xref: /OK3568_Linux_fs/kernel/kernel/sched/sched.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68 #include <linux/android_vendor.h>
69 #include <linux/android_kabi.h>
70 
71 #include <asm/tlb.h>
72 #include <asm-generic/vmlinux.lds.h>
73 #include <soc/rockchip/rockchip_performance.h>
74 
75 #ifdef CONFIG_PARAVIRT
76 # include <asm/paravirt.h>
77 #endif
78 
79 #include "cpupri.h"
80 #include "cpudeadline.h"
81 
82 #include <trace/events/sched.h>
83 
84 #ifdef CONFIG_SCHED_DEBUG
85 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
86 #else
87 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
88 #endif
89 
90 struct rq;
91 struct cpuidle_state;
92 
93 /* task_struct::on_rq states: */
94 #define TASK_ON_RQ_QUEUED	1
95 #define TASK_ON_RQ_MIGRATING	2
96 
97 extern __read_mostly int scheduler_running;
98 
99 extern unsigned long calc_load_update;
100 extern atomic_long_t calc_load_tasks;
101 
102 extern void calc_global_load_tick(struct rq *this_rq);
103 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
104 
105 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
106 /*
107  * Helpers for converting nanosecond timing to jiffy resolution
108  */
109 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
110 
111 /*
112  * Increase resolution of nice-level calculations for 64-bit architectures.
113  * The extra resolution improves shares distribution and load balancing of
114  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
115  * hierarchies, especially on larger systems. This is not a user-visible change
116  * and does not change the user-interface for setting shares/weights.
117  *
118  * We increase resolution only if we have enough bits to allow this increased
119  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
120  * are pretty high and the returns do not justify the increased costs.
121  *
122  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
123  * increase coverage and consistency always enable it on 64-bit platforms.
124  */
125 #ifdef CONFIG_64BIT
126 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
127 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
128 # define scale_load_down(w) \
129 ({ \
130 	unsigned long __w = (w); \
131 	if (__w) \
132 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
133 	__w; \
134 })
135 #else
136 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
137 # define scale_load(w)		(w)
138 # define scale_load_down(w)	(w)
139 #endif
140 
141 /*
142  * Task weight (visible to users) and its load (invisible to users) have
143  * independent resolution, but they should be well calibrated. We use
144  * scale_load() and scale_load_down(w) to convert between them. The
145  * following must be true:
146  *
147  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
148  *
149  */
150 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
151 
152 /*
153  * Single value that decides SCHED_DEADLINE internal math precision.
154  * 10 -> just above 1us
155  * 9  -> just above 0.5us
156  */
157 #define DL_SCALE		10
158 
159 /*
160  * Single value that denotes runtime == period, ie unlimited time.
161  */
162 #define RUNTIME_INF		((u64)~0ULL)
163 
idle_policy(int policy)164 static inline int idle_policy(int policy)
165 {
166 	return policy == SCHED_IDLE;
167 }
fair_policy(int policy)168 static inline int fair_policy(int policy)
169 {
170 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
171 }
172 
rt_policy(int policy)173 static inline int rt_policy(int policy)
174 {
175 	return policy == SCHED_FIFO || policy == SCHED_RR;
176 }
177 
dl_policy(int policy)178 static inline int dl_policy(int policy)
179 {
180 	return policy == SCHED_DEADLINE;
181 }
valid_policy(int policy)182 static inline bool valid_policy(int policy)
183 {
184 	return idle_policy(policy) || fair_policy(policy) ||
185 		rt_policy(policy) || dl_policy(policy);
186 }
187 
task_has_idle_policy(struct task_struct * p)188 static inline int task_has_idle_policy(struct task_struct *p)
189 {
190 	return idle_policy(p->policy);
191 }
192 
task_has_rt_policy(struct task_struct * p)193 static inline int task_has_rt_policy(struct task_struct *p)
194 {
195 	return rt_policy(p->policy);
196 }
197 
task_has_dl_policy(struct task_struct * p)198 static inline int task_has_dl_policy(struct task_struct *p)
199 {
200 	return dl_policy(p->policy);
201 }
202 
203 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
204 
update_avg(u64 * avg,u64 sample)205 static inline void update_avg(u64 *avg, u64 sample)
206 {
207 	s64 diff = sample - *avg;
208 	*avg += diff / 8;
209 }
210 
211 /*
212  * Shifting a value by an exponent greater *or equal* to the size of said value
213  * is UB; cap at size-1.
214  */
215 #define shr_bound(val, shift)							\
216 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
217 
218 /*
219  * !! For sched_setattr_nocheck() (kernel) only !!
220  *
221  * This is actually gross. :(
222  *
223  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
224  * tasks, but still be able to sleep. We need this on platforms that cannot
225  * atomically change clock frequency. Remove once fast switching will be
226  * available on such platforms.
227  *
228  * SUGOV stands for SchedUtil GOVernor.
229  */
230 #define SCHED_FLAG_SUGOV	0x10000000
231 
232 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
233 
dl_entity_is_special(struct sched_dl_entity * dl_se)234 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
235 {
236 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
237 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
238 #else
239 	return false;
240 #endif
241 }
242 
243 /*
244  * Tells if entity @a should preempt entity @b.
245  */
246 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)247 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
248 {
249 	return dl_entity_is_special(a) ||
250 	       dl_time_before(a->deadline, b->deadline);
251 }
252 
253 /*
254  * This is the priority-queue data structure of the RT scheduling class:
255  */
256 struct rt_prio_array {
257 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
258 	struct list_head queue[MAX_RT_PRIO];
259 };
260 
261 struct rt_bandwidth {
262 	/* nests inside the rq lock: */
263 	raw_spinlock_t		rt_runtime_lock;
264 	ktime_t			rt_period;
265 	u64			rt_runtime;
266 	struct hrtimer		rt_period_timer;
267 	unsigned int		rt_period_active;
268 };
269 
270 void __dl_clear_params(struct task_struct *p);
271 
272 struct dl_bandwidth {
273 	raw_spinlock_t		dl_runtime_lock;
274 	u64			dl_runtime;
275 	u64			dl_period;
276 };
277 
dl_bandwidth_enabled(void)278 static inline int dl_bandwidth_enabled(void)
279 {
280 	return sysctl_sched_rt_runtime >= 0;
281 }
282 
283 /*
284  * To keep the bandwidth of -deadline tasks under control
285  * we need some place where:
286  *  - store the maximum -deadline bandwidth of each cpu;
287  *  - cache the fraction of bandwidth that is currently allocated in
288  *    each root domain;
289  *
290  * This is all done in the data structure below. It is similar to the
291  * one used for RT-throttling (rt_bandwidth), with the main difference
292  * that, since here we are only interested in admission control, we
293  * do not decrease any runtime while the group "executes", neither we
294  * need a timer to replenish it.
295  *
296  * With respect to SMP, bandwidth is given on a per root domain basis,
297  * meaning that:
298  *  - bw (< 100%) is the deadline bandwidth of each CPU;
299  *  - total_bw is the currently allocated bandwidth in each root domain;
300  */
301 struct dl_bw {
302 	raw_spinlock_t		lock;
303 	u64			bw;
304 	u64			total_bw;
305 };
306 
307 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
308 
309 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)310 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
311 {
312 	dl_b->total_bw -= tsk_bw;
313 	__dl_update(dl_b, (s32)tsk_bw / cpus);
314 }
315 
316 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)317 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
318 {
319 	dl_b->total_bw += tsk_bw;
320 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
321 }
322 
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)323 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
324 				 u64 old_bw, u64 new_bw)
325 {
326 	return dl_b->bw != -1 &&
327 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
328 }
329 
330 /*
331  * Verify the fitness of task @p to run on @cpu taking into account the
332  * CPU original capacity and the runtime/deadline ratio of the task.
333  *
334  * The function will return true if the CPU original capacity of the
335  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
336  * task and false otherwise.
337  */
dl_task_fits_capacity(struct task_struct * p,int cpu)338 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
339 {
340 	unsigned long cap = arch_scale_cpu_capacity(cpu);
341 
342 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
343 }
344 
345 extern void init_dl_bw(struct dl_bw *dl_b);
346 extern int  sched_dl_global_validate(void);
347 extern void sched_dl_do_global(void);
348 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
349 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
350 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
351 extern bool __checkparam_dl(const struct sched_attr *attr);
352 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
353 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
354 extern int  dl_cpu_busy(int cpu, struct task_struct *p);
355 
356 #ifdef CONFIG_CGROUP_SCHED
357 
358 #include <linux/cgroup.h>
359 #include <linux/psi.h>
360 
361 struct cfs_rq;
362 struct rt_rq;
363 
364 extern struct list_head task_groups;
365 
366 struct cfs_bandwidth {
367 #ifdef CONFIG_CFS_BANDWIDTH
368 	raw_spinlock_t		lock;
369 	ktime_t			period;
370 	u64			quota;
371 	u64			runtime;
372 	s64			hierarchical_quota;
373 
374 	u8			idle;
375 	u8			period_active;
376 	u8			slack_started;
377 	struct hrtimer		period_timer;
378 	struct hrtimer		slack_timer;
379 	struct list_head	throttled_cfs_rq;
380 
381 	/* Statistics: */
382 	int			nr_periods;
383 	int			nr_throttled;
384 	u64			throttled_time;
385 #endif
386 };
387 
388 /* Task group related information */
389 struct task_group {
390 	struct cgroup_subsys_state css;
391 
392 #ifdef CONFIG_FAIR_GROUP_SCHED
393 	/* schedulable entities of this group on each CPU */
394 	struct sched_entity	**se;
395 	/* runqueue "owned" by this group on each CPU */
396 	struct cfs_rq		**cfs_rq;
397 	unsigned long		shares;
398 
399 #ifdef	CONFIG_SMP
400 	/*
401 	 * load_avg can be heavily contended at clock tick time, so put
402 	 * it in its own cacheline separated from the fields above which
403 	 * will also be accessed at each tick.
404 	 */
405 	atomic_long_t		load_avg ____cacheline_aligned;
406 #endif
407 #endif
408 
409 #ifdef CONFIG_RT_GROUP_SCHED
410 	struct sched_rt_entity	**rt_se;
411 	struct rt_rq		**rt_rq;
412 
413 	struct rt_bandwidth	rt_bandwidth;
414 #endif
415 
416 	struct rcu_head		rcu;
417 	struct list_head	list;
418 
419 	struct task_group	*parent;
420 	struct list_head	siblings;
421 	struct list_head	children;
422 
423 #ifdef CONFIG_SCHED_AUTOGROUP
424 	struct autogroup	*autogroup;
425 #endif
426 
427 	struct cfs_bandwidth	cfs_bandwidth;
428 
429 #ifdef CONFIG_UCLAMP_TASK_GROUP
430 	/* The two decimal precision [%] value requested from user-space */
431 	unsigned int		uclamp_pct[UCLAMP_CNT];
432 	/* Clamp values requested for a task group */
433 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
434 	/* Effective clamp values used for a task group */
435 	struct uclamp_se	uclamp[UCLAMP_CNT];
436 	/* Latency-sensitive flag used for a task group */
437 	unsigned int		latency_sensitive;
438 
439 	ANDROID_VENDOR_DATA_ARRAY(1, 4);
440 #endif
441 
442 	ANDROID_KABI_RESERVE(1);
443 	ANDROID_KABI_RESERVE(2);
444 	ANDROID_KABI_RESERVE(3);
445 	ANDROID_KABI_RESERVE(4);
446 };
447 
448 #ifdef CONFIG_FAIR_GROUP_SCHED
449 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
450 
451 /*
452  * A weight of 0 or 1 can cause arithmetics problems.
453  * A weight of a cfs_rq is the sum of weights of which entities
454  * are queued on this cfs_rq, so a weight of a entity should not be
455  * too large, so as the shares value of a task group.
456  * (The default weight is 1024 - so there's no practical
457  *  limitation from this.)
458  */
459 #define MIN_SHARES		(1UL <<  1)
460 #define MAX_SHARES		(1UL << 18)
461 #endif
462 
463 typedef int (*tg_visitor)(struct task_group *, void *);
464 
465 extern int walk_tg_tree_from(struct task_group *from,
466 			     tg_visitor down, tg_visitor up, void *data);
467 
468 /*
469  * Iterate the full tree, calling @down when first entering a node and @up when
470  * leaving it for the final time.
471  *
472  * Caller must hold rcu_lock or sufficient equivalent.
473  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)474 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
475 {
476 	return walk_tg_tree_from(&root_task_group, down, up, data);
477 }
478 
479 extern int tg_nop(struct task_group *tg, void *data);
480 
481 extern void free_fair_sched_group(struct task_group *tg);
482 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
483 extern void online_fair_sched_group(struct task_group *tg);
484 extern void unregister_fair_sched_group(struct task_group *tg);
485 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
486 			struct sched_entity *se, int cpu,
487 			struct sched_entity *parent);
488 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
489 
490 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
491 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
492 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
493 
494 extern void free_rt_sched_group(struct task_group *tg);
495 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
496 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
497 		struct sched_rt_entity *rt_se, int cpu,
498 		struct sched_rt_entity *parent);
499 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
500 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
501 extern long sched_group_rt_runtime(struct task_group *tg);
502 extern long sched_group_rt_period(struct task_group *tg);
503 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
504 
505 extern struct task_group *sched_create_group(struct task_group *parent);
506 extern void sched_online_group(struct task_group *tg,
507 			       struct task_group *parent);
508 extern void sched_destroy_group(struct task_group *tg);
509 extern void sched_offline_group(struct task_group *tg);
510 
511 extern void sched_move_task(struct task_struct *tsk);
512 
513 #ifdef CONFIG_FAIR_GROUP_SCHED
514 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
515 
516 #ifdef CONFIG_SMP
517 extern void set_task_rq_fair(struct sched_entity *se,
518 			     struct cfs_rq *prev, struct cfs_rq *next);
519 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)520 static inline void set_task_rq_fair(struct sched_entity *se,
521 			     struct cfs_rq *prev, struct cfs_rq *next) { }
522 #endif /* CONFIG_SMP */
523 #endif /* CONFIG_FAIR_GROUP_SCHED */
524 
525 #else /* CONFIG_CGROUP_SCHED */
526 
527 struct cfs_bandwidth { };
528 
529 #endif	/* CONFIG_CGROUP_SCHED */
530 
531 /* CFS-related fields in a runqueue */
532 struct cfs_rq {
533 	struct load_weight	load;
534 	unsigned int		nr_running;
535 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
536 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
537 
538 	u64			exec_clock;
539 	u64			min_vruntime;
540 #ifndef CONFIG_64BIT
541 	u64			min_vruntime_copy;
542 #endif
543 
544 	struct rb_root_cached	tasks_timeline;
545 
546 	/*
547 	 * 'curr' points to currently running entity on this cfs_rq.
548 	 * It is set to NULL otherwise (i.e when none are currently running).
549 	 */
550 	struct sched_entity	*curr;
551 	struct sched_entity	*next;
552 	struct sched_entity	*last;
553 	struct sched_entity	*skip;
554 
555 #ifdef	CONFIG_SCHED_DEBUG
556 	unsigned int		nr_spread_over;
557 #endif
558 
559 #ifdef CONFIG_SMP
560 	/*
561 	 * CFS load tracking
562 	 */
563 	struct sched_avg	avg;
564 #ifndef CONFIG_64BIT
565 	u64			load_last_update_time_copy;
566 #endif
567 	struct {
568 		raw_spinlock_t	lock ____cacheline_aligned;
569 		int		nr;
570 		unsigned long	load_avg;
571 		unsigned long	util_avg;
572 		unsigned long	runnable_avg;
573 	} removed;
574 
575 #ifdef CONFIG_FAIR_GROUP_SCHED
576 	unsigned long		tg_load_avg_contrib;
577 	long			propagate;
578 	long			prop_runnable_sum;
579 
580 	/*
581 	 *   h_load = weight * f(tg)
582 	 *
583 	 * Where f(tg) is the recursive weight fraction assigned to
584 	 * this group.
585 	 */
586 	unsigned long		h_load;
587 	u64			last_h_load_update;
588 	struct sched_entity	*h_load_next;
589 #endif /* CONFIG_FAIR_GROUP_SCHED */
590 #endif /* CONFIG_SMP */
591 
592 #ifdef CONFIG_FAIR_GROUP_SCHED
593 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
594 
595 	/*
596 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
597 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
598 	 * (like users, containers etc.)
599 	 *
600 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
601 	 * This list is used during load balance.
602 	 */
603 	int			on_list;
604 	struct list_head	leaf_cfs_rq_list;
605 	struct task_group	*tg;	/* group that "owns" this runqueue */
606 
607 #ifdef CONFIG_CFS_BANDWIDTH
608 	int			runtime_enabled;
609 	s64			runtime_remaining;
610 
611 	u64			throttled_clock;
612 	u64			throttled_clock_pelt;
613 	u64			throttled_clock_pelt_time;
614 	int			throttled;
615 	int			throttle_count;
616 	struct list_head	throttled_list;
617 #endif /* CONFIG_CFS_BANDWIDTH */
618 
619 	ANDROID_VENDOR_DATA_ARRAY(1, 16);
620 #endif /* CONFIG_FAIR_GROUP_SCHED */
621 };
622 
rt_bandwidth_enabled(void)623 static inline int rt_bandwidth_enabled(void)
624 {
625 	return sysctl_sched_rt_runtime >= 0;
626 }
627 
628 /* RT IPI pull logic requires IRQ_WORK */
629 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
630 # define HAVE_RT_PUSH_IPI
631 #endif
632 
633 /* Real-Time classes' related field in a runqueue: */
634 struct rt_rq {
635 	struct rt_prio_array	active;
636 	unsigned int		rt_nr_running;
637 	unsigned int		rr_nr_running;
638 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
639 	struct {
640 		int		curr; /* highest queued rt task prio */
641 #ifdef CONFIG_SMP
642 		int		next; /* next highest */
643 #endif
644 	} highest_prio;
645 #endif
646 #ifdef CONFIG_SMP
647 	unsigned long		rt_nr_migratory;
648 	unsigned long		rt_nr_total;
649 	int			overloaded;
650 	struct plist_head	pushable_tasks;
651 
652 #endif /* CONFIG_SMP */
653 	int			rt_queued;
654 
655 	int			rt_throttled;
656 	u64			rt_time;
657 	u64			rt_runtime;
658 	/* Nests inside the rq lock: */
659 	raw_spinlock_t		rt_runtime_lock;
660 
661 #ifdef CONFIG_RT_GROUP_SCHED
662 	unsigned long		rt_nr_boosted;
663 
664 	struct rq		*rq;
665 	struct task_group	*tg;
666 #endif
667 };
668 
rt_rq_is_runnable(struct rt_rq * rt_rq)669 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
670 {
671 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
672 }
673 
674 /* Deadline class' related fields in a runqueue */
675 struct dl_rq {
676 	/* runqueue is an rbtree, ordered by deadline */
677 	struct rb_root_cached	root;
678 
679 	unsigned long		dl_nr_running;
680 
681 #ifdef CONFIG_SMP
682 	/*
683 	 * Deadline values of the currently executing and the
684 	 * earliest ready task on this rq. Caching these facilitates
685 	 * the decision whether or not a ready but not running task
686 	 * should migrate somewhere else.
687 	 */
688 	struct {
689 		u64		curr;
690 		u64		next;
691 	} earliest_dl;
692 
693 	unsigned long		dl_nr_migratory;
694 	int			overloaded;
695 
696 	/*
697 	 * Tasks on this rq that can be pushed away. They are kept in
698 	 * an rb-tree, ordered by tasks' deadlines, with caching
699 	 * of the leftmost (earliest deadline) element.
700 	 */
701 	struct rb_root_cached	pushable_dl_tasks_root;
702 #else
703 	struct dl_bw		dl_bw;
704 #endif
705 	/*
706 	 * "Active utilization" for this runqueue: increased when a
707 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
708 	 * task blocks
709 	 */
710 	u64			running_bw;
711 
712 	/*
713 	 * Utilization of the tasks "assigned" to this runqueue (including
714 	 * the tasks that are in runqueue and the tasks that executed on this
715 	 * CPU and blocked). Increased when a task moves to this runqueue, and
716 	 * decreased when the task moves away (migrates, changes scheduling
717 	 * policy, or terminates).
718 	 * This is needed to compute the "inactive utilization" for the
719 	 * runqueue (inactive utilization = this_bw - running_bw).
720 	 */
721 	u64			this_bw;
722 	u64			extra_bw;
723 
724 	/*
725 	 * Inverse of the fraction of CPU utilization that can be reclaimed
726 	 * by the GRUB algorithm.
727 	 */
728 	u64			bw_ratio;
729 };
730 
731 #ifdef CONFIG_FAIR_GROUP_SCHED
732 /* An entity is a task if it doesn't "own" a runqueue */
733 #define entity_is_task(se)	(!se->my_q)
734 
se_update_runnable(struct sched_entity * se)735 static inline void se_update_runnable(struct sched_entity *se)
736 {
737 	if (!entity_is_task(se))
738 		se->runnable_weight = se->my_q->h_nr_running;
739 }
740 
se_runnable(struct sched_entity * se)741 static inline long se_runnable(struct sched_entity *se)
742 {
743 	if (entity_is_task(se))
744 		return !!se->on_rq;
745 	else
746 		return se->runnable_weight;
747 }
748 
749 #else
750 #define entity_is_task(se)	1
751 
se_update_runnable(struct sched_entity * se)752 static inline void se_update_runnable(struct sched_entity *se) {}
753 
se_runnable(struct sched_entity * se)754 static inline long se_runnable(struct sched_entity *se)
755 {
756 	return !!se->on_rq;
757 }
758 #endif
759 
760 #ifdef CONFIG_SMP
761 /*
762  * XXX we want to get rid of these helpers and use the full load resolution.
763  */
se_weight(struct sched_entity * se)764 static inline long se_weight(struct sched_entity *se)
765 {
766 	return scale_load_down(se->load.weight);
767 }
768 
769 
sched_asym_prefer(int a,int b)770 static inline bool sched_asym_prefer(int a, int b)
771 {
772 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
773 }
774 
775 struct perf_domain {
776 	struct em_perf_domain *em_pd;
777 	struct perf_domain *next;
778 	struct rcu_head rcu;
779 };
780 
781 /* Scheduling group status flags */
782 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
783 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
784 
785 /*
786  * We add the notion of a root-domain which will be used to define per-domain
787  * variables. Each exclusive cpuset essentially defines an island domain by
788  * fully partitioning the member CPUs from any other cpuset. Whenever a new
789  * exclusive cpuset is created, we also create and attach a new root-domain
790  * object.
791  *
792  */
793 struct root_domain {
794 	atomic_t		refcount;
795 	atomic_t		rto_count;
796 	struct rcu_head		rcu;
797 	cpumask_var_t		span;
798 	cpumask_var_t		online;
799 
800 	/*
801 	 * Indicate pullable load on at least one CPU, e.g:
802 	 * - More than one runnable task
803 	 * - Running task is misfit
804 	 */
805 	int			overload;
806 
807 	/* Indicate one or more cpus over-utilized (tipping point) */
808 	int			overutilized;
809 
810 	/*
811 	 * The bit corresponding to a CPU gets set here if such CPU has more
812 	 * than one runnable -deadline task (as it is below for RT tasks).
813 	 */
814 	cpumask_var_t		dlo_mask;
815 	atomic_t		dlo_count;
816 	struct dl_bw		dl_bw;
817 	struct cpudl		cpudl;
818 
819 #ifdef HAVE_RT_PUSH_IPI
820 	/*
821 	 * For IPI pull requests, loop across the rto_mask.
822 	 */
823 	struct irq_work		rto_push_work;
824 	raw_spinlock_t		rto_lock;
825 	/* These are only updated and read within rto_lock */
826 	int			rto_loop;
827 	int			rto_cpu;
828 	/* These atomics are updated outside of a lock */
829 	atomic_t		rto_loop_next;
830 	atomic_t		rto_loop_start;
831 #endif
832 	/*
833 	 * The "RT overload" flag: it gets set if a CPU has more than
834 	 * one runnable RT task.
835 	 */
836 	cpumask_var_t		rto_mask;
837 	struct cpupri		cpupri;
838 
839 	unsigned long		max_cpu_capacity;
840 
841 	/*
842 	 * NULL-terminated list of performance domains intersecting with the
843 	 * CPUs of the rd. Protected by RCU.
844 	 */
845 	struct perf_domain __rcu *pd;
846 
847 	ANDROID_VENDOR_DATA_ARRAY(1, 4);
848 
849 	ANDROID_KABI_RESERVE(1);
850 	ANDROID_KABI_RESERVE(2);
851 	ANDROID_KABI_RESERVE(3);
852 	ANDROID_KABI_RESERVE(4);
853 };
854 
855 extern void init_defrootdomain(void);
856 extern int sched_init_domains(const struct cpumask *cpu_map);
857 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
858 extern void sched_get_rd(struct root_domain *rd);
859 extern void sched_put_rd(struct root_domain *rd);
860 
861 #ifdef HAVE_RT_PUSH_IPI
862 extern void rto_push_irq_work_func(struct irq_work *work);
863 #endif
864 extern struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu);
865 #endif /* CONFIG_SMP */
866 
867 #ifdef CONFIG_UCLAMP_TASK
868 /*
869  * struct uclamp_bucket - Utilization clamp bucket
870  * @value: utilization clamp value for tasks on this clamp bucket
871  * @tasks: number of RUNNABLE tasks on this clamp bucket
872  *
873  * Keep track of how many tasks are RUNNABLE for a given utilization
874  * clamp value.
875  */
876 struct uclamp_bucket {
877 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
878 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
879 };
880 
881 /*
882  * struct uclamp_rq - rq's utilization clamp
883  * @value: currently active clamp values for a rq
884  * @bucket: utilization clamp buckets affecting a rq
885  *
886  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
887  * A clamp value is affecting a rq when there is at least one task RUNNABLE
888  * (or actually running) with that value.
889  *
890  * There are up to UCLAMP_CNT possible different clamp values, currently there
891  * are only two: minimum utilization and maximum utilization.
892  *
893  * All utilization clamping values are MAX aggregated, since:
894  * - for util_min: we want to run the CPU at least at the max of the minimum
895  *   utilization required by its currently RUNNABLE tasks.
896  * - for util_max: we want to allow the CPU to run up to the max of the
897  *   maximum utilization allowed by its currently RUNNABLE tasks.
898  *
899  * Since on each system we expect only a limited number of different
900  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
901  * the metrics required to compute all the per-rq utilization clamp values.
902  */
903 struct uclamp_rq {
904 	unsigned int value;
905 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
906 };
907 
908 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
909 #endif /* CONFIG_UCLAMP_TASK */
910 
911 /*
912  * This is the main, per-CPU runqueue data structure.
913  *
914  * Locking rule: those places that want to lock multiple runqueues
915  * (such as the load balancing or the thread migration code), lock
916  * acquire operations must be ordered by ascending &runqueue.
917  */
918 struct rq {
919 	/* runqueue lock: */
920 	raw_spinlock_t		lock;
921 
922 	/*
923 	 * nr_running and cpu_load should be in the same cacheline because
924 	 * remote CPUs use both these fields when doing load calculation.
925 	 */
926 	unsigned int		nr_running;
927 #ifdef CONFIG_NUMA_BALANCING
928 	unsigned int		nr_numa_running;
929 	unsigned int		nr_preferred_running;
930 	unsigned int		numa_migrate_on;
931 #endif
932 #ifdef CONFIG_NO_HZ_COMMON
933 #ifdef CONFIG_SMP
934 	unsigned long		last_blocked_load_update_tick;
935 	unsigned int		has_blocked_load;
936 	call_single_data_t	nohz_csd;
937 #endif /* CONFIG_SMP */
938 	unsigned int		nohz_tick_stopped;
939 	atomic_t		nohz_flags;
940 #endif /* CONFIG_NO_HZ_COMMON */
941 
942 #ifdef CONFIG_SMP
943 	unsigned int		ttwu_pending;
944 #endif
945 	u64			nr_switches;
946 
947 #ifdef CONFIG_UCLAMP_TASK
948 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
949 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
950 	unsigned int		uclamp_flags;
951 #define UCLAMP_FLAG_IDLE 0x01
952 #endif
953 
954 	struct cfs_rq		cfs;
955 	struct rt_rq		rt;
956 	struct dl_rq		dl;
957 
958 #ifdef CONFIG_FAIR_GROUP_SCHED
959 	/* list of leaf cfs_rq on this CPU: */
960 	struct list_head	leaf_cfs_rq_list;
961 	struct list_head	*tmp_alone_branch;
962 #endif /* CONFIG_FAIR_GROUP_SCHED */
963 
964 	/*
965 	 * This is part of a global counter where only the total sum
966 	 * over all CPUs matters. A task can increase this counter on
967 	 * one CPU and if it got migrated afterwards it may decrease
968 	 * it on another CPU. Always updated under the runqueue lock:
969 	 */
970 	unsigned long		nr_uninterruptible;
971 
972 	struct task_struct __rcu	*curr;
973 	struct task_struct	*idle;
974 	struct task_struct	*stop;
975 	unsigned long		next_balance;
976 	struct mm_struct	*prev_mm;
977 
978 	unsigned int		clock_update_flags;
979 	u64			clock;
980 	/* Ensure that all clocks are in the same cache line */
981 	u64			clock_task ____cacheline_aligned;
982 	u64			clock_pelt;
983 	unsigned long		lost_idle_time;
984 
985 	atomic_t		nr_iowait;
986 
987 #ifdef CONFIG_MEMBARRIER
988 	int membarrier_state;
989 #endif
990 
991 #ifdef CONFIG_SMP
992 	struct root_domain		*rd;
993 	struct sched_domain __rcu	*sd;
994 
995 	unsigned long		cpu_capacity;
996 	unsigned long		cpu_capacity_orig;
997 
998 	struct callback_head	*balance_callback;
999 
1000 	unsigned char		nohz_idle_balance;
1001 	unsigned char		idle_balance;
1002 
1003 	unsigned long		misfit_task_load;
1004 
1005 	/* For active balancing */
1006 	int			active_balance;
1007 	int			push_cpu;
1008 	struct cpu_stop_work	active_balance_work;
1009 
1010 	/* CPU of this runqueue: */
1011 	int			cpu;
1012 	int			online;
1013 
1014 	struct list_head cfs_tasks;
1015 
1016 	struct sched_avg	avg_rt;
1017 	struct sched_avg	avg_dl;
1018 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1019 	struct sched_avg	avg_irq;
1020 #endif
1021 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1022 	struct sched_avg	avg_thermal;
1023 #endif
1024 	u64			idle_stamp;
1025 	u64			avg_idle;
1026 
1027 	/* This is used to determine avg_idle's max value */
1028 	u64			max_idle_balance_cost;
1029 #endif /* CONFIG_SMP */
1030 
1031 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1032 	u64			prev_irq_time;
1033 #endif
1034 #ifdef CONFIG_PARAVIRT
1035 	u64			prev_steal_time;
1036 #endif
1037 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1038 	u64			prev_steal_time_rq;
1039 #endif
1040 
1041 	/* calc_load related fields */
1042 	unsigned long		calc_load_update;
1043 	long			calc_load_active;
1044 
1045 #ifdef CONFIG_SCHED_HRTICK
1046 #ifdef CONFIG_SMP
1047 	call_single_data_t	hrtick_csd;
1048 #endif
1049 	struct hrtimer		hrtick_timer;
1050 	ktime_t 		hrtick_time;
1051 #endif
1052 
1053 #ifdef CONFIG_SCHEDSTATS
1054 	/* latency stats */
1055 	struct sched_info	rq_sched_info;
1056 	unsigned long long	rq_cpu_time;
1057 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1058 
1059 	/* sys_sched_yield() stats */
1060 	unsigned int		yld_count;
1061 
1062 	/* schedule() stats */
1063 	unsigned int		sched_count;
1064 	unsigned int		sched_goidle;
1065 
1066 	/* try_to_wake_up() stats */
1067 	unsigned int		ttwu_count;
1068 	unsigned int		ttwu_local;
1069 #endif
1070 
1071 #ifdef CONFIG_HOTPLUG_CPU
1072 	struct cpu_stop_work	drain;
1073 	struct cpu_stop_done	drain_done;
1074 #endif
1075 
1076 #ifdef CONFIG_CPU_IDLE
1077 	/* Must be inspected within a rcu lock section */
1078 	struct cpuidle_state	*idle_state;
1079 #endif
1080 
1081 	ANDROID_VENDOR_DATA_ARRAY(1, 96);
1082 	ANDROID_OEM_DATA_ARRAY(1, 16);
1083 
1084 	ANDROID_KABI_RESERVE(1);
1085 	ANDROID_KABI_RESERVE(2);
1086 	ANDROID_KABI_RESERVE(3);
1087 	ANDROID_KABI_RESERVE(4);
1088 };
1089 
1090 #ifdef CONFIG_FAIR_GROUP_SCHED
1091 
1092 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1093 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1094 {
1095 	return cfs_rq->rq;
1096 }
1097 
1098 #else
1099 
rq_of(struct cfs_rq * cfs_rq)1100 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1101 {
1102 	return container_of(cfs_rq, struct rq, cfs);
1103 }
1104 #endif
1105 
cpu_of(struct rq * rq)1106 static inline int cpu_of(struct rq *rq)
1107 {
1108 #ifdef CONFIG_SMP
1109 	return rq->cpu;
1110 #else
1111 	return 0;
1112 #endif
1113 }
1114 
1115 
1116 #ifdef CONFIG_SCHED_SMT
1117 extern void __update_idle_core(struct rq *rq);
1118 
update_idle_core(struct rq * rq)1119 static inline void update_idle_core(struct rq *rq)
1120 {
1121 	if (static_branch_unlikely(&sched_smt_present))
1122 		__update_idle_core(rq);
1123 }
1124 
1125 #else
update_idle_core(struct rq * rq)1126 static inline void update_idle_core(struct rq *rq) { }
1127 #endif
1128 
1129 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1130 
1131 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1132 #define this_rq()		this_cpu_ptr(&runqueues)
1133 #define task_rq(p)		cpu_rq(task_cpu(p))
1134 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1135 #define raw_rq()		raw_cpu_ptr(&runqueues)
1136 
1137 extern void update_rq_clock(struct rq *rq);
1138 
__rq_clock_broken(struct rq * rq)1139 static inline u64 __rq_clock_broken(struct rq *rq)
1140 {
1141 	return READ_ONCE(rq->clock);
1142 }
1143 
1144 /*
1145  * rq::clock_update_flags bits
1146  *
1147  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1148  *  call to __schedule(). This is an optimisation to avoid
1149  *  neighbouring rq clock updates.
1150  *
1151  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1152  *  in effect and calls to update_rq_clock() are being ignored.
1153  *
1154  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1155  *  made to update_rq_clock() since the last time rq::lock was pinned.
1156  *
1157  * If inside of __schedule(), clock_update_flags will have been
1158  * shifted left (a left shift is a cheap operation for the fast path
1159  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1160  *
1161  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1162  *
1163  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1164  * one position though, because the next rq_unpin_lock() will shift it
1165  * back.
1166  */
1167 #define RQCF_REQ_SKIP		0x01
1168 #define RQCF_ACT_SKIP		0x02
1169 #define RQCF_UPDATED		0x04
1170 
assert_clock_updated(struct rq * rq)1171 static inline void assert_clock_updated(struct rq *rq)
1172 {
1173 	/*
1174 	 * The only reason for not seeing a clock update since the
1175 	 * last rq_pin_lock() is if we're currently skipping updates.
1176 	 */
1177 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1178 }
1179 
rq_clock(struct rq * rq)1180 static inline u64 rq_clock(struct rq *rq)
1181 {
1182 	lockdep_assert_held(&rq->lock);
1183 	assert_clock_updated(rq);
1184 
1185 	return rq->clock;
1186 }
1187 
rq_clock_task(struct rq * rq)1188 static inline u64 rq_clock_task(struct rq *rq)
1189 {
1190 	lockdep_assert_held(&rq->lock);
1191 	assert_clock_updated(rq);
1192 
1193 	return rq->clock_task;
1194 }
1195 
1196 #ifdef CONFIG_SMP
1197 DECLARE_PER_CPU(u64, clock_task_mult);
1198 
rq_clock_task_mult(struct rq * rq)1199 static inline u64 rq_clock_task_mult(struct rq *rq)
1200 {
1201 	lockdep_assert_held(&rq->lock);
1202 	assert_clock_updated(rq);
1203 
1204 	return per_cpu(clock_task_mult, cpu_of(rq));
1205 }
1206 #else
rq_clock_task_mult(struct rq * rq)1207 static inline u64 rq_clock_task_mult(struct rq *rq)
1208 {
1209 	return rq_clock_task(rq);
1210 }
1211 #endif
1212 
1213 /**
1214  * By default the decay is the default pelt decay period.
1215  * The decay shift can change the decay period in
1216  * multiples of 32.
1217  *  Decay shift		Decay period(ms)
1218  *	0			32
1219  *	1			64
1220  *	2			128
1221  *	3			256
1222  *	4			512
1223  */
1224 extern int sched_thermal_decay_shift;
1225 
rq_clock_thermal(struct rq * rq)1226 static inline u64 rq_clock_thermal(struct rq *rq)
1227 {
1228 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1229 }
1230 
rq_clock_skip_update(struct rq * rq)1231 static inline void rq_clock_skip_update(struct rq *rq)
1232 {
1233 	lockdep_assert_held(&rq->lock);
1234 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1235 }
1236 
1237 /*
1238  * See rt task throttling, which is the only time a skip
1239  * request is cancelled.
1240  */
rq_clock_cancel_skipupdate(struct rq * rq)1241 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1242 {
1243 	lockdep_assert_held(&rq->lock);
1244 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1245 }
1246 
1247 struct rq_flags {
1248 	unsigned long flags;
1249 	struct pin_cookie cookie;
1250 #ifdef CONFIG_SCHED_DEBUG
1251 	/*
1252 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1253 	 * current pin context is stashed here in case it needs to be
1254 	 * restored in rq_repin_lock().
1255 	 */
1256 	unsigned int clock_update_flags;
1257 #endif
1258 };
1259 
1260 /*
1261  * Lockdep annotation that avoids accidental unlocks; it's like a
1262  * sticky/continuous lockdep_assert_held().
1263  *
1264  * This avoids code that has access to 'struct rq *rq' (basically everything in
1265  * the scheduler) from accidentally unlocking the rq if they do not also have a
1266  * copy of the (on-stack) 'struct rq_flags rf'.
1267  *
1268  * Also see Documentation/locking/lockdep-design.rst.
1269  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1270 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1271 {
1272 	rf->cookie = lockdep_pin_lock(&rq->lock);
1273 
1274 #ifdef CONFIG_SCHED_DEBUG
1275 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1276 	rf->clock_update_flags = 0;
1277 #endif
1278 }
1279 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1280 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1281 {
1282 #ifdef CONFIG_SCHED_DEBUG
1283 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1284 		rf->clock_update_flags = RQCF_UPDATED;
1285 #endif
1286 
1287 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1288 }
1289 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1290 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1291 {
1292 	lockdep_repin_lock(&rq->lock, rf->cookie);
1293 
1294 #ifdef CONFIG_SCHED_DEBUG
1295 	/*
1296 	 * Restore the value we stashed in @rf for this pin context.
1297 	 */
1298 	rq->clock_update_flags |= rf->clock_update_flags;
1299 #endif
1300 }
1301 
1302 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1303 	__acquires(rq->lock);
1304 
1305 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1306 	__acquires(p->pi_lock)
1307 	__acquires(rq->lock);
1308 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1309 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1310 	__releases(rq->lock)
1311 {
1312 	rq_unpin_lock(rq, rf);
1313 	raw_spin_unlock(&rq->lock);
1314 }
1315 
1316 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1317 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1318 	__releases(rq->lock)
1319 	__releases(p->pi_lock)
1320 {
1321 	rq_unpin_lock(rq, rf);
1322 	raw_spin_unlock(&rq->lock);
1323 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1324 }
1325 
1326 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1327 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1328 	__acquires(rq->lock)
1329 {
1330 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1331 	rq_pin_lock(rq, rf);
1332 }
1333 
1334 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1335 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1336 	__acquires(rq->lock)
1337 {
1338 	raw_spin_lock_irq(&rq->lock);
1339 	rq_pin_lock(rq, rf);
1340 }
1341 
1342 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1343 rq_lock(struct rq *rq, struct rq_flags *rf)
1344 	__acquires(rq->lock)
1345 {
1346 	raw_spin_lock(&rq->lock);
1347 	rq_pin_lock(rq, rf);
1348 }
1349 
1350 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1351 rq_relock(struct rq *rq, struct rq_flags *rf)
1352 	__acquires(rq->lock)
1353 {
1354 	raw_spin_lock(&rq->lock);
1355 	rq_repin_lock(rq, rf);
1356 }
1357 
1358 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1359 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1360 	__releases(rq->lock)
1361 {
1362 	rq_unpin_lock(rq, rf);
1363 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1364 }
1365 
1366 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1367 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1368 	__releases(rq->lock)
1369 {
1370 	rq_unpin_lock(rq, rf);
1371 	raw_spin_unlock_irq(&rq->lock);
1372 }
1373 
1374 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1375 rq_unlock(struct rq *rq, struct rq_flags *rf)
1376 	__releases(rq->lock)
1377 {
1378 	rq_unpin_lock(rq, rf);
1379 	raw_spin_unlock(&rq->lock);
1380 }
1381 
1382 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1383 this_rq_lock_irq(struct rq_flags *rf)
1384 	__acquires(rq->lock)
1385 {
1386 	struct rq *rq;
1387 
1388 	local_irq_disable();
1389 	rq = this_rq();
1390 	rq_lock(rq, rf);
1391 	return rq;
1392 }
1393 
1394 #ifdef CONFIG_NUMA
1395 enum numa_topology_type {
1396 	NUMA_DIRECT,
1397 	NUMA_GLUELESS_MESH,
1398 	NUMA_BACKPLANE,
1399 };
1400 extern enum numa_topology_type sched_numa_topology_type;
1401 extern int sched_max_numa_distance;
1402 extern bool find_numa_distance(int distance);
1403 extern void sched_init_numa(void);
1404 extern void sched_domains_numa_masks_set(unsigned int cpu);
1405 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1406 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1407 #else
sched_init_numa(void)1408 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1409 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1410 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1411 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1412 {
1413 	return nr_cpu_ids;
1414 }
1415 #endif
1416 
1417 #ifdef CONFIG_NUMA_BALANCING
1418 /* The regions in numa_faults array from task_struct */
1419 enum numa_faults_stats {
1420 	NUMA_MEM = 0,
1421 	NUMA_CPU,
1422 	NUMA_MEMBUF,
1423 	NUMA_CPUBUF
1424 };
1425 extern void sched_setnuma(struct task_struct *p, int node);
1426 extern int migrate_task_to(struct task_struct *p, int cpu);
1427 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1428 #else
1429 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1430 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1431 {
1432 }
1433 #endif /* CONFIG_NUMA_BALANCING */
1434 
1435 #ifdef CONFIG_SMP
1436 
1437 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1438 			int cpu, int scpu);
1439 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1440 queue_balance_callback(struct rq *rq,
1441 		       struct callback_head *head,
1442 		       void (*func)(struct rq *rq))
1443 {
1444 	lockdep_assert_held(&rq->lock);
1445 
1446 	if (unlikely(head->next))
1447 		return;
1448 
1449 	head->func = (void (*)(struct callback_head *))func;
1450 	head->next = rq->balance_callback;
1451 	rq->balance_callback = head;
1452 }
1453 
1454 #define rcu_dereference_check_sched_domain(p) \
1455 	rcu_dereference_check((p), \
1456 			      lockdep_is_held(&sched_domains_mutex))
1457 
1458 /*
1459  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1460  * See destroy_sched_domains: call_rcu for details.
1461  *
1462  * The domain tree of any CPU may only be accessed from within
1463  * preempt-disabled sections.
1464  */
1465 #define for_each_domain(cpu, __sd) \
1466 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1467 			__sd; __sd = __sd->parent)
1468 
1469 /**
1470  * highest_flag_domain - Return highest sched_domain containing flag.
1471  * @cpu:	The CPU whose highest level of sched domain is to
1472  *		be returned.
1473  * @flag:	The flag to check for the highest sched_domain
1474  *		for the given CPU.
1475  *
1476  * Returns the highest sched_domain of a CPU which contains the given flag.
1477  */
highest_flag_domain(int cpu,int flag)1478 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1479 {
1480 	struct sched_domain *sd, *hsd = NULL;
1481 
1482 	for_each_domain(cpu, sd) {
1483 		if (!(sd->flags & flag))
1484 			break;
1485 		hsd = sd;
1486 	}
1487 
1488 	return hsd;
1489 }
1490 
lowest_flag_domain(int cpu,int flag)1491 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1492 {
1493 	struct sched_domain *sd;
1494 
1495 	for_each_domain(cpu, sd) {
1496 		if (sd->flags & flag)
1497 			break;
1498 	}
1499 
1500 	return sd;
1501 }
1502 
1503 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1504 DECLARE_PER_CPU(int, sd_llc_size);
1505 DECLARE_PER_CPU(int, sd_llc_id);
1506 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1507 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1508 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1509 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1510 extern struct static_key_false sched_asym_cpucapacity;
1511 
1512 struct sched_group_capacity {
1513 	atomic_t		ref;
1514 	/*
1515 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1516 	 * for a single CPU.
1517 	 */
1518 	unsigned long		capacity;
1519 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1520 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1521 	unsigned long		next_update;
1522 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1523 
1524 #ifdef CONFIG_SCHED_DEBUG
1525 	int			id;
1526 #endif
1527 
1528 	unsigned long		cpumask[];		/* Balance mask */
1529 };
1530 
1531 struct sched_group {
1532 	struct sched_group	*next;			/* Must be a circular list */
1533 	atomic_t		ref;
1534 
1535 	unsigned int		group_weight;
1536 	struct sched_group_capacity *sgc;
1537 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1538 
1539 	/*
1540 	 * The CPUs this group covers.
1541 	 *
1542 	 * NOTE: this field is variable length. (Allocated dynamically
1543 	 * by attaching extra space to the end of the structure,
1544 	 * depending on how many CPUs the kernel has booted up with)
1545 	 */
1546 	unsigned long		cpumask[];
1547 };
1548 
sched_group_span(struct sched_group * sg)1549 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1550 {
1551 	return to_cpumask(sg->cpumask);
1552 }
1553 
1554 /*
1555  * See build_balance_mask().
1556  */
group_balance_mask(struct sched_group * sg)1557 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1558 {
1559 	return to_cpumask(sg->sgc->cpumask);
1560 }
1561 
1562 /**
1563  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1564  * @group: The group whose first CPU is to be returned.
1565  */
group_first_cpu(struct sched_group * group)1566 static inline unsigned int group_first_cpu(struct sched_group *group)
1567 {
1568 	return cpumask_first(sched_group_span(group));
1569 }
1570 
1571 extern int group_balance_cpu(struct sched_group *sg);
1572 
1573 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1574 void register_sched_domain_sysctl(void);
1575 void dirty_sched_domain_sysctl(int cpu);
1576 void unregister_sched_domain_sysctl(void);
1577 #else
register_sched_domain_sysctl(void)1578 static inline void register_sched_domain_sysctl(void)
1579 {
1580 }
dirty_sched_domain_sysctl(int cpu)1581 static inline void dirty_sched_domain_sysctl(int cpu)
1582 {
1583 }
unregister_sched_domain_sysctl(void)1584 static inline void unregister_sched_domain_sysctl(void)
1585 {
1586 }
1587 #endif
1588 
1589 extern void flush_smp_call_function_from_idle(void);
1590 
1591 #else /* !CONFIG_SMP: */
flush_smp_call_function_from_idle(void)1592 static inline void flush_smp_call_function_from_idle(void) { }
1593 #endif
1594 
1595 #include "stats.h"
1596 #include "autogroup.h"
1597 
1598 #ifdef CONFIG_CGROUP_SCHED
1599 
1600 /*
1601  * Return the group to which this tasks belongs.
1602  *
1603  * We cannot use task_css() and friends because the cgroup subsystem
1604  * changes that value before the cgroup_subsys::attach() method is called,
1605  * therefore we cannot pin it and might observe the wrong value.
1606  *
1607  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1608  * core changes this before calling sched_move_task().
1609  *
1610  * Instead we use a 'copy' which is updated from sched_move_task() while
1611  * holding both task_struct::pi_lock and rq::lock.
1612  */
task_group(struct task_struct * p)1613 static inline struct task_group *task_group(struct task_struct *p)
1614 {
1615 	return p->sched_task_group;
1616 }
1617 
1618 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1619 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1620 {
1621 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1622 	struct task_group *tg = task_group(p);
1623 #endif
1624 
1625 #ifdef CONFIG_FAIR_GROUP_SCHED
1626 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1627 	p->se.cfs_rq = tg->cfs_rq[cpu];
1628 	p->se.parent = tg->se[cpu];
1629 #endif
1630 
1631 #ifdef CONFIG_RT_GROUP_SCHED
1632 	p->rt.rt_rq  = tg->rt_rq[cpu];
1633 	p->rt.parent = tg->rt_se[cpu];
1634 #endif
1635 }
1636 
1637 #else /* CONFIG_CGROUP_SCHED */
1638 
set_task_rq(struct task_struct * p,unsigned int cpu)1639 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1640 static inline struct task_group *task_group(struct task_struct *p)
1641 {
1642 	return NULL;
1643 }
1644 
1645 #endif /* CONFIG_CGROUP_SCHED */
1646 
__set_task_cpu(struct task_struct * p,unsigned int cpu)1647 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1648 {
1649 	set_task_rq(p, cpu);
1650 #ifdef CONFIG_SMP
1651 	/*
1652 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1653 	 * successfully executed on another CPU. We must ensure that updates of
1654 	 * per-task data have been completed by this moment.
1655 	 */
1656 	smp_wmb();
1657 #ifdef CONFIG_THREAD_INFO_IN_TASK
1658 	WRITE_ONCE(p->cpu, cpu);
1659 #else
1660 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1661 #endif
1662 	p->wake_cpu = cpu;
1663 #endif
1664 }
1665 
1666 /*
1667  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1668  */
1669 #ifdef CONFIG_SCHED_DEBUG
1670 # include <linux/static_key.h>
1671 # define const_debug __read_mostly
1672 #else
1673 # define const_debug const
1674 #endif
1675 
1676 #define SCHED_FEAT(name, enabled)	\
1677 	__SCHED_FEAT_##name ,
1678 
1679 enum {
1680 #include "features.h"
1681 	__SCHED_FEAT_NR,
1682 };
1683 
1684 #undef SCHED_FEAT
1685 
1686 #ifdef CONFIG_SCHED_DEBUG
1687 
1688 /*
1689  * To support run-time toggling of sched features, all the translation units
1690  * (but core.c) reference the sysctl_sched_features defined in core.c.
1691  */
1692 extern const_debug unsigned int sysctl_sched_features;
1693 
1694 #ifdef CONFIG_JUMP_LABEL
1695 #define SCHED_FEAT(name, enabled)					\
1696 static __always_inline bool static_branch_##name(struct static_key *key) \
1697 {									\
1698 	return static_key_##enabled(key);				\
1699 }
1700 
1701 #include "features.h"
1702 #undef SCHED_FEAT
1703 
1704 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1705 extern const char * const sched_feat_names[__SCHED_FEAT_NR];
1706 
1707 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1708 
1709 #else /* !CONFIG_JUMP_LABEL */
1710 
1711 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1712 
1713 #endif /* CONFIG_JUMP_LABEL */
1714 
1715 #else /* !SCHED_DEBUG */
1716 
1717 /*
1718  * Each translation unit has its own copy of sysctl_sched_features to allow
1719  * constants propagation at compile time and compiler optimization based on
1720  * features default.
1721  */
1722 #define SCHED_FEAT(name, enabled)	\
1723 	(1UL << __SCHED_FEAT_##name) * enabled |
1724 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1725 #include "features.h"
1726 	0;
1727 #undef SCHED_FEAT
1728 
1729 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1730 
1731 #endif /* SCHED_DEBUG */
1732 
1733 extern struct static_key_false sched_numa_balancing;
1734 extern struct static_key_false sched_schedstats;
1735 
global_rt_period(void)1736 static inline u64 global_rt_period(void)
1737 {
1738 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1739 }
1740 
global_rt_runtime(void)1741 static inline u64 global_rt_runtime(void)
1742 {
1743 	if (sysctl_sched_rt_runtime < 0)
1744 		return RUNTIME_INF;
1745 
1746 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1747 }
1748 
task_current(struct rq * rq,struct task_struct * p)1749 static inline int task_current(struct rq *rq, struct task_struct *p)
1750 {
1751 	return rq->curr == p;
1752 }
1753 
task_running(struct rq * rq,struct task_struct * p)1754 static inline int task_running(struct rq *rq, struct task_struct *p)
1755 {
1756 #ifdef CONFIG_SMP
1757 	return p->on_cpu;
1758 #else
1759 	return task_current(rq, p);
1760 #endif
1761 }
1762 
task_on_rq_queued(struct task_struct * p)1763 static inline int task_on_rq_queued(struct task_struct *p)
1764 {
1765 	return p->on_rq == TASK_ON_RQ_QUEUED;
1766 }
1767 
task_on_rq_migrating(struct task_struct * p)1768 static inline int task_on_rq_migrating(struct task_struct *p)
1769 {
1770 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1771 }
1772 
1773 /*
1774  * wake flags
1775  */
1776 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1777 #define WF_FORK			0x02		/* Child wakeup after fork */
1778 #define WF_MIGRATED		0x04		/* Internal use, task got migrated */
1779 #define WF_ON_CPU		0x08		/* Wakee is on_cpu */
1780 #define WF_ANDROID_VENDOR	0x1000		/* Vendor specific for Android */
1781 
1782 /*
1783  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1784  * of tasks with abnormal "nice" values across CPUs the contribution that
1785  * each task makes to its run queue's load is weighted according to its
1786  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1787  * scaled version of the new time slice allocation that they receive on time
1788  * slice expiry etc.
1789  */
1790 
1791 #define WEIGHT_IDLEPRIO		3
1792 #define WMULT_IDLEPRIO		1431655765
1793 
1794 extern const int		sched_prio_to_weight[40];
1795 extern const u32		sched_prio_to_wmult[40];
1796 
1797 /*
1798  * {de,en}queue flags:
1799  *
1800  * DEQUEUE_SLEEP  - task is no longer runnable
1801  * ENQUEUE_WAKEUP - task just became runnable
1802  *
1803  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1804  *                are in a known state which allows modification. Such pairs
1805  *                should preserve as much state as possible.
1806  *
1807  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1808  *        in the runqueue.
1809  *
1810  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1811  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1812  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1813  *
1814  */
1815 
1816 #define DEQUEUE_SLEEP		0x01
1817 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1818 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1819 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1820 
1821 #define ENQUEUE_WAKEUP		0x01
1822 #define ENQUEUE_RESTORE		0x02
1823 #define ENQUEUE_MOVE		0x04
1824 #define ENQUEUE_NOCLOCK		0x08
1825 
1826 #define ENQUEUE_HEAD		0x10
1827 #define ENQUEUE_REPLENISH	0x20
1828 #ifdef CONFIG_SMP
1829 #define ENQUEUE_MIGRATED	0x40
1830 #else
1831 #define ENQUEUE_MIGRATED	0x00
1832 #endif
1833 
1834 #define ENQUEUE_WAKEUP_SYNC	0x80
1835 
1836 #define RETRY_TASK		((void *)-1UL)
1837 
1838 struct sched_class {
1839 
1840 #ifdef CONFIG_UCLAMP_TASK
1841 	int uclamp_enabled;
1842 #endif
1843 
1844 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1845 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1846 	void (*yield_task)   (struct rq *rq);
1847 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1848 
1849 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1850 
1851 	struct task_struct *(*pick_next_task)(struct rq *rq);
1852 
1853 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1854 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1855 
1856 #ifdef CONFIG_SMP
1857 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1858 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1859 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1860 
1861 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1862 
1863 	void (*set_cpus_allowed)(struct task_struct *p,
1864 				 const struct cpumask *newmask);
1865 
1866 	void (*rq_online)(struct rq *rq);
1867 	void (*rq_offline)(struct rq *rq);
1868 #endif
1869 
1870 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1871 	void (*task_fork)(struct task_struct *p);
1872 	void (*task_dead)(struct task_struct *p);
1873 
1874 	/*
1875 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1876 	 * cannot assume the switched_from/switched_to pair is serliazed by
1877 	 * rq->lock. They are however serialized by p->pi_lock.
1878 	 */
1879 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1880 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1881 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1882 			      int oldprio);
1883 
1884 	unsigned int (*get_rr_interval)(struct rq *rq,
1885 					struct task_struct *task);
1886 
1887 	void (*update_curr)(struct rq *rq);
1888 
1889 #define TASK_SET_GROUP		0
1890 #define TASK_MOVE_GROUP		1
1891 
1892 #ifdef CONFIG_FAIR_GROUP_SCHED
1893 	void (*task_change_group)(struct task_struct *p, int type);
1894 #endif
1895 } __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
1896 
put_prev_task(struct rq * rq,struct task_struct * prev)1897 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1898 {
1899 	WARN_ON_ONCE(rq->curr != prev);
1900 	prev->sched_class->put_prev_task(rq, prev);
1901 }
1902 
set_next_task(struct rq * rq,struct task_struct * next)1903 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1904 {
1905 	WARN_ON_ONCE(rq->curr != next);
1906 	next->sched_class->set_next_task(rq, next, false);
1907 }
1908 
1909 /* Defined in include/asm-generic/vmlinux.lds.h */
1910 extern struct sched_class __begin_sched_classes[];
1911 extern struct sched_class __end_sched_classes[];
1912 
1913 #define sched_class_highest (__end_sched_classes - 1)
1914 #define sched_class_lowest  (__begin_sched_classes - 1)
1915 
1916 #define for_class_range(class, _from, _to) \
1917 	for (class = (_from); class != (_to); class--)
1918 
1919 #define for_each_class(class) \
1920 	for_class_range(class, sched_class_highest, sched_class_lowest)
1921 
1922 extern const struct sched_class stop_sched_class;
1923 extern const struct sched_class dl_sched_class;
1924 extern const struct sched_class rt_sched_class;
1925 extern const struct sched_class fair_sched_class;
1926 extern const struct sched_class idle_sched_class;
1927 
sched_stop_runnable(struct rq * rq)1928 static inline bool sched_stop_runnable(struct rq *rq)
1929 {
1930 	return rq->stop && task_on_rq_queued(rq->stop);
1931 }
1932 
sched_dl_runnable(struct rq * rq)1933 static inline bool sched_dl_runnable(struct rq *rq)
1934 {
1935 	return rq->dl.dl_nr_running > 0;
1936 }
1937 
sched_rt_runnable(struct rq * rq)1938 static inline bool sched_rt_runnable(struct rq *rq)
1939 {
1940 	return rq->rt.rt_queued > 0;
1941 }
1942 
sched_fair_runnable(struct rq * rq)1943 static inline bool sched_fair_runnable(struct rq *rq)
1944 {
1945 	return rq->cfs.nr_running > 0;
1946 }
1947 
1948 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1949 extern struct task_struct *pick_next_task_idle(struct rq *rq);
1950 
1951 #ifdef CONFIG_SMP
1952 
1953 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1954 
1955 extern void trigger_load_balance(struct rq *rq);
1956 
1957 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1958 
1959 extern unsigned long __read_mostly max_load_balance_interval;
1960 #endif
1961 
1962 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1963 static inline void idle_set_state(struct rq *rq,
1964 				  struct cpuidle_state *idle_state)
1965 {
1966 	rq->idle_state = idle_state;
1967 }
1968 
idle_get_state(struct rq * rq)1969 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1970 {
1971 	SCHED_WARN_ON(!rcu_read_lock_held());
1972 
1973 	return rq->idle_state;
1974 }
1975 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1976 static inline void idle_set_state(struct rq *rq,
1977 				  struct cpuidle_state *idle_state)
1978 {
1979 }
1980 
idle_get_state(struct rq * rq)1981 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1982 {
1983 	return NULL;
1984 }
1985 #endif
1986 
1987 extern void schedule_idle(void);
1988 
1989 extern void sysrq_sched_debug_show(void);
1990 extern void sched_init_granularity(void);
1991 extern void update_max_interval(void);
1992 
1993 extern void init_sched_dl_class(void);
1994 extern void init_sched_rt_class(void);
1995 extern void init_sched_fair_class(void);
1996 
1997 extern void reweight_task(struct task_struct *p, int prio);
1998 
1999 extern void resched_curr(struct rq *rq);
2000 extern void resched_cpu(int cpu);
2001 
2002 extern struct rt_bandwidth def_rt_bandwidth;
2003 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2004 
2005 extern struct dl_bandwidth def_dl_bandwidth;
2006 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2007 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2008 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2009 
2010 #define BW_SHIFT		20
2011 #define BW_UNIT			(1 << BW_SHIFT)
2012 #define RATIO_SHIFT		8
2013 #define MAX_BW_BITS		(64 - BW_SHIFT)
2014 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2015 unsigned long to_ratio(u64 period, u64 runtime);
2016 
2017 extern void init_entity_runnable_average(struct sched_entity *se);
2018 extern void post_init_entity_util_avg(struct task_struct *p);
2019 
2020 #ifdef CONFIG_NO_HZ_FULL
2021 extern bool sched_can_stop_tick(struct rq *rq);
2022 extern int __init sched_tick_offload_init(void);
2023 
2024 /*
2025  * Tick may be needed by tasks in the runqueue depending on their policy and
2026  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2027  * nohz mode if necessary.
2028  */
sched_update_tick_dependency(struct rq * rq)2029 static inline void sched_update_tick_dependency(struct rq *rq)
2030 {
2031 	int cpu = cpu_of(rq);
2032 
2033 	if (!tick_nohz_full_cpu(cpu))
2034 		return;
2035 
2036 	if (sched_can_stop_tick(rq))
2037 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2038 	else
2039 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2040 }
2041 #else
sched_tick_offload_init(void)2042 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2043 static inline void sched_update_tick_dependency(struct rq *rq) { }
2044 #endif
2045 
add_nr_running(struct rq * rq,unsigned count)2046 static inline void add_nr_running(struct rq *rq, unsigned count)
2047 {
2048 	unsigned prev_nr = rq->nr_running;
2049 
2050 	rq->nr_running = prev_nr + count;
2051 	if (trace_sched_update_nr_running_tp_enabled()) {
2052 		call_trace_sched_update_nr_running(rq, count);
2053 	}
2054 
2055 #ifdef CONFIG_SMP
2056 	if (prev_nr < 2 && rq->nr_running >= 2) {
2057 		if (!READ_ONCE(rq->rd->overload))
2058 			WRITE_ONCE(rq->rd->overload, 1);
2059 	}
2060 #endif
2061 
2062 	sched_update_tick_dependency(rq);
2063 }
2064 
sub_nr_running(struct rq * rq,unsigned count)2065 static inline void sub_nr_running(struct rq *rq, unsigned count)
2066 {
2067 	rq->nr_running -= count;
2068 	if (trace_sched_update_nr_running_tp_enabled()) {
2069 		call_trace_sched_update_nr_running(rq, -count);
2070 	}
2071 
2072 	/* Check if we still need preemption */
2073 	sched_update_tick_dependency(rq);
2074 }
2075 
2076 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2077 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2078 
2079 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2080 
2081 extern const_debug unsigned int sysctl_sched_nr_migrate;
2082 extern const_debug unsigned int sysctl_sched_migration_cost;
2083 
2084 #ifdef CONFIG_SCHED_HRTICK
2085 
2086 /*
2087  * Use hrtick when:
2088  *  - enabled by features
2089  *  - hrtimer is actually high res
2090  */
hrtick_enabled(struct rq * rq)2091 static inline int hrtick_enabled(struct rq *rq)
2092 {
2093 	if (!sched_feat(HRTICK))
2094 		return 0;
2095 	if (!cpu_active(cpu_of(rq)))
2096 		return 0;
2097 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2098 }
2099 
2100 void hrtick_start(struct rq *rq, u64 delay);
2101 
2102 #else
2103 
hrtick_enabled(struct rq * rq)2104 static inline int hrtick_enabled(struct rq *rq)
2105 {
2106 	return 0;
2107 }
2108 
2109 #endif /* CONFIG_SCHED_HRTICK */
2110 
2111 #ifndef arch_scale_freq_tick
2112 static __always_inline
arch_scale_freq_tick(void)2113 void arch_scale_freq_tick(void)
2114 {
2115 }
2116 #endif
2117 
2118 #ifndef arch_scale_freq_capacity
2119 /**
2120  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2121  * @cpu: the CPU in question.
2122  *
2123  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2124  *
2125  *     f_curr
2126  *     ------ * SCHED_CAPACITY_SCALE
2127  *     f_max
2128  */
2129 static __always_inline
arch_scale_freq_capacity(int cpu)2130 unsigned long arch_scale_freq_capacity(int cpu)
2131 {
2132 	return SCHED_CAPACITY_SCALE;
2133 }
2134 #endif
2135 
2136 #ifdef CONFIG_SMP
2137 #ifdef CONFIG_PREEMPTION
2138 
2139 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2140 
2141 /*
2142  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2143  * way at the expense of forcing extra atomic operations in all
2144  * invocations.  This assures that the double_lock is acquired using the
2145  * same underlying policy as the spinlock_t on this architecture, which
2146  * reduces latency compared to the unfair variant below.  However, it
2147  * also adds more overhead and therefore may reduce throughput.
2148  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2149 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2150 	__releases(this_rq->lock)
2151 	__acquires(busiest->lock)
2152 	__acquires(this_rq->lock)
2153 {
2154 	raw_spin_unlock(&this_rq->lock);
2155 	double_rq_lock(this_rq, busiest);
2156 
2157 	return 1;
2158 }
2159 
2160 #else
2161 /*
2162  * Unfair double_lock_balance: Optimizes throughput at the expense of
2163  * latency by eliminating extra atomic operations when the locks are
2164  * already in proper order on entry.  This favors lower CPU-ids and will
2165  * grant the double lock to lower CPUs over higher ids under contention,
2166  * regardless of entry order into the function.
2167  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2168 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2169 	__releases(this_rq->lock)
2170 	__acquires(busiest->lock)
2171 	__acquires(this_rq->lock)
2172 {
2173 	int ret = 0;
2174 
2175 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2176 		if (busiest < this_rq) {
2177 			raw_spin_unlock(&this_rq->lock);
2178 			raw_spin_lock(&busiest->lock);
2179 			raw_spin_lock_nested(&this_rq->lock,
2180 					      SINGLE_DEPTH_NESTING);
2181 			ret = 1;
2182 		} else
2183 			raw_spin_lock_nested(&busiest->lock,
2184 					      SINGLE_DEPTH_NESTING);
2185 	}
2186 	return ret;
2187 }
2188 
2189 #endif /* CONFIG_PREEMPTION */
2190 
2191 /*
2192  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2193  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2194 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2195 {
2196 	if (unlikely(!irqs_disabled())) {
2197 		/* printk() doesn't work well under rq->lock */
2198 		raw_spin_unlock(&this_rq->lock);
2199 		BUG_ON(1);
2200 	}
2201 
2202 	return _double_lock_balance(this_rq, busiest);
2203 }
2204 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2205 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2206 	__releases(busiest->lock)
2207 {
2208 	raw_spin_unlock(&busiest->lock);
2209 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2210 }
2211 
double_lock(spinlock_t * l1,spinlock_t * l2)2212 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2213 {
2214 	if (l1 > l2)
2215 		swap(l1, l2);
2216 
2217 	spin_lock(l1);
2218 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2219 }
2220 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2221 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2222 {
2223 	if (l1 > l2)
2224 		swap(l1, l2);
2225 
2226 	spin_lock_irq(l1);
2227 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2228 }
2229 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2230 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2231 {
2232 	if (l1 > l2)
2233 		swap(l1, l2);
2234 
2235 	raw_spin_lock(l1);
2236 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2237 }
2238 
2239 /*
2240  * double_rq_lock - safely lock two runqueues
2241  *
2242  * Note this does not disable interrupts like task_rq_lock,
2243  * you need to do so manually before calling.
2244  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2245 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2246 	__acquires(rq1->lock)
2247 	__acquires(rq2->lock)
2248 {
2249 	BUG_ON(!irqs_disabled());
2250 	if (rq1 == rq2) {
2251 		raw_spin_lock(&rq1->lock);
2252 		__acquire(rq2->lock);	/* Fake it out ;) */
2253 	} else {
2254 		if (rq1 < rq2) {
2255 			raw_spin_lock(&rq1->lock);
2256 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2257 		} else {
2258 			raw_spin_lock(&rq2->lock);
2259 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2260 		}
2261 	}
2262 }
2263 
2264 /*
2265  * double_rq_unlock - safely unlock two runqueues
2266  *
2267  * Note this does not restore interrupts like task_rq_unlock,
2268  * you need to do so manually after calling.
2269  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2270 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2271 	__releases(rq1->lock)
2272 	__releases(rq2->lock)
2273 {
2274 	raw_spin_unlock(&rq1->lock);
2275 	if (rq1 != rq2)
2276 		raw_spin_unlock(&rq2->lock);
2277 	else
2278 		__release(rq2->lock);
2279 }
2280 
2281 extern void set_rq_online (struct rq *rq);
2282 extern void set_rq_offline(struct rq *rq);
2283 extern bool sched_smp_initialized;
2284 
2285 #else /* CONFIG_SMP */
2286 
2287 /*
2288  * double_rq_lock - safely lock two runqueues
2289  *
2290  * Note this does not disable interrupts like task_rq_lock,
2291  * you need to do so manually before calling.
2292  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2293 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2294 	__acquires(rq1->lock)
2295 	__acquires(rq2->lock)
2296 {
2297 	BUG_ON(!irqs_disabled());
2298 	BUG_ON(rq1 != rq2);
2299 	raw_spin_lock(&rq1->lock);
2300 	__acquire(rq2->lock);	/* Fake it out ;) */
2301 }
2302 
2303 /*
2304  * double_rq_unlock - safely unlock two runqueues
2305  *
2306  * Note this does not restore interrupts like task_rq_unlock,
2307  * you need to do so manually after calling.
2308  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2309 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2310 	__releases(rq1->lock)
2311 	__releases(rq2->lock)
2312 {
2313 	BUG_ON(rq1 != rq2);
2314 	raw_spin_unlock(&rq1->lock);
2315 	__release(rq2->lock);
2316 }
2317 
2318 #endif
2319 
2320 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2321 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2322 
2323 #ifdef	CONFIG_SCHED_DEBUG
2324 extern bool sched_debug_enabled;
2325 
2326 extern void print_cfs_stats(struct seq_file *m, int cpu);
2327 extern void print_rt_stats(struct seq_file *m, int cpu);
2328 extern void print_dl_stats(struct seq_file *m, int cpu);
2329 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2330 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2331 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2332 #ifdef CONFIG_NUMA_BALANCING
2333 extern void
2334 show_numa_stats(struct task_struct *p, struct seq_file *m);
2335 extern void
2336 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2337 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2338 #endif /* CONFIG_NUMA_BALANCING */
2339 #endif /* CONFIG_SCHED_DEBUG */
2340 
2341 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2342 extern void init_rt_rq(struct rt_rq *rt_rq);
2343 extern void init_dl_rq(struct dl_rq *dl_rq);
2344 
2345 extern void cfs_bandwidth_usage_inc(void);
2346 extern void cfs_bandwidth_usage_dec(void);
2347 
2348 #ifdef CONFIG_NO_HZ_COMMON
2349 #define NOHZ_BALANCE_KICK_BIT	0
2350 #define NOHZ_STATS_KICK_BIT	1
2351 
2352 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2353 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2354 
2355 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2356 
2357 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2358 
2359 extern void nohz_balance_exit_idle(struct rq *rq);
2360 #else
nohz_balance_exit_idle(struct rq * rq)2361 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2362 #endif
2363 
2364 
2365 #ifdef CONFIG_SMP
2366 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2367 void __dl_update(struct dl_bw *dl_b, s64 bw)
2368 {
2369 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2370 	int i;
2371 
2372 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2373 			 "sched RCU must be held");
2374 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2375 		struct rq *rq = cpu_rq(i);
2376 
2377 		rq->dl.extra_bw += bw;
2378 	}
2379 }
2380 #else
2381 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2382 void __dl_update(struct dl_bw *dl_b, s64 bw)
2383 {
2384 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2385 
2386 	dl->extra_bw += bw;
2387 }
2388 #endif
2389 
2390 
2391 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2392 struct irqtime {
2393 	u64			total;
2394 	u64			tick_delta;
2395 	u64			irq_start_time;
2396 	struct u64_stats_sync	sync;
2397 };
2398 
2399 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2400 
2401 /*
2402  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2403  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2404  * and never move forward.
2405  */
irq_time_read(int cpu)2406 static inline u64 irq_time_read(int cpu)
2407 {
2408 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2409 	unsigned int seq;
2410 	u64 total;
2411 
2412 	do {
2413 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2414 		total = irqtime->total;
2415 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2416 
2417 	return total;
2418 }
2419 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2420 
2421 #ifdef CONFIG_CPU_FREQ
2422 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2423 
2424 /**
2425  * cpufreq_update_util - Take a note about CPU utilization changes.
2426  * @rq: Runqueue to carry out the update for.
2427  * @flags: Update reason flags.
2428  *
2429  * This function is called by the scheduler on the CPU whose utilization is
2430  * being updated.
2431  *
2432  * It can only be called from RCU-sched read-side critical sections.
2433  *
2434  * The way cpufreq is currently arranged requires it to evaluate the CPU
2435  * performance state (frequency/voltage) on a regular basis to prevent it from
2436  * being stuck in a completely inadequate performance level for too long.
2437  * That is not guaranteed to happen if the updates are only triggered from CFS
2438  * and DL, though, because they may not be coming in if only RT tasks are
2439  * active all the time (or there are RT tasks only).
2440  *
2441  * As a workaround for that issue, this function is called periodically by the
2442  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2443  * but that really is a band-aid.  Going forward it should be replaced with
2444  * solutions targeted more specifically at RT tasks.
2445  */
cpufreq_update_util(struct rq * rq,unsigned int flags)2446 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2447 {
2448 	struct update_util_data *data;
2449 
2450 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2451 						  cpu_of(rq)));
2452 	if (data)
2453 		data->func(data, rq_clock(rq), flags);
2454 }
2455 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2456 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2457 #endif /* CONFIG_CPU_FREQ */
2458 
2459 #ifdef CONFIG_UCLAMP_TASK
2460 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2461 
2462 /**
2463  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2464  * @rq:		The rq to clamp against. Must not be NULL.
2465  * @util:	The util value to clamp.
2466  * @p:		The task to clamp against. Can be NULL if you want to clamp
2467  *		against @rq only.
2468  *
2469  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2470  *
2471  * If sched_uclamp_used static key is disabled, then just return the util
2472  * without any clamping since uclamp aggregation at the rq level in the fast
2473  * path is disabled, rendering this operation a NOP.
2474  *
2475  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2476  * will return the correct effective uclamp value of the task even if the
2477  * static key is disabled.
2478  */
2479 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2480 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2481 				  struct task_struct *p)
2482 {
2483 	unsigned long min_util = 0;
2484 	unsigned long max_util = 0;
2485 
2486 	if (!static_branch_likely(&sched_uclamp_used))
2487 		return util;
2488 
2489 	if (p) {
2490 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
2491 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
2492 
2493 		/*
2494 		 * Ignore last runnable task's max clamp, as this task will
2495 		 * reset it. Similarly, no need to read the rq's min clamp.
2496 		 */
2497 		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2498 			goto out;
2499 	}
2500 
2501 	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2502 	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2503 out:
2504 	/*
2505 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2506 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2507 	 * inversion. Fix it now when the clamps are applied.
2508 	 */
2509 	if (unlikely(min_util >= max_util))
2510 		return min_util;
2511 
2512 	return clamp(util, min_util, max_util);
2513 }
2514 
uclamp_boosted(struct task_struct * p)2515 static inline bool uclamp_boosted(struct task_struct *p)
2516 {
2517 	return uclamp_eff_value(p, UCLAMP_MIN) > 0;
2518 }
2519 
2520 /*
2521  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2522  * by default in the fast path and only gets turned on once userspace performs
2523  * an operation that requires it.
2524  *
2525  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2526  * hence is active.
2527  */
uclamp_is_used(void)2528 static inline bool uclamp_is_used(void)
2529 {
2530 	return static_branch_likely(&sched_uclamp_used);
2531 }
2532 #else /* CONFIG_UCLAMP_TASK */
2533 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2534 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2535 				  struct task_struct *p)
2536 {
2537 	return util;
2538 }
2539 
uclamp_boosted(struct task_struct * p)2540 static inline bool uclamp_boosted(struct task_struct *p)
2541 {
2542 	return false;
2543 }
2544 
uclamp_is_used(void)2545 static inline bool uclamp_is_used(void)
2546 {
2547 	return false;
2548 }
2549 #endif /* CONFIG_UCLAMP_TASK */
2550 
2551 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_latency_sensitive(struct task_struct * p)2552 static inline bool uclamp_latency_sensitive(struct task_struct *p)
2553 {
2554 	struct cgroup_subsys_state *css = task_css(p, cpu_cgrp_id);
2555 	struct task_group *tg;
2556 
2557 	if (!css)
2558 		return false;
2559 	tg = container_of(css, struct task_group, css);
2560 
2561 	return tg->latency_sensitive;
2562 }
2563 #else
uclamp_latency_sensitive(struct task_struct * p)2564 static inline bool uclamp_latency_sensitive(struct task_struct *p)
2565 {
2566 	return false;
2567 }
2568 #endif /* CONFIG_UCLAMP_TASK_GROUP */
2569 
2570 #ifdef arch_scale_freq_capacity
2571 # ifndef arch_scale_freq_invariant
2572 #  define arch_scale_freq_invariant()	true
2573 # endif
2574 #else
2575 # define arch_scale_freq_invariant()	false
2576 #endif
2577 
2578 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2579 static inline unsigned long capacity_orig_of(int cpu)
2580 {
2581 	return cpu_rq(cpu)->cpu_capacity_orig;
2582 }
2583 #endif
2584 
2585 /**
2586  * enum schedutil_type - CPU utilization type
2587  * @FREQUENCY_UTIL:	Utilization used to select frequency
2588  * @ENERGY_UTIL:	Utilization used during energy calculation
2589  *
2590  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2591  * need to be aggregated differently depending on the usage made of them. This
2592  * enum is used within schedutil_freq_util() to differentiate the types of
2593  * utilization expected by the callers, and adjust the aggregation accordingly.
2594  */
2595 enum schedutil_type {
2596 	FREQUENCY_UTIL,
2597 	ENERGY_UTIL,
2598 };
2599 
2600 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2601 
2602 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2603 				 unsigned long max, enum schedutil_type type,
2604 				 struct task_struct *p);
2605 
cpu_bw_dl(struct rq * rq)2606 static inline unsigned long cpu_bw_dl(struct rq *rq)
2607 {
2608 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2609 }
2610 
cpu_util_dl(struct rq * rq)2611 static inline unsigned long cpu_util_dl(struct rq *rq)
2612 {
2613 	return READ_ONCE(rq->avg_dl.util_avg);
2614 }
2615 
cpu_util_cfs(struct rq * rq)2616 static inline unsigned long cpu_util_cfs(struct rq *rq)
2617 {
2618 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2619 
2620 	if (sched_feat(UTIL_EST)) {
2621 		util = max_t(unsigned long, util,
2622 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2623 	}
2624 
2625 	return util;
2626 }
2627 
cpu_util_rt(struct rq * rq)2628 static inline unsigned long cpu_util_rt(struct rq *rq)
2629 {
2630 	return READ_ONCE(rq->avg_rt.util_avg);
2631 }
2632 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)2633 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2634 				 unsigned long max, enum schedutil_type type,
2635 				 struct task_struct *p)
2636 {
2637 	return 0;
2638 }
2639 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2640 
2641 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2642 static inline unsigned long cpu_util_irq(struct rq *rq)
2643 {
2644 	return rq->avg_irq.util_avg;
2645 }
2646 
2647 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2648 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2649 {
2650 	util *= (max - irq);
2651 	util /= max;
2652 
2653 	return util;
2654 
2655 }
2656 #else
cpu_util_irq(struct rq * rq)2657 static inline unsigned long cpu_util_irq(struct rq *rq)
2658 {
2659 	return 0;
2660 }
2661 
2662 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2663 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2664 {
2665 	return util;
2666 }
2667 #endif
2668 
2669 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2670 
2671 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2672 
2673 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2674 
sched_energy_enabled(void)2675 static inline bool sched_energy_enabled(void)
2676 {
2677 	return static_branch_unlikely(&sched_energy_present);
2678 }
2679 
2680 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2681 
2682 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)2683 static inline bool sched_energy_enabled(void) { return false; }
2684 
2685 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2686 
2687 #ifdef CONFIG_MEMBARRIER
2688 /*
2689  * The scheduler provides memory barriers required by membarrier between:
2690  * - prior user-space memory accesses and store to rq->membarrier_state,
2691  * - store to rq->membarrier_state and following user-space memory accesses.
2692  * In the same way it provides those guarantees around store to rq->curr.
2693  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2694 static inline void membarrier_switch_mm(struct rq *rq,
2695 					struct mm_struct *prev_mm,
2696 					struct mm_struct *next_mm)
2697 {
2698 	int membarrier_state;
2699 
2700 	if (prev_mm == next_mm)
2701 		return;
2702 
2703 	membarrier_state = atomic_read(&next_mm->membarrier_state);
2704 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2705 		return;
2706 
2707 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2708 }
2709 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2710 static inline void membarrier_switch_mm(struct rq *rq,
2711 					struct mm_struct *prev_mm,
2712 					struct mm_struct *next_mm)
2713 {
2714 }
2715 #endif
2716 
2717 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)2718 static inline bool is_per_cpu_kthread(struct task_struct *p)
2719 {
2720 	if (!(p->flags & PF_KTHREAD))
2721 		return false;
2722 
2723 	if (p->nr_cpus_allowed != 1)
2724 		return false;
2725 
2726 	return true;
2727 }
2728 #endif
2729 
2730 void swake_up_all_locked(struct swait_queue_head *q);
2731 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2732 
2733 /*
2734  * task_may_not_preempt - check whether a task may not be preemptible soon
2735  */
2736 #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
2737 extern bool task_may_not_preempt(struct task_struct *task, int cpu);
2738 #else
task_may_not_preempt(struct task_struct * task,int cpu)2739 static inline bool task_may_not_preempt(struct task_struct *task, int cpu)
2740 {
2741 	return false;
2742 }
2743 #endif /* CONFIG_RT_SOFTINT_OPTIMIZATION */
2744