1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, Sony Mobile Communications Inc.
4 * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5 */
6 #include <linux/module.h>
7 #include <linux/netlink.h>
8 #include <linux/qrtr.h>
9 #include <linux/termios.h> /* For TIOCINQ/OUTQ */
10 #include <linux/spinlock.h>
11 #include <linux/wait.h>
12
13 #include <net/sock.h>
14
15 #include "qrtr.h"
16
17 #define QRTR_PROTO_VER_1 1
18 #define QRTR_PROTO_VER_2 3
19
20 /* auto-bind range */
21 #define QRTR_MIN_EPH_SOCKET 0x4000
22 #define QRTR_MAX_EPH_SOCKET 0x7fff
23 #define QRTR_EPH_PORT_RANGE \
24 XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET)
25
26 /**
27 * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
28 * @version: protocol version
29 * @type: packet type; one of QRTR_TYPE_*
30 * @src_node_id: source node
31 * @src_port_id: source port
32 * @confirm_rx: boolean; whether a resume-tx packet should be send in reply
33 * @size: length of packet, excluding this header
34 * @dst_node_id: destination node
35 * @dst_port_id: destination port
36 */
37 struct qrtr_hdr_v1 {
38 __le32 version;
39 __le32 type;
40 __le32 src_node_id;
41 __le32 src_port_id;
42 __le32 confirm_rx;
43 __le32 size;
44 __le32 dst_node_id;
45 __le32 dst_port_id;
46 } __packed;
47
48 /**
49 * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
50 * @version: protocol version
51 * @type: packet type; one of QRTR_TYPE_*
52 * @flags: bitmask of QRTR_FLAGS_*
53 * @optlen: length of optional header data
54 * @size: length of packet, excluding this header and optlen
55 * @src_node_id: source node
56 * @src_port_id: source port
57 * @dst_node_id: destination node
58 * @dst_port_id: destination port
59 */
60 struct qrtr_hdr_v2 {
61 u8 version;
62 u8 type;
63 u8 flags;
64 u8 optlen;
65 __le32 size;
66 __le16 src_node_id;
67 __le16 src_port_id;
68 __le16 dst_node_id;
69 __le16 dst_port_id;
70 };
71
72 #define QRTR_FLAGS_CONFIRM_RX BIT(0)
73
74 struct qrtr_cb {
75 u32 src_node;
76 u32 src_port;
77 u32 dst_node;
78 u32 dst_port;
79
80 u8 type;
81 u8 confirm_rx;
82 };
83
84 #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
85 sizeof(struct qrtr_hdr_v2))
86
87 struct qrtr_sock {
88 /* WARNING: sk must be the first member */
89 struct sock sk;
90 struct sockaddr_qrtr us;
91 struct sockaddr_qrtr peer;
92 };
93
qrtr_sk(struct sock * sk)94 static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
95 {
96 BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
97 return container_of(sk, struct qrtr_sock, sk);
98 }
99
100 static unsigned int qrtr_local_nid = 1;
101
102 /* for node ids */
103 static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
104 static DEFINE_SPINLOCK(qrtr_nodes_lock);
105 /* broadcast list */
106 static LIST_HEAD(qrtr_all_nodes);
107 /* lock for qrtr_all_nodes and node reference */
108 static DEFINE_MUTEX(qrtr_node_lock);
109
110 /* local port allocation management */
111 static DEFINE_XARRAY_ALLOC(qrtr_ports);
112
113 /**
114 * struct qrtr_node - endpoint node
115 * @ep_lock: lock for endpoint management and callbacks
116 * @ep: endpoint
117 * @ref: reference count for node
118 * @nid: node id
119 * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
120 * @qrtr_tx_lock: lock for qrtr_tx_flow inserts
121 * @rx_queue: receive queue
122 * @item: list item for broadcast list
123 */
124 struct qrtr_node {
125 struct mutex ep_lock;
126 struct qrtr_endpoint *ep;
127 struct kref ref;
128 unsigned int nid;
129
130 struct radix_tree_root qrtr_tx_flow;
131 struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
132
133 struct sk_buff_head rx_queue;
134 struct list_head item;
135 };
136
137 /**
138 * struct qrtr_tx_flow - tx flow control
139 * @resume_tx: waiters for a resume tx from the remote
140 * @pending: number of waiting senders
141 * @tx_failed: indicates that a message with confirm_rx flag was lost
142 */
143 struct qrtr_tx_flow {
144 struct wait_queue_head resume_tx;
145 int pending;
146 int tx_failed;
147 };
148
149 #define QRTR_TX_FLOW_HIGH 10
150 #define QRTR_TX_FLOW_LOW 5
151
152 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
153 int type, struct sockaddr_qrtr *from,
154 struct sockaddr_qrtr *to);
155 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
156 int type, struct sockaddr_qrtr *from,
157 struct sockaddr_qrtr *to);
158 static struct qrtr_sock *qrtr_port_lookup(int port);
159 static void qrtr_port_put(struct qrtr_sock *ipc);
160
161 /* Release node resources and free the node.
162 *
163 * Do not call directly, use qrtr_node_release. To be used with
164 * kref_put_mutex. As such, the node mutex is expected to be locked on call.
165 */
__qrtr_node_release(struct kref * kref)166 static void __qrtr_node_release(struct kref *kref)
167 {
168 struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
169 struct radix_tree_iter iter;
170 struct qrtr_tx_flow *flow;
171 unsigned long flags;
172 void __rcu **slot;
173
174 spin_lock_irqsave(&qrtr_nodes_lock, flags);
175 if (node->nid != QRTR_EP_NID_AUTO)
176 radix_tree_delete(&qrtr_nodes, node->nid);
177 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
178
179 list_del(&node->item);
180 mutex_unlock(&qrtr_node_lock);
181
182 skb_queue_purge(&node->rx_queue);
183
184 /* Free tx flow counters */
185 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
186 flow = *slot;
187 radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot);
188 kfree(flow);
189 }
190 kfree(node);
191 }
192
193 /* Increment reference to node. */
qrtr_node_acquire(struct qrtr_node * node)194 static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
195 {
196 if (node)
197 kref_get(&node->ref);
198 return node;
199 }
200
201 /* Decrement reference to node and release as necessary. */
qrtr_node_release(struct qrtr_node * node)202 static void qrtr_node_release(struct qrtr_node *node)
203 {
204 if (!node)
205 return;
206 kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock);
207 }
208
209 /**
210 * qrtr_tx_resume() - reset flow control counter
211 * @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
212 * @skb: resume_tx packet
213 */
qrtr_tx_resume(struct qrtr_node * node,struct sk_buff * skb)214 static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
215 {
216 struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
217 u64 remote_node = le32_to_cpu(pkt->client.node);
218 u32 remote_port = le32_to_cpu(pkt->client.port);
219 struct qrtr_tx_flow *flow;
220 unsigned long key;
221
222 key = remote_node << 32 | remote_port;
223
224 rcu_read_lock();
225 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
226 rcu_read_unlock();
227 if (flow) {
228 spin_lock(&flow->resume_tx.lock);
229 flow->pending = 0;
230 spin_unlock(&flow->resume_tx.lock);
231 wake_up_interruptible_all(&flow->resume_tx);
232 }
233
234 consume_skb(skb);
235 }
236
237 /**
238 * qrtr_tx_wait() - flow control for outgoing packets
239 * @node: qrtr_node that the packet is to be send to
240 * @dest_node: node id of the destination
241 * @dest_port: port number of the destination
242 * @type: type of message
243 *
244 * The flow control scheme is based around the low and high "watermarks". When
245 * the low watermark is passed the confirm_rx flag is set on the outgoing
246 * message, which will trigger the remote to send a control message of the type
247 * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
248 * further transmision should be paused.
249 *
250 * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
251 */
qrtr_tx_wait(struct qrtr_node * node,int dest_node,int dest_port,int type)252 static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
253 int type)
254 {
255 unsigned long key = (u64)dest_node << 32 | dest_port;
256 struct qrtr_tx_flow *flow;
257 int confirm_rx = 0;
258 int ret;
259
260 /* Never set confirm_rx on non-data packets */
261 if (type != QRTR_TYPE_DATA)
262 return 0;
263
264 mutex_lock(&node->qrtr_tx_lock);
265 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
266 if (!flow) {
267 flow = kzalloc(sizeof(*flow), GFP_KERNEL);
268 if (flow) {
269 init_waitqueue_head(&flow->resume_tx);
270 if (radix_tree_insert(&node->qrtr_tx_flow, key, flow)) {
271 kfree(flow);
272 flow = NULL;
273 }
274 }
275 }
276 mutex_unlock(&node->qrtr_tx_lock);
277
278 /* Set confirm_rx if we where unable to find and allocate a flow */
279 if (!flow)
280 return 1;
281
282 spin_lock_irq(&flow->resume_tx.lock);
283 ret = wait_event_interruptible_locked_irq(flow->resume_tx,
284 flow->pending < QRTR_TX_FLOW_HIGH ||
285 flow->tx_failed ||
286 !node->ep);
287 if (ret < 0) {
288 confirm_rx = ret;
289 } else if (!node->ep) {
290 confirm_rx = -EPIPE;
291 } else if (flow->tx_failed) {
292 flow->tx_failed = 0;
293 confirm_rx = 1;
294 } else {
295 flow->pending++;
296 confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
297 }
298 spin_unlock_irq(&flow->resume_tx.lock);
299
300 return confirm_rx;
301 }
302
303 /**
304 * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
305 * @node: qrtr_node that the packet is to be send to
306 * @dest_node: node id of the destination
307 * @dest_port: port number of the destination
308 *
309 * Signal that the transmission of a message with confirm_rx flag failed. The
310 * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
311 * at which point transmission would stall forever waiting for the resume TX
312 * message associated with the dropped confirm_rx message.
313 * Work around this by marking the flow as having a failed transmission and
314 * cause the next transmission attempt to be sent with the confirm_rx.
315 */
qrtr_tx_flow_failed(struct qrtr_node * node,int dest_node,int dest_port)316 static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
317 int dest_port)
318 {
319 unsigned long key = (u64)dest_node << 32 | dest_port;
320 struct qrtr_tx_flow *flow;
321
322 rcu_read_lock();
323 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
324 rcu_read_unlock();
325 if (flow) {
326 spin_lock_irq(&flow->resume_tx.lock);
327 flow->tx_failed = 1;
328 spin_unlock_irq(&flow->resume_tx.lock);
329 }
330 }
331
332 /* Pass an outgoing packet socket buffer to the endpoint driver. */
qrtr_node_enqueue(struct qrtr_node * node,struct sk_buff * skb,int type,struct sockaddr_qrtr * from,struct sockaddr_qrtr * to)333 static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
334 int type, struct sockaddr_qrtr *from,
335 struct sockaddr_qrtr *to)
336 {
337 struct qrtr_hdr_v1 *hdr;
338 size_t len = skb->len;
339 int rc, confirm_rx;
340
341 confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type);
342 if (confirm_rx < 0) {
343 kfree_skb(skb);
344 return confirm_rx;
345 }
346
347 hdr = skb_push(skb, sizeof(*hdr));
348 hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
349 hdr->type = cpu_to_le32(type);
350 hdr->src_node_id = cpu_to_le32(from->sq_node);
351 hdr->src_port_id = cpu_to_le32(from->sq_port);
352 if (to->sq_port == QRTR_PORT_CTRL) {
353 hdr->dst_node_id = cpu_to_le32(node->nid);
354 hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL);
355 } else {
356 hdr->dst_node_id = cpu_to_le32(to->sq_node);
357 hdr->dst_port_id = cpu_to_le32(to->sq_port);
358 }
359
360 hdr->size = cpu_to_le32(len);
361 hdr->confirm_rx = !!confirm_rx;
362
363 rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
364
365 if (!rc) {
366 mutex_lock(&node->ep_lock);
367 rc = -ENODEV;
368 if (node->ep)
369 rc = node->ep->xmit(node->ep, skb);
370 else
371 kfree_skb(skb);
372 mutex_unlock(&node->ep_lock);
373 }
374 /* Need to ensure that a subsequent message carries the otherwise lost
375 * confirm_rx flag if we dropped this one */
376 if (rc && confirm_rx)
377 qrtr_tx_flow_failed(node, to->sq_node, to->sq_port);
378
379 return rc;
380 }
381
382 /* Lookup node by id.
383 *
384 * callers must release with qrtr_node_release()
385 */
qrtr_node_lookup(unsigned int nid)386 static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
387 {
388 struct qrtr_node *node;
389 unsigned long flags;
390
391 spin_lock_irqsave(&qrtr_nodes_lock, flags);
392 node = radix_tree_lookup(&qrtr_nodes, nid);
393 node = qrtr_node_acquire(node);
394 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
395
396 return node;
397 }
398
399 /* Assign node id to node.
400 *
401 * This is mostly useful for automatic node id assignment, based on
402 * the source id in the incoming packet.
403 */
qrtr_node_assign(struct qrtr_node * node,unsigned int nid)404 static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
405 {
406 unsigned long flags;
407
408 if (node->nid != QRTR_EP_NID_AUTO || nid == QRTR_EP_NID_AUTO)
409 return;
410
411 spin_lock_irqsave(&qrtr_nodes_lock, flags);
412 radix_tree_insert(&qrtr_nodes, nid, node);
413 node->nid = nid;
414 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
415 }
416
417 /**
418 * qrtr_endpoint_post() - post incoming data
419 * @ep: endpoint handle
420 * @data: data pointer
421 * @len: size of data in bytes
422 *
423 * Return: 0 on success; negative error code on failure
424 */
qrtr_endpoint_post(struct qrtr_endpoint * ep,const void * data,size_t len)425 int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
426 {
427 struct qrtr_node *node = ep->node;
428 const struct qrtr_hdr_v1 *v1;
429 const struct qrtr_hdr_v2 *v2;
430 struct qrtr_sock *ipc;
431 struct sk_buff *skb;
432 struct qrtr_cb *cb;
433 size_t size;
434 unsigned int ver;
435 size_t hdrlen;
436
437 if (len == 0 || len & 3)
438 return -EINVAL;
439
440 skb = __netdev_alloc_skb(NULL, len, GFP_ATOMIC | __GFP_NOWARN);
441 if (!skb)
442 return -ENOMEM;
443
444 cb = (struct qrtr_cb *)skb->cb;
445
446 /* Version field in v1 is little endian, so this works for both cases */
447 ver = *(u8*)data;
448
449 switch (ver) {
450 case QRTR_PROTO_VER_1:
451 if (len < sizeof(*v1))
452 goto err;
453 v1 = data;
454 hdrlen = sizeof(*v1);
455
456 cb->type = le32_to_cpu(v1->type);
457 cb->src_node = le32_to_cpu(v1->src_node_id);
458 cb->src_port = le32_to_cpu(v1->src_port_id);
459 cb->confirm_rx = !!v1->confirm_rx;
460 cb->dst_node = le32_to_cpu(v1->dst_node_id);
461 cb->dst_port = le32_to_cpu(v1->dst_port_id);
462
463 size = le32_to_cpu(v1->size);
464 break;
465 case QRTR_PROTO_VER_2:
466 if (len < sizeof(*v2))
467 goto err;
468 v2 = data;
469 hdrlen = sizeof(*v2) + v2->optlen;
470
471 cb->type = v2->type;
472 cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
473 cb->src_node = le16_to_cpu(v2->src_node_id);
474 cb->src_port = le16_to_cpu(v2->src_port_id);
475 cb->dst_node = le16_to_cpu(v2->dst_node_id);
476 cb->dst_port = le16_to_cpu(v2->dst_port_id);
477
478 if (cb->src_port == (u16)QRTR_PORT_CTRL)
479 cb->src_port = QRTR_PORT_CTRL;
480 if (cb->dst_port == (u16)QRTR_PORT_CTRL)
481 cb->dst_port = QRTR_PORT_CTRL;
482
483 size = le32_to_cpu(v2->size);
484 break;
485 default:
486 pr_err("qrtr: Invalid version %d\n", ver);
487 goto err;
488 }
489
490 if (!size || len != ALIGN(size, 4) + hdrlen)
491 goto err;
492
493 if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
494 cb->type != QRTR_TYPE_RESUME_TX)
495 goto err;
496
497 skb_put_data(skb, data + hdrlen, size);
498
499 qrtr_node_assign(node, cb->src_node);
500
501 if (cb->type == QRTR_TYPE_RESUME_TX) {
502 qrtr_tx_resume(node, skb);
503 } else {
504 ipc = qrtr_port_lookup(cb->dst_port);
505 if (!ipc)
506 goto err;
507
508 if (sock_queue_rcv_skb(&ipc->sk, skb)) {
509 qrtr_port_put(ipc);
510 goto err;
511 }
512
513 qrtr_port_put(ipc);
514 }
515
516 return 0;
517
518 err:
519 kfree_skb(skb);
520 return -EINVAL;
521
522 }
523 EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
524
525 /**
526 * qrtr_alloc_ctrl_packet() - allocate control packet skb
527 * @pkt: reference to qrtr_ctrl_pkt pointer
528 *
529 * Returns newly allocated sk_buff, or NULL on failure
530 *
531 * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
532 * on success returns a reference to the control packet in @pkt.
533 */
qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt ** pkt)534 static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt)
535 {
536 const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
537 struct sk_buff *skb;
538
539 skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, GFP_KERNEL);
540 if (!skb)
541 return NULL;
542
543 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
544 *pkt = skb_put_zero(skb, pkt_len);
545
546 return skb;
547 }
548
549 /**
550 * qrtr_endpoint_register() - register a new endpoint
551 * @ep: endpoint to register
552 * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
553 * Return: 0 on success; negative error code on failure
554 *
555 * The specified endpoint must have the xmit function pointer set on call.
556 */
qrtr_endpoint_register(struct qrtr_endpoint * ep,unsigned int nid)557 int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
558 {
559 struct qrtr_node *node;
560
561 if (!ep || !ep->xmit)
562 return -EINVAL;
563
564 node = kzalloc(sizeof(*node), GFP_KERNEL);
565 if (!node)
566 return -ENOMEM;
567
568 kref_init(&node->ref);
569 mutex_init(&node->ep_lock);
570 skb_queue_head_init(&node->rx_queue);
571 node->nid = QRTR_EP_NID_AUTO;
572 node->ep = ep;
573
574 INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
575 mutex_init(&node->qrtr_tx_lock);
576
577 qrtr_node_assign(node, nid);
578
579 mutex_lock(&qrtr_node_lock);
580 list_add(&node->item, &qrtr_all_nodes);
581 mutex_unlock(&qrtr_node_lock);
582 ep->node = node;
583
584 return 0;
585 }
586 EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
587
588 /**
589 * qrtr_endpoint_unregister - unregister endpoint
590 * @ep: endpoint to unregister
591 */
qrtr_endpoint_unregister(struct qrtr_endpoint * ep)592 void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
593 {
594 struct qrtr_node *node = ep->node;
595 struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
596 struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
597 struct radix_tree_iter iter;
598 struct qrtr_ctrl_pkt *pkt;
599 struct qrtr_tx_flow *flow;
600 struct sk_buff *skb;
601 void __rcu **slot;
602
603 mutex_lock(&node->ep_lock);
604 node->ep = NULL;
605 mutex_unlock(&node->ep_lock);
606
607 /* Notify the local controller about the event */
608 skb = qrtr_alloc_ctrl_packet(&pkt);
609 if (skb) {
610 pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
611 qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst);
612 }
613
614 /* Wake up any transmitters waiting for resume-tx from the node */
615 mutex_lock(&node->qrtr_tx_lock);
616 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
617 flow = *slot;
618 wake_up_interruptible_all(&flow->resume_tx);
619 }
620 mutex_unlock(&node->qrtr_tx_lock);
621
622 qrtr_node_release(node);
623 ep->node = NULL;
624 }
625 EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
626
627 /* Lookup socket by port.
628 *
629 * Callers must release with qrtr_port_put()
630 */
qrtr_port_lookup(int port)631 static struct qrtr_sock *qrtr_port_lookup(int port)
632 {
633 struct qrtr_sock *ipc;
634
635 if (port == QRTR_PORT_CTRL)
636 port = 0;
637
638 rcu_read_lock();
639 ipc = xa_load(&qrtr_ports, port);
640 if (ipc)
641 sock_hold(&ipc->sk);
642 rcu_read_unlock();
643
644 return ipc;
645 }
646
647 /* Release acquired socket. */
qrtr_port_put(struct qrtr_sock * ipc)648 static void qrtr_port_put(struct qrtr_sock *ipc)
649 {
650 sock_put(&ipc->sk);
651 }
652
653 /* Remove port assignment. */
qrtr_port_remove(struct qrtr_sock * ipc)654 static void qrtr_port_remove(struct qrtr_sock *ipc)
655 {
656 struct qrtr_ctrl_pkt *pkt;
657 struct sk_buff *skb;
658 int port = ipc->us.sq_port;
659 struct sockaddr_qrtr to;
660
661 to.sq_family = AF_QIPCRTR;
662 to.sq_node = QRTR_NODE_BCAST;
663 to.sq_port = QRTR_PORT_CTRL;
664
665 skb = qrtr_alloc_ctrl_packet(&pkt);
666 if (skb) {
667 pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
668 pkt->client.node = cpu_to_le32(ipc->us.sq_node);
669 pkt->client.port = cpu_to_le32(ipc->us.sq_port);
670
671 skb_set_owner_w(skb, &ipc->sk);
672 qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us,
673 &to);
674 }
675
676 if (port == QRTR_PORT_CTRL)
677 port = 0;
678
679 __sock_put(&ipc->sk);
680
681 xa_erase(&qrtr_ports, port);
682
683 /* Ensure that if qrtr_port_lookup() did enter the RCU read section we
684 * wait for it to up increment the refcount */
685 synchronize_rcu();
686 }
687
688 /* Assign port number to socket.
689 *
690 * Specify port in the integer pointed to by port, and it will be adjusted
691 * on return as necesssary.
692 *
693 * Port may be:
694 * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
695 * <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
696 * >QRTR_MIN_EPH_SOCKET: Specified; available to all
697 */
qrtr_port_assign(struct qrtr_sock * ipc,int * port)698 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
699 {
700 int rc;
701
702 if (!*port) {
703 rc = xa_alloc(&qrtr_ports, port, ipc, QRTR_EPH_PORT_RANGE,
704 GFP_KERNEL);
705 } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
706 rc = -EACCES;
707 } else if (*port == QRTR_PORT_CTRL) {
708 rc = xa_insert(&qrtr_ports, 0, ipc, GFP_KERNEL);
709 } else {
710 rc = xa_insert(&qrtr_ports, *port, ipc, GFP_KERNEL);
711 }
712
713 if (rc == -EBUSY)
714 return -EADDRINUSE;
715 else if (rc < 0)
716 return rc;
717
718 sock_hold(&ipc->sk);
719
720 return 0;
721 }
722
723 /* Reset all non-control ports */
qrtr_reset_ports(void)724 static void qrtr_reset_ports(void)
725 {
726 struct qrtr_sock *ipc;
727 unsigned long index;
728
729 rcu_read_lock();
730 xa_for_each_start(&qrtr_ports, index, ipc, 1) {
731 sock_hold(&ipc->sk);
732 ipc->sk.sk_err = ENETRESET;
733 ipc->sk.sk_error_report(&ipc->sk);
734 sock_put(&ipc->sk);
735 }
736 rcu_read_unlock();
737 }
738
739 /* Bind socket to address.
740 *
741 * Socket should be locked upon call.
742 */
__qrtr_bind(struct socket * sock,const struct sockaddr_qrtr * addr,int zapped)743 static int __qrtr_bind(struct socket *sock,
744 const struct sockaddr_qrtr *addr, int zapped)
745 {
746 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
747 struct sock *sk = sock->sk;
748 int port;
749 int rc;
750
751 /* rebinding ok */
752 if (!zapped && addr->sq_port == ipc->us.sq_port)
753 return 0;
754
755 port = addr->sq_port;
756 rc = qrtr_port_assign(ipc, &port);
757 if (rc)
758 return rc;
759
760 /* unbind previous, if any */
761 if (!zapped)
762 qrtr_port_remove(ipc);
763 ipc->us.sq_port = port;
764
765 sock_reset_flag(sk, SOCK_ZAPPED);
766
767 /* Notify all open ports about the new controller */
768 if (port == QRTR_PORT_CTRL)
769 qrtr_reset_ports();
770
771 return 0;
772 }
773
774 /* Auto bind to an ephemeral port. */
qrtr_autobind(struct socket * sock)775 static int qrtr_autobind(struct socket *sock)
776 {
777 struct sock *sk = sock->sk;
778 struct sockaddr_qrtr addr;
779
780 if (!sock_flag(sk, SOCK_ZAPPED))
781 return 0;
782
783 addr.sq_family = AF_QIPCRTR;
784 addr.sq_node = qrtr_local_nid;
785 addr.sq_port = 0;
786
787 return __qrtr_bind(sock, &addr, 1);
788 }
789
790 /* Bind socket to specified sockaddr. */
qrtr_bind(struct socket * sock,struct sockaddr * saddr,int len)791 static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
792 {
793 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
794 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
795 struct sock *sk = sock->sk;
796 int rc;
797
798 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
799 return -EINVAL;
800
801 if (addr->sq_node != ipc->us.sq_node)
802 return -EINVAL;
803
804 lock_sock(sk);
805 rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED));
806 release_sock(sk);
807
808 return rc;
809 }
810
811 /* Queue packet to local peer socket. */
qrtr_local_enqueue(struct qrtr_node * node,struct sk_buff * skb,int type,struct sockaddr_qrtr * from,struct sockaddr_qrtr * to)812 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
813 int type, struct sockaddr_qrtr *from,
814 struct sockaddr_qrtr *to)
815 {
816 struct qrtr_sock *ipc;
817 struct qrtr_cb *cb;
818
819 ipc = qrtr_port_lookup(to->sq_port);
820 if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
821 if (ipc)
822 qrtr_port_put(ipc);
823 kfree_skb(skb);
824 return -ENODEV;
825 }
826
827 cb = (struct qrtr_cb *)skb->cb;
828 cb->src_node = from->sq_node;
829 cb->src_port = from->sq_port;
830
831 if (sock_queue_rcv_skb(&ipc->sk, skb)) {
832 qrtr_port_put(ipc);
833 kfree_skb(skb);
834 return -ENOSPC;
835 }
836
837 qrtr_port_put(ipc);
838
839 return 0;
840 }
841
842 /* Queue packet for broadcast. */
qrtr_bcast_enqueue(struct qrtr_node * node,struct sk_buff * skb,int type,struct sockaddr_qrtr * from,struct sockaddr_qrtr * to)843 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
844 int type, struct sockaddr_qrtr *from,
845 struct sockaddr_qrtr *to)
846 {
847 struct sk_buff *skbn;
848
849 mutex_lock(&qrtr_node_lock);
850 list_for_each_entry(node, &qrtr_all_nodes, item) {
851 skbn = skb_clone(skb, GFP_KERNEL);
852 if (!skbn)
853 break;
854 skb_set_owner_w(skbn, skb->sk);
855 qrtr_node_enqueue(node, skbn, type, from, to);
856 }
857 mutex_unlock(&qrtr_node_lock);
858
859 qrtr_local_enqueue(NULL, skb, type, from, to);
860
861 return 0;
862 }
863
qrtr_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)864 static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
865 {
866 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
867 int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
868 struct sockaddr_qrtr *, struct sockaddr_qrtr *);
869 __le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
870 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
871 struct sock *sk = sock->sk;
872 struct qrtr_node *node;
873 struct sk_buff *skb;
874 size_t plen;
875 u32 type;
876 int rc;
877
878 if (msg->msg_flags & ~(MSG_DONTWAIT))
879 return -EINVAL;
880
881 if (len > 65535)
882 return -EMSGSIZE;
883
884 lock_sock(sk);
885
886 if (addr) {
887 if (msg->msg_namelen < sizeof(*addr)) {
888 release_sock(sk);
889 return -EINVAL;
890 }
891
892 if (addr->sq_family != AF_QIPCRTR) {
893 release_sock(sk);
894 return -EINVAL;
895 }
896
897 rc = qrtr_autobind(sock);
898 if (rc) {
899 release_sock(sk);
900 return rc;
901 }
902 } else if (sk->sk_state == TCP_ESTABLISHED) {
903 addr = &ipc->peer;
904 } else {
905 release_sock(sk);
906 return -ENOTCONN;
907 }
908
909 node = NULL;
910 if (addr->sq_node == QRTR_NODE_BCAST) {
911 if (addr->sq_port != QRTR_PORT_CTRL &&
912 qrtr_local_nid != QRTR_NODE_BCAST) {
913 release_sock(sk);
914 return -ENOTCONN;
915 }
916 enqueue_fn = qrtr_bcast_enqueue;
917 } else if (addr->sq_node == ipc->us.sq_node) {
918 enqueue_fn = qrtr_local_enqueue;
919 } else {
920 node = qrtr_node_lookup(addr->sq_node);
921 if (!node) {
922 release_sock(sk);
923 return -ECONNRESET;
924 }
925 enqueue_fn = qrtr_node_enqueue;
926 }
927
928 plen = (len + 3) & ~3;
929 skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE,
930 msg->msg_flags & MSG_DONTWAIT, &rc);
931 if (!skb) {
932 rc = -ENOMEM;
933 goto out_node;
934 }
935
936 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
937
938 rc = memcpy_from_msg(skb_put(skb, len), msg, len);
939 if (rc) {
940 kfree_skb(skb);
941 goto out_node;
942 }
943
944 if (ipc->us.sq_port == QRTR_PORT_CTRL) {
945 if (len < 4) {
946 rc = -EINVAL;
947 kfree_skb(skb);
948 goto out_node;
949 }
950
951 /* control messages already require the type as 'command' */
952 skb_copy_bits(skb, 0, &qrtr_type, 4);
953 }
954
955 type = le32_to_cpu(qrtr_type);
956 rc = enqueue_fn(node, skb, type, &ipc->us, addr);
957 if (rc >= 0)
958 rc = len;
959
960 out_node:
961 qrtr_node_release(node);
962 release_sock(sk);
963
964 return rc;
965 }
966
qrtr_send_resume_tx(struct qrtr_cb * cb)967 static int qrtr_send_resume_tx(struct qrtr_cb *cb)
968 {
969 struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
970 struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
971 struct qrtr_ctrl_pkt *pkt;
972 struct qrtr_node *node;
973 struct sk_buff *skb;
974 int ret;
975
976 node = qrtr_node_lookup(remote.sq_node);
977 if (!node)
978 return -EINVAL;
979
980 skb = qrtr_alloc_ctrl_packet(&pkt);
981 if (!skb)
982 return -ENOMEM;
983
984 pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
985 pkt->client.node = cpu_to_le32(cb->dst_node);
986 pkt->client.port = cpu_to_le32(cb->dst_port);
987
988 ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote);
989
990 qrtr_node_release(node);
991
992 return ret;
993 }
994
qrtr_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)995 static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
996 size_t size, int flags)
997 {
998 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
999 struct sock *sk = sock->sk;
1000 struct sk_buff *skb;
1001 struct qrtr_cb *cb;
1002 int copied, rc;
1003
1004 lock_sock(sk);
1005
1006 if (sock_flag(sk, SOCK_ZAPPED)) {
1007 release_sock(sk);
1008 return -EADDRNOTAVAIL;
1009 }
1010
1011 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1012 flags & MSG_DONTWAIT, &rc);
1013 if (!skb) {
1014 release_sock(sk);
1015 return rc;
1016 }
1017 cb = (struct qrtr_cb *)skb->cb;
1018
1019 copied = skb->len;
1020 if (copied > size) {
1021 copied = size;
1022 msg->msg_flags |= MSG_TRUNC;
1023 }
1024
1025 rc = skb_copy_datagram_msg(skb, 0, msg, copied);
1026 if (rc < 0)
1027 goto out;
1028 rc = copied;
1029
1030 if (addr) {
1031 /* There is an anonymous 2-byte hole after sq_family,
1032 * make sure to clear it.
1033 */
1034 memset(addr, 0, sizeof(*addr));
1035
1036 addr->sq_family = AF_QIPCRTR;
1037 addr->sq_node = cb->src_node;
1038 addr->sq_port = cb->src_port;
1039 msg->msg_namelen = sizeof(*addr);
1040 }
1041
1042 out:
1043 if (cb->confirm_rx)
1044 qrtr_send_resume_tx(cb);
1045
1046 skb_free_datagram(sk, skb);
1047 release_sock(sk);
1048
1049 return rc;
1050 }
1051
qrtr_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)1052 static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
1053 int len, int flags)
1054 {
1055 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
1056 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1057 struct sock *sk = sock->sk;
1058 int rc;
1059
1060 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
1061 return -EINVAL;
1062
1063 lock_sock(sk);
1064
1065 sk->sk_state = TCP_CLOSE;
1066 sock->state = SS_UNCONNECTED;
1067
1068 rc = qrtr_autobind(sock);
1069 if (rc) {
1070 release_sock(sk);
1071 return rc;
1072 }
1073
1074 ipc->peer = *addr;
1075 sock->state = SS_CONNECTED;
1076 sk->sk_state = TCP_ESTABLISHED;
1077
1078 release_sock(sk);
1079
1080 return 0;
1081 }
1082
qrtr_getname(struct socket * sock,struct sockaddr * saddr,int peer)1083 static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
1084 int peer)
1085 {
1086 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1087 struct sockaddr_qrtr qaddr;
1088 struct sock *sk = sock->sk;
1089
1090 lock_sock(sk);
1091 if (peer) {
1092 if (sk->sk_state != TCP_ESTABLISHED) {
1093 release_sock(sk);
1094 return -ENOTCONN;
1095 }
1096
1097 qaddr = ipc->peer;
1098 } else {
1099 qaddr = ipc->us;
1100 }
1101 release_sock(sk);
1102
1103 qaddr.sq_family = AF_QIPCRTR;
1104
1105 memcpy(saddr, &qaddr, sizeof(qaddr));
1106
1107 return sizeof(qaddr);
1108 }
1109
qrtr_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1110 static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1111 {
1112 void __user *argp = (void __user *)arg;
1113 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1114 struct sock *sk = sock->sk;
1115 struct sockaddr_qrtr *sq;
1116 struct sk_buff *skb;
1117 struct ifreq ifr;
1118 long len = 0;
1119 int rc = 0;
1120
1121 lock_sock(sk);
1122
1123 switch (cmd) {
1124 case TIOCOUTQ:
1125 len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1126 if (len < 0)
1127 len = 0;
1128 rc = put_user(len, (int __user *)argp);
1129 break;
1130 case TIOCINQ:
1131 skb = skb_peek(&sk->sk_receive_queue);
1132 if (skb)
1133 len = skb->len;
1134 rc = put_user(len, (int __user *)argp);
1135 break;
1136 case SIOCGIFADDR:
1137 if (copy_from_user(&ifr, argp, sizeof(ifr))) {
1138 rc = -EFAULT;
1139 break;
1140 }
1141
1142 sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
1143 *sq = ipc->us;
1144 if (copy_to_user(argp, &ifr, sizeof(ifr))) {
1145 rc = -EFAULT;
1146 break;
1147 }
1148 break;
1149 case SIOCADDRT:
1150 case SIOCDELRT:
1151 case SIOCSIFADDR:
1152 case SIOCGIFDSTADDR:
1153 case SIOCSIFDSTADDR:
1154 case SIOCGIFBRDADDR:
1155 case SIOCSIFBRDADDR:
1156 case SIOCGIFNETMASK:
1157 case SIOCSIFNETMASK:
1158 rc = -EINVAL;
1159 break;
1160 default:
1161 rc = -ENOIOCTLCMD;
1162 break;
1163 }
1164
1165 release_sock(sk);
1166
1167 return rc;
1168 }
1169
qrtr_release(struct socket * sock)1170 static int qrtr_release(struct socket *sock)
1171 {
1172 struct sock *sk = sock->sk;
1173 struct qrtr_sock *ipc;
1174
1175 if (!sk)
1176 return 0;
1177
1178 lock_sock(sk);
1179
1180 ipc = qrtr_sk(sk);
1181 sk->sk_shutdown = SHUTDOWN_MASK;
1182 if (!sock_flag(sk, SOCK_DEAD))
1183 sk->sk_state_change(sk);
1184
1185 sock_set_flag(sk, SOCK_DEAD);
1186 sock_orphan(sk);
1187 sock->sk = NULL;
1188
1189 if (!sock_flag(sk, SOCK_ZAPPED))
1190 qrtr_port_remove(ipc);
1191
1192 skb_queue_purge(&sk->sk_receive_queue);
1193
1194 release_sock(sk);
1195 sock_put(sk);
1196
1197 return 0;
1198 }
1199
1200 static const struct proto_ops qrtr_proto_ops = {
1201 .owner = THIS_MODULE,
1202 .family = AF_QIPCRTR,
1203 .bind = qrtr_bind,
1204 .connect = qrtr_connect,
1205 .socketpair = sock_no_socketpair,
1206 .accept = sock_no_accept,
1207 .listen = sock_no_listen,
1208 .sendmsg = qrtr_sendmsg,
1209 .recvmsg = qrtr_recvmsg,
1210 .getname = qrtr_getname,
1211 .ioctl = qrtr_ioctl,
1212 .gettstamp = sock_gettstamp,
1213 .poll = datagram_poll,
1214 .shutdown = sock_no_shutdown,
1215 .release = qrtr_release,
1216 .mmap = sock_no_mmap,
1217 .sendpage = sock_no_sendpage,
1218 };
1219
1220 static struct proto qrtr_proto = {
1221 .name = "QIPCRTR",
1222 .owner = THIS_MODULE,
1223 .obj_size = sizeof(struct qrtr_sock),
1224 };
1225
qrtr_create(struct net * net,struct socket * sock,int protocol,int kern)1226 static int qrtr_create(struct net *net, struct socket *sock,
1227 int protocol, int kern)
1228 {
1229 struct qrtr_sock *ipc;
1230 struct sock *sk;
1231
1232 if (sock->type != SOCK_DGRAM)
1233 return -EPROTOTYPE;
1234
1235 sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern);
1236 if (!sk)
1237 return -ENOMEM;
1238
1239 sock_set_flag(sk, SOCK_ZAPPED);
1240
1241 sock_init_data(sock, sk);
1242 sock->ops = &qrtr_proto_ops;
1243
1244 ipc = qrtr_sk(sk);
1245 ipc->us.sq_family = AF_QIPCRTR;
1246 ipc->us.sq_node = qrtr_local_nid;
1247 ipc->us.sq_port = 0;
1248
1249 return 0;
1250 }
1251
1252 static const struct net_proto_family qrtr_family = {
1253 .owner = THIS_MODULE,
1254 .family = AF_QIPCRTR,
1255 .create = qrtr_create,
1256 };
1257
qrtr_proto_init(void)1258 static int __init qrtr_proto_init(void)
1259 {
1260 int rc;
1261
1262 rc = proto_register(&qrtr_proto, 1);
1263 if (rc)
1264 return rc;
1265
1266 rc = sock_register(&qrtr_family);
1267 if (rc) {
1268 proto_unregister(&qrtr_proto);
1269 return rc;
1270 }
1271
1272 qrtr_ns_init();
1273
1274 return rc;
1275 }
1276 postcore_initcall(qrtr_proto_init);
1277
qrtr_proto_fini(void)1278 static void __exit qrtr_proto_fini(void)
1279 {
1280 qrtr_ns_remove();
1281 sock_unregister(qrtr_family.family);
1282 proto_unregister(&qrtr_proto);
1283 }
1284 module_exit(qrtr_proto_fini);
1285
1286 MODULE_DESCRIPTION("Qualcomm IPC-router driver");
1287 MODULE_LICENSE("GPL v2");
1288 MODULE_ALIAS_NETPROTO(PF_QIPCRTR);
1289