xref: /OK3568_Linux_fs/kernel/mm/vmscan.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 #undef CREATE_TRACE_POINTS
67 #include <trace/hooks/vmscan.h>
68 
69 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_direct_reclaim_begin);
70 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_direct_reclaim_end);
71 
72 struct scan_control {
73 	/* How many pages shrink_list() should reclaim */
74 	unsigned long nr_to_reclaim;
75 
76 	/*
77 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
78 	 * are scanned.
79 	 */
80 	nodemask_t	*nodemask;
81 
82 	/*
83 	 * The memory cgroup that hit its limit and as a result is the
84 	 * primary target of this reclaim invocation.
85 	 */
86 	struct mem_cgroup *target_mem_cgroup;
87 
88 	/*
89 	 * Scan pressure balancing between anon and file LRUs
90 	 */
91 	unsigned long	anon_cost;
92 	unsigned long	file_cost;
93 
94 	/* Can active pages be deactivated as part of reclaim? */
95 #define DEACTIVATE_ANON 1
96 #define DEACTIVATE_FILE 2
97 	unsigned int may_deactivate:2;
98 	unsigned int force_deactivate:1;
99 	unsigned int skipped_deactivate:1;
100 
101 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
102 	unsigned int may_writepage:1;
103 
104 	/* Can mapped pages be reclaimed? */
105 	unsigned int may_unmap:1;
106 
107 	/* Can pages be swapped as part of reclaim? */
108 	unsigned int may_swap:1;
109 
110 	/*
111 	 * Cgroup memory below memory.low is protected as long as we
112 	 * don't threaten to OOM. If any cgroup is reclaimed at
113 	 * reduced force or passed over entirely due to its memory.low
114 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
115 	 * result, then go back for one more cycle that reclaims the protected
116 	 * memory (memcg_low_reclaim) to avert OOM.
117 	 */
118 	unsigned int memcg_low_reclaim:1;
119 	unsigned int memcg_low_skipped:1;
120 
121 	unsigned int hibernation_mode:1;
122 
123 	/* One of the zones is ready for compaction */
124 	unsigned int compaction_ready:1;
125 
126 	/* There is easily reclaimable cold cache in the current node */
127 	unsigned int cache_trim_mode:1;
128 
129 	/* The file pages on the current node are dangerously low */
130 	unsigned int file_is_tiny:1;
131 
132 	/* Allocation order */
133 	s8 order;
134 
135 	/* Scan (total_size >> priority) pages at once */
136 	s8 priority;
137 
138 	/* The highest zone to isolate pages for reclaim from */
139 	s8 reclaim_idx;
140 
141 	/* This context's GFP mask */
142 	gfp_t gfp_mask;
143 
144 	/* Incremented by the number of inactive pages that were scanned */
145 	unsigned long nr_scanned;
146 
147 	/* Number of pages freed so far during a call to shrink_zones() */
148 	unsigned long nr_reclaimed;
149 
150 	struct {
151 		unsigned int dirty;
152 		unsigned int unqueued_dirty;
153 		unsigned int congested;
154 		unsigned int writeback;
155 		unsigned int immediate;
156 		unsigned int file_taken;
157 		unsigned int taken;
158 	} nr;
159 
160 	/* for recording the reclaimed slab by now */
161 	struct reclaim_state reclaim_state;
162 };
163 
164 #ifdef ARCH_HAS_PREFETCHW
165 #define prefetchw_prev_lru_page(_page, _base, _field)			\
166 	do {								\
167 		if ((_page)->lru.prev != _base) {			\
168 			struct page *prev;				\
169 									\
170 			prev = lru_to_page(&(_page->lru));		\
171 			prefetchw(&prev->_field);			\
172 		}							\
173 	} while (0)
174 #else
175 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
176 #endif
177 
178 /*
179  * From 0 .. 200.  Higher means more swappy.
180  */
181 int vm_swappiness = 60;
182 
183 #define DEF_KSWAPD_THREADS_PER_NODE 1
184 static int kswapd_threads = DEF_KSWAPD_THREADS_PER_NODE;
kswapd_per_node_setup(char * str)185 static int __init kswapd_per_node_setup(char *str)
186 {
187 	int tmp;
188 
189 	if (kstrtoint(str, 0, &tmp) < 0)
190 		return 0;
191 
192 	if (tmp > MAX_KSWAPD_THREADS || tmp <= 0)
193 		return 0;
194 
195 	kswapd_threads = tmp;
196 	return 1;
197 }
198 __setup("kswapd_per_node=", kswapd_per_node_setup);
199 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)200 static void set_task_reclaim_state(struct task_struct *task,
201 				   struct reclaim_state *rs)
202 {
203 	/* Check for an overwrite */
204 	WARN_ON_ONCE(rs && task->reclaim_state);
205 
206 	/* Check for the nulling of an already-nulled member */
207 	WARN_ON_ONCE(!rs && !task->reclaim_state);
208 
209 	task->reclaim_state = rs;
210 }
211 
212 static LIST_HEAD(shrinker_list);
213 static DECLARE_RWSEM(shrinker_rwsem);
214 
215 #ifdef CONFIG_MEMCG
216 /*
217  * We allow subsystems to populate their shrinker-related
218  * LRU lists before register_shrinker_prepared() is called
219  * for the shrinker, since we don't want to impose
220  * restrictions on their internal registration order.
221  * In this case shrink_slab_memcg() may find corresponding
222  * bit is set in the shrinkers map.
223  *
224  * This value is used by the function to detect registering
225  * shrinkers and to skip do_shrink_slab() calls for them.
226  */
227 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
228 
229 static DEFINE_IDR(shrinker_idr);
230 static int shrinker_nr_max;
231 
prealloc_memcg_shrinker(struct shrinker * shrinker)232 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
233 {
234 	int id, ret = -ENOMEM;
235 
236 	down_write(&shrinker_rwsem);
237 	/* This may call shrinker, so it must use down_read_trylock() */
238 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
239 	if (id < 0)
240 		goto unlock;
241 
242 	if (id >= shrinker_nr_max) {
243 		if (memcg_expand_shrinker_maps(id)) {
244 			idr_remove(&shrinker_idr, id);
245 			goto unlock;
246 		}
247 
248 		shrinker_nr_max = id + 1;
249 	}
250 	shrinker->id = id;
251 	ret = 0;
252 unlock:
253 	up_write(&shrinker_rwsem);
254 	return ret;
255 }
256 
unregister_memcg_shrinker(struct shrinker * shrinker)257 static void unregister_memcg_shrinker(struct shrinker *shrinker)
258 {
259 	int id = shrinker->id;
260 
261 	BUG_ON(id < 0);
262 
263 	down_write(&shrinker_rwsem);
264 	idr_remove(&shrinker_idr, id);
265 	up_write(&shrinker_rwsem);
266 }
267 
cgroup_reclaim(struct scan_control * sc)268 static bool cgroup_reclaim(struct scan_control *sc)
269 {
270 	return sc->target_mem_cgroup;
271 }
272 
273 /**
274  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
275  * @sc: scan_control in question
276  *
277  * The normal page dirty throttling mechanism in balance_dirty_pages() is
278  * completely broken with the legacy memcg and direct stalling in
279  * shrink_page_list() is used for throttling instead, which lacks all the
280  * niceties such as fairness, adaptive pausing, bandwidth proportional
281  * allocation and configurability.
282  *
283  * This function tests whether the vmscan currently in progress can assume
284  * that the normal dirty throttling mechanism is operational.
285  */
writeback_throttling_sane(struct scan_control * sc)286 static bool writeback_throttling_sane(struct scan_control *sc)
287 {
288 	if (!cgroup_reclaim(sc))
289 		return true;
290 #ifdef CONFIG_CGROUP_WRITEBACK
291 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
292 		return true;
293 #endif
294 	return false;
295 }
296 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)297 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
298 {
299 	return 0;
300 }
301 
unregister_memcg_shrinker(struct shrinker * shrinker)302 static void unregister_memcg_shrinker(struct shrinker *shrinker)
303 {
304 }
305 
cgroup_reclaim(struct scan_control * sc)306 static bool cgroup_reclaim(struct scan_control *sc)
307 {
308 	return false;
309 }
310 
writeback_throttling_sane(struct scan_control * sc)311 static bool writeback_throttling_sane(struct scan_control *sc)
312 {
313 	return true;
314 }
315 #endif
316 
317 /*
318  * This misses isolated pages which are not accounted for to save counters.
319  * As the data only determines if reclaim or compaction continues, it is
320  * not expected that isolated pages will be a dominating factor.
321  */
zone_reclaimable_pages(struct zone * zone)322 unsigned long zone_reclaimable_pages(struct zone *zone)
323 {
324 	unsigned long nr;
325 
326 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
327 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
328 	if (get_nr_swap_pages() > 0)
329 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
330 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
331 
332 	return nr;
333 }
334 
335 /**
336  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
337  * @lruvec: lru vector
338  * @lru: lru to use
339  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
340  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)341 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
342 {
343 	unsigned long size = 0;
344 	int zid;
345 
346 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
347 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
348 
349 		if (!managed_zone(zone))
350 			continue;
351 
352 		if (!mem_cgroup_disabled())
353 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
354 		else
355 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
356 	}
357 	return size;
358 }
359 
360 /*
361  * Add a shrinker callback to be called from the vm.
362  */
prealloc_shrinker(struct shrinker * shrinker)363 int prealloc_shrinker(struct shrinker *shrinker)
364 {
365 	unsigned int size = sizeof(*shrinker->nr_deferred);
366 
367 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
368 		size *= nr_node_ids;
369 
370 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
371 	if (!shrinker->nr_deferred)
372 		return -ENOMEM;
373 
374 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
375 		if (prealloc_memcg_shrinker(shrinker))
376 			goto free_deferred;
377 	}
378 
379 	return 0;
380 
381 free_deferred:
382 	kfree(shrinker->nr_deferred);
383 	shrinker->nr_deferred = NULL;
384 	return -ENOMEM;
385 }
386 
free_prealloced_shrinker(struct shrinker * shrinker)387 void free_prealloced_shrinker(struct shrinker *shrinker)
388 {
389 	if (!shrinker->nr_deferred)
390 		return;
391 
392 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
393 		unregister_memcg_shrinker(shrinker);
394 
395 	kfree(shrinker->nr_deferred);
396 	shrinker->nr_deferred = NULL;
397 }
398 
register_shrinker_prepared(struct shrinker * shrinker)399 void register_shrinker_prepared(struct shrinker *shrinker)
400 {
401 	down_write(&shrinker_rwsem);
402 	list_add_tail(&shrinker->list, &shrinker_list);
403 #ifdef CONFIG_MEMCG
404 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
406 #endif
407 	up_write(&shrinker_rwsem);
408 }
409 
register_shrinker(struct shrinker * shrinker)410 int register_shrinker(struct shrinker *shrinker)
411 {
412 	int err = prealloc_shrinker(shrinker);
413 
414 	if (err)
415 		return err;
416 	register_shrinker_prepared(shrinker);
417 	return 0;
418 }
419 EXPORT_SYMBOL(register_shrinker);
420 
421 /*
422  * Remove one
423  */
unregister_shrinker(struct shrinker * shrinker)424 void unregister_shrinker(struct shrinker *shrinker)
425 {
426 	if (!shrinker->nr_deferred)
427 		return;
428 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
429 		unregister_memcg_shrinker(shrinker);
430 	down_write(&shrinker_rwsem);
431 	list_del(&shrinker->list);
432 	up_write(&shrinker_rwsem);
433 	kfree(shrinker->nr_deferred);
434 	shrinker->nr_deferred = NULL;
435 }
436 EXPORT_SYMBOL(unregister_shrinker);
437 
438 #define SHRINK_BATCH 128
439 
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)440 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
441 				    struct shrinker *shrinker, int priority)
442 {
443 	unsigned long freed = 0;
444 	unsigned long long delta;
445 	long total_scan;
446 	long freeable;
447 	long nr;
448 	long new_nr;
449 	int nid = shrinkctl->nid;
450 	long batch_size = shrinker->batch ? shrinker->batch
451 					  : SHRINK_BATCH;
452 	long scanned = 0, next_deferred;
453 
454 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
455 		nid = 0;
456 
457 	freeable = shrinker->count_objects(shrinker, shrinkctl);
458 	if (freeable == 0 || freeable == SHRINK_EMPTY)
459 		return freeable;
460 
461 	/*
462 	 * copy the current shrinker scan count into a local variable
463 	 * and zero it so that other concurrent shrinker invocations
464 	 * don't also do this scanning work.
465 	 */
466 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
467 
468 	total_scan = nr;
469 	if (shrinker->seeks) {
470 		delta = freeable >> priority;
471 		delta *= 4;
472 		do_div(delta, shrinker->seeks);
473 	} else {
474 		/*
475 		 * These objects don't require any IO to create. Trim
476 		 * them aggressively under memory pressure to keep
477 		 * them from causing refetches in the IO caches.
478 		 */
479 		delta = freeable / 2;
480 	}
481 
482 	total_scan += delta;
483 	if (total_scan < 0) {
484 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
485 		       shrinker->scan_objects, total_scan);
486 		total_scan = freeable;
487 		next_deferred = nr;
488 	} else
489 		next_deferred = total_scan;
490 
491 	/*
492 	 * We need to avoid excessive windup on filesystem shrinkers
493 	 * due to large numbers of GFP_NOFS allocations causing the
494 	 * shrinkers to return -1 all the time. This results in a large
495 	 * nr being built up so when a shrink that can do some work
496 	 * comes along it empties the entire cache due to nr >>>
497 	 * freeable. This is bad for sustaining a working set in
498 	 * memory.
499 	 *
500 	 * Hence only allow the shrinker to scan the entire cache when
501 	 * a large delta change is calculated directly.
502 	 */
503 	if (delta < freeable / 4)
504 		total_scan = min(total_scan, freeable / 2);
505 
506 	/*
507 	 * Avoid risking looping forever due to too large nr value:
508 	 * never try to free more than twice the estimate number of
509 	 * freeable entries.
510 	 */
511 	if (total_scan > freeable * 2)
512 		total_scan = freeable * 2;
513 
514 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
515 				   freeable, delta, total_scan, priority);
516 
517 	/*
518 	 * Normally, we should not scan less than batch_size objects in one
519 	 * pass to avoid too frequent shrinker calls, but if the slab has less
520 	 * than batch_size objects in total and we are really tight on memory,
521 	 * we will try to reclaim all available objects, otherwise we can end
522 	 * up failing allocations although there are plenty of reclaimable
523 	 * objects spread over several slabs with usage less than the
524 	 * batch_size.
525 	 *
526 	 * We detect the "tight on memory" situations by looking at the total
527 	 * number of objects we want to scan (total_scan). If it is greater
528 	 * than the total number of objects on slab (freeable), we must be
529 	 * scanning at high prio and therefore should try to reclaim as much as
530 	 * possible.
531 	 */
532 	while (total_scan >= batch_size ||
533 	       total_scan >= freeable) {
534 		unsigned long ret;
535 		unsigned long nr_to_scan = min(batch_size, total_scan);
536 
537 		shrinkctl->nr_to_scan = nr_to_scan;
538 		shrinkctl->nr_scanned = nr_to_scan;
539 		ret = shrinker->scan_objects(shrinker, shrinkctl);
540 		if (ret == SHRINK_STOP)
541 			break;
542 		freed += ret;
543 
544 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
545 		total_scan -= shrinkctl->nr_scanned;
546 		scanned += shrinkctl->nr_scanned;
547 
548 		cond_resched();
549 	}
550 
551 	if (next_deferred >= scanned)
552 		next_deferred -= scanned;
553 	else
554 		next_deferred = 0;
555 	/*
556 	 * move the unused scan count back into the shrinker in a
557 	 * manner that handles concurrent updates. If we exhausted the
558 	 * scan, there is no need to do an update.
559 	 */
560 	if (next_deferred > 0)
561 		new_nr = atomic_long_add_return(next_deferred,
562 						&shrinker->nr_deferred[nid]);
563 	else
564 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
565 
566 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
567 	return freed;
568 }
569 
570 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)571 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
572 			struct mem_cgroup *memcg, int priority)
573 {
574 	struct memcg_shrinker_map *map;
575 	unsigned long ret, freed = 0;
576 	int i;
577 
578 	if (!mem_cgroup_online(memcg))
579 		return 0;
580 
581 	if (!down_read_trylock(&shrinker_rwsem))
582 		return 0;
583 
584 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
585 					true);
586 	if (unlikely(!map))
587 		goto unlock;
588 
589 	for_each_set_bit(i, map->map, shrinker_nr_max) {
590 		struct shrink_control sc = {
591 			.gfp_mask = gfp_mask,
592 			.nid = nid,
593 			.memcg = memcg,
594 		};
595 		struct shrinker *shrinker;
596 
597 		shrinker = idr_find(&shrinker_idr, i);
598 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
599 			if (!shrinker)
600 				clear_bit(i, map->map);
601 			continue;
602 		}
603 
604 		/* Call non-slab shrinkers even though kmem is disabled */
605 		if (!memcg_kmem_enabled() &&
606 		    !(shrinker->flags & SHRINKER_NONSLAB))
607 			continue;
608 
609 		ret = do_shrink_slab(&sc, shrinker, priority);
610 		if (ret == SHRINK_EMPTY) {
611 			clear_bit(i, map->map);
612 			/*
613 			 * After the shrinker reported that it had no objects to
614 			 * free, but before we cleared the corresponding bit in
615 			 * the memcg shrinker map, a new object might have been
616 			 * added. To make sure, we have the bit set in this
617 			 * case, we invoke the shrinker one more time and reset
618 			 * the bit if it reports that it is not empty anymore.
619 			 * The memory barrier here pairs with the barrier in
620 			 * memcg_set_shrinker_bit():
621 			 *
622 			 * list_lru_add()     shrink_slab_memcg()
623 			 *   list_add_tail()    clear_bit()
624 			 *   <MB>               <MB>
625 			 *   set_bit()          do_shrink_slab()
626 			 */
627 			smp_mb__after_atomic();
628 			ret = do_shrink_slab(&sc, shrinker, priority);
629 			if (ret == SHRINK_EMPTY)
630 				ret = 0;
631 			else
632 				memcg_set_shrinker_bit(memcg, nid, i);
633 		}
634 		freed += ret;
635 
636 		if (rwsem_is_contended(&shrinker_rwsem)) {
637 			freed = freed ? : 1;
638 			break;
639 		}
640 	}
641 unlock:
642 	up_read(&shrinker_rwsem);
643 	return freed;
644 }
645 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)646 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
647 			struct mem_cgroup *memcg, int priority)
648 {
649 	return 0;
650 }
651 #endif /* CONFIG_MEMCG */
652 
653 /**
654  * shrink_slab - shrink slab caches
655  * @gfp_mask: allocation context
656  * @nid: node whose slab caches to target
657  * @memcg: memory cgroup whose slab caches to target
658  * @priority: the reclaim priority
659  *
660  * Call the shrink functions to age shrinkable caches.
661  *
662  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
663  * unaware shrinkers will receive a node id of 0 instead.
664  *
665  * @memcg specifies the memory cgroup to target. Unaware shrinkers
666  * are called only if it is the root cgroup.
667  *
668  * @priority is sc->priority, we take the number of objects and >> by priority
669  * in order to get the scan target.
670  *
671  * Returns the number of reclaimed slab objects.
672  */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)673 unsigned long shrink_slab(gfp_t gfp_mask, int nid,
674 				 struct mem_cgroup *memcg,
675 				 int priority)
676 {
677 	unsigned long ret, freed = 0;
678 	struct shrinker *shrinker;
679 	bool bypass = false;
680 
681 	trace_android_vh_shrink_slab_bypass(gfp_mask, nid, memcg, priority, &bypass);
682 	if (bypass)
683 		return 0;
684 
685 	/*
686 	 * The root memcg might be allocated even though memcg is disabled
687 	 * via "cgroup_disable=memory" boot parameter.  This could make
688 	 * mem_cgroup_is_root() return false, then just run memcg slab
689 	 * shrink, but skip global shrink.  This may result in premature
690 	 * oom.
691 	 */
692 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
693 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
694 
695 	if (!down_read_trylock(&shrinker_rwsem))
696 		goto out;
697 
698 	list_for_each_entry(shrinker, &shrinker_list, list) {
699 		struct shrink_control sc = {
700 			.gfp_mask = gfp_mask,
701 			.nid = nid,
702 			.memcg = memcg,
703 		};
704 
705 		ret = do_shrink_slab(&sc, shrinker, priority);
706 		if (ret == SHRINK_EMPTY)
707 			ret = 0;
708 		freed += ret;
709 		/*
710 		 * Bail out if someone want to register a new shrinker to
711 		 * prevent the registration from being stalled for long periods
712 		 * by parallel ongoing shrinking.
713 		 */
714 		if (rwsem_is_contended(&shrinker_rwsem)) {
715 			freed = freed ? : 1;
716 			break;
717 		}
718 	}
719 
720 	up_read(&shrinker_rwsem);
721 out:
722 	cond_resched();
723 	return freed;
724 }
725 EXPORT_SYMBOL_GPL(shrink_slab);
726 
drop_slab_node(int nid)727 void drop_slab_node(int nid)
728 {
729 	unsigned long freed;
730 
731 	do {
732 		struct mem_cgroup *memcg = NULL;
733 
734 		if (fatal_signal_pending(current))
735 			return;
736 
737 		freed = 0;
738 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
739 		do {
740 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
741 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
742 	} while (freed > 10);
743 }
744 
drop_slab(void)745 void drop_slab(void)
746 {
747 	int nid;
748 
749 	for_each_online_node(nid)
750 		drop_slab_node(nid);
751 }
752 
is_page_cache_freeable(struct page * page)753 static inline int is_page_cache_freeable(struct page *page)
754 {
755 	/*
756 	 * A freeable page cache page is referenced only by the caller
757 	 * that isolated the page, the page cache and optional buffer
758 	 * heads at page->private.
759 	 */
760 	int page_cache_pins = thp_nr_pages(page);
761 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
762 }
763 
may_write_to_inode(struct inode * inode)764 static int may_write_to_inode(struct inode *inode)
765 {
766 	if (current->flags & PF_SWAPWRITE)
767 		return 1;
768 	if (!inode_write_congested(inode))
769 		return 1;
770 	if (inode_to_bdi(inode) == current->backing_dev_info)
771 		return 1;
772 	return 0;
773 }
774 
775 /*
776  * We detected a synchronous write error writing a page out.  Probably
777  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
778  * fsync(), msync() or close().
779  *
780  * The tricky part is that after writepage we cannot touch the mapping: nothing
781  * prevents it from being freed up.  But we have a ref on the page and once
782  * that page is locked, the mapping is pinned.
783  *
784  * We're allowed to run sleeping lock_page() here because we know the caller has
785  * __GFP_FS.
786  */
handle_write_error(struct address_space * mapping,struct page * page,int error)787 static void handle_write_error(struct address_space *mapping,
788 				struct page *page, int error)
789 {
790 	lock_page(page);
791 	if (page_mapping(page) == mapping)
792 		mapping_set_error(mapping, error);
793 	unlock_page(page);
794 }
795 
796 /* possible outcome of pageout() */
797 typedef enum {
798 	/* failed to write page out, page is locked */
799 	PAGE_KEEP,
800 	/* move page to the active list, page is locked */
801 	PAGE_ACTIVATE,
802 	/* page has been sent to the disk successfully, page is unlocked */
803 	PAGE_SUCCESS,
804 	/* page is clean and locked */
805 	PAGE_CLEAN,
806 } pageout_t;
807 
808 /*
809  * pageout is called by shrink_page_list() for each dirty page.
810  * Calls ->writepage().
811  */
pageout(struct page * page,struct address_space * mapping)812 static pageout_t pageout(struct page *page, struct address_space *mapping)
813 {
814 	/*
815 	 * If the page is dirty, only perform writeback if that write
816 	 * will be non-blocking.  To prevent this allocation from being
817 	 * stalled by pagecache activity.  But note that there may be
818 	 * stalls if we need to run get_block().  We could test
819 	 * PagePrivate for that.
820 	 *
821 	 * If this process is currently in __generic_file_write_iter() against
822 	 * this page's queue, we can perform writeback even if that
823 	 * will block.
824 	 *
825 	 * If the page is swapcache, write it back even if that would
826 	 * block, for some throttling. This happens by accident, because
827 	 * swap_backing_dev_info is bust: it doesn't reflect the
828 	 * congestion state of the swapdevs.  Easy to fix, if needed.
829 	 */
830 	if (!is_page_cache_freeable(page))
831 		return PAGE_KEEP;
832 	if (!mapping) {
833 		/*
834 		 * Some data journaling orphaned pages can have
835 		 * page->mapping == NULL while being dirty with clean buffers.
836 		 */
837 		if (page_has_private(page)) {
838 			if (try_to_free_buffers(page)) {
839 				ClearPageDirty(page);
840 				pr_info("%s: orphaned page\n", __func__);
841 				return PAGE_CLEAN;
842 			}
843 		}
844 		return PAGE_KEEP;
845 	}
846 	if (mapping->a_ops->writepage == NULL)
847 		return PAGE_ACTIVATE;
848 	if (!may_write_to_inode(mapping->host))
849 		return PAGE_KEEP;
850 
851 	if (clear_page_dirty_for_io(page)) {
852 		int res;
853 		struct writeback_control wbc = {
854 			.sync_mode = WB_SYNC_NONE,
855 			.nr_to_write = SWAP_CLUSTER_MAX,
856 			.range_start = 0,
857 			.range_end = LLONG_MAX,
858 			.for_reclaim = 1,
859 		};
860 
861 		SetPageReclaim(page);
862 		res = mapping->a_ops->writepage(page, &wbc);
863 		if (res < 0)
864 			handle_write_error(mapping, page, res);
865 		if (res == AOP_WRITEPAGE_ACTIVATE) {
866 			ClearPageReclaim(page);
867 			return PAGE_ACTIVATE;
868 		}
869 
870 		if (!PageWriteback(page)) {
871 			/* synchronous write or broken a_ops? */
872 			ClearPageReclaim(page);
873 		}
874 		trace_mm_vmscan_writepage(page);
875 		inc_node_page_state(page, NR_VMSCAN_WRITE);
876 		return PAGE_SUCCESS;
877 	}
878 
879 	return PAGE_CLEAN;
880 }
881 
882 /*
883  * Same as remove_mapping, but if the page is removed from the mapping, it
884  * gets returned with a refcount of 0.
885  */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed,struct mem_cgroup * target_memcg)886 static int __remove_mapping(struct address_space *mapping, struct page *page,
887 			    bool reclaimed, struct mem_cgroup *target_memcg)
888 {
889 	unsigned long flags;
890 	int refcount;
891 	void *shadow = NULL;
892 
893 	BUG_ON(!PageLocked(page));
894 	BUG_ON(mapping != page_mapping(page));
895 
896 	xa_lock_irqsave(&mapping->i_pages, flags);
897 	/*
898 	 * The non racy check for a busy page.
899 	 *
900 	 * Must be careful with the order of the tests. When someone has
901 	 * a ref to the page, it may be possible that they dirty it then
902 	 * drop the reference. So if PageDirty is tested before page_count
903 	 * here, then the following race may occur:
904 	 *
905 	 * get_user_pages(&page);
906 	 * [user mapping goes away]
907 	 * write_to(page);
908 	 *				!PageDirty(page)    [good]
909 	 * SetPageDirty(page);
910 	 * put_page(page);
911 	 *				!page_count(page)   [good, discard it]
912 	 *
913 	 * [oops, our write_to data is lost]
914 	 *
915 	 * Reversing the order of the tests ensures such a situation cannot
916 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
917 	 * load is not satisfied before that of page->_refcount.
918 	 *
919 	 * Note that if SetPageDirty is always performed via set_page_dirty,
920 	 * and thus under the i_pages lock, then this ordering is not required.
921 	 */
922 	refcount = 1 + compound_nr(page);
923 	if (!page_ref_freeze(page, refcount))
924 		goto cannot_free;
925 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
926 	if (unlikely(PageDirty(page))) {
927 		page_ref_unfreeze(page, refcount);
928 		goto cannot_free;
929 	}
930 
931 	if (PageSwapCache(page)) {
932 		swp_entry_t swap = { .val = page_private(page) };
933 		mem_cgroup_swapout(page, swap);
934 		if (reclaimed && !mapping_exiting(mapping))
935 			shadow = workingset_eviction(page, target_memcg);
936 		__delete_from_swap_cache(page, swap, shadow);
937 		xa_unlock_irqrestore(&mapping->i_pages, flags);
938 		put_swap_page(page, swap);
939 	} else {
940 		void (*freepage)(struct page *);
941 
942 		freepage = mapping->a_ops->freepage;
943 		/*
944 		 * Remember a shadow entry for reclaimed file cache in
945 		 * order to detect refaults, thus thrashing, later on.
946 		 *
947 		 * But don't store shadows in an address space that is
948 		 * already exiting.  This is not just an optimization,
949 		 * inode reclaim needs to empty out the radix tree or
950 		 * the nodes are lost.  Don't plant shadows behind its
951 		 * back.
952 		 *
953 		 * We also don't store shadows for DAX mappings because the
954 		 * only page cache pages found in these are zero pages
955 		 * covering holes, and because we don't want to mix DAX
956 		 * exceptional entries and shadow exceptional entries in the
957 		 * same address_space.
958 		 */
959 		if (reclaimed && page_is_file_lru(page) &&
960 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
961 			shadow = workingset_eviction(page, target_memcg);
962 		__delete_from_page_cache(page, shadow);
963 		xa_unlock_irqrestore(&mapping->i_pages, flags);
964 
965 		if (freepage != NULL)
966 			freepage(page);
967 	}
968 
969 	return 1;
970 
971 cannot_free:
972 	xa_unlock_irqrestore(&mapping->i_pages, flags);
973 	return 0;
974 }
975 
976 /*
977  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
978  * someone else has a ref on the page, abort and return 0.  If it was
979  * successfully detached, return 1.  Assumes the caller has a single ref on
980  * this page.
981  */
remove_mapping(struct address_space * mapping,struct page * page)982 int remove_mapping(struct address_space *mapping, struct page *page)
983 {
984 	if (__remove_mapping(mapping, page, false, NULL)) {
985 		/*
986 		 * Unfreezing the refcount with 1 rather than 2 effectively
987 		 * drops the pagecache ref for us without requiring another
988 		 * atomic operation.
989 		 */
990 		page_ref_unfreeze(page, 1);
991 		return 1;
992 	}
993 	return 0;
994 }
995 
996 /**
997  * putback_lru_page - put previously isolated page onto appropriate LRU list
998  * @page: page to be put back to appropriate lru list
999  *
1000  * Add previously isolated @page to appropriate LRU list.
1001  * Page may still be unevictable for other reasons.
1002  *
1003  * lru_lock must not be held, interrupts must be enabled.
1004  */
putback_lru_page(struct page * page)1005 void putback_lru_page(struct page *page)
1006 {
1007 	lru_cache_add(page);
1008 	put_page(page);		/* drop ref from isolate */
1009 }
1010 
1011 enum page_references {
1012 	PAGEREF_RECLAIM,
1013 	PAGEREF_RECLAIM_CLEAN,
1014 	PAGEREF_KEEP,
1015 	PAGEREF_ACTIVATE,
1016 };
1017 
page_check_references(struct page * page,struct scan_control * sc)1018 static enum page_references page_check_references(struct page *page,
1019 						  struct scan_control *sc)
1020 {
1021 	int referenced_ptes, referenced_page;
1022 	unsigned long vm_flags;
1023 	bool should_protect = false;
1024 	bool trylock_fail = false;
1025 	int ret = 0;
1026 
1027 	trace_android_vh_page_should_be_protected(page, &should_protect);
1028 	if (unlikely(should_protect))
1029 		return PAGEREF_ACTIVATE;
1030 
1031 	trace_android_vh_page_trylock_set(page);
1032 	trace_android_vh_check_page_look_around_ref(page, &ret);
1033 	if (ret)
1034 		return ret;
1035 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1036 					  &vm_flags);
1037 	referenced_page = TestClearPageReferenced(page);
1038 	trace_android_vh_page_trylock_get_result(page, &trylock_fail);
1039 	if (trylock_fail)
1040 		return PAGEREF_KEEP;
1041 	/*
1042 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1043 	 * move the page to the unevictable list.
1044 	 */
1045 	if (vm_flags & VM_LOCKED)
1046 		return PAGEREF_RECLAIM;
1047 
1048 	/* rmap lock contention: rotate */
1049 	if (referenced_ptes == -1)
1050 		return PAGEREF_KEEP;
1051 
1052 	if (referenced_ptes) {
1053 		/*
1054 		 * All mapped pages start out with page table
1055 		 * references from the instantiating fault, so we need
1056 		 * to look twice if a mapped file page is used more
1057 		 * than once.
1058 		 *
1059 		 * Mark it and spare it for another trip around the
1060 		 * inactive list.  Another page table reference will
1061 		 * lead to its activation.
1062 		 *
1063 		 * Note: the mark is set for activated pages as well
1064 		 * so that recently deactivated but used pages are
1065 		 * quickly recovered.
1066 		 */
1067 		SetPageReferenced(page);
1068 
1069 		if (referenced_page || referenced_ptes > 1)
1070 			return PAGEREF_ACTIVATE;
1071 
1072 		/*
1073 		 * Activate file-backed executable pages after first usage.
1074 		 */
1075 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1076 			return PAGEREF_ACTIVATE;
1077 
1078 		return PAGEREF_KEEP;
1079 	}
1080 
1081 	/* Reclaim if clean, defer dirty pages to writeback */
1082 	if (referenced_page && !PageSwapBacked(page))
1083 		return PAGEREF_RECLAIM_CLEAN;
1084 
1085 	return PAGEREF_RECLAIM;
1086 }
1087 
1088 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)1089 static void page_check_dirty_writeback(struct page *page,
1090 				       bool *dirty, bool *writeback)
1091 {
1092 	struct address_space *mapping;
1093 
1094 	/*
1095 	 * Anonymous pages are not handled by flushers and must be written
1096 	 * from reclaim context. Do not stall reclaim based on them
1097 	 */
1098 	if (!page_is_file_lru(page) ||
1099 	    (PageAnon(page) && !PageSwapBacked(page))) {
1100 		*dirty = false;
1101 		*writeback = false;
1102 		return;
1103 	}
1104 
1105 	/* By default assume that the page flags are accurate */
1106 	*dirty = PageDirty(page);
1107 	*writeback = PageWriteback(page);
1108 
1109 	/* Verify dirty/writeback state if the filesystem supports it */
1110 	if (!page_has_private(page))
1111 		return;
1112 
1113 	mapping = page_mapping(page);
1114 	if (mapping && mapping->a_ops->is_dirty_writeback)
1115 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1116 }
1117 
1118 /*
1119  * shrink_page_list() returns the number of reclaimed pages
1120  */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1121 static unsigned int shrink_page_list(struct list_head *page_list,
1122 				     struct pglist_data *pgdat,
1123 				     struct scan_control *sc,
1124 				     struct reclaim_stat *stat,
1125 				     bool ignore_references)
1126 {
1127 	LIST_HEAD(ret_pages);
1128 	LIST_HEAD(free_pages);
1129 	unsigned int nr_reclaimed = 0;
1130 	unsigned int pgactivate = 0;
1131 
1132 	memset(stat, 0, sizeof(*stat));
1133 	cond_resched();
1134 
1135 	while (!list_empty(page_list)) {
1136 		struct address_space *mapping;
1137 		struct page *page;
1138 		enum page_references references = PAGEREF_RECLAIM;
1139 		bool dirty, writeback, may_enter_fs;
1140 		unsigned int nr_pages;
1141 
1142 		cond_resched();
1143 
1144 		page = lru_to_page(page_list);
1145 		list_del(&page->lru);
1146 
1147 		if (!trylock_page(page))
1148 			goto keep;
1149 
1150 		VM_BUG_ON_PAGE(PageActive(page), page);
1151 
1152 		nr_pages = compound_nr(page);
1153 
1154 		/* Account the number of base pages even though THP */
1155 		sc->nr_scanned += nr_pages;
1156 
1157 		if (unlikely(!page_evictable(page)))
1158 			goto activate_locked;
1159 
1160 		if (!sc->may_unmap && page_mapped(page))
1161 			goto keep_locked;
1162 
1163 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1164 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1165 
1166 		/*
1167 		 * The number of dirty pages determines if a node is marked
1168 		 * reclaim_congested which affects wait_iff_congested. kswapd
1169 		 * will stall and start writing pages if the tail of the LRU
1170 		 * is all dirty unqueued pages.
1171 		 */
1172 		page_check_dirty_writeback(page, &dirty, &writeback);
1173 		if (dirty || writeback)
1174 			stat->nr_dirty++;
1175 
1176 		if (dirty && !writeback)
1177 			stat->nr_unqueued_dirty++;
1178 
1179 		/*
1180 		 * Treat this page as congested if the underlying BDI is or if
1181 		 * pages are cycling through the LRU so quickly that the
1182 		 * pages marked for immediate reclaim are making it to the
1183 		 * end of the LRU a second time.
1184 		 */
1185 		mapping = page_mapping(page);
1186 		if (((dirty || writeback) && mapping &&
1187 		     inode_write_congested(mapping->host)) ||
1188 		    (writeback && PageReclaim(page)))
1189 			stat->nr_congested++;
1190 
1191 		/*
1192 		 * If a page at the tail of the LRU is under writeback, there
1193 		 * are three cases to consider.
1194 		 *
1195 		 * 1) If reclaim is encountering an excessive number of pages
1196 		 *    under writeback and this page is both under writeback and
1197 		 *    PageReclaim then it indicates that pages are being queued
1198 		 *    for IO but are being recycled through the LRU before the
1199 		 *    IO can complete. Waiting on the page itself risks an
1200 		 *    indefinite stall if it is impossible to writeback the
1201 		 *    page due to IO error or disconnected storage so instead
1202 		 *    note that the LRU is being scanned too quickly and the
1203 		 *    caller can stall after page list has been processed.
1204 		 *
1205 		 * 2) Global or new memcg reclaim encounters a page that is
1206 		 *    not marked for immediate reclaim, or the caller does not
1207 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1208 		 *    not to fs). In this case mark the page for immediate
1209 		 *    reclaim and continue scanning.
1210 		 *
1211 		 *    Require may_enter_fs because we would wait on fs, which
1212 		 *    may not have submitted IO yet. And the loop driver might
1213 		 *    enter reclaim, and deadlock if it waits on a page for
1214 		 *    which it is needed to do the write (loop masks off
1215 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1216 		 *    would probably show more reasons.
1217 		 *
1218 		 * 3) Legacy memcg encounters a page that is already marked
1219 		 *    PageReclaim. memcg does not have any dirty pages
1220 		 *    throttling so we could easily OOM just because too many
1221 		 *    pages are in writeback and there is nothing else to
1222 		 *    reclaim. Wait for the writeback to complete.
1223 		 *
1224 		 * In cases 1) and 2) we activate the pages to get them out of
1225 		 * the way while we continue scanning for clean pages on the
1226 		 * inactive list and refilling from the active list. The
1227 		 * observation here is that waiting for disk writes is more
1228 		 * expensive than potentially causing reloads down the line.
1229 		 * Since they're marked for immediate reclaim, they won't put
1230 		 * memory pressure on the cache working set any longer than it
1231 		 * takes to write them to disk.
1232 		 */
1233 		if (PageWriteback(page)) {
1234 			/* Case 1 above */
1235 			if (current_is_kswapd() &&
1236 			    PageReclaim(page) &&
1237 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1238 				stat->nr_immediate++;
1239 				goto activate_locked;
1240 
1241 			/* Case 2 above */
1242 			} else if (writeback_throttling_sane(sc) ||
1243 			    !PageReclaim(page) || !may_enter_fs) {
1244 				/*
1245 				 * This is slightly racy - end_page_writeback()
1246 				 * might have just cleared PageReclaim, then
1247 				 * setting PageReclaim here end up interpreted
1248 				 * as PageReadahead - but that does not matter
1249 				 * enough to care.  What we do want is for this
1250 				 * page to have PageReclaim set next time memcg
1251 				 * reclaim reaches the tests above, so it will
1252 				 * then wait_on_page_writeback() to avoid OOM;
1253 				 * and it's also appropriate in global reclaim.
1254 				 */
1255 				SetPageReclaim(page);
1256 				stat->nr_writeback++;
1257 				goto activate_locked;
1258 
1259 			/* Case 3 above */
1260 			} else {
1261 				unlock_page(page);
1262 				wait_on_page_writeback(page);
1263 				/* then go back and try same page again */
1264 				list_add_tail(&page->lru, page_list);
1265 				continue;
1266 			}
1267 		}
1268 
1269 		if (!ignore_references)
1270 			references = page_check_references(page, sc);
1271 
1272 		switch (references) {
1273 		case PAGEREF_ACTIVATE:
1274 			goto activate_locked;
1275 		case PAGEREF_KEEP:
1276 			stat->nr_ref_keep += nr_pages;
1277 			goto keep_locked;
1278 		case PAGEREF_RECLAIM:
1279 		case PAGEREF_RECLAIM_CLEAN:
1280 			; /* try to reclaim the page below */
1281 		}
1282 
1283 		/*
1284 		 * Anonymous process memory has backing store?
1285 		 * Try to allocate it some swap space here.
1286 		 * Lazyfree page could be freed directly
1287 		 */
1288 		if (PageAnon(page) && PageSwapBacked(page)) {
1289 			if (!PageSwapCache(page)) {
1290 				if (!(sc->gfp_mask & __GFP_IO))
1291 					goto keep_locked;
1292 				if (page_maybe_dma_pinned(page))
1293 					goto keep_locked;
1294 				if (PageTransHuge(page)) {
1295 					/* cannot split THP, skip it */
1296 					if (!can_split_huge_page(page, NULL))
1297 						goto activate_locked;
1298 					/*
1299 					 * Split pages without a PMD map right
1300 					 * away. Chances are some or all of the
1301 					 * tail pages can be freed without IO.
1302 					 */
1303 					if (!compound_mapcount(page) &&
1304 					    split_huge_page_to_list(page,
1305 								    page_list))
1306 						goto activate_locked;
1307 				}
1308 				if (!add_to_swap(page)) {
1309 					if (!PageTransHuge(page))
1310 						goto activate_locked_split;
1311 					/* Fallback to swap normal pages */
1312 					if (split_huge_page_to_list(page,
1313 								    page_list))
1314 						goto activate_locked;
1315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1316 					count_vm_event(THP_SWPOUT_FALLBACK);
1317 #endif
1318 					if (!add_to_swap(page))
1319 						goto activate_locked_split;
1320 				}
1321 
1322 				may_enter_fs = true;
1323 
1324 				/* Adding to swap updated mapping */
1325 				mapping = page_mapping(page);
1326 			}
1327 		} else if (unlikely(PageTransHuge(page))) {
1328 			/* Split file THP */
1329 			if (split_huge_page_to_list(page, page_list))
1330 				goto keep_locked;
1331 		}
1332 
1333 		/*
1334 		 * THP may get split above, need minus tail pages and update
1335 		 * nr_pages to avoid accounting tail pages twice.
1336 		 *
1337 		 * The tail pages that are added into swap cache successfully
1338 		 * reach here.
1339 		 */
1340 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1341 			sc->nr_scanned -= (nr_pages - 1);
1342 			nr_pages = 1;
1343 		}
1344 
1345 		/*
1346 		 * The page is mapped into the page tables of one or more
1347 		 * processes. Try to unmap it here.
1348 		 */
1349 		if (page_mapped(page)) {
1350 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1351 			bool was_swapbacked = PageSwapBacked(page);
1352 
1353 			if (unlikely(PageTransHuge(page)))
1354 				flags |= TTU_SPLIT_HUGE_PMD;
1355 			if (!ignore_references)
1356 				trace_android_vh_page_trylock_set(page);
1357 			if (!try_to_unmap(page, flags)) {
1358 				stat->nr_unmap_fail += nr_pages;
1359 				if (!was_swapbacked && PageSwapBacked(page))
1360 					stat->nr_lazyfree_fail += nr_pages;
1361 				goto activate_locked;
1362 			}
1363 		}
1364 
1365 		if (PageDirty(page)) {
1366 			/*
1367 			 * Only kswapd can writeback filesystem pages
1368 			 * to avoid risk of stack overflow. But avoid
1369 			 * injecting inefficient single-page IO into
1370 			 * flusher writeback as much as possible: only
1371 			 * write pages when we've encountered many
1372 			 * dirty pages, and when we've already scanned
1373 			 * the rest of the LRU for clean pages and see
1374 			 * the same dirty pages again (PageReclaim).
1375 			 */
1376 			if (page_is_file_lru(page) &&
1377 			    (!current_is_kswapd() || !PageReclaim(page) ||
1378 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1379 				/*
1380 				 * Immediately reclaim when written back.
1381 				 * Similar in principal to deactivate_page()
1382 				 * except we already have the page isolated
1383 				 * and know it's dirty
1384 				 */
1385 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1386 				SetPageReclaim(page);
1387 
1388 				goto activate_locked;
1389 			}
1390 
1391 			if (references == PAGEREF_RECLAIM_CLEAN)
1392 				goto keep_locked;
1393 			if (!may_enter_fs)
1394 				goto keep_locked;
1395 			if (!sc->may_writepage)
1396 				goto keep_locked;
1397 
1398 			/*
1399 			 * Page is dirty. Flush the TLB if a writable entry
1400 			 * potentially exists to avoid CPU writes after IO
1401 			 * starts and then write it out here.
1402 			 */
1403 			try_to_unmap_flush_dirty();
1404 			switch (pageout(page, mapping)) {
1405 			case PAGE_KEEP:
1406 				goto keep_locked;
1407 			case PAGE_ACTIVATE:
1408 				goto activate_locked;
1409 			case PAGE_SUCCESS:
1410 				stat->nr_pageout += thp_nr_pages(page);
1411 
1412 				if (PageWriteback(page))
1413 					goto keep;
1414 				if (PageDirty(page))
1415 					goto keep;
1416 
1417 				/*
1418 				 * A synchronous write - probably a ramdisk.  Go
1419 				 * ahead and try to reclaim the page.
1420 				 */
1421 				if (!trylock_page(page))
1422 					goto keep;
1423 				if (PageDirty(page) || PageWriteback(page))
1424 					goto keep_locked;
1425 				mapping = page_mapping(page);
1426 			case PAGE_CLEAN:
1427 				; /* try to free the page below */
1428 			}
1429 		}
1430 
1431 		/*
1432 		 * If the page has buffers, try to free the buffer mappings
1433 		 * associated with this page. If we succeed we try to free
1434 		 * the page as well.
1435 		 *
1436 		 * We do this even if the page is PageDirty().
1437 		 * try_to_release_page() does not perform I/O, but it is
1438 		 * possible for a page to have PageDirty set, but it is actually
1439 		 * clean (all its buffers are clean).  This happens if the
1440 		 * buffers were written out directly, with submit_bh(). ext3
1441 		 * will do this, as well as the blockdev mapping.
1442 		 * try_to_release_page() will discover that cleanness and will
1443 		 * drop the buffers and mark the page clean - it can be freed.
1444 		 *
1445 		 * Rarely, pages can have buffers and no ->mapping.  These are
1446 		 * the pages which were not successfully invalidated in
1447 		 * truncate_complete_page().  We try to drop those buffers here
1448 		 * and if that worked, and the page is no longer mapped into
1449 		 * process address space (page_count == 1) it can be freed.
1450 		 * Otherwise, leave the page on the LRU so it is swappable.
1451 		 */
1452 		if (page_has_private(page)) {
1453 			if (!try_to_release_page(page, sc->gfp_mask))
1454 				goto activate_locked;
1455 			if (!mapping && page_count(page) == 1) {
1456 				unlock_page(page);
1457 				if (put_page_testzero(page))
1458 					goto free_it;
1459 				else {
1460 					/*
1461 					 * rare race with speculative reference.
1462 					 * the speculative reference will free
1463 					 * this page shortly, so we may
1464 					 * increment nr_reclaimed here (and
1465 					 * leave it off the LRU).
1466 					 */
1467 					trace_android_vh_page_trylock_clear(page);
1468 					nr_reclaimed++;
1469 					continue;
1470 				}
1471 			}
1472 		}
1473 
1474 		if (PageAnon(page) && !PageSwapBacked(page)) {
1475 			/* follow __remove_mapping for reference */
1476 			if (!page_ref_freeze(page, 1))
1477 				goto keep_locked;
1478 			if (PageDirty(page)) {
1479 				page_ref_unfreeze(page, 1);
1480 				goto keep_locked;
1481 			}
1482 
1483 			count_vm_event(PGLAZYFREED);
1484 			count_memcg_page_event(page, PGLAZYFREED);
1485 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1486 							 sc->target_mem_cgroup))
1487 			goto keep_locked;
1488 
1489 		unlock_page(page);
1490 free_it:
1491 		/*
1492 		 * THP may get swapped out in a whole, need account
1493 		 * all base pages.
1494 		 */
1495 		nr_reclaimed += nr_pages;
1496 
1497 		/*
1498 		 * Is there need to periodically free_page_list? It would
1499 		 * appear not as the counts should be low
1500 		 */
1501 		trace_android_vh_page_trylock_clear(page);
1502 		if (unlikely(PageTransHuge(page)))
1503 			destroy_compound_page(page);
1504 		else
1505 			list_add(&page->lru, &free_pages);
1506 		continue;
1507 
1508 activate_locked_split:
1509 		/*
1510 		 * The tail pages that are failed to add into swap cache
1511 		 * reach here.  Fixup nr_scanned and nr_pages.
1512 		 */
1513 		if (nr_pages > 1) {
1514 			sc->nr_scanned -= (nr_pages - 1);
1515 			nr_pages = 1;
1516 		}
1517 activate_locked:
1518 		/* Not a candidate for swapping, so reclaim swap space. */
1519 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1520 						PageMlocked(page)))
1521 			try_to_free_swap(page);
1522 		VM_BUG_ON_PAGE(PageActive(page), page);
1523 		if (!PageMlocked(page)) {
1524 			int type = page_is_file_lru(page);
1525 			SetPageActive(page);
1526 			stat->nr_activate[type] += nr_pages;
1527 			count_memcg_page_event(page, PGACTIVATE);
1528 		}
1529 keep_locked:
1530 		unlock_page(page);
1531 keep:
1532 		list_add(&page->lru, &ret_pages);
1533 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1534 	}
1535 
1536 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1537 
1538 	mem_cgroup_uncharge_list(&free_pages);
1539 	try_to_unmap_flush();
1540 	free_unref_page_list(&free_pages);
1541 
1542 	list_splice(&ret_pages, page_list);
1543 	count_vm_events(PGACTIVATE, pgactivate);
1544 
1545 	return nr_reclaimed;
1546 }
1547 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1548 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1549 					    struct list_head *page_list)
1550 {
1551 	struct scan_control sc = {
1552 		.gfp_mask = GFP_KERNEL,
1553 		.priority = DEF_PRIORITY,
1554 		.may_unmap = 1,
1555 	};
1556 	struct reclaim_stat stat;
1557 	unsigned int nr_reclaimed;
1558 	struct page *page, *next;
1559 	LIST_HEAD(clean_pages);
1560 
1561 	list_for_each_entry_safe(page, next, page_list, lru) {
1562 		if (page_is_file_lru(page) && !PageDirty(page) &&
1563 		    !__PageMovable(page) && !PageUnevictable(page)) {
1564 			ClearPageActive(page);
1565 			list_move(&page->lru, &clean_pages);
1566 		}
1567 	}
1568 
1569 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1570 					&stat, true);
1571 	list_splice(&clean_pages, page_list);
1572 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1573 			    -(long)nr_reclaimed);
1574 	/*
1575 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1576 	 * they will rotate back to anonymous LRU in the end if it failed to
1577 	 * discard so isolated count will be mismatched.
1578 	 * Compensate the isolated count for both LRU lists.
1579 	 */
1580 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1581 			    stat.nr_lazyfree_fail);
1582 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1583 			    -(long)stat.nr_lazyfree_fail);
1584 	return nr_reclaimed;
1585 }
1586 
1587 /*
1588  * Attempt to remove the specified page from its LRU.  Only take this page
1589  * if it is of the appropriate PageActive status.  Pages which are being
1590  * freed elsewhere are also ignored.
1591  *
1592  * page:	page to consider
1593  * mode:	one of the LRU isolation modes defined above
1594  *
1595  * returns 0 on success, -ve errno on failure.
1596  */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1597 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1598 {
1599 	int ret = -EINVAL;
1600 
1601 	/* Only take pages on the LRU. */
1602 	if (!PageLRU(page))
1603 		return ret;
1604 
1605 	/* Compaction should not handle unevictable pages but CMA can do so */
1606 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1607 		return ret;
1608 
1609 	ret = -EBUSY;
1610 
1611 	/*
1612 	 * To minimise LRU disruption, the caller can indicate that it only
1613 	 * wants to isolate pages it will be able to operate on without
1614 	 * blocking - clean pages for the most part.
1615 	 *
1616 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1617 	 * that it is possible to migrate without blocking
1618 	 */
1619 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1620 		/* All the caller can do on PageWriteback is block */
1621 		if (PageWriteback(page))
1622 			return ret;
1623 
1624 		if (PageDirty(page)) {
1625 			struct address_space *mapping;
1626 			bool migrate_dirty;
1627 
1628 			/*
1629 			 * Only pages without mappings or that have a
1630 			 * ->migratepage callback are possible to migrate
1631 			 * without blocking. However, we can be racing with
1632 			 * truncation so it's necessary to lock the page
1633 			 * to stabilise the mapping as truncation holds
1634 			 * the page lock until after the page is removed
1635 			 * from the page cache.
1636 			 */
1637 			if (!trylock_page(page))
1638 				return ret;
1639 
1640 			mapping = page_mapping(page);
1641 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1642 			unlock_page(page);
1643 			if (!migrate_dirty)
1644 				return ret;
1645 		}
1646 	}
1647 
1648 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1649 		return ret;
1650 
1651 	if (likely(get_page_unless_zero(page))) {
1652 		/*
1653 		 * Be careful not to clear PageLRU until after we're
1654 		 * sure the page is not being freed elsewhere -- the
1655 		 * page release code relies on it.
1656 		 */
1657 		ClearPageLRU(page);
1658 		ret = 0;
1659 	}
1660 
1661 	return ret;
1662 }
1663 
1664 
1665 /*
1666  * Update LRU sizes after isolating pages. The LRU size updates must
1667  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1668  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1669 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1670 			enum lru_list lru, unsigned long *nr_zone_taken)
1671 {
1672 	int zid;
1673 
1674 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1675 		if (!nr_zone_taken[zid])
1676 			continue;
1677 
1678 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1679 	}
1680 
1681 }
1682 
1683 /**
1684  * pgdat->lru_lock is heavily contended.  Some of the functions that
1685  * shrink the lists perform better by taking out a batch of pages
1686  * and working on them outside the LRU lock.
1687  *
1688  * For pagecache intensive workloads, this function is the hottest
1689  * spot in the kernel (apart from copy_*_user functions).
1690  *
1691  * Appropriate locks must be held before calling this function.
1692  *
1693  * @nr_to_scan:	The number of eligible pages to look through on the list.
1694  * @lruvec:	The LRU vector to pull pages from.
1695  * @dst:	The temp list to put pages on to.
1696  * @nr_scanned:	The number of pages that were scanned.
1697  * @sc:		The scan_control struct for this reclaim session
1698  * @lru:	LRU list id for isolating
1699  *
1700  * returns how many pages were moved onto *@dst.
1701  */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1702 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1703 		struct lruvec *lruvec, struct list_head *dst,
1704 		unsigned long *nr_scanned, struct scan_control *sc,
1705 		enum lru_list lru)
1706 {
1707 	struct list_head *src = &lruvec->lists[lru];
1708 	unsigned long nr_taken = 0;
1709 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1710 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1711 	unsigned long skipped = 0;
1712 	unsigned long scan, total_scan, nr_pages;
1713 	LIST_HEAD(pages_skipped);
1714 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1715 
1716 	total_scan = 0;
1717 	scan = 0;
1718 	while (scan < nr_to_scan && !list_empty(src)) {
1719 		struct page *page;
1720 
1721 		page = lru_to_page(src);
1722 		prefetchw_prev_lru_page(page, src, flags);
1723 
1724 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1725 
1726 		nr_pages = compound_nr(page);
1727 		total_scan += nr_pages;
1728 
1729 		if (page_zonenum(page) > sc->reclaim_idx) {
1730 			list_move(&page->lru, &pages_skipped);
1731 			nr_skipped[page_zonenum(page)] += nr_pages;
1732 			continue;
1733 		}
1734 
1735 		/*
1736 		 * Do not count skipped pages because that makes the function
1737 		 * return with no isolated pages if the LRU mostly contains
1738 		 * ineligible pages.  This causes the VM to not reclaim any
1739 		 * pages, triggering a premature OOM.
1740 		 *
1741 		 * Account all tail pages of THP.  This would not cause
1742 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1743 		 * only when the page is being freed somewhere else.
1744 		 */
1745 		scan += nr_pages;
1746 		switch (__isolate_lru_page(page, mode)) {
1747 		case 0:
1748 			nr_taken += nr_pages;
1749 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1750 			trace_android_vh_del_page_from_lrulist(page, false, lru);
1751 			list_move(&page->lru, dst);
1752 			break;
1753 
1754 		case -EBUSY:
1755 			/* else it is being freed elsewhere */
1756 			list_move(&page->lru, src);
1757 			continue;
1758 
1759 		default:
1760 			BUG();
1761 		}
1762 	}
1763 
1764 	/*
1765 	 * Splice any skipped pages to the start of the LRU list. Note that
1766 	 * this disrupts the LRU order when reclaiming for lower zones but
1767 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1768 	 * scanning would soon rescan the same pages to skip and put the
1769 	 * system at risk of premature OOM.
1770 	 */
1771 	if (!list_empty(&pages_skipped)) {
1772 		int zid;
1773 
1774 		list_splice(&pages_skipped, src);
1775 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1776 			if (!nr_skipped[zid])
1777 				continue;
1778 
1779 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1780 			skipped += nr_skipped[zid];
1781 		}
1782 	}
1783 	*nr_scanned = total_scan;
1784 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1785 				    total_scan, skipped, nr_taken, mode, lru);
1786 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1787 	return nr_taken;
1788 }
1789 
1790 /**
1791  * isolate_lru_page - tries to isolate a page from its LRU list
1792  * @page: page to isolate from its LRU list
1793  *
1794  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1795  * vmstat statistic corresponding to whatever LRU list the page was on.
1796  *
1797  * Returns 0 if the page was removed from an LRU list.
1798  * Returns -EBUSY if the page was not on an LRU list.
1799  *
1800  * The returned page will have PageLRU() cleared.  If it was found on
1801  * the active list, it will have PageActive set.  If it was found on
1802  * the unevictable list, it will have the PageUnevictable bit set. That flag
1803  * may need to be cleared by the caller before letting the page go.
1804  *
1805  * The vmstat statistic corresponding to the list on which the page was
1806  * found will be decremented.
1807  *
1808  * Restrictions:
1809  *
1810  * (1) Must be called with an elevated refcount on the page. This is a
1811  *     fundamental difference from isolate_lru_pages (which is called
1812  *     without a stable reference).
1813  * (2) the lru_lock must not be held.
1814  * (3) interrupts must be enabled.
1815  */
isolate_lru_page(struct page * page)1816 int isolate_lru_page(struct page *page)
1817 {
1818 	int ret = -EBUSY;
1819 
1820 	VM_BUG_ON_PAGE(!page_count(page), page);
1821 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1822 
1823 	if (PageLRU(page)) {
1824 		pg_data_t *pgdat = page_pgdat(page);
1825 		struct lruvec *lruvec;
1826 
1827 		spin_lock_irq(&pgdat->lru_lock);
1828 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1829 		if (PageLRU(page)) {
1830 			int lru = page_lru(page);
1831 			get_page(page);
1832 			ClearPageLRU(page);
1833 			del_page_from_lru_list(page, lruvec, lru);
1834 			ret = 0;
1835 		}
1836 		spin_unlock_irq(&pgdat->lru_lock);
1837 	}
1838 	return ret;
1839 }
1840 
1841 /*
1842  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1843  * then get rescheduled. When there are massive number of tasks doing page
1844  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1845  * the LRU list will go small and be scanned faster than necessary, leading to
1846  * unnecessary swapping, thrashing and OOM.
1847  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1848 static int too_many_isolated(struct pglist_data *pgdat, int file,
1849 		struct scan_control *sc)
1850 {
1851 	unsigned long inactive, isolated;
1852 
1853 	if (current_is_kswapd())
1854 		return 0;
1855 
1856 	if (!writeback_throttling_sane(sc))
1857 		return 0;
1858 
1859 	if (file) {
1860 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1861 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1862 	} else {
1863 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1864 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1865 	}
1866 
1867 	/*
1868 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1869 	 * won't get blocked by normal direct-reclaimers, forming a circular
1870 	 * deadlock.
1871 	 */
1872 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1873 		inactive >>= 3;
1874 
1875 	return isolated > inactive;
1876 }
1877 
1878 /*
1879  * This moves pages from @list to corresponding LRU list.
1880  *
1881  * We move them the other way if the page is referenced by one or more
1882  * processes, from rmap.
1883  *
1884  * If the pages are mostly unmapped, the processing is fast and it is
1885  * appropriate to hold zone_lru_lock across the whole operation.  But if
1886  * the pages are mapped, the processing is slow (page_referenced()) so we
1887  * should drop zone_lru_lock around each page.  It's impossible to balance
1888  * this, so instead we remove the pages from the LRU while processing them.
1889  * It is safe to rely on PG_active against the non-LRU pages in here because
1890  * nobody will play with that bit on a non-LRU page.
1891  *
1892  * The downside is that we have to touch page->_refcount against each page.
1893  * But we had to alter page->flags anyway.
1894  *
1895  * Returns the number of pages moved to the given lruvec.
1896  */
1897 
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)1898 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1899 						     struct list_head *list)
1900 {
1901 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1902 	int nr_pages, nr_moved = 0;
1903 	LIST_HEAD(pages_to_free);
1904 	struct page *page;
1905 	enum lru_list lru;
1906 
1907 	while (!list_empty(list)) {
1908 		page = lru_to_page(list);
1909 		VM_BUG_ON_PAGE(PageLRU(page), page);
1910 		if (unlikely(!page_evictable(page))) {
1911 			list_del(&page->lru);
1912 			spin_unlock_irq(&pgdat->lru_lock);
1913 			putback_lru_page(page);
1914 			spin_lock_irq(&pgdat->lru_lock);
1915 			continue;
1916 		}
1917 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1918 
1919 		SetPageLRU(page);
1920 		lru = page_lru(page);
1921 
1922 		nr_pages = thp_nr_pages(page);
1923 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1924 		list_move(&page->lru, &lruvec->lists[lru]);
1925 		trace_android_vh_add_page_to_lrulist(page, false, lru);
1926 
1927 		if (put_page_testzero(page)) {
1928 			__ClearPageLRU(page);
1929 			__ClearPageActive(page);
1930 			del_page_from_lru_list(page, lruvec, lru);
1931 
1932 			if (unlikely(PageCompound(page))) {
1933 				spin_unlock_irq(&pgdat->lru_lock);
1934 				destroy_compound_page(page);
1935 				spin_lock_irq(&pgdat->lru_lock);
1936 			} else
1937 				list_add(&page->lru, &pages_to_free);
1938 		} else {
1939 			nr_moved += nr_pages;
1940 			if (PageActive(page))
1941 				workingset_age_nonresident(lruvec, nr_pages);
1942 		}
1943 	}
1944 
1945 	/*
1946 	 * To save our caller's stack, now use input list for pages to free.
1947 	 */
1948 	list_splice(&pages_to_free, list);
1949 
1950 	return nr_moved;
1951 }
1952 
1953 /*
1954  * If a kernel thread (such as nfsd for loop-back mounts) services
1955  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1956  * In that case we should only throttle if the backing device it is
1957  * writing to is congested.  In other cases it is safe to throttle.
1958  */
current_may_throttle(void)1959 static int current_may_throttle(void)
1960 {
1961 	return !(current->flags & PF_LOCAL_THROTTLE) ||
1962 		current->backing_dev_info == NULL ||
1963 		bdi_write_congested(current->backing_dev_info);
1964 }
1965 
1966 /*
1967  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1968  * of reclaimed pages
1969  */
1970 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1971 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1972 		     struct scan_control *sc, enum lru_list lru)
1973 {
1974 	LIST_HEAD(page_list);
1975 	unsigned long nr_scanned;
1976 	unsigned int nr_reclaimed = 0;
1977 	unsigned long nr_taken;
1978 	struct reclaim_stat stat;
1979 	bool file = is_file_lru(lru);
1980 	enum vm_event_item item;
1981 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1982 	bool stalled = false;
1983 
1984 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1985 		if (stalled)
1986 			return 0;
1987 
1988 		/* wait a bit for the reclaimer. */
1989 		msleep(100);
1990 		stalled = true;
1991 
1992 		/* We are about to die and free our memory. Return now. */
1993 		if (fatal_signal_pending(current))
1994 			return SWAP_CLUSTER_MAX;
1995 	}
1996 
1997 	lru_add_drain();
1998 
1999 	spin_lock_irq(&pgdat->lru_lock);
2000 
2001 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2002 				     &nr_scanned, sc, lru);
2003 
2004 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2005 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2006 	if (!cgroup_reclaim(sc))
2007 		__count_vm_events(item, nr_scanned);
2008 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2009 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2010 
2011 	spin_unlock_irq(&pgdat->lru_lock);
2012 
2013 	if (nr_taken == 0)
2014 		return 0;
2015 
2016 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2017 	trace_android_vh_handle_failed_page_trylock(&page_list);
2018 
2019 	spin_lock_irq(&pgdat->lru_lock);
2020 
2021 	move_pages_to_lru(lruvec, &page_list);
2022 
2023 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2024 	lru_note_cost(lruvec, file, stat.nr_pageout);
2025 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2026 	if (!cgroup_reclaim(sc))
2027 		__count_vm_events(item, nr_reclaimed);
2028 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2029 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2030 	spin_unlock_irq(&pgdat->lru_lock);
2031 
2032 	mem_cgroup_uncharge_list(&page_list);
2033 	free_unref_page_list(&page_list);
2034 
2035 	/*
2036 	 * If dirty pages are scanned that are not queued for IO, it
2037 	 * implies that flushers are not doing their job. This can
2038 	 * happen when memory pressure pushes dirty pages to the end of
2039 	 * the LRU before the dirty limits are breached and the dirty
2040 	 * data has expired. It can also happen when the proportion of
2041 	 * dirty pages grows not through writes but through memory
2042 	 * pressure reclaiming all the clean cache. And in some cases,
2043 	 * the flushers simply cannot keep up with the allocation
2044 	 * rate. Nudge the flusher threads in case they are asleep.
2045 	 */
2046 	if (stat.nr_unqueued_dirty == nr_taken)
2047 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2048 
2049 	sc->nr.dirty += stat.nr_dirty;
2050 	sc->nr.congested += stat.nr_congested;
2051 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2052 	sc->nr.writeback += stat.nr_writeback;
2053 	sc->nr.immediate += stat.nr_immediate;
2054 	sc->nr.taken += nr_taken;
2055 	if (file)
2056 		sc->nr.file_taken += nr_taken;
2057 
2058 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2059 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2060 	return nr_reclaimed;
2061 }
2062 
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2063 static void shrink_active_list(unsigned long nr_to_scan,
2064 			       struct lruvec *lruvec,
2065 			       struct scan_control *sc,
2066 			       enum lru_list lru)
2067 {
2068 	unsigned long nr_taken;
2069 	unsigned long nr_scanned;
2070 	unsigned long vm_flags;
2071 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2072 	LIST_HEAD(l_active);
2073 	LIST_HEAD(l_inactive);
2074 	struct page *page;
2075 	unsigned nr_deactivate, nr_activate;
2076 	unsigned nr_rotated = 0;
2077 	int file = is_file_lru(lru);
2078 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2079 	bool bypass = false;
2080 	bool should_protect = false;
2081 
2082 	lru_add_drain();
2083 
2084 	spin_lock_irq(&pgdat->lru_lock);
2085 
2086 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2087 				     &nr_scanned, sc, lru);
2088 
2089 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2090 
2091 	if (!cgroup_reclaim(sc))
2092 		__count_vm_events(PGREFILL, nr_scanned);
2093 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2094 
2095 	spin_unlock_irq(&pgdat->lru_lock);
2096 
2097 	while (!list_empty(&l_hold)) {
2098 		cond_resched();
2099 		page = lru_to_page(&l_hold);
2100 		list_del(&page->lru);
2101 
2102 		if (unlikely(!page_evictable(page))) {
2103 			putback_lru_page(page);
2104 			continue;
2105 		}
2106 
2107 		if (unlikely(buffer_heads_over_limit)) {
2108 			if (page_has_private(page) && trylock_page(page)) {
2109 				if (page_has_private(page))
2110 					try_to_release_page(page, 0);
2111 				unlock_page(page);
2112 			}
2113 		}
2114 
2115 		trace_android_vh_page_should_be_protected(page, &should_protect);
2116 		if (unlikely(should_protect)) {
2117 			nr_rotated += thp_nr_pages(page);
2118 			list_add(&page->lru, &l_active);
2119 			continue;
2120 		}
2121 
2122 		trace_android_vh_page_referenced_check_bypass(page, nr_to_scan, lru, &bypass);
2123 		if (bypass)
2124 			goto skip_page_referenced;
2125 		trace_android_vh_page_trylock_set(page);
2126 		/* Referenced or rmap lock contention: rotate */
2127 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2128 				     &vm_flags) != 0) {
2129 			/*
2130 			 * Identify referenced, file-backed active pages and
2131 			 * give them one more trip around the active list. So
2132 			 * that executable code get better chances to stay in
2133 			 * memory under moderate memory pressure.  Anon pages
2134 			 * are not likely to be evicted by use-once streaming
2135 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2136 			 * so we ignore them here.
2137 			 */
2138 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2139 				trace_android_vh_page_trylock_clear(page);
2140 				nr_rotated += thp_nr_pages(page);
2141 				list_add(&page->lru, &l_active);
2142 				continue;
2143 			}
2144 		}
2145 		trace_android_vh_page_trylock_clear(page);
2146 skip_page_referenced:
2147 		ClearPageActive(page);	/* we are de-activating */
2148 		SetPageWorkingset(page);
2149 		list_add(&page->lru, &l_inactive);
2150 	}
2151 
2152 	/*
2153 	 * Move pages back to the lru list.
2154 	 */
2155 	spin_lock_irq(&pgdat->lru_lock);
2156 
2157 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2158 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2159 	/* Keep all free pages in l_active list */
2160 	list_splice(&l_inactive, &l_active);
2161 
2162 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2163 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2164 
2165 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2166 	spin_unlock_irq(&pgdat->lru_lock);
2167 
2168 	mem_cgroup_uncharge_list(&l_active);
2169 	free_unref_page_list(&l_active);
2170 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2171 			nr_deactivate, nr_rotated, sc->priority, file);
2172 }
2173 
reclaim_pages(struct list_head * page_list)2174 unsigned long reclaim_pages(struct list_head *page_list)
2175 {
2176 	int nid = NUMA_NO_NODE;
2177 	unsigned int nr_reclaimed = 0;
2178 	LIST_HEAD(node_page_list);
2179 	struct reclaim_stat dummy_stat;
2180 	struct page *page;
2181 	struct scan_control sc = {
2182 		.gfp_mask = GFP_KERNEL,
2183 		.priority = DEF_PRIORITY,
2184 		.may_writepage = 1,
2185 		.may_unmap = 1,
2186 		.may_swap = 1,
2187 	};
2188 
2189 	while (!list_empty(page_list)) {
2190 		page = lru_to_page(page_list);
2191 		if (nid == NUMA_NO_NODE) {
2192 			nid = page_to_nid(page);
2193 			INIT_LIST_HEAD(&node_page_list);
2194 		}
2195 
2196 		if (nid == page_to_nid(page)) {
2197 			ClearPageActive(page);
2198 			list_move(&page->lru, &node_page_list);
2199 			continue;
2200 		}
2201 
2202 		nr_reclaimed += shrink_page_list(&node_page_list,
2203 						NODE_DATA(nid),
2204 						&sc, &dummy_stat, false);
2205 		while (!list_empty(&node_page_list)) {
2206 			page = lru_to_page(&node_page_list);
2207 			list_del(&page->lru);
2208 			putback_lru_page(page);
2209 		}
2210 
2211 		nid = NUMA_NO_NODE;
2212 	}
2213 
2214 	if (!list_empty(&node_page_list)) {
2215 		nr_reclaimed += shrink_page_list(&node_page_list,
2216 						NODE_DATA(nid),
2217 						&sc, &dummy_stat, false);
2218 		while (!list_empty(&node_page_list)) {
2219 			page = lru_to_page(&node_page_list);
2220 			list_del(&page->lru);
2221 			putback_lru_page(page);
2222 		}
2223 	}
2224 
2225 	return nr_reclaimed;
2226 }
2227 EXPORT_SYMBOL_GPL(reclaim_pages);
2228 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2229 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2230 				 struct lruvec *lruvec, struct scan_control *sc)
2231 {
2232 	if (is_active_lru(lru)) {
2233 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2234 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2235 		else
2236 			sc->skipped_deactivate = 1;
2237 		return 0;
2238 	}
2239 
2240 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2241 }
2242 
2243 /*
2244  * The inactive anon list should be small enough that the VM never has
2245  * to do too much work.
2246  *
2247  * The inactive file list should be small enough to leave most memory
2248  * to the established workingset on the scan-resistant active list,
2249  * but large enough to avoid thrashing the aggregate readahead window.
2250  *
2251  * Both inactive lists should also be large enough that each inactive
2252  * page has a chance to be referenced again before it is reclaimed.
2253  *
2254  * If that fails and refaulting is observed, the inactive list grows.
2255  *
2256  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2257  * on this LRU, maintained by the pageout code. An inactive_ratio
2258  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2259  *
2260  * total     target    max
2261  * memory    ratio     inactive
2262  * -------------------------------------
2263  *   10MB       1         5MB
2264  *  100MB       1        50MB
2265  *    1GB       3       250MB
2266  *   10GB      10       0.9GB
2267  *  100GB      31         3GB
2268  *    1TB     101        10GB
2269  *   10TB     320        32GB
2270  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2271 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2272 {
2273 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2274 	unsigned long inactive, active;
2275 	unsigned long inactive_ratio;
2276 	unsigned long gb;
2277 	bool skip = false;
2278 
2279 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2280 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2281 
2282 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2283 	trace_android_vh_inactive_is_low(gb, &inactive_ratio, inactive_lru, &skip);
2284 	if (skip)
2285 		goto out;
2286 
2287 	if (gb)
2288 		inactive_ratio = int_sqrt(10 * gb);
2289 	else
2290 		inactive_ratio = 1;
2291 
2292 	trace_android_vh_tune_inactive_ratio(&inactive_ratio, is_file_lru(inactive_lru));
2293 
2294 out:
2295 	return inactive * inactive_ratio < active;
2296 }
2297 
2298 enum scan_balance {
2299 	SCAN_EQUAL,
2300 	SCAN_FRACT,
2301 	SCAN_ANON,
2302 	SCAN_FILE,
2303 };
2304 
2305 /*
2306  * Determine how aggressively the anon and file LRU lists should be
2307  * scanned.  The relative value of each set of LRU lists is determined
2308  * by looking at the fraction of the pages scanned we did rotate back
2309  * onto the active list instead of evict.
2310  *
2311  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2312  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2313  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2314 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2315 			   unsigned long *nr)
2316 {
2317 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2318 	unsigned long anon_cost, file_cost, total_cost;
2319 	int swappiness = mem_cgroup_swappiness(memcg);
2320 	u64 fraction[ANON_AND_FILE];
2321 	u64 denominator = 0;	/* gcc */
2322 	enum scan_balance scan_balance;
2323 	unsigned long ap, fp;
2324 	enum lru_list lru;
2325 	bool balance_anon_file_reclaim = false;
2326 
2327 	/* If we have no swap space, do not bother scanning anon pages. */
2328 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2329 		scan_balance = SCAN_FILE;
2330 		goto out;
2331 	}
2332 
2333 	trace_android_vh_tune_swappiness(&swappiness);
2334 	/*
2335 	 * Global reclaim will swap to prevent OOM even with no
2336 	 * swappiness, but memcg users want to use this knob to
2337 	 * disable swapping for individual groups completely when
2338 	 * using the memory controller's swap limit feature would be
2339 	 * too expensive.
2340 	 */
2341 	if (cgroup_reclaim(sc) && !swappiness) {
2342 		scan_balance = SCAN_FILE;
2343 		goto out;
2344 	}
2345 
2346 	/*
2347 	 * Do not apply any pressure balancing cleverness when the
2348 	 * system is close to OOM, scan both anon and file equally
2349 	 * (unless the swappiness setting disagrees with swapping).
2350 	 */
2351 	if (!sc->priority && swappiness) {
2352 		scan_balance = SCAN_EQUAL;
2353 		goto out;
2354 	}
2355 
2356 	/*
2357 	 * If the system is almost out of file pages, force-scan anon.
2358 	 */
2359 	if (sc->file_is_tiny) {
2360 		scan_balance = SCAN_ANON;
2361 		goto out;
2362 	}
2363 
2364 	trace_android_rvh_set_balance_anon_file_reclaim(&balance_anon_file_reclaim);
2365 
2366 	/*
2367 	 * If there is enough inactive page cache, we do not reclaim
2368 	 * anything from the anonymous working right now. But when balancing
2369 	 * anon and page cache files for reclaim, allow swapping of anon pages
2370 	 * even if there are a number of inactive file cache pages.
2371 	 */
2372 	if (!balance_anon_file_reclaim && sc->cache_trim_mode) {
2373 		scan_balance = SCAN_FILE;
2374 		goto out;
2375 	}
2376 
2377 	scan_balance = SCAN_FRACT;
2378 	/*
2379 	 * Calculate the pressure balance between anon and file pages.
2380 	 *
2381 	 * The amount of pressure we put on each LRU is inversely
2382 	 * proportional to the cost of reclaiming each list, as
2383 	 * determined by the share of pages that are refaulting, times
2384 	 * the relative IO cost of bringing back a swapped out
2385 	 * anonymous page vs reloading a filesystem page (swappiness).
2386 	 *
2387 	 * Although we limit that influence to ensure no list gets
2388 	 * left behind completely: at least a third of the pressure is
2389 	 * applied, before swappiness.
2390 	 *
2391 	 * With swappiness at 100, anon and file have equal IO cost.
2392 	 */
2393 	total_cost = sc->anon_cost + sc->file_cost;
2394 	anon_cost = total_cost + sc->anon_cost;
2395 	file_cost = total_cost + sc->file_cost;
2396 	total_cost = anon_cost + file_cost;
2397 
2398 	ap = swappiness * (total_cost + 1);
2399 	ap /= anon_cost + 1;
2400 
2401 	fp = (200 - swappiness) * (total_cost + 1);
2402 	fp /= file_cost + 1;
2403 
2404 	fraction[0] = ap;
2405 	fraction[1] = fp;
2406 	denominator = ap + fp;
2407 out:
2408 	trace_android_vh_tune_scan_type((char *)(&scan_balance));
2409 	for_each_evictable_lru(lru) {
2410 		int file = is_file_lru(lru);
2411 		unsigned long lruvec_size;
2412 		unsigned long low, min;
2413 		unsigned long scan;
2414 
2415 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2416 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2417 				      &min, &low);
2418 
2419 		if (min || low) {
2420 			/*
2421 			 * Scale a cgroup's reclaim pressure by proportioning
2422 			 * its current usage to its memory.low or memory.min
2423 			 * setting.
2424 			 *
2425 			 * This is important, as otherwise scanning aggression
2426 			 * becomes extremely binary -- from nothing as we
2427 			 * approach the memory protection threshold, to totally
2428 			 * nominal as we exceed it.  This results in requiring
2429 			 * setting extremely liberal protection thresholds. It
2430 			 * also means we simply get no protection at all if we
2431 			 * set it too low, which is not ideal.
2432 			 *
2433 			 * If there is any protection in place, we reduce scan
2434 			 * pressure by how much of the total memory used is
2435 			 * within protection thresholds.
2436 			 *
2437 			 * There is one special case: in the first reclaim pass,
2438 			 * we skip over all groups that are within their low
2439 			 * protection. If that fails to reclaim enough pages to
2440 			 * satisfy the reclaim goal, we come back and override
2441 			 * the best-effort low protection. However, we still
2442 			 * ideally want to honor how well-behaved groups are in
2443 			 * that case instead of simply punishing them all
2444 			 * equally. As such, we reclaim them based on how much
2445 			 * memory they are using, reducing the scan pressure
2446 			 * again by how much of the total memory used is under
2447 			 * hard protection.
2448 			 */
2449 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2450 			unsigned long protection;
2451 
2452 			/* memory.low scaling, make sure we retry before OOM */
2453 			if (!sc->memcg_low_reclaim && low > min) {
2454 				protection = low;
2455 				sc->memcg_low_skipped = 1;
2456 			} else {
2457 				protection = min;
2458 			}
2459 
2460 			/* Avoid TOCTOU with earlier protection check */
2461 			cgroup_size = max(cgroup_size, protection);
2462 
2463 			scan = lruvec_size - lruvec_size * protection /
2464 				(cgroup_size + 1);
2465 
2466 			/*
2467 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2468 			 * reclaim moving forwards, avoiding decrementing
2469 			 * sc->priority further than desirable.
2470 			 */
2471 			scan = max(scan, SWAP_CLUSTER_MAX);
2472 		} else {
2473 			scan = lruvec_size;
2474 		}
2475 
2476 		scan >>= sc->priority;
2477 
2478 		/*
2479 		 * If the cgroup's already been deleted, make sure to
2480 		 * scrape out the remaining cache.
2481 		 */
2482 		if (!scan && !mem_cgroup_online(memcg))
2483 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2484 
2485 		switch (scan_balance) {
2486 		case SCAN_EQUAL:
2487 			/* Scan lists relative to size */
2488 			break;
2489 		case SCAN_FRACT:
2490 			/*
2491 			 * Scan types proportional to swappiness and
2492 			 * their relative recent reclaim efficiency.
2493 			 * Make sure we don't miss the last page on
2494 			 * the offlined memory cgroups because of a
2495 			 * round-off error.
2496 			 */
2497 			scan = mem_cgroup_online(memcg) ?
2498 			       div64_u64(scan * fraction[file], denominator) :
2499 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2500 						  denominator);
2501 			break;
2502 		case SCAN_FILE:
2503 		case SCAN_ANON:
2504 			/* Scan one type exclusively */
2505 			if ((scan_balance == SCAN_FILE) != file)
2506 				scan = 0;
2507 			break;
2508 		default:
2509 			/* Look ma, no brain */
2510 			BUG();
2511 		}
2512 
2513 		nr[lru] = scan;
2514 	}
2515 }
2516 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)2517 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2518 {
2519 	unsigned long nr[NR_LRU_LISTS];
2520 	unsigned long targets[NR_LRU_LISTS];
2521 	unsigned long nr_to_scan;
2522 	enum lru_list lru;
2523 	unsigned long nr_reclaimed = 0;
2524 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2525 	bool proportional_reclaim;
2526 	struct blk_plug plug;
2527 
2528 	get_scan_count(lruvec, sc, nr);
2529 
2530 	/* Record the original scan target for proportional adjustments later */
2531 	memcpy(targets, nr, sizeof(nr));
2532 
2533 	/*
2534 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2535 	 * event that can occur when there is little memory pressure e.g.
2536 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2537 	 * when the requested number of pages are reclaimed when scanning at
2538 	 * DEF_PRIORITY on the assumption that the fact we are direct
2539 	 * reclaiming implies that kswapd is not keeping up and it is best to
2540 	 * do a batch of work at once. For memcg reclaim one check is made to
2541 	 * abort proportional reclaim if either the file or anon lru has already
2542 	 * dropped to zero at the first pass.
2543 	 */
2544 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2545 				sc->priority == DEF_PRIORITY);
2546 
2547 	blk_start_plug(&plug);
2548 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2549 					nr[LRU_INACTIVE_FILE]) {
2550 		unsigned long nr_anon, nr_file, percentage;
2551 		unsigned long nr_scanned;
2552 
2553 		for_each_evictable_lru(lru) {
2554 			if (nr[lru]) {
2555 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2556 				nr[lru] -= nr_to_scan;
2557 
2558 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2559 							    lruvec, sc);
2560 			}
2561 		}
2562 
2563 		cond_resched();
2564 
2565 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
2566 			continue;
2567 
2568 		/*
2569 		 * For kswapd and memcg, reclaim at least the number of pages
2570 		 * requested. Ensure that the anon and file LRUs are scanned
2571 		 * proportionally what was requested by get_scan_count(). We
2572 		 * stop reclaiming one LRU and reduce the amount scanning
2573 		 * proportional to the original scan target.
2574 		 */
2575 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2576 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2577 
2578 		/*
2579 		 * It's just vindictive to attack the larger once the smaller
2580 		 * has gone to zero.  And given the way we stop scanning the
2581 		 * smaller below, this makes sure that we only make one nudge
2582 		 * towards proportionality once we've got nr_to_reclaim.
2583 		 */
2584 		if (!nr_file || !nr_anon)
2585 			break;
2586 
2587 		if (nr_file > nr_anon) {
2588 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2589 						targets[LRU_ACTIVE_ANON] + 1;
2590 			lru = LRU_BASE;
2591 			percentage = nr_anon * 100 / scan_target;
2592 		} else {
2593 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2594 						targets[LRU_ACTIVE_FILE] + 1;
2595 			lru = LRU_FILE;
2596 			percentage = nr_file * 100 / scan_target;
2597 		}
2598 
2599 		/* Stop scanning the smaller of the LRU */
2600 		nr[lru] = 0;
2601 		nr[lru + LRU_ACTIVE] = 0;
2602 
2603 		/*
2604 		 * Recalculate the other LRU scan count based on its original
2605 		 * scan target and the percentage scanning already complete
2606 		 */
2607 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2608 		nr_scanned = targets[lru] - nr[lru];
2609 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2610 		nr[lru] -= min(nr[lru], nr_scanned);
2611 
2612 		lru += LRU_ACTIVE;
2613 		nr_scanned = targets[lru] - nr[lru];
2614 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2615 		nr[lru] -= min(nr[lru], nr_scanned);
2616 	}
2617 	blk_finish_plug(&plug);
2618 	sc->nr_reclaimed += nr_reclaimed;
2619 
2620 	/*
2621 	 * Even if we did not try to evict anon pages at all, we want to
2622 	 * rebalance the anon lru active/inactive ratio.
2623 	 */
2624 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2625 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2626 				   sc, LRU_ACTIVE_ANON);
2627 }
2628 
2629 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2630 static bool in_reclaim_compaction(struct scan_control *sc)
2631 {
2632 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2633 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2634 			 sc->priority < DEF_PRIORITY - 2))
2635 		return true;
2636 
2637 	return false;
2638 }
2639 
2640 /*
2641  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2642  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2643  * true if more pages should be reclaimed such that when the page allocator
2644  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2645  * It will give up earlier than that if there is difficulty reclaiming pages.
2646  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)2647 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2648 					unsigned long nr_reclaimed,
2649 					struct scan_control *sc)
2650 {
2651 	unsigned long pages_for_compaction;
2652 	unsigned long inactive_lru_pages;
2653 	int z;
2654 
2655 	/* If not in reclaim/compaction mode, stop */
2656 	if (!in_reclaim_compaction(sc))
2657 		return false;
2658 
2659 	/*
2660 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2661 	 * number of pages that were scanned. This will return to the caller
2662 	 * with the risk reclaim/compaction and the resulting allocation attempt
2663 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2664 	 * allocations through requiring that the full LRU list has been scanned
2665 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2666 	 * scan, but that approximation was wrong, and there were corner cases
2667 	 * where always a non-zero amount of pages were scanned.
2668 	 */
2669 	if (!nr_reclaimed)
2670 		return false;
2671 
2672 	/* If compaction would go ahead or the allocation would succeed, stop */
2673 	for (z = 0; z <= sc->reclaim_idx; z++) {
2674 		struct zone *zone = &pgdat->node_zones[z];
2675 		if (!managed_zone(zone))
2676 			continue;
2677 
2678 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2679 		case COMPACT_SUCCESS:
2680 		case COMPACT_CONTINUE:
2681 			return false;
2682 		default:
2683 			/* check next zone */
2684 			;
2685 		}
2686 	}
2687 
2688 	/*
2689 	 * If we have not reclaimed enough pages for compaction and the
2690 	 * inactive lists are large enough, continue reclaiming
2691 	 */
2692 	pages_for_compaction = compact_gap(sc->order);
2693 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2694 	if (get_nr_swap_pages() > 0)
2695 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2696 
2697 	return inactive_lru_pages > pages_for_compaction;
2698 }
2699 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)2700 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2701 {
2702 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2703 	struct mem_cgroup *memcg;
2704 
2705 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2706 	do {
2707 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2708 		unsigned long reclaimed;
2709 		unsigned long scanned;
2710 		bool skip = false;
2711 
2712 		/*
2713 		 * This loop can become CPU-bound when target memcgs
2714 		 * aren't eligible for reclaim - either because they
2715 		 * don't have any reclaimable pages, or because their
2716 		 * memory is explicitly protected. Avoid soft lockups.
2717 		 */
2718 		cond_resched();
2719 
2720 		trace_android_vh_shrink_node_memcgs(memcg, &skip);
2721 		if (skip)
2722 			continue;
2723 
2724 		mem_cgroup_calculate_protection(target_memcg, memcg);
2725 
2726 		if (mem_cgroup_below_min(memcg)) {
2727 			/*
2728 			 * Hard protection.
2729 			 * If there is no reclaimable memory, OOM.
2730 			 */
2731 			continue;
2732 		} else if (mem_cgroup_below_low(memcg)) {
2733 			/*
2734 			 * Soft protection.
2735 			 * Respect the protection only as long as
2736 			 * there is an unprotected supply
2737 			 * of reclaimable memory from other cgroups.
2738 			 */
2739 			if (!sc->memcg_low_reclaim) {
2740 				sc->memcg_low_skipped = 1;
2741 				continue;
2742 			}
2743 			memcg_memory_event(memcg, MEMCG_LOW);
2744 		}
2745 
2746 		reclaimed = sc->nr_reclaimed;
2747 		scanned = sc->nr_scanned;
2748 
2749 		shrink_lruvec(lruvec, sc);
2750 
2751 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2752 			    sc->priority);
2753 
2754 		/* Record the group's reclaim efficiency */
2755 		vmpressure(sc->gfp_mask, memcg, false,
2756 			   sc->nr_scanned - scanned,
2757 			   sc->nr_reclaimed - reclaimed);
2758 
2759 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2760 }
2761 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2762 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2763 {
2764 	struct reclaim_state *reclaim_state = current->reclaim_state;
2765 	unsigned long nr_reclaimed, nr_scanned;
2766 	struct lruvec *target_lruvec;
2767 	bool reclaimable = false;
2768 	unsigned long file;
2769 
2770 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2771 
2772 again:
2773 	memset(&sc->nr, 0, sizeof(sc->nr));
2774 
2775 	nr_reclaimed = sc->nr_reclaimed;
2776 	nr_scanned = sc->nr_scanned;
2777 
2778 	/*
2779 	 * Determine the scan balance between anon and file LRUs.
2780 	 */
2781 	spin_lock_irq(&pgdat->lru_lock);
2782 	sc->anon_cost = target_lruvec->anon_cost;
2783 	sc->file_cost = target_lruvec->file_cost;
2784 	spin_unlock_irq(&pgdat->lru_lock);
2785 
2786 	/*
2787 	 * Target desirable inactive:active list ratios for the anon
2788 	 * and file LRU lists.
2789 	 */
2790 	if (!sc->force_deactivate) {
2791 		unsigned long refaults;
2792 
2793 		refaults = lruvec_page_state(target_lruvec,
2794 				WORKINGSET_ACTIVATE_ANON);
2795 		if (refaults != target_lruvec->refaults[0] ||
2796 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2797 			sc->may_deactivate |= DEACTIVATE_ANON;
2798 		else
2799 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2800 
2801 		/*
2802 		 * When refaults are being observed, it means a new
2803 		 * workingset is being established. Deactivate to get
2804 		 * rid of any stale active pages quickly.
2805 		 */
2806 		refaults = lruvec_page_state(target_lruvec,
2807 				WORKINGSET_ACTIVATE_FILE);
2808 		if (refaults != target_lruvec->refaults[1] ||
2809 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2810 			sc->may_deactivate |= DEACTIVATE_FILE;
2811 		else
2812 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2813 	} else
2814 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2815 
2816 	/*
2817 	 * If we have plenty of inactive file pages that aren't
2818 	 * thrashing, try to reclaim those first before touching
2819 	 * anonymous pages.
2820 	 */
2821 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2822 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2823 		sc->cache_trim_mode = 1;
2824 	else
2825 		sc->cache_trim_mode = 0;
2826 
2827 	/*
2828 	 * Prevent the reclaimer from falling into the cache trap: as
2829 	 * cache pages start out inactive, every cache fault will tip
2830 	 * the scan balance towards the file LRU.  And as the file LRU
2831 	 * shrinks, so does the window for rotation from references.
2832 	 * This means we have a runaway feedback loop where a tiny
2833 	 * thrashing file LRU becomes infinitely more attractive than
2834 	 * anon pages.  Try to detect this based on file LRU size.
2835 	 */
2836 	if (!cgroup_reclaim(sc)) {
2837 		unsigned long total_high_wmark = 0;
2838 		unsigned long free, anon;
2839 		int z;
2840 
2841 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2842 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2843 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2844 
2845 		for (z = 0; z < MAX_NR_ZONES; z++) {
2846 			struct zone *zone = &pgdat->node_zones[z];
2847 			if (!managed_zone(zone))
2848 				continue;
2849 
2850 			total_high_wmark += high_wmark_pages(zone);
2851 		}
2852 
2853 		/*
2854 		 * Consider anon: if that's low too, this isn't a
2855 		 * runaway file reclaim problem, but rather just
2856 		 * extreme pressure. Reclaim as per usual then.
2857 		 */
2858 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2859 
2860 		sc->file_is_tiny =
2861 			file + free <= total_high_wmark &&
2862 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2863 			anon >> sc->priority;
2864 	}
2865 
2866 	shrink_node_memcgs(pgdat, sc);
2867 
2868 	if (reclaim_state) {
2869 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2870 		reclaim_state->reclaimed_slab = 0;
2871 	}
2872 
2873 	/* Record the subtree's reclaim efficiency */
2874 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2875 		   sc->nr_scanned - nr_scanned,
2876 		   sc->nr_reclaimed - nr_reclaimed);
2877 
2878 	if (sc->nr_reclaimed - nr_reclaimed)
2879 		reclaimable = true;
2880 
2881 	if (current_is_kswapd()) {
2882 		/*
2883 		 * If reclaim is isolating dirty pages under writeback,
2884 		 * it implies that the long-lived page allocation rate
2885 		 * is exceeding the page laundering rate. Either the
2886 		 * global limits are not being effective at throttling
2887 		 * processes due to the page distribution throughout
2888 		 * zones or there is heavy usage of a slow backing
2889 		 * device. The only option is to throttle from reclaim
2890 		 * context which is not ideal as there is no guarantee
2891 		 * the dirtying process is throttled in the same way
2892 		 * balance_dirty_pages() manages.
2893 		 *
2894 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2895 		 * count the number of pages under pages flagged for
2896 		 * immediate reclaim and stall if any are encountered
2897 		 * in the nr_immediate check below.
2898 		 */
2899 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2900 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2901 
2902 		/* Allow kswapd to start writing pages during reclaim.*/
2903 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2904 			set_bit(PGDAT_DIRTY, &pgdat->flags);
2905 
2906 		/*
2907 		 * If kswapd scans pages marked for immediate
2908 		 * reclaim and under writeback (nr_immediate), it
2909 		 * implies that pages are cycling through the LRU
2910 		 * faster than they are written so also forcibly stall.
2911 		 */
2912 		if (sc->nr.immediate)
2913 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2914 	}
2915 
2916 	/*
2917 	 * Tag a node/memcg as congested if all the dirty pages
2918 	 * scanned were backed by a congested BDI and
2919 	 * wait_iff_congested will stall.
2920 	 *
2921 	 * Legacy memcg will stall in page writeback so avoid forcibly
2922 	 * stalling in wait_iff_congested().
2923 	 */
2924 	if ((current_is_kswapd() ||
2925 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2926 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2927 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2928 
2929 	/*
2930 	 * Stall direct reclaim for IO completions if underlying BDIs
2931 	 * and node is congested. Allow kswapd to continue until it
2932 	 * starts encountering unqueued dirty pages or cycling through
2933 	 * the LRU too quickly.
2934 	 */
2935 	if (!current_is_kswapd() && current_may_throttle() &&
2936 	    !sc->hibernation_mode &&
2937 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2938 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2939 
2940 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2941 				    sc))
2942 		goto again;
2943 
2944 	/*
2945 	 * Kswapd gives up on balancing particular nodes after too
2946 	 * many failures to reclaim anything from them and goes to
2947 	 * sleep. On reclaim progress, reset the failure counter. A
2948 	 * successful direct reclaim run will revive a dormant kswapd.
2949 	 */
2950 	if (reclaimable)
2951 		pgdat->kswapd_failures = 0;
2952 }
2953 
2954 /*
2955  * Returns true if compaction should go ahead for a costly-order request, or
2956  * the allocation would already succeed without compaction. Return false if we
2957  * should reclaim first.
2958  */
compaction_ready(struct zone * zone,struct scan_control * sc)2959 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2960 {
2961 	unsigned long watermark;
2962 	enum compact_result suitable;
2963 
2964 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2965 	if (suitable == COMPACT_SUCCESS)
2966 		/* Allocation should succeed already. Don't reclaim. */
2967 		return true;
2968 	if (suitable == COMPACT_SKIPPED)
2969 		/* Compaction cannot yet proceed. Do reclaim. */
2970 		return false;
2971 
2972 	/*
2973 	 * Compaction is already possible, but it takes time to run and there
2974 	 * are potentially other callers using the pages just freed. So proceed
2975 	 * with reclaim to make a buffer of free pages available to give
2976 	 * compaction a reasonable chance of completing and allocating the page.
2977 	 * Note that we won't actually reclaim the whole buffer in one attempt
2978 	 * as the target watermark in should_continue_reclaim() is lower. But if
2979 	 * we are already above the high+gap watermark, don't reclaim at all.
2980 	 */
2981 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2982 
2983 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2984 }
2985 
2986 /*
2987  * This is the direct reclaim path, for page-allocating processes.  We only
2988  * try to reclaim pages from zones which will satisfy the caller's allocation
2989  * request.
2990  *
2991  * If a zone is deemed to be full of pinned pages then just give it a light
2992  * scan then give up on it.
2993  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2994 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2995 {
2996 	struct zoneref *z;
2997 	struct zone *zone;
2998 	unsigned long nr_soft_reclaimed;
2999 	unsigned long nr_soft_scanned;
3000 	gfp_t orig_mask;
3001 	pg_data_t *last_pgdat = NULL;
3002 
3003 	/*
3004 	 * If the number of buffer_heads in the machine exceeds the maximum
3005 	 * allowed level, force direct reclaim to scan the highmem zone as
3006 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3007 	 */
3008 	orig_mask = sc->gfp_mask;
3009 	if (buffer_heads_over_limit) {
3010 		sc->gfp_mask |= __GFP_HIGHMEM;
3011 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3012 	}
3013 
3014 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3015 					sc->reclaim_idx, sc->nodemask) {
3016 		/*
3017 		 * Take care memory controller reclaiming has small influence
3018 		 * to global LRU.
3019 		 */
3020 		if (!cgroup_reclaim(sc)) {
3021 			if (!cpuset_zone_allowed(zone,
3022 						 GFP_KERNEL | __GFP_HARDWALL))
3023 				continue;
3024 
3025 			/*
3026 			 * If we already have plenty of memory free for
3027 			 * compaction in this zone, don't free any more.
3028 			 * Even though compaction is invoked for any
3029 			 * non-zero order, only frequent costly order
3030 			 * reclamation is disruptive enough to become a
3031 			 * noticeable problem, like transparent huge
3032 			 * page allocations.
3033 			 */
3034 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3035 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3036 			    compaction_ready(zone, sc)) {
3037 				sc->compaction_ready = true;
3038 				continue;
3039 			}
3040 
3041 			/*
3042 			 * Shrink each node in the zonelist once. If the
3043 			 * zonelist is ordered by zone (not the default) then a
3044 			 * node may be shrunk multiple times but in that case
3045 			 * the user prefers lower zones being preserved.
3046 			 */
3047 			if (zone->zone_pgdat == last_pgdat)
3048 				continue;
3049 
3050 			/*
3051 			 * This steals pages from memory cgroups over softlimit
3052 			 * and returns the number of reclaimed pages and
3053 			 * scanned pages. This works for global memory pressure
3054 			 * and balancing, not for a memcg's limit.
3055 			 */
3056 			nr_soft_scanned = 0;
3057 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3058 						sc->order, sc->gfp_mask,
3059 						&nr_soft_scanned);
3060 			sc->nr_reclaimed += nr_soft_reclaimed;
3061 			sc->nr_scanned += nr_soft_scanned;
3062 			/* need some check for avoid more shrink_zone() */
3063 		}
3064 
3065 		/* See comment about same check for global reclaim above */
3066 		if (zone->zone_pgdat == last_pgdat)
3067 			continue;
3068 		last_pgdat = zone->zone_pgdat;
3069 		shrink_node(zone->zone_pgdat, sc);
3070 	}
3071 
3072 	/*
3073 	 * Restore to original mask to avoid the impact on the caller if we
3074 	 * promoted it to __GFP_HIGHMEM.
3075 	 */
3076 	sc->gfp_mask = orig_mask;
3077 }
3078 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)3079 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3080 {
3081 	struct lruvec *target_lruvec;
3082 	unsigned long refaults;
3083 
3084 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3085 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3086 	target_lruvec->refaults[0] = refaults;
3087 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3088 	target_lruvec->refaults[1] = refaults;
3089 	trace_android_vh_snapshot_refaults(target_lruvec);
3090 }
3091 
3092 /*
3093  * This is the main entry point to direct page reclaim.
3094  *
3095  * If a full scan of the inactive list fails to free enough memory then we
3096  * are "out of memory" and something needs to be killed.
3097  *
3098  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3099  * high - the zone may be full of dirty or under-writeback pages, which this
3100  * caller can't do much about.  We kick the writeback threads and take explicit
3101  * naps in the hope that some of these pages can be written.  But if the
3102  * allocating task holds filesystem locks which prevent writeout this might not
3103  * work, and the allocation attempt will fail.
3104  *
3105  * returns:	0, if no pages reclaimed
3106  * 		else, the number of pages reclaimed
3107  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3108 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3109 					  struct scan_control *sc)
3110 {
3111 	int initial_priority = sc->priority;
3112 	pg_data_t *last_pgdat;
3113 	struct zoneref *z;
3114 	struct zone *zone;
3115 retry:
3116 	delayacct_freepages_start();
3117 
3118 	if (!cgroup_reclaim(sc))
3119 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3120 
3121 	do {
3122 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3123 				sc->priority);
3124 		sc->nr_scanned = 0;
3125 		shrink_zones(zonelist, sc);
3126 
3127 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3128 			break;
3129 
3130 		if (sc->compaction_ready)
3131 			break;
3132 
3133 		/*
3134 		 * If we're getting trouble reclaiming, start doing
3135 		 * writepage even in laptop mode.
3136 		 */
3137 		if (sc->priority < DEF_PRIORITY - 2)
3138 			sc->may_writepage = 1;
3139 	} while (--sc->priority >= 0);
3140 
3141 	last_pgdat = NULL;
3142 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3143 					sc->nodemask) {
3144 		if (zone->zone_pgdat == last_pgdat)
3145 			continue;
3146 		last_pgdat = zone->zone_pgdat;
3147 
3148 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3149 
3150 		if (cgroup_reclaim(sc)) {
3151 			struct lruvec *lruvec;
3152 
3153 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3154 						   zone->zone_pgdat);
3155 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3156 		}
3157 	}
3158 
3159 	delayacct_freepages_end();
3160 
3161 	if (sc->nr_reclaimed)
3162 		return sc->nr_reclaimed;
3163 
3164 	/* Aborted reclaim to try compaction? don't OOM, then */
3165 	if (sc->compaction_ready)
3166 		return 1;
3167 
3168 	/*
3169 	 * We make inactive:active ratio decisions based on the node's
3170 	 * composition of memory, but a restrictive reclaim_idx or a
3171 	 * memory.low cgroup setting can exempt large amounts of
3172 	 * memory from reclaim. Neither of which are very common, so
3173 	 * instead of doing costly eligibility calculations of the
3174 	 * entire cgroup subtree up front, we assume the estimates are
3175 	 * good, and retry with forcible deactivation if that fails.
3176 	 */
3177 	if (sc->skipped_deactivate) {
3178 		sc->priority = initial_priority;
3179 		sc->force_deactivate = 1;
3180 		sc->skipped_deactivate = 0;
3181 		goto retry;
3182 	}
3183 
3184 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3185 	if (sc->memcg_low_skipped) {
3186 		sc->priority = initial_priority;
3187 		sc->force_deactivate = 0;
3188 		sc->memcg_low_reclaim = 1;
3189 		sc->memcg_low_skipped = 0;
3190 		goto retry;
3191 	}
3192 
3193 	return 0;
3194 }
3195 
allow_direct_reclaim(pg_data_t * pgdat)3196 static bool allow_direct_reclaim(pg_data_t *pgdat)
3197 {
3198 	struct zone *zone;
3199 	unsigned long pfmemalloc_reserve = 0;
3200 	unsigned long free_pages = 0;
3201 	int i;
3202 	bool wmark_ok;
3203 
3204 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3205 		return true;
3206 
3207 	for (i = 0; i <= ZONE_NORMAL; i++) {
3208 		zone = &pgdat->node_zones[i];
3209 		if (!managed_zone(zone))
3210 			continue;
3211 
3212 		if (!zone_reclaimable_pages(zone))
3213 			continue;
3214 
3215 		pfmemalloc_reserve += min_wmark_pages(zone);
3216 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3217 	}
3218 
3219 	/* If there are no reserves (unexpected config) then do not throttle */
3220 	if (!pfmemalloc_reserve)
3221 		return true;
3222 
3223 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3224 
3225 	/* kswapd must be awake if processes are being throttled */
3226 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3227 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3228 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3229 
3230 		wake_up_interruptible(&pgdat->kswapd_wait);
3231 	}
3232 
3233 	return wmark_ok;
3234 }
3235 
3236 /*
3237  * Throttle direct reclaimers if backing storage is backed by the network
3238  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3239  * depleted. kswapd will continue to make progress and wake the processes
3240  * when the low watermark is reached.
3241  *
3242  * Returns true if a fatal signal was delivered during throttling. If this
3243  * happens, the page allocator should not consider triggering the OOM killer.
3244  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3245 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3246 					nodemask_t *nodemask)
3247 {
3248 	struct zoneref *z;
3249 	struct zone *zone;
3250 	pg_data_t *pgdat = NULL;
3251 
3252 	/*
3253 	 * Kernel threads should not be throttled as they may be indirectly
3254 	 * responsible for cleaning pages necessary for reclaim to make forward
3255 	 * progress. kjournald for example may enter direct reclaim while
3256 	 * committing a transaction where throttling it could forcing other
3257 	 * processes to block on log_wait_commit().
3258 	 */
3259 	if (current->flags & PF_KTHREAD)
3260 		goto out;
3261 
3262 	/*
3263 	 * If a fatal signal is pending, this process should not throttle.
3264 	 * It should return quickly so it can exit and free its memory
3265 	 */
3266 	if (fatal_signal_pending(current))
3267 		goto out;
3268 
3269 	/*
3270 	 * Check if the pfmemalloc reserves are ok by finding the first node
3271 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3272 	 * GFP_KERNEL will be required for allocating network buffers when
3273 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3274 	 *
3275 	 * Throttling is based on the first usable node and throttled processes
3276 	 * wait on a queue until kswapd makes progress and wakes them. There
3277 	 * is an affinity then between processes waking up and where reclaim
3278 	 * progress has been made assuming the process wakes on the same node.
3279 	 * More importantly, processes running on remote nodes will not compete
3280 	 * for remote pfmemalloc reserves and processes on different nodes
3281 	 * should make reasonable progress.
3282 	 */
3283 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3284 					gfp_zone(gfp_mask), nodemask) {
3285 		if (zone_idx(zone) > ZONE_NORMAL)
3286 			continue;
3287 
3288 		/* Throttle based on the first usable node */
3289 		pgdat = zone->zone_pgdat;
3290 		if (allow_direct_reclaim(pgdat))
3291 			goto out;
3292 		break;
3293 	}
3294 
3295 	/* If no zone was usable by the allocation flags then do not throttle */
3296 	if (!pgdat)
3297 		goto out;
3298 
3299 	/* Account for the throttling */
3300 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3301 
3302 	/*
3303 	 * If the caller cannot enter the filesystem, it's possible that it
3304 	 * is due to the caller holding an FS lock or performing a journal
3305 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3306 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3307 	 * blocked waiting on the same lock. Instead, throttle for up to a
3308 	 * second before continuing.
3309 	 */
3310 	if (!(gfp_mask & __GFP_FS)) {
3311 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3312 			allow_direct_reclaim(pgdat), HZ);
3313 
3314 		goto check_pending;
3315 	}
3316 
3317 	/* Throttle until kswapd wakes the process */
3318 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3319 		allow_direct_reclaim(pgdat));
3320 
3321 check_pending:
3322 	if (fatal_signal_pending(current))
3323 		return true;
3324 
3325 out:
3326 	return false;
3327 }
3328 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3329 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3330 				gfp_t gfp_mask, nodemask_t *nodemask)
3331 {
3332 	unsigned long nr_reclaimed;
3333 	struct scan_control sc = {
3334 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3335 		.gfp_mask = current_gfp_context(gfp_mask),
3336 		.reclaim_idx = gfp_zone(gfp_mask),
3337 		.order = order,
3338 		.nodemask = nodemask,
3339 		.priority = DEF_PRIORITY,
3340 		.may_writepage = !laptop_mode,
3341 		.may_unmap = 1,
3342 		.may_swap = 1,
3343 	};
3344 
3345 	/*
3346 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3347 	 * Confirm they are large enough for max values.
3348 	 */
3349 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3350 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3351 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3352 
3353 	/*
3354 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3355 	 * 1 is returned so that the page allocator does not OOM kill at this
3356 	 * point.
3357 	 */
3358 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3359 		return 1;
3360 
3361 	set_task_reclaim_state(current, &sc.reclaim_state);
3362 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3363 
3364 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3365 
3366 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3367 	set_task_reclaim_state(current, NULL);
3368 
3369 	return nr_reclaimed;
3370 }
3371 
3372 #ifdef CONFIG_MEMCG
3373 
3374 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3375 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3376 						gfp_t gfp_mask, bool noswap,
3377 						pg_data_t *pgdat,
3378 						unsigned long *nr_scanned)
3379 {
3380 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3381 	struct scan_control sc = {
3382 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3383 		.target_mem_cgroup = memcg,
3384 		.may_writepage = !laptop_mode,
3385 		.may_unmap = 1,
3386 		.reclaim_idx = MAX_NR_ZONES - 1,
3387 		.may_swap = !noswap,
3388 	};
3389 
3390 	WARN_ON_ONCE(!current->reclaim_state);
3391 
3392 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3393 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3394 
3395 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3396 						      sc.gfp_mask);
3397 
3398 	/*
3399 	 * NOTE: Although we can get the priority field, using it
3400 	 * here is not a good idea, since it limits the pages we can scan.
3401 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3402 	 * will pick up pages from other mem cgroup's as well. We hack
3403 	 * the priority and make it zero.
3404 	 */
3405 	shrink_lruvec(lruvec, &sc);
3406 
3407 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3408 
3409 	*nr_scanned = sc.nr_scanned;
3410 
3411 	return sc.nr_reclaimed;
3412 }
3413 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3414 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3415 					   unsigned long nr_pages,
3416 					   gfp_t gfp_mask,
3417 					   bool may_swap)
3418 {
3419 	unsigned long nr_reclaimed;
3420 	unsigned int noreclaim_flag;
3421 	struct scan_control sc = {
3422 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3423 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3424 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3425 		.reclaim_idx = MAX_NR_ZONES - 1,
3426 		.target_mem_cgroup = memcg,
3427 		.priority = DEF_PRIORITY,
3428 		.may_writepage = !laptop_mode,
3429 		.may_unmap = 1,
3430 		.may_swap = may_swap,
3431 	};
3432 	/*
3433 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3434 	 * equal pressure on all the nodes. This is based on the assumption that
3435 	 * the reclaim does not bail out early.
3436 	 */
3437 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3438 
3439 	set_task_reclaim_state(current, &sc.reclaim_state);
3440 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3441 	noreclaim_flag = memalloc_noreclaim_save();
3442 
3443 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3444 
3445 	memalloc_noreclaim_restore(noreclaim_flag);
3446 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3447 	set_task_reclaim_state(current, NULL);
3448 
3449 	return nr_reclaimed;
3450 }
3451 EXPORT_SYMBOL_GPL(try_to_free_mem_cgroup_pages);
3452 #endif
3453 
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3454 static void age_active_anon(struct pglist_data *pgdat,
3455 				struct scan_control *sc)
3456 {
3457 	struct mem_cgroup *memcg;
3458 	struct lruvec *lruvec;
3459 
3460 	if (!total_swap_pages)
3461 		return;
3462 
3463 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3464 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3465 		return;
3466 
3467 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3468 	do {
3469 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3470 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3471 				   sc, LRU_ACTIVE_ANON);
3472 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3473 	} while (memcg);
3474 }
3475 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)3476 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3477 {
3478 	int i;
3479 	struct zone *zone;
3480 
3481 	/*
3482 	 * Check for watermark boosts top-down as the higher zones
3483 	 * are more likely to be boosted. Both watermarks and boosts
3484 	 * should not be checked at the same time as reclaim would
3485 	 * start prematurely when there is no boosting and a lower
3486 	 * zone is balanced.
3487 	 */
3488 	for (i = highest_zoneidx; i >= 0; i--) {
3489 		zone = pgdat->node_zones + i;
3490 		if (!managed_zone(zone))
3491 			continue;
3492 
3493 		if (zone->watermark_boost)
3494 			return true;
3495 	}
3496 
3497 	return false;
3498 }
3499 
3500 /*
3501  * Returns true if there is an eligible zone balanced for the request order
3502  * and highest_zoneidx
3503  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)3504 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3505 {
3506 	int i;
3507 	unsigned long mark = -1;
3508 	struct zone *zone;
3509 
3510 	/*
3511 	 * Check watermarks bottom-up as lower zones are more likely to
3512 	 * meet watermarks.
3513 	 */
3514 	for (i = 0; i <= highest_zoneidx; i++) {
3515 		zone = pgdat->node_zones + i;
3516 
3517 		if (!managed_zone(zone))
3518 			continue;
3519 
3520 		mark = high_wmark_pages(zone);
3521 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3522 			return true;
3523 	}
3524 
3525 	/*
3526 	 * If a node has no populated zone within highest_zoneidx, it does not
3527 	 * need balancing by definition. This can happen if a zone-restricted
3528 	 * allocation tries to wake a remote kswapd.
3529 	 */
3530 	if (mark == -1)
3531 		return true;
3532 
3533 	return false;
3534 }
3535 
3536 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3537 static void clear_pgdat_congested(pg_data_t *pgdat)
3538 {
3539 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3540 
3541 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3542 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3543 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3544 }
3545 
3546 /*
3547  * Prepare kswapd for sleeping. This verifies that there are no processes
3548  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3549  *
3550  * Returns true if kswapd is ready to sleep
3551  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)3552 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3553 				int highest_zoneidx)
3554 {
3555 	/*
3556 	 * The throttled processes are normally woken up in balance_pgdat() as
3557 	 * soon as allow_direct_reclaim() is true. But there is a potential
3558 	 * race between when kswapd checks the watermarks and a process gets
3559 	 * throttled. There is also a potential race if processes get
3560 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3561 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3562 	 * the wake up checks. If kswapd is going to sleep, no process should
3563 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3564 	 * the wake up is premature, processes will wake kswapd and get
3565 	 * throttled again. The difference from wake ups in balance_pgdat() is
3566 	 * that here we are under prepare_to_wait().
3567 	 */
3568 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3569 		wake_up_all(&pgdat->pfmemalloc_wait);
3570 
3571 	/* Hopeless node, leave it to direct reclaim */
3572 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3573 		return true;
3574 
3575 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3576 		clear_pgdat_congested(pgdat);
3577 		return true;
3578 	}
3579 
3580 	return false;
3581 }
3582 
3583 /*
3584  * kswapd shrinks a node of pages that are at or below the highest usable
3585  * zone that is currently unbalanced.
3586  *
3587  * Returns true if kswapd scanned at least the requested number of pages to
3588  * reclaim or if the lack of progress was due to pages under writeback.
3589  * This is used to determine if the scanning priority needs to be raised.
3590  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3591 static bool kswapd_shrink_node(pg_data_t *pgdat,
3592 			       struct scan_control *sc)
3593 {
3594 	struct zone *zone;
3595 	int z;
3596 
3597 	/* Reclaim a number of pages proportional to the number of zones */
3598 	sc->nr_to_reclaim = 0;
3599 	for (z = 0; z <= sc->reclaim_idx; z++) {
3600 		zone = pgdat->node_zones + z;
3601 		if (!managed_zone(zone))
3602 			continue;
3603 
3604 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3605 	}
3606 
3607 	/*
3608 	 * Historically care was taken to put equal pressure on all zones but
3609 	 * now pressure is applied based on node LRU order.
3610 	 */
3611 	shrink_node(pgdat, sc);
3612 
3613 	/*
3614 	 * Fragmentation may mean that the system cannot be rebalanced for
3615 	 * high-order allocations. If twice the allocation size has been
3616 	 * reclaimed then recheck watermarks only at order-0 to prevent
3617 	 * excessive reclaim. Assume that a process requested a high-order
3618 	 * can direct reclaim/compact.
3619 	 */
3620 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3621 		sc->order = 0;
3622 
3623 	return sc->nr_scanned >= sc->nr_to_reclaim;
3624 }
3625 
3626 /*
3627  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3628  * that are eligible for use by the caller until at least one zone is
3629  * balanced.
3630  *
3631  * Returns the order kswapd finished reclaiming at.
3632  *
3633  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3634  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3635  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3636  * or lower is eligible for reclaim until at least one usable zone is
3637  * balanced.
3638  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)3639 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3640 {
3641 	int i;
3642 	unsigned long nr_soft_reclaimed;
3643 	unsigned long nr_soft_scanned;
3644 	unsigned long pflags;
3645 	unsigned long nr_boost_reclaim;
3646 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3647 	bool boosted;
3648 	struct zone *zone;
3649 	struct scan_control sc = {
3650 		.gfp_mask = GFP_KERNEL,
3651 		.order = order,
3652 		.may_unmap = 1,
3653 	};
3654 
3655 	set_task_reclaim_state(current, &sc.reclaim_state);
3656 	psi_memstall_enter(&pflags);
3657 	__fs_reclaim_acquire();
3658 
3659 	count_vm_event(PAGEOUTRUN);
3660 
3661 	/*
3662 	 * Account for the reclaim boost. Note that the zone boost is left in
3663 	 * place so that parallel allocations that are near the watermark will
3664 	 * stall or direct reclaim until kswapd is finished.
3665 	 */
3666 	nr_boost_reclaim = 0;
3667 	for (i = 0; i <= highest_zoneidx; i++) {
3668 		zone = pgdat->node_zones + i;
3669 		if (!managed_zone(zone))
3670 			continue;
3671 
3672 		nr_boost_reclaim += zone->watermark_boost;
3673 		zone_boosts[i] = zone->watermark_boost;
3674 	}
3675 	boosted = nr_boost_reclaim;
3676 
3677 restart:
3678 	sc.priority = DEF_PRIORITY;
3679 	do {
3680 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3681 		bool raise_priority = true;
3682 		bool balanced;
3683 		bool ret;
3684 
3685 		sc.reclaim_idx = highest_zoneidx;
3686 
3687 		/*
3688 		 * If the number of buffer_heads exceeds the maximum allowed
3689 		 * then consider reclaiming from all zones. This has a dual
3690 		 * purpose -- on 64-bit systems it is expected that
3691 		 * buffer_heads are stripped during active rotation. On 32-bit
3692 		 * systems, highmem pages can pin lowmem memory and shrinking
3693 		 * buffers can relieve lowmem pressure. Reclaim may still not
3694 		 * go ahead if all eligible zones for the original allocation
3695 		 * request are balanced to avoid excessive reclaim from kswapd.
3696 		 */
3697 		if (buffer_heads_over_limit) {
3698 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3699 				zone = pgdat->node_zones + i;
3700 				if (!managed_zone(zone))
3701 					continue;
3702 
3703 				sc.reclaim_idx = i;
3704 				break;
3705 			}
3706 		}
3707 
3708 		/*
3709 		 * If the pgdat is imbalanced then ignore boosting and preserve
3710 		 * the watermarks for a later time and restart. Note that the
3711 		 * zone watermarks will be still reset at the end of balancing
3712 		 * on the grounds that the normal reclaim should be enough to
3713 		 * re-evaluate if boosting is required when kswapd next wakes.
3714 		 */
3715 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3716 		if (!balanced && nr_boost_reclaim) {
3717 			nr_boost_reclaim = 0;
3718 			goto restart;
3719 		}
3720 
3721 		/*
3722 		 * If boosting is not active then only reclaim if there are no
3723 		 * eligible zones. Note that sc.reclaim_idx is not used as
3724 		 * buffer_heads_over_limit may have adjusted it.
3725 		 */
3726 		if (!nr_boost_reclaim && balanced)
3727 			goto out;
3728 
3729 		/* Limit the priority of boosting to avoid reclaim writeback */
3730 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3731 			raise_priority = false;
3732 
3733 		/*
3734 		 * Do not writeback or swap pages for boosted reclaim. The
3735 		 * intent is to relieve pressure not issue sub-optimal IO
3736 		 * from reclaim context. If no pages are reclaimed, the
3737 		 * reclaim will be aborted.
3738 		 */
3739 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3740 		sc.may_swap = !nr_boost_reclaim;
3741 
3742 		/*
3743 		 * Do some background aging of the anon list, to give
3744 		 * pages a chance to be referenced before reclaiming. All
3745 		 * pages are rotated regardless of classzone as this is
3746 		 * about consistent aging.
3747 		 */
3748 		age_active_anon(pgdat, &sc);
3749 
3750 		/*
3751 		 * If we're getting trouble reclaiming, start doing writepage
3752 		 * even in laptop mode.
3753 		 */
3754 		if (sc.priority < DEF_PRIORITY - 2)
3755 			sc.may_writepage = 1;
3756 
3757 		/* Call soft limit reclaim before calling shrink_node. */
3758 		sc.nr_scanned = 0;
3759 		nr_soft_scanned = 0;
3760 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3761 						sc.gfp_mask, &nr_soft_scanned);
3762 		sc.nr_reclaimed += nr_soft_reclaimed;
3763 
3764 		/*
3765 		 * There should be no need to raise the scanning priority if
3766 		 * enough pages are already being scanned that that high
3767 		 * watermark would be met at 100% efficiency.
3768 		 */
3769 		if (kswapd_shrink_node(pgdat, &sc))
3770 			raise_priority = false;
3771 
3772 		/*
3773 		 * If the low watermark is met there is no need for processes
3774 		 * to be throttled on pfmemalloc_wait as they should not be
3775 		 * able to safely make forward progress. Wake them
3776 		 */
3777 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3778 				allow_direct_reclaim(pgdat))
3779 			wake_up_all(&pgdat->pfmemalloc_wait);
3780 
3781 		/* Check if kswapd should be suspending */
3782 		__fs_reclaim_release();
3783 		ret = try_to_freeze();
3784 		__fs_reclaim_acquire();
3785 		if (ret || kthread_should_stop())
3786 			break;
3787 
3788 		/*
3789 		 * Raise priority if scanning rate is too low or there was no
3790 		 * progress in reclaiming pages
3791 		 */
3792 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3793 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3794 
3795 		/*
3796 		 * If reclaim made no progress for a boost, stop reclaim as
3797 		 * IO cannot be queued and it could be an infinite loop in
3798 		 * extreme circumstances.
3799 		 */
3800 		if (nr_boost_reclaim && !nr_reclaimed)
3801 			break;
3802 
3803 		if (raise_priority || !nr_reclaimed)
3804 			sc.priority--;
3805 	} while (sc.priority >= 1);
3806 
3807 	if (!sc.nr_reclaimed)
3808 		pgdat->kswapd_failures++;
3809 
3810 out:
3811 	/* If reclaim was boosted, account for the reclaim done in this pass */
3812 	if (boosted) {
3813 		unsigned long flags;
3814 
3815 		for (i = 0; i <= highest_zoneidx; i++) {
3816 			if (!zone_boosts[i])
3817 				continue;
3818 
3819 			/* Increments are under the zone lock */
3820 			zone = pgdat->node_zones + i;
3821 			spin_lock_irqsave(&zone->lock, flags);
3822 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3823 			spin_unlock_irqrestore(&zone->lock, flags);
3824 		}
3825 
3826 		/*
3827 		 * As there is now likely space, wakeup kcompact to defragment
3828 		 * pageblocks.
3829 		 */
3830 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3831 	}
3832 
3833 	snapshot_refaults(NULL, pgdat);
3834 	__fs_reclaim_release();
3835 	psi_memstall_leave(&pflags);
3836 	set_task_reclaim_state(current, NULL);
3837 
3838 	/*
3839 	 * Return the order kswapd stopped reclaiming at as
3840 	 * prepare_kswapd_sleep() takes it into account. If another caller
3841 	 * entered the allocator slow path while kswapd was awake, order will
3842 	 * remain at the higher level.
3843 	 */
3844 	return sc.order;
3845 }
3846 
3847 /*
3848  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3849  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3850  * not a valid index then either kswapd runs for first time or kswapd couldn't
3851  * sleep after previous reclaim attempt (node is still unbalanced). In that
3852  * case return the zone index of the previous kswapd reclaim cycle.
3853  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)3854 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3855 					   enum zone_type prev_highest_zoneidx)
3856 {
3857 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3858 
3859 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3860 }
3861 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)3862 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3863 				unsigned int highest_zoneidx)
3864 {
3865 	long remaining = 0;
3866 	DEFINE_WAIT(wait);
3867 
3868 	if (freezing(current) || kthread_should_stop())
3869 		return;
3870 
3871 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3872 
3873 	/*
3874 	 * Try to sleep for a short interval. Note that kcompactd will only be
3875 	 * woken if it is possible to sleep for a short interval. This is
3876 	 * deliberate on the assumption that if reclaim cannot keep an
3877 	 * eligible zone balanced that it's also unlikely that compaction will
3878 	 * succeed.
3879 	 */
3880 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3881 		/*
3882 		 * Compaction records what page blocks it recently failed to
3883 		 * isolate pages from and skips them in the future scanning.
3884 		 * When kswapd is going to sleep, it is reasonable to assume
3885 		 * that pages and compaction may succeed so reset the cache.
3886 		 */
3887 		reset_isolation_suitable(pgdat);
3888 
3889 		/*
3890 		 * We have freed the memory, now we should compact it to make
3891 		 * allocation of the requested order possible.
3892 		 */
3893 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3894 
3895 		remaining = schedule_timeout(HZ/10);
3896 
3897 		/*
3898 		 * If woken prematurely then reset kswapd_highest_zoneidx and
3899 		 * order. The values will either be from a wakeup request or
3900 		 * the previous request that slept prematurely.
3901 		 */
3902 		if (remaining) {
3903 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3904 					kswapd_highest_zoneidx(pgdat,
3905 							highest_zoneidx));
3906 
3907 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3908 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3909 		}
3910 
3911 		finish_wait(&pgdat->kswapd_wait, &wait);
3912 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3913 	}
3914 
3915 	/*
3916 	 * After a short sleep, check if it was a premature sleep. If not, then
3917 	 * go fully to sleep until explicitly woken up.
3918 	 */
3919 	if (!remaining &&
3920 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3921 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3922 
3923 		/*
3924 		 * vmstat counters are not perfectly accurate and the estimated
3925 		 * value for counters such as NR_FREE_PAGES can deviate from the
3926 		 * true value by nr_online_cpus * threshold. To avoid the zone
3927 		 * watermarks being breached while under pressure, we reduce the
3928 		 * per-cpu vmstat threshold while kswapd is awake and restore
3929 		 * them before going back to sleep.
3930 		 */
3931 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3932 
3933 		if (!kthread_should_stop())
3934 			schedule();
3935 
3936 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3937 	} else {
3938 		if (remaining)
3939 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3940 		else
3941 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3942 	}
3943 	finish_wait(&pgdat->kswapd_wait, &wait);
3944 }
3945 
3946 /*
3947  * The background pageout daemon, started as a kernel thread
3948  * from the init process.
3949  *
3950  * This basically trickles out pages so that we have _some_
3951  * free memory available even if there is no other activity
3952  * that frees anything up. This is needed for things like routing
3953  * etc, where we otherwise might have all activity going on in
3954  * asynchronous contexts that cannot page things out.
3955  *
3956  * If there are applications that are active memory-allocators
3957  * (most normal use), this basically shouldn't matter.
3958  */
kswapd(void * p)3959 static int kswapd(void *p)
3960 {
3961 	unsigned int alloc_order, reclaim_order;
3962 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3963 	pg_data_t *pgdat = (pg_data_t*)p;
3964 	struct task_struct *tsk = current;
3965 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3966 
3967 	if (!cpumask_empty(cpumask))
3968 		set_cpus_allowed_ptr(tsk, cpumask);
3969 
3970 	/*
3971 	 * Tell the memory management that we're a "memory allocator",
3972 	 * and that if we need more memory we should get access to it
3973 	 * regardless (see "__alloc_pages()"). "kswapd" should
3974 	 * never get caught in the normal page freeing logic.
3975 	 *
3976 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3977 	 * you need a small amount of memory in order to be able to
3978 	 * page out something else, and this flag essentially protects
3979 	 * us from recursively trying to free more memory as we're
3980 	 * trying to free the first piece of memory in the first place).
3981 	 */
3982 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3983 	set_freezable();
3984 
3985 	WRITE_ONCE(pgdat->kswapd_order, 0);
3986 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3987 	for ( ; ; ) {
3988 		bool ret;
3989 
3990 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3991 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3992 							highest_zoneidx);
3993 
3994 kswapd_try_sleep:
3995 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3996 					highest_zoneidx);
3997 
3998 		/* Read the new order and highest_zoneidx */
3999 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4000 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4001 							highest_zoneidx);
4002 		WRITE_ONCE(pgdat->kswapd_order, 0);
4003 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4004 
4005 		ret = try_to_freeze();
4006 		if (kthread_should_stop())
4007 			break;
4008 
4009 		/*
4010 		 * We can speed up thawing tasks if we don't call balance_pgdat
4011 		 * after returning from the refrigerator
4012 		 */
4013 		if (ret)
4014 			continue;
4015 
4016 		/*
4017 		 * Reclaim begins at the requested order but if a high-order
4018 		 * reclaim fails then kswapd falls back to reclaiming for
4019 		 * order-0. If that happens, kswapd will consider sleeping
4020 		 * for the order it finished reclaiming at (reclaim_order)
4021 		 * but kcompactd is woken to compact for the original
4022 		 * request (alloc_order).
4023 		 */
4024 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4025 						alloc_order);
4026 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4027 						highest_zoneidx);
4028 		if (reclaim_order < alloc_order)
4029 			goto kswapd_try_sleep;
4030 	}
4031 
4032 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4033 
4034 	return 0;
4035 }
4036 
kswapd_per_node_run(int nid)4037 static int kswapd_per_node_run(int nid)
4038 {
4039 	pg_data_t *pgdat = NODE_DATA(nid);
4040 	int hid;
4041 	int ret = 0;
4042 
4043 	for (hid = 0; hid < kswapd_threads; ++hid) {
4044 		pgdat->mkswapd[hid] = kthread_run(kswapd, pgdat, "kswapd%d:%d",
4045 								nid, hid);
4046 		if (IS_ERR(pgdat->mkswapd[hid])) {
4047 			/* failure at boot is fatal */
4048 			WARN_ON(system_state < SYSTEM_RUNNING);
4049 			pr_err("Failed to start kswapd%d on node %d\n",
4050 				hid, nid);
4051 			ret = PTR_ERR(pgdat->mkswapd[hid]);
4052 			pgdat->mkswapd[hid] = NULL;
4053 			continue;
4054 		}
4055 		if (!pgdat->kswapd)
4056 			pgdat->kswapd = pgdat->mkswapd[hid];
4057 	}
4058 
4059 	return ret;
4060 }
4061 
kswapd_per_node_stop(int nid)4062 static void kswapd_per_node_stop(int nid)
4063 {
4064 	int hid = 0;
4065 	struct task_struct *kswapd;
4066 
4067 	for (hid = 0; hid < kswapd_threads; hid++) {
4068 		kswapd = NODE_DATA(nid)->mkswapd[hid];
4069 		if (kswapd) {
4070 			kthread_stop(kswapd);
4071 			NODE_DATA(nid)->mkswapd[hid] = NULL;
4072 		}
4073 	}
4074 	NODE_DATA(nid)->kswapd = NULL;
4075 }
4076 
4077 /*
4078  * A zone is low on free memory or too fragmented for high-order memory.  If
4079  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4080  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4081  * has failed or is not needed, still wake up kcompactd if only compaction is
4082  * needed.
4083  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)4084 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4085 		   enum zone_type highest_zoneidx)
4086 {
4087 	pg_data_t *pgdat;
4088 	enum zone_type curr_idx;
4089 
4090 	if (!managed_zone(zone))
4091 		return;
4092 
4093 	if (!cpuset_zone_allowed(zone, gfp_flags))
4094 		return;
4095 
4096 	pgdat = zone->zone_pgdat;
4097 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4098 
4099 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4100 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4101 
4102 	if (READ_ONCE(pgdat->kswapd_order) < order)
4103 		WRITE_ONCE(pgdat->kswapd_order, order);
4104 
4105 	if (!waitqueue_active(&pgdat->kswapd_wait))
4106 		return;
4107 
4108 	/* Hopeless node, leave it to direct reclaim if possible */
4109 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4110 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4111 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4112 		/*
4113 		 * There may be plenty of free memory available, but it's too
4114 		 * fragmented for high-order allocations.  Wake up kcompactd
4115 		 * and rely on compaction_suitable() to determine if it's
4116 		 * needed.  If it fails, it will defer subsequent attempts to
4117 		 * ratelimit its work.
4118 		 */
4119 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4120 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4121 		return;
4122 	}
4123 
4124 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4125 				      gfp_flags);
4126 	wake_up_interruptible(&pgdat->kswapd_wait);
4127 }
4128 
4129 #ifdef CONFIG_HIBERNATION
4130 /*
4131  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4132  * freed pages.
4133  *
4134  * Rather than trying to age LRUs the aim is to preserve the overall
4135  * LRU order by reclaiming preferentially
4136  * inactive > active > active referenced > active mapped
4137  */
shrink_all_memory(unsigned long nr_to_reclaim)4138 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4139 {
4140 	struct scan_control sc = {
4141 		.nr_to_reclaim = nr_to_reclaim,
4142 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4143 		.reclaim_idx = MAX_NR_ZONES - 1,
4144 		.priority = DEF_PRIORITY,
4145 		.may_writepage = 1,
4146 		.may_unmap = 1,
4147 		.may_swap = 1,
4148 		.hibernation_mode = 1,
4149 	};
4150 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4151 	unsigned long nr_reclaimed;
4152 	unsigned int noreclaim_flag;
4153 
4154 	fs_reclaim_acquire(sc.gfp_mask);
4155 	noreclaim_flag = memalloc_noreclaim_save();
4156 	set_task_reclaim_state(current, &sc.reclaim_state);
4157 
4158 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4159 
4160 	set_task_reclaim_state(current, NULL);
4161 	memalloc_noreclaim_restore(noreclaim_flag);
4162 	fs_reclaim_release(sc.gfp_mask);
4163 
4164 	return nr_reclaimed;
4165 }
4166 #endif /* CONFIG_HIBERNATION */
4167 
4168 /*
4169  * This kswapd start function will be called by init and node-hot-add.
4170  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4171  */
kswapd_run(int nid)4172 int kswapd_run(int nid)
4173 {
4174 	pg_data_t *pgdat = NODE_DATA(nid);
4175 	int ret = 0;
4176 
4177 	if (pgdat->kswapd)
4178 		return 0;
4179 
4180 	if (kswapd_threads > 1)
4181 		return kswapd_per_node_run(nid);
4182 
4183 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4184 	if (IS_ERR(pgdat->kswapd)) {
4185 		/* failure at boot is fatal */
4186 		BUG_ON(system_state < SYSTEM_RUNNING);
4187 		pr_err("Failed to start kswapd on node %d\n", nid);
4188 		ret = PTR_ERR(pgdat->kswapd);
4189 		pgdat->kswapd = NULL;
4190 	}
4191 	return ret;
4192 }
4193 
4194 /*
4195  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4196  * hold mem_hotplug_begin/end().
4197  */
kswapd_stop(int nid)4198 void kswapd_stop(int nid)
4199 {
4200 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4201 
4202 	if (kswapd_threads > 1) {
4203 		kswapd_per_node_stop(nid);
4204 		return;
4205 	}
4206 
4207 	if (kswapd) {
4208 		kthread_stop(kswapd);
4209 		NODE_DATA(nid)->kswapd = NULL;
4210 	}
4211 }
4212 
kswapd_init(void)4213 static int __init kswapd_init(void)
4214 {
4215 	int nid;
4216 
4217 	swap_setup();
4218 	for_each_node_state(nid, N_MEMORY)
4219  		kswapd_run(nid);
4220 	return 0;
4221 }
4222 
4223 module_init(kswapd_init)
4224 
4225 #ifdef CONFIG_NUMA
4226 /*
4227  * Node reclaim mode
4228  *
4229  * If non-zero call node_reclaim when the number of free pages falls below
4230  * the watermarks.
4231  */
4232 int node_reclaim_mode __read_mostly;
4233 
4234 /*
4235  * These bit locations are exposed in the vm.zone_reclaim_mode sysctl
4236  * ABI.  New bits are OK, but existing bits can never change.
4237  */
4238 #define RECLAIM_ZONE  (1<<0)   /* Run shrink_inactive_list on the zone */
4239 #define RECLAIM_WRITE (1<<1)   /* Writeout pages during reclaim */
4240 #define RECLAIM_UNMAP (1<<2)   /* Unmap pages during reclaim */
4241 
4242 /*
4243  * Priority for NODE_RECLAIM. This determines the fraction of pages
4244  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4245  * a zone.
4246  */
4247 #define NODE_RECLAIM_PRIORITY 4
4248 
4249 /*
4250  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4251  * occur.
4252  */
4253 int sysctl_min_unmapped_ratio = 1;
4254 
4255 /*
4256  * If the number of slab pages in a zone grows beyond this percentage then
4257  * slab reclaim needs to occur.
4258  */
4259 int sysctl_min_slab_ratio = 5;
4260 
node_unmapped_file_pages(struct pglist_data * pgdat)4261 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4262 {
4263 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4264 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4265 		node_page_state(pgdat, NR_ACTIVE_FILE);
4266 
4267 	/*
4268 	 * It's possible for there to be more file mapped pages than
4269 	 * accounted for by the pages on the file LRU lists because
4270 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4271 	 */
4272 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4273 }
4274 
4275 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4276 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4277 {
4278 	unsigned long nr_pagecache_reclaimable;
4279 	unsigned long delta = 0;
4280 
4281 	/*
4282 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4283 	 * potentially reclaimable. Otherwise, we have to worry about
4284 	 * pages like swapcache and node_unmapped_file_pages() provides
4285 	 * a better estimate
4286 	 */
4287 	if (node_reclaim_mode & RECLAIM_UNMAP)
4288 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4289 	else
4290 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4291 
4292 	/* If we can't clean pages, remove dirty pages from consideration */
4293 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4294 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4295 
4296 	/* Watch for any possible underflows due to delta */
4297 	if (unlikely(delta > nr_pagecache_reclaimable))
4298 		delta = nr_pagecache_reclaimable;
4299 
4300 	return nr_pagecache_reclaimable - delta;
4301 }
4302 
4303 /*
4304  * Try to free up some pages from this node through reclaim.
4305  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4306 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4307 {
4308 	/* Minimum pages needed in order to stay on node */
4309 	const unsigned long nr_pages = 1 << order;
4310 	struct task_struct *p = current;
4311 	unsigned int noreclaim_flag;
4312 	struct scan_control sc = {
4313 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4314 		.gfp_mask = current_gfp_context(gfp_mask),
4315 		.order = order,
4316 		.priority = NODE_RECLAIM_PRIORITY,
4317 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4318 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4319 		.may_swap = 1,
4320 		.reclaim_idx = gfp_zone(gfp_mask),
4321 	};
4322 
4323 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4324 					   sc.gfp_mask);
4325 
4326 	cond_resched();
4327 	fs_reclaim_acquire(sc.gfp_mask);
4328 	/*
4329 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4330 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4331 	 * and RECLAIM_UNMAP.
4332 	 */
4333 	noreclaim_flag = memalloc_noreclaim_save();
4334 	p->flags |= PF_SWAPWRITE;
4335 	set_task_reclaim_state(p, &sc.reclaim_state);
4336 
4337 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4338 		/*
4339 		 * Free memory by calling shrink node with increasing
4340 		 * priorities until we have enough memory freed.
4341 		 */
4342 		do {
4343 			shrink_node(pgdat, &sc);
4344 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4345 	}
4346 
4347 	set_task_reclaim_state(p, NULL);
4348 	current->flags &= ~PF_SWAPWRITE;
4349 	memalloc_noreclaim_restore(noreclaim_flag);
4350 	fs_reclaim_release(sc.gfp_mask);
4351 
4352 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4353 
4354 	return sc.nr_reclaimed >= nr_pages;
4355 }
4356 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4357 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4358 {
4359 	int ret;
4360 
4361 	/*
4362 	 * Node reclaim reclaims unmapped file backed pages and
4363 	 * slab pages if we are over the defined limits.
4364 	 *
4365 	 * A small portion of unmapped file backed pages is needed for
4366 	 * file I/O otherwise pages read by file I/O will be immediately
4367 	 * thrown out if the node is overallocated. So we do not reclaim
4368 	 * if less than a specified percentage of the node is used by
4369 	 * unmapped file backed pages.
4370 	 */
4371 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4372 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4373 	    pgdat->min_slab_pages)
4374 		return NODE_RECLAIM_FULL;
4375 
4376 	/*
4377 	 * Do not scan if the allocation should not be delayed.
4378 	 */
4379 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4380 		return NODE_RECLAIM_NOSCAN;
4381 
4382 	/*
4383 	 * Only run node reclaim on the local node or on nodes that do not
4384 	 * have associated processors. This will favor the local processor
4385 	 * over remote processors and spread off node memory allocations
4386 	 * as wide as possible.
4387 	 */
4388 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4389 		return NODE_RECLAIM_NOSCAN;
4390 
4391 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4392 		return NODE_RECLAIM_NOSCAN;
4393 
4394 	ret = __node_reclaim(pgdat, gfp_mask, order);
4395 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4396 
4397 	if (!ret)
4398 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4399 
4400 	return ret;
4401 }
4402 #endif
4403 
4404 /**
4405  * check_move_unevictable_pages - check pages for evictability and move to
4406  * appropriate zone lru list
4407  * @pvec: pagevec with lru pages to check
4408  *
4409  * Checks pages for evictability, if an evictable page is in the unevictable
4410  * lru list, moves it to the appropriate evictable lru list. This function
4411  * should be only used for lru pages.
4412  */
check_move_unevictable_pages(struct pagevec * pvec)4413 void check_move_unevictable_pages(struct pagevec *pvec)
4414 {
4415 	struct lruvec *lruvec;
4416 	struct pglist_data *pgdat = NULL;
4417 	int pgscanned = 0;
4418 	int pgrescued = 0;
4419 	int i;
4420 
4421 	for (i = 0; i < pvec->nr; i++) {
4422 		struct page *page = pvec->pages[i];
4423 		struct pglist_data *pagepgdat = page_pgdat(page);
4424 		int nr_pages;
4425 
4426 		if (PageTransTail(page))
4427 			continue;
4428 
4429 		nr_pages = thp_nr_pages(page);
4430 		pgscanned += nr_pages;
4431 
4432 		if (pagepgdat != pgdat) {
4433 			if (pgdat)
4434 				spin_unlock_irq(&pgdat->lru_lock);
4435 			pgdat = pagepgdat;
4436 			spin_lock_irq(&pgdat->lru_lock);
4437 		}
4438 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4439 
4440 		if (!PageLRU(page) || !PageUnevictable(page))
4441 			continue;
4442 
4443 		if (page_evictable(page)) {
4444 			enum lru_list lru = page_lru_base_type(page);
4445 
4446 			VM_BUG_ON_PAGE(PageActive(page), page);
4447 			ClearPageUnevictable(page);
4448 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4449 			add_page_to_lru_list(page, lruvec, lru);
4450 			pgrescued += nr_pages;
4451 		}
4452 	}
4453 
4454 	if (pgdat) {
4455 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4456 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4457 		spin_unlock_irq(&pgdat->lru_lock);
4458 	}
4459 }
4460 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4461