1 /*
2 * Copyright (c) 2013 Google, Inc
3 *
4 * (C) Copyright 2012
5 * Pavel Herrmann <morpheus.ibis@gmail.com>
6 * Marek Vasut <marex@denx.de>
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 */
10
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13
14 #include <dm/ofnode.h>
15 #include <dm/uclass-id.h>
16 #include <fdtdec.h>
17 #include <linker_lists.h>
18 #include <linux/compat.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/printk.h>
22
23 struct driver_info;
24
25 /* Driver is active (probed). Cleared when it is removed */
26 #define DM_FLAG_ACTIVATED (1 << 0)
27
28 /* DM is responsible for allocating and freeing platdata */
29 #define DM_FLAG_ALLOC_PDATA (1 << 1)
30
31 /* DM should init this device prior to relocation */
32 #define DM_FLAG_PRE_RELOC (1 << 2)
33
34 /* DM is responsible for allocating and freeing parent_platdata */
35 #define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3)
36
37 /* DM is responsible for allocating and freeing uclass_platdata */
38 #define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4)
39
40 /* Allocate driver private data on a DMA boundary */
41 #define DM_FLAG_ALLOC_PRIV_DMA (1 << 5)
42
43 /* Device is bound */
44 #define DM_FLAG_BOUND (1 << 6)
45
46 /* Device name is allocated and should be freed on unbind() */
47 #define DM_FLAG_NAME_ALLOCED (1 << 7)
48
49 #define DM_FLAG_OF_PLATDATA (1 << 8)
50
51 /*
52 * Call driver remove function to stop currently active DMA transfers or
53 * give DMA buffers back to the HW / controller. This may be needed for
54 * some drivers to do some final stage cleanup before the OS is called
55 * (U-Boot exit)
56 */
57 #define DM_FLAG_ACTIVE_DMA (1 << 9)
58
59 /*
60 * Call driver remove function to do some final configuration, before
61 * U-Boot exits and the OS is started
62 */
63 #define DM_FLAG_OS_PREPARE (1 << 10)
64
65 /* Device is from kernel dtb */
66 #define DM_FLAG_KNRL_DTB (1 << 31)
67
68 /*
69 * One or multiple of these flags are passed to device_remove() so that
70 * a selective device removal as specified by the remove-stage and the
71 * driver flags can be done.
72 */
73 enum {
74 /* Normal remove, remove all devices */
75 DM_REMOVE_NORMAL = 1 << 0,
76
77 /* Remove devices with active DMA */
78 DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
79
80 /* Remove devices which need some final OS preparation steps */
81 DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
82
83 /* Add more use cases here */
84
85 /* Remove devices with any active flag */
86 DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
87 };
88
89 /**
90 * struct udevice - An instance of a driver
91 *
92 * This holds information about a device, which is a driver bound to a
93 * particular port or peripheral (essentially a driver instance).
94 *
95 * A device will come into existence through a 'bind' call, either due to
96 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
97 * in the device tree (in which case of_offset is >= 0). In the latter case
98 * we translate the device tree information into platdata in a function
99 * implemented by the driver ofdata_to_platdata method (called just before the
100 * probe method if the device has a device tree node.
101 *
102 * All three of platdata, priv and uclass_priv can be allocated by the
103 * driver, or you can use the auto_alloc_size members of struct driver and
104 * struct uclass_driver to have driver model do this automatically.
105 *
106 * @driver: The driver used by this device
107 * @name: Name of device, typically the FDT node name
108 * @platdata: Configuration data for this device
109 * @parent_platdata: The parent bus's configuration data for this device
110 * @uclass_platdata: The uclass's configuration data for this device
111 * @node: Reference to device tree node for this device
112 * @driver_data: Driver data word for the entry that matched this device with
113 * its driver
114 * @parent: Parent of this device, or NULL for the top level device
115 * @priv: Private data for this device
116 * @uclass: Pointer to uclass for this device
117 * @uclass_priv: The uclass's private data for this device
118 * @parent_priv: The parent's private data for this device
119 * @uclass_node: Used by uclass to link its devices
120 * @child_head: List of children of this device
121 * @sibling_node: Next device in list of all devices
122 * @flags: Flags for this device DM_FLAG_...
123 * @req_seq: Requested sequence number for this device (-1 = any)
124 * @seq: Allocated sequence number for this device (-1 = none). This is set up
125 * when the device is probed and will be unique within the device's uclass.
126 * @devres_head: List of memory allocations associated with this device.
127 * When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
128 * add to this list. Memory so-allocated will be freed
129 * automatically when the device is removed / unbound
130 */
131 struct udevice {
132 const struct driver *driver;
133 const char *name;
134 void *platdata;
135 void *parent_platdata;
136 void *uclass_platdata;
137 ofnode node;
138 ulong driver_data;
139 struct udevice *parent;
140 void *priv;
141 struct uclass *uclass;
142 void *uclass_priv;
143 void *parent_priv;
144 struct list_head uclass_node;
145 struct list_head child_head;
146 struct list_head sibling_node;
147 uint32_t flags;
148 int req_seq;
149 int seq;
150 #ifdef CONFIG_DEVRES
151 struct list_head devres_head;
152 #endif
153 };
154
155 /* Maximum sequence number supported */
156 #define DM_MAX_SEQ 999
157
158 /* Returns the operations for a device */
159 #define device_get_ops(dev) (dev->driver->ops)
160
161 /* Returns non-zero if the device is active (probed and not removed) */
162 #define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED)
163
dev_of_offset(const struct udevice * dev)164 static inline int dev_of_offset(const struct udevice *dev)
165 {
166 return ofnode_to_offset(dev->node);
167 }
168
dev_set_of_offset(struct udevice * dev,int of_offset)169 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
170 {
171 dev->node = offset_to_ofnode(of_offset);
172 }
173
dev_has_of_node(struct udevice * dev)174 static inline bool dev_has_of_node(struct udevice *dev)
175 {
176 return ofnode_valid(dev->node);
177 }
178
179 /**
180 * struct udevice_id - Lists the compatible strings supported by a driver
181 * @compatible: Compatible string
182 * @data: Data for this compatible string
183 */
184 struct udevice_id {
185 const char *compatible;
186 ulong data;
187 };
188
189 #if CONFIG_IS_ENABLED(OF_CONTROL)
190 #define of_match_ptr(_ptr) (_ptr)
191 #else
192 #define of_match_ptr(_ptr) NULL
193 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
194
195 /**
196 * struct driver - A driver for a feature or peripheral
197 *
198 * This holds methods for setting up a new device, and also removing it.
199 * The device needs information to set itself up - this is provided either
200 * by platdata or a device tree node (which we find by looking up
201 * matching compatible strings with of_match).
202 *
203 * Drivers all belong to a uclass, representing a class of devices of the
204 * same type. Common elements of the drivers can be implemented in the uclass,
205 * or the uclass can provide a consistent interface to the drivers within
206 * it.
207 *
208 * @name: Device name
209 * @id: Identiies the uclass we belong to
210 * @of_match: List of compatible strings to match, and any identifying data
211 * for each.
212 * @bind: Called to bind a device to its driver
213 * @probe: Called to probe a device, i.e. activate it
214 * @remove: Called to remove a device, i.e. de-activate it
215 * @unbind: Called to unbind a device from its driver
216 * @ofdata_to_platdata: Called before probe to decode device tree data
217 * @child_post_bind: Called after a new child has been bound
218 * @child_pre_probe: Called before a child device is probed. The device has
219 * memory allocated but it has not yet been probed.
220 * @child_post_remove: Called after a child device is removed. The device
221 * has memory allocated but its device_remove() method has been called.
222 * @priv_auto_alloc_size: If non-zero this is the size of the private data
223 * to be allocated in the device's ->priv pointer. If zero, then the driver
224 * is responsible for allocating any data required.
225 * @platdata_auto_alloc_size: If non-zero this is the size of the
226 * platform data to be allocated in the device's ->platdata pointer.
227 * This is typically only useful for device-tree-aware drivers (those with
228 * an of_match), since drivers which use platdata will have the data
229 * provided in the U_BOOT_DEVICE() instantiation.
230 * @per_child_auto_alloc_size: Each device can hold private data owned by
231 * its parent. If required this will be automatically allocated if this
232 * value is non-zero.
233 * @per_child_platdata_auto_alloc_size: A bus likes to store information about
234 * its children. If non-zero this is the size of this data, to be allocated
235 * in the child's parent_platdata pointer.
236 * @ops: Driver-specific operations. This is typically a list of function
237 * pointers defined by the driver, to implement driver functions required by
238 * the uclass.
239 * @flags: driver flags - see DM_FLAGS_...
240 */
241 struct driver {
242 char *name;
243 enum uclass_id id;
244 const struct udevice_id *of_match;
245 int (*bind)(struct udevice *dev);
246 int (*probe)(struct udevice *dev);
247 int (*remove)(struct udevice *dev);
248 int (*unbind)(struct udevice *dev);
249 int (*ofdata_to_platdata)(struct udevice *dev);
250 int (*child_post_bind)(struct udevice *dev);
251 int (*child_pre_probe)(struct udevice *dev);
252 int (*child_post_remove)(struct udevice *dev);
253 int priv_auto_alloc_size;
254 int platdata_auto_alloc_size;
255 int per_child_auto_alloc_size;
256 int per_child_platdata_auto_alloc_size;
257 const void *ops; /* driver-specific operations */
258 uint32_t flags;
259 };
260
261 /* Declare a new U-Boot driver */
262 #define U_BOOT_DRIVER(__name) \
263 ll_entry_declare(struct driver, __name, driver)
264
265 /* Get a pointer to a given driver */
266 #define DM_GET_DRIVER(__name) \
267 ll_entry_get(struct driver, __name, driver)
268
269 /**
270 * dev_get_platdata() - Get the platform data for a device
271 *
272 * This checks that dev is not NULL, but no other checks for now
273 *
274 * @dev Device to check
275 * @return platform data, or NULL if none
276 */
277 void *dev_get_platdata(struct udevice *dev);
278
279 /**
280 * dev_get_parent_platdata() - Get the parent platform data for a device
281 *
282 * This checks that dev is not NULL, but no other checks for now
283 *
284 * @dev Device to check
285 * @return parent's platform data, or NULL if none
286 */
287 void *dev_get_parent_platdata(struct udevice *dev);
288
289 /**
290 * dev_get_uclass_platdata() - Get the uclass platform data for a device
291 *
292 * This checks that dev is not NULL, but no other checks for now
293 *
294 * @dev Device to check
295 * @return uclass's platform data, or NULL if none
296 */
297 void *dev_get_uclass_platdata(struct udevice *dev);
298
299 /**
300 * dev_get_priv() - Get the private data for a device
301 *
302 * This checks that dev is not NULL, but no other checks for now
303 *
304 * @dev Device to check
305 * @return private data, or NULL if none
306 */
307 void *dev_get_priv(struct udevice *dev);
308
309 /**
310 * dev_get_parent_priv() - Get the parent private data for a device
311 *
312 * The parent private data is data stored in the device but owned by the
313 * parent. For example, a USB device may have parent data which contains
314 * information about how to talk to the device over USB.
315 *
316 * This checks that dev is not NULL, but no other checks for now
317 *
318 * @dev Device to check
319 * @return parent data, or NULL if none
320 */
321 void *dev_get_parent_priv(struct udevice *dev);
322
323 /**
324 * dev_get_uclass_priv() - Get the private uclass data for a device
325 *
326 * This checks that dev is not NULL, but no other checks for now
327 *
328 * @dev Device to check
329 * @return private uclass data for this device, or NULL if none
330 */
331 void *dev_get_uclass_priv(struct udevice *dev);
332
333 /**
334 * struct dev_get_parent() - Get the parent of a device
335 *
336 * @child: Child to check
337 * @return parent of child, or NULL if this is the root device
338 */
339 struct udevice *dev_get_parent(struct udevice *child);
340
341 /**
342 * dev_get_driver_data() - get the driver data used to bind a device
343 *
344 * When a device is bound using a device tree node, it matches a
345 * particular compatible string in struct udevice_id. This function
346 * returns the associated data value for that compatible string. This is
347 * the 'data' field in struct udevice_id.
348 *
349 * As an example, consider this structure:
350 * static const struct udevice_id tegra_i2c_ids[] = {
351 * { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
352 * { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
353 * { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
354 * { }
355 * };
356 *
357 * When driver model finds a driver for this it will store the 'data' value
358 * corresponding to the compatible string it matches. This function returns
359 * that value. This allows the driver to handle several variants of a device.
360 *
361 * For USB devices, this is the driver_info field in struct usb_device_id.
362 *
363 * @dev: Device to check
364 * @return driver data (0 if none is provided)
365 */
366 ulong dev_get_driver_data(struct udevice *dev);
367
368 /**
369 * dev_get_driver_ops() - get the device's driver's operations
370 *
371 * This checks that dev is not NULL, and returns the pointer to device's
372 * driver's operations.
373 *
374 * @dev: Device to check
375 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
376 */
377 const void *dev_get_driver_ops(struct udevice *dev);
378
379 /**
380 * device_get_uclass_id() - return the uclass ID of a device
381 *
382 * @dev: Device to check
383 * @return uclass ID for the device
384 */
385 enum uclass_id device_get_uclass_id(struct udevice *dev);
386
387 /**
388 * dev_get_uclass_name() - return the uclass name of a device
389 *
390 * This checks that dev is not NULL.
391 *
392 * @dev: Device to check
393 * @return pointer to the uclass name for the device
394 */
395 const char *dev_get_uclass_name(struct udevice *dev);
396
397 /**
398 * device_get_child() - Get the child of a device by index
399 *
400 * Returns the numbered child, 0 being the first. This does not use
401 * sequence numbers, only the natural order.
402 *
403 * @dev: Parent device to check
404 * @index: Child index
405 * @devp: Returns pointer to device
406 * @return 0 if OK, -ENODEV if no such device, other error if the device fails
407 * to probe
408 */
409 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
410
411 /**
412 * device_find_child_by_seq() - Find a child device based on a sequence
413 *
414 * This searches for a device with the given seq or req_seq.
415 *
416 * For seq, if an active device has this sequence it will be returned.
417 * If there is no such device then this will return -ENODEV.
418 *
419 * For req_seq, if a device (whether activated or not) has this req_seq
420 * value, that device will be returned. This is a strong indication that
421 * the device will receive that sequence when activated.
422 *
423 * @parent: Parent device
424 * @seq_or_req_seq: Sequence number to find (0=first)
425 * @find_req_seq: true to find req_seq, false to find seq
426 * @devp: Returns pointer to device (there is only one per for each seq).
427 * Set to NULL if none is found
428 * @return 0 if OK, -ve on error
429 */
430 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
431 bool find_req_seq, struct udevice **devp);
432
433 /**
434 * device_get_child_by_seq() - Get a child device based on a sequence
435 *
436 * If an active device has this sequence it will be returned. If there is no
437 * such device then this will check for a device that is requesting this
438 * sequence.
439 *
440 * The device is probed to activate it ready for use.
441 *
442 * @parent: Parent device
443 * @seq: Sequence number to find (0=first)
444 * @devp: Returns pointer to device (there is only one per for each seq)
445 * Set to NULL if none is found
446 * @return 0 if OK, -ve on error
447 */
448 int device_get_child_by_seq(struct udevice *parent, int seq,
449 struct udevice **devp);
450
451 /**
452 * device_find_child_by_of_offset() - Find a child device based on FDT offset
453 *
454 * Locates a child device by its device tree offset.
455 *
456 * @parent: Parent device
457 * @of_offset: Device tree offset to find
458 * @devp: Returns pointer to device if found, otherwise this is set to NULL
459 * @return 0 if OK, -ve on error
460 */
461 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
462 struct udevice **devp);
463
464 /**
465 * device_get_child_by_of_offset() - Get a child device based on FDT offset
466 *
467 * Locates a child device by its device tree offset.
468 *
469 * The device is probed to activate it ready for use.
470 *
471 * @parent: Parent device
472 * @of_offset: Device tree offset to find
473 * @devp: Returns pointer to device if found, otherwise this is set to NULL
474 * @return 0 if OK, -ve on error
475 */
476 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
477 struct udevice **devp);
478
479 /**
480 * device_get_global_by_of_offset() - Get a device based on FDT offset
481 *
482 * Locates a device by its device tree offset, searching globally throughout
483 * the all driver model devices.
484 *
485 * The device is probed to activate it ready for use.
486 *
487 * @of_offset: Device tree offset to find
488 * @devp: Returns pointer to device if found, otherwise this is set to NULL
489 * @return 0 if OK, -ve on error
490 */
491 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
492
493 /**
494 * device_find_first_child() - Find the first child of a device
495 *
496 * @parent: Parent device to search
497 * @devp: Returns first child device, or NULL if none
498 * @return 0
499 */
500 int device_find_first_child(struct udevice *parent, struct udevice **devp);
501
502 /**
503 * device_find_next_child() - Find the next child of a device
504 *
505 * @devp: Pointer to previous child device on entry. Returns pointer to next
506 * child device, or NULL if none
507 * @return 0
508 */
509 int device_find_next_child(struct udevice **devp);
510
511 /**
512 * device_has_children() - check if a device has any children
513 *
514 * @dev: Device to check
515 * @return true if the device has one or more children
516 */
517 bool device_has_children(struct udevice *dev);
518
519 /**
520 * device_has_active_children() - check if a device has any active children
521 *
522 * @dev: Device to check
523 * @return true if the device has one or more children and at least one of
524 * them is active (probed).
525 */
526 bool device_has_active_children(struct udevice *dev);
527
528 /**
529 * device_is_last_sibling() - check if a device is the last sibling
530 *
531 * This function can be useful for display purposes, when special action needs
532 * to be taken when displaying the last sibling. This can happen when a tree
533 * view of devices is being displayed.
534 *
535 * @dev: Device to check
536 * @return true if there are no more siblings after this one - i.e. is it
537 * last in the list.
538 */
539 bool device_is_last_sibling(struct udevice *dev);
540
541 /**
542 * device_set_name() - set the name of a device
543 *
544 * This must be called in the device's bind() method and no later. Normally
545 * this is unnecessary but for probed devices which don't get a useful name
546 * this function can be helpful.
547 *
548 * The name is allocated and will be freed automatically when the device is
549 * unbound.
550 *
551 * @dev: Device to update
552 * @name: New name (this string is allocated new memory and attached to
553 * the device)
554 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
555 * string
556 */
557 int device_set_name(struct udevice *dev, const char *name);
558
559 /**
560 * device_set_name_alloced() - note that a device name is allocated
561 *
562 * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
563 * unbound the name will be freed. This avoids memory leaks.
564 *
565 * @dev: Device to update
566 */
567 void device_set_name_alloced(struct udevice *dev);
568
569 /**
570 * device_is_compatible() - check if the device is compatible with the compat
571 *
572 * This allows to check whether the device is comaptible with the compat.
573 *
574 * @dev: udevice pointer for which compatible needs to be verified.
575 * @compat: Compatible string which needs to verified in the given
576 * device
577 * @return true if OK, false if the compatible is not found
578 */
579 bool device_is_compatible(struct udevice *dev, const char *compat);
580
581 /**
582 * of_machine_is_compatible() - check if the machine is compatible with
583 * the compat
584 *
585 * This allows to check whether the machine is comaptible with the compat.
586 *
587 * @compat: Compatible string which needs to verified
588 * @return true if OK, false if the compatible is not found
589 */
590 bool of_machine_is_compatible(const char *compat);
591
592 /**
593 * device_is_on_pci_bus - Test if a device is on a PCI bus
594 *
595 * @dev: device to test
596 * @return: true if it is on a PCI bus, false otherwise
597 */
device_is_on_pci_bus(struct udevice * dev)598 static inline bool device_is_on_pci_bus(struct udevice *dev)
599 {
600 return device_get_uclass_id(dev->parent) == UCLASS_PCI;
601 }
602
603 /**
604 * device_foreach_child_safe() - iterate through child devices safely
605 *
606 * This allows the @pos child to be removed in the loop if required.
607 *
608 * @pos: struct udevice * for the current device
609 * @next: struct udevice * for the next device
610 * @parent: parent device to scan
611 */
612 #define device_foreach_child_safe(pos, next, parent) \
613 list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
614
615 /**
616 * dm_scan_fdt_dev() - Bind child device in a the device tree
617 *
618 * This handles device which have sub-nodes in the device tree. It scans all
619 * sub-nodes and binds drivers for each node where a driver can be found.
620 *
621 * If this is called prior to relocation, only pre-relocation devices will be
622 * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
623 * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
624 * be bound.
625 *
626 * @dev: Device to scan
627 * @return 0 if OK, -ve on error
628 */
629 int dm_scan_fdt_dev(struct udevice *dev);
630
631 /* device resource management */
632 typedef void (*dr_release_t)(struct udevice *dev, void *res);
633 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
634
635 #ifdef CONFIG_DEVRES
636
637 #ifdef CONFIG_DEBUG_DEVRES
638 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
639 const char *name);
640 #define _devres_alloc(release, size, gfp) \
641 __devres_alloc(release, size, gfp, #release)
642 #else
643 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
644 #endif
645
646 /**
647 * devres_alloc() - Allocate device resource data
648 * @release: Release function devres will be associated with
649 * @size: Allocation size
650 * @gfp: Allocation flags
651 *
652 * Allocate devres of @size bytes. The allocated area is associated
653 * with @release. The returned pointer can be passed to
654 * other devres_*() functions.
655 *
656 * RETURNS:
657 * Pointer to allocated devres on success, NULL on failure.
658 */
659 #define devres_alloc(release, size, gfp) \
660 _devres_alloc(release, size, gfp | __GFP_ZERO)
661
662 /**
663 * devres_free() - Free device resource data
664 * @res: Pointer to devres data to free
665 *
666 * Free devres created with devres_alloc().
667 */
668 void devres_free(void *res);
669
670 /**
671 * devres_add() - Register device resource
672 * @dev: Device to add resource to
673 * @res: Resource to register
674 *
675 * Register devres @res to @dev. @res should have been allocated
676 * using devres_alloc(). On driver detach, the associated release
677 * function will be invoked and devres will be freed automatically.
678 */
679 void devres_add(struct udevice *dev, void *res);
680
681 /**
682 * devres_find() - Find device resource
683 * @dev: Device to lookup resource from
684 * @release: Look for resources associated with this release function
685 * @match: Match function (optional)
686 * @match_data: Data for the match function
687 *
688 * Find the latest devres of @dev which is associated with @release
689 * and for which @match returns 1. If @match is NULL, it's considered
690 * to match all.
691 *
692 * @return pointer to found devres, NULL if not found.
693 */
694 void *devres_find(struct udevice *dev, dr_release_t release,
695 dr_match_t match, void *match_data);
696
697 /**
698 * devres_get() - Find devres, if non-existent, add one atomically
699 * @dev: Device to lookup or add devres for
700 * @new_res: Pointer to new initialized devres to add if not found
701 * @match: Match function (optional)
702 * @match_data: Data for the match function
703 *
704 * Find the latest devres of @dev which has the same release function
705 * as @new_res and for which @match return 1. If found, @new_res is
706 * freed; otherwise, @new_res is added atomically.
707 *
708 * @return ointer to found or added devres.
709 */
710 void *devres_get(struct udevice *dev, void *new_res,
711 dr_match_t match, void *match_data);
712
713 /**
714 * devres_remove() - Find a device resource and remove it
715 * @dev: Device to find resource from
716 * @release: Look for resources associated with this release function
717 * @match: Match function (optional)
718 * @match_data: Data for the match function
719 *
720 * Find the latest devres of @dev associated with @release and for
721 * which @match returns 1. If @match is NULL, it's considered to
722 * match all. If found, the resource is removed atomically and
723 * returned.
724 *
725 * @return ointer to removed devres on success, NULL if not found.
726 */
727 void *devres_remove(struct udevice *dev, dr_release_t release,
728 dr_match_t match, void *match_data);
729
730 /**
731 * devres_destroy() - Find a device resource and destroy it
732 * @dev: Device to find resource from
733 * @release: Look for resources associated with this release function
734 * @match: Match function (optional)
735 * @match_data: Data for the match function
736 *
737 * Find the latest devres of @dev associated with @release and for
738 * which @match returns 1. If @match is NULL, it's considered to
739 * match all. If found, the resource is removed atomically and freed.
740 *
741 * Note that the release function for the resource will not be called,
742 * only the devres-allocated data will be freed. The caller becomes
743 * responsible for freeing any other data.
744 *
745 * @return 0 if devres is found and freed, -ENOENT if not found.
746 */
747 int devres_destroy(struct udevice *dev, dr_release_t release,
748 dr_match_t match, void *match_data);
749
750 /**
751 * devres_release() - Find a device resource and destroy it, calling release
752 * @dev: Device to find resource from
753 * @release: Look for resources associated with this release function
754 * @match: Match function (optional)
755 * @match_data: Data for the match function
756 *
757 * Find the latest devres of @dev associated with @release and for
758 * which @match returns 1. If @match is NULL, it's considered to
759 * match all. If found, the resource is removed atomically, the
760 * release function called and the resource freed.
761 *
762 * @return 0 if devres is found and freed, -ENOENT if not found.
763 */
764 int devres_release(struct udevice *dev, dr_release_t release,
765 dr_match_t match, void *match_data);
766
767 /* managed devm_k.alloc/kfree for device drivers */
768 /**
769 * devm_kmalloc() - Resource-managed kmalloc
770 * @dev: Device to allocate memory for
771 * @size: Allocation size
772 * @gfp: Allocation gfp flags
773 *
774 * Managed kmalloc. Memory allocated with this function is
775 * automatically freed on driver detach. Like all other devres
776 * resources, guaranteed alignment is unsigned long long.
777 *
778 * @return pointer to allocated memory on success, NULL on failure.
779 */
780 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
devm_kzalloc(struct udevice * dev,size_t size,gfp_t gfp)781 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
782 {
783 return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
784 }
devm_kmalloc_array(struct udevice * dev,size_t n,size_t size,gfp_t flags)785 static inline void *devm_kmalloc_array(struct udevice *dev,
786 size_t n, size_t size, gfp_t flags)
787 {
788 if (size != 0 && n > SIZE_MAX / size)
789 return NULL;
790 return devm_kmalloc(dev, n * size, flags);
791 }
devm_kcalloc(struct udevice * dev,size_t n,size_t size,gfp_t flags)792 static inline void *devm_kcalloc(struct udevice *dev,
793 size_t n, size_t size, gfp_t flags)
794 {
795 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
796 }
797
798 /**
799 * devm_kfree() - Resource-managed kfree
800 * @dev: Device this memory belongs to
801 * @ptr: Memory to free
802 *
803 * Free memory allocated with devm_kmalloc().
804 */
805 void devm_kfree(struct udevice *dev, void *ptr);
806
807 #else /* ! CONFIG_DEVRES */
808
devres_alloc(dr_release_t release,size_t size,gfp_t gfp)809 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
810 {
811 return kzalloc(size, gfp);
812 }
813
devres_free(void * res)814 static inline void devres_free(void *res)
815 {
816 kfree(res);
817 }
818
devres_add(struct udevice * dev,void * res)819 static inline void devres_add(struct udevice *dev, void *res)
820 {
821 }
822
devres_find(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)823 static inline void *devres_find(struct udevice *dev, dr_release_t release,
824 dr_match_t match, void *match_data)
825 {
826 return NULL;
827 }
828
devres_get(struct udevice * dev,void * new_res,dr_match_t match,void * match_data)829 static inline void *devres_get(struct udevice *dev, void *new_res,
830 dr_match_t match, void *match_data)
831 {
832 return NULL;
833 }
834
devres_remove(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)835 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
836 dr_match_t match, void *match_data)
837 {
838 return NULL;
839 }
840
devres_destroy(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)841 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
842 dr_match_t match, void *match_data)
843 {
844 return 0;
845 }
846
devres_release(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)847 static inline int devres_release(struct udevice *dev, dr_release_t release,
848 dr_match_t match, void *match_data)
849 {
850 return 0;
851 }
852
devm_kmalloc(struct udevice * dev,size_t size,gfp_t gfp)853 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
854 {
855 return kmalloc(size, gfp);
856 }
857
devm_kzalloc(struct udevice * dev,size_t size,gfp_t gfp)858 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
859 {
860 return kzalloc(size, gfp);
861 }
862
devm_kmaloc_array(struct udevice * dev,size_t n,size_t size,gfp_t flags)863 static inline void *devm_kmaloc_array(struct udevice *dev,
864 size_t n, size_t size, gfp_t flags)
865 {
866 /* TODO: add kmalloc_array() to linux/compat.h */
867 if (size != 0 && n > SIZE_MAX / size)
868 return NULL;
869 return kmalloc(n * size, flags);
870 }
871
devm_kcalloc(struct udevice * dev,size_t n,size_t size,gfp_t flags)872 static inline void *devm_kcalloc(struct udevice *dev,
873 size_t n, size_t size, gfp_t flags)
874 {
875 /* TODO: add kcalloc() to linux/compat.h */
876 return kmalloc(n * size, flags | __GFP_ZERO);
877 }
878
devm_kfree(struct udevice * dev,void * ptr)879 static inline void devm_kfree(struct udevice *dev, void *ptr)
880 {
881 kfree(ptr);
882 }
883
884 #endif /* ! CONFIG_DEVRES */
885
886 /*
887 * REVISIT:
888 * remove the following after resolving conflicts with <linux/compat.h>
889 */
890 #ifdef dev_dbg
891 #undef dev_dbg
892 #endif
893 #ifdef dev_vdbg
894 #undef dev_vdbg
895 #endif
896 #ifdef dev_info
897 #undef dev_info
898 #endif
899 #ifdef dev_err
900 #undef dev_err
901 #endif
902 #ifdef dev_warn
903 #undef dev_warn
904 #endif
905
906 /*
907 * REVISIT:
908 * print device name like Linux
909 */
910 #define dev_printk(dev, fmt, ...) \
911 ({ \
912 printk(fmt, ##__VA_ARGS__); \
913 })
914
915 #define __dev_printk(level, dev, fmt, ...) \
916 ({ \
917 if (level < CONFIG_VAL(LOGLEVEL)) \
918 dev_printk(dev, fmt, ##__VA_ARGS__); \
919 })
920
921 #define dev_emerg(dev, fmt, ...) \
922 __dev_printk(0, dev, fmt, ##__VA_ARGS__)
923 #define dev_alert(dev, fmt, ...) \
924 __dev_printk(1, dev, fmt, ##__VA_ARGS__)
925 #define dev_crit(dev, fmt, ...) \
926 __dev_printk(2, dev, fmt, ##__VA_ARGS__)
927 #define dev_err(dev, fmt, ...) \
928 __dev_printk(3, dev, fmt, ##__VA_ARGS__)
929 #define dev_warn(dev, fmt, ...) \
930 __dev_printk(4, dev, fmt, ##__VA_ARGS__)
931 #define dev_notice(dev, fmt, ...) \
932 __dev_printk(5, dev, fmt, ##__VA_ARGS__)
933 #define dev_info(dev, fmt, ...) \
934 __dev_printk(6, dev, fmt, ##__VA_ARGS__)
935
936 #ifdef DEBUG
937 #define dev_dbg(dev, fmt, ...) \
938 __dev_printk(7, dev, fmt, ##__VA_ARGS__)
939 #else
940 #define dev_dbg(dev, fmt, ...) \
941 ({ \
942 if (0) \
943 __dev_printk(7, dev, fmt, ##__VA_ARGS__); \
944 })
945 #endif
946
947 #ifdef VERBOSE_DEBUG
948 #define dev_vdbg dev_dbg
949 #else
950 #define dev_vdbg(dev, fmt, ...) \
951 ({ \
952 if (0) \
953 __dev_printk(7, dev, fmt, ##__VA_ARGS__); \
954 })
955 #endif
956
957 #endif
958