1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include <linux/vmalloc.h>
61 #include <linux/mm.h>
62 #include <linux/kasan.h>
63 #include "../time/tick-internal.h"
64
65 #include "tree.h"
66 #include "rcu.h"
67
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
70 #endif
71 #define MODULE_PARAM_PREFIX "rcutree."
72
73 /* Data structures. */
74
75 /*
76 * Steal a bit from the bottom of ->dynticks for idle entry/exit
77 * control. Initially this is for TLB flushing.
78 */
79 #define RCU_DYNTICK_CTRL_MASK 0x1
80 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
81
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 .dynticks_nesting = 1,
84 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 };
87 static struct rcu_state rcu_state = {
88 .level = { &rcu_state.node[0] },
89 .gp_state = RCU_GP_IDLE,
90 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
92 .name = RCU_NAME,
93 .abbr = RCU_ABBR,
94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
97 };
98
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = true;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115
116 /*
117 * The rcu_scheduler_active variable is initialized to the value
118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
120 * RCU can assume that there is but one task, allowing RCU to (for example)
121 * optimize synchronize_rcu() to a simple barrier(). When this variable
122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123 * to detect real grace periods. This variable is also used to suppress
124 * boot-time false positives from lockdep-RCU error checking. Finally, it
125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126 * is fully initialized, including all of its kthreads having been spawned.
127 */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130
131 /*
132 * The rcu_scheduler_fully_active variable transitions from zero to one
133 * during the early_initcall() processing, which is after the scheduler
134 * is capable of creating new tasks. So RCU processing (for example,
135 * creating tasks for RCU priority boosting) must be delayed until after
136 * rcu_scheduler_fully_active transitions from zero to one. We also
137 * currently delay invocation of any RCU callbacks until after this point.
138 *
139 * It might later prove better for people registering RCU callbacks during
140 * early boot to take responsibility for these callbacks, but one step at
141 * a time.
142 */
143 static int rcu_scheduler_fully_active __read_mostly;
144
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
154
155 /* rcuc/rcub kthread realtime priority */
156 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
157 module_param(kthread_prio, int, 0444);
158
159 /* Delay in jiffies for grace-period initialization delays, debug only. */
160
161 static int gp_preinit_delay;
162 module_param(gp_preinit_delay, int, 0444);
163 static int gp_init_delay;
164 module_param(gp_init_delay, int, 0444);
165 static int gp_cleanup_delay;
166 module_param(gp_cleanup_delay, int, 0444);
167
168 // Add delay to rcu_read_unlock() for strict grace periods.
169 static int rcu_unlock_delay;
170 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
171 module_param(rcu_unlock_delay, int, 0444);
172 #endif
173
174 /*
175 * This rcu parameter is runtime-read-only. It reflects
176 * a minimum allowed number of objects which can be cached
177 * per-CPU. Object size is equal to one page. This value
178 * can be changed at boot time.
179 */
180 static int rcu_min_cached_objs = 5;
181 module_param(rcu_min_cached_objs, int, 0444);
182
183 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)184 int rcu_get_gp_kthreads_prio(void)
185 {
186 return kthread_prio;
187 }
188 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
189
190 /*
191 * Number of grace periods between delays, normalized by the duration of
192 * the delay. The longer the delay, the more the grace periods between
193 * each delay. The reason for this normalization is that it means that,
194 * for non-zero delays, the overall slowdown of grace periods is constant
195 * regardless of the duration of the delay. This arrangement balances
196 * the need for long delays to increase some race probabilities with the
197 * need for fast grace periods to increase other race probabilities.
198 */
199 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
200
201 /*
202 * Compute the mask of online CPUs for the specified rcu_node structure.
203 * This will not be stable unless the rcu_node structure's ->lock is
204 * held, but the bit corresponding to the current CPU will be stable
205 * in most contexts.
206 */
rcu_rnp_online_cpus(struct rcu_node * rnp)207 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
208 {
209 return READ_ONCE(rnp->qsmaskinitnext);
210 }
211
212 /*
213 * Return true if an RCU grace period is in progress. The READ_ONCE()s
214 * permit this function to be invoked without holding the root rcu_node
215 * structure's ->lock, but of course results can be subject to change.
216 */
rcu_gp_in_progress(void)217 static int rcu_gp_in_progress(void)
218 {
219 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
220 }
221
222 /*
223 * Return the number of callbacks queued on the specified CPU.
224 * Handles both the nocbs and normal cases.
225 */
rcu_get_n_cbs_cpu(int cpu)226 static long rcu_get_n_cbs_cpu(int cpu)
227 {
228 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
229
230 if (rcu_segcblist_is_enabled(&rdp->cblist))
231 return rcu_segcblist_n_cbs(&rdp->cblist);
232 return 0;
233 }
234
rcu_softirq_qs(void)235 void rcu_softirq_qs(void)
236 {
237 rcu_qs();
238 rcu_preempt_deferred_qs(current);
239 }
240
241 /*
242 * Record entry into an extended quiescent state. This is only to be
243 * called when not already in an extended quiescent state, that is,
244 * RCU is watching prior to the call to this function and is no longer
245 * watching upon return.
246 */
rcu_dynticks_eqs_enter(void)247 static noinstr void rcu_dynticks_eqs_enter(void)
248 {
249 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
250 int seq;
251
252 /*
253 * CPUs seeing atomic_add_return() must see prior RCU read-side
254 * critical sections, and we also must force ordering with the
255 * next idle sojourn.
256 */
257 rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
258 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
259 // RCU is no longer watching. Better be in extended quiescent state!
260 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
261 (seq & RCU_DYNTICK_CTRL_CTR));
262 /* Better not have special action (TLB flush) pending! */
263 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
264 (seq & RCU_DYNTICK_CTRL_MASK));
265 }
266
267 /*
268 * Record exit from an extended quiescent state. This is only to be
269 * called from an extended quiescent state, that is, RCU is not watching
270 * prior to the call to this function and is watching upon return.
271 */
rcu_dynticks_eqs_exit(void)272 static noinstr void rcu_dynticks_eqs_exit(void)
273 {
274 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
275 int seq;
276
277 /*
278 * CPUs seeing atomic_add_return() must see prior idle sojourns,
279 * and we also must force ordering with the next RCU read-side
280 * critical section.
281 */
282 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
283 // RCU is now watching. Better not be in an extended quiescent state!
284 rcu_dynticks_task_trace_exit(); // After ->dynticks update!
285 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
286 !(seq & RCU_DYNTICK_CTRL_CTR));
287 if (seq & RCU_DYNTICK_CTRL_MASK) {
288 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
289 smp_mb__after_atomic(); /* _exit after clearing mask. */
290 }
291 }
292
293 /*
294 * Reset the current CPU's ->dynticks counter to indicate that the
295 * newly onlined CPU is no longer in an extended quiescent state.
296 * This will either leave the counter unchanged, or increment it
297 * to the next non-quiescent value.
298 *
299 * The non-atomic test/increment sequence works because the upper bits
300 * of the ->dynticks counter are manipulated only by the corresponding CPU,
301 * or when the corresponding CPU is offline.
302 */
rcu_dynticks_eqs_online(void)303 static void rcu_dynticks_eqs_online(void)
304 {
305 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
306
307 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
308 return;
309 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
310 }
311
312 /*
313 * Is the current CPU in an extended quiescent state?
314 *
315 * No ordering, as we are sampling CPU-local information.
316 */
rcu_dynticks_curr_cpu_in_eqs(void)317 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
318 {
319 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
320
321 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
322 }
323
324 /*
325 * Snapshot the ->dynticks counter with full ordering so as to allow
326 * stable comparison of this counter with past and future snapshots.
327 */
rcu_dynticks_snap(struct rcu_data * rdp)328 static int rcu_dynticks_snap(struct rcu_data *rdp)
329 {
330 int snap = atomic_add_return(0, &rdp->dynticks);
331
332 return snap & ~RCU_DYNTICK_CTRL_MASK;
333 }
334
335 /*
336 * Return true if the snapshot returned from rcu_dynticks_snap()
337 * indicates that RCU is in an extended quiescent state.
338 */
rcu_dynticks_in_eqs(int snap)339 static bool rcu_dynticks_in_eqs(int snap)
340 {
341 return !(snap & RCU_DYNTICK_CTRL_CTR);
342 }
343
344 /*
345 * Return true if the CPU corresponding to the specified rcu_data
346 * structure has spent some time in an extended quiescent state since
347 * rcu_dynticks_snap() returned the specified snapshot.
348 */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)349 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
350 {
351 return snap != rcu_dynticks_snap(rdp);
352 }
353
354 /*
355 * Return true if the referenced integer is zero while the specified
356 * CPU remains within a single extended quiescent state.
357 */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)358 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
359 {
360 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
361 int snap;
362
363 // If not quiescent, force back to earlier extended quiescent state.
364 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
365 RCU_DYNTICK_CTRL_CTR);
366
367 smp_rmb(); // Order ->dynticks and *vp reads.
368 if (READ_ONCE(*vp))
369 return false; // Non-zero, so report failure;
370 smp_rmb(); // Order *vp read and ->dynticks re-read.
371
372 // If still in the same extended quiescent state, we are good!
373 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
374 }
375
376 /*
377 * Set the special (bottom) bit of the specified CPU so that it
378 * will take special action (such as flushing its TLB) on the
379 * next exit from an extended quiescent state. Returns true if
380 * the bit was successfully set, or false if the CPU was not in
381 * an extended quiescent state.
382 */
rcu_eqs_special_set(int cpu)383 bool rcu_eqs_special_set(int cpu)
384 {
385 int old;
386 int new;
387 int new_old;
388 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
389
390 new_old = atomic_read(&rdp->dynticks);
391 do {
392 old = new_old;
393 if (old & RCU_DYNTICK_CTRL_CTR)
394 return false;
395 new = old | RCU_DYNTICK_CTRL_MASK;
396 new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
397 } while (new_old != old);
398 return true;
399 }
400
401 /*
402 * Let the RCU core know that this CPU has gone through the scheduler,
403 * which is a quiescent state. This is called when the need for a
404 * quiescent state is urgent, so we burn an atomic operation and full
405 * memory barriers to let the RCU core know about it, regardless of what
406 * this CPU might (or might not) do in the near future.
407 *
408 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
409 *
410 * The caller must have disabled interrupts and must not be idle.
411 */
rcu_momentary_dyntick_idle(void)412 notrace void rcu_momentary_dyntick_idle(void)
413 {
414 int special;
415
416 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
417 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
418 &this_cpu_ptr(&rcu_data)->dynticks);
419 /* It is illegal to call this from idle state. */
420 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
421 rcu_preempt_deferred_qs(current);
422 }
423 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
424
425 /**
426 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
427 *
428 * If the current CPU is idle and running at a first-level (not nested)
429 * interrupt, or directly, from idle, return true.
430 *
431 * The caller must have at least disabled IRQs.
432 */
rcu_is_cpu_rrupt_from_idle(void)433 static int rcu_is_cpu_rrupt_from_idle(void)
434 {
435 long nesting;
436
437 /*
438 * Usually called from the tick; but also used from smp_function_call()
439 * for expedited grace periods. This latter can result in running from
440 * the idle task, instead of an actual IPI.
441 */
442 lockdep_assert_irqs_disabled();
443
444 /* Check for counter underflows */
445 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
446 "RCU dynticks_nesting counter underflow!");
447 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
448 "RCU dynticks_nmi_nesting counter underflow/zero!");
449
450 /* Are we at first interrupt nesting level? */
451 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
452 if (nesting > 1)
453 return false;
454
455 /*
456 * If we're not in an interrupt, we must be in the idle task!
457 */
458 WARN_ON_ONCE(!nesting && !is_idle_task(current));
459
460 /* Does CPU appear to be idle from an RCU standpoint? */
461 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
462 }
463
464 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
465 // Maximum callbacks per rcu_do_batch ...
466 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
467 static long blimit = DEFAULT_RCU_BLIMIT;
468 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
469 static long qhimark = DEFAULT_RCU_QHIMARK;
470 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
471 static long qlowmark = DEFAULT_RCU_QLOMARK;
472 #define DEFAULT_RCU_QOVLD_MULT 2
473 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
474 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
475 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
476
477 module_param(blimit, long, 0444);
478 module_param(qhimark, long, 0444);
479 module_param(qlowmark, long, 0444);
480 module_param(qovld, long, 0444);
481
482 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
483 static ulong jiffies_till_next_fqs = ULONG_MAX;
484 static bool rcu_kick_kthreads;
485 static int rcu_divisor = 7;
486 module_param(rcu_divisor, int, 0644);
487
488 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
489 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
490 module_param(rcu_resched_ns, long, 0644);
491
492 /*
493 * How long the grace period must be before we start recruiting
494 * quiescent-state help from rcu_note_context_switch().
495 */
496 static ulong jiffies_till_sched_qs = ULONG_MAX;
497 module_param(jiffies_till_sched_qs, ulong, 0444);
498 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
499 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
500
501 /*
502 * Make sure that we give the grace-period kthread time to detect any
503 * idle CPUs before taking active measures to force quiescent states.
504 * However, don't go below 100 milliseconds, adjusted upwards for really
505 * large systems.
506 */
adjust_jiffies_till_sched_qs(void)507 static void adjust_jiffies_till_sched_qs(void)
508 {
509 unsigned long j;
510
511 /* If jiffies_till_sched_qs was specified, respect the request. */
512 if (jiffies_till_sched_qs != ULONG_MAX) {
513 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
514 return;
515 }
516 /* Otherwise, set to third fqs scan, but bound below on large system. */
517 j = READ_ONCE(jiffies_till_first_fqs) +
518 2 * READ_ONCE(jiffies_till_next_fqs);
519 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
520 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
521 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
522 WRITE_ONCE(jiffies_to_sched_qs, j);
523 }
524
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)525 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
526 {
527 ulong j;
528 int ret = kstrtoul(val, 0, &j);
529
530 if (!ret) {
531 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
532 adjust_jiffies_till_sched_qs();
533 }
534 return ret;
535 }
536
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)537 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
538 {
539 ulong j;
540 int ret = kstrtoul(val, 0, &j);
541
542 if (!ret) {
543 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
544 adjust_jiffies_till_sched_qs();
545 }
546 return ret;
547 }
548
549 static struct kernel_param_ops first_fqs_jiffies_ops = {
550 .set = param_set_first_fqs_jiffies,
551 .get = param_get_ulong,
552 };
553
554 static struct kernel_param_ops next_fqs_jiffies_ops = {
555 .set = param_set_next_fqs_jiffies,
556 .get = param_get_ulong,
557 };
558
559 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
560 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
561 module_param(rcu_kick_kthreads, bool, 0644);
562
563 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
564 static int rcu_pending(int user);
565
566 /*
567 * Return the number of RCU GPs completed thus far for debug & stats.
568 */
rcu_get_gp_seq(void)569 unsigned long rcu_get_gp_seq(void)
570 {
571 return READ_ONCE(rcu_state.gp_seq);
572 }
573 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
574
575 /*
576 * Return the number of RCU expedited batches completed thus far for
577 * debug & stats. Odd numbers mean that a batch is in progress, even
578 * numbers mean idle. The value returned will thus be roughly double
579 * the cumulative batches since boot.
580 */
rcu_exp_batches_completed(void)581 unsigned long rcu_exp_batches_completed(void)
582 {
583 return rcu_state.expedited_sequence;
584 }
585 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
586
587 /*
588 * Return the root node of the rcu_state structure.
589 */
rcu_get_root(void)590 static struct rcu_node *rcu_get_root(void)
591 {
592 return &rcu_state.node[0];
593 }
594
595 /*
596 * Send along grace-period-related data for rcutorture diagnostics.
597 */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)598 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
599 unsigned long *gp_seq)
600 {
601 switch (test_type) {
602 case RCU_FLAVOR:
603 *flags = READ_ONCE(rcu_state.gp_flags);
604 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
605 break;
606 default:
607 break;
608 }
609 }
610 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
611
612 /*
613 * Enter an RCU extended quiescent state, which can be either the
614 * idle loop or adaptive-tickless usermode execution.
615 *
616 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
617 * the possibility of usermode upcalls having messed up our count
618 * of interrupt nesting level during the prior busy period.
619 */
rcu_eqs_enter(bool user)620 static noinstr void rcu_eqs_enter(bool user)
621 {
622 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
623
624 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
625 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
626 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
627 rdp->dynticks_nesting == 0);
628 if (rdp->dynticks_nesting != 1) {
629 // RCU will still be watching, so just do accounting and leave.
630 rdp->dynticks_nesting--;
631 return;
632 }
633
634 lockdep_assert_irqs_disabled();
635 instrumentation_begin();
636 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
637 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
638 rdp = this_cpu_ptr(&rcu_data);
639 rcu_prepare_for_idle();
640 rcu_preempt_deferred_qs(current);
641
642 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
643 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
644
645 instrumentation_end();
646 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
647 // RCU is watching here ...
648 rcu_dynticks_eqs_enter();
649 // ... but is no longer watching here.
650 rcu_dynticks_task_enter();
651 }
652
653 /**
654 * rcu_idle_enter - inform RCU that current CPU is entering idle
655 *
656 * Enter idle mode, in other words, -leave- the mode in which RCU
657 * read-side critical sections can occur. (Though RCU read-side
658 * critical sections can occur in irq handlers in idle, a possibility
659 * handled by irq_enter() and irq_exit().)
660 *
661 * If you add or remove a call to rcu_idle_enter(), be sure to test with
662 * CONFIG_RCU_EQS_DEBUG=y.
663 */
rcu_idle_enter(void)664 void rcu_idle_enter(void)
665 {
666 lockdep_assert_irqs_disabled();
667 rcu_eqs_enter(false);
668 }
669 EXPORT_SYMBOL_GPL(rcu_idle_enter);
670
671 #ifdef CONFIG_NO_HZ_FULL
672 /**
673 * rcu_user_enter - inform RCU that we are resuming userspace.
674 *
675 * Enter RCU idle mode right before resuming userspace. No use of RCU
676 * is permitted between this call and rcu_user_exit(). This way the
677 * CPU doesn't need to maintain the tick for RCU maintenance purposes
678 * when the CPU runs in userspace.
679 *
680 * If you add or remove a call to rcu_user_enter(), be sure to test with
681 * CONFIG_RCU_EQS_DEBUG=y.
682 */
rcu_user_enter(void)683 noinstr void rcu_user_enter(void)
684 {
685 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
686
687 lockdep_assert_irqs_disabled();
688
689 instrumentation_begin();
690 do_nocb_deferred_wakeup(rdp);
691 instrumentation_end();
692
693 rcu_eqs_enter(true);
694 }
695 #endif /* CONFIG_NO_HZ_FULL */
696
697 /**
698 * rcu_nmi_exit - inform RCU of exit from NMI context
699 *
700 * If we are returning from the outermost NMI handler that interrupted an
701 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
702 * to let the RCU grace-period handling know that the CPU is back to
703 * being RCU-idle.
704 *
705 * If you add or remove a call to rcu_nmi_exit(), be sure to test
706 * with CONFIG_RCU_EQS_DEBUG=y.
707 */
rcu_nmi_exit(void)708 noinstr void rcu_nmi_exit(void)
709 {
710 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
711
712 instrumentation_begin();
713 /*
714 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
715 * (We are exiting an NMI handler, so RCU better be paying attention
716 * to us!)
717 */
718 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
719 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
720
721 /*
722 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
723 * leave it in non-RCU-idle state.
724 */
725 if (rdp->dynticks_nmi_nesting != 1) {
726 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
727 atomic_read(&rdp->dynticks));
728 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
729 rdp->dynticks_nmi_nesting - 2);
730 instrumentation_end();
731 return;
732 }
733
734 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
735 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
736 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
737
738 if (!in_nmi())
739 rcu_prepare_for_idle();
740
741 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
742 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
743 instrumentation_end();
744
745 // RCU is watching here ...
746 rcu_dynticks_eqs_enter();
747 // ... but is no longer watching here.
748
749 if (!in_nmi())
750 rcu_dynticks_task_enter();
751 }
752
753 /**
754 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
755 *
756 * Exit from an interrupt handler, which might possibly result in entering
757 * idle mode, in other words, leaving the mode in which read-side critical
758 * sections can occur. The caller must have disabled interrupts.
759 *
760 * This code assumes that the idle loop never does anything that might
761 * result in unbalanced calls to irq_enter() and irq_exit(). If your
762 * architecture's idle loop violates this assumption, RCU will give you what
763 * you deserve, good and hard. But very infrequently and irreproducibly.
764 *
765 * Use things like work queues to work around this limitation.
766 *
767 * You have been warned.
768 *
769 * If you add or remove a call to rcu_irq_exit(), be sure to test with
770 * CONFIG_RCU_EQS_DEBUG=y.
771 */
rcu_irq_exit(void)772 void noinstr rcu_irq_exit(void)
773 {
774 lockdep_assert_irqs_disabled();
775 rcu_nmi_exit();
776 }
777
778 /**
779 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
780 * towards in kernel preemption
781 *
782 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
783 * from RCU point of view. Invoked from return from interrupt before kernel
784 * preemption.
785 */
rcu_irq_exit_preempt(void)786 void rcu_irq_exit_preempt(void)
787 {
788 lockdep_assert_irqs_disabled();
789 rcu_nmi_exit();
790
791 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
792 "RCU dynticks_nesting counter underflow/zero!");
793 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
794 DYNTICK_IRQ_NONIDLE,
795 "Bad RCU dynticks_nmi_nesting counter\n");
796 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
797 "RCU in extended quiescent state!");
798 }
799
800 #ifdef CONFIG_PROVE_RCU
801 /**
802 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
803 */
rcu_irq_exit_check_preempt(void)804 void rcu_irq_exit_check_preempt(void)
805 {
806 lockdep_assert_irqs_disabled();
807
808 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
809 "RCU dynticks_nesting counter underflow/zero!");
810 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
811 DYNTICK_IRQ_NONIDLE,
812 "Bad RCU dynticks_nmi_nesting counter\n");
813 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
814 "RCU in extended quiescent state!");
815 }
816 #endif /* #ifdef CONFIG_PROVE_RCU */
817
818 /*
819 * Wrapper for rcu_irq_exit() where interrupts are enabled.
820 *
821 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
822 * with CONFIG_RCU_EQS_DEBUG=y.
823 */
rcu_irq_exit_irqson(void)824 void rcu_irq_exit_irqson(void)
825 {
826 unsigned long flags;
827
828 local_irq_save(flags);
829 rcu_irq_exit();
830 local_irq_restore(flags);
831 }
832
833 /*
834 * Exit an RCU extended quiescent state, which can be either the
835 * idle loop or adaptive-tickless usermode execution.
836 *
837 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
838 * allow for the possibility of usermode upcalls messing up our count of
839 * interrupt nesting level during the busy period that is just now starting.
840 */
rcu_eqs_exit(bool user)841 static void noinstr rcu_eqs_exit(bool user)
842 {
843 struct rcu_data *rdp;
844 long oldval;
845
846 lockdep_assert_irqs_disabled();
847 rdp = this_cpu_ptr(&rcu_data);
848 oldval = rdp->dynticks_nesting;
849 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
850 if (oldval) {
851 // RCU was already watching, so just do accounting and leave.
852 rdp->dynticks_nesting++;
853 return;
854 }
855 rcu_dynticks_task_exit();
856 // RCU is not watching here ...
857 rcu_dynticks_eqs_exit();
858 // ... but is watching here.
859 instrumentation_begin();
860
861 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
862 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
863
864 rcu_cleanup_after_idle();
865 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
866 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
867 WRITE_ONCE(rdp->dynticks_nesting, 1);
868 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
869 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
870 instrumentation_end();
871 }
872
873 /**
874 * rcu_idle_exit - inform RCU that current CPU is leaving idle
875 *
876 * Exit idle mode, in other words, -enter- the mode in which RCU
877 * read-side critical sections can occur.
878 *
879 * If you add or remove a call to rcu_idle_exit(), be sure to test with
880 * CONFIG_RCU_EQS_DEBUG=y.
881 */
rcu_idle_exit(void)882 void rcu_idle_exit(void)
883 {
884 unsigned long flags;
885
886 local_irq_save(flags);
887 rcu_eqs_exit(false);
888 local_irq_restore(flags);
889 }
890 EXPORT_SYMBOL_GPL(rcu_idle_exit);
891
892 #ifdef CONFIG_NO_HZ_FULL
893 /**
894 * rcu_user_exit - inform RCU that we are exiting userspace.
895 *
896 * Exit RCU idle mode while entering the kernel because it can
897 * run a RCU read side critical section anytime.
898 *
899 * If you add or remove a call to rcu_user_exit(), be sure to test with
900 * CONFIG_RCU_EQS_DEBUG=y.
901 */
rcu_user_exit(void)902 void noinstr rcu_user_exit(void)
903 {
904 rcu_eqs_exit(1);
905 }
906
907 /**
908 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
909 *
910 * The scheduler tick is not normally enabled when CPUs enter the kernel
911 * from nohz_full userspace execution. After all, nohz_full userspace
912 * execution is an RCU quiescent state and the time executing in the kernel
913 * is quite short. Except of course when it isn't. And it is not hard to
914 * cause a large system to spend tens of seconds or even minutes looping
915 * in the kernel, which can cause a number of problems, include RCU CPU
916 * stall warnings.
917 *
918 * Therefore, if a nohz_full CPU fails to report a quiescent state
919 * in a timely manner, the RCU grace-period kthread sets that CPU's
920 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
921 * exception will invoke this function, which will turn on the scheduler
922 * tick, which will enable RCU to detect that CPU's quiescent states,
923 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
924 * The tick will be disabled once a quiescent state is reported for
925 * this CPU.
926 *
927 * Of course, in carefully tuned systems, there might never be an
928 * interrupt or exception. In that case, the RCU grace-period kthread
929 * will eventually cause one to happen. However, in less carefully
930 * controlled environments, this function allows RCU to get what it
931 * needs without creating otherwise useless interruptions.
932 */
__rcu_irq_enter_check_tick(void)933 void __rcu_irq_enter_check_tick(void)
934 {
935 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
936
937 // If we're here from NMI there's nothing to do.
938 if (in_nmi())
939 return;
940
941 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
942 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
943
944 if (!tick_nohz_full_cpu(rdp->cpu) ||
945 !READ_ONCE(rdp->rcu_urgent_qs) ||
946 READ_ONCE(rdp->rcu_forced_tick)) {
947 // RCU doesn't need nohz_full help from this CPU, or it is
948 // already getting that help.
949 return;
950 }
951
952 // We get here only when not in an extended quiescent state and
953 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
954 // already watching and (2) The fact that we are in an interrupt
955 // handler and that the rcu_node lock is an irq-disabled lock
956 // prevents self-deadlock. So we can safely recheck under the lock.
957 // Note that the nohz_full state currently cannot change.
958 raw_spin_lock_rcu_node(rdp->mynode);
959 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
960 // A nohz_full CPU is in the kernel and RCU needs a
961 // quiescent state. Turn on the tick!
962 WRITE_ONCE(rdp->rcu_forced_tick, true);
963 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
964 }
965 raw_spin_unlock_rcu_node(rdp->mynode);
966 }
967 #endif /* CONFIG_NO_HZ_FULL */
968
969 /**
970 * rcu_nmi_enter - inform RCU of entry to NMI context
971 *
972 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
973 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
974 * that the CPU is active. This implementation permits nested NMIs, as
975 * long as the nesting level does not overflow an int. (You will probably
976 * run out of stack space first.)
977 *
978 * If you add or remove a call to rcu_nmi_enter(), be sure to test
979 * with CONFIG_RCU_EQS_DEBUG=y.
980 */
rcu_nmi_enter(void)981 noinstr void rcu_nmi_enter(void)
982 {
983 long incby = 2;
984 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
985
986 /* Complain about underflow. */
987 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
988
989 /*
990 * If idle from RCU viewpoint, atomically increment ->dynticks
991 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
992 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
993 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
994 * to be in the outermost NMI handler that interrupted an RCU-idle
995 * period (observation due to Andy Lutomirski).
996 */
997 if (rcu_dynticks_curr_cpu_in_eqs()) {
998
999 if (!in_nmi())
1000 rcu_dynticks_task_exit();
1001
1002 // RCU is not watching here ...
1003 rcu_dynticks_eqs_exit();
1004 // ... but is watching here.
1005
1006 if (!in_nmi()) {
1007 instrumentation_begin();
1008 rcu_cleanup_after_idle();
1009 instrumentation_end();
1010 }
1011
1012 instrumentation_begin();
1013 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1014 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1015 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
1016 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1017
1018 incby = 1;
1019 } else if (!in_nmi()) {
1020 instrumentation_begin();
1021 rcu_irq_enter_check_tick();
1022 } else {
1023 instrumentation_begin();
1024 }
1025
1026 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1027 rdp->dynticks_nmi_nesting,
1028 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1029 instrumentation_end();
1030 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1031 rdp->dynticks_nmi_nesting + incby);
1032 barrier();
1033 }
1034
1035 /**
1036 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1037 *
1038 * Enter an interrupt handler, which might possibly result in exiting
1039 * idle mode, in other words, entering the mode in which read-side critical
1040 * sections can occur. The caller must have disabled interrupts.
1041 *
1042 * Note that the Linux kernel is fully capable of entering an interrupt
1043 * handler that it never exits, for example when doing upcalls to user mode!
1044 * This code assumes that the idle loop never does upcalls to user mode.
1045 * If your architecture's idle loop does do upcalls to user mode (or does
1046 * anything else that results in unbalanced calls to the irq_enter() and
1047 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1048 * But very infrequently and irreproducibly.
1049 *
1050 * Use things like work queues to work around this limitation.
1051 *
1052 * You have been warned.
1053 *
1054 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1055 * CONFIG_RCU_EQS_DEBUG=y.
1056 */
rcu_irq_enter(void)1057 noinstr void rcu_irq_enter(void)
1058 {
1059 lockdep_assert_irqs_disabled();
1060 rcu_nmi_enter();
1061 }
1062
1063 /*
1064 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1065 *
1066 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1067 * with CONFIG_RCU_EQS_DEBUG=y.
1068 */
rcu_irq_enter_irqson(void)1069 void rcu_irq_enter_irqson(void)
1070 {
1071 unsigned long flags;
1072
1073 local_irq_save(flags);
1074 rcu_irq_enter();
1075 local_irq_restore(flags);
1076 }
1077
1078 /*
1079 * If any sort of urgency was applied to the current CPU (for example,
1080 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1081 * to get to a quiescent state, disable it.
1082 */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)1083 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1084 {
1085 raw_lockdep_assert_held_rcu_node(rdp->mynode);
1086 WRITE_ONCE(rdp->rcu_urgent_qs, false);
1087 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1088 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1089 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1090 WRITE_ONCE(rdp->rcu_forced_tick, false);
1091 }
1092 }
1093
1094 /**
1095 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1096 *
1097 * Return true if RCU is watching the running CPU, which means that this
1098 * CPU can safely enter RCU read-side critical sections. In other words,
1099 * if the current CPU is not in its idle loop or is in an interrupt or
1100 * NMI handler, return true.
1101 *
1102 * Make notrace because it can be called by the internal functions of
1103 * ftrace, and making this notrace removes unnecessary recursion calls.
1104 */
rcu_is_watching(void)1105 notrace bool rcu_is_watching(void)
1106 {
1107 bool ret;
1108
1109 preempt_disable_notrace();
1110 ret = !rcu_dynticks_curr_cpu_in_eqs();
1111 preempt_enable_notrace();
1112 return ret;
1113 }
1114 EXPORT_SYMBOL_GPL(rcu_is_watching);
1115
1116 /*
1117 * If a holdout task is actually running, request an urgent quiescent
1118 * state from its CPU. This is unsynchronized, so migrations can cause
1119 * the request to go to the wrong CPU. Which is OK, all that will happen
1120 * is that the CPU's next context switch will be a bit slower and next
1121 * time around this task will generate another request.
1122 */
rcu_request_urgent_qs_task(struct task_struct * t)1123 void rcu_request_urgent_qs_task(struct task_struct *t)
1124 {
1125 int cpu;
1126
1127 barrier();
1128 cpu = task_cpu(t);
1129 if (!task_curr(t))
1130 return; /* This task is not running on that CPU. */
1131 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1132 }
1133
1134 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1135
1136 /*
1137 * Is the current CPU online as far as RCU is concerned?
1138 *
1139 * Disable preemption to avoid false positives that could otherwise
1140 * happen due to the current CPU number being sampled, this task being
1141 * preempted, its old CPU being taken offline, resuming on some other CPU,
1142 * then determining that its old CPU is now offline.
1143 *
1144 * Disable checking if in an NMI handler because we cannot safely
1145 * report errors from NMI handlers anyway. In addition, it is OK to use
1146 * RCU on an offline processor during initial boot, hence the check for
1147 * rcu_scheduler_fully_active.
1148 */
rcu_lockdep_current_cpu_online(void)1149 bool rcu_lockdep_current_cpu_online(void)
1150 {
1151 struct rcu_data *rdp;
1152 struct rcu_node *rnp;
1153 bool ret = false;
1154
1155 if (in_nmi() || !rcu_scheduler_fully_active)
1156 return true;
1157 preempt_disable_notrace();
1158 rdp = this_cpu_ptr(&rcu_data);
1159 rnp = rdp->mynode;
1160 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
1161 ret = true;
1162 preempt_enable_notrace();
1163 return ret;
1164 }
1165 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1166
1167 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1168
1169 /*
1170 * We are reporting a quiescent state on behalf of some other CPU, so
1171 * it is our responsibility to check for and handle potential overflow
1172 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1173 * After all, the CPU might be in deep idle state, and thus executing no
1174 * code whatsoever.
1175 */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)1176 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1177 {
1178 raw_lockdep_assert_held_rcu_node(rnp);
1179 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1180 rnp->gp_seq))
1181 WRITE_ONCE(rdp->gpwrap, true);
1182 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1183 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1184 }
1185
1186 /*
1187 * Snapshot the specified CPU's dynticks counter so that we can later
1188 * credit them with an implicit quiescent state. Return 1 if this CPU
1189 * is in dynticks idle mode, which is an extended quiescent state.
1190 */
dyntick_save_progress_counter(struct rcu_data * rdp)1191 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1192 {
1193 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1194 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1195 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1196 rcu_gpnum_ovf(rdp->mynode, rdp);
1197 return 1;
1198 }
1199 return 0;
1200 }
1201
1202 /*
1203 * Return true if the specified CPU has passed through a quiescent
1204 * state by virtue of being in or having passed through an dynticks
1205 * idle state since the last call to dyntick_save_progress_counter()
1206 * for this same CPU, or by virtue of having been offline.
1207 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)1208 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1209 {
1210 unsigned long jtsq;
1211 bool *rnhqp;
1212 bool *ruqp;
1213 struct rcu_node *rnp = rdp->mynode;
1214
1215 /*
1216 * If the CPU passed through or entered a dynticks idle phase with
1217 * no active irq/NMI handlers, then we can safely pretend that the CPU
1218 * already acknowledged the request to pass through a quiescent
1219 * state. Either way, that CPU cannot possibly be in an RCU
1220 * read-side critical section that started before the beginning
1221 * of the current RCU grace period.
1222 */
1223 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1224 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1225 rcu_gpnum_ovf(rnp, rdp);
1226 return 1;
1227 }
1228
1229 /*
1230 * Complain if a CPU that is considered to be offline from RCU's
1231 * perspective has not yet reported a quiescent state. After all,
1232 * the offline CPU should have reported a quiescent state during
1233 * the CPU-offline process, or, failing that, by rcu_gp_init()
1234 * if it ran concurrently with either the CPU going offline or the
1235 * last task on a leaf rcu_node structure exiting its RCU read-side
1236 * critical section while all CPUs corresponding to that structure
1237 * are offline. This added warning detects bugs in any of these
1238 * code paths.
1239 *
1240 * The rcu_node structure's ->lock is held here, which excludes
1241 * the relevant portions the CPU-hotplug code, the grace-period
1242 * initialization code, and the rcu_read_unlock() code paths.
1243 *
1244 * For more detail, please refer to the "Hotplug CPU" section
1245 * of RCU's Requirements documentation.
1246 */
1247 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1248 bool onl;
1249 struct rcu_node *rnp1;
1250
1251 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1252 __func__, rnp->grplo, rnp->grphi, rnp->level,
1253 (long)rnp->gp_seq, (long)rnp->completedqs);
1254 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1255 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1256 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1257 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1258 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1259 __func__, rdp->cpu, ".o"[onl],
1260 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1261 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1262 return 1; /* Break things loose after complaining. */
1263 }
1264
1265 /*
1266 * A CPU running for an extended time within the kernel can
1267 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1268 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1269 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1270 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1271 * variable are safe because the assignments are repeated if this
1272 * CPU failed to pass through a quiescent state. This code
1273 * also checks .jiffies_resched in case jiffies_to_sched_qs
1274 * is set way high.
1275 */
1276 jtsq = READ_ONCE(jiffies_to_sched_qs);
1277 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1278 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1279 if (!READ_ONCE(*rnhqp) &&
1280 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1281 time_after(jiffies, rcu_state.jiffies_resched) ||
1282 rcu_state.cbovld)) {
1283 WRITE_ONCE(*rnhqp, true);
1284 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1285 smp_store_release(ruqp, true);
1286 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1287 WRITE_ONCE(*ruqp, true);
1288 }
1289
1290 /*
1291 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1292 * The above code handles this, but only for straight cond_resched().
1293 * And some in-kernel loops check need_resched() before calling
1294 * cond_resched(), which defeats the above code for CPUs that are
1295 * running in-kernel with scheduling-clock interrupts disabled.
1296 * So hit them over the head with the resched_cpu() hammer!
1297 */
1298 if (tick_nohz_full_cpu(rdp->cpu) &&
1299 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1300 rcu_state.cbovld)) {
1301 WRITE_ONCE(*ruqp, true);
1302 resched_cpu(rdp->cpu);
1303 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1304 }
1305
1306 /*
1307 * If more than halfway to RCU CPU stall-warning time, invoke
1308 * resched_cpu() more frequently to try to loosen things up a bit.
1309 * Also check to see if the CPU is getting hammered with interrupts,
1310 * but only once per grace period, just to keep the IPIs down to
1311 * a dull roar.
1312 */
1313 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1314 if (time_after(jiffies,
1315 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1316 resched_cpu(rdp->cpu);
1317 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1318 }
1319 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1320 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1321 (rnp->ffmask & rdp->grpmask)) {
1322 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1323 atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
1324 rdp->rcu_iw_pending = true;
1325 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1326 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1327 }
1328 }
1329
1330 return 0;
1331 }
1332
1333 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)1334 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1335 unsigned long gp_seq_req, const char *s)
1336 {
1337 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1338 gp_seq_req, rnp->level,
1339 rnp->grplo, rnp->grphi, s);
1340 }
1341
1342 /*
1343 * rcu_start_this_gp - Request the start of a particular grace period
1344 * @rnp_start: The leaf node of the CPU from which to start.
1345 * @rdp: The rcu_data corresponding to the CPU from which to start.
1346 * @gp_seq_req: The gp_seq of the grace period to start.
1347 *
1348 * Start the specified grace period, as needed to handle newly arrived
1349 * callbacks. The required future grace periods are recorded in each
1350 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1351 * is reason to awaken the grace-period kthread.
1352 *
1353 * The caller must hold the specified rcu_node structure's ->lock, which
1354 * is why the caller is responsible for waking the grace-period kthread.
1355 *
1356 * Returns true if the GP thread needs to be awakened else false.
1357 */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)1358 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1359 unsigned long gp_seq_req)
1360 {
1361 bool ret = false;
1362 struct rcu_node *rnp;
1363
1364 /*
1365 * Use funnel locking to either acquire the root rcu_node
1366 * structure's lock or bail out if the need for this grace period
1367 * has already been recorded -- or if that grace period has in
1368 * fact already started. If there is already a grace period in
1369 * progress in a non-leaf node, no recording is needed because the
1370 * end of the grace period will scan the leaf rcu_node structures.
1371 * Note that rnp_start->lock must not be released.
1372 */
1373 raw_lockdep_assert_held_rcu_node(rnp_start);
1374 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1375 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1376 if (rnp != rnp_start)
1377 raw_spin_lock_rcu_node(rnp);
1378 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1379 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1380 (rnp != rnp_start &&
1381 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1382 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1383 TPS("Prestarted"));
1384 goto unlock_out;
1385 }
1386 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1387 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1388 /*
1389 * We just marked the leaf or internal node, and a
1390 * grace period is in progress, which means that
1391 * rcu_gp_cleanup() will see the marking. Bail to
1392 * reduce contention.
1393 */
1394 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1395 TPS("Startedleaf"));
1396 goto unlock_out;
1397 }
1398 if (rnp != rnp_start && rnp->parent != NULL)
1399 raw_spin_unlock_rcu_node(rnp);
1400 if (!rnp->parent)
1401 break; /* At root, and perhaps also leaf. */
1402 }
1403
1404 /* If GP already in progress, just leave, otherwise start one. */
1405 if (rcu_gp_in_progress()) {
1406 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1407 goto unlock_out;
1408 }
1409 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1410 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1411 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1412 if (!READ_ONCE(rcu_state.gp_kthread)) {
1413 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1414 goto unlock_out;
1415 }
1416 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1417 ret = true; /* Caller must wake GP kthread. */
1418 unlock_out:
1419 /* Push furthest requested GP to leaf node and rcu_data structure. */
1420 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1421 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1422 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1423 }
1424 if (rnp != rnp_start)
1425 raw_spin_unlock_rcu_node(rnp);
1426 return ret;
1427 }
1428
1429 /*
1430 * Clean up any old requests for the just-ended grace period. Also return
1431 * whether any additional grace periods have been requested.
1432 */
rcu_future_gp_cleanup(struct rcu_node * rnp)1433 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1434 {
1435 bool needmore;
1436 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1437
1438 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1439 if (!needmore)
1440 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1441 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1442 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1443 return needmore;
1444 }
1445
1446 /*
1447 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1448 * interrupt or softirq handler, in which case we just might immediately
1449 * sleep upon return, resulting in a grace-period hang), and don't bother
1450 * awakening when there is nothing for the grace-period kthread to do
1451 * (as in several CPUs raced to awaken, we lost), and finally don't try
1452 * to awaken a kthread that has not yet been created. If all those checks
1453 * are passed, track some debug information and awaken.
1454 *
1455 * So why do the self-wakeup when in an interrupt or softirq handler
1456 * in the grace-period kthread's context? Because the kthread might have
1457 * been interrupted just as it was going to sleep, and just after the final
1458 * pre-sleep check of the awaken condition. In this case, a wakeup really
1459 * is required, and is therefore supplied.
1460 */
rcu_gp_kthread_wake(void)1461 static void rcu_gp_kthread_wake(void)
1462 {
1463 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1464
1465 if ((current == t && !in_irq() && !in_serving_softirq()) ||
1466 !READ_ONCE(rcu_state.gp_flags) || !t)
1467 return;
1468 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1469 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1470 swake_up_one(&rcu_state.gp_wq);
1471 }
1472
1473 /*
1474 * If there is room, assign a ->gp_seq number to any callbacks on this
1475 * CPU that have not already been assigned. Also accelerate any callbacks
1476 * that were previously assigned a ->gp_seq number that has since proven
1477 * to be too conservative, which can happen if callbacks get assigned a
1478 * ->gp_seq number while RCU is idle, but with reference to a non-root
1479 * rcu_node structure. This function is idempotent, so it does not hurt
1480 * to call it repeatedly. Returns an flag saying that we should awaken
1481 * the RCU grace-period kthread.
1482 *
1483 * The caller must hold rnp->lock with interrupts disabled.
1484 */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1485 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1486 {
1487 unsigned long gp_seq_req;
1488 bool ret = false;
1489
1490 rcu_lockdep_assert_cblist_protected(rdp);
1491 raw_lockdep_assert_held_rcu_node(rnp);
1492
1493 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1494 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1495 return false;
1496
1497 /*
1498 * Callbacks are often registered with incomplete grace-period
1499 * information. Something about the fact that getting exact
1500 * information requires acquiring a global lock... RCU therefore
1501 * makes a conservative estimate of the grace period number at which
1502 * a given callback will become ready to invoke. The following
1503 * code checks this estimate and improves it when possible, thus
1504 * accelerating callback invocation to an earlier grace-period
1505 * number.
1506 */
1507 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1508 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1509 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1510
1511 /* Trace depending on how much we were able to accelerate. */
1512 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1513 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1514 else
1515 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1516
1517 return ret;
1518 }
1519
1520 /*
1521 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1522 * rcu_node structure's ->lock be held. It consults the cached value
1523 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1524 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1525 * while holding the leaf rcu_node structure's ->lock.
1526 */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1527 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1528 struct rcu_data *rdp)
1529 {
1530 unsigned long c;
1531 bool needwake;
1532
1533 rcu_lockdep_assert_cblist_protected(rdp);
1534 c = rcu_seq_snap(&rcu_state.gp_seq);
1535 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1536 /* Old request still live, so mark recent callbacks. */
1537 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1538 return;
1539 }
1540 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1541 needwake = rcu_accelerate_cbs(rnp, rdp);
1542 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1543 if (needwake)
1544 rcu_gp_kthread_wake();
1545 }
1546
1547 /*
1548 * Move any callbacks whose grace period has completed to the
1549 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1550 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1551 * sublist. This function is idempotent, so it does not hurt to
1552 * invoke it repeatedly. As long as it is not invoked -too- often...
1553 * Returns true if the RCU grace-period kthread needs to be awakened.
1554 *
1555 * The caller must hold rnp->lock with interrupts disabled.
1556 */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1557 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1558 {
1559 rcu_lockdep_assert_cblist_protected(rdp);
1560 raw_lockdep_assert_held_rcu_node(rnp);
1561
1562 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1563 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1564 return false;
1565
1566 /*
1567 * Find all callbacks whose ->gp_seq numbers indicate that they
1568 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1569 */
1570 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1571
1572 /* Classify any remaining callbacks. */
1573 return rcu_accelerate_cbs(rnp, rdp);
1574 }
1575
1576 /*
1577 * Move and classify callbacks, but only if doing so won't require
1578 * that the RCU grace-period kthread be awakened.
1579 */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1580 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1581 struct rcu_data *rdp)
1582 {
1583 rcu_lockdep_assert_cblist_protected(rdp);
1584 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1585 return;
1586 // The grace period cannot end while we hold the rcu_node lock.
1587 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1588 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1589 raw_spin_unlock_rcu_node(rnp);
1590 }
1591
1592 /*
1593 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1594 * quiescent state. This is intended to be invoked when the CPU notices
1595 * a new grace period.
1596 */
rcu_strict_gp_check_qs(void)1597 static void rcu_strict_gp_check_qs(void)
1598 {
1599 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1600 rcu_read_lock();
1601 rcu_read_unlock();
1602 }
1603 }
1604
1605 /*
1606 * Update CPU-local rcu_data state to record the beginnings and ends of
1607 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1608 * structure corresponding to the current CPU, and must have irqs disabled.
1609 * Returns true if the grace-period kthread needs to be awakened.
1610 */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1611 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1612 {
1613 bool ret = false;
1614 bool need_qs;
1615 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1616 rcu_segcblist_is_offloaded(&rdp->cblist);
1617
1618 raw_lockdep_assert_held_rcu_node(rnp);
1619
1620 if (rdp->gp_seq == rnp->gp_seq)
1621 return false; /* Nothing to do. */
1622
1623 /* Handle the ends of any preceding grace periods first. */
1624 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1625 unlikely(READ_ONCE(rdp->gpwrap))) {
1626 if (!offloaded)
1627 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1628 rdp->core_needs_qs = false;
1629 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1630 } else {
1631 if (!offloaded)
1632 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1633 if (rdp->core_needs_qs)
1634 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1635 }
1636
1637 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1638 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1639 unlikely(READ_ONCE(rdp->gpwrap))) {
1640 /*
1641 * If the current grace period is waiting for this CPU,
1642 * set up to detect a quiescent state, otherwise don't
1643 * go looking for one.
1644 */
1645 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1646 need_qs = !!(rnp->qsmask & rdp->grpmask);
1647 rdp->cpu_no_qs.b.norm = need_qs;
1648 rdp->core_needs_qs = need_qs;
1649 zero_cpu_stall_ticks(rdp);
1650 }
1651 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1652 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1653 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1654 WRITE_ONCE(rdp->gpwrap, false);
1655 rcu_gpnum_ovf(rnp, rdp);
1656 return ret;
1657 }
1658
note_gp_changes(struct rcu_data * rdp)1659 static void note_gp_changes(struct rcu_data *rdp)
1660 {
1661 unsigned long flags;
1662 bool needwake;
1663 struct rcu_node *rnp;
1664
1665 local_irq_save(flags);
1666 rnp = rdp->mynode;
1667 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1668 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1669 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1670 local_irq_restore(flags);
1671 return;
1672 }
1673 needwake = __note_gp_changes(rnp, rdp);
1674 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1675 rcu_strict_gp_check_qs();
1676 if (needwake)
1677 rcu_gp_kthread_wake();
1678 }
1679
rcu_gp_slow(int delay)1680 static void rcu_gp_slow(int delay)
1681 {
1682 if (delay > 0 &&
1683 !(rcu_seq_ctr(rcu_state.gp_seq) %
1684 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1685 schedule_timeout_idle(delay);
1686 }
1687
1688 static unsigned long sleep_duration;
1689
1690 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1691 void rcu_gp_set_torture_wait(int duration)
1692 {
1693 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1694 WRITE_ONCE(sleep_duration, duration);
1695 }
1696 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1697
1698 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1699 static void rcu_gp_torture_wait(void)
1700 {
1701 unsigned long duration;
1702
1703 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1704 return;
1705 duration = xchg(&sleep_duration, 0UL);
1706 if (duration > 0) {
1707 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1708 schedule_timeout_idle(duration);
1709 pr_alert("%s: Wait complete\n", __func__);
1710 }
1711 }
1712
1713 /*
1714 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1715 * processing.
1716 */
rcu_strict_gp_boundary(void * unused)1717 static void rcu_strict_gp_boundary(void *unused)
1718 {
1719 invoke_rcu_core();
1720 }
1721
1722 /*
1723 * Initialize a new grace period. Return false if no grace period required.
1724 */
rcu_gp_init(void)1725 static bool rcu_gp_init(void)
1726 {
1727 unsigned long flags;
1728 unsigned long oldmask;
1729 unsigned long mask;
1730 struct rcu_data *rdp;
1731 struct rcu_node *rnp = rcu_get_root();
1732
1733 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1734 raw_spin_lock_irq_rcu_node(rnp);
1735 if (!READ_ONCE(rcu_state.gp_flags)) {
1736 /* Spurious wakeup, tell caller to go back to sleep. */
1737 raw_spin_unlock_irq_rcu_node(rnp);
1738 return false;
1739 }
1740 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1741
1742 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1743 /*
1744 * Grace period already in progress, don't start another.
1745 * Not supposed to be able to happen.
1746 */
1747 raw_spin_unlock_irq_rcu_node(rnp);
1748 return false;
1749 }
1750
1751 /* Advance to a new grace period and initialize state. */
1752 record_gp_stall_check_time();
1753 /* Record GP times before starting GP, hence rcu_seq_start(). */
1754 rcu_seq_start(&rcu_state.gp_seq);
1755 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1756 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1757 raw_spin_unlock_irq_rcu_node(rnp);
1758
1759 /*
1760 * Apply per-leaf buffered online and offline operations to
1761 * the rcu_node tree. Note that this new grace period need not
1762 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1763 * offlining path, when combined with checks in this function,
1764 * will handle CPUs that are currently going offline or that will
1765 * go offline later. Please also refer to "Hotplug CPU" section
1766 * of RCU's Requirements documentation.
1767 */
1768 rcu_state.gp_state = RCU_GP_ONOFF;
1769 rcu_for_each_leaf_node(rnp) {
1770 raw_spin_lock(&rcu_state.ofl_lock);
1771 raw_spin_lock_irq_rcu_node(rnp);
1772 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1773 !rnp->wait_blkd_tasks) {
1774 /* Nothing to do on this leaf rcu_node structure. */
1775 raw_spin_unlock_irq_rcu_node(rnp);
1776 raw_spin_unlock(&rcu_state.ofl_lock);
1777 continue;
1778 }
1779
1780 /* Record old state, apply changes to ->qsmaskinit field. */
1781 oldmask = rnp->qsmaskinit;
1782 rnp->qsmaskinit = rnp->qsmaskinitnext;
1783
1784 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1785 if (!oldmask != !rnp->qsmaskinit) {
1786 if (!oldmask) { /* First online CPU for rcu_node. */
1787 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1788 rcu_init_new_rnp(rnp);
1789 } else if (rcu_preempt_has_tasks(rnp)) {
1790 rnp->wait_blkd_tasks = true; /* blocked tasks */
1791 } else { /* Last offline CPU and can propagate. */
1792 rcu_cleanup_dead_rnp(rnp);
1793 }
1794 }
1795
1796 /*
1797 * If all waited-on tasks from prior grace period are
1798 * done, and if all this rcu_node structure's CPUs are
1799 * still offline, propagate up the rcu_node tree and
1800 * clear ->wait_blkd_tasks. Otherwise, if one of this
1801 * rcu_node structure's CPUs has since come back online,
1802 * simply clear ->wait_blkd_tasks.
1803 */
1804 if (rnp->wait_blkd_tasks &&
1805 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1806 rnp->wait_blkd_tasks = false;
1807 if (!rnp->qsmaskinit)
1808 rcu_cleanup_dead_rnp(rnp);
1809 }
1810
1811 raw_spin_unlock_irq_rcu_node(rnp);
1812 raw_spin_unlock(&rcu_state.ofl_lock);
1813 }
1814 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1815
1816 /*
1817 * Set the quiescent-state-needed bits in all the rcu_node
1818 * structures for all currently online CPUs in breadth-first
1819 * order, starting from the root rcu_node structure, relying on the
1820 * layout of the tree within the rcu_state.node[] array. Note that
1821 * other CPUs will access only the leaves of the hierarchy, thus
1822 * seeing that no grace period is in progress, at least until the
1823 * corresponding leaf node has been initialized.
1824 *
1825 * The grace period cannot complete until the initialization
1826 * process finishes, because this kthread handles both.
1827 */
1828 rcu_state.gp_state = RCU_GP_INIT;
1829 rcu_for_each_node_breadth_first(rnp) {
1830 rcu_gp_slow(gp_init_delay);
1831 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1832 rdp = this_cpu_ptr(&rcu_data);
1833 rcu_preempt_check_blocked_tasks(rnp);
1834 rnp->qsmask = rnp->qsmaskinit;
1835 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1836 if (rnp == rdp->mynode)
1837 (void)__note_gp_changes(rnp, rdp);
1838 rcu_preempt_boost_start_gp(rnp);
1839 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1840 rnp->level, rnp->grplo,
1841 rnp->grphi, rnp->qsmask);
1842 /* Quiescent states for tasks on any now-offline CPUs. */
1843 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1844 rnp->rcu_gp_init_mask = mask;
1845 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1846 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1847 else
1848 raw_spin_unlock_irq_rcu_node(rnp);
1849 cond_resched_tasks_rcu_qs();
1850 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1851 }
1852
1853 // If strict, make all CPUs aware of new grace period.
1854 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1855 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1856
1857 return true;
1858 }
1859
1860 /*
1861 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1862 * time.
1863 */
rcu_gp_fqs_check_wake(int * gfp)1864 static bool rcu_gp_fqs_check_wake(int *gfp)
1865 {
1866 struct rcu_node *rnp = rcu_get_root();
1867
1868 // If under overload conditions, force an immediate FQS scan.
1869 if (*gfp & RCU_GP_FLAG_OVLD)
1870 return true;
1871
1872 // Someone like call_rcu() requested a force-quiescent-state scan.
1873 *gfp = READ_ONCE(rcu_state.gp_flags);
1874 if (*gfp & RCU_GP_FLAG_FQS)
1875 return true;
1876
1877 // The current grace period has completed.
1878 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1879 return true;
1880
1881 return false;
1882 }
1883
1884 /*
1885 * Do one round of quiescent-state forcing.
1886 */
rcu_gp_fqs(bool first_time)1887 static void rcu_gp_fqs(bool first_time)
1888 {
1889 struct rcu_node *rnp = rcu_get_root();
1890
1891 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1892 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1893 if (first_time) {
1894 /* Collect dyntick-idle snapshots. */
1895 force_qs_rnp(dyntick_save_progress_counter);
1896 } else {
1897 /* Handle dyntick-idle and offline CPUs. */
1898 force_qs_rnp(rcu_implicit_dynticks_qs);
1899 }
1900 /* Clear flag to prevent immediate re-entry. */
1901 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1902 raw_spin_lock_irq_rcu_node(rnp);
1903 WRITE_ONCE(rcu_state.gp_flags,
1904 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1905 raw_spin_unlock_irq_rcu_node(rnp);
1906 }
1907 }
1908
1909 /*
1910 * Loop doing repeated quiescent-state forcing until the grace period ends.
1911 */
rcu_gp_fqs_loop(void)1912 static void rcu_gp_fqs_loop(void)
1913 {
1914 bool first_gp_fqs;
1915 int gf = 0;
1916 unsigned long j;
1917 int ret;
1918 struct rcu_node *rnp = rcu_get_root();
1919
1920 first_gp_fqs = true;
1921 j = READ_ONCE(jiffies_till_first_fqs);
1922 if (rcu_state.cbovld)
1923 gf = RCU_GP_FLAG_OVLD;
1924 ret = 0;
1925 for (;;) {
1926 if (!ret) {
1927 rcu_state.jiffies_force_qs = jiffies + j;
1928 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1929 jiffies + (j ? 3 * j : 2));
1930 }
1931 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1932 TPS("fqswait"));
1933 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1934 ret = swait_event_idle_timeout_exclusive(
1935 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1936 rcu_gp_torture_wait();
1937 rcu_state.gp_state = RCU_GP_DOING_FQS;
1938 /* Locking provides needed memory barriers. */
1939 /* If grace period done, leave loop. */
1940 if (!READ_ONCE(rnp->qsmask) &&
1941 !rcu_preempt_blocked_readers_cgp(rnp))
1942 break;
1943 /* If time for quiescent-state forcing, do it. */
1944 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1945 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1946 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1947 TPS("fqsstart"));
1948 rcu_gp_fqs(first_gp_fqs);
1949 gf = 0;
1950 if (first_gp_fqs) {
1951 first_gp_fqs = false;
1952 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1953 }
1954 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1955 TPS("fqsend"));
1956 cond_resched_tasks_rcu_qs();
1957 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1958 ret = 0; /* Force full wait till next FQS. */
1959 j = READ_ONCE(jiffies_till_next_fqs);
1960 } else {
1961 /* Deal with stray signal. */
1962 cond_resched_tasks_rcu_qs();
1963 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1964 WARN_ON(signal_pending(current));
1965 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1966 TPS("fqswaitsig"));
1967 ret = 1; /* Keep old FQS timing. */
1968 j = jiffies;
1969 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1970 j = 1;
1971 else
1972 j = rcu_state.jiffies_force_qs - j;
1973 gf = 0;
1974 }
1975 }
1976 }
1977
1978 /*
1979 * Clean up after the old grace period.
1980 */
rcu_gp_cleanup(void)1981 static void rcu_gp_cleanup(void)
1982 {
1983 int cpu;
1984 bool needgp = false;
1985 unsigned long gp_duration;
1986 unsigned long new_gp_seq;
1987 bool offloaded;
1988 struct rcu_data *rdp;
1989 struct rcu_node *rnp = rcu_get_root();
1990 struct swait_queue_head *sq;
1991
1992 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1993 raw_spin_lock_irq_rcu_node(rnp);
1994 rcu_state.gp_end = jiffies;
1995 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1996 if (gp_duration > rcu_state.gp_max)
1997 rcu_state.gp_max = gp_duration;
1998
1999 /*
2000 * We know the grace period is complete, but to everyone else
2001 * it appears to still be ongoing. But it is also the case
2002 * that to everyone else it looks like there is nothing that
2003 * they can do to advance the grace period. It is therefore
2004 * safe for us to drop the lock in order to mark the grace
2005 * period as completed in all of the rcu_node structures.
2006 */
2007 raw_spin_unlock_irq_rcu_node(rnp);
2008
2009 /*
2010 * Propagate new ->gp_seq value to rcu_node structures so that
2011 * other CPUs don't have to wait until the start of the next grace
2012 * period to process their callbacks. This also avoids some nasty
2013 * RCU grace-period initialization races by forcing the end of
2014 * the current grace period to be completely recorded in all of
2015 * the rcu_node structures before the beginning of the next grace
2016 * period is recorded in any of the rcu_node structures.
2017 */
2018 new_gp_seq = rcu_state.gp_seq;
2019 rcu_seq_end(&new_gp_seq);
2020 rcu_for_each_node_breadth_first(rnp) {
2021 raw_spin_lock_irq_rcu_node(rnp);
2022 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2023 dump_blkd_tasks(rnp, 10);
2024 WARN_ON_ONCE(rnp->qsmask);
2025 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2026 rdp = this_cpu_ptr(&rcu_data);
2027 if (rnp == rdp->mynode)
2028 needgp = __note_gp_changes(rnp, rdp) || needgp;
2029 /* smp_mb() provided by prior unlock-lock pair. */
2030 needgp = rcu_future_gp_cleanup(rnp) || needgp;
2031 // Reset overload indication for CPUs no longer overloaded
2032 if (rcu_is_leaf_node(rnp))
2033 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2034 rdp = per_cpu_ptr(&rcu_data, cpu);
2035 check_cb_ovld_locked(rdp, rnp);
2036 }
2037 sq = rcu_nocb_gp_get(rnp);
2038 raw_spin_unlock_irq_rcu_node(rnp);
2039 rcu_nocb_gp_cleanup(sq);
2040 cond_resched_tasks_rcu_qs();
2041 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2042 rcu_gp_slow(gp_cleanup_delay);
2043 }
2044 rnp = rcu_get_root();
2045 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2046
2047 /* Declare grace period done, trace first to use old GP number. */
2048 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2049 rcu_seq_end(&rcu_state.gp_seq);
2050 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2051 rcu_state.gp_state = RCU_GP_IDLE;
2052 /* Check for GP requests since above loop. */
2053 rdp = this_cpu_ptr(&rcu_data);
2054 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2055 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2056 TPS("CleanupMore"));
2057 needgp = true;
2058 }
2059 /* Advance CBs to reduce false positives below. */
2060 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2061 rcu_segcblist_is_offloaded(&rdp->cblist);
2062 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2063 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2064 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2065 trace_rcu_grace_period(rcu_state.name,
2066 rcu_state.gp_seq,
2067 TPS("newreq"));
2068 } else {
2069 WRITE_ONCE(rcu_state.gp_flags,
2070 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2071 }
2072 raw_spin_unlock_irq_rcu_node(rnp);
2073
2074 // If strict, make all CPUs aware of the end of the old grace period.
2075 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2076 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2077 }
2078
2079 /*
2080 * Body of kthread that handles grace periods.
2081 */
rcu_gp_kthread(void * unused)2082 static int __noreturn rcu_gp_kthread(void *unused)
2083 {
2084 rcu_bind_gp_kthread();
2085 for (;;) {
2086
2087 /* Handle grace-period start. */
2088 for (;;) {
2089 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2090 TPS("reqwait"));
2091 rcu_state.gp_state = RCU_GP_WAIT_GPS;
2092 swait_event_idle_exclusive(rcu_state.gp_wq,
2093 READ_ONCE(rcu_state.gp_flags) &
2094 RCU_GP_FLAG_INIT);
2095 rcu_gp_torture_wait();
2096 rcu_state.gp_state = RCU_GP_DONE_GPS;
2097 /* Locking provides needed memory barrier. */
2098 if (rcu_gp_init())
2099 break;
2100 cond_resched_tasks_rcu_qs();
2101 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2102 WARN_ON(signal_pending(current));
2103 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2104 TPS("reqwaitsig"));
2105 }
2106
2107 /* Handle quiescent-state forcing. */
2108 rcu_gp_fqs_loop();
2109
2110 /* Handle grace-period end. */
2111 rcu_state.gp_state = RCU_GP_CLEANUP;
2112 rcu_gp_cleanup();
2113 rcu_state.gp_state = RCU_GP_CLEANED;
2114 }
2115 }
2116
2117 /*
2118 * Report a full set of quiescent states to the rcu_state data structure.
2119 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2120 * another grace period is required. Whether we wake the grace-period
2121 * kthread or it awakens itself for the next round of quiescent-state
2122 * forcing, that kthread will clean up after the just-completed grace
2123 * period. Note that the caller must hold rnp->lock, which is released
2124 * before return.
2125 */
rcu_report_qs_rsp(unsigned long flags)2126 static void rcu_report_qs_rsp(unsigned long flags)
2127 __releases(rcu_get_root()->lock)
2128 {
2129 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2130 WARN_ON_ONCE(!rcu_gp_in_progress());
2131 WRITE_ONCE(rcu_state.gp_flags,
2132 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2133 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2134 rcu_gp_kthread_wake();
2135 }
2136
2137 /*
2138 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2139 * Allows quiescent states for a group of CPUs to be reported at one go
2140 * to the specified rcu_node structure, though all the CPUs in the group
2141 * must be represented by the same rcu_node structure (which need not be a
2142 * leaf rcu_node structure, though it often will be). The gps parameter
2143 * is the grace-period snapshot, which means that the quiescent states
2144 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2145 * must be held upon entry, and it is released before return.
2146 *
2147 * As a special case, if mask is zero, the bit-already-cleared check is
2148 * disabled. This allows propagating quiescent state due to resumed tasks
2149 * during grace-period initialization.
2150 */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)2151 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2152 unsigned long gps, unsigned long flags)
2153 __releases(rnp->lock)
2154 {
2155 unsigned long oldmask = 0;
2156 struct rcu_node *rnp_c;
2157
2158 raw_lockdep_assert_held_rcu_node(rnp);
2159
2160 /* Walk up the rcu_node hierarchy. */
2161 for (;;) {
2162 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2163
2164 /*
2165 * Our bit has already been cleared, or the
2166 * relevant grace period is already over, so done.
2167 */
2168 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2169 return;
2170 }
2171 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2172 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2173 rcu_preempt_blocked_readers_cgp(rnp));
2174 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2175 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2176 mask, rnp->qsmask, rnp->level,
2177 rnp->grplo, rnp->grphi,
2178 !!rnp->gp_tasks);
2179 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2180
2181 /* Other bits still set at this level, so done. */
2182 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2183 return;
2184 }
2185 rnp->completedqs = rnp->gp_seq;
2186 mask = rnp->grpmask;
2187 if (rnp->parent == NULL) {
2188
2189 /* No more levels. Exit loop holding root lock. */
2190
2191 break;
2192 }
2193 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2194 rnp_c = rnp;
2195 rnp = rnp->parent;
2196 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2197 oldmask = READ_ONCE(rnp_c->qsmask);
2198 }
2199
2200 /*
2201 * Get here if we are the last CPU to pass through a quiescent
2202 * state for this grace period. Invoke rcu_report_qs_rsp()
2203 * to clean up and start the next grace period if one is needed.
2204 */
2205 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2206 }
2207
2208 /*
2209 * Record a quiescent state for all tasks that were previously queued
2210 * on the specified rcu_node structure and that were blocking the current
2211 * RCU grace period. The caller must hold the corresponding rnp->lock with
2212 * irqs disabled, and this lock is released upon return, but irqs remain
2213 * disabled.
2214 */
2215 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)2216 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2217 __releases(rnp->lock)
2218 {
2219 unsigned long gps;
2220 unsigned long mask;
2221 struct rcu_node *rnp_p;
2222
2223 raw_lockdep_assert_held_rcu_node(rnp);
2224 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2225 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2226 rnp->qsmask != 0) {
2227 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2228 return; /* Still need more quiescent states! */
2229 }
2230
2231 rnp->completedqs = rnp->gp_seq;
2232 rnp_p = rnp->parent;
2233 if (rnp_p == NULL) {
2234 /*
2235 * Only one rcu_node structure in the tree, so don't
2236 * try to report up to its nonexistent parent!
2237 */
2238 rcu_report_qs_rsp(flags);
2239 return;
2240 }
2241
2242 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2243 gps = rnp->gp_seq;
2244 mask = rnp->grpmask;
2245 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2246 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2247 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2248 }
2249
2250 /*
2251 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2252 * structure. This must be called from the specified CPU.
2253 */
2254 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2255 rcu_report_qs_rdp(struct rcu_data *rdp)
2256 {
2257 unsigned long flags;
2258 unsigned long mask;
2259 bool needwake = false;
2260 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2261 rcu_segcblist_is_offloaded(&rdp->cblist);
2262 struct rcu_node *rnp;
2263
2264 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2265 rnp = rdp->mynode;
2266 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2267 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2268 rdp->gpwrap) {
2269
2270 /*
2271 * The grace period in which this quiescent state was
2272 * recorded has ended, so don't report it upwards.
2273 * We will instead need a new quiescent state that lies
2274 * within the current grace period.
2275 */
2276 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2277 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2278 return;
2279 }
2280 mask = rdp->grpmask;
2281 rdp->core_needs_qs = false;
2282 if ((rnp->qsmask & mask) == 0) {
2283 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2284 } else {
2285 /*
2286 * This GP can't end until cpu checks in, so all of our
2287 * callbacks can be processed during the next GP.
2288 */
2289 if (!offloaded)
2290 needwake = rcu_accelerate_cbs(rnp, rdp);
2291
2292 rcu_disable_urgency_upon_qs(rdp);
2293 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2294 /* ^^^ Released rnp->lock */
2295 if (needwake)
2296 rcu_gp_kthread_wake();
2297 }
2298 }
2299
2300 /*
2301 * Check to see if there is a new grace period of which this CPU
2302 * is not yet aware, and if so, set up local rcu_data state for it.
2303 * Otherwise, see if this CPU has just passed through its first
2304 * quiescent state for this grace period, and record that fact if so.
2305 */
2306 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2307 rcu_check_quiescent_state(struct rcu_data *rdp)
2308 {
2309 /* Check for grace-period ends and beginnings. */
2310 note_gp_changes(rdp);
2311
2312 /*
2313 * Does this CPU still need to do its part for current grace period?
2314 * If no, return and let the other CPUs do their part as well.
2315 */
2316 if (!rdp->core_needs_qs)
2317 return;
2318
2319 /*
2320 * Was there a quiescent state since the beginning of the grace
2321 * period? If no, then exit and wait for the next call.
2322 */
2323 if (rdp->cpu_no_qs.b.norm)
2324 return;
2325
2326 /*
2327 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2328 * judge of that).
2329 */
2330 rcu_report_qs_rdp(rdp);
2331 }
2332
2333 /*
2334 * Near the end of the offline process. Trace the fact that this CPU
2335 * is going offline.
2336 */
rcutree_dying_cpu(unsigned int cpu)2337 int rcutree_dying_cpu(unsigned int cpu)
2338 {
2339 bool blkd;
2340 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2341 struct rcu_node *rnp = rdp->mynode;
2342
2343 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2344 return 0;
2345
2346 blkd = !!(rnp->qsmask & rdp->grpmask);
2347 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2348 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2349 return 0;
2350 }
2351
2352 /*
2353 * All CPUs for the specified rcu_node structure have gone offline,
2354 * and all tasks that were preempted within an RCU read-side critical
2355 * section while running on one of those CPUs have since exited their RCU
2356 * read-side critical section. Some other CPU is reporting this fact with
2357 * the specified rcu_node structure's ->lock held and interrupts disabled.
2358 * This function therefore goes up the tree of rcu_node structures,
2359 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2360 * the leaf rcu_node structure's ->qsmaskinit field has already been
2361 * updated.
2362 *
2363 * This function does check that the specified rcu_node structure has
2364 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2365 * prematurely. That said, invoking it after the fact will cost you
2366 * a needless lock acquisition. So once it has done its work, don't
2367 * invoke it again.
2368 */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)2369 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2370 {
2371 long mask;
2372 struct rcu_node *rnp = rnp_leaf;
2373
2374 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2375 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2376 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2377 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2378 return;
2379 for (;;) {
2380 mask = rnp->grpmask;
2381 rnp = rnp->parent;
2382 if (!rnp)
2383 break;
2384 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2385 rnp->qsmaskinit &= ~mask;
2386 /* Between grace periods, so better already be zero! */
2387 WARN_ON_ONCE(rnp->qsmask);
2388 if (rnp->qsmaskinit) {
2389 raw_spin_unlock_rcu_node(rnp);
2390 /* irqs remain disabled. */
2391 return;
2392 }
2393 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2394 }
2395 }
2396
2397 /*
2398 * The CPU has been completely removed, and some other CPU is reporting
2399 * this fact from process context. Do the remainder of the cleanup.
2400 * There can only be one CPU hotplug operation at a time, so no need for
2401 * explicit locking.
2402 */
rcutree_dead_cpu(unsigned int cpu)2403 int rcutree_dead_cpu(unsigned int cpu)
2404 {
2405 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2406 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2407
2408 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2409 return 0;
2410
2411 /* Adjust any no-longer-needed kthreads. */
2412 rcu_boost_kthread_setaffinity(rnp, -1);
2413 /* Do any needed no-CB deferred wakeups from this CPU. */
2414 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2415
2416 // Stop-machine done, so allow nohz_full to disable tick.
2417 tick_dep_clear(TICK_DEP_BIT_RCU);
2418 return 0;
2419 }
2420
2421 /*
2422 * Invoke any RCU callbacks that have made it to the end of their grace
2423 * period. Thottle as specified by rdp->blimit.
2424 */
rcu_do_batch(struct rcu_data * rdp)2425 static void rcu_do_batch(struct rcu_data *rdp)
2426 {
2427 int div;
2428 unsigned long flags;
2429 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2430 rcu_segcblist_is_offloaded(&rdp->cblist);
2431 struct rcu_head *rhp;
2432 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2433 long bl, count;
2434 long pending, tlimit = 0;
2435
2436 /* If no callbacks are ready, just return. */
2437 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2438 trace_rcu_batch_start(rcu_state.name,
2439 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2440 trace_rcu_batch_end(rcu_state.name, 0,
2441 !rcu_segcblist_empty(&rdp->cblist),
2442 need_resched(), is_idle_task(current),
2443 rcu_is_callbacks_kthread());
2444 return;
2445 }
2446
2447 /*
2448 * Extract the list of ready callbacks, disabling to prevent
2449 * races with call_rcu() from interrupt handlers. Leave the
2450 * callback counts, as rcu_barrier() needs to be conservative.
2451 */
2452 local_irq_save(flags);
2453 rcu_nocb_lock(rdp);
2454 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2455 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2456 div = READ_ONCE(rcu_divisor);
2457 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2458 bl = max(rdp->blimit, pending >> div);
2459 if (in_serving_softirq() && unlikely(bl > 100)) {
2460 long rrn = READ_ONCE(rcu_resched_ns);
2461
2462 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2463 tlimit = local_clock() + rrn;
2464 }
2465 trace_rcu_batch_start(rcu_state.name,
2466 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2467 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2468 if (offloaded)
2469 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2470 rcu_nocb_unlock_irqrestore(rdp, flags);
2471
2472 /* Invoke callbacks. */
2473 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2474 rhp = rcu_cblist_dequeue(&rcl);
2475 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2476 rcu_callback_t f;
2477
2478 debug_rcu_head_unqueue(rhp);
2479
2480 rcu_lock_acquire(&rcu_callback_map);
2481 trace_rcu_invoke_callback(rcu_state.name, rhp);
2482
2483 f = rhp->func;
2484 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2485 f(rhp);
2486
2487 rcu_lock_release(&rcu_callback_map);
2488
2489 /*
2490 * Stop only if limit reached and CPU has something to do.
2491 * Note: The rcl structure counts down from zero.
2492 */
2493 if (in_serving_softirq()) {
2494 if (-rcl.len >= bl && (need_resched() ||
2495 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2496 break;
2497
2498 /*
2499 * Make sure we don't spend too much time here and deprive other
2500 * softirq vectors of CPU cycles.
2501 */
2502 if (unlikely(tlimit)) {
2503 /* only call local_clock() every 32 callbacks */
2504 if (likely((-rcl.len & 31) || local_clock() < tlimit))
2505 continue;
2506 /* Exceeded the time limit, so leave. */
2507 break;
2508 }
2509 } else {
2510 local_bh_enable();
2511 lockdep_assert_irqs_enabled();
2512 cond_resched_tasks_rcu_qs();
2513 lockdep_assert_irqs_enabled();
2514 local_bh_disable();
2515 }
2516 }
2517
2518 local_irq_save(flags);
2519 rcu_nocb_lock(rdp);
2520 count = -rcl.len;
2521 rdp->n_cbs_invoked += count;
2522 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2523 is_idle_task(current), rcu_is_callbacks_kthread());
2524
2525 /* Update counts and requeue any remaining callbacks. */
2526 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2527 smp_mb(); /* List handling before counting for rcu_barrier(). */
2528 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2529
2530 /* Reinstate batch limit if we have worked down the excess. */
2531 count = rcu_segcblist_n_cbs(&rdp->cblist);
2532 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2533 rdp->blimit = blimit;
2534
2535 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2536 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2537 rdp->qlen_last_fqs_check = 0;
2538 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2539 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2540 rdp->qlen_last_fqs_check = count;
2541
2542 /*
2543 * The following usually indicates a double call_rcu(). To track
2544 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2545 */
2546 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2547 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2548 count != 0 && rcu_segcblist_empty(&rdp->cblist));
2549
2550 rcu_nocb_unlock_irqrestore(rdp, flags);
2551
2552 /* Re-invoke RCU core processing if there are callbacks remaining. */
2553 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2554 invoke_rcu_core();
2555 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2556 }
2557
2558 /*
2559 * This function is invoked from each scheduling-clock interrupt,
2560 * and checks to see if this CPU is in a non-context-switch quiescent
2561 * state, for example, user mode or idle loop. It also schedules RCU
2562 * core processing. If the current grace period has gone on too long,
2563 * it will ask the scheduler to manufacture a context switch for the sole
2564 * purpose of providing a providing the needed quiescent state.
2565 */
rcu_sched_clock_irq(int user)2566 void rcu_sched_clock_irq(int user)
2567 {
2568 trace_rcu_utilization(TPS("Start scheduler-tick"));
2569 lockdep_assert_irqs_disabled();
2570 raw_cpu_inc(rcu_data.ticks_this_gp);
2571 /* The load-acquire pairs with the store-release setting to true. */
2572 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2573 /* Idle and userspace execution already are quiescent states. */
2574 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2575 set_tsk_need_resched(current);
2576 set_preempt_need_resched();
2577 }
2578 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2579 }
2580 rcu_flavor_sched_clock_irq(user);
2581 if (rcu_pending(user))
2582 invoke_rcu_core();
2583 lockdep_assert_irqs_disabled();
2584
2585 trace_rcu_utilization(TPS("End scheduler-tick"));
2586 }
2587
2588 /*
2589 * Scan the leaf rcu_node structures. For each structure on which all
2590 * CPUs have reported a quiescent state and on which there are tasks
2591 * blocking the current grace period, initiate RCU priority boosting.
2592 * Otherwise, invoke the specified function to check dyntick state for
2593 * each CPU that has not yet reported a quiescent state.
2594 */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2595 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2596 {
2597 int cpu;
2598 unsigned long flags;
2599 unsigned long mask;
2600 struct rcu_data *rdp;
2601 struct rcu_node *rnp;
2602
2603 rcu_state.cbovld = rcu_state.cbovldnext;
2604 rcu_state.cbovldnext = false;
2605 rcu_for_each_leaf_node(rnp) {
2606 cond_resched_tasks_rcu_qs();
2607 mask = 0;
2608 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2609 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2610 if (rnp->qsmask == 0) {
2611 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2612 /*
2613 * No point in scanning bits because they
2614 * are all zero. But we might need to
2615 * priority-boost blocked readers.
2616 */
2617 rcu_initiate_boost(rnp, flags);
2618 /* rcu_initiate_boost() releases rnp->lock */
2619 continue;
2620 }
2621 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2622 continue;
2623 }
2624 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2625 rdp = per_cpu_ptr(&rcu_data, cpu);
2626 if (f(rdp)) {
2627 mask |= rdp->grpmask;
2628 rcu_disable_urgency_upon_qs(rdp);
2629 }
2630 }
2631 if (mask != 0) {
2632 /* Idle/offline CPUs, report (releases rnp->lock). */
2633 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2634 } else {
2635 /* Nothing to do here, so just drop the lock. */
2636 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2637 }
2638 }
2639 }
2640
2641 /*
2642 * Force quiescent states on reluctant CPUs, and also detect which
2643 * CPUs are in dyntick-idle mode.
2644 */
rcu_force_quiescent_state(void)2645 void rcu_force_quiescent_state(void)
2646 {
2647 unsigned long flags;
2648 bool ret;
2649 struct rcu_node *rnp;
2650 struct rcu_node *rnp_old = NULL;
2651
2652 /* Funnel through hierarchy to reduce memory contention. */
2653 rnp = __this_cpu_read(rcu_data.mynode);
2654 for (; rnp != NULL; rnp = rnp->parent) {
2655 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2656 !raw_spin_trylock(&rnp->fqslock);
2657 if (rnp_old != NULL)
2658 raw_spin_unlock(&rnp_old->fqslock);
2659 if (ret)
2660 return;
2661 rnp_old = rnp;
2662 }
2663 /* rnp_old == rcu_get_root(), rnp == NULL. */
2664
2665 /* Reached the root of the rcu_node tree, acquire lock. */
2666 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2667 raw_spin_unlock(&rnp_old->fqslock);
2668 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2669 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2670 return; /* Someone beat us to it. */
2671 }
2672 WRITE_ONCE(rcu_state.gp_flags,
2673 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2674 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2675 rcu_gp_kthread_wake();
2676 }
2677 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2678
2679 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2680 // grace periods.
strict_work_handler(struct work_struct * work)2681 static void strict_work_handler(struct work_struct *work)
2682 {
2683 rcu_read_lock();
2684 rcu_read_unlock();
2685 }
2686
2687 /* Perform RCU core processing work for the current CPU. */
rcu_core(void)2688 static __latent_entropy void rcu_core(void)
2689 {
2690 unsigned long flags;
2691 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2692 struct rcu_node *rnp = rdp->mynode;
2693 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2694 rcu_segcblist_is_offloaded(&rdp->cblist);
2695
2696 if (cpu_is_offline(smp_processor_id()))
2697 return;
2698 trace_rcu_utilization(TPS("Start RCU core"));
2699 WARN_ON_ONCE(!rdp->beenonline);
2700
2701 /* Report any deferred quiescent states if preemption enabled. */
2702 if (!(preempt_count() & PREEMPT_MASK)) {
2703 rcu_preempt_deferred_qs(current);
2704 } else if (rcu_preempt_need_deferred_qs(current)) {
2705 set_tsk_need_resched(current);
2706 set_preempt_need_resched();
2707 }
2708
2709 /* Update RCU state based on any recent quiescent states. */
2710 rcu_check_quiescent_state(rdp);
2711
2712 /* No grace period and unregistered callbacks? */
2713 if (!rcu_gp_in_progress() &&
2714 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2715 local_irq_save(flags);
2716 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2717 rcu_accelerate_cbs_unlocked(rnp, rdp);
2718 local_irq_restore(flags);
2719 }
2720
2721 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2722
2723 /* If there are callbacks ready, invoke them. */
2724 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2725 likely(READ_ONCE(rcu_scheduler_fully_active)))
2726 rcu_do_batch(rdp);
2727
2728 /* Do any needed deferred wakeups of rcuo kthreads. */
2729 do_nocb_deferred_wakeup(rdp);
2730 trace_rcu_utilization(TPS("End RCU core"));
2731
2732 // If strict GPs, schedule an RCU reader in a clean environment.
2733 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2734 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2735 }
2736
rcu_core_si(struct softirq_action * h)2737 static void rcu_core_si(struct softirq_action *h)
2738 {
2739 rcu_core();
2740 }
2741
rcu_wake_cond(struct task_struct * t,int status)2742 static void rcu_wake_cond(struct task_struct *t, int status)
2743 {
2744 /*
2745 * If the thread is yielding, only wake it when this
2746 * is invoked from idle
2747 */
2748 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2749 wake_up_process(t);
2750 }
2751
invoke_rcu_core_kthread(void)2752 static void invoke_rcu_core_kthread(void)
2753 {
2754 struct task_struct *t;
2755 unsigned long flags;
2756
2757 local_irq_save(flags);
2758 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2759 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2760 if (t != NULL && t != current)
2761 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2762 local_irq_restore(flags);
2763 }
2764
2765 /*
2766 * Wake up this CPU's rcuc kthread to do RCU core processing.
2767 */
invoke_rcu_core(void)2768 static void invoke_rcu_core(void)
2769 {
2770 if (!cpu_online(smp_processor_id()))
2771 return;
2772 if (use_softirq)
2773 raise_softirq(RCU_SOFTIRQ);
2774 else
2775 invoke_rcu_core_kthread();
2776 }
2777
rcu_cpu_kthread_park(unsigned int cpu)2778 static void rcu_cpu_kthread_park(unsigned int cpu)
2779 {
2780 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2781 }
2782
rcu_cpu_kthread_should_run(unsigned int cpu)2783 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2784 {
2785 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2786 }
2787
2788 /*
2789 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2790 * the RCU softirq used in configurations of RCU that do not support RCU
2791 * priority boosting.
2792 */
rcu_cpu_kthread(unsigned int cpu)2793 static void rcu_cpu_kthread(unsigned int cpu)
2794 {
2795 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2796 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2797 int spincnt;
2798
2799 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2800 for (spincnt = 0; spincnt < 10; spincnt++) {
2801 local_bh_disable();
2802 *statusp = RCU_KTHREAD_RUNNING;
2803 local_irq_disable();
2804 work = *workp;
2805 *workp = 0;
2806 local_irq_enable();
2807 if (work)
2808 rcu_core();
2809 local_bh_enable();
2810 if (*workp == 0) {
2811 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2812 *statusp = RCU_KTHREAD_WAITING;
2813 return;
2814 }
2815 }
2816 *statusp = RCU_KTHREAD_YIELDING;
2817 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2818 schedule_timeout_idle(2);
2819 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2820 *statusp = RCU_KTHREAD_WAITING;
2821 }
2822
2823 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2824 .store = &rcu_data.rcu_cpu_kthread_task,
2825 .thread_should_run = rcu_cpu_kthread_should_run,
2826 .thread_fn = rcu_cpu_kthread,
2827 .thread_comm = "rcuc/%u",
2828 .setup = rcu_cpu_kthread_setup,
2829 .park = rcu_cpu_kthread_park,
2830 };
2831
2832 /*
2833 * Spawn per-CPU RCU core processing kthreads.
2834 */
rcu_spawn_core_kthreads(void)2835 static int __init rcu_spawn_core_kthreads(void)
2836 {
2837 int cpu;
2838
2839 for_each_possible_cpu(cpu)
2840 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2841 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2842 return 0;
2843 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2844 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2845 return 0;
2846 }
2847
2848 /*
2849 * Handle any core-RCU processing required by a call_rcu() invocation.
2850 */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2851 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2852 unsigned long flags)
2853 {
2854 /*
2855 * If called from an extended quiescent state, invoke the RCU
2856 * core in order to force a re-evaluation of RCU's idleness.
2857 */
2858 if (!rcu_is_watching())
2859 invoke_rcu_core();
2860
2861 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2862 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2863 return;
2864
2865 /*
2866 * Force the grace period if too many callbacks or too long waiting.
2867 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2868 * if some other CPU has recently done so. Also, don't bother
2869 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2870 * is the only one waiting for a grace period to complete.
2871 */
2872 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2873 rdp->qlen_last_fqs_check + qhimark)) {
2874
2875 /* Are we ignoring a completed grace period? */
2876 note_gp_changes(rdp);
2877
2878 /* Start a new grace period if one not already started. */
2879 if (!rcu_gp_in_progress()) {
2880 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2881 } else {
2882 /* Give the grace period a kick. */
2883 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2884 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2885 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2886 rcu_force_quiescent_state();
2887 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2888 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2889 }
2890 }
2891 }
2892
2893 /*
2894 * RCU callback function to leak a callback.
2895 */
rcu_leak_callback(struct rcu_head * rhp)2896 static void rcu_leak_callback(struct rcu_head *rhp)
2897 {
2898 }
2899
2900 /*
2901 * Check and if necessary update the leaf rcu_node structure's
2902 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2903 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2904 * structure's ->lock.
2905 */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)2906 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2907 {
2908 raw_lockdep_assert_held_rcu_node(rnp);
2909 if (qovld_calc <= 0)
2910 return; // Early boot and wildcard value set.
2911 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2912 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2913 else
2914 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2915 }
2916
2917 /*
2918 * Check and if necessary update the leaf rcu_node structure's
2919 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2920 * number of queued RCU callbacks. No locks need be held, but the
2921 * caller must have disabled interrupts.
2922 *
2923 * Note that this function ignores the possibility that there are a lot
2924 * of callbacks all of which have already seen the end of their respective
2925 * grace periods. This omission is due to the need for no-CBs CPUs to
2926 * be holding ->nocb_lock to do this check, which is too heavy for a
2927 * common-case operation.
2928 */
check_cb_ovld(struct rcu_data * rdp)2929 static void check_cb_ovld(struct rcu_data *rdp)
2930 {
2931 struct rcu_node *const rnp = rdp->mynode;
2932
2933 if (qovld_calc <= 0 ||
2934 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2935 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2936 return; // Early boot wildcard value or already set correctly.
2937 raw_spin_lock_rcu_node(rnp);
2938 check_cb_ovld_locked(rdp, rnp);
2939 raw_spin_unlock_rcu_node(rnp);
2940 }
2941
2942 /* Helper function for call_rcu() and friends. */
2943 static void
__call_rcu(struct rcu_head * head,rcu_callback_t func)2944 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2945 {
2946 unsigned long flags;
2947 struct rcu_data *rdp;
2948 bool was_alldone;
2949
2950 /* Misaligned rcu_head! */
2951 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2952
2953 if (debug_rcu_head_queue(head)) {
2954 /*
2955 * Probable double call_rcu(), so leak the callback.
2956 * Use rcu:rcu_callback trace event to find the previous
2957 * time callback was passed to __call_rcu().
2958 */
2959 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2960 head, head->func);
2961 WRITE_ONCE(head->func, rcu_leak_callback);
2962 return;
2963 }
2964 head->func = func;
2965 head->next = NULL;
2966 local_irq_save(flags);
2967 kasan_record_aux_stack(head);
2968 rdp = this_cpu_ptr(&rcu_data);
2969
2970 /* Add the callback to our list. */
2971 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2972 // This can trigger due to call_rcu() from offline CPU:
2973 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2974 WARN_ON_ONCE(!rcu_is_watching());
2975 // Very early boot, before rcu_init(). Initialize if needed
2976 // and then drop through to queue the callback.
2977 if (rcu_segcblist_empty(&rdp->cblist))
2978 rcu_segcblist_init(&rdp->cblist);
2979 }
2980
2981 check_cb_ovld(rdp);
2982 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2983 return; // Enqueued onto ->nocb_bypass, so just leave.
2984 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2985 rcu_segcblist_enqueue(&rdp->cblist, head);
2986 if (__is_kvfree_rcu_offset((unsigned long)func))
2987 trace_rcu_kvfree_callback(rcu_state.name, head,
2988 (unsigned long)func,
2989 rcu_segcblist_n_cbs(&rdp->cblist));
2990 else
2991 trace_rcu_callback(rcu_state.name, head,
2992 rcu_segcblist_n_cbs(&rdp->cblist));
2993
2994 /* Go handle any RCU core processing required. */
2995 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2996 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2997 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2998 } else {
2999 __call_rcu_core(rdp, head, flags);
3000 local_irq_restore(flags);
3001 }
3002 }
3003
3004 /**
3005 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3006 * @head: structure to be used for queueing the RCU updates.
3007 * @func: actual callback function to be invoked after the grace period
3008 *
3009 * The callback function will be invoked some time after a full grace
3010 * period elapses, in other words after all pre-existing RCU read-side
3011 * critical sections have completed. However, the callback function
3012 * might well execute concurrently with RCU read-side critical sections
3013 * that started after call_rcu() was invoked. RCU read-side critical
3014 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
3015 * may be nested. In addition, regions of code across which interrupts,
3016 * preemption, or softirqs have been disabled also serve as RCU read-side
3017 * critical sections. This includes hardware interrupt handlers, softirq
3018 * handlers, and NMI handlers.
3019 *
3020 * Note that all CPUs must agree that the grace period extended beyond
3021 * all pre-existing RCU read-side critical section. On systems with more
3022 * than one CPU, this means that when "func()" is invoked, each CPU is
3023 * guaranteed to have executed a full memory barrier since the end of its
3024 * last RCU read-side critical section whose beginning preceded the call
3025 * to call_rcu(). It also means that each CPU executing an RCU read-side
3026 * critical section that continues beyond the start of "func()" must have
3027 * executed a memory barrier after the call_rcu() but before the beginning
3028 * of that RCU read-side critical section. Note that these guarantees
3029 * include CPUs that are offline, idle, or executing in user mode, as
3030 * well as CPUs that are executing in the kernel.
3031 *
3032 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3033 * resulting RCU callback function "func()", then both CPU A and CPU B are
3034 * guaranteed to execute a full memory barrier during the time interval
3035 * between the call to call_rcu() and the invocation of "func()" -- even
3036 * if CPU A and CPU B are the same CPU (but again only if the system has
3037 * more than one CPU).
3038 */
call_rcu(struct rcu_head * head,rcu_callback_t func)3039 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3040 {
3041 __call_rcu(head, func);
3042 }
3043 EXPORT_SYMBOL_GPL(call_rcu);
3044
3045
3046 /* Maximum number of jiffies to wait before draining a batch. */
3047 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3048 #define KFREE_N_BATCHES 2
3049 #define FREE_N_CHANNELS 2
3050
3051 /**
3052 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3053 * @nr_records: Number of active pointers in the array
3054 * @next: Next bulk object in the block chain
3055 * @records: Array of the kvfree_rcu() pointers
3056 */
3057 struct kvfree_rcu_bulk_data {
3058 unsigned long nr_records;
3059 struct kvfree_rcu_bulk_data *next;
3060 void *records[];
3061 };
3062
3063 /*
3064 * This macro defines how many entries the "records" array
3065 * will contain. It is based on the fact that the size of
3066 * kvfree_rcu_bulk_data structure becomes exactly one page.
3067 */
3068 #define KVFREE_BULK_MAX_ENTR \
3069 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3070
3071 /**
3072 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3073 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3074 * @head_free: List of kfree_rcu() objects waiting for a grace period
3075 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3076 * @krcp: Pointer to @kfree_rcu_cpu structure
3077 */
3078
3079 struct kfree_rcu_cpu_work {
3080 struct rcu_work rcu_work;
3081 struct rcu_head *head_free;
3082 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3083 struct kfree_rcu_cpu *krcp;
3084 };
3085
3086 /**
3087 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3088 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3089 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3090 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3091 * @lock: Synchronize access to this structure
3092 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3093 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3094 * @initialized: The @rcu_work fields have been initialized
3095 * @count: Number of objects for which GP not started
3096 * @bkvcache:
3097 * A simple cache list that contains objects for reuse purpose.
3098 * In order to save some per-cpu space the list is singular.
3099 * Even though it is lockless an access has to be protected by the
3100 * per-cpu lock.
3101 * @page_cache_work: A work to refill the cache when it is empty
3102 * @work_in_progress: Indicates that page_cache_work is running
3103 * @hrtimer: A hrtimer for scheduling a page_cache_work
3104 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3105 *
3106 * This is a per-CPU structure. The reason that it is not included in
3107 * the rcu_data structure is to permit this code to be extracted from
3108 * the RCU files. Such extraction could allow further optimization of
3109 * the interactions with the slab allocators.
3110 */
3111 struct kfree_rcu_cpu {
3112 struct rcu_head *head;
3113 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3114 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3115 raw_spinlock_t lock;
3116 struct delayed_work monitor_work;
3117 bool monitor_todo;
3118 bool initialized;
3119 int count;
3120
3121 struct work_struct page_cache_work;
3122 atomic_t work_in_progress;
3123 struct hrtimer hrtimer;
3124
3125 struct llist_head bkvcache;
3126 int nr_bkv_objs;
3127 };
3128
3129 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3130 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3131 };
3132
3133 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)3134 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3135 {
3136 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3137 int i;
3138
3139 for (i = 0; i < bhead->nr_records; i++)
3140 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3141 #endif
3142 }
3143
3144 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)3145 krc_this_cpu_lock(unsigned long *flags)
3146 {
3147 struct kfree_rcu_cpu *krcp;
3148
3149 local_irq_save(*flags); // For safely calling this_cpu_ptr().
3150 krcp = this_cpu_ptr(&krc);
3151 raw_spin_lock(&krcp->lock);
3152
3153 return krcp;
3154 }
3155
3156 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)3157 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3158 {
3159 raw_spin_unlock(&krcp->lock);
3160 local_irq_restore(flags);
3161 }
3162
3163 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)3164 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3165 {
3166 if (!krcp->nr_bkv_objs)
3167 return NULL;
3168
3169 krcp->nr_bkv_objs--;
3170 return (struct kvfree_rcu_bulk_data *)
3171 llist_del_first(&krcp->bkvcache);
3172 }
3173
3174 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)3175 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3176 struct kvfree_rcu_bulk_data *bnode)
3177 {
3178 // Check the limit.
3179 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3180 return false;
3181
3182 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3183 krcp->nr_bkv_objs++;
3184 return true;
3185
3186 }
3187
3188 /*
3189 * This function is invoked in workqueue context after a grace period.
3190 * It frees all the objects queued on ->bhead_free or ->head_free.
3191 */
kfree_rcu_work(struct work_struct * work)3192 static void kfree_rcu_work(struct work_struct *work)
3193 {
3194 unsigned long flags;
3195 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3196 struct rcu_head *head, *next;
3197 struct kfree_rcu_cpu *krcp;
3198 struct kfree_rcu_cpu_work *krwp;
3199 int i, j;
3200
3201 krwp = container_of(to_rcu_work(work),
3202 struct kfree_rcu_cpu_work, rcu_work);
3203 krcp = krwp->krcp;
3204
3205 raw_spin_lock_irqsave(&krcp->lock, flags);
3206 // Channels 1 and 2.
3207 for (i = 0; i < FREE_N_CHANNELS; i++) {
3208 bkvhead[i] = krwp->bkvhead_free[i];
3209 krwp->bkvhead_free[i] = NULL;
3210 }
3211
3212 // Channel 3.
3213 head = krwp->head_free;
3214 krwp->head_free = NULL;
3215 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3216
3217 // Handle two first channels.
3218 for (i = 0; i < FREE_N_CHANNELS; i++) {
3219 for (; bkvhead[i]; bkvhead[i] = bnext) {
3220 bnext = bkvhead[i]->next;
3221 debug_rcu_bhead_unqueue(bkvhead[i]);
3222
3223 rcu_lock_acquire(&rcu_callback_map);
3224 if (i == 0) { // kmalloc() / kfree().
3225 trace_rcu_invoke_kfree_bulk_callback(
3226 rcu_state.name, bkvhead[i]->nr_records,
3227 bkvhead[i]->records);
3228
3229 kfree_bulk(bkvhead[i]->nr_records,
3230 bkvhead[i]->records);
3231 } else { // vmalloc() / vfree().
3232 for (j = 0; j < bkvhead[i]->nr_records; j++) {
3233 trace_rcu_invoke_kvfree_callback(
3234 rcu_state.name,
3235 bkvhead[i]->records[j], 0);
3236
3237 vfree(bkvhead[i]->records[j]);
3238 }
3239 }
3240 rcu_lock_release(&rcu_callback_map);
3241
3242 raw_spin_lock_irqsave(&krcp->lock, flags);
3243 if (put_cached_bnode(krcp, bkvhead[i]))
3244 bkvhead[i] = NULL;
3245 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3246
3247 if (bkvhead[i])
3248 free_page((unsigned long) bkvhead[i]);
3249
3250 cond_resched_tasks_rcu_qs();
3251 }
3252 }
3253
3254 /*
3255 * Emergency case only. It can happen under low memory
3256 * condition when an allocation gets failed, so the "bulk"
3257 * path can not be temporary maintained.
3258 */
3259 for (; head; head = next) {
3260 unsigned long offset = (unsigned long)head->func;
3261 void *ptr = (void *)head - offset;
3262
3263 next = head->next;
3264 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3265 rcu_lock_acquire(&rcu_callback_map);
3266 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3267
3268 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3269 kvfree(ptr);
3270
3271 rcu_lock_release(&rcu_callback_map);
3272 cond_resched_tasks_rcu_qs();
3273 }
3274 }
3275
3276 /*
3277 * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3278 *
3279 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3280 * timeout has been reached.
3281 */
queue_kfree_rcu_work(struct kfree_rcu_cpu * krcp)3282 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3283 {
3284 struct kfree_rcu_cpu_work *krwp;
3285 bool repeat = false;
3286 int i, j;
3287
3288 lockdep_assert_held(&krcp->lock);
3289
3290 for (i = 0; i < KFREE_N_BATCHES; i++) {
3291 krwp = &(krcp->krw_arr[i]);
3292
3293 /*
3294 * Try to detach bkvhead or head and attach it over any
3295 * available corresponding free channel. It can be that
3296 * a previous RCU batch is in progress, it means that
3297 * immediately to queue another one is not possible so
3298 * return false to tell caller to retry.
3299 */
3300 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3301 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3302 (krcp->head && !krwp->head_free)) {
3303 // Channel 1 corresponds to SLAB ptrs.
3304 // Channel 2 corresponds to vmalloc ptrs.
3305 for (j = 0; j < FREE_N_CHANNELS; j++) {
3306 if (!krwp->bkvhead_free[j]) {
3307 krwp->bkvhead_free[j] = krcp->bkvhead[j];
3308 krcp->bkvhead[j] = NULL;
3309 }
3310 }
3311
3312 // Channel 3 corresponds to emergency path.
3313 if (!krwp->head_free) {
3314 krwp->head_free = krcp->head;
3315 krcp->head = NULL;
3316 }
3317
3318 WRITE_ONCE(krcp->count, 0);
3319
3320 /*
3321 * One work is per one batch, so there are three
3322 * "free channels", the batch can handle. It can
3323 * be that the work is in the pending state when
3324 * channels have been detached following by each
3325 * other.
3326 */
3327 queue_rcu_work(system_wq, &krwp->rcu_work);
3328 }
3329
3330 // Repeat if any "free" corresponding channel is still busy.
3331 if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head)
3332 repeat = true;
3333 }
3334
3335 return !repeat;
3336 }
3337
kfree_rcu_drain_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)3338 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3339 unsigned long flags)
3340 {
3341 // Attempt to start a new batch.
3342 krcp->monitor_todo = false;
3343 if (queue_kfree_rcu_work(krcp)) {
3344 // Success! Our job is done here.
3345 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3346 return;
3347 }
3348
3349 // Previous RCU batch still in progress, try again later.
3350 krcp->monitor_todo = true;
3351 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3352 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3353 }
3354
3355 /*
3356 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3357 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3358 */
kfree_rcu_monitor(struct work_struct * work)3359 static void kfree_rcu_monitor(struct work_struct *work)
3360 {
3361 unsigned long flags;
3362 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3363 monitor_work.work);
3364
3365 raw_spin_lock_irqsave(&krcp->lock, flags);
3366 if (krcp->monitor_todo)
3367 kfree_rcu_drain_unlock(krcp, flags);
3368 else
3369 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3370 }
3371
3372 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3373 schedule_page_work_fn(struct hrtimer *t)
3374 {
3375 struct kfree_rcu_cpu *krcp =
3376 container_of(t, struct kfree_rcu_cpu, hrtimer);
3377
3378 queue_work(system_highpri_wq, &krcp->page_cache_work);
3379 return HRTIMER_NORESTART;
3380 }
3381
fill_page_cache_func(struct work_struct * work)3382 static void fill_page_cache_func(struct work_struct *work)
3383 {
3384 struct kvfree_rcu_bulk_data *bnode;
3385 struct kfree_rcu_cpu *krcp =
3386 container_of(work, struct kfree_rcu_cpu,
3387 page_cache_work);
3388 unsigned long flags;
3389 bool pushed;
3390 int i;
3391
3392 for (i = 0; i < rcu_min_cached_objs; i++) {
3393 bnode = (struct kvfree_rcu_bulk_data *)
3394 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3395
3396 if (!bnode)
3397 break;
3398
3399 raw_spin_lock_irqsave(&krcp->lock, flags);
3400 pushed = put_cached_bnode(krcp, bnode);
3401 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3402
3403 if (!pushed) {
3404 free_page((unsigned long) bnode);
3405 break;
3406 }
3407 }
3408
3409 atomic_set(&krcp->work_in_progress, 0);
3410 }
3411
3412 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3413 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3414 {
3415 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3416 !atomic_xchg(&krcp->work_in_progress, 1)) {
3417 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC,
3418 HRTIMER_MODE_REL);
3419 krcp->hrtimer.function = schedule_page_work_fn;
3420 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3421 }
3422 }
3423
3424 static inline bool
kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu * krcp,void * ptr)3425 kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, void *ptr)
3426 {
3427 struct kvfree_rcu_bulk_data *bnode;
3428 int idx;
3429
3430 if (unlikely(!krcp->initialized))
3431 return false;
3432
3433 lockdep_assert_held(&krcp->lock);
3434 idx = !!is_vmalloc_addr(ptr);
3435
3436 /* Check if a new block is required. */
3437 if (!krcp->bkvhead[idx] ||
3438 krcp->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3439 bnode = get_cached_bnode(krcp);
3440 /* Switch to emergency path. */
3441 if (!bnode)
3442 return false;
3443
3444 /* Initialize the new block. */
3445 bnode->nr_records = 0;
3446 bnode->next = krcp->bkvhead[idx];
3447
3448 /* Attach it to the head. */
3449 krcp->bkvhead[idx] = bnode;
3450 }
3451
3452 /* Finally insert. */
3453 krcp->bkvhead[idx]->records
3454 [krcp->bkvhead[idx]->nr_records++] = ptr;
3455
3456 return true;
3457 }
3458
3459 /*
3460 * Queue a request for lazy invocation of appropriate free routine after a
3461 * grace period. Please note there are three paths are maintained, two are the
3462 * main ones that use array of pointers interface and third one is emergency
3463 * one, that is used only when the main path can not be maintained temporary,
3464 * due to memory pressure.
3465 *
3466 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3467 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3468 * be free'd in workqueue context. This allows us to: batch requests together to
3469 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3470 */
kvfree_call_rcu(struct rcu_head * head,rcu_callback_t func)3471 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3472 {
3473 unsigned long flags;
3474 struct kfree_rcu_cpu *krcp;
3475 bool success;
3476 void *ptr;
3477
3478 if (head) {
3479 ptr = (void *) head - (unsigned long) func;
3480 } else {
3481 /*
3482 * Please note there is a limitation for the head-less
3483 * variant, that is why there is a clear rule for such
3484 * objects: it can be used from might_sleep() context
3485 * only. For other places please embed an rcu_head to
3486 * your data.
3487 */
3488 might_sleep();
3489 ptr = (unsigned long *) func;
3490 }
3491
3492 krcp = krc_this_cpu_lock(&flags);
3493
3494 // Queue the object but don't yet schedule the batch.
3495 if (debug_rcu_head_queue(ptr)) {
3496 // Probable double kfree_rcu(), just leak.
3497 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3498 __func__, head);
3499
3500 // Mark as success and leave.
3501 success = true;
3502 goto unlock_return;
3503 }
3504
3505 success = kvfree_call_rcu_add_ptr_to_bulk(krcp, ptr);
3506 if (!success) {
3507 run_page_cache_worker(krcp);
3508
3509 if (head == NULL)
3510 // Inline if kvfree_rcu(one_arg) call.
3511 goto unlock_return;
3512
3513 head->func = func;
3514 head->next = krcp->head;
3515 krcp->head = head;
3516 success = true;
3517 }
3518
3519 WRITE_ONCE(krcp->count, krcp->count + 1);
3520
3521 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3522 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3523 !krcp->monitor_todo) {
3524 krcp->monitor_todo = true;
3525 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3526 }
3527
3528 unlock_return:
3529 krc_this_cpu_unlock(krcp, flags);
3530
3531 /*
3532 * Inline kvfree() after synchronize_rcu(). We can do
3533 * it from might_sleep() context only, so the current
3534 * CPU can pass the QS state.
3535 */
3536 if (!success) {
3537 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3538 synchronize_rcu();
3539 kvfree(ptr);
3540 }
3541 }
3542 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3543
3544 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3545 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3546 {
3547 int cpu;
3548 unsigned long count = 0;
3549
3550 /* Snapshot count of all CPUs */
3551 for_each_possible_cpu(cpu) {
3552 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3553
3554 count += READ_ONCE(krcp->count);
3555 }
3556
3557 return count;
3558 }
3559
3560 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3561 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3562 {
3563 int cpu, freed = 0;
3564 unsigned long flags;
3565
3566 for_each_possible_cpu(cpu) {
3567 int count;
3568 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3569
3570 count = krcp->count;
3571 raw_spin_lock_irqsave(&krcp->lock, flags);
3572 if (krcp->monitor_todo)
3573 kfree_rcu_drain_unlock(krcp, flags);
3574 else
3575 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3576
3577 sc->nr_to_scan -= count;
3578 freed += count;
3579
3580 if (sc->nr_to_scan <= 0)
3581 break;
3582 }
3583
3584 return freed == 0 ? SHRINK_STOP : freed;
3585 }
3586
3587 static struct shrinker kfree_rcu_shrinker = {
3588 .count_objects = kfree_rcu_shrink_count,
3589 .scan_objects = kfree_rcu_shrink_scan,
3590 .batch = 0,
3591 .seeks = DEFAULT_SEEKS,
3592 };
3593
kfree_rcu_scheduler_running(void)3594 void __init kfree_rcu_scheduler_running(void)
3595 {
3596 int cpu;
3597 unsigned long flags;
3598
3599 for_each_possible_cpu(cpu) {
3600 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3601
3602 raw_spin_lock_irqsave(&krcp->lock, flags);
3603 if (!krcp->head || krcp->monitor_todo) {
3604 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3605 continue;
3606 }
3607 krcp->monitor_todo = true;
3608 schedule_delayed_work_on(cpu, &krcp->monitor_work,
3609 KFREE_DRAIN_JIFFIES);
3610 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3611 }
3612 }
3613
3614 /*
3615 * During early boot, any blocking grace-period wait automatically
3616 * implies a grace period. Later on, this is never the case for PREEMPTION.
3617 *
3618 * Howevr, because a context switch is a grace period for !PREEMPTION, any
3619 * blocking grace-period wait automatically implies a grace period if
3620 * there is only one CPU online at any point time during execution of
3621 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3622 * occasionally incorrectly indicate that there are multiple CPUs online
3623 * when there was in fact only one the whole time, as this just adds some
3624 * overhead: RCU still operates correctly.
3625 */
rcu_blocking_is_gp(void)3626 static int rcu_blocking_is_gp(void)
3627 {
3628 int ret;
3629
3630 if (IS_ENABLED(CONFIG_PREEMPTION))
3631 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3632 might_sleep(); /* Check for RCU read-side critical section. */
3633 preempt_disable();
3634 ret = num_online_cpus() <= 1;
3635 preempt_enable();
3636 return ret;
3637 }
3638
3639 /**
3640 * synchronize_rcu - wait until a grace period has elapsed.
3641 *
3642 * Control will return to the caller some time after a full grace
3643 * period has elapsed, in other words after all currently executing RCU
3644 * read-side critical sections have completed. Note, however, that
3645 * upon return from synchronize_rcu(), the caller might well be executing
3646 * concurrently with new RCU read-side critical sections that began while
3647 * synchronize_rcu() was waiting. RCU read-side critical sections are
3648 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3649 * In addition, regions of code across which interrupts, preemption, or
3650 * softirqs have been disabled also serve as RCU read-side critical
3651 * sections. This includes hardware interrupt handlers, softirq handlers,
3652 * and NMI handlers.
3653 *
3654 * Note that this guarantee implies further memory-ordering guarantees.
3655 * On systems with more than one CPU, when synchronize_rcu() returns,
3656 * each CPU is guaranteed to have executed a full memory barrier since
3657 * the end of its last RCU read-side critical section whose beginning
3658 * preceded the call to synchronize_rcu(). In addition, each CPU having
3659 * an RCU read-side critical section that extends beyond the return from
3660 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3661 * after the beginning of synchronize_rcu() and before the beginning of
3662 * that RCU read-side critical section. Note that these guarantees include
3663 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3664 * that are executing in the kernel.
3665 *
3666 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3667 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3668 * to have executed a full memory barrier during the execution of
3669 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3670 * again only if the system has more than one CPU).
3671 */
synchronize_rcu(void)3672 void synchronize_rcu(void)
3673 {
3674 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3675 lock_is_held(&rcu_lock_map) ||
3676 lock_is_held(&rcu_sched_lock_map),
3677 "Illegal synchronize_rcu() in RCU read-side critical section");
3678 if (rcu_blocking_is_gp())
3679 return;
3680 if (rcu_gp_is_expedited())
3681 synchronize_rcu_expedited();
3682 else
3683 wait_rcu_gp(call_rcu);
3684 }
3685 EXPORT_SYMBOL_GPL(synchronize_rcu);
3686
3687 /**
3688 * get_state_synchronize_rcu - Snapshot current RCU state
3689 *
3690 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3691 * to determine whether or not a full grace period has elapsed in the
3692 * meantime.
3693 */
get_state_synchronize_rcu(void)3694 unsigned long get_state_synchronize_rcu(void)
3695 {
3696 /*
3697 * Any prior manipulation of RCU-protected data must happen
3698 * before the load from ->gp_seq.
3699 */
3700 smp_mb(); /* ^^^ */
3701 return rcu_seq_snap(&rcu_state.gp_seq);
3702 }
3703 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3704
3705 /**
3706 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3707 *
3708 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3709 *
3710 * If a full RCU grace period has elapsed since the earlier call to
3711 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3712 * synchronize_rcu() to wait for a full grace period.
3713 *
3714 * Yes, this function does not take counter wrap into account. But
3715 * counter wrap is harmless. If the counter wraps, we have waited for
3716 * more than 2 billion grace periods (and way more on a 64-bit system!),
3717 * so waiting for one additional grace period should be just fine.
3718 */
cond_synchronize_rcu(unsigned long oldstate)3719 void cond_synchronize_rcu(unsigned long oldstate)
3720 {
3721 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3722 synchronize_rcu();
3723 else
3724 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3725 }
3726 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3727
3728 /*
3729 * Check to see if there is any immediate RCU-related work to be done by
3730 * the current CPU, returning 1 if so and zero otherwise. The checks are
3731 * in order of increasing expense: checks that can be carried out against
3732 * CPU-local state are performed first. However, we must check for CPU
3733 * stalls first, else we might not get a chance.
3734 */
rcu_pending(int user)3735 static int rcu_pending(int user)
3736 {
3737 bool gp_in_progress;
3738 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3739 struct rcu_node *rnp = rdp->mynode;
3740
3741 lockdep_assert_irqs_disabled();
3742
3743 /* Check for CPU stalls, if enabled. */
3744 check_cpu_stall(rdp);
3745
3746 /* Does this CPU need a deferred NOCB wakeup? */
3747 if (rcu_nocb_need_deferred_wakeup(rdp))
3748 return 1;
3749
3750 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3751 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3752 return 0;
3753
3754 /* Is the RCU core waiting for a quiescent state from this CPU? */
3755 gp_in_progress = rcu_gp_in_progress();
3756 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3757 return 1;
3758
3759 /* Does this CPU have callbacks ready to invoke? */
3760 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3761 return 1;
3762
3763 /* Has RCU gone idle with this CPU needing another grace period? */
3764 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3765 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3766 !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3767 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3768 return 1;
3769
3770 /* Have RCU grace period completed or started? */
3771 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3772 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3773 return 1;
3774
3775 /* nothing to do */
3776 return 0;
3777 }
3778
3779 /*
3780 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3781 * the compiler is expected to optimize this away.
3782 */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3783 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3784 {
3785 trace_rcu_barrier(rcu_state.name, s, cpu,
3786 atomic_read(&rcu_state.barrier_cpu_count), done);
3787 }
3788
3789 /*
3790 * RCU callback function for rcu_barrier(). If we are last, wake
3791 * up the task executing rcu_barrier().
3792 *
3793 * Note that the value of rcu_state.barrier_sequence must be captured
3794 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3795 * other CPUs might count the value down to zero before this CPU gets
3796 * around to invoking rcu_barrier_trace(), which might result in bogus
3797 * data from the next instance of rcu_barrier().
3798 */
rcu_barrier_callback(struct rcu_head * rhp)3799 static void rcu_barrier_callback(struct rcu_head *rhp)
3800 {
3801 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3802
3803 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3804 rcu_barrier_trace(TPS("LastCB"), -1, s);
3805 complete(&rcu_state.barrier_completion);
3806 } else {
3807 rcu_barrier_trace(TPS("CB"), -1, s);
3808 }
3809 }
3810
3811 /*
3812 * Called with preemption disabled, and from cross-cpu IRQ context.
3813 */
rcu_barrier_func(void * cpu_in)3814 static void rcu_barrier_func(void *cpu_in)
3815 {
3816 uintptr_t cpu = (uintptr_t)cpu_in;
3817 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3818
3819 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3820 rdp->barrier_head.func = rcu_barrier_callback;
3821 debug_rcu_head_queue(&rdp->barrier_head);
3822 rcu_nocb_lock(rdp);
3823 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3824 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3825 atomic_inc(&rcu_state.barrier_cpu_count);
3826 } else {
3827 debug_rcu_head_unqueue(&rdp->barrier_head);
3828 rcu_barrier_trace(TPS("IRQNQ"), -1,
3829 rcu_state.barrier_sequence);
3830 }
3831 rcu_nocb_unlock(rdp);
3832 }
3833
3834 /**
3835 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3836 *
3837 * Note that this primitive does not necessarily wait for an RCU grace period
3838 * to complete. For example, if there are no RCU callbacks queued anywhere
3839 * in the system, then rcu_barrier() is within its rights to return
3840 * immediately, without waiting for anything, much less an RCU grace period.
3841 */
rcu_barrier(void)3842 void rcu_barrier(void)
3843 {
3844 uintptr_t cpu;
3845 struct rcu_data *rdp;
3846 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3847
3848 rcu_barrier_trace(TPS("Begin"), -1, s);
3849
3850 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3851 mutex_lock(&rcu_state.barrier_mutex);
3852
3853 /* Did someone else do our work for us? */
3854 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3855 rcu_barrier_trace(TPS("EarlyExit"), -1,
3856 rcu_state.barrier_sequence);
3857 smp_mb(); /* caller's subsequent code after above check. */
3858 mutex_unlock(&rcu_state.barrier_mutex);
3859 return;
3860 }
3861
3862 /* Mark the start of the barrier operation. */
3863 rcu_seq_start(&rcu_state.barrier_sequence);
3864 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3865
3866 /*
3867 * Initialize the count to two rather than to zero in order
3868 * to avoid a too-soon return to zero in case of an immediate
3869 * invocation of the just-enqueued callback (or preemption of
3870 * this task). Exclude CPU-hotplug operations to ensure that no
3871 * offline non-offloaded CPU has callbacks queued.
3872 */
3873 init_completion(&rcu_state.barrier_completion);
3874 atomic_set(&rcu_state.barrier_cpu_count, 2);
3875 get_online_cpus();
3876
3877 /*
3878 * Force each CPU with callbacks to register a new callback.
3879 * When that callback is invoked, we will know that all of the
3880 * corresponding CPU's preceding callbacks have been invoked.
3881 */
3882 for_each_possible_cpu(cpu) {
3883 rdp = per_cpu_ptr(&rcu_data, cpu);
3884 if (cpu_is_offline(cpu) &&
3885 !rcu_segcblist_is_offloaded(&rdp->cblist))
3886 continue;
3887 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3888 rcu_barrier_trace(TPS("OnlineQ"), cpu,
3889 rcu_state.barrier_sequence);
3890 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3891 } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3892 cpu_is_offline(cpu)) {
3893 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3894 rcu_state.barrier_sequence);
3895 local_irq_disable();
3896 rcu_barrier_func((void *)cpu);
3897 local_irq_enable();
3898 } else if (cpu_is_offline(cpu)) {
3899 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3900 rcu_state.barrier_sequence);
3901 } else {
3902 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3903 rcu_state.barrier_sequence);
3904 }
3905 }
3906 put_online_cpus();
3907
3908 /*
3909 * Now that we have an rcu_barrier_callback() callback on each
3910 * CPU, and thus each counted, remove the initial count.
3911 */
3912 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3913 complete(&rcu_state.barrier_completion);
3914
3915 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3916 wait_for_completion(&rcu_state.barrier_completion);
3917
3918 /* Mark the end of the barrier operation. */
3919 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3920 rcu_seq_end(&rcu_state.barrier_sequence);
3921
3922 /* Other rcu_barrier() invocations can now safely proceed. */
3923 mutex_unlock(&rcu_state.barrier_mutex);
3924 }
3925 EXPORT_SYMBOL_GPL(rcu_barrier);
3926
3927 /*
3928 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3929 * first CPU in a given leaf rcu_node structure coming online. The caller
3930 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3931 * disabled.
3932 */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)3933 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3934 {
3935 long mask;
3936 long oldmask;
3937 struct rcu_node *rnp = rnp_leaf;
3938
3939 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3940 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3941 for (;;) {
3942 mask = rnp->grpmask;
3943 rnp = rnp->parent;
3944 if (rnp == NULL)
3945 return;
3946 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3947 oldmask = rnp->qsmaskinit;
3948 rnp->qsmaskinit |= mask;
3949 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3950 if (oldmask)
3951 return;
3952 }
3953 }
3954
3955 /*
3956 * Do boot-time initialization of a CPU's per-CPU RCU data.
3957 */
3958 static void __init
rcu_boot_init_percpu_data(int cpu)3959 rcu_boot_init_percpu_data(int cpu)
3960 {
3961 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3962
3963 /* Set up local state, ensuring consistent view of global state. */
3964 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3965 INIT_WORK(&rdp->strict_work, strict_work_handler);
3966 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3967 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3968 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3969 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3970 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3971 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3972 rdp->cpu = cpu;
3973 rcu_boot_init_nocb_percpu_data(rdp);
3974 }
3975
3976 /*
3977 * Invoked early in the CPU-online process, when pretty much all services
3978 * are available. The incoming CPU is not present.
3979 *
3980 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3981 * offline event can be happening at a given time. Note also that we can
3982 * accept some slop in the rsp->gp_seq access due to the fact that this
3983 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3984 * And any offloaded callbacks are being numbered elsewhere.
3985 */
rcutree_prepare_cpu(unsigned int cpu)3986 int rcutree_prepare_cpu(unsigned int cpu)
3987 {
3988 unsigned long flags;
3989 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3990 struct rcu_node *rnp = rcu_get_root();
3991
3992 /* Set up local state, ensuring consistent view of global state. */
3993 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3994 rdp->qlen_last_fqs_check = 0;
3995 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
3996 rdp->blimit = blimit;
3997 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3998 !rcu_segcblist_is_offloaded(&rdp->cblist))
3999 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4000 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
4001 rcu_dynticks_eqs_online();
4002 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4003
4004 /*
4005 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4006 * propagation up the rcu_node tree will happen at the beginning
4007 * of the next grace period.
4008 */
4009 rnp = rdp->mynode;
4010 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4011 rdp->beenonline = true; /* We have now been online. */
4012 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4013 rdp->gp_seq_needed = rdp->gp_seq;
4014 rdp->cpu_no_qs.b.norm = true;
4015 rdp->core_needs_qs = false;
4016 rdp->rcu_iw_pending = false;
4017 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4018 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4019 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4020 rcu_prepare_kthreads(cpu);
4021 rcu_spawn_cpu_nocb_kthread(cpu);
4022
4023 return 0;
4024 }
4025
4026 /*
4027 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4028 */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4029 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4030 {
4031 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4032
4033 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4034 }
4035
4036 /*
4037 * Near the end of the CPU-online process. Pretty much all services
4038 * enabled, and the CPU is now very much alive.
4039 */
rcutree_online_cpu(unsigned int cpu)4040 int rcutree_online_cpu(unsigned int cpu)
4041 {
4042 unsigned long flags;
4043 struct rcu_data *rdp;
4044 struct rcu_node *rnp;
4045
4046 rdp = per_cpu_ptr(&rcu_data, cpu);
4047 rnp = rdp->mynode;
4048 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4049 rnp->ffmask |= rdp->grpmask;
4050 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4051 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4052 return 0; /* Too early in boot for scheduler work. */
4053 sync_sched_exp_online_cleanup(cpu);
4054 rcutree_affinity_setting(cpu, -1);
4055
4056 // Stop-machine done, so allow nohz_full to disable tick.
4057 tick_dep_clear(TICK_DEP_BIT_RCU);
4058 return 0;
4059 }
4060
4061 /*
4062 * Near the beginning of the process. The CPU is still very much alive
4063 * with pretty much all services enabled.
4064 */
rcutree_offline_cpu(unsigned int cpu)4065 int rcutree_offline_cpu(unsigned int cpu)
4066 {
4067 unsigned long flags;
4068 struct rcu_data *rdp;
4069 struct rcu_node *rnp;
4070
4071 rdp = per_cpu_ptr(&rcu_data, cpu);
4072 rnp = rdp->mynode;
4073 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4074 rnp->ffmask &= ~rdp->grpmask;
4075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4076
4077 rcutree_affinity_setting(cpu, cpu);
4078
4079 // nohz_full CPUs need the tick for stop-machine to work quickly
4080 tick_dep_set(TICK_DEP_BIT_RCU);
4081 return 0;
4082 }
4083
4084 /*
4085 * Mark the specified CPU as being online so that subsequent grace periods
4086 * (both expedited and normal) will wait on it. Note that this means that
4087 * incoming CPUs are not allowed to use RCU read-side critical sections
4088 * until this function is called. Failing to observe this restriction
4089 * will result in lockdep splats.
4090 *
4091 * Note that this function is special in that it is invoked directly
4092 * from the incoming CPU rather than from the cpuhp_step mechanism.
4093 * This is because this function must be invoked at a precise location.
4094 */
rcu_cpu_starting(unsigned int cpu)4095 void rcu_cpu_starting(unsigned int cpu)
4096 {
4097 unsigned long flags;
4098 unsigned long mask;
4099 struct rcu_data *rdp;
4100 struct rcu_node *rnp;
4101 bool newcpu;
4102
4103 rdp = per_cpu_ptr(&rcu_data, cpu);
4104 if (rdp->cpu_started)
4105 return;
4106 rdp->cpu_started = true;
4107
4108 rnp = rdp->mynode;
4109 mask = rdp->grpmask;
4110 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4111 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4112 newcpu = !(rnp->expmaskinitnext & mask);
4113 rnp->expmaskinitnext |= mask;
4114 /* Allow lockless access for expedited grace periods. */
4115 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4116 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4117 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4118 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4119 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4120 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
4121 rcu_disable_urgency_upon_qs(rdp);
4122 /* Report QS -after- changing ->qsmaskinitnext! */
4123 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4124 } else {
4125 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4126 }
4127 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4128 }
4129
4130 /*
4131 * The outgoing function has no further need of RCU, so remove it from
4132 * the rcu_node tree's ->qsmaskinitnext bit masks.
4133 *
4134 * Note that this function is special in that it is invoked directly
4135 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4136 * This is because this function must be invoked at a precise location.
4137 */
rcu_report_dead(unsigned int cpu)4138 void rcu_report_dead(unsigned int cpu)
4139 {
4140 unsigned long flags;
4141 unsigned long mask;
4142 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4143 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4144
4145 /* QS for any half-done expedited grace period. */
4146 preempt_disable();
4147 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4148 preempt_enable();
4149 rcu_preempt_deferred_qs(current);
4150
4151 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4152 mask = rdp->grpmask;
4153 raw_spin_lock(&rcu_state.ofl_lock);
4154 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4155 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4156 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4157 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4158 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4159 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4160 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4161 }
4162 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4163 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4164 raw_spin_unlock(&rcu_state.ofl_lock);
4165
4166 rdp->cpu_started = false;
4167 }
4168
4169 #ifdef CONFIG_HOTPLUG_CPU
4170 /*
4171 * The outgoing CPU has just passed through the dying-idle state, and we
4172 * are being invoked from the CPU that was IPIed to continue the offline
4173 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4174 */
rcutree_migrate_callbacks(int cpu)4175 void rcutree_migrate_callbacks(int cpu)
4176 {
4177 unsigned long flags;
4178 struct rcu_data *my_rdp;
4179 struct rcu_node *my_rnp;
4180 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4181 bool needwake;
4182
4183 if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
4184 rcu_segcblist_empty(&rdp->cblist))
4185 return; /* No callbacks to migrate. */
4186
4187 local_irq_save(flags);
4188 my_rdp = this_cpu_ptr(&rcu_data);
4189 my_rnp = my_rdp->mynode;
4190 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4191 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4192 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4193 /* Leverage recent GPs and set GP for new callbacks. */
4194 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4195 rcu_advance_cbs(my_rnp, my_rdp);
4196 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4197 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4198 rcu_segcblist_disable(&rdp->cblist);
4199 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4200 !rcu_segcblist_n_cbs(&my_rdp->cblist));
4201 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
4202 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4203 __call_rcu_nocb_wake(my_rdp, true, flags);
4204 } else {
4205 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4206 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4207 }
4208 if (needwake)
4209 rcu_gp_kthread_wake();
4210 lockdep_assert_irqs_enabled();
4211 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4212 !rcu_segcblist_empty(&rdp->cblist),
4213 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4214 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4215 rcu_segcblist_first_cb(&rdp->cblist));
4216 }
4217 #endif
4218
4219 /*
4220 * On non-huge systems, use expedited RCU grace periods to make suspend
4221 * and hibernation run faster.
4222 */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4223 static int rcu_pm_notify(struct notifier_block *self,
4224 unsigned long action, void *hcpu)
4225 {
4226 switch (action) {
4227 case PM_HIBERNATION_PREPARE:
4228 case PM_SUSPEND_PREPARE:
4229 rcu_expedite_gp();
4230 break;
4231 case PM_POST_HIBERNATION:
4232 case PM_POST_SUSPEND:
4233 rcu_unexpedite_gp();
4234 break;
4235 default:
4236 break;
4237 }
4238 return NOTIFY_OK;
4239 }
4240
4241 /*
4242 * Spawn the kthreads that handle RCU's grace periods.
4243 */
rcu_spawn_gp_kthread(void)4244 static int __init rcu_spawn_gp_kthread(void)
4245 {
4246 unsigned long flags;
4247 int kthread_prio_in = kthread_prio;
4248 struct rcu_node *rnp;
4249 struct sched_param sp;
4250 struct task_struct *t;
4251
4252 /* Force priority into range. */
4253 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4254 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4255 kthread_prio = 2;
4256 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4257 kthread_prio = 1;
4258 else if (kthread_prio < 0)
4259 kthread_prio = 0;
4260 else if (kthread_prio > 99)
4261 kthread_prio = 99;
4262
4263 if (kthread_prio != kthread_prio_in)
4264 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4265 kthread_prio, kthread_prio_in);
4266
4267 rcu_scheduler_fully_active = 1;
4268 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4269 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4270 return 0;
4271 if (kthread_prio) {
4272 sp.sched_priority = kthread_prio;
4273 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4274 }
4275 rnp = rcu_get_root();
4276 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4277 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4278 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4279 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4280 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4281 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4282 wake_up_process(t);
4283 rcu_spawn_nocb_kthreads();
4284 rcu_spawn_boost_kthreads();
4285 rcu_spawn_core_kthreads();
4286 return 0;
4287 }
4288 early_initcall(rcu_spawn_gp_kthread);
4289
4290 /*
4291 * This function is invoked towards the end of the scheduler's
4292 * initialization process. Before this is called, the idle task might
4293 * contain synchronous grace-period primitives (during which time, this idle
4294 * task is booting the system, and such primitives are no-ops). After this
4295 * function is called, any synchronous grace-period primitives are run as
4296 * expedited, with the requesting task driving the grace period forward.
4297 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4298 * runtime RCU functionality.
4299 */
rcu_scheduler_starting(void)4300 void rcu_scheduler_starting(void)
4301 {
4302 WARN_ON(num_online_cpus() != 1);
4303 WARN_ON(nr_context_switches() > 0);
4304 rcu_test_sync_prims();
4305 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4306 rcu_test_sync_prims();
4307 }
4308
4309 /*
4310 * Helper function for rcu_init() that initializes the rcu_state structure.
4311 */
rcu_init_one(void)4312 static void __init rcu_init_one(void)
4313 {
4314 static const char * const buf[] = RCU_NODE_NAME_INIT;
4315 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4316 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4317 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4318
4319 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4320 int cpustride = 1;
4321 int i;
4322 int j;
4323 struct rcu_node *rnp;
4324
4325 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4326
4327 /* Silence gcc 4.8 false positive about array index out of range. */
4328 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4329 panic("rcu_init_one: rcu_num_lvls out of range");
4330
4331 /* Initialize the level-tracking arrays. */
4332
4333 for (i = 1; i < rcu_num_lvls; i++)
4334 rcu_state.level[i] =
4335 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4336 rcu_init_levelspread(levelspread, num_rcu_lvl);
4337
4338 /* Initialize the elements themselves, starting from the leaves. */
4339
4340 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4341 cpustride *= levelspread[i];
4342 rnp = rcu_state.level[i];
4343 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4344 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4345 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4346 &rcu_node_class[i], buf[i]);
4347 raw_spin_lock_init(&rnp->fqslock);
4348 lockdep_set_class_and_name(&rnp->fqslock,
4349 &rcu_fqs_class[i], fqs[i]);
4350 rnp->gp_seq = rcu_state.gp_seq;
4351 rnp->gp_seq_needed = rcu_state.gp_seq;
4352 rnp->completedqs = rcu_state.gp_seq;
4353 rnp->qsmask = 0;
4354 rnp->qsmaskinit = 0;
4355 rnp->grplo = j * cpustride;
4356 rnp->grphi = (j + 1) * cpustride - 1;
4357 if (rnp->grphi >= nr_cpu_ids)
4358 rnp->grphi = nr_cpu_ids - 1;
4359 if (i == 0) {
4360 rnp->grpnum = 0;
4361 rnp->grpmask = 0;
4362 rnp->parent = NULL;
4363 } else {
4364 rnp->grpnum = j % levelspread[i - 1];
4365 rnp->grpmask = BIT(rnp->grpnum);
4366 rnp->parent = rcu_state.level[i - 1] +
4367 j / levelspread[i - 1];
4368 }
4369 rnp->level = i;
4370 INIT_LIST_HEAD(&rnp->blkd_tasks);
4371 rcu_init_one_nocb(rnp);
4372 init_waitqueue_head(&rnp->exp_wq[0]);
4373 init_waitqueue_head(&rnp->exp_wq[1]);
4374 init_waitqueue_head(&rnp->exp_wq[2]);
4375 init_waitqueue_head(&rnp->exp_wq[3]);
4376 spin_lock_init(&rnp->exp_lock);
4377 }
4378 }
4379
4380 init_swait_queue_head(&rcu_state.gp_wq);
4381 init_swait_queue_head(&rcu_state.expedited_wq);
4382 rnp = rcu_first_leaf_node();
4383 for_each_possible_cpu(i) {
4384 while (i > rnp->grphi)
4385 rnp++;
4386 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4387 rcu_boot_init_percpu_data(i);
4388 }
4389 }
4390
4391 /*
4392 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4393 * replace the definitions in tree.h because those are needed to size
4394 * the ->node array in the rcu_state structure.
4395 */
rcu_init_geometry(void)4396 void rcu_init_geometry(void)
4397 {
4398 ulong d;
4399 int i;
4400 static unsigned long old_nr_cpu_ids;
4401 int rcu_capacity[RCU_NUM_LVLS];
4402 static bool initialized;
4403
4404 if (initialized) {
4405 /*
4406 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4407 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4408 */
4409 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4410 return;
4411 }
4412
4413 old_nr_cpu_ids = nr_cpu_ids;
4414 initialized = true;
4415
4416 /*
4417 * Initialize any unspecified boot parameters.
4418 * The default values of jiffies_till_first_fqs and
4419 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4420 * value, which is a function of HZ, then adding one for each
4421 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4422 */
4423 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4424 if (jiffies_till_first_fqs == ULONG_MAX)
4425 jiffies_till_first_fqs = d;
4426 if (jiffies_till_next_fqs == ULONG_MAX)
4427 jiffies_till_next_fqs = d;
4428 adjust_jiffies_till_sched_qs();
4429
4430 /* If the compile-time values are accurate, just leave. */
4431 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4432 nr_cpu_ids == NR_CPUS)
4433 return;
4434 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4435 rcu_fanout_leaf, nr_cpu_ids);
4436
4437 /*
4438 * The boot-time rcu_fanout_leaf parameter must be at least two
4439 * and cannot exceed the number of bits in the rcu_node masks.
4440 * Complain and fall back to the compile-time values if this
4441 * limit is exceeded.
4442 */
4443 if (rcu_fanout_leaf < 2 ||
4444 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4445 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4446 WARN_ON(1);
4447 return;
4448 }
4449
4450 /*
4451 * Compute number of nodes that can be handled an rcu_node tree
4452 * with the given number of levels.
4453 */
4454 rcu_capacity[0] = rcu_fanout_leaf;
4455 for (i = 1; i < RCU_NUM_LVLS; i++)
4456 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4457
4458 /*
4459 * The tree must be able to accommodate the configured number of CPUs.
4460 * If this limit is exceeded, fall back to the compile-time values.
4461 */
4462 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4463 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4464 WARN_ON(1);
4465 return;
4466 }
4467
4468 /* Calculate the number of levels in the tree. */
4469 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4470 }
4471 rcu_num_lvls = i + 1;
4472
4473 /* Calculate the number of rcu_nodes at each level of the tree. */
4474 for (i = 0; i < rcu_num_lvls; i++) {
4475 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4476 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4477 }
4478
4479 /* Calculate the total number of rcu_node structures. */
4480 rcu_num_nodes = 0;
4481 for (i = 0; i < rcu_num_lvls; i++)
4482 rcu_num_nodes += num_rcu_lvl[i];
4483 }
4484
4485 /*
4486 * Dump out the structure of the rcu_node combining tree associated
4487 * with the rcu_state structure.
4488 */
rcu_dump_rcu_node_tree(void)4489 static void __init rcu_dump_rcu_node_tree(void)
4490 {
4491 int level = 0;
4492 struct rcu_node *rnp;
4493
4494 pr_info("rcu_node tree layout dump\n");
4495 pr_info(" ");
4496 rcu_for_each_node_breadth_first(rnp) {
4497 if (rnp->level != level) {
4498 pr_cont("\n");
4499 pr_info(" ");
4500 level = rnp->level;
4501 }
4502 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4503 }
4504 pr_cont("\n");
4505 }
4506
4507 struct workqueue_struct *rcu_gp_wq;
4508 struct workqueue_struct *rcu_par_gp_wq;
4509
kfree_rcu_batch_init(void)4510 static void __init kfree_rcu_batch_init(void)
4511 {
4512 int cpu;
4513 int i;
4514
4515 for_each_possible_cpu(cpu) {
4516 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4517
4518 for (i = 0; i < KFREE_N_BATCHES; i++) {
4519 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4520 krcp->krw_arr[i].krcp = krcp;
4521 }
4522
4523 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4524 INIT_WORK(&krcp->page_cache_work, fill_page_cache_func);
4525 krcp->initialized = true;
4526 }
4527 if (register_shrinker(&kfree_rcu_shrinker))
4528 pr_err("Failed to register kfree_rcu() shrinker!\n");
4529 }
4530
rcu_init(void)4531 void __init rcu_init(void)
4532 {
4533 int cpu;
4534
4535 rcu_early_boot_tests();
4536
4537 kfree_rcu_batch_init();
4538 rcu_bootup_announce();
4539 rcu_init_geometry();
4540 rcu_init_one();
4541 if (dump_tree)
4542 rcu_dump_rcu_node_tree();
4543 if (use_softirq)
4544 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4545
4546 /*
4547 * We don't need protection against CPU-hotplug here because
4548 * this is called early in boot, before either interrupts
4549 * or the scheduler are operational.
4550 */
4551 pm_notifier(rcu_pm_notify, 0);
4552 for_each_online_cpu(cpu) {
4553 rcutree_prepare_cpu(cpu);
4554 rcu_cpu_starting(cpu);
4555 rcutree_online_cpu(cpu);
4556 }
4557
4558 /* Create workqueue for expedited GPs and for Tree SRCU. */
4559 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4560 WARN_ON(!rcu_gp_wq);
4561 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4562 WARN_ON(!rcu_par_gp_wq);
4563 srcu_init();
4564
4565 /* Fill in default value for rcutree.qovld boot parameter. */
4566 /* -After- the rcu_node ->lock fields are initialized! */
4567 if (qovld < 0)
4568 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4569 else
4570 qovld_calc = qovld;
4571 }
4572
4573 #include "tree_stall.h"
4574 #include "tree_exp.h"
4575 #include "tree_plugin.h"
4576