1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/tlb.h>
71
72 #include <trace/events/task.h>
73 #include "internal.h"
74
75 #include <trace/events/sched.h>
76
77 EXPORT_TRACEPOINT_SYMBOL_GPL(task_rename);
78
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80
81 int suid_dumpable = 0;
82
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85
__register_binfmt(struct linux_binfmt * fmt,int insert)86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88 BUG_ON(!fmt);
89 if (WARN_ON(!fmt->load_binary))
90 return;
91 write_lock(&binfmt_lock);
92 insert ? list_add(&fmt->lh, &formats) :
93 list_add_tail(&fmt->lh, &formats);
94 write_unlock(&binfmt_lock);
95 }
96
97 EXPORT_SYMBOL(__register_binfmt);
98
unregister_binfmt(struct linux_binfmt * fmt)99 void unregister_binfmt(struct linux_binfmt * fmt)
100 {
101 write_lock(&binfmt_lock);
102 list_del(&fmt->lh);
103 write_unlock(&binfmt_lock);
104 }
105
106 EXPORT_SYMBOL(unregister_binfmt);
107
put_binfmt(struct linux_binfmt * fmt)108 static inline void put_binfmt(struct linux_binfmt * fmt)
109 {
110 module_put(fmt->module);
111 }
112
path_noexec(const struct path * path)113 bool path_noexec(const struct path *path)
114 {
115 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
116 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
117 }
118
119 #ifdef CONFIG_USELIB
120 /*
121 * Note that a shared library must be both readable and executable due to
122 * security reasons.
123 *
124 * Also note that we take the address to load from from the file itself.
125 */
SYSCALL_DEFINE1(uselib,const char __user *,library)126 SYSCALL_DEFINE1(uselib, const char __user *, library)
127 {
128 struct linux_binfmt *fmt;
129 struct file *file;
130 struct filename *tmp = getname(library);
131 int error = PTR_ERR(tmp);
132 static const struct open_flags uselib_flags = {
133 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
134 .acc_mode = MAY_READ | MAY_EXEC,
135 .intent = LOOKUP_OPEN,
136 .lookup_flags = LOOKUP_FOLLOW,
137 };
138
139 if (IS_ERR(tmp))
140 goto out;
141
142 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
143 putname(tmp);
144 error = PTR_ERR(file);
145 if (IS_ERR(file))
146 goto out;
147
148 /*
149 * may_open() has already checked for this, so it should be
150 * impossible to trip now. But we need to be extra cautious
151 * and check again at the very end too.
152 */
153 error = -EACCES;
154 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
155 path_noexec(&file->f_path)))
156 goto exit;
157
158 fsnotify_open(file);
159
160 error = -ENOEXEC;
161
162 read_lock(&binfmt_lock);
163 list_for_each_entry(fmt, &formats, lh) {
164 if (!fmt->load_shlib)
165 continue;
166 if (!try_module_get(fmt->module))
167 continue;
168 read_unlock(&binfmt_lock);
169 error = fmt->load_shlib(file);
170 read_lock(&binfmt_lock);
171 put_binfmt(fmt);
172 if (error != -ENOEXEC)
173 break;
174 }
175 read_unlock(&binfmt_lock);
176 exit:
177 fput(file);
178 out:
179 return error;
180 }
181 #endif /* #ifdef CONFIG_USELIB */
182
183 #ifdef CONFIG_MMU
184 /*
185 * The nascent bprm->mm is not visible until exec_mmap() but it can
186 * use a lot of memory, account these pages in current->mm temporary
187 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
188 * change the counter back via acct_arg_size(0).
189 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)190 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
191 {
192 struct mm_struct *mm = current->mm;
193 long diff = (long)(pages - bprm->vma_pages);
194
195 if (!mm || !diff)
196 return;
197
198 bprm->vma_pages = pages;
199 add_mm_counter(mm, MM_ANONPAGES, diff);
200 }
201
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)202 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
203 int write)
204 {
205 struct page *page;
206 int ret;
207 unsigned int gup_flags = FOLL_FORCE;
208
209 #ifdef CONFIG_STACK_GROWSUP
210 if (write) {
211 ret = expand_downwards(bprm->vma, pos);
212 if (ret < 0)
213 return NULL;
214 }
215 #endif
216
217 if (write)
218 gup_flags |= FOLL_WRITE;
219
220 /*
221 * We are doing an exec(). 'current' is the process
222 * doing the exec and bprm->mm is the new process's mm.
223 */
224 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
225 &page, NULL, NULL);
226 if (ret <= 0)
227 return NULL;
228
229 if (write)
230 acct_arg_size(bprm, vma_pages(bprm->vma));
231
232 return page;
233 }
234
put_arg_page(struct page * page)235 static void put_arg_page(struct page *page)
236 {
237 put_user_page(page);
238 }
239
free_arg_pages(struct linux_binprm * bprm)240 static void free_arg_pages(struct linux_binprm *bprm)
241 {
242 }
243
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)244 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
245 struct page *page)
246 {
247 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
248 }
249
__bprm_mm_init(struct linux_binprm * bprm)250 static int __bprm_mm_init(struct linux_binprm *bprm)
251 {
252 int err;
253 struct vm_area_struct *vma = NULL;
254 struct mm_struct *mm = bprm->mm;
255
256 bprm->vma = vma = vm_area_alloc(mm);
257 if (!vma)
258 return -ENOMEM;
259 vma_set_anonymous(vma);
260
261 if (mmap_write_lock_killable(mm)) {
262 err = -EINTR;
263 goto err_free;
264 }
265
266 /*
267 * Place the stack at the largest stack address the architecture
268 * supports. Later, we'll move this to an appropriate place. We don't
269 * use STACK_TOP because that can depend on attributes which aren't
270 * configured yet.
271 */
272 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
273 vma->vm_end = STACK_TOP_MAX;
274 vma->vm_start = vma->vm_end - PAGE_SIZE;
275 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
276 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
277
278 err = insert_vm_struct(mm, vma);
279 if (err)
280 goto err;
281
282 mm->stack_vm = mm->total_vm = 1;
283 mmap_write_unlock(mm);
284 bprm->p = vma->vm_end - sizeof(void *);
285 return 0;
286 err:
287 mmap_write_unlock(mm);
288 err_free:
289 bprm->vma = NULL;
290 vm_area_free(vma);
291 return err;
292 }
293
valid_arg_len(struct linux_binprm * bprm,long len)294 static bool valid_arg_len(struct linux_binprm *bprm, long len)
295 {
296 return len <= MAX_ARG_STRLEN;
297 }
298
299 #else
300
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)301 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
302 {
303 }
304
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)305 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
306 int write)
307 {
308 struct page *page;
309
310 page = bprm->page[pos / PAGE_SIZE];
311 if (!page && write) {
312 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
313 if (!page)
314 return NULL;
315 bprm->page[pos / PAGE_SIZE] = page;
316 }
317
318 return page;
319 }
320
put_arg_page(struct page * page)321 static void put_arg_page(struct page *page)
322 {
323 }
324
free_arg_page(struct linux_binprm * bprm,int i)325 static void free_arg_page(struct linux_binprm *bprm, int i)
326 {
327 if (bprm->page[i]) {
328 __free_page(bprm->page[i]);
329 bprm->page[i] = NULL;
330 }
331 }
332
free_arg_pages(struct linux_binprm * bprm)333 static void free_arg_pages(struct linux_binprm *bprm)
334 {
335 int i;
336
337 for (i = 0; i < MAX_ARG_PAGES; i++)
338 free_arg_page(bprm, i);
339 }
340
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)341 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
342 struct page *page)
343 {
344 }
345
__bprm_mm_init(struct linux_binprm * bprm)346 static int __bprm_mm_init(struct linux_binprm *bprm)
347 {
348 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
349 return 0;
350 }
351
valid_arg_len(struct linux_binprm * bprm,long len)352 static bool valid_arg_len(struct linux_binprm *bprm, long len)
353 {
354 return len <= bprm->p;
355 }
356
357 #endif /* CONFIG_MMU */
358
359 /*
360 * Create a new mm_struct and populate it with a temporary stack
361 * vm_area_struct. We don't have enough context at this point to set the stack
362 * flags, permissions, and offset, so we use temporary values. We'll update
363 * them later in setup_arg_pages().
364 */
bprm_mm_init(struct linux_binprm * bprm)365 static int bprm_mm_init(struct linux_binprm *bprm)
366 {
367 int err;
368 struct mm_struct *mm = NULL;
369
370 bprm->mm = mm = mm_alloc();
371 err = -ENOMEM;
372 if (!mm)
373 goto err;
374
375 /* Save current stack limit for all calculations made during exec. */
376 task_lock(current->group_leader);
377 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
378 task_unlock(current->group_leader);
379
380 err = __bprm_mm_init(bprm);
381 if (err)
382 goto err;
383
384 return 0;
385
386 err:
387 if (mm) {
388 bprm->mm = NULL;
389 mmdrop(mm);
390 }
391
392 return err;
393 }
394
395 struct user_arg_ptr {
396 #ifdef CONFIG_COMPAT
397 bool is_compat;
398 #endif
399 union {
400 const char __user *const __user *native;
401 #ifdef CONFIG_COMPAT
402 const compat_uptr_t __user *compat;
403 #endif
404 } ptr;
405 };
406
get_user_arg_ptr(struct user_arg_ptr argv,int nr)407 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
408 {
409 const char __user *native;
410
411 #ifdef CONFIG_COMPAT
412 if (unlikely(argv.is_compat)) {
413 compat_uptr_t compat;
414
415 if (get_user(compat, argv.ptr.compat + nr))
416 return ERR_PTR(-EFAULT);
417
418 return compat_ptr(compat);
419 }
420 #endif
421
422 if (get_user(native, argv.ptr.native + nr))
423 return ERR_PTR(-EFAULT);
424
425 return native;
426 }
427
428 /*
429 * count() counts the number of strings in array ARGV.
430 */
count(struct user_arg_ptr argv,int max)431 static int count(struct user_arg_ptr argv, int max)
432 {
433 int i = 0;
434
435 if (argv.ptr.native != NULL) {
436 for (;;) {
437 const char __user *p = get_user_arg_ptr(argv, i);
438
439 if (!p)
440 break;
441
442 if (IS_ERR(p))
443 return -EFAULT;
444
445 if (i >= max)
446 return -E2BIG;
447 ++i;
448
449 if (fatal_signal_pending(current))
450 return -ERESTARTNOHAND;
451 cond_resched();
452 }
453 }
454 return i;
455 }
456
count_strings_kernel(const char * const * argv)457 static int count_strings_kernel(const char *const *argv)
458 {
459 int i;
460
461 if (!argv)
462 return 0;
463
464 for (i = 0; argv[i]; ++i) {
465 if (i >= MAX_ARG_STRINGS)
466 return -E2BIG;
467 if (fatal_signal_pending(current))
468 return -ERESTARTNOHAND;
469 cond_resched();
470 }
471 return i;
472 }
473
bprm_stack_limits(struct linux_binprm * bprm)474 static int bprm_stack_limits(struct linux_binprm *bprm)
475 {
476 unsigned long limit, ptr_size;
477
478 /*
479 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
480 * (whichever is smaller) for the argv+env strings.
481 * This ensures that:
482 * - the remaining binfmt code will not run out of stack space,
483 * - the program will have a reasonable amount of stack left
484 * to work from.
485 */
486 limit = _STK_LIM / 4 * 3;
487 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
488 /*
489 * We've historically supported up to 32 pages (ARG_MAX)
490 * of argument strings even with small stacks
491 */
492 limit = max_t(unsigned long, limit, ARG_MAX);
493 /*
494 * We must account for the size of all the argv and envp pointers to
495 * the argv and envp strings, since they will also take up space in
496 * the stack. They aren't stored until much later when we can't
497 * signal to the parent that the child has run out of stack space.
498 * Instead, calculate it here so it's possible to fail gracefully.
499 *
500 * In the case of argc = 0, make sure there is space for adding a
501 * empty string (which will bump argc to 1), to ensure confused
502 * userspace programs don't start processing from argv[1], thinking
503 * argc can never be 0, to keep them from walking envp by accident.
504 * See do_execveat_common().
505 */
506 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
507 if (limit <= ptr_size)
508 return -E2BIG;
509 limit -= ptr_size;
510
511 bprm->argmin = bprm->p - limit;
512 return 0;
513 }
514
515 /*
516 * 'copy_strings()' copies argument/environment strings from the old
517 * processes's memory to the new process's stack. The call to get_user_pages()
518 * ensures the destination page is created and not swapped out.
519 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)520 static int copy_strings(int argc, struct user_arg_ptr argv,
521 struct linux_binprm *bprm)
522 {
523 struct page *kmapped_page = NULL;
524 char *kaddr = NULL;
525 unsigned long kpos = 0;
526 int ret;
527
528 while (argc-- > 0) {
529 const char __user *str;
530 int len;
531 unsigned long pos;
532
533 ret = -EFAULT;
534 str = get_user_arg_ptr(argv, argc);
535 if (IS_ERR(str))
536 goto out;
537
538 len = strnlen_user(str, MAX_ARG_STRLEN);
539 if (!len)
540 goto out;
541
542 ret = -E2BIG;
543 if (!valid_arg_len(bprm, len))
544 goto out;
545
546 /* We're going to work our way backwords. */
547 pos = bprm->p;
548 str += len;
549 bprm->p -= len;
550 #ifdef CONFIG_MMU
551 if (bprm->p < bprm->argmin)
552 goto out;
553 #endif
554
555 while (len > 0) {
556 int offset, bytes_to_copy;
557
558 if (fatal_signal_pending(current)) {
559 ret = -ERESTARTNOHAND;
560 goto out;
561 }
562 cond_resched();
563
564 offset = pos % PAGE_SIZE;
565 if (offset == 0)
566 offset = PAGE_SIZE;
567
568 bytes_to_copy = offset;
569 if (bytes_to_copy > len)
570 bytes_to_copy = len;
571
572 offset -= bytes_to_copy;
573 pos -= bytes_to_copy;
574 str -= bytes_to_copy;
575 len -= bytes_to_copy;
576
577 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
578 struct page *page;
579
580 page = get_arg_page(bprm, pos, 1);
581 if (!page) {
582 ret = -E2BIG;
583 goto out;
584 }
585
586 if (kmapped_page) {
587 flush_kernel_dcache_page(kmapped_page);
588 kunmap(kmapped_page);
589 put_arg_page(kmapped_page);
590 }
591 kmapped_page = page;
592 kaddr = kmap(kmapped_page);
593 kpos = pos & PAGE_MASK;
594 flush_arg_page(bprm, kpos, kmapped_page);
595 }
596 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
597 ret = -EFAULT;
598 goto out;
599 }
600 }
601 }
602 ret = 0;
603 out:
604 if (kmapped_page) {
605 flush_kernel_dcache_page(kmapped_page);
606 kunmap(kmapped_page);
607 put_arg_page(kmapped_page);
608 }
609 return ret;
610 }
611
612 /*
613 * Copy and argument/environment string from the kernel to the processes stack.
614 */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)615 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
616 {
617 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
618 unsigned long pos = bprm->p;
619
620 if (len == 0)
621 return -EFAULT;
622 if (!valid_arg_len(bprm, len))
623 return -E2BIG;
624
625 /* We're going to work our way backwards. */
626 arg += len;
627 bprm->p -= len;
628 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
629 return -E2BIG;
630
631 while (len > 0) {
632 unsigned int bytes_to_copy = min_t(unsigned int, len,
633 min_not_zero(offset_in_page(pos), PAGE_SIZE));
634 struct page *page;
635 char *kaddr;
636
637 pos -= bytes_to_copy;
638 arg -= bytes_to_copy;
639 len -= bytes_to_copy;
640
641 page = get_arg_page(bprm, pos, 1);
642 if (!page)
643 return -E2BIG;
644 kaddr = kmap_atomic(page);
645 flush_arg_page(bprm, pos & PAGE_MASK, page);
646 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
647 flush_kernel_dcache_page(page);
648 kunmap_atomic(kaddr);
649 put_arg_page(page);
650 }
651
652 return 0;
653 }
654 EXPORT_SYMBOL(copy_string_kernel);
655
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)656 static int copy_strings_kernel(int argc, const char *const *argv,
657 struct linux_binprm *bprm)
658 {
659 while (argc-- > 0) {
660 int ret = copy_string_kernel(argv[argc], bprm);
661 if (ret < 0)
662 return ret;
663 if (fatal_signal_pending(current))
664 return -ERESTARTNOHAND;
665 cond_resched();
666 }
667 return 0;
668 }
669
670 #ifdef CONFIG_MMU
671
672 /*
673 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
674 * the binfmt code determines where the new stack should reside, we shift it to
675 * its final location. The process proceeds as follows:
676 *
677 * 1) Use shift to calculate the new vma endpoints.
678 * 2) Extend vma to cover both the old and new ranges. This ensures the
679 * arguments passed to subsequent functions are consistent.
680 * 3) Move vma's page tables to the new range.
681 * 4) Free up any cleared pgd range.
682 * 5) Shrink the vma to cover only the new range.
683 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)684 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
685 {
686 struct mm_struct *mm = vma->vm_mm;
687 unsigned long old_start = vma->vm_start;
688 unsigned long old_end = vma->vm_end;
689 unsigned long length = old_end - old_start;
690 unsigned long new_start = old_start - shift;
691 unsigned long new_end = old_end - shift;
692 struct mmu_gather tlb;
693
694 BUG_ON(new_start > new_end);
695
696 /*
697 * ensure there are no vmas between where we want to go
698 * and where we are
699 */
700 if (vma != find_vma(mm, new_start))
701 return -EFAULT;
702
703 /*
704 * cover the whole range: [new_start, old_end)
705 */
706 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
707 return -ENOMEM;
708
709 /*
710 * move the page tables downwards, on failure we rely on
711 * process cleanup to remove whatever mess we made.
712 */
713 if (length != move_page_tables(vma, old_start,
714 vma, new_start, length, false))
715 return -ENOMEM;
716
717 lru_add_drain();
718 tlb_gather_mmu(&tlb, mm, old_start, old_end);
719 if (new_end > old_start) {
720 /*
721 * when the old and new regions overlap clear from new_end.
722 */
723 free_pgd_range(&tlb, new_end, old_end, new_end,
724 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
725 } else {
726 /*
727 * otherwise, clean from old_start; this is done to not touch
728 * the address space in [new_end, old_start) some architectures
729 * have constraints on va-space that make this illegal (IA64) -
730 * for the others its just a little faster.
731 */
732 free_pgd_range(&tlb, old_start, old_end, new_end,
733 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
734 }
735 tlb_finish_mmu(&tlb, old_start, old_end);
736
737 /*
738 * Shrink the vma to just the new range. Always succeeds.
739 */
740 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
741
742 return 0;
743 }
744
745 /*
746 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
747 * the stack is optionally relocated, and some extra space is added.
748 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)749 int setup_arg_pages(struct linux_binprm *bprm,
750 unsigned long stack_top,
751 int executable_stack)
752 {
753 unsigned long ret;
754 unsigned long stack_shift;
755 struct mm_struct *mm = current->mm;
756 struct vm_area_struct *vma = bprm->vma;
757 struct vm_area_struct *prev = NULL;
758 unsigned long vm_flags;
759 unsigned long stack_base;
760 unsigned long stack_size;
761 unsigned long stack_expand;
762 unsigned long rlim_stack;
763
764 #ifdef CONFIG_STACK_GROWSUP
765 /* Limit stack size */
766 stack_base = bprm->rlim_stack.rlim_max;
767 if (stack_base > STACK_SIZE_MAX)
768 stack_base = STACK_SIZE_MAX;
769
770 /* Add space for stack randomization. */
771 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
772
773 /* Make sure we didn't let the argument array grow too large. */
774 if (vma->vm_end - vma->vm_start > stack_base)
775 return -ENOMEM;
776
777 stack_base = PAGE_ALIGN(stack_top - stack_base);
778
779 stack_shift = vma->vm_start - stack_base;
780 mm->arg_start = bprm->p - stack_shift;
781 bprm->p = vma->vm_end - stack_shift;
782 #else
783 stack_top = arch_align_stack(stack_top);
784 stack_top = PAGE_ALIGN(stack_top);
785
786 if (unlikely(stack_top < mmap_min_addr) ||
787 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
788 return -ENOMEM;
789
790 stack_shift = vma->vm_end - stack_top;
791
792 bprm->p -= stack_shift;
793 mm->arg_start = bprm->p;
794 #endif
795
796 if (bprm->loader)
797 bprm->loader -= stack_shift;
798 bprm->exec -= stack_shift;
799
800 if (mmap_write_lock_killable(mm))
801 return -EINTR;
802
803 vm_flags = VM_STACK_FLAGS;
804
805 /*
806 * Adjust stack execute permissions; explicitly enable for
807 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
808 * (arch default) otherwise.
809 */
810 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
811 vm_flags |= VM_EXEC;
812 else if (executable_stack == EXSTACK_DISABLE_X)
813 vm_flags &= ~VM_EXEC;
814 vm_flags |= mm->def_flags;
815 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
816
817 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
818 vm_flags);
819 if (ret)
820 goto out_unlock;
821 BUG_ON(prev != vma);
822
823 if (unlikely(vm_flags & VM_EXEC)) {
824 pr_warn_once("process '%pD4' started with executable stack\n",
825 bprm->file);
826 }
827
828 /* Move stack pages down in memory. */
829 if (stack_shift) {
830 ret = shift_arg_pages(vma, stack_shift);
831 if (ret)
832 goto out_unlock;
833 }
834
835 /* mprotect_fixup is overkill to remove the temporary stack flags */
836 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
837
838 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
839 stack_size = vma->vm_end - vma->vm_start;
840 /*
841 * Align this down to a page boundary as expand_stack
842 * will align it up.
843 */
844 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
845 #ifdef CONFIG_STACK_GROWSUP
846 if (stack_size + stack_expand > rlim_stack)
847 stack_base = vma->vm_start + rlim_stack;
848 else
849 stack_base = vma->vm_end + stack_expand;
850 #else
851 if (stack_size + stack_expand > rlim_stack)
852 stack_base = vma->vm_end - rlim_stack;
853 else
854 stack_base = vma->vm_start - stack_expand;
855 #endif
856 current->mm->start_stack = bprm->p;
857 ret = expand_stack(vma, stack_base);
858 if (ret)
859 ret = -EFAULT;
860
861 out_unlock:
862 mmap_write_unlock(mm);
863 return ret;
864 }
865 EXPORT_SYMBOL(setup_arg_pages);
866
867 #else
868
869 /*
870 * Transfer the program arguments and environment from the holding pages
871 * onto the stack. The provided stack pointer is adjusted accordingly.
872 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)873 int transfer_args_to_stack(struct linux_binprm *bprm,
874 unsigned long *sp_location)
875 {
876 unsigned long index, stop, sp;
877 int ret = 0;
878
879 stop = bprm->p >> PAGE_SHIFT;
880 sp = *sp_location;
881
882 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
883 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
884 char *src = kmap(bprm->page[index]) + offset;
885 sp -= PAGE_SIZE - offset;
886 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
887 ret = -EFAULT;
888 kunmap(bprm->page[index]);
889 if (ret)
890 goto out;
891 }
892
893 *sp_location = sp;
894
895 out:
896 return ret;
897 }
898 EXPORT_SYMBOL(transfer_args_to_stack);
899
900 #endif /* CONFIG_MMU */
901
do_open_execat(int fd,struct filename * name,int flags)902 static struct file *do_open_execat(int fd, struct filename *name, int flags)
903 {
904 struct file *file;
905 int err;
906 struct open_flags open_exec_flags = {
907 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
908 .acc_mode = MAY_EXEC,
909 .intent = LOOKUP_OPEN,
910 .lookup_flags = LOOKUP_FOLLOW,
911 };
912
913 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
914 return ERR_PTR(-EINVAL);
915 if (flags & AT_SYMLINK_NOFOLLOW)
916 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
917 if (flags & AT_EMPTY_PATH)
918 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
919
920 file = do_filp_open(fd, name, &open_exec_flags);
921 if (IS_ERR(file))
922 goto out;
923
924 /*
925 * may_open() has already checked for this, so it should be
926 * impossible to trip now. But we need to be extra cautious
927 * and check again at the very end too.
928 */
929 err = -EACCES;
930 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
931 path_noexec(&file->f_path)))
932 goto exit;
933
934 err = deny_write_access(file);
935 if (err)
936 goto exit;
937
938 if (name->name[0] != '\0')
939 fsnotify_open(file);
940
941 out:
942 return file;
943
944 exit:
945 fput(file);
946 return ERR_PTR(err);
947 }
948
open_exec(const char * name)949 struct file *open_exec(const char *name)
950 {
951 struct filename *filename = getname_kernel(name);
952 struct file *f = ERR_CAST(filename);
953
954 if (!IS_ERR(filename)) {
955 f = do_open_execat(AT_FDCWD, filename, 0);
956 putname(filename);
957 }
958 return f;
959 }
960 EXPORT_SYMBOL(open_exec);
961
962 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
963 defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)964 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
965 {
966 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
967 if (res > 0)
968 flush_icache_user_range(addr, addr + len);
969 return res;
970 }
971 EXPORT_SYMBOL(read_code);
972 #endif
973
974 /*
975 * Maps the mm_struct mm into the current task struct.
976 * On success, this function returns with exec_update_lock
977 * held for writing.
978 */
exec_mmap(struct mm_struct * mm)979 static int exec_mmap(struct mm_struct *mm)
980 {
981 struct task_struct *tsk;
982 struct mm_struct *old_mm, *active_mm;
983 int ret;
984
985 /* Notify parent that we're no longer interested in the old VM */
986 tsk = current;
987 old_mm = current->mm;
988 exec_mm_release(tsk, old_mm);
989 if (old_mm)
990 sync_mm_rss(old_mm);
991
992 ret = down_write_killable(&tsk->signal->exec_update_lock);
993 if (ret)
994 return ret;
995
996 if (old_mm) {
997 /*
998 * Make sure that if there is a core dump in progress
999 * for the old mm, we get out and die instead of going
1000 * through with the exec. We must hold mmap_lock around
1001 * checking core_state and changing tsk->mm.
1002 */
1003 mmap_read_lock(old_mm);
1004 if (unlikely(old_mm->core_state)) {
1005 mmap_read_unlock(old_mm);
1006 up_write(&tsk->signal->exec_update_lock);
1007 return -EINTR;
1008 }
1009 }
1010
1011 task_lock(tsk);
1012 membarrier_exec_mmap(mm);
1013
1014 local_irq_disable();
1015 active_mm = tsk->active_mm;
1016 tsk->active_mm = mm;
1017 tsk->mm = mm;
1018 /*
1019 * This prevents preemption while active_mm is being loaded and
1020 * it and mm are being updated, which could cause problems for
1021 * lazy tlb mm refcounting when these are updated by context
1022 * switches. Not all architectures can handle irqs off over
1023 * activate_mm yet.
1024 */
1025 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1026 local_irq_enable();
1027 activate_mm(active_mm, mm);
1028 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1029 local_irq_enable();
1030 tsk->mm->vmacache_seqnum = 0;
1031 vmacache_flush(tsk);
1032 task_unlock(tsk);
1033 if (old_mm) {
1034 mmap_read_unlock(old_mm);
1035 BUG_ON(active_mm != old_mm);
1036 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1037 mm_update_next_owner(old_mm);
1038 mmput(old_mm);
1039 return 0;
1040 }
1041 mmdrop(active_mm);
1042 return 0;
1043 }
1044
de_thread(struct task_struct * tsk)1045 static int de_thread(struct task_struct *tsk)
1046 {
1047 struct signal_struct *sig = tsk->signal;
1048 struct sighand_struct *oldsighand = tsk->sighand;
1049 spinlock_t *lock = &oldsighand->siglock;
1050
1051 if (thread_group_empty(tsk))
1052 goto no_thread_group;
1053
1054 /*
1055 * Kill all other threads in the thread group.
1056 */
1057 spin_lock_irq(lock);
1058 if (signal_group_exit(sig)) {
1059 /*
1060 * Another group action in progress, just
1061 * return so that the signal is processed.
1062 */
1063 spin_unlock_irq(lock);
1064 return -EAGAIN;
1065 }
1066
1067 sig->group_exit_task = tsk;
1068 sig->notify_count = zap_other_threads(tsk);
1069 if (!thread_group_leader(tsk))
1070 sig->notify_count--;
1071
1072 while (sig->notify_count) {
1073 __set_current_state(TASK_KILLABLE);
1074 spin_unlock_irq(lock);
1075 schedule();
1076 if (__fatal_signal_pending(tsk))
1077 goto killed;
1078 spin_lock_irq(lock);
1079 }
1080 spin_unlock_irq(lock);
1081
1082 /*
1083 * At this point all other threads have exited, all we have to
1084 * do is to wait for the thread group leader to become inactive,
1085 * and to assume its PID:
1086 */
1087 if (!thread_group_leader(tsk)) {
1088 struct task_struct *leader = tsk->group_leader;
1089
1090 for (;;) {
1091 cgroup_threadgroup_change_begin(tsk);
1092 write_lock_irq(&tasklist_lock);
1093 /*
1094 * Do this under tasklist_lock to ensure that
1095 * exit_notify() can't miss ->group_exit_task
1096 */
1097 sig->notify_count = -1;
1098 if (likely(leader->exit_state))
1099 break;
1100 __set_current_state(TASK_KILLABLE);
1101 write_unlock_irq(&tasklist_lock);
1102 cgroup_threadgroup_change_end(tsk);
1103 schedule();
1104 if (__fatal_signal_pending(tsk))
1105 goto killed;
1106 }
1107
1108 /*
1109 * The only record we have of the real-time age of a
1110 * process, regardless of execs it's done, is start_time.
1111 * All the past CPU time is accumulated in signal_struct
1112 * from sister threads now dead. But in this non-leader
1113 * exec, nothing survives from the original leader thread,
1114 * whose birth marks the true age of this process now.
1115 * When we take on its identity by switching to its PID, we
1116 * also take its birthdate (always earlier than our own).
1117 */
1118 tsk->start_time = leader->start_time;
1119 tsk->start_boottime = leader->start_boottime;
1120
1121 BUG_ON(!same_thread_group(leader, tsk));
1122 /*
1123 * An exec() starts a new thread group with the
1124 * TGID of the previous thread group. Rehash the
1125 * two threads with a switched PID, and release
1126 * the former thread group leader:
1127 */
1128
1129 /* Become a process group leader with the old leader's pid.
1130 * The old leader becomes a thread of the this thread group.
1131 */
1132 exchange_tids(tsk, leader);
1133 transfer_pid(leader, tsk, PIDTYPE_TGID);
1134 transfer_pid(leader, tsk, PIDTYPE_PGID);
1135 transfer_pid(leader, tsk, PIDTYPE_SID);
1136
1137 list_replace_rcu(&leader->tasks, &tsk->tasks);
1138 list_replace_init(&leader->sibling, &tsk->sibling);
1139
1140 tsk->group_leader = tsk;
1141 leader->group_leader = tsk;
1142
1143 tsk->exit_signal = SIGCHLD;
1144 leader->exit_signal = -1;
1145
1146 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1147 leader->exit_state = EXIT_DEAD;
1148
1149 /*
1150 * We are going to release_task()->ptrace_unlink() silently,
1151 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1152 * the tracer wont't block again waiting for this thread.
1153 */
1154 if (unlikely(leader->ptrace))
1155 __wake_up_parent(leader, leader->parent);
1156 write_unlock_irq(&tasklist_lock);
1157 cgroup_threadgroup_change_end(tsk);
1158
1159 release_task(leader);
1160 }
1161
1162 sig->group_exit_task = NULL;
1163 sig->notify_count = 0;
1164
1165 no_thread_group:
1166 /* we have changed execution domain */
1167 tsk->exit_signal = SIGCHLD;
1168
1169 BUG_ON(!thread_group_leader(tsk));
1170 return 0;
1171
1172 killed:
1173 /* protects against exit_notify() and __exit_signal() */
1174 read_lock(&tasklist_lock);
1175 sig->group_exit_task = NULL;
1176 sig->notify_count = 0;
1177 read_unlock(&tasklist_lock);
1178 return -EAGAIN;
1179 }
1180
1181
1182 /*
1183 * This function makes sure the current process has its own signal table,
1184 * so that flush_signal_handlers can later reset the handlers without
1185 * disturbing other processes. (Other processes might share the signal
1186 * table via the CLONE_SIGHAND option to clone().)
1187 */
unshare_sighand(struct task_struct * me)1188 static int unshare_sighand(struct task_struct *me)
1189 {
1190 struct sighand_struct *oldsighand = me->sighand;
1191
1192 if (refcount_read(&oldsighand->count) != 1) {
1193 struct sighand_struct *newsighand;
1194 /*
1195 * This ->sighand is shared with the CLONE_SIGHAND
1196 * but not CLONE_THREAD task, switch to the new one.
1197 */
1198 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1199 if (!newsighand)
1200 return -ENOMEM;
1201
1202 refcount_set(&newsighand->count, 1);
1203
1204 write_lock_irq(&tasklist_lock);
1205 spin_lock(&oldsighand->siglock);
1206 memcpy(newsighand->action, oldsighand->action,
1207 sizeof(newsighand->action));
1208 rcu_assign_pointer(me->sighand, newsighand);
1209 spin_unlock(&oldsighand->siglock);
1210 write_unlock_irq(&tasklist_lock);
1211
1212 __cleanup_sighand(oldsighand);
1213 }
1214 return 0;
1215 }
1216
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1217 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1218 {
1219 task_lock(tsk);
1220 strncpy(buf, tsk->comm, buf_size);
1221 task_unlock(tsk);
1222 return buf;
1223 }
1224 EXPORT_SYMBOL_GPL(__get_task_comm);
1225
1226 /*
1227 * These functions flushes out all traces of the currently running executable
1228 * so that a new one can be started
1229 */
1230
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1231 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1232 {
1233 task_lock(tsk);
1234 trace_task_rename(tsk, buf);
1235 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1236 task_unlock(tsk);
1237 perf_event_comm(tsk, exec);
1238 }
1239
1240 /*
1241 * Calling this is the point of no return. None of the failures will be
1242 * seen by userspace since either the process is already taking a fatal
1243 * signal (via de_thread() or coredump), or will have SEGV raised
1244 * (after exec_mmap()) by search_binary_handler (see below).
1245 */
begin_new_exec(struct linux_binprm * bprm)1246 int begin_new_exec(struct linux_binprm * bprm)
1247 {
1248 struct task_struct *me = current;
1249 int retval;
1250
1251 /* Once we are committed compute the creds */
1252 retval = bprm_creds_from_file(bprm);
1253 if (retval)
1254 return retval;
1255
1256 /*
1257 * Ensure all future errors are fatal.
1258 */
1259 bprm->point_of_no_return = true;
1260
1261 /*
1262 * Make this the only thread in the thread group.
1263 */
1264 retval = de_thread(me);
1265 if (retval)
1266 goto out;
1267
1268 /*
1269 * Must be called _before_ exec_mmap() as bprm->mm is
1270 * not visibile until then. This also enables the update
1271 * to be lockless.
1272 */
1273 set_mm_exe_file(bprm->mm, bprm->file);
1274
1275 /* If the binary is not readable then enforce mm->dumpable=0 */
1276 would_dump(bprm, bprm->file);
1277 if (bprm->have_execfd)
1278 would_dump(bprm, bprm->executable);
1279
1280 /*
1281 * Release all of the old mmap stuff
1282 */
1283 acct_arg_size(bprm, 0);
1284 retval = exec_mmap(bprm->mm);
1285 if (retval)
1286 goto out;
1287
1288 bprm->mm = NULL;
1289
1290 #ifdef CONFIG_POSIX_TIMERS
1291 spin_lock_irq(&me->sighand->siglock);
1292 posix_cpu_timers_exit(me);
1293 spin_unlock_irq(&me->sighand->siglock);
1294 exit_itimers(me);
1295 flush_itimer_signals();
1296 #endif
1297
1298 /*
1299 * Make the signal table private.
1300 */
1301 retval = unshare_sighand(me);
1302 if (retval)
1303 goto out_unlock;
1304
1305 /*
1306 * Ensure that the uaccess routines can actually operate on userspace
1307 * pointers:
1308 */
1309 force_uaccess_begin();
1310
1311 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1312 PF_NOFREEZE | PF_NO_SETAFFINITY);
1313 flush_thread();
1314 me->personality &= ~bprm->per_clear;
1315
1316 /*
1317 * We have to apply CLOEXEC before we change whether the process is
1318 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1319 * trying to access the should-be-closed file descriptors of a process
1320 * undergoing exec(2).
1321 */
1322 do_close_on_exec(me->files);
1323
1324 if (bprm->secureexec) {
1325 /* Make sure parent cannot signal privileged process. */
1326 me->pdeath_signal = 0;
1327
1328 /*
1329 * For secureexec, reset the stack limit to sane default to
1330 * avoid bad behavior from the prior rlimits. This has to
1331 * happen before arch_pick_mmap_layout(), which examines
1332 * RLIMIT_STACK, but after the point of no return to avoid
1333 * needing to clean up the change on failure.
1334 */
1335 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1336 bprm->rlim_stack.rlim_cur = _STK_LIM;
1337 }
1338
1339 me->sas_ss_sp = me->sas_ss_size = 0;
1340
1341 /*
1342 * Figure out dumpability. Note that this checking only of current
1343 * is wrong, but userspace depends on it. This should be testing
1344 * bprm->secureexec instead.
1345 */
1346 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1347 !(uid_eq(current_euid(), current_uid()) &&
1348 gid_eq(current_egid(), current_gid())))
1349 set_dumpable(current->mm, suid_dumpable);
1350 else
1351 set_dumpable(current->mm, SUID_DUMP_USER);
1352
1353 perf_event_exec();
1354 __set_task_comm(me, kbasename(bprm->filename), true);
1355
1356 /* An exec changes our domain. We are no longer part of the thread
1357 group */
1358 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1359 flush_signal_handlers(me, 0);
1360
1361 /*
1362 * install the new credentials for this executable
1363 */
1364 security_bprm_committing_creds(bprm);
1365
1366 commit_creds(bprm->cred);
1367 bprm->cred = NULL;
1368
1369 /*
1370 * Disable monitoring for regular users
1371 * when executing setuid binaries. Must
1372 * wait until new credentials are committed
1373 * by commit_creds() above
1374 */
1375 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1376 perf_event_exit_task(me);
1377 /*
1378 * cred_guard_mutex must be held at least to this point to prevent
1379 * ptrace_attach() from altering our determination of the task's
1380 * credentials; any time after this it may be unlocked.
1381 */
1382 security_bprm_committed_creds(bprm);
1383
1384 /* Pass the opened binary to the interpreter. */
1385 if (bprm->have_execfd) {
1386 retval = get_unused_fd_flags(0);
1387 if (retval < 0)
1388 goto out_unlock;
1389 fd_install(retval, bprm->executable);
1390 bprm->executable = NULL;
1391 bprm->execfd = retval;
1392 }
1393 return 0;
1394
1395 out_unlock:
1396 up_write(&me->signal->exec_update_lock);
1397 out:
1398 return retval;
1399 }
1400 EXPORT_SYMBOL(begin_new_exec);
1401
would_dump(struct linux_binprm * bprm,struct file * file)1402 void would_dump(struct linux_binprm *bprm, struct file *file)
1403 {
1404 struct inode *inode = file_inode(file);
1405 if (inode_permission(inode, MAY_READ) < 0) {
1406 struct user_namespace *old, *user_ns;
1407 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1408
1409 /* Ensure mm->user_ns contains the executable */
1410 user_ns = old = bprm->mm->user_ns;
1411 while ((user_ns != &init_user_ns) &&
1412 !privileged_wrt_inode_uidgid(user_ns, inode))
1413 user_ns = user_ns->parent;
1414
1415 if (old != user_ns) {
1416 bprm->mm->user_ns = get_user_ns(user_ns);
1417 put_user_ns(old);
1418 }
1419 }
1420 }
1421 EXPORT_SYMBOL(would_dump);
1422
setup_new_exec(struct linux_binprm * bprm)1423 void setup_new_exec(struct linux_binprm * bprm)
1424 {
1425 /* Setup things that can depend upon the personality */
1426 struct task_struct *me = current;
1427
1428 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1429
1430 arch_setup_new_exec();
1431
1432 /* Set the new mm task size. We have to do that late because it may
1433 * depend on TIF_32BIT which is only updated in flush_thread() on
1434 * some architectures like powerpc
1435 */
1436 me->mm->task_size = TASK_SIZE;
1437 up_write(&me->signal->exec_update_lock);
1438 mutex_unlock(&me->signal->cred_guard_mutex);
1439 }
1440 EXPORT_SYMBOL(setup_new_exec);
1441
1442 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1443 void finalize_exec(struct linux_binprm *bprm)
1444 {
1445 /* Store any stack rlimit changes before starting thread. */
1446 task_lock(current->group_leader);
1447 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1448 task_unlock(current->group_leader);
1449 }
1450 EXPORT_SYMBOL(finalize_exec);
1451
1452 /*
1453 * Prepare credentials and lock ->cred_guard_mutex.
1454 * setup_new_exec() commits the new creds and drops the lock.
1455 * Or, if exec fails before, free_bprm() should release ->cred and
1456 * and unlock.
1457 */
prepare_bprm_creds(struct linux_binprm * bprm)1458 static int prepare_bprm_creds(struct linux_binprm *bprm)
1459 {
1460 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1461 return -ERESTARTNOINTR;
1462
1463 bprm->cred = prepare_exec_creds();
1464 if (likely(bprm->cred))
1465 return 0;
1466
1467 mutex_unlock(¤t->signal->cred_guard_mutex);
1468 return -ENOMEM;
1469 }
1470
free_bprm(struct linux_binprm * bprm)1471 static void free_bprm(struct linux_binprm *bprm)
1472 {
1473 if (bprm->mm) {
1474 acct_arg_size(bprm, 0);
1475 mmput(bprm->mm);
1476 }
1477 free_arg_pages(bprm);
1478 if (bprm->cred) {
1479 mutex_unlock(¤t->signal->cred_guard_mutex);
1480 abort_creds(bprm->cred);
1481 }
1482 if (bprm->file) {
1483 allow_write_access(bprm->file);
1484 fput(bprm->file);
1485 }
1486 if (bprm->executable)
1487 fput(bprm->executable);
1488 /* If a binfmt changed the interp, free it. */
1489 if (bprm->interp != bprm->filename)
1490 kfree(bprm->interp);
1491 kfree(bprm->fdpath);
1492 kfree(bprm);
1493 }
1494
alloc_bprm(int fd,struct filename * filename)1495 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1496 {
1497 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1498 int retval = -ENOMEM;
1499 if (!bprm)
1500 goto out;
1501
1502 if (fd == AT_FDCWD || filename->name[0] == '/') {
1503 bprm->filename = filename->name;
1504 } else {
1505 if (filename->name[0] == '\0')
1506 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1507 else
1508 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1509 fd, filename->name);
1510 if (!bprm->fdpath)
1511 goto out_free;
1512
1513 bprm->filename = bprm->fdpath;
1514 }
1515 bprm->interp = bprm->filename;
1516
1517 retval = bprm_mm_init(bprm);
1518 if (retval)
1519 goto out_free;
1520 return bprm;
1521
1522 out_free:
1523 free_bprm(bprm);
1524 out:
1525 return ERR_PTR(retval);
1526 }
1527
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1528 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1529 {
1530 /* If a binfmt changed the interp, free it first. */
1531 if (bprm->interp != bprm->filename)
1532 kfree(bprm->interp);
1533 bprm->interp = kstrdup(interp, GFP_KERNEL);
1534 if (!bprm->interp)
1535 return -ENOMEM;
1536 return 0;
1537 }
1538 EXPORT_SYMBOL(bprm_change_interp);
1539
1540 /*
1541 * determine how safe it is to execute the proposed program
1542 * - the caller must hold ->cred_guard_mutex to protect against
1543 * PTRACE_ATTACH or seccomp thread-sync
1544 */
check_unsafe_exec(struct linux_binprm * bprm)1545 static void check_unsafe_exec(struct linux_binprm *bprm)
1546 {
1547 struct task_struct *p = current, *t;
1548 unsigned n_fs;
1549
1550 if (p->ptrace)
1551 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1552
1553 /*
1554 * This isn't strictly necessary, but it makes it harder for LSMs to
1555 * mess up.
1556 */
1557 if (task_no_new_privs(current))
1558 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1559
1560 t = p;
1561 n_fs = 1;
1562 spin_lock(&p->fs->lock);
1563 rcu_read_lock();
1564 while_each_thread(p, t) {
1565 if (t->fs == p->fs)
1566 n_fs++;
1567 }
1568 rcu_read_unlock();
1569
1570 if (p->fs->users > n_fs)
1571 bprm->unsafe |= LSM_UNSAFE_SHARE;
1572 else
1573 p->fs->in_exec = 1;
1574 spin_unlock(&p->fs->lock);
1575 }
1576
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1577 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1578 {
1579 /* Handle suid and sgid on files */
1580 struct inode *inode;
1581 unsigned int mode;
1582 kuid_t uid;
1583 kgid_t gid;
1584
1585 if (!mnt_may_suid(file->f_path.mnt))
1586 return;
1587
1588 if (task_no_new_privs(current))
1589 return;
1590
1591 inode = file->f_path.dentry->d_inode;
1592 mode = READ_ONCE(inode->i_mode);
1593 if (!(mode & (S_ISUID|S_ISGID)))
1594 return;
1595
1596 /* Be careful if suid/sgid is set */
1597 inode_lock(inode);
1598
1599 /* reload atomically mode/uid/gid now that lock held */
1600 mode = inode->i_mode;
1601 uid = inode->i_uid;
1602 gid = inode->i_gid;
1603 inode_unlock(inode);
1604
1605 /* We ignore suid/sgid if there are no mappings for them in the ns */
1606 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1607 !kgid_has_mapping(bprm->cred->user_ns, gid))
1608 return;
1609
1610 if (mode & S_ISUID) {
1611 bprm->per_clear |= PER_CLEAR_ON_SETID;
1612 bprm->cred->euid = uid;
1613 }
1614
1615 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1616 bprm->per_clear |= PER_CLEAR_ON_SETID;
1617 bprm->cred->egid = gid;
1618 }
1619 }
1620
1621 /*
1622 * Compute brpm->cred based upon the final binary.
1623 */
bprm_creds_from_file(struct linux_binprm * bprm)1624 static int bprm_creds_from_file(struct linux_binprm *bprm)
1625 {
1626 /* Compute creds based on which file? */
1627 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1628
1629 bprm_fill_uid(bprm, file);
1630 return security_bprm_creds_from_file(bprm, file);
1631 }
1632
1633 /*
1634 * Fill the binprm structure from the inode.
1635 * Read the first BINPRM_BUF_SIZE bytes
1636 *
1637 * This may be called multiple times for binary chains (scripts for example).
1638 */
prepare_binprm(struct linux_binprm * bprm)1639 static int prepare_binprm(struct linux_binprm *bprm)
1640 {
1641 loff_t pos = 0;
1642
1643 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1644 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1645 }
1646
1647 /*
1648 * Arguments are '\0' separated strings found at the location bprm->p
1649 * points to; chop off the first by relocating brpm->p to right after
1650 * the first '\0' encountered.
1651 */
remove_arg_zero(struct linux_binprm * bprm)1652 int remove_arg_zero(struct linux_binprm *bprm)
1653 {
1654 int ret = 0;
1655 unsigned long offset;
1656 char *kaddr;
1657 struct page *page;
1658
1659 if (!bprm->argc)
1660 return 0;
1661
1662 do {
1663 offset = bprm->p & ~PAGE_MASK;
1664 page = get_arg_page(bprm, bprm->p, 0);
1665 if (!page) {
1666 ret = -EFAULT;
1667 goto out;
1668 }
1669 kaddr = kmap_atomic(page);
1670
1671 for (; offset < PAGE_SIZE && kaddr[offset];
1672 offset++, bprm->p++)
1673 ;
1674
1675 kunmap_atomic(kaddr);
1676 put_arg_page(page);
1677 } while (offset == PAGE_SIZE);
1678
1679 bprm->p++;
1680 bprm->argc--;
1681 ret = 0;
1682
1683 out:
1684 return ret;
1685 }
1686 EXPORT_SYMBOL(remove_arg_zero);
1687
1688 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1689 /*
1690 * cycle the list of binary formats handler, until one recognizes the image
1691 */
search_binary_handler(struct linux_binprm * bprm)1692 static int search_binary_handler(struct linux_binprm *bprm)
1693 {
1694 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1695 struct linux_binfmt *fmt;
1696 int retval;
1697
1698 retval = prepare_binprm(bprm);
1699 if (retval < 0)
1700 return retval;
1701
1702 retval = security_bprm_check(bprm);
1703 if (retval)
1704 return retval;
1705
1706 retval = -ENOENT;
1707 retry:
1708 read_lock(&binfmt_lock);
1709 list_for_each_entry(fmt, &formats, lh) {
1710 if (!try_module_get(fmt->module))
1711 continue;
1712 read_unlock(&binfmt_lock);
1713
1714 retval = fmt->load_binary(bprm);
1715
1716 read_lock(&binfmt_lock);
1717 put_binfmt(fmt);
1718 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1719 read_unlock(&binfmt_lock);
1720 return retval;
1721 }
1722 }
1723 read_unlock(&binfmt_lock);
1724
1725 if (need_retry) {
1726 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1727 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1728 return retval;
1729 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1730 return retval;
1731 need_retry = false;
1732 goto retry;
1733 }
1734
1735 return retval;
1736 }
1737
exec_binprm(struct linux_binprm * bprm)1738 static int exec_binprm(struct linux_binprm *bprm)
1739 {
1740 pid_t old_pid, old_vpid;
1741 int ret, depth;
1742
1743 /* Need to fetch pid before load_binary changes it */
1744 old_pid = current->pid;
1745 rcu_read_lock();
1746 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1747 rcu_read_unlock();
1748
1749 /* This allows 4 levels of binfmt rewrites before failing hard. */
1750 for (depth = 0;; depth++) {
1751 struct file *exec;
1752 if (depth > 5)
1753 return -ELOOP;
1754
1755 ret = search_binary_handler(bprm);
1756 if (ret < 0)
1757 return ret;
1758 if (!bprm->interpreter)
1759 break;
1760
1761 exec = bprm->file;
1762 bprm->file = bprm->interpreter;
1763 bprm->interpreter = NULL;
1764
1765 allow_write_access(exec);
1766 if (unlikely(bprm->have_execfd)) {
1767 if (bprm->executable) {
1768 fput(exec);
1769 return -ENOEXEC;
1770 }
1771 bprm->executable = exec;
1772 } else
1773 fput(exec);
1774 }
1775
1776 audit_bprm(bprm);
1777 trace_sched_process_exec(current, old_pid, bprm);
1778 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1779 proc_exec_connector(current);
1780 return 0;
1781 }
1782
1783 /*
1784 * sys_execve() executes a new program.
1785 */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1786 static int bprm_execve(struct linux_binprm *bprm,
1787 int fd, struct filename *filename, int flags)
1788 {
1789 struct file *file;
1790 struct files_struct *displaced;
1791 int retval;
1792
1793 /*
1794 * Cancel any io_uring activity across execve
1795 */
1796 io_uring_task_cancel();
1797
1798 retval = unshare_files(&displaced);
1799 if (retval)
1800 return retval;
1801
1802 retval = prepare_bprm_creds(bprm);
1803 if (retval)
1804 goto out_files;
1805
1806 check_unsafe_exec(bprm);
1807 current->in_execve = 1;
1808
1809 file = do_open_execat(fd, filename, flags);
1810 retval = PTR_ERR(file);
1811 if (IS_ERR(file))
1812 goto out_unmark;
1813
1814 sched_exec();
1815
1816 bprm->file = file;
1817 /*
1818 * Record that a name derived from an O_CLOEXEC fd will be
1819 * inaccessible after exec. Relies on having exclusive access to
1820 * current->files (due to unshare_files above).
1821 */
1822 if (bprm->fdpath &&
1823 close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1824 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1825
1826 /* Set the unchanging part of bprm->cred */
1827 retval = security_bprm_creds_for_exec(bprm);
1828 if (retval)
1829 goto out;
1830
1831 retval = exec_binprm(bprm);
1832 if (retval < 0)
1833 goto out;
1834
1835 /* execve succeeded */
1836 current->fs->in_exec = 0;
1837 current->in_execve = 0;
1838 rseq_execve(current);
1839 acct_update_integrals(current);
1840 task_numa_free(current, false);
1841 if (displaced)
1842 put_files_struct(displaced);
1843 return retval;
1844
1845 out:
1846 /*
1847 * If past the point of no return ensure the the code never
1848 * returns to the userspace process. Use an existing fatal
1849 * signal if present otherwise terminate the process with
1850 * SIGSEGV.
1851 */
1852 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1853 force_sigsegv(SIGSEGV);
1854
1855 out_unmark:
1856 current->fs->in_exec = 0;
1857 current->in_execve = 0;
1858
1859 out_files:
1860 if (displaced)
1861 reset_files_struct(displaced);
1862
1863 return retval;
1864 }
1865
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1866 static int do_execveat_common(int fd, struct filename *filename,
1867 struct user_arg_ptr argv,
1868 struct user_arg_ptr envp,
1869 int flags)
1870 {
1871 struct linux_binprm *bprm;
1872 int retval;
1873
1874 if (IS_ERR(filename))
1875 return PTR_ERR(filename);
1876
1877 /*
1878 * We move the actual failure in case of RLIMIT_NPROC excess from
1879 * set*uid() to execve() because too many poorly written programs
1880 * don't check setuid() return code. Here we additionally recheck
1881 * whether NPROC limit is still exceeded.
1882 */
1883 if ((current->flags & PF_NPROC_EXCEEDED) &&
1884 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1885 retval = -EAGAIN;
1886 goto out_ret;
1887 }
1888
1889 /* We're below the limit (still or again), so we don't want to make
1890 * further execve() calls fail. */
1891 current->flags &= ~PF_NPROC_EXCEEDED;
1892
1893 bprm = alloc_bprm(fd, filename);
1894 if (IS_ERR(bprm)) {
1895 retval = PTR_ERR(bprm);
1896 goto out_ret;
1897 }
1898
1899 retval = count(argv, MAX_ARG_STRINGS);
1900 if (retval == 0)
1901 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1902 current->comm, bprm->filename);
1903 if (retval < 0)
1904 goto out_free;
1905 bprm->argc = retval;
1906
1907 retval = count(envp, MAX_ARG_STRINGS);
1908 if (retval < 0)
1909 goto out_free;
1910 bprm->envc = retval;
1911
1912 retval = bprm_stack_limits(bprm);
1913 if (retval < 0)
1914 goto out_free;
1915
1916 retval = copy_string_kernel(bprm->filename, bprm);
1917 if (retval < 0)
1918 goto out_free;
1919 bprm->exec = bprm->p;
1920
1921 retval = copy_strings(bprm->envc, envp, bprm);
1922 if (retval < 0)
1923 goto out_free;
1924
1925 retval = copy_strings(bprm->argc, argv, bprm);
1926 if (retval < 0)
1927 goto out_free;
1928
1929 /*
1930 * When argv is empty, add an empty string ("") as argv[0] to
1931 * ensure confused userspace programs that start processing
1932 * from argv[1] won't end up walking envp. See also
1933 * bprm_stack_limits().
1934 */
1935 if (bprm->argc == 0) {
1936 retval = copy_string_kernel("", bprm);
1937 if (retval < 0)
1938 goto out_free;
1939 bprm->argc = 1;
1940 }
1941
1942 retval = bprm_execve(bprm, fd, filename, flags);
1943 out_free:
1944 free_bprm(bprm);
1945
1946 out_ret:
1947 putname(filename);
1948 return retval;
1949 }
1950
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1951 int kernel_execve(const char *kernel_filename,
1952 const char *const *argv, const char *const *envp)
1953 {
1954 struct filename *filename;
1955 struct linux_binprm *bprm;
1956 int fd = AT_FDCWD;
1957 int retval;
1958
1959 filename = getname_kernel(kernel_filename);
1960 if (IS_ERR(filename))
1961 return PTR_ERR(filename);
1962
1963 bprm = alloc_bprm(fd, filename);
1964 if (IS_ERR(bprm)) {
1965 retval = PTR_ERR(bprm);
1966 goto out_ret;
1967 }
1968
1969 retval = count_strings_kernel(argv);
1970 if (WARN_ON_ONCE(retval == 0))
1971 retval = -EINVAL;
1972 if (retval < 0)
1973 goto out_free;
1974 bprm->argc = retval;
1975
1976 retval = count_strings_kernel(envp);
1977 if (retval < 0)
1978 goto out_free;
1979 bprm->envc = retval;
1980
1981 retval = bprm_stack_limits(bprm);
1982 if (retval < 0)
1983 goto out_free;
1984
1985 retval = copy_string_kernel(bprm->filename, bprm);
1986 if (retval < 0)
1987 goto out_free;
1988 bprm->exec = bprm->p;
1989
1990 retval = copy_strings_kernel(bprm->envc, envp, bprm);
1991 if (retval < 0)
1992 goto out_free;
1993
1994 retval = copy_strings_kernel(bprm->argc, argv, bprm);
1995 if (retval < 0)
1996 goto out_free;
1997
1998 retval = bprm_execve(bprm, fd, filename, 0);
1999 out_free:
2000 free_bprm(bprm);
2001 out_ret:
2002 putname(filename);
2003 return retval;
2004 }
2005
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2006 static int do_execve(struct filename *filename,
2007 const char __user *const __user *__argv,
2008 const char __user *const __user *__envp)
2009 {
2010 struct user_arg_ptr argv = { .ptr.native = __argv };
2011 struct user_arg_ptr envp = { .ptr.native = __envp };
2012 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2013 }
2014
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2015 static int do_execveat(int fd, struct filename *filename,
2016 const char __user *const __user *__argv,
2017 const char __user *const __user *__envp,
2018 int flags)
2019 {
2020 struct user_arg_ptr argv = { .ptr.native = __argv };
2021 struct user_arg_ptr envp = { .ptr.native = __envp };
2022
2023 return do_execveat_common(fd, filename, argv, envp, flags);
2024 }
2025
2026 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2027 static int compat_do_execve(struct filename *filename,
2028 const compat_uptr_t __user *__argv,
2029 const compat_uptr_t __user *__envp)
2030 {
2031 struct user_arg_ptr argv = {
2032 .is_compat = true,
2033 .ptr.compat = __argv,
2034 };
2035 struct user_arg_ptr envp = {
2036 .is_compat = true,
2037 .ptr.compat = __envp,
2038 };
2039 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2040 }
2041
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2042 static int compat_do_execveat(int fd, struct filename *filename,
2043 const compat_uptr_t __user *__argv,
2044 const compat_uptr_t __user *__envp,
2045 int flags)
2046 {
2047 struct user_arg_ptr argv = {
2048 .is_compat = true,
2049 .ptr.compat = __argv,
2050 };
2051 struct user_arg_ptr envp = {
2052 .is_compat = true,
2053 .ptr.compat = __envp,
2054 };
2055 return do_execveat_common(fd, filename, argv, envp, flags);
2056 }
2057 #endif
2058
set_binfmt(struct linux_binfmt * new)2059 void set_binfmt(struct linux_binfmt *new)
2060 {
2061 struct mm_struct *mm = current->mm;
2062
2063 if (mm->binfmt)
2064 module_put(mm->binfmt->module);
2065
2066 mm->binfmt = new;
2067 if (new)
2068 __module_get(new->module);
2069 }
2070 EXPORT_SYMBOL(set_binfmt);
2071
2072 /*
2073 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2074 */
set_dumpable(struct mm_struct * mm,int value)2075 void set_dumpable(struct mm_struct *mm, int value)
2076 {
2077 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2078 return;
2079
2080 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2081 }
2082
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2083 SYSCALL_DEFINE3(execve,
2084 const char __user *, filename,
2085 const char __user *const __user *, argv,
2086 const char __user *const __user *, envp)
2087 {
2088 return do_execve(getname(filename), argv, envp);
2089 }
2090
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2091 SYSCALL_DEFINE5(execveat,
2092 int, fd, const char __user *, filename,
2093 const char __user *const __user *, argv,
2094 const char __user *const __user *, envp,
2095 int, flags)
2096 {
2097 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2098
2099 return do_execveat(fd,
2100 getname_flags(filename, lookup_flags, NULL),
2101 argv, envp, flags);
2102 }
2103
2104 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2105 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2106 const compat_uptr_t __user *, argv,
2107 const compat_uptr_t __user *, envp)
2108 {
2109 return compat_do_execve(getname(filename), argv, envp);
2110 }
2111
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2112 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2113 const char __user *, filename,
2114 const compat_uptr_t __user *, argv,
2115 const compat_uptr_t __user *, envp,
2116 int, flags)
2117 {
2118 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2119
2120 return compat_do_execveat(fd,
2121 getname_flags(filename, lookup_flags, NULL),
2122 argv, envp, flags);
2123 }
2124 #endif
2125