i = 0;
209     unsigned long ulbuf[36];
210 
211     memset(ulbuf, 0, sizeof(ulbuf));
212     GET_ULONG_BE( ulbuf[0], input, 0 )
213     GET_ULONG_BE( ulbuf[1], input, 4 )
214     GET_ULONG_BE( ulbuf[2], input, 8 )
215     GET_ULONG_BE( ulbuf[3], input, 12 )
216     while(i<32)
217     {
218         ulbuf[i+4] = sm4F(ulbuf[i], ulbuf[i+1], ulbuf[i+2], ulbuf[i+3], sk[i]);
219 	    i++;
220     }
221 	PUT_ULONG_BE(ulbuf[35],output,0);
222 	PUT_ULONG_BE(ulbuf[34],output,4);
223 	PUT_ULONG_BE(ulbuf[33],output,8);
224 	PUT_ULONG_BE(ulbuf[32],output,12);
225 }
226 
227 /*
228  * SM4 key schedule (128-bit, encryption)
229  */
rk_sm4_setkey_enc(sm4_context * ctx,const unsigned char key[16])230 void rk_sm4_setkey_enc( sm4_context *ctx, const unsigned char key[16] )
231 {
232     ctx->mode = ENCRYPT;
233 	sm4_setkey( ctx->sk, key );
234 }
235 
236 /*
237  * SM4 key schedule (128-bit, decryption)
238  */
rk_sm4_setkey_dec(sm4_context * ctx,const unsigned char key[16])239 void rk_sm4_setkey_dec( sm4_context *ctx, const unsigned char key[16] )
240 {
241     int i;
242 	ctx->mode = DECRYPT;
243     sm4_setkey( ctx->sk, key );
244     for( i = 0; i < 16; i ++ )
245     {
246         SWAP( ctx->sk[ i ], ctx->sk[ 31-i] );
247     }
248 }
249 
250 
251 /*
252  * SM4-ECB block encryption/decryption
253  */
254 
rk_sm4_crypt_ecb(void * ctx,const unsigned char * input,unsigned char * output)255 int rk_sm4_crypt_ecb( void *ctx,
256 				   const unsigned char *input,
257                    unsigned char *output)
258 {
259     sm4_one_round( ((sm4_context*)ctx)->sk, input, output );
260 	return 0;
261 }
262 
rk_rk_sm4_crypt_ecb(const unsigned char * input,unsigned char * output,void * ctx)263 int rk_rk_sm4_crypt_ecb(const unsigned char *input,
264                    unsigned char *output, void *ctx)
265 {
266  	return rk_sm4_crypt_ecb(ctx, input, output);
267 }
268 
269