xref: /OK3568_Linux_fs/kernel/kernel/exit.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/mmu_context.h>
71 #include <trace/hooks/mm.h>
72 
__unhash_process(struct task_struct * p,bool group_dead)73 static void __unhash_process(struct task_struct *p, bool group_dead)
74 {
75 	nr_threads--;
76 	detach_pid(p, PIDTYPE_PID);
77 	if (group_dead) {
78 		detach_pid(p, PIDTYPE_TGID);
79 		detach_pid(p, PIDTYPE_PGID);
80 		detach_pid(p, PIDTYPE_SID);
81 
82 		list_del_rcu(&p->tasks);
83 		list_del_init(&p->sibling);
84 		__this_cpu_dec(process_counts);
85 	}
86 	list_del_rcu(&p->thread_group);
87 	list_del_rcu(&p->thread_node);
88 }
89 
90 /*
91  * This function expects the tasklist_lock write-locked.
92  */
__exit_signal(struct task_struct * tsk)93 static void __exit_signal(struct task_struct *tsk)
94 {
95 	struct signal_struct *sig = tsk->signal;
96 	bool group_dead = thread_group_leader(tsk);
97 	struct sighand_struct *sighand;
98 	struct tty_struct *tty;
99 	u64 utime, stime;
100 
101 	sighand = rcu_dereference_check(tsk->sighand,
102 					lockdep_tasklist_lock_is_held());
103 	spin_lock(&sighand->siglock);
104 
105 #ifdef CONFIG_POSIX_TIMERS
106 	posix_cpu_timers_exit(tsk);
107 	if (group_dead)
108 		posix_cpu_timers_exit_group(tsk);
109 #endif
110 
111 	if (group_dead) {
112 		tty = sig->tty;
113 		sig->tty = NULL;
114 	} else {
115 		/*
116 		 * If there is any task waiting for the group exit
117 		 * then notify it:
118 		 */
119 		if (sig->notify_count > 0 && !--sig->notify_count)
120 			wake_up_process(sig->group_exit_task);
121 
122 		if (tsk == sig->curr_target)
123 			sig->curr_target = next_thread(tsk);
124 	}
125 
126 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
127 			      sizeof(unsigned long long));
128 
129 	/*
130 	 * Accumulate here the counters for all threads as they die. We could
131 	 * skip the group leader because it is the last user of signal_struct,
132 	 * but we want to avoid the race with thread_group_cputime() which can
133 	 * see the empty ->thread_head list.
134 	 */
135 	task_cputime(tsk, &utime, &stime);
136 	write_seqlock(&sig->stats_lock);
137 	sig->utime += utime;
138 	sig->stime += stime;
139 	sig->gtime += task_gtime(tsk);
140 	sig->min_flt += tsk->min_flt;
141 	sig->maj_flt += tsk->maj_flt;
142 	sig->nvcsw += tsk->nvcsw;
143 	sig->nivcsw += tsk->nivcsw;
144 	sig->inblock += task_io_get_inblock(tsk);
145 	sig->oublock += task_io_get_oublock(tsk);
146 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
147 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
148 	sig->nr_threads--;
149 	__unhash_process(tsk, group_dead);
150 	write_sequnlock(&sig->stats_lock);
151 
152 	/*
153 	 * Do this under ->siglock, we can race with another thread
154 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
155 	 */
156 	flush_sigqueue(&tsk->pending);
157 	tsk->sighand = NULL;
158 	spin_unlock(&sighand->siglock);
159 
160 	__cleanup_sighand(sighand);
161 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
162 	if (group_dead) {
163 		flush_sigqueue(&sig->shared_pending);
164 		tty_kref_put(tty);
165 	}
166 }
167 
delayed_put_task_struct(struct rcu_head * rhp)168 static void delayed_put_task_struct(struct rcu_head *rhp)
169 {
170 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171 
172 	perf_event_delayed_put(tsk);
173 	trace_sched_process_free(tsk);
174 	put_task_struct(tsk);
175 }
176 
put_task_struct_rcu_user(struct task_struct * task)177 void put_task_struct_rcu_user(struct task_struct *task)
178 {
179 	if (refcount_dec_and_test(&task->rcu_users))
180 		call_rcu(&task->rcu, delayed_put_task_struct);
181 }
182 
release_task(struct task_struct * p)183 void release_task(struct task_struct *p)
184 {
185 	struct task_struct *leader;
186 	struct pid *thread_pid;
187 	int zap_leader;
188 repeat:
189 	/* don't need to get the RCU readlock here - the process is dead and
190 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 	rcu_read_lock();
192 	atomic_dec(&__task_cred(p)->user->processes);
193 	rcu_read_unlock();
194 
195 	cgroup_release(p);
196 
197 	write_lock_irq(&tasklist_lock);
198 	ptrace_release_task(p);
199 	thread_pid = get_pid(p->thread_pid);
200 	__exit_signal(p);
201 
202 	/*
203 	 * If we are the last non-leader member of the thread
204 	 * group, and the leader is zombie, then notify the
205 	 * group leader's parent process. (if it wants notification.)
206 	 */
207 	zap_leader = 0;
208 	leader = p->group_leader;
209 	if (leader != p && thread_group_empty(leader)
210 			&& leader->exit_state == EXIT_ZOMBIE) {
211 		/*
212 		 * If we were the last child thread and the leader has
213 		 * exited already, and the leader's parent ignores SIGCHLD,
214 		 * then we are the one who should release the leader.
215 		 */
216 		zap_leader = do_notify_parent(leader, leader->exit_signal);
217 		if (zap_leader)
218 			leader->exit_state = EXIT_DEAD;
219 	}
220 
221 	write_unlock_irq(&tasklist_lock);
222 	seccomp_filter_release(p);
223 	proc_flush_pid(thread_pid);
224 	put_pid(thread_pid);
225 	release_thread(p);
226 	put_task_struct_rcu_user(p);
227 
228 	p = leader;
229 	if (unlikely(zap_leader))
230 		goto repeat;
231 }
232 
rcuwait_wake_up(struct rcuwait * w)233 int rcuwait_wake_up(struct rcuwait *w)
234 {
235 	int ret = 0;
236 	struct task_struct *task;
237 
238 	rcu_read_lock();
239 
240 	/*
241 	 * Order condition vs @task, such that everything prior to the load
242 	 * of @task is visible. This is the condition as to why the user called
243 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
244 	 * barrier (A) in rcuwait_wait_event().
245 	 *
246 	 *    WAIT                WAKE
247 	 *    [S] tsk = current	  [S] cond = true
248 	 *        MB (A)	      MB (B)
249 	 *    [L] cond		  [L] tsk
250 	 */
251 	smp_mb(); /* (B) */
252 
253 	task = rcu_dereference(w->task);
254 	if (task)
255 		ret = wake_up_process(task);
256 	rcu_read_unlock();
257 
258 	return ret;
259 }
260 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
261 
262 /*
263  * Determine if a process group is "orphaned", according to the POSIX
264  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
265  * by terminal-generated stop signals.  Newly orphaned process groups are
266  * to receive a SIGHUP and a SIGCONT.
267  *
268  * "I ask you, have you ever known what it is to be an orphan?"
269  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271 					struct task_struct *ignored_task)
272 {
273 	struct task_struct *p;
274 
275 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 		if ((p == ignored_task) ||
277 		    (p->exit_state && thread_group_empty(p)) ||
278 		    is_global_init(p->real_parent))
279 			continue;
280 
281 		if (task_pgrp(p->real_parent) != pgrp &&
282 		    task_session(p->real_parent) == task_session(p))
283 			return 0;
284 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285 
286 	return 1;
287 }
288 
is_current_pgrp_orphaned(void)289 int is_current_pgrp_orphaned(void)
290 {
291 	int retval;
292 
293 	read_lock(&tasklist_lock);
294 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295 	read_unlock(&tasklist_lock);
296 
297 	return retval;
298 }
299 
has_stopped_jobs(struct pid * pgrp)300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302 	struct task_struct *p;
303 
304 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 			return true;
307 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308 
309 	return false;
310 }
311 
312 /*
313  * Check to see if any process groups have become orphaned as
314  * a result of our exiting, and if they have any stopped jobs,
315  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316  */
317 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320 	struct pid *pgrp = task_pgrp(tsk);
321 	struct task_struct *ignored_task = tsk;
322 
323 	if (!parent)
324 		/* exit: our father is in a different pgrp than
325 		 * we are and we were the only connection outside.
326 		 */
327 		parent = tsk->real_parent;
328 	else
329 		/* reparent: our child is in a different pgrp than
330 		 * we are, and it was the only connection outside.
331 		 */
332 		ignored_task = NULL;
333 
334 	if (task_pgrp(parent) != pgrp &&
335 	    task_session(parent) == task_session(tsk) &&
336 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 	    has_stopped_jobs(pgrp)) {
338 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340 	}
341 }
342 
343 #ifdef CONFIG_MEMCG
344 /*
345  * A task is exiting.   If it owned this mm, find a new owner for the mm.
346  */
mm_update_next_owner(struct mm_struct * mm)347 void mm_update_next_owner(struct mm_struct *mm)
348 {
349 	struct task_struct *c, *g, *p = current;
350 
351 retry:
352 	/*
353 	 * If the exiting or execing task is not the owner, it's
354 	 * someone else's problem.
355 	 */
356 	if (mm->owner != p)
357 		return;
358 	/*
359 	 * The current owner is exiting/execing and there are no other
360 	 * candidates.  Do not leave the mm pointing to a possibly
361 	 * freed task structure.
362 	 */
363 	if (atomic_read(&mm->mm_users) <= 1) {
364 		WRITE_ONCE(mm->owner, NULL);
365 		return;
366 	}
367 
368 	read_lock(&tasklist_lock);
369 	/*
370 	 * Search in the children
371 	 */
372 	list_for_each_entry(c, &p->children, sibling) {
373 		if (c->mm == mm)
374 			goto assign_new_owner;
375 	}
376 
377 	/*
378 	 * Search in the siblings
379 	 */
380 	list_for_each_entry(c, &p->real_parent->children, sibling) {
381 		if (c->mm == mm)
382 			goto assign_new_owner;
383 	}
384 
385 	/*
386 	 * Search through everything else, we should not get here often.
387 	 */
388 	for_each_process(g) {
389 		if (g->flags & PF_KTHREAD)
390 			continue;
391 		for_each_thread(g, c) {
392 			if (c->mm == mm)
393 				goto assign_new_owner;
394 			if (c->mm)
395 				break;
396 		}
397 	}
398 	read_unlock(&tasklist_lock);
399 	/*
400 	 * We found no owner yet mm_users > 1: this implies that we are
401 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
402 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
403 	 */
404 	WRITE_ONCE(mm->owner, NULL);
405 	return;
406 
407 assign_new_owner:
408 	BUG_ON(c == p);
409 	get_task_struct(c);
410 	/*
411 	 * The task_lock protects c->mm from changing.
412 	 * We always want mm->owner->mm == mm
413 	 */
414 	task_lock(c);
415 	/*
416 	 * Delay read_unlock() till we have the task_lock()
417 	 * to ensure that c does not slip away underneath us
418 	 */
419 	read_unlock(&tasklist_lock);
420 	if (c->mm != mm) {
421 		task_unlock(c);
422 		put_task_struct(c);
423 		goto retry;
424 	}
425 	WRITE_ONCE(mm->owner, c);
426 	task_unlock(c);
427 	put_task_struct(c);
428 }
429 #endif /* CONFIG_MEMCG */
430 
431 /*
432  * Turn us into a lazy TLB process if we
433  * aren't already..
434  */
exit_mm(void)435 static void exit_mm(void)
436 {
437 	struct mm_struct *mm = current->mm;
438 	struct core_state *core_state;
439 
440 	exit_mm_release(current, mm);
441 	if (!mm)
442 		return;
443 	sync_mm_rss(mm);
444 	/*
445 	 * Serialize with any possible pending coredump.
446 	 * We must hold mmap_lock around checking core_state
447 	 * and clearing tsk->mm.  The core-inducing thread
448 	 * will increment ->nr_threads for each thread in the
449 	 * group with ->mm != NULL.
450 	 */
451 	mmap_read_lock(mm);
452 	core_state = mm->core_state;
453 	if (core_state) {
454 		struct core_thread self;
455 
456 		mmap_read_unlock(mm);
457 
458 		self.task = current;
459 		if (self.task->flags & PF_SIGNALED)
460 			self.next = xchg(&core_state->dumper.next, &self);
461 		else
462 			self.task = NULL;
463 		/*
464 		 * Implies mb(), the result of xchg() must be visible
465 		 * to core_state->dumper.
466 		 */
467 		if (atomic_dec_and_test(&core_state->nr_threads))
468 			complete(&core_state->startup);
469 
470 		for (;;) {
471 			set_current_state(TASK_UNINTERRUPTIBLE);
472 			if (!self.task) /* see coredump_finish() */
473 				break;
474 			freezable_schedule();
475 		}
476 		__set_current_state(TASK_RUNNING);
477 		mmap_read_lock(mm);
478 	}
479 	mmgrab(mm);
480 	BUG_ON(mm != current->active_mm);
481 	/* more a memory barrier than a real lock */
482 	task_lock(current);
483 	current->mm = NULL;
484 	mmap_read_unlock(mm);
485 	enter_lazy_tlb(mm, current);
486 	task_unlock(current);
487 	mm_update_next_owner(mm);
488 	trace_android_vh_exit_mm(mm);
489 	mmput(mm);
490 	if (test_thread_flag(TIF_MEMDIE))
491 		exit_oom_victim();
492 }
493 
find_alive_thread(struct task_struct * p)494 static struct task_struct *find_alive_thread(struct task_struct *p)
495 {
496 	struct task_struct *t;
497 
498 	for_each_thread(p, t) {
499 		if (!(t->flags & PF_EXITING))
500 			return t;
501 	}
502 	return NULL;
503 }
504 
find_child_reaper(struct task_struct * father,struct list_head * dead)505 static struct task_struct *find_child_reaper(struct task_struct *father,
506 						struct list_head *dead)
507 	__releases(&tasklist_lock)
508 	__acquires(&tasklist_lock)
509 {
510 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
511 	struct task_struct *reaper = pid_ns->child_reaper;
512 	struct task_struct *p, *n;
513 
514 	if (likely(reaper != father))
515 		return reaper;
516 
517 	reaper = find_alive_thread(father);
518 	if (reaper) {
519 		pid_ns->child_reaper = reaper;
520 		return reaper;
521 	}
522 
523 	write_unlock_irq(&tasklist_lock);
524 
525 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
526 		list_del_init(&p->ptrace_entry);
527 		release_task(p);
528 	}
529 
530 	zap_pid_ns_processes(pid_ns);
531 	write_lock_irq(&tasklist_lock);
532 
533 	return father;
534 }
535 
536 /*
537  * When we die, we re-parent all our children, and try to:
538  * 1. give them to another thread in our thread group, if such a member exists
539  * 2. give it to the first ancestor process which prctl'd itself as a
540  *    child_subreaper for its children (like a service manager)
541  * 3. give it to the init process (PID 1) in our pid namespace
542  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)543 static struct task_struct *find_new_reaper(struct task_struct *father,
544 					   struct task_struct *child_reaper)
545 {
546 	struct task_struct *thread, *reaper;
547 
548 	thread = find_alive_thread(father);
549 	if (thread)
550 		return thread;
551 
552 	if (father->signal->has_child_subreaper) {
553 		unsigned int ns_level = task_pid(father)->level;
554 		/*
555 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
556 		 * We can't check reaper != child_reaper to ensure we do not
557 		 * cross the namespaces, the exiting parent could be injected
558 		 * by setns() + fork().
559 		 * We check pid->level, this is slightly more efficient than
560 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
561 		 */
562 		for (reaper = father->real_parent;
563 		     task_pid(reaper)->level == ns_level;
564 		     reaper = reaper->real_parent) {
565 			if (reaper == &init_task)
566 				break;
567 			if (!reaper->signal->is_child_subreaper)
568 				continue;
569 			thread = find_alive_thread(reaper);
570 			if (thread)
571 				return thread;
572 		}
573 	}
574 
575 	return child_reaper;
576 }
577 
578 /*
579 * Any that need to be release_task'd are put on the @dead list.
580  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)581 static void reparent_leader(struct task_struct *father, struct task_struct *p,
582 				struct list_head *dead)
583 {
584 	if (unlikely(p->exit_state == EXIT_DEAD))
585 		return;
586 
587 	/* We don't want people slaying init. */
588 	p->exit_signal = SIGCHLD;
589 
590 	/* If it has exited notify the new parent about this child's death. */
591 	if (!p->ptrace &&
592 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
593 		if (do_notify_parent(p, p->exit_signal)) {
594 			p->exit_state = EXIT_DEAD;
595 			list_add(&p->ptrace_entry, dead);
596 		}
597 	}
598 
599 	kill_orphaned_pgrp(p, father);
600 }
601 
602 /*
603  * This does two things:
604  *
605  * A.  Make init inherit all the child processes
606  * B.  Check to see if any process groups have become orphaned
607  *	as a result of our exiting, and if they have any stopped
608  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
609  */
forget_original_parent(struct task_struct * father,struct list_head * dead)610 static void forget_original_parent(struct task_struct *father,
611 					struct list_head *dead)
612 {
613 	struct task_struct *p, *t, *reaper;
614 
615 	if (unlikely(!list_empty(&father->ptraced)))
616 		exit_ptrace(father, dead);
617 
618 	/* Can drop and reacquire tasklist_lock */
619 	reaper = find_child_reaper(father, dead);
620 	if (list_empty(&father->children))
621 		return;
622 
623 	reaper = find_new_reaper(father, reaper);
624 	list_for_each_entry(p, &father->children, sibling) {
625 		for_each_thread(p, t) {
626 			RCU_INIT_POINTER(t->real_parent, reaper);
627 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
628 			if (likely(!t->ptrace))
629 				t->parent = t->real_parent;
630 			if (t->pdeath_signal)
631 				group_send_sig_info(t->pdeath_signal,
632 						    SEND_SIG_NOINFO, t,
633 						    PIDTYPE_TGID);
634 		}
635 		/*
636 		 * If this is a threaded reparent there is no need to
637 		 * notify anyone anything has happened.
638 		 */
639 		if (!same_thread_group(reaper, father))
640 			reparent_leader(father, p, dead);
641 	}
642 	list_splice_tail_init(&father->children, &reaper->children);
643 }
644 
645 /*
646  * Send signals to all our closest relatives so that they know
647  * to properly mourn us..
648  */
exit_notify(struct task_struct * tsk,int group_dead)649 static void exit_notify(struct task_struct *tsk, int group_dead)
650 {
651 	bool autoreap;
652 	struct task_struct *p, *n;
653 	LIST_HEAD(dead);
654 
655 	write_lock_irq(&tasklist_lock);
656 	forget_original_parent(tsk, &dead);
657 
658 	if (group_dead)
659 		kill_orphaned_pgrp(tsk->group_leader, NULL);
660 
661 	tsk->exit_state = EXIT_ZOMBIE;
662 	if (unlikely(tsk->ptrace)) {
663 		int sig = thread_group_leader(tsk) &&
664 				thread_group_empty(tsk) &&
665 				!ptrace_reparented(tsk) ?
666 			tsk->exit_signal : SIGCHLD;
667 		autoreap = do_notify_parent(tsk, sig);
668 	} else if (thread_group_leader(tsk)) {
669 		autoreap = thread_group_empty(tsk) &&
670 			do_notify_parent(tsk, tsk->exit_signal);
671 	} else {
672 		autoreap = true;
673 	}
674 
675 	if (autoreap) {
676 		tsk->exit_state = EXIT_DEAD;
677 		list_add(&tsk->ptrace_entry, &dead);
678 	}
679 
680 	/* mt-exec, de_thread() is waiting for group leader */
681 	if (unlikely(tsk->signal->notify_count < 0))
682 		wake_up_process(tsk->signal->group_exit_task);
683 	write_unlock_irq(&tasklist_lock);
684 
685 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
686 		list_del_init(&p->ptrace_entry);
687 		release_task(p);
688 	}
689 }
690 
691 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)692 static void check_stack_usage(void)
693 {
694 	static DEFINE_SPINLOCK(low_water_lock);
695 	static int lowest_to_date = THREAD_SIZE;
696 	unsigned long free;
697 
698 	free = stack_not_used(current);
699 
700 	if (free >= lowest_to_date)
701 		return;
702 
703 	spin_lock(&low_water_lock);
704 	if (free < lowest_to_date) {
705 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
706 			current->comm, task_pid_nr(current), free);
707 		lowest_to_date = free;
708 	}
709 	spin_unlock(&low_water_lock);
710 }
711 #else
check_stack_usage(void)712 static inline void check_stack_usage(void) {}
713 #endif
714 
do_exit(long code)715 void __noreturn do_exit(long code)
716 {
717 	struct task_struct *tsk = current;
718 	int group_dead;
719 
720 	/*
721 	 * We can get here from a kernel oops, sometimes with preemption off.
722 	 * Start by checking for critical errors.
723 	 * Then fix up important state like USER_DS and preemption.
724 	 * Then do everything else.
725 	 */
726 
727 	WARN_ON(blk_needs_flush_plug(tsk));
728 
729 	if (unlikely(in_interrupt()))
730 		panic("Aiee, killing interrupt handler!");
731 	if (unlikely(!tsk->pid))
732 		panic("Attempted to kill the idle task!");
733 
734 	/*
735 	 * If do_exit is called because this processes oopsed, it's possible
736 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
737 	 * continuing. Amongst other possible reasons, this is to prevent
738 	 * mm_release()->clear_child_tid() from writing to a user-controlled
739 	 * kernel address.
740 	 */
741 	force_uaccess_begin();
742 
743 	if (unlikely(in_atomic())) {
744 		pr_info("note: %s[%d] exited with preempt_count %d\n",
745 			current->comm, task_pid_nr(current),
746 			preempt_count());
747 		preempt_count_set(PREEMPT_ENABLED);
748 	}
749 
750 	profile_task_exit(tsk);
751 	kcov_task_exit(tsk);
752 
753 	ptrace_event(PTRACE_EVENT_EXIT, code);
754 
755 	validate_creds_for_do_exit(tsk);
756 
757 	/*
758 	 * We're taking recursive faults here in do_exit. Safest is to just
759 	 * leave this task alone and wait for reboot.
760 	 */
761 	if (unlikely(tsk->flags & PF_EXITING)) {
762 		pr_alert("Fixing recursive fault but reboot is needed!\n");
763 		futex_exit_recursive(tsk);
764 		set_current_state(TASK_UNINTERRUPTIBLE);
765 		schedule();
766 	}
767 
768 	io_uring_files_cancel();
769 	exit_signals(tsk);  /* sets PF_EXITING */
770 
771 	/* sync mm's RSS info before statistics gathering */
772 	if (tsk->mm)
773 		sync_mm_rss(tsk->mm);
774 	acct_update_integrals(tsk);
775 	group_dead = atomic_dec_and_test(&tsk->signal->live);
776 	if (group_dead) {
777 		/*
778 		 * If the last thread of global init has exited, panic
779 		 * immediately to get a useable coredump.
780 		 */
781 		if (unlikely(is_global_init(tsk)))
782 			panic("Attempted to kill init! exitcode=0x%08x\n",
783 				tsk->signal->group_exit_code ?: (int)code);
784 
785 #ifdef CONFIG_POSIX_TIMERS
786 		hrtimer_cancel(&tsk->signal->real_timer);
787 		exit_itimers(tsk);
788 #endif
789 		if (tsk->mm)
790 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
791 	}
792 	acct_collect(code, group_dead);
793 	if (group_dead)
794 		tty_audit_exit();
795 	audit_free(tsk);
796 
797 	tsk->exit_code = code;
798 	taskstats_exit(tsk, group_dead);
799 
800 	exit_mm();
801 
802 	if (group_dead)
803 		acct_process();
804 	trace_sched_process_exit(tsk);
805 
806 	exit_sem(tsk);
807 	exit_shm(tsk);
808 	exit_files(tsk);
809 	exit_fs(tsk);
810 	if (group_dead)
811 		disassociate_ctty(1);
812 	exit_task_namespaces(tsk);
813 	exit_task_work(tsk);
814 	exit_thread(tsk);
815 
816 	/*
817 	 * Flush inherited counters to the parent - before the parent
818 	 * gets woken up by child-exit notifications.
819 	 *
820 	 * because of cgroup mode, must be called before cgroup_exit()
821 	 */
822 	perf_event_exit_task(tsk);
823 
824 	sched_autogroup_exit_task(tsk);
825 	cgroup_exit(tsk);
826 
827 	/*
828 	 * FIXME: do that only when needed, using sched_exit tracepoint
829 	 */
830 	flush_ptrace_hw_breakpoint(tsk);
831 
832 	exit_tasks_rcu_start();
833 	exit_notify(tsk, group_dead);
834 	proc_exit_connector(tsk);
835 	mpol_put_task_policy(tsk);
836 #ifdef CONFIG_FUTEX
837 	if (unlikely(current->pi_state_cache))
838 		kfree(current->pi_state_cache);
839 #endif
840 	/*
841 	 * Make sure we are holding no locks:
842 	 */
843 	debug_check_no_locks_held();
844 
845 	if (tsk->io_context)
846 		exit_io_context(tsk);
847 
848 	if (tsk->splice_pipe)
849 		free_pipe_info(tsk->splice_pipe);
850 
851 	if (tsk->task_frag.page)
852 		put_page(tsk->task_frag.page);
853 
854 	validate_creds_for_do_exit(tsk);
855 
856 	check_stack_usage();
857 	preempt_disable();
858 	if (tsk->nr_dirtied)
859 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
860 	exit_rcu();
861 	exit_tasks_rcu_finish();
862 
863 	lockdep_free_task(tsk);
864 	do_task_dead();
865 }
866 EXPORT_SYMBOL_GPL(do_exit);
867 
complete_and_exit(struct completion * comp,long code)868 void complete_and_exit(struct completion *comp, long code)
869 {
870 	if (comp)
871 		complete(comp);
872 
873 	do_exit(code);
874 }
875 EXPORT_SYMBOL(complete_and_exit);
876 
SYSCALL_DEFINE1(exit,int,error_code)877 SYSCALL_DEFINE1(exit, int, error_code)
878 {
879 	do_exit((error_code&0xff)<<8);
880 }
881 
882 /*
883  * Take down every thread in the group.  This is called by fatal signals
884  * as well as by sys_exit_group (below).
885  */
886 void
do_group_exit(int exit_code)887 do_group_exit(int exit_code)
888 {
889 	struct signal_struct *sig = current->signal;
890 
891 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
892 
893 	if (signal_group_exit(sig))
894 		exit_code = sig->group_exit_code;
895 	else if (!thread_group_empty(current)) {
896 		struct sighand_struct *const sighand = current->sighand;
897 
898 		spin_lock_irq(&sighand->siglock);
899 		if (signal_group_exit(sig))
900 			/* Another thread got here before we took the lock.  */
901 			exit_code = sig->group_exit_code;
902 		else {
903 			sig->group_exit_code = exit_code;
904 			sig->flags = SIGNAL_GROUP_EXIT;
905 			zap_other_threads(current);
906 		}
907 		spin_unlock_irq(&sighand->siglock);
908 	}
909 
910 	do_exit(exit_code);
911 	/* NOTREACHED */
912 }
913 
914 /*
915  * this kills every thread in the thread group. Note that any externally
916  * wait4()-ing process will get the correct exit code - even if this
917  * thread is not the thread group leader.
918  */
SYSCALL_DEFINE1(exit_group,int,error_code)919 SYSCALL_DEFINE1(exit_group, int, error_code)
920 {
921 	do_group_exit((error_code & 0xff) << 8);
922 	/* NOTREACHED */
923 	return 0;
924 }
925 
926 struct waitid_info {
927 	pid_t pid;
928 	uid_t uid;
929 	int status;
930 	int cause;
931 };
932 
933 struct wait_opts {
934 	enum pid_type		wo_type;
935 	int			wo_flags;
936 	struct pid		*wo_pid;
937 
938 	struct waitid_info	*wo_info;
939 	int			wo_stat;
940 	struct rusage		*wo_rusage;
941 
942 	wait_queue_entry_t		child_wait;
943 	int			notask_error;
944 };
945 
eligible_pid(struct wait_opts * wo,struct task_struct * p)946 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
947 {
948 	return	wo->wo_type == PIDTYPE_MAX ||
949 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
950 }
951 
952 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)953 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
954 {
955 	if (!eligible_pid(wo, p))
956 		return 0;
957 
958 	/*
959 	 * Wait for all children (clone and not) if __WALL is set or
960 	 * if it is traced by us.
961 	 */
962 	if (ptrace || (wo->wo_flags & __WALL))
963 		return 1;
964 
965 	/*
966 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
967 	 * otherwise, wait for non-clone children *only*.
968 	 *
969 	 * Note: a "clone" child here is one that reports to its parent
970 	 * using a signal other than SIGCHLD, or a non-leader thread which
971 	 * we can only see if it is traced by us.
972 	 */
973 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
974 		return 0;
975 
976 	return 1;
977 }
978 
979 /*
980  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
981  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
982  * the lock and this task is uninteresting.  If we return nonzero, we have
983  * released the lock and the system call should return.
984  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)985 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
986 {
987 	int state, status;
988 	pid_t pid = task_pid_vnr(p);
989 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
990 	struct waitid_info *infop;
991 
992 	if (!likely(wo->wo_flags & WEXITED))
993 		return 0;
994 
995 	if (unlikely(wo->wo_flags & WNOWAIT)) {
996 		status = p->exit_code;
997 		get_task_struct(p);
998 		read_unlock(&tasklist_lock);
999 		sched_annotate_sleep();
1000 		if (wo->wo_rusage)
1001 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1002 		put_task_struct(p);
1003 		goto out_info;
1004 	}
1005 	/*
1006 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1007 	 */
1008 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1009 		EXIT_TRACE : EXIT_DEAD;
1010 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1011 		return 0;
1012 	/*
1013 	 * We own this thread, nobody else can reap it.
1014 	 */
1015 	read_unlock(&tasklist_lock);
1016 	sched_annotate_sleep();
1017 
1018 	/*
1019 	 * Check thread_group_leader() to exclude the traced sub-threads.
1020 	 */
1021 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1022 		struct signal_struct *sig = p->signal;
1023 		struct signal_struct *psig = current->signal;
1024 		unsigned long maxrss;
1025 		u64 tgutime, tgstime;
1026 
1027 		/*
1028 		 * The resource counters for the group leader are in its
1029 		 * own task_struct.  Those for dead threads in the group
1030 		 * are in its signal_struct, as are those for the child
1031 		 * processes it has previously reaped.  All these
1032 		 * accumulate in the parent's signal_struct c* fields.
1033 		 *
1034 		 * We don't bother to take a lock here to protect these
1035 		 * p->signal fields because the whole thread group is dead
1036 		 * and nobody can change them.
1037 		 *
1038 		 * psig->stats_lock also protects us from our sub-theads
1039 		 * which can reap other children at the same time. Until
1040 		 * we change k_getrusage()-like users to rely on this lock
1041 		 * we have to take ->siglock as well.
1042 		 *
1043 		 * We use thread_group_cputime_adjusted() to get times for
1044 		 * the thread group, which consolidates times for all threads
1045 		 * in the group including the group leader.
1046 		 */
1047 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1048 		spin_lock_irq(&current->sighand->siglock);
1049 		write_seqlock(&psig->stats_lock);
1050 		psig->cutime += tgutime + sig->cutime;
1051 		psig->cstime += tgstime + sig->cstime;
1052 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1053 		psig->cmin_flt +=
1054 			p->min_flt + sig->min_flt + sig->cmin_flt;
1055 		psig->cmaj_flt +=
1056 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1057 		psig->cnvcsw +=
1058 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1059 		psig->cnivcsw +=
1060 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1061 		psig->cinblock +=
1062 			task_io_get_inblock(p) +
1063 			sig->inblock + sig->cinblock;
1064 		psig->coublock +=
1065 			task_io_get_oublock(p) +
1066 			sig->oublock + sig->coublock;
1067 		maxrss = max(sig->maxrss, sig->cmaxrss);
1068 		if (psig->cmaxrss < maxrss)
1069 			psig->cmaxrss = maxrss;
1070 		task_io_accounting_add(&psig->ioac, &p->ioac);
1071 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1072 		write_sequnlock(&psig->stats_lock);
1073 		spin_unlock_irq(&current->sighand->siglock);
1074 	}
1075 
1076 	if (wo->wo_rusage)
1077 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1078 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1079 		? p->signal->group_exit_code : p->exit_code;
1080 	wo->wo_stat = status;
1081 
1082 	if (state == EXIT_TRACE) {
1083 		write_lock_irq(&tasklist_lock);
1084 		/* We dropped tasklist, ptracer could die and untrace */
1085 		ptrace_unlink(p);
1086 
1087 		/* If parent wants a zombie, don't release it now */
1088 		state = EXIT_ZOMBIE;
1089 		if (do_notify_parent(p, p->exit_signal))
1090 			state = EXIT_DEAD;
1091 		p->exit_state = state;
1092 		write_unlock_irq(&tasklist_lock);
1093 	}
1094 	if (state == EXIT_DEAD)
1095 		release_task(p);
1096 
1097 out_info:
1098 	infop = wo->wo_info;
1099 	if (infop) {
1100 		if ((status & 0x7f) == 0) {
1101 			infop->cause = CLD_EXITED;
1102 			infop->status = status >> 8;
1103 		} else {
1104 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1105 			infop->status = status & 0x7f;
1106 		}
1107 		infop->pid = pid;
1108 		infop->uid = uid;
1109 	}
1110 
1111 	return pid;
1112 }
1113 
task_stopped_code(struct task_struct * p,bool ptrace)1114 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1115 {
1116 	if (ptrace) {
1117 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1118 			return &p->exit_code;
1119 	} else {
1120 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1121 			return &p->signal->group_exit_code;
1122 	}
1123 	return NULL;
1124 }
1125 
1126 /**
1127  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1128  * @wo: wait options
1129  * @ptrace: is the wait for ptrace
1130  * @p: task to wait for
1131  *
1132  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1133  *
1134  * CONTEXT:
1135  * read_lock(&tasklist_lock), which is released if return value is
1136  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1137  *
1138  * RETURNS:
1139  * 0 if wait condition didn't exist and search for other wait conditions
1140  * should continue.  Non-zero return, -errno on failure and @p's pid on
1141  * success, implies that tasklist_lock is released and wait condition
1142  * search should terminate.
1143  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1144 static int wait_task_stopped(struct wait_opts *wo,
1145 				int ptrace, struct task_struct *p)
1146 {
1147 	struct waitid_info *infop;
1148 	int exit_code, *p_code, why;
1149 	uid_t uid = 0; /* unneeded, required by compiler */
1150 	pid_t pid;
1151 
1152 	/*
1153 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1154 	 */
1155 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1156 		return 0;
1157 
1158 	if (!task_stopped_code(p, ptrace))
1159 		return 0;
1160 
1161 	exit_code = 0;
1162 	spin_lock_irq(&p->sighand->siglock);
1163 
1164 	p_code = task_stopped_code(p, ptrace);
1165 	if (unlikely(!p_code))
1166 		goto unlock_sig;
1167 
1168 	exit_code = *p_code;
1169 	if (!exit_code)
1170 		goto unlock_sig;
1171 
1172 	if (!unlikely(wo->wo_flags & WNOWAIT))
1173 		*p_code = 0;
1174 
1175 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1176 unlock_sig:
1177 	spin_unlock_irq(&p->sighand->siglock);
1178 	if (!exit_code)
1179 		return 0;
1180 
1181 	/*
1182 	 * Now we are pretty sure this task is interesting.
1183 	 * Make sure it doesn't get reaped out from under us while we
1184 	 * give up the lock and then examine it below.  We don't want to
1185 	 * keep holding onto the tasklist_lock while we call getrusage and
1186 	 * possibly take page faults for user memory.
1187 	 */
1188 	get_task_struct(p);
1189 	pid = task_pid_vnr(p);
1190 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1191 	read_unlock(&tasklist_lock);
1192 	sched_annotate_sleep();
1193 	if (wo->wo_rusage)
1194 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1195 	put_task_struct(p);
1196 
1197 	if (likely(!(wo->wo_flags & WNOWAIT)))
1198 		wo->wo_stat = (exit_code << 8) | 0x7f;
1199 
1200 	infop = wo->wo_info;
1201 	if (infop) {
1202 		infop->cause = why;
1203 		infop->status = exit_code;
1204 		infop->pid = pid;
1205 		infop->uid = uid;
1206 	}
1207 	return pid;
1208 }
1209 
1210 /*
1211  * Handle do_wait work for one task in a live, non-stopped state.
1212  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1213  * the lock and this task is uninteresting.  If we return nonzero, we have
1214  * released the lock and the system call should return.
1215  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1216 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1217 {
1218 	struct waitid_info *infop;
1219 	pid_t pid;
1220 	uid_t uid;
1221 
1222 	if (!unlikely(wo->wo_flags & WCONTINUED))
1223 		return 0;
1224 
1225 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1226 		return 0;
1227 
1228 	spin_lock_irq(&p->sighand->siglock);
1229 	/* Re-check with the lock held.  */
1230 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1231 		spin_unlock_irq(&p->sighand->siglock);
1232 		return 0;
1233 	}
1234 	if (!unlikely(wo->wo_flags & WNOWAIT))
1235 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1236 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1237 	spin_unlock_irq(&p->sighand->siglock);
1238 
1239 	pid = task_pid_vnr(p);
1240 	get_task_struct(p);
1241 	read_unlock(&tasklist_lock);
1242 	sched_annotate_sleep();
1243 	if (wo->wo_rusage)
1244 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1245 	put_task_struct(p);
1246 
1247 	infop = wo->wo_info;
1248 	if (!infop) {
1249 		wo->wo_stat = 0xffff;
1250 	} else {
1251 		infop->cause = CLD_CONTINUED;
1252 		infop->pid = pid;
1253 		infop->uid = uid;
1254 		infop->status = SIGCONT;
1255 	}
1256 	return pid;
1257 }
1258 
1259 /*
1260  * Consider @p for a wait by @parent.
1261  *
1262  * -ECHILD should be in ->notask_error before the first call.
1263  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1264  * Returns zero if the search for a child should continue;
1265  * then ->notask_error is 0 if @p is an eligible child,
1266  * or still -ECHILD.
1267  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1268 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1269 				struct task_struct *p)
1270 {
1271 	/*
1272 	 * We can race with wait_task_zombie() from another thread.
1273 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1274 	 * can't confuse the checks below.
1275 	 */
1276 	int exit_state = READ_ONCE(p->exit_state);
1277 	int ret;
1278 
1279 	if (unlikely(exit_state == EXIT_DEAD))
1280 		return 0;
1281 
1282 	ret = eligible_child(wo, ptrace, p);
1283 	if (!ret)
1284 		return ret;
1285 
1286 	if (unlikely(exit_state == EXIT_TRACE)) {
1287 		/*
1288 		 * ptrace == 0 means we are the natural parent. In this case
1289 		 * we should clear notask_error, debugger will notify us.
1290 		 */
1291 		if (likely(!ptrace))
1292 			wo->notask_error = 0;
1293 		return 0;
1294 	}
1295 
1296 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1297 		/*
1298 		 * If it is traced by its real parent's group, just pretend
1299 		 * the caller is ptrace_do_wait() and reap this child if it
1300 		 * is zombie.
1301 		 *
1302 		 * This also hides group stop state from real parent; otherwise
1303 		 * a single stop can be reported twice as group and ptrace stop.
1304 		 * If a ptracer wants to distinguish these two events for its
1305 		 * own children it should create a separate process which takes
1306 		 * the role of real parent.
1307 		 */
1308 		if (!ptrace_reparented(p))
1309 			ptrace = 1;
1310 	}
1311 
1312 	/* slay zombie? */
1313 	if (exit_state == EXIT_ZOMBIE) {
1314 		/* we don't reap group leaders with subthreads */
1315 		if (!delay_group_leader(p)) {
1316 			/*
1317 			 * A zombie ptracee is only visible to its ptracer.
1318 			 * Notification and reaping will be cascaded to the
1319 			 * real parent when the ptracer detaches.
1320 			 */
1321 			if (unlikely(ptrace) || likely(!p->ptrace))
1322 				return wait_task_zombie(wo, p);
1323 		}
1324 
1325 		/*
1326 		 * Allow access to stopped/continued state via zombie by
1327 		 * falling through.  Clearing of notask_error is complex.
1328 		 *
1329 		 * When !@ptrace:
1330 		 *
1331 		 * If WEXITED is set, notask_error should naturally be
1332 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1333 		 * so, if there are live subthreads, there are events to
1334 		 * wait for.  If all subthreads are dead, it's still safe
1335 		 * to clear - this function will be called again in finite
1336 		 * amount time once all the subthreads are released and
1337 		 * will then return without clearing.
1338 		 *
1339 		 * When @ptrace:
1340 		 *
1341 		 * Stopped state is per-task and thus can't change once the
1342 		 * target task dies.  Only continued and exited can happen.
1343 		 * Clear notask_error if WCONTINUED | WEXITED.
1344 		 */
1345 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1346 			wo->notask_error = 0;
1347 	} else {
1348 		/*
1349 		 * @p is alive and it's gonna stop, continue or exit, so
1350 		 * there always is something to wait for.
1351 		 */
1352 		wo->notask_error = 0;
1353 	}
1354 
1355 	/*
1356 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1357 	 * is used and the two don't interact with each other.
1358 	 */
1359 	ret = wait_task_stopped(wo, ptrace, p);
1360 	if (ret)
1361 		return ret;
1362 
1363 	/*
1364 	 * Wait for continued.  There's only one continued state and the
1365 	 * ptracer can consume it which can confuse the real parent.  Don't
1366 	 * use WCONTINUED from ptracer.  You don't need or want it.
1367 	 */
1368 	return wait_task_continued(wo, p);
1369 }
1370 
1371 /*
1372  * Do the work of do_wait() for one thread in the group, @tsk.
1373  *
1374  * -ECHILD should be in ->notask_error before the first call.
1375  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1376  * Returns zero if the search for a child should continue; then
1377  * ->notask_error is 0 if there were any eligible children,
1378  * or still -ECHILD.
1379  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1380 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1381 {
1382 	struct task_struct *p;
1383 
1384 	list_for_each_entry(p, &tsk->children, sibling) {
1385 		int ret = wait_consider_task(wo, 0, p);
1386 
1387 		if (ret)
1388 			return ret;
1389 	}
1390 
1391 	return 0;
1392 }
1393 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1394 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1395 {
1396 	struct task_struct *p;
1397 
1398 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1399 		int ret = wait_consider_task(wo, 1, p);
1400 
1401 		if (ret)
1402 			return ret;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1408 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1409 				int sync, void *key)
1410 {
1411 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1412 						child_wait);
1413 	struct task_struct *p = key;
1414 
1415 	if (!eligible_pid(wo, p))
1416 		return 0;
1417 
1418 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1419 		return 0;
1420 
1421 	return default_wake_function(wait, mode, sync, key);
1422 }
1423 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1424 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1425 {
1426 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1427 			   TASK_INTERRUPTIBLE, p);
1428 }
1429 
do_wait(struct wait_opts * wo)1430 static long do_wait(struct wait_opts *wo)
1431 {
1432 	struct task_struct *tsk;
1433 	int retval;
1434 
1435 	trace_sched_process_wait(wo->wo_pid);
1436 
1437 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1438 	wo->child_wait.private = current;
1439 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1440 repeat:
1441 	/*
1442 	 * If there is nothing that can match our criteria, just get out.
1443 	 * We will clear ->notask_error to zero if we see any child that
1444 	 * might later match our criteria, even if we are not able to reap
1445 	 * it yet.
1446 	 */
1447 	wo->notask_error = -ECHILD;
1448 	if ((wo->wo_type < PIDTYPE_MAX) &&
1449 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1450 		goto notask;
1451 
1452 	set_current_state(TASK_INTERRUPTIBLE);
1453 	read_lock(&tasklist_lock);
1454 	tsk = current;
1455 	do {
1456 		retval = do_wait_thread(wo, tsk);
1457 		if (retval)
1458 			goto end;
1459 
1460 		retval = ptrace_do_wait(wo, tsk);
1461 		if (retval)
1462 			goto end;
1463 
1464 		if (wo->wo_flags & __WNOTHREAD)
1465 			break;
1466 	} while_each_thread(current, tsk);
1467 	read_unlock(&tasklist_lock);
1468 
1469 notask:
1470 	retval = wo->notask_error;
1471 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1472 		retval = -ERESTARTSYS;
1473 		if (!signal_pending(current)) {
1474 			schedule();
1475 			goto repeat;
1476 		}
1477 	}
1478 end:
1479 	__set_current_state(TASK_RUNNING);
1480 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1481 	return retval;
1482 }
1483 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1484 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1485 			  int options, struct rusage *ru)
1486 {
1487 	struct wait_opts wo;
1488 	struct pid *pid = NULL;
1489 	enum pid_type type;
1490 	long ret;
1491 	unsigned int f_flags = 0;
1492 
1493 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1494 			__WNOTHREAD|__WCLONE|__WALL))
1495 		return -EINVAL;
1496 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1497 		return -EINVAL;
1498 
1499 	switch (which) {
1500 	case P_ALL:
1501 		type = PIDTYPE_MAX;
1502 		break;
1503 	case P_PID:
1504 		type = PIDTYPE_PID;
1505 		if (upid <= 0)
1506 			return -EINVAL;
1507 
1508 		pid = find_get_pid(upid);
1509 		break;
1510 	case P_PGID:
1511 		type = PIDTYPE_PGID;
1512 		if (upid < 0)
1513 			return -EINVAL;
1514 
1515 		if (upid)
1516 			pid = find_get_pid(upid);
1517 		else
1518 			pid = get_task_pid(current, PIDTYPE_PGID);
1519 		break;
1520 	case P_PIDFD:
1521 		type = PIDTYPE_PID;
1522 		if (upid < 0)
1523 			return -EINVAL;
1524 
1525 		pid = pidfd_get_pid(upid, &f_flags);
1526 		if (IS_ERR(pid))
1527 			return PTR_ERR(pid);
1528 
1529 		break;
1530 	default:
1531 		return -EINVAL;
1532 	}
1533 
1534 	wo.wo_type	= type;
1535 	wo.wo_pid	= pid;
1536 	wo.wo_flags	= options;
1537 	wo.wo_info	= infop;
1538 	wo.wo_rusage	= ru;
1539 	if (f_flags & O_NONBLOCK)
1540 		wo.wo_flags |= WNOHANG;
1541 
1542 	ret = do_wait(&wo);
1543 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1544 		ret = -EAGAIN;
1545 
1546 	put_pid(pid);
1547 	return ret;
1548 }
1549 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1550 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1551 		infop, int, options, struct rusage __user *, ru)
1552 {
1553 	struct rusage r;
1554 	struct waitid_info info = {.status = 0};
1555 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1556 	int signo = 0;
1557 
1558 	if (err > 0) {
1559 		signo = SIGCHLD;
1560 		err = 0;
1561 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1562 			return -EFAULT;
1563 	}
1564 	if (!infop)
1565 		return err;
1566 
1567 	if (!user_write_access_begin(infop, sizeof(*infop)))
1568 		return -EFAULT;
1569 
1570 	unsafe_put_user(signo, &infop->si_signo, Efault);
1571 	unsafe_put_user(0, &infop->si_errno, Efault);
1572 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1573 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1574 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1575 	unsafe_put_user(info.status, &infop->si_status, Efault);
1576 	user_write_access_end();
1577 	return err;
1578 Efault:
1579 	user_write_access_end();
1580 	return -EFAULT;
1581 }
1582 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1583 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1584 		  struct rusage *ru)
1585 {
1586 	struct wait_opts wo;
1587 	struct pid *pid = NULL;
1588 	enum pid_type type;
1589 	long ret;
1590 
1591 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1592 			__WNOTHREAD|__WCLONE|__WALL))
1593 		return -EINVAL;
1594 
1595 	/* -INT_MIN is not defined */
1596 	if (upid == INT_MIN)
1597 		return -ESRCH;
1598 
1599 	if (upid == -1)
1600 		type = PIDTYPE_MAX;
1601 	else if (upid < 0) {
1602 		type = PIDTYPE_PGID;
1603 		pid = find_get_pid(-upid);
1604 	} else if (upid == 0) {
1605 		type = PIDTYPE_PGID;
1606 		pid = get_task_pid(current, PIDTYPE_PGID);
1607 	} else /* upid > 0 */ {
1608 		type = PIDTYPE_PID;
1609 		pid = find_get_pid(upid);
1610 	}
1611 
1612 	wo.wo_type	= type;
1613 	wo.wo_pid	= pid;
1614 	wo.wo_flags	= options | WEXITED;
1615 	wo.wo_info	= NULL;
1616 	wo.wo_stat	= 0;
1617 	wo.wo_rusage	= ru;
1618 	ret = do_wait(&wo);
1619 	put_pid(pid);
1620 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1621 		ret = -EFAULT;
1622 
1623 	return ret;
1624 }
1625 
kernel_wait(pid_t pid,int * stat)1626 int kernel_wait(pid_t pid, int *stat)
1627 {
1628 	struct wait_opts wo = {
1629 		.wo_type	= PIDTYPE_PID,
1630 		.wo_pid		= find_get_pid(pid),
1631 		.wo_flags	= WEXITED,
1632 	};
1633 	int ret;
1634 
1635 	ret = do_wait(&wo);
1636 	if (ret > 0 && wo.wo_stat)
1637 		*stat = wo.wo_stat;
1638 	put_pid(wo.wo_pid);
1639 	return ret;
1640 }
1641 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1642 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1643 		int, options, struct rusage __user *, ru)
1644 {
1645 	struct rusage r;
1646 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1647 
1648 	if (err > 0) {
1649 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1650 			return -EFAULT;
1651 	}
1652 	return err;
1653 }
1654 
1655 #ifdef __ARCH_WANT_SYS_WAITPID
1656 
1657 /*
1658  * sys_waitpid() remains for compatibility. waitpid() should be
1659  * implemented by calling sys_wait4() from libc.a.
1660  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1661 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1662 {
1663 	return kernel_wait4(pid, stat_addr, options, NULL);
1664 }
1665 
1666 #endif
1667 
1668 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1669 COMPAT_SYSCALL_DEFINE4(wait4,
1670 	compat_pid_t, pid,
1671 	compat_uint_t __user *, stat_addr,
1672 	int, options,
1673 	struct compat_rusage __user *, ru)
1674 {
1675 	struct rusage r;
1676 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1677 	if (err > 0) {
1678 		if (ru && put_compat_rusage(&r, ru))
1679 			return -EFAULT;
1680 	}
1681 	return err;
1682 }
1683 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1684 COMPAT_SYSCALL_DEFINE5(waitid,
1685 		int, which, compat_pid_t, pid,
1686 		struct compat_siginfo __user *, infop, int, options,
1687 		struct compat_rusage __user *, uru)
1688 {
1689 	struct rusage ru;
1690 	struct waitid_info info = {.status = 0};
1691 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1692 	int signo = 0;
1693 	if (err > 0) {
1694 		signo = SIGCHLD;
1695 		err = 0;
1696 		if (uru) {
1697 			/* kernel_waitid() overwrites everything in ru */
1698 			if (COMPAT_USE_64BIT_TIME)
1699 				err = copy_to_user(uru, &ru, sizeof(ru));
1700 			else
1701 				err = put_compat_rusage(&ru, uru);
1702 			if (err)
1703 				return -EFAULT;
1704 		}
1705 	}
1706 
1707 	if (!infop)
1708 		return err;
1709 
1710 	if (!user_write_access_begin(infop, sizeof(*infop)))
1711 		return -EFAULT;
1712 
1713 	unsafe_put_user(signo, &infop->si_signo, Efault);
1714 	unsafe_put_user(0, &infop->si_errno, Efault);
1715 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1716 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1717 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1718 	unsafe_put_user(info.status, &infop->si_status, Efault);
1719 	user_write_access_end();
1720 	return err;
1721 Efault:
1722 	user_write_access_end();
1723 	return -EFAULT;
1724 }
1725 #endif
1726 
1727 /**
1728  * thread_group_exited - check that a thread group has exited
1729  * @pid: tgid of thread group to be checked.
1730  *
1731  * Test if the thread group represented by tgid has exited (all
1732  * threads are zombies, dead or completely gone).
1733  *
1734  * Return: true if the thread group has exited. false otherwise.
1735  */
thread_group_exited(struct pid * pid)1736 bool thread_group_exited(struct pid *pid)
1737 {
1738 	struct task_struct *task;
1739 	bool exited;
1740 
1741 	rcu_read_lock();
1742 	task = pid_task(pid, PIDTYPE_PID);
1743 	exited = !task ||
1744 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1745 	rcu_read_unlock();
1746 
1747 	return exited;
1748 }
1749 EXPORT_SYMBOL(thread_group_exited);
1750 
abort(void)1751 __weak void abort(void)
1752 {
1753 	BUG();
1754 
1755 	/* if that doesn't kill us, halt */
1756 	panic("Oops failed to kill thread");
1757 }
1758 EXPORT_SYMBOL(abort);
1759