1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54
55 #include "internal.h"
56
57 #include <asm/irq_regs.h>
58
59 typedef int (*remote_function_f)(void *);
60
61 struct remote_function_call {
62 struct task_struct *p;
63 remote_function_f func;
64 void *info;
65 int ret;
66 };
67
remote_function(void * data)68 static void remote_function(void *data)
69 {
70 struct remote_function_call *tfc = data;
71 struct task_struct *p = tfc->p;
72
73 if (p) {
74 /* -EAGAIN */
75 if (task_cpu(p) != smp_processor_id())
76 return;
77
78 /*
79 * Now that we're on right CPU with IRQs disabled, we can test
80 * if we hit the right task without races.
81 */
82
83 tfc->ret = -ESRCH; /* No such (running) process */
84 if (p != current)
85 return;
86 }
87
88 tfc->ret = tfc->func(tfc->info);
89 }
90
91 /**
92 * task_function_call - call a function on the cpu on which a task runs
93 * @p: the task to evaluate
94 * @func: the function to be called
95 * @info: the function call argument
96 *
97 * Calls the function @func when the task is currently running. This might
98 * be on the current CPU, which just calls the function directly. This will
99 * retry due to any failures in smp_call_function_single(), such as if the
100 * task_cpu() goes offline concurrently.
101 *
102 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
103 */
104 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107 struct remote_function_call data = {
108 .p = p,
109 .func = func,
110 .info = info,
111 .ret = -EAGAIN,
112 };
113 int ret;
114
115 for (;;) {
116 ret = smp_call_function_single(task_cpu(p), remote_function,
117 &data, 1);
118 if (!ret)
119 ret = data.ret;
120
121 if (ret != -EAGAIN)
122 break;
123
124 cond_resched();
125 }
126
127 return ret;
128 }
129
130 /**
131 * cpu_function_call - call a function on the cpu
132 * @func: the function to be called
133 * @info: the function call argument
134 *
135 * Calls the function @func on the remote cpu.
136 *
137 * returns: @func return value or -ENXIO when the cpu is offline
138 */
cpu_function_call(int cpu,remote_function_f func,void * info)139 static int cpu_function_call(int cpu, remote_function_f func, void *info)
140 {
141 struct remote_function_call data = {
142 .p = NULL,
143 .func = func,
144 .info = info,
145 .ret = -ENXIO, /* No such CPU */
146 };
147
148 smp_call_function_single(cpu, remote_function, &data, 1);
149
150 return data.ret;
151 }
152
153 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)154 __get_cpu_context(struct perf_event_context *ctx)
155 {
156 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
157 }
158
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)159 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161 {
162 raw_spin_lock(&cpuctx->ctx.lock);
163 if (ctx)
164 raw_spin_lock(&ctx->lock);
165 }
166
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)167 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
168 struct perf_event_context *ctx)
169 {
170 if (ctx)
171 raw_spin_unlock(&ctx->lock);
172 raw_spin_unlock(&cpuctx->ctx.lock);
173 }
174
175 #define TASK_TOMBSTONE ((void *)-1L)
176
is_kernel_event(struct perf_event * event)177 static bool is_kernel_event(struct perf_event *event)
178 {
179 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
180 }
181
182 /*
183 * On task ctx scheduling...
184 *
185 * When !ctx->nr_events a task context will not be scheduled. This means
186 * we can disable the scheduler hooks (for performance) without leaving
187 * pending task ctx state.
188 *
189 * This however results in two special cases:
190 *
191 * - removing the last event from a task ctx; this is relatively straight
192 * forward and is done in __perf_remove_from_context.
193 *
194 * - adding the first event to a task ctx; this is tricky because we cannot
195 * rely on ctx->is_active and therefore cannot use event_function_call().
196 * See perf_install_in_context().
197 *
198 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
199 */
200
201 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
202 struct perf_event_context *, void *);
203
204 struct event_function_struct {
205 struct perf_event *event;
206 event_f func;
207 void *data;
208 };
209
event_function(void * info)210 static int event_function(void *info)
211 {
212 struct event_function_struct *efs = info;
213 struct perf_event *event = efs->event;
214 struct perf_event_context *ctx = event->ctx;
215 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
216 struct perf_event_context *task_ctx = cpuctx->task_ctx;
217 int ret = 0;
218
219 lockdep_assert_irqs_disabled();
220
221 perf_ctx_lock(cpuctx, task_ctx);
222 /*
223 * Since we do the IPI call without holding ctx->lock things can have
224 * changed, double check we hit the task we set out to hit.
225 */
226 if (ctx->task) {
227 if (ctx->task != current) {
228 ret = -ESRCH;
229 goto unlock;
230 }
231
232 /*
233 * We only use event_function_call() on established contexts,
234 * and event_function() is only ever called when active (or
235 * rather, we'll have bailed in task_function_call() or the
236 * above ctx->task != current test), therefore we must have
237 * ctx->is_active here.
238 */
239 WARN_ON_ONCE(!ctx->is_active);
240 /*
241 * And since we have ctx->is_active, cpuctx->task_ctx must
242 * match.
243 */
244 WARN_ON_ONCE(task_ctx != ctx);
245 } else {
246 WARN_ON_ONCE(&cpuctx->ctx != ctx);
247 }
248
249 efs->func(event, cpuctx, ctx, efs->data);
250 unlock:
251 perf_ctx_unlock(cpuctx, task_ctx);
252
253 return ret;
254 }
255
event_function_call(struct perf_event * event,event_f func,void * data)256 static void event_function_call(struct perf_event *event, event_f func, void *data)
257 {
258 struct perf_event_context *ctx = event->ctx;
259 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
260 struct event_function_struct efs = {
261 .event = event,
262 .func = func,
263 .data = data,
264 };
265
266 if (!event->parent) {
267 /*
268 * If this is a !child event, we must hold ctx::mutex to
269 * stabilize the event->ctx relation. See
270 * perf_event_ctx_lock().
271 */
272 lockdep_assert_held(&ctx->mutex);
273 }
274
275 if (!task) {
276 cpu_function_call(event->cpu, event_function, &efs);
277 return;
278 }
279
280 if (task == TASK_TOMBSTONE)
281 return;
282
283 again:
284 if (!task_function_call(task, event_function, &efs))
285 return;
286
287 raw_spin_lock_irq(&ctx->lock);
288 /*
289 * Reload the task pointer, it might have been changed by
290 * a concurrent perf_event_context_sched_out().
291 */
292 task = ctx->task;
293 if (task == TASK_TOMBSTONE) {
294 raw_spin_unlock_irq(&ctx->lock);
295 return;
296 }
297 if (ctx->is_active) {
298 raw_spin_unlock_irq(&ctx->lock);
299 goto again;
300 }
301 func(event, NULL, ctx, data);
302 raw_spin_unlock_irq(&ctx->lock);
303 }
304
305 /*
306 * Similar to event_function_call() + event_function(), but hard assumes IRQs
307 * are already disabled and we're on the right CPU.
308 */
event_function_local(struct perf_event * event,event_f func,void * data)309 static void event_function_local(struct perf_event *event, event_f func, void *data)
310 {
311 struct perf_event_context *ctx = event->ctx;
312 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
313 struct task_struct *task = READ_ONCE(ctx->task);
314 struct perf_event_context *task_ctx = NULL;
315
316 lockdep_assert_irqs_disabled();
317
318 if (task) {
319 if (task == TASK_TOMBSTONE)
320 return;
321
322 task_ctx = ctx;
323 }
324
325 perf_ctx_lock(cpuctx, task_ctx);
326
327 task = ctx->task;
328 if (task == TASK_TOMBSTONE)
329 goto unlock;
330
331 if (task) {
332 /*
333 * We must be either inactive or active and the right task,
334 * otherwise we're screwed, since we cannot IPI to somewhere
335 * else.
336 */
337 if (ctx->is_active) {
338 if (WARN_ON_ONCE(task != current))
339 goto unlock;
340
341 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
342 goto unlock;
343 }
344 } else {
345 WARN_ON_ONCE(&cpuctx->ctx != ctx);
346 }
347
348 func(event, cpuctx, ctx, data);
349 unlock:
350 perf_ctx_unlock(cpuctx, task_ctx);
351 }
352
353 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
354 PERF_FLAG_FD_OUTPUT |\
355 PERF_FLAG_PID_CGROUP |\
356 PERF_FLAG_FD_CLOEXEC)
357
358 /*
359 * branch priv levels that need permission checks
360 */
361 #define PERF_SAMPLE_BRANCH_PERM_PLM \
362 (PERF_SAMPLE_BRANCH_KERNEL |\
363 PERF_SAMPLE_BRANCH_HV)
364
365 enum event_type_t {
366 EVENT_FLEXIBLE = 0x1,
367 EVENT_PINNED = 0x2,
368 EVENT_TIME = 0x4,
369 /* see ctx_resched() for details */
370 EVENT_CPU = 0x8,
371 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
372 };
373
374 /*
375 * perf_sched_events : >0 events exist
376 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
377 */
378
379 static void perf_sched_delayed(struct work_struct *work);
380 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
381 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
382 static DEFINE_MUTEX(perf_sched_mutex);
383 static atomic_t perf_sched_count;
384
385 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
386 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
387 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
388
389 static atomic_t nr_mmap_events __read_mostly;
390 static atomic_t nr_comm_events __read_mostly;
391 static atomic_t nr_namespaces_events __read_mostly;
392 static atomic_t nr_task_events __read_mostly;
393 static atomic_t nr_freq_events __read_mostly;
394 static atomic_t nr_switch_events __read_mostly;
395 static atomic_t nr_ksymbol_events __read_mostly;
396 static atomic_t nr_bpf_events __read_mostly;
397 static atomic_t nr_cgroup_events __read_mostly;
398 static atomic_t nr_text_poke_events __read_mostly;
399
400 static LIST_HEAD(pmus);
401 static DEFINE_MUTEX(pmus_lock);
402 static struct srcu_struct pmus_srcu;
403 static cpumask_var_t perf_online_mask;
404
405 /*
406 * perf event paranoia level:
407 * -1 - not paranoid at all
408 * 0 - disallow raw tracepoint access for unpriv
409 * 1 - disallow cpu events for unpriv
410 * 2 - disallow kernel profiling for unpriv
411 */
412 int sysctl_perf_event_paranoid __read_mostly = 2;
413
414 /* Minimum for 512 kiB + 1 user control page */
415 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
416
417 /*
418 * max perf event sample rate
419 */
420 #define DEFAULT_MAX_SAMPLE_RATE 100000
421 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
422 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
423
424 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
425
426 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
427 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
428
429 static int perf_sample_allowed_ns __read_mostly =
430 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
431
update_perf_cpu_limits(void)432 static void update_perf_cpu_limits(void)
433 {
434 u64 tmp = perf_sample_period_ns;
435
436 tmp *= sysctl_perf_cpu_time_max_percent;
437 tmp = div_u64(tmp, 100);
438 if (!tmp)
439 tmp = 1;
440
441 WRITE_ONCE(perf_sample_allowed_ns, tmp);
442 }
443
444 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
445
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)446 int perf_proc_update_handler(struct ctl_table *table, int write,
447 void *buffer, size_t *lenp, loff_t *ppos)
448 {
449 int ret;
450 int perf_cpu = sysctl_perf_cpu_time_max_percent;
451 /*
452 * If throttling is disabled don't allow the write:
453 */
454 if (write && (perf_cpu == 100 || perf_cpu == 0))
455 return -EINVAL;
456
457 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
458 if (ret || !write)
459 return ret;
460
461 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
462 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
463 update_perf_cpu_limits();
464
465 return 0;
466 }
467
468 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
469
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)470 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
471 void *buffer, size_t *lenp, loff_t *ppos)
472 {
473 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
474
475 if (ret || !write)
476 return ret;
477
478 if (sysctl_perf_cpu_time_max_percent == 100 ||
479 sysctl_perf_cpu_time_max_percent == 0) {
480 printk(KERN_WARNING
481 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
482 WRITE_ONCE(perf_sample_allowed_ns, 0);
483 } else {
484 update_perf_cpu_limits();
485 }
486
487 return 0;
488 }
489
490 /*
491 * perf samples are done in some very critical code paths (NMIs).
492 * If they take too much CPU time, the system can lock up and not
493 * get any real work done. This will drop the sample rate when
494 * we detect that events are taking too long.
495 */
496 #define NR_ACCUMULATED_SAMPLES 128
497 static DEFINE_PER_CPU(u64, running_sample_length);
498
499 static u64 __report_avg;
500 static u64 __report_allowed;
501
perf_duration_warn(struct irq_work * w)502 static void perf_duration_warn(struct irq_work *w)
503 {
504 printk_ratelimited(KERN_INFO
505 "perf: interrupt took too long (%lld > %lld), lowering "
506 "kernel.perf_event_max_sample_rate to %d\n",
507 __report_avg, __report_allowed,
508 sysctl_perf_event_sample_rate);
509 }
510
511 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
512
perf_sample_event_took(u64 sample_len_ns)513 void perf_sample_event_took(u64 sample_len_ns)
514 {
515 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
516 u64 running_len;
517 u64 avg_len;
518 u32 max;
519
520 if (max_len == 0)
521 return;
522
523 /* Decay the counter by 1 average sample. */
524 running_len = __this_cpu_read(running_sample_length);
525 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
526 running_len += sample_len_ns;
527 __this_cpu_write(running_sample_length, running_len);
528
529 /*
530 * Note: this will be biased artifically low until we have
531 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
532 * from having to maintain a count.
533 */
534 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
535 if (avg_len <= max_len)
536 return;
537
538 __report_avg = avg_len;
539 __report_allowed = max_len;
540
541 /*
542 * Compute a throttle threshold 25% below the current duration.
543 */
544 avg_len += avg_len / 4;
545 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
546 if (avg_len < max)
547 max /= (u32)avg_len;
548 else
549 max = 1;
550
551 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
552 WRITE_ONCE(max_samples_per_tick, max);
553
554 sysctl_perf_event_sample_rate = max * HZ;
555 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
556
557 if (!irq_work_queue(&perf_duration_work)) {
558 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
559 "kernel.perf_event_max_sample_rate to %d\n",
560 __report_avg, __report_allowed,
561 sysctl_perf_event_sample_rate);
562 }
563 }
564
565 static atomic64_t perf_event_id;
566
567 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
568 enum event_type_t event_type);
569
570 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
571 enum event_type_t event_type,
572 struct task_struct *task);
573
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576
perf_event_print_debug(void)577 void __weak perf_event_print_debug(void) { }
578
perf_pmu_name(void)579 extern __weak const char *perf_pmu_name(void)
580 {
581 return "pmu";
582 }
583
perf_clock(void)584 static inline u64 perf_clock(void)
585 {
586 return local_clock();
587 }
588
perf_event_clock(struct perf_event * event)589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591 return event->clock();
592 }
593
594 /*
595 * State based event timekeeping...
596 *
597 * The basic idea is to use event->state to determine which (if any) time
598 * fields to increment with the current delta. This means we only need to
599 * update timestamps when we change state or when they are explicitly requested
600 * (read).
601 *
602 * Event groups make things a little more complicated, but not terribly so. The
603 * rules for a group are that if the group leader is OFF the entire group is
604 * OFF, irrespecive of what the group member states are. This results in
605 * __perf_effective_state().
606 *
607 * A futher ramification is that when a group leader flips between OFF and
608 * !OFF, we need to update all group member times.
609 *
610 *
611 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612 * need to make sure the relevant context time is updated before we try and
613 * update our timestamps.
614 */
615
616 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)617 __perf_effective_state(struct perf_event *event)
618 {
619 struct perf_event *leader = event->group_leader;
620
621 if (leader->state <= PERF_EVENT_STATE_OFF)
622 return leader->state;
623
624 return event->state;
625 }
626
627 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630 enum perf_event_state state = __perf_effective_state(event);
631 u64 delta = now - event->tstamp;
632
633 *enabled = event->total_time_enabled;
634 if (state >= PERF_EVENT_STATE_INACTIVE)
635 *enabled += delta;
636
637 *running = event->total_time_running;
638 if (state >= PERF_EVENT_STATE_ACTIVE)
639 *running += delta;
640 }
641
perf_event_update_time(struct perf_event * event)642 static void perf_event_update_time(struct perf_event *event)
643 {
644 u64 now = perf_event_time(event);
645
646 __perf_update_times(event, now, &event->total_time_enabled,
647 &event->total_time_running);
648 event->tstamp = now;
649 }
650
perf_event_update_sibling_time(struct perf_event * leader)651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653 struct perf_event *sibling;
654
655 for_each_sibling_event(sibling, leader)
656 perf_event_update_time(sibling);
657 }
658
659 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662 if (event->state == state)
663 return;
664
665 perf_event_update_time(event);
666 /*
667 * If a group leader gets enabled/disabled all its siblings
668 * are affected too.
669 */
670 if ((event->state < 0) ^ (state < 0))
671 perf_event_update_sibling_time(event);
672
673 WRITE_ONCE(event->state, state);
674 }
675
676 #ifdef CONFIG_CGROUP_PERF
677
678 static inline bool
perf_cgroup_match(struct perf_event * event)679 perf_cgroup_match(struct perf_event *event)
680 {
681 struct perf_event_context *ctx = event->ctx;
682 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
683
684 /* @event doesn't care about cgroup */
685 if (!event->cgrp)
686 return true;
687
688 /* wants specific cgroup scope but @cpuctx isn't associated with any */
689 if (!cpuctx->cgrp)
690 return false;
691
692 /*
693 * Cgroup scoping is recursive. An event enabled for a cgroup is
694 * also enabled for all its descendant cgroups. If @cpuctx's
695 * cgroup is a descendant of @event's (the test covers identity
696 * case), it's a match.
697 */
698 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
699 event->cgrp->css.cgroup);
700 }
701
perf_detach_cgroup(struct perf_event * event)702 static inline void perf_detach_cgroup(struct perf_event *event)
703 {
704 css_put(&event->cgrp->css);
705 event->cgrp = NULL;
706 }
707
is_cgroup_event(struct perf_event * event)708 static inline int is_cgroup_event(struct perf_event *event)
709 {
710 return event->cgrp != NULL;
711 }
712
perf_cgroup_event_time(struct perf_event * event)713 static inline u64 perf_cgroup_event_time(struct perf_event *event)
714 {
715 struct perf_cgroup_info *t;
716
717 t = per_cpu_ptr(event->cgrp->info, event->cpu);
718 return t->time;
719 }
720
__update_cgrp_time(struct perf_cgroup * cgrp)721 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
722 {
723 struct perf_cgroup_info *info;
724 u64 now;
725
726 now = perf_clock();
727
728 info = this_cpu_ptr(cgrp->info);
729
730 info->time += now - info->timestamp;
731 info->timestamp = now;
732 }
733
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)734 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
735 {
736 struct perf_cgroup *cgrp = cpuctx->cgrp;
737 struct cgroup_subsys_state *css;
738
739 if (cgrp) {
740 for (css = &cgrp->css; css; css = css->parent) {
741 cgrp = container_of(css, struct perf_cgroup, css);
742 __update_cgrp_time(cgrp);
743 }
744 }
745 }
746
update_cgrp_time_from_event(struct perf_event * event)747 static inline void update_cgrp_time_from_event(struct perf_event *event)
748 {
749 struct perf_cgroup *cgrp;
750
751 /*
752 * ensure we access cgroup data only when needed and
753 * when we know the cgroup is pinned (css_get)
754 */
755 if (!is_cgroup_event(event))
756 return;
757
758 cgrp = perf_cgroup_from_task(current, event->ctx);
759 /*
760 * Do not update time when cgroup is not active
761 */
762 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
763 __update_cgrp_time(event->cgrp);
764 }
765
766 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)767 perf_cgroup_set_timestamp(struct task_struct *task,
768 struct perf_event_context *ctx)
769 {
770 struct perf_cgroup *cgrp;
771 struct perf_cgroup_info *info;
772 struct cgroup_subsys_state *css;
773
774 /*
775 * ctx->lock held by caller
776 * ensure we do not access cgroup data
777 * unless we have the cgroup pinned (css_get)
778 */
779 if (!task || !ctx->nr_cgroups)
780 return;
781
782 cgrp = perf_cgroup_from_task(task, ctx);
783
784 for (css = &cgrp->css; css; css = css->parent) {
785 cgrp = container_of(css, struct perf_cgroup, css);
786 info = this_cpu_ptr(cgrp->info);
787 info->timestamp = ctx->timestamp;
788 }
789 }
790
791 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
792
793 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
794 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
795
796 /*
797 * reschedule events based on the cgroup constraint of task.
798 *
799 * mode SWOUT : schedule out everything
800 * mode SWIN : schedule in based on cgroup for next
801 */
perf_cgroup_switch(struct task_struct * task,int mode)802 static void perf_cgroup_switch(struct task_struct *task, int mode)
803 {
804 struct perf_cpu_context *cpuctx, *tmp;
805 struct list_head *list;
806 unsigned long flags;
807
808 /*
809 * Disable interrupts and preemption to avoid this CPU's
810 * cgrp_cpuctx_entry to change under us.
811 */
812 local_irq_save(flags);
813
814 list = this_cpu_ptr(&cgrp_cpuctx_list);
815 list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
816 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
817
818 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
819 perf_pmu_disable(cpuctx->ctx.pmu);
820
821 if (mode & PERF_CGROUP_SWOUT) {
822 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
823 /*
824 * must not be done before ctxswout due
825 * to event_filter_match() in event_sched_out()
826 */
827 cpuctx->cgrp = NULL;
828 }
829
830 if (mode & PERF_CGROUP_SWIN) {
831 WARN_ON_ONCE(cpuctx->cgrp);
832 /*
833 * set cgrp before ctxsw in to allow
834 * event_filter_match() to not have to pass
835 * task around
836 * we pass the cpuctx->ctx to perf_cgroup_from_task()
837 * because cgorup events are only per-cpu
838 */
839 cpuctx->cgrp = perf_cgroup_from_task(task,
840 &cpuctx->ctx);
841 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
842 }
843 perf_pmu_enable(cpuctx->ctx.pmu);
844 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
845 }
846
847 local_irq_restore(flags);
848 }
849
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)850 static inline void perf_cgroup_sched_out(struct task_struct *task,
851 struct task_struct *next)
852 {
853 struct perf_cgroup *cgrp1;
854 struct perf_cgroup *cgrp2 = NULL;
855
856 rcu_read_lock();
857 /*
858 * we come here when we know perf_cgroup_events > 0
859 * we do not need to pass the ctx here because we know
860 * we are holding the rcu lock
861 */
862 cgrp1 = perf_cgroup_from_task(task, NULL);
863 cgrp2 = perf_cgroup_from_task(next, NULL);
864
865 /*
866 * only schedule out current cgroup events if we know
867 * that we are switching to a different cgroup. Otherwise,
868 * do no touch the cgroup events.
869 */
870 if (cgrp1 != cgrp2)
871 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
872
873 rcu_read_unlock();
874 }
875
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)876 static inline void perf_cgroup_sched_in(struct task_struct *prev,
877 struct task_struct *task)
878 {
879 struct perf_cgroup *cgrp1;
880 struct perf_cgroup *cgrp2 = NULL;
881
882 rcu_read_lock();
883 /*
884 * we come here when we know perf_cgroup_events > 0
885 * we do not need to pass the ctx here because we know
886 * we are holding the rcu lock
887 */
888 cgrp1 = perf_cgroup_from_task(task, NULL);
889 cgrp2 = perf_cgroup_from_task(prev, NULL);
890
891 /*
892 * only need to schedule in cgroup events if we are changing
893 * cgroup during ctxsw. Cgroup events were not scheduled
894 * out of ctxsw out if that was not the case.
895 */
896 if (cgrp1 != cgrp2)
897 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
898
899 rcu_read_unlock();
900 }
901
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)902 static int perf_cgroup_ensure_storage(struct perf_event *event,
903 struct cgroup_subsys_state *css)
904 {
905 struct perf_cpu_context *cpuctx;
906 struct perf_event **storage;
907 int cpu, heap_size, ret = 0;
908
909 /*
910 * Allow storage to have sufficent space for an iterator for each
911 * possibly nested cgroup plus an iterator for events with no cgroup.
912 */
913 for (heap_size = 1; css; css = css->parent)
914 heap_size++;
915
916 for_each_possible_cpu(cpu) {
917 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
918 if (heap_size <= cpuctx->heap_size)
919 continue;
920
921 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
922 GFP_KERNEL, cpu_to_node(cpu));
923 if (!storage) {
924 ret = -ENOMEM;
925 break;
926 }
927
928 raw_spin_lock_irq(&cpuctx->ctx.lock);
929 if (cpuctx->heap_size < heap_size) {
930 swap(cpuctx->heap, storage);
931 if (storage == cpuctx->heap_default)
932 storage = NULL;
933 cpuctx->heap_size = heap_size;
934 }
935 raw_spin_unlock_irq(&cpuctx->ctx.lock);
936
937 kfree(storage);
938 }
939
940 return ret;
941 }
942
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)943 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
944 struct perf_event_attr *attr,
945 struct perf_event *group_leader)
946 {
947 struct perf_cgroup *cgrp;
948 struct cgroup_subsys_state *css;
949 struct fd f = fdget(fd);
950 int ret = 0;
951
952 if (!f.file)
953 return -EBADF;
954
955 css = css_tryget_online_from_dir(f.file->f_path.dentry,
956 &perf_event_cgrp_subsys);
957 if (IS_ERR(css)) {
958 ret = PTR_ERR(css);
959 goto out;
960 }
961
962 ret = perf_cgroup_ensure_storage(event, css);
963 if (ret)
964 goto out;
965
966 cgrp = container_of(css, struct perf_cgroup, css);
967 event->cgrp = cgrp;
968
969 /*
970 * all events in a group must monitor
971 * the same cgroup because a task belongs
972 * to only one perf cgroup at a time
973 */
974 if (group_leader && group_leader->cgrp != cgrp) {
975 perf_detach_cgroup(event);
976 ret = -EINVAL;
977 }
978 out:
979 fdput(f);
980 return ret;
981 }
982
983 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)984 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
985 {
986 struct perf_cgroup_info *t;
987 t = per_cpu_ptr(event->cgrp->info, event->cpu);
988 event->shadow_ctx_time = now - t->timestamp;
989 }
990
991 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)992 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
993 {
994 struct perf_cpu_context *cpuctx;
995
996 if (!is_cgroup_event(event))
997 return;
998
999 /*
1000 * Because cgroup events are always per-cpu events,
1001 * @ctx == &cpuctx->ctx.
1002 */
1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005 /*
1006 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1007 * matching the event's cgroup, we must do this for every new event,
1008 * because if the first would mismatch, the second would not try again
1009 * and we would leave cpuctx->cgrp unset.
1010 */
1011 if (ctx->is_active && !cpuctx->cgrp) {
1012 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1013
1014 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1015 cpuctx->cgrp = cgrp;
1016 }
1017
1018 if (ctx->nr_cgroups++)
1019 return;
1020
1021 list_add(&cpuctx->cgrp_cpuctx_entry,
1022 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1023 }
1024
1025 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1027 {
1028 struct perf_cpu_context *cpuctx;
1029
1030 if (!is_cgroup_event(event))
1031 return;
1032
1033 /*
1034 * Because cgroup events are always per-cpu events,
1035 * @ctx == &cpuctx->ctx.
1036 */
1037 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1038
1039 if (--ctx->nr_cgroups)
1040 return;
1041
1042 if (ctx->is_active && cpuctx->cgrp)
1043 cpuctx->cgrp = NULL;
1044
1045 list_del(&cpuctx->cgrp_cpuctx_entry);
1046 }
1047
1048 #else /* !CONFIG_CGROUP_PERF */
1049
1050 static inline bool
perf_cgroup_match(struct perf_event * event)1051 perf_cgroup_match(struct perf_event *event)
1052 {
1053 return true;
1054 }
1055
perf_detach_cgroup(struct perf_event * event)1056 static inline void perf_detach_cgroup(struct perf_event *event)
1057 {}
1058
is_cgroup_event(struct perf_event * event)1059 static inline int is_cgroup_event(struct perf_event *event)
1060 {
1061 return 0;
1062 }
1063
update_cgrp_time_from_event(struct perf_event * event)1064 static inline void update_cgrp_time_from_event(struct perf_event *event)
1065 {
1066 }
1067
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)1068 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1069 {
1070 }
1071
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)1072 static inline void perf_cgroup_sched_out(struct task_struct *task,
1073 struct task_struct *next)
1074 {
1075 }
1076
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)1077 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1078 struct task_struct *task)
1079 {
1080 }
1081
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1082 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1083 struct perf_event_attr *attr,
1084 struct perf_event *group_leader)
1085 {
1086 return -EINVAL;
1087 }
1088
1089 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)1090 perf_cgroup_set_timestamp(struct task_struct *task,
1091 struct perf_event_context *ctx)
1092 {
1093 }
1094
1095 static inline void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)1096 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1097 {
1098 }
1099
1100 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)1101 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1102 {
1103 }
1104
perf_cgroup_event_time(struct perf_event * event)1105 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1106 {
1107 return 0;
1108 }
1109
1110 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1111 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1112 {
1113 }
1114
1115 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1116 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1117 {
1118 }
1119 #endif
1120
1121 /*
1122 * set default to be dependent on timer tick just
1123 * like original code
1124 */
1125 #define PERF_CPU_HRTIMER (1000 / HZ)
1126 /*
1127 * function must be called with interrupts disabled
1128 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1129 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1130 {
1131 struct perf_cpu_context *cpuctx;
1132 bool rotations;
1133
1134 lockdep_assert_irqs_disabled();
1135
1136 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1137 rotations = perf_rotate_context(cpuctx);
1138
1139 raw_spin_lock(&cpuctx->hrtimer_lock);
1140 if (rotations)
1141 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1142 else
1143 cpuctx->hrtimer_active = 0;
1144 raw_spin_unlock(&cpuctx->hrtimer_lock);
1145
1146 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1147 }
1148
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)1149 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1150 {
1151 struct hrtimer *timer = &cpuctx->hrtimer;
1152 struct pmu *pmu = cpuctx->ctx.pmu;
1153 u64 interval;
1154
1155 /* no multiplexing needed for SW PMU */
1156 if (pmu->task_ctx_nr == perf_sw_context)
1157 return;
1158
1159 /*
1160 * check default is sane, if not set then force to
1161 * default interval (1/tick)
1162 */
1163 interval = pmu->hrtimer_interval_ms;
1164 if (interval < 1)
1165 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1166
1167 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1168
1169 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1170 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1171 timer->function = perf_mux_hrtimer_handler;
1172 }
1173
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)1174 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1175 {
1176 struct hrtimer *timer = &cpuctx->hrtimer;
1177 struct pmu *pmu = cpuctx->ctx.pmu;
1178 unsigned long flags;
1179
1180 /* not for SW PMU */
1181 if (pmu->task_ctx_nr == perf_sw_context)
1182 return 0;
1183
1184 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1185 if (!cpuctx->hrtimer_active) {
1186 cpuctx->hrtimer_active = 1;
1187 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1188 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1189 }
1190 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1191
1192 return 0;
1193 }
1194
perf_pmu_disable(struct pmu * pmu)1195 void perf_pmu_disable(struct pmu *pmu)
1196 {
1197 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1198 if (!(*count)++)
1199 pmu->pmu_disable(pmu);
1200 }
1201
perf_pmu_enable(struct pmu * pmu)1202 void perf_pmu_enable(struct pmu *pmu)
1203 {
1204 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1205 if (!--(*count))
1206 pmu->pmu_enable(pmu);
1207 }
1208
1209 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1210
1211 /*
1212 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1213 * perf_event_task_tick() are fully serialized because they're strictly cpu
1214 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1215 * disabled, while perf_event_task_tick is called from IRQ context.
1216 */
perf_event_ctx_activate(struct perf_event_context * ctx)1217 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1218 {
1219 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1220
1221 lockdep_assert_irqs_disabled();
1222
1223 WARN_ON(!list_empty(&ctx->active_ctx_list));
1224
1225 list_add(&ctx->active_ctx_list, head);
1226 }
1227
perf_event_ctx_deactivate(struct perf_event_context * ctx)1228 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1229 {
1230 lockdep_assert_irqs_disabled();
1231
1232 WARN_ON(list_empty(&ctx->active_ctx_list));
1233
1234 list_del_init(&ctx->active_ctx_list);
1235 }
1236
get_ctx(struct perf_event_context * ctx)1237 static void get_ctx(struct perf_event_context *ctx)
1238 {
1239 refcount_inc(&ctx->refcount);
1240 }
1241
alloc_task_ctx_data(struct pmu * pmu)1242 static void *alloc_task_ctx_data(struct pmu *pmu)
1243 {
1244 if (pmu->task_ctx_cache)
1245 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1246
1247 return NULL;
1248 }
1249
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1250 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1251 {
1252 if (pmu->task_ctx_cache && task_ctx_data)
1253 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1254 }
1255
free_ctx(struct rcu_head * head)1256 static void free_ctx(struct rcu_head *head)
1257 {
1258 struct perf_event_context *ctx;
1259
1260 ctx = container_of(head, struct perf_event_context, rcu_head);
1261 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1262 kfree(ctx);
1263 }
1264
put_ctx(struct perf_event_context * ctx)1265 static void put_ctx(struct perf_event_context *ctx)
1266 {
1267 if (refcount_dec_and_test(&ctx->refcount)) {
1268 if (ctx->parent_ctx)
1269 put_ctx(ctx->parent_ctx);
1270 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1271 put_task_struct(ctx->task);
1272 call_rcu(&ctx->rcu_head, free_ctx);
1273 }
1274 }
1275
1276 /*
1277 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1278 * perf_pmu_migrate_context() we need some magic.
1279 *
1280 * Those places that change perf_event::ctx will hold both
1281 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1282 *
1283 * Lock ordering is by mutex address. There are two other sites where
1284 * perf_event_context::mutex nests and those are:
1285 *
1286 * - perf_event_exit_task_context() [ child , 0 ]
1287 * perf_event_exit_event()
1288 * put_event() [ parent, 1 ]
1289 *
1290 * - perf_event_init_context() [ parent, 0 ]
1291 * inherit_task_group()
1292 * inherit_group()
1293 * inherit_event()
1294 * perf_event_alloc()
1295 * perf_init_event()
1296 * perf_try_init_event() [ child , 1 ]
1297 *
1298 * While it appears there is an obvious deadlock here -- the parent and child
1299 * nesting levels are inverted between the two. This is in fact safe because
1300 * life-time rules separate them. That is an exiting task cannot fork, and a
1301 * spawning task cannot (yet) exit.
1302 *
1303 * But remember that these are parent<->child context relations, and
1304 * migration does not affect children, therefore these two orderings should not
1305 * interact.
1306 *
1307 * The change in perf_event::ctx does not affect children (as claimed above)
1308 * because the sys_perf_event_open() case will install a new event and break
1309 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1310 * concerned with cpuctx and that doesn't have children.
1311 *
1312 * The places that change perf_event::ctx will issue:
1313 *
1314 * perf_remove_from_context();
1315 * synchronize_rcu();
1316 * perf_install_in_context();
1317 *
1318 * to affect the change. The remove_from_context() + synchronize_rcu() should
1319 * quiesce the event, after which we can install it in the new location. This
1320 * means that only external vectors (perf_fops, prctl) can perturb the event
1321 * while in transit. Therefore all such accessors should also acquire
1322 * perf_event_context::mutex to serialize against this.
1323 *
1324 * However; because event->ctx can change while we're waiting to acquire
1325 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1326 * function.
1327 *
1328 * Lock order:
1329 * exec_update_lock
1330 * task_struct::perf_event_mutex
1331 * perf_event_context::mutex
1332 * perf_event::child_mutex;
1333 * perf_event_context::lock
1334 * perf_event::mmap_mutex
1335 * mmap_lock
1336 * perf_addr_filters_head::lock
1337 *
1338 * cpu_hotplug_lock
1339 * pmus_lock
1340 * cpuctx->mutex / perf_event_context::mutex
1341 */
1342 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1343 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1344 {
1345 struct perf_event_context *ctx;
1346
1347 again:
1348 rcu_read_lock();
1349 ctx = READ_ONCE(event->ctx);
1350 if (!refcount_inc_not_zero(&ctx->refcount)) {
1351 rcu_read_unlock();
1352 goto again;
1353 }
1354 rcu_read_unlock();
1355
1356 mutex_lock_nested(&ctx->mutex, nesting);
1357 if (event->ctx != ctx) {
1358 mutex_unlock(&ctx->mutex);
1359 put_ctx(ctx);
1360 goto again;
1361 }
1362
1363 return ctx;
1364 }
1365
1366 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1367 perf_event_ctx_lock(struct perf_event *event)
1368 {
1369 return perf_event_ctx_lock_nested(event, 0);
1370 }
1371
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1372 static void perf_event_ctx_unlock(struct perf_event *event,
1373 struct perf_event_context *ctx)
1374 {
1375 mutex_unlock(&ctx->mutex);
1376 put_ctx(ctx);
1377 }
1378
1379 /*
1380 * This must be done under the ctx->lock, such as to serialize against
1381 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1382 * calling scheduler related locks and ctx->lock nests inside those.
1383 */
1384 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1385 unclone_ctx(struct perf_event_context *ctx)
1386 {
1387 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1388
1389 lockdep_assert_held(&ctx->lock);
1390
1391 if (parent_ctx)
1392 ctx->parent_ctx = NULL;
1393 ctx->generation++;
1394
1395 return parent_ctx;
1396 }
1397
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1398 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1399 enum pid_type type)
1400 {
1401 u32 nr;
1402 /*
1403 * only top level events have the pid namespace they were created in
1404 */
1405 if (event->parent)
1406 event = event->parent;
1407
1408 nr = __task_pid_nr_ns(p, type, event->ns);
1409 /* avoid -1 if it is idle thread or runs in another ns */
1410 if (!nr && !pid_alive(p))
1411 nr = -1;
1412 return nr;
1413 }
1414
perf_event_pid(struct perf_event * event,struct task_struct * p)1415 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1416 {
1417 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1418 }
1419
perf_event_tid(struct perf_event * event,struct task_struct * p)1420 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1421 {
1422 return perf_event_pid_type(event, p, PIDTYPE_PID);
1423 }
1424
1425 /*
1426 * If we inherit events we want to return the parent event id
1427 * to userspace.
1428 */
primary_event_id(struct perf_event * event)1429 static u64 primary_event_id(struct perf_event *event)
1430 {
1431 u64 id = event->id;
1432
1433 if (event->parent)
1434 id = event->parent->id;
1435
1436 return id;
1437 }
1438
1439 /*
1440 * Get the perf_event_context for a task and lock it.
1441 *
1442 * This has to cope with the fact that until it is locked,
1443 * the context could get moved to another task.
1444 */
1445 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1446 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1447 {
1448 struct perf_event_context *ctx;
1449
1450 retry:
1451 /*
1452 * One of the few rules of preemptible RCU is that one cannot do
1453 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1454 * part of the read side critical section was irqs-enabled -- see
1455 * rcu_read_unlock_special().
1456 *
1457 * Since ctx->lock nests under rq->lock we must ensure the entire read
1458 * side critical section has interrupts disabled.
1459 */
1460 local_irq_save(*flags);
1461 rcu_read_lock();
1462 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1463 if (ctx) {
1464 /*
1465 * If this context is a clone of another, it might
1466 * get swapped for another underneath us by
1467 * perf_event_task_sched_out, though the
1468 * rcu_read_lock() protects us from any context
1469 * getting freed. Lock the context and check if it
1470 * got swapped before we could get the lock, and retry
1471 * if so. If we locked the right context, then it
1472 * can't get swapped on us any more.
1473 */
1474 raw_spin_lock(&ctx->lock);
1475 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1476 raw_spin_unlock(&ctx->lock);
1477 rcu_read_unlock();
1478 local_irq_restore(*flags);
1479 goto retry;
1480 }
1481
1482 if (ctx->task == TASK_TOMBSTONE ||
1483 !refcount_inc_not_zero(&ctx->refcount)) {
1484 raw_spin_unlock(&ctx->lock);
1485 ctx = NULL;
1486 } else {
1487 WARN_ON_ONCE(ctx->task != task);
1488 }
1489 }
1490 rcu_read_unlock();
1491 if (!ctx)
1492 local_irq_restore(*flags);
1493 return ctx;
1494 }
1495
1496 /*
1497 * Get the context for a task and increment its pin_count so it
1498 * can't get swapped to another task. This also increments its
1499 * reference count so that the context can't get freed.
1500 */
1501 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1502 perf_pin_task_context(struct task_struct *task, int ctxn)
1503 {
1504 struct perf_event_context *ctx;
1505 unsigned long flags;
1506
1507 ctx = perf_lock_task_context(task, ctxn, &flags);
1508 if (ctx) {
1509 ++ctx->pin_count;
1510 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1511 }
1512 return ctx;
1513 }
1514
perf_unpin_context(struct perf_event_context * ctx)1515 static void perf_unpin_context(struct perf_event_context *ctx)
1516 {
1517 unsigned long flags;
1518
1519 raw_spin_lock_irqsave(&ctx->lock, flags);
1520 --ctx->pin_count;
1521 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1522 }
1523
1524 /*
1525 * Update the record of the current time in a context.
1526 */
update_context_time(struct perf_event_context * ctx)1527 static void update_context_time(struct perf_event_context *ctx)
1528 {
1529 u64 now = perf_clock();
1530
1531 ctx->time += now - ctx->timestamp;
1532 ctx->timestamp = now;
1533 }
1534
perf_event_time(struct perf_event * event)1535 static u64 perf_event_time(struct perf_event *event)
1536 {
1537 struct perf_event_context *ctx = event->ctx;
1538
1539 if (is_cgroup_event(event))
1540 return perf_cgroup_event_time(event);
1541
1542 return ctx ? ctx->time : 0;
1543 }
1544
get_event_type(struct perf_event * event)1545 static enum event_type_t get_event_type(struct perf_event *event)
1546 {
1547 struct perf_event_context *ctx = event->ctx;
1548 enum event_type_t event_type;
1549
1550 lockdep_assert_held(&ctx->lock);
1551
1552 /*
1553 * It's 'group type', really, because if our group leader is
1554 * pinned, so are we.
1555 */
1556 if (event->group_leader != event)
1557 event = event->group_leader;
1558
1559 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1560 if (!ctx->task)
1561 event_type |= EVENT_CPU;
1562
1563 return event_type;
1564 }
1565
1566 /*
1567 * Helper function to initialize event group nodes.
1568 */
init_event_group(struct perf_event * event)1569 static void init_event_group(struct perf_event *event)
1570 {
1571 RB_CLEAR_NODE(&event->group_node);
1572 event->group_index = 0;
1573 }
1574
1575 /*
1576 * Extract pinned or flexible groups from the context
1577 * based on event attrs bits.
1578 */
1579 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1580 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1581 {
1582 if (event->attr.pinned)
1583 return &ctx->pinned_groups;
1584 else
1585 return &ctx->flexible_groups;
1586 }
1587
1588 /*
1589 * Helper function to initializes perf_event_group trees.
1590 */
perf_event_groups_init(struct perf_event_groups * groups)1591 static void perf_event_groups_init(struct perf_event_groups *groups)
1592 {
1593 groups->tree = RB_ROOT;
1594 groups->index = 0;
1595 }
1596
1597 /*
1598 * Compare function for event groups;
1599 *
1600 * Implements complex key that first sorts by CPU and then by virtual index
1601 * which provides ordering when rotating groups for the same CPU.
1602 */
1603 static bool
perf_event_groups_less(struct perf_event * left,struct perf_event * right)1604 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1605 {
1606 if (left->cpu < right->cpu)
1607 return true;
1608 if (left->cpu > right->cpu)
1609 return false;
1610
1611 #ifdef CONFIG_CGROUP_PERF
1612 if (left->cgrp != right->cgrp) {
1613 if (!left->cgrp || !left->cgrp->css.cgroup) {
1614 /*
1615 * Left has no cgroup but right does, no cgroups come
1616 * first.
1617 */
1618 return true;
1619 }
1620 if (!right->cgrp || !right->cgrp->css.cgroup) {
1621 /*
1622 * Right has no cgroup but left does, no cgroups come
1623 * first.
1624 */
1625 return false;
1626 }
1627 /* Two dissimilar cgroups, order by id. */
1628 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1629 return true;
1630
1631 return false;
1632 }
1633 #endif
1634
1635 if (left->group_index < right->group_index)
1636 return true;
1637 if (left->group_index > right->group_index)
1638 return false;
1639
1640 return false;
1641 }
1642
1643 /*
1644 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1645 * key (see perf_event_groups_less). This places it last inside the CPU
1646 * subtree.
1647 */
1648 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1649 perf_event_groups_insert(struct perf_event_groups *groups,
1650 struct perf_event *event)
1651 {
1652 struct perf_event *node_event;
1653 struct rb_node *parent;
1654 struct rb_node **node;
1655
1656 event->group_index = ++groups->index;
1657
1658 node = &groups->tree.rb_node;
1659 parent = *node;
1660
1661 while (*node) {
1662 parent = *node;
1663 node_event = container_of(*node, struct perf_event, group_node);
1664
1665 if (perf_event_groups_less(event, node_event))
1666 node = &parent->rb_left;
1667 else
1668 node = &parent->rb_right;
1669 }
1670
1671 rb_link_node(&event->group_node, parent, node);
1672 rb_insert_color(&event->group_node, &groups->tree);
1673 }
1674
1675 /*
1676 * Helper function to insert event into the pinned or flexible groups.
1677 */
1678 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1679 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1680 {
1681 struct perf_event_groups *groups;
1682
1683 groups = get_event_groups(event, ctx);
1684 perf_event_groups_insert(groups, event);
1685 }
1686
1687 /*
1688 * Delete a group from a tree.
1689 */
1690 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1691 perf_event_groups_delete(struct perf_event_groups *groups,
1692 struct perf_event *event)
1693 {
1694 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1695 RB_EMPTY_ROOT(&groups->tree));
1696
1697 rb_erase(&event->group_node, &groups->tree);
1698 init_event_group(event);
1699 }
1700
1701 /*
1702 * Helper function to delete event from its groups.
1703 */
1704 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1705 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1706 {
1707 struct perf_event_groups *groups;
1708
1709 groups = get_event_groups(event, ctx);
1710 perf_event_groups_delete(groups, event);
1711 }
1712
1713 /*
1714 * Get the leftmost event in the cpu/cgroup subtree.
1715 */
1716 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct cgroup * cgrp)1717 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1718 struct cgroup *cgrp)
1719 {
1720 struct perf_event *node_event = NULL, *match = NULL;
1721 struct rb_node *node = groups->tree.rb_node;
1722 #ifdef CONFIG_CGROUP_PERF
1723 u64 node_cgrp_id, cgrp_id = 0;
1724
1725 if (cgrp)
1726 cgrp_id = cgrp->kn->id;
1727 #endif
1728
1729 while (node) {
1730 node_event = container_of(node, struct perf_event, group_node);
1731
1732 if (cpu < node_event->cpu) {
1733 node = node->rb_left;
1734 continue;
1735 }
1736 if (cpu > node_event->cpu) {
1737 node = node->rb_right;
1738 continue;
1739 }
1740 #ifdef CONFIG_CGROUP_PERF
1741 node_cgrp_id = 0;
1742 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1743 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1744
1745 if (cgrp_id < node_cgrp_id) {
1746 node = node->rb_left;
1747 continue;
1748 }
1749 if (cgrp_id > node_cgrp_id) {
1750 node = node->rb_right;
1751 continue;
1752 }
1753 #endif
1754 match = node_event;
1755 node = node->rb_left;
1756 }
1757
1758 return match;
1759 }
1760
1761 /*
1762 * Like rb_entry_next_safe() for the @cpu subtree.
1763 */
1764 static struct perf_event *
perf_event_groups_next(struct perf_event * event)1765 perf_event_groups_next(struct perf_event *event)
1766 {
1767 struct perf_event *next;
1768 #ifdef CONFIG_CGROUP_PERF
1769 u64 curr_cgrp_id = 0;
1770 u64 next_cgrp_id = 0;
1771 #endif
1772
1773 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1774 if (next == NULL || next->cpu != event->cpu)
1775 return NULL;
1776
1777 #ifdef CONFIG_CGROUP_PERF
1778 if (event->cgrp && event->cgrp->css.cgroup)
1779 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1780
1781 if (next->cgrp && next->cgrp->css.cgroup)
1782 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1783
1784 if (curr_cgrp_id != next_cgrp_id)
1785 return NULL;
1786 #endif
1787 return next;
1788 }
1789
1790 /*
1791 * Iterate through the whole groups tree.
1792 */
1793 #define perf_event_groups_for_each(event, groups) \
1794 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1795 typeof(*event), group_node); event; \
1796 event = rb_entry_safe(rb_next(&event->group_node), \
1797 typeof(*event), group_node))
1798
1799 /*
1800 * Add an event from the lists for its context.
1801 * Must be called with ctx->mutex and ctx->lock held.
1802 */
1803 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1804 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1805 {
1806 lockdep_assert_held(&ctx->lock);
1807
1808 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1809 event->attach_state |= PERF_ATTACH_CONTEXT;
1810
1811 event->tstamp = perf_event_time(event);
1812
1813 /*
1814 * If we're a stand alone event or group leader, we go to the context
1815 * list, group events are kept attached to the group so that
1816 * perf_group_detach can, at all times, locate all siblings.
1817 */
1818 if (event->group_leader == event) {
1819 event->group_caps = event->event_caps;
1820 add_event_to_groups(event, ctx);
1821 }
1822
1823 list_add_rcu(&event->event_entry, &ctx->event_list);
1824 ctx->nr_events++;
1825 if (event->attr.inherit_stat)
1826 ctx->nr_stat++;
1827
1828 if (event->state > PERF_EVENT_STATE_OFF)
1829 perf_cgroup_event_enable(event, ctx);
1830
1831 ctx->generation++;
1832 }
1833
1834 /*
1835 * Initialize event state based on the perf_event_attr::disabled.
1836 */
perf_event__state_init(struct perf_event * event)1837 static inline void perf_event__state_init(struct perf_event *event)
1838 {
1839 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1840 PERF_EVENT_STATE_INACTIVE;
1841 }
1842
__perf_event_read_size(struct perf_event * event,int nr_siblings)1843 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1844 {
1845 int entry = sizeof(u64); /* value */
1846 int size = 0;
1847 int nr = 1;
1848
1849 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1850 size += sizeof(u64);
1851
1852 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1853 size += sizeof(u64);
1854
1855 if (event->attr.read_format & PERF_FORMAT_ID)
1856 entry += sizeof(u64);
1857
1858 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1859 nr += nr_siblings;
1860 size += sizeof(u64);
1861 }
1862
1863 size += entry * nr;
1864 event->read_size = size;
1865 }
1866
__perf_event_header_size(struct perf_event * event,u64 sample_type)1867 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1868 {
1869 struct perf_sample_data *data;
1870 u16 size = 0;
1871
1872 if (sample_type & PERF_SAMPLE_IP)
1873 size += sizeof(data->ip);
1874
1875 if (sample_type & PERF_SAMPLE_ADDR)
1876 size += sizeof(data->addr);
1877
1878 if (sample_type & PERF_SAMPLE_PERIOD)
1879 size += sizeof(data->period);
1880
1881 if (sample_type & PERF_SAMPLE_WEIGHT)
1882 size += sizeof(data->weight);
1883
1884 if (sample_type & PERF_SAMPLE_READ)
1885 size += event->read_size;
1886
1887 if (sample_type & PERF_SAMPLE_DATA_SRC)
1888 size += sizeof(data->data_src.val);
1889
1890 if (sample_type & PERF_SAMPLE_TRANSACTION)
1891 size += sizeof(data->txn);
1892
1893 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1894 size += sizeof(data->phys_addr);
1895
1896 if (sample_type & PERF_SAMPLE_CGROUP)
1897 size += sizeof(data->cgroup);
1898
1899 event->header_size = size;
1900 }
1901
1902 /*
1903 * Called at perf_event creation and when events are attached/detached from a
1904 * group.
1905 */
perf_event__header_size(struct perf_event * event)1906 static void perf_event__header_size(struct perf_event *event)
1907 {
1908 __perf_event_read_size(event,
1909 event->group_leader->nr_siblings);
1910 __perf_event_header_size(event, event->attr.sample_type);
1911 }
1912
perf_event__id_header_size(struct perf_event * event)1913 static void perf_event__id_header_size(struct perf_event *event)
1914 {
1915 struct perf_sample_data *data;
1916 u64 sample_type = event->attr.sample_type;
1917 u16 size = 0;
1918
1919 if (sample_type & PERF_SAMPLE_TID)
1920 size += sizeof(data->tid_entry);
1921
1922 if (sample_type & PERF_SAMPLE_TIME)
1923 size += sizeof(data->time);
1924
1925 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1926 size += sizeof(data->id);
1927
1928 if (sample_type & PERF_SAMPLE_ID)
1929 size += sizeof(data->id);
1930
1931 if (sample_type & PERF_SAMPLE_STREAM_ID)
1932 size += sizeof(data->stream_id);
1933
1934 if (sample_type & PERF_SAMPLE_CPU)
1935 size += sizeof(data->cpu_entry);
1936
1937 event->id_header_size = size;
1938 }
1939
perf_event_validate_size(struct perf_event * event)1940 static bool perf_event_validate_size(struct perf_event *event)
1941 {
1942 /*
1943 * The values computed here will be over-written when we actually
1944 * attach the event.
1945 */
1946 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1947 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1948 perf_event__id_header_size(event);
1949
1950 /*
1951 * Sum the lot; should not exceed the 64k limit we have on records.
1952 * Conservative limit to allow for callchains and other variable fields.
1953 */
1954 if (event->read_size + event->header_size +
1955 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1956 return false;
1957
1958 return true;
1959 }
1960
perf_group_attach(struct perf_event * event)1961 static void perf_group_attach(struct perf_event *event)
1962 {
1963 struct perf_event *group_leader = event->group_leader, *pos;
1964
1965 lockdep_assert_held(&event->ctx->lock);
1966
1967 /*
1968 * We can have double attach due to group movement in perf_event_open.
1969 */
1970 if (event->attach_state & PERF_ATTACH_GROUP)
1971 return;
1972
1973 event->attach_state |= PERF_ATTACH_GROUP;
1974
1975 if (group_leader == event)
1976 return;
1977
1978 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1979
1980 group_leader->group_caps &= event->event_caps;
1981
1982 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1983 group_leader->nr_siblings++;
1984
1985 perf_event__header_size(group_leader);
1986
1987 for_each_sibling_event(pos, group_leader)
1988 perf_event__header_size(pos);
1989 }
1990
1991 /*
1992 * Remove an event from the lists for its context.
1993 * Must be called with ctx->mutex and ctx->lock held.
1994 */
1995 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)1996 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1997 {
1998 WARN_ON_ONCE(event->ctx != ctx);
1999 lockdep_assert_held(&ctx->lock);
2000
2001 /*
2002 * We can have double detach due to exit/hot-unplug + close.
2003 */
2004 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2005 return;
2006
2007 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2008
2009 ctx->nr_events--;
2010 if (event->attr.inherit_stat)
2011 ctx->nr_stat--;
2012
2013 list_del_rcu(&event->event_entry);
2014
2015 if (event->group_leader == event)
2016 del_event_from_groups(event, ctx);
2017
2018 /*
2019 * If event was in error state, then keep it
2020 * that way, otherwise bogus counts will be
2021 * returned on read(). The only way to get out
2022 * of error state is by explicit re-enabling
2023 * of the event
2024 */
2025 if (event->state > PERF_EVENT_STATE_OFF) {
2026 perf_cgroup_event_disable(event, ctx);
2027 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2028 }
2029
2030 ctx->generation++;
2031 }
2032
2033 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2034 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2035 {
2036 if (!has_aux(aux_event))
2037 return 0;
2038
2039 if (!event->pmu->aux_output_match)
2040 return 0;
2041
2042 return event->pmu->aux_output_match(aux_event);
2043 }
2044
2045 static void put_event(struct perf_event *event);
2046 static void event_sched_out(struct perf_event *event,
2047 struct perf_cpu_context *cpuctx,
2048 struct perf_event_context *ctx);
2049
perf_put_aux_event(struct perf_event * event)2050 static void perf_put_aux_event(struct perf_event *event)
2051 {
2052 struct perf_event_context *ctx = event->ctx;
2053 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2054 struct perf_event *iter;
2055
2056 /*
2057 * If event uses aux_event tear down the link
2058 */
2059 if (event->aux_event) {
2060 iter = event->aux_event;
2061 event->aux_event = NULL;
2062 put_event(iter);
2063 return;
2064 }
2065
2066 /*
2067 * If the event is an aux_event, tear down all links to
2068 * it from other events.
2069 */
2070 for_each_sibling_event(iter, event->group_leader) {
2071 if (iter->aux_event != event)
2072 continue;
2073
2074 iter->aux_event = NULL;
2075 put_event(event);
2076
2077 /*
2078 * If it's ACTIVE, schedule it out and put it into ERROR
2079 * state so that we don't try to schedule it again. Note
2080 * that perf_event_enable() will clear the ERROR status.
2081 */
2082 event_sched_out(iter, cpuctx, ctx);
2083 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2084 }
2085 }
2086
perf_need_aux_event(struct perf_event * event)2087 static bool perf_need_aux_event(struct perf_event *event)
2088 {
2089 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2090 }
2091
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2092 static int perf_get_aux_event(struct perf_event *event,
2093 struct perf_event *group_leader)
2094 {
2095 /*
2096 * Our group leader must be an aux event if we want to be
2097 * an aux_output. This way, the aux event will precede its
2098 * aux_output events in the group, and therefore will always
2099 * schedule first.
2100 */
2101 if (!group_leader)
2102 return 0;
2103
2104 /*
2105 * aux_output and aux_sample_size are mutually exclusive.
2106 */
2107 if (event->attr.aux_output && event->attr.aux_sample_size)
2108 return 0;
2109
2110 if (event->attr.aux_output &&
2111 !perf_aux_output_match(event, group_leader))
2112 return 0;
2113
2114 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2115 return 0;
2116
2117 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2118 return 0;
2119
2120 /*
2121 * Link aux_outputs to their aux event; this is undone in
2122 * perf_group_detach() by perf_put_aux_event(). When the
2123 * group in torn down, the aux_output events loose their
2124 * link to the aux_event and can't schedule any more.
2125 */
2126 event->aux_event = group_leader;
2127
2128 return 1;
2129 }
2130
get_event_list(struct perf_event * event)2131 static inline struct list_head *get_event_list(struct perf_event *event)
2132 {
2133 struct perf_event_context *ctx = event->ctx;
2134 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2135 }
2136
2137 /*
2138 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2139 * cannot exist on their own, schedule them out and move them into the ERROR
2140 * state. Also see _perf_event_enable(), it will not be able to recover
2141 * this ERROR state.
2142 */
perf_remove_sibling_event(struct perf_event * event)2143 static inline void perf_remove_sibling_event(struct perf_event *event)
2144 {
2145 struct perf_event_context *ctx = event->ctx;
2146 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2147
2148 event_sched_out(event, cpuctx, ctx);
2149 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2150 }
2151
perf_group_detach(struct perf_event * event)2152 static void perf_group_detach(struct perf_event *event)
2153 {
2154 struct perf_event *leader = event->group_leader;
2155 struct perf_event *sibling, *tmp;
2156 struct perf_event_context *ctx = event->ctx;
2157
2158 lockdep_assert_held(&ctx->lock);
2159
2160 /*
2161 * We can have double detach due to exit/hot-unplug + close.
2162 */
2163 if (!(event->attach_state & PERF_ATTACH_GROUP))
2164 return;
2165
2166 event->attach_state &= ~PERF_ATTACH_GROUP;
2167
2168 perf_put_aux_event(event);
2169
2170 /*
2171 * If this is a sibling, remove it from its group.
2172 */
2173 if (leader != event) {
2174 list_del_init(&event->sibling_list);
2175 event->group_leader->nr_siblings--;
2176 goto out;
2177 }
2178
2179 /*
2180 * If this was a group event with sibling events then
2181 * upgrade the siblings to singleton events by adding them
2182 * to whatever list we are on.
2183 */
2184 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2185
2186 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2187 perf_remove_sibling_event(sibling);
2188
2189 sibling->group_leader = sibling;
2190 list_del_init(&sibling->sibling_list);
2191
2192 /* Inherit group flags from the previous leader */
2193 sibling->group_caps = event->group_caps;
2194
2195 if (!RB_EMPTY_NODE(&event->group_node)) {
2196 add_event_to_groups(sibling, event->ctx);
2197
2198 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2199 list_add_tail(&sibling->active_list, get_event_list(sibling));
2200 }
2201
2202 WARN_ON_ONCE(sibling->ctx != event->ctx);
2203 }
2204
2205 out:
2206 for_each_sibling_event(tmp, leader)
2207 perf_event__header_size(tmp);
2208
2209 perf_event__header_size(leader);
2210 }
2211
is_orphaned_event(struct perf_event * event)2212 static bool is_orphaned_event(struct perf_event *event)
2213 {
2214 return event->state == PERF_EVENT_STATE_DEAD;
2215 }
2216
__pmu_filter_match(struct perf_event * event)2217 static inline int __pmu_filter_match(struct perf_event *event)
2218 {
2219 struct pmu *pmu = event->pmu;
2220 return pmu->filter_match ? pmu->filter_match(event) : 1;
2221 }
2222
2223 /*
2224 * Check whether we should attempt to schedule an event group based on
2225 * PMU-specific filtering. An event group can consist of HW and SW events,
2226 * potentially with a SW leader, so we must check all the filters, to
2227 * determine whether a group is schedulable:
2228 */
pmu_filter_match(struct perf_event * event)2229 static inline int pmu_filter_match(struct perf_event *event)
2230 {
2231 struct perf_event *sibling;
2232
2233 if (!__pmu_filter_match(event))
2234 return 0;
2235
2236 for_each_sibling_event(sibling, event) {
2237 if (!__pmu_filter_match(sibling))
2238 return 0;
2239 }
2240
2241 return 1;
2242 }
2243
2244 static inline int
event_filter_match(struct perf_event * event)2245 event_filter_match(struct perf_event *event)
2246 {
2247 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2248 perf_cgroup_match(event) && pmu_filter_match(event);
2249 }
2250
2251 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2252 event_sched_out(struct perf_event *event,
2253 struct perf_cpu_context *cpuctx,
2254 struct perf_event_context *ctx)
2255 {
2256 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2257
2258 WARN_ON_ONCE(event->ctx != ctx);
2259 lockdep_assert_held(&ctx->lock);
2260
2261 if (event->state != PERF_EVENT_STATE_ACTIVE)
2262 return;
2263
2264 /*
2265 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2266 * we can schedule events _OUT_ individually through things like
2267 * __perf_remove_from_context().
2268 */
2269 list_del_init(&event->active_list);
2270
2271 perf_pmu_disable(event->pmu);
2272
2273 event->pmu->del(event, 0);
2274 event->oncpu = -1;
2275
2276 if (READ_ONCE(event->pending_disable) >= 0) {
2277 WRITE_ONCE(event->pending_disable, -1);
2278 perf_cgroup_event_disable(event, ctx);
2279 state = PERF_EVENT_STATE_OFF;
2280 }
2281 perf_event_set_state(event, state);
2282
2283 if (!is_software_event(event))
2284 cpuctx->active_oncpu--;
2285 if (!--ctx->nr_active)
2286 perf_event_ctx_deactivate(ctx);
2287 if (event->attr.freq && event->attr.sample_freq)
2288 ctx->nr_freq--;
2289 if (event->attr.exclusive || !cpuctx->active_oncpu)
2290 cpuctx->exclusive = 0;
2291
2292 perf_pmu_enable(event->pmu);
2293 }
2294
2295 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2296 group_sched_out(struct perf_event *group_event,
2297 struct perf_cpu_context *cpuctx,
2298 struct perf_event_context *ctx)
2299 {
2300 struct perf_event *event;
2301
2302 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2303 return;
2304
2305 perf_pmu_disable(ctx->pmu);
2306
2307 event_sched_out(group_event, cpuctx, ctx);
2308
2309 /*
2310 * Schedule out siblings (if any):
2311 */
2312 for_each_sibling_event(event, group_event)
2313 event_sched_out(event, cpuctx, ctx);
2314
2315 perf_pmu_enable(ctx->pmu);
2316 }
2317
2318 #define DETACH_GROUP 0x01UL
2319
2320 /*
2321 * Cross CPU call to remove a performance event
2322 *
2323 * We disable the event on the hardware level first. After that we
2324 * remove it from the context list.
2325 */
2326 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2327 __perf_remove_from_context(struct perf_event *event,
2328 struct perf_cpu_context *cpuctx,
2329 struct perf_event_context *ctx,
2330 void *info)
2331 {
2332 unsigned long flags = (unsigned long)info;
2333
2334 if (ctx->is_active & EVENT_TIME) {
2335 update_context_time(ctx);
2336 update_cgrp_time_from_cpuctx(cpuctx);
2337 }
2338
2339 event_sched_out(event, cpuctx, ctx);
2340 if (flags & DETACH_GROUP)
2341 perf_group_detach(event);
2342 list_del_event(event, ctx);
2343
2344 if (!ctx->nr_events && ctx->is_active) {
2345 ctx->is_active = 0;
2346 ctx->rotate_necessary = 0;
2347 if (ctx->task) {
2348 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2349 cpuctx->task_ctx = NULL;
2350 }
2351 }
2352 }
2353
2354 /*
2355 * Remove the event from a task's (or a CPU's) list of events.
2356 *
2357 * If event->ctx is a cloned context, callers must make sure that
2358 * every task struct that event->ctx->task could possibly point to
2359 * remains valid. This is OK when called from perf_release since
2360 * that only calls us on the top-level context, which can't be a clone.
2361 * When called from perf_event_exit_task, it's OK because the
2362 * context has been detached from its task.
2363 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2364 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2365 {
2366 struct perf_event_context *ctx = event->ctx;
2367
2368 lockdep_assert_held(&ctx->mutex);
2369
2370 event_function_call(event, __perf_remove_from_context, (void *)flags);
2371
2372 /*
2373 * The above event_function_call() can NO-OP when it hits
2374 * TASK_TOMBSTONE. In that case we must already have been detached
2375 * from the context (by perf_event_exit_event()) but the grouping
2376 * might still be in-tact.
2377 */
2378 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2379 if ((flags & DETACH_GROUP) &&
2380 (event->attach_state & PERF_ATTACH_GROUP)) {
2381 /*
2382 * Since in that case we cannot possibly be scheduled, simply
2383 * detach now.
2384 */
2385 raw_spin_lock_irq(&ctx->lock);
2386 perf_group_detach(event);
2387 raw_spin_unlock_irq(&ctx->lock);
2388 }
2389 }
2390
2391 /*
2392 * Cross CPU call to disable a performance event
2393 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2394 static void __perf_event_disable(struct perf_event *event,
2395 struct perf_cpu_context *cpuctx,
2396 struct perf_event_context *ctx,
2397 void *info)
2398 {
2399 if (event->state < PERF_EVENT_STATE_INACTIVE)
2400 return;
2401
2402 if (ctx->is_active & EVENT_TIME) {
2403 update_context_time(ctx);
2404 update_cgrp_time_from_event(event);
2405 }
2406
2407 if (event == event->group_leader)
2408 group_sched_out(event, cpuctx, ctx);
2409 else
2410 event_sched_out(event, cpuctx, ctx);
2411
2412 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2413 perf_cgroup_event_disable(event, ctx);
2414 }
2415
2416 /*
2417 * Disable an event.
2418 *
2419 * If event->ctx is a cloned context, callers must make sure that
2420 * every task struct that event->ctx->task could possibly point to
2421 * remains valid. This condition is satisfied when called through
2422 * perf_event_for_each_child or perf_event_for_each because they
2423 * hold the top-level event's child_mutex, so any descendant that
2424 * goes to exit will block in perf_event_exit_event().
2425 *
2426 * When called from perf_pending_event it's OK because event->ctx
2427 * is the current context on this CPU and preemption is disabled,
2428 * hence we can't get into perf_event_task_sched_out for this context.
2429 */
_perf_event_disable(struct perf_event * event)2430 static void _perf_event_disable(struct perf_event *event)
2431 {
2432 struct perf_event_context *ctx = event->ctx;
2433
2434 raw_spin_lock_irq(&ctx->lock);
2435 if (event->state <= PERF_EVENT_STATE_OFF) {
2436 raw_spin_unlock_irq(&ctx->lock);
2437 return;
2438 }
2439 raw_spin_unlock_irq(&ctx->lock);
2440
2441 event_function_call(event, __perf_event_disable, NULL);
2442 }
2443
perf_event_disable_local(struct perf_event * event)2444 void perf_event_disable_local(struct perf_event *event)
2445 {
2446 event_function_local(event, __perf_event_disable, NULL);
2447 }
2448
2449 /*
2450 * Strictly speaking kernel users cannot create groups and therefore this
2451 * interface does not need the perf_event_ctx_lock() magic.
2452 */
perf_event_disable(struct perf_event * event)2453 void perf_event_disable(struct perf_event *event)
2454 {
2455 struct perf_event_context *ctx;
2456
2457 ctx = perf_event_ctx_lock(event);
2458 _perf_event_disable(event);
2459 perf_event_ctx_unlock(event, ctx);
2460 }
2461 EXPORT_SYMBOL_GPL(perf_event_disable);
2462
perf_event_disable_inatomic(struct perf_event * event)2463 void perf_event_disable_inatomic(struct perf_event *event)
2464 {
2465 WRITE_ONCE(event->pending_disable, smp_processor_id());
2466 /* can fail, see perf_pending_event_disable() */
2467 irq_work_queue(&event->pending);
2468 }
2469
perf_set_shadow_time(struct perf_event * event,struct perf_event_context * ctx)2470 static void perf_set_shadow_time(struct perf_event *event,
2471 struct perf_event_context *ctx)
2472 {
2473 /*
2474 * use the correct time source for the time snapshot
2475 *
2476 * We could get by without this by leveraging the
2477 * fact that to get to this function, the caller
2478 * has most likely already called update_context_time()
2479 * and update_cgrp_time_xx() and thus both timestamp
2480 * are identical (or very close). Given that tstamp is,
2481 * already adjusted for cgroup, we could say that:
2482 * tstamp - ctx->timestamp
2483 * is equivalent to
2484 * tstamp - cgrp->timestamp.
2485 *
2486 * Then, in perf_output_read(), the calculation would
2487 * work with no changes because:
2488 * - event is guaranteed scheduled in
2489 * - no scheduled out in between
2490 * - thus the timestamp would be the same
2491 *
2492 * But this is a bit hairy.
2493 *
2494 * So instead, we have an explicit cgroup call to remain
2495 * within the time source all along. We believe it
2496 * is cleaner and simpler to understand.
2497 */
2498 if (is_cgroup_event(event))
2499 perf_cgroup_set_shadow_time(event, event->tstamp);
2500 else
2501 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2502 }
2503
2504 #define MAX_INTERRUPTS (~0ULL)
2505
2506 static void perf_log_throttle(struct perf_event *event, int enable);
2507 static void perf_log_itrace_start(struct perf_event *event);
2508
2509 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2510 event_sched_in(struct perf_event *event,
2511 struct perf_cpu_context *cpuctx,
2512 struct perf_event_context *ctx)
2513 {
2514 int ret = 0;
2515
2516 WARN_ON_ONCE(event->ctx != ctx);
2517
2518 lockdep_assert_held(&ctx->lock);
2519
2520 if (event->state <= PERF_EVENT_STATE_OFF)
2521 return 0;
2522
2523 WRITE_ONCE(event->oncpu, smp_processor_id());
2524 /*
2525 * Order event::oncpu write to happen before the ACTIVE state is
2526 * visible. This allows perf_event_{stop,read}() to observe the correct
2527 * ->oncpu if it sees ACTIVE.
2528 */
2529 smp_wmb();
2530 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2531
2532 /*
2533 * Unthrottle events, since we scheduled we might have missed several
2534 * ticks already, also for a heavily scheduling task there is little
2535 * guarantee it'll get a tick in a timely manner.
2536 */
2537 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2538 perf_log_throttle(event, 1);
2539 event->hw.interrupts = 0;
2540 }
2541
2542 perf_pmu_disable(event->pmu);
2543
2544 perf_set_shadow_time(event, ctx);
2545
2546 perf_log_itrace_start(event);
2547
2548 if (event->pmu->add(event, PERF_EF_START)) {
2549 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2550 event->oncpu = -1;
2551 ret = -EAGAIN;
2552 goto out;
2553 }
2554
2555 if (!is_software_event(event))
2556 cpuctx->active_oncpu++;
2557 if (!ctx->nr_active++)
2558 perf_event_ctx_activate(ctx);
2559 if (event->attr.freq && event->attr.sample_freq)
2560 ctx->nr_freq++;
2561
2562 if (event->attr.exclusive)
2563 cpuctx->exclusive = 1;
2564
2565 out:
2566 perf_pmu_enable(event->pmu);
2567
2568 return ret;
2569 }
2570
2571 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2572 group_sched_in(struct perf_event *group_event,
2573 struct perf_cpu_context *cpuctx,
2574 struct perf_event_context *ctx)
2575 {
2576 struct perf_event *event, *partial_group = NULL;
2577 struct pmu *pmu = ctx->pmu;
2578
2579 if (group_event->state == PERF_EVENT_STATE_OFF)
2580 return 0;
2581
2582 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2583
2584 if (event_sched_in(group_event, cpuctx, ctx))
2585 goto error;
2586
2587 /*
2588 * Schedule in siblings as one group (if any):
2589 */
2590 for_each_sibling_event(event, group_event) {
2591 if (event_sched_in(event, cpuctx, ctx)) {
2592 partial_group = event;
2593 goto group_error;
2594 }
2595 }
2596
2597 if (!pmu->commit_txn(pmu))
2598 return 0;
2599
2600 group_error:
2601 /*
2602 * Groups can be scheduled in as one unit only, so undo any
2603 * partial group before returning:
2604 * The events up to the failed event are scheduled out normally.
2605 */
2606 for_each_sibling_event(event, group_event) {
2607 if (event == partial_group)
2608 break;
2609
2610 event_sched_out(event, cpuctx, ctx);
2611 }
2612 event_sched_out(group_event, cpuctx, ctx);
2613
2614 error:
2615 pmu->cancel_txn(pmu);
2616 return -EAGAIN;
2617 }
2618
2619 /*
2620 * Work out whether we can put this event group on the CPU now.
2621 */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2622 static int group_can_go_on(struct perf_event *event,
2623 struct perf_cpu_context *cpuctx,
2624 int can_add_hw)
2625 {
2626 /*
2627 * Groups consisting entirely of software events can always go on.
2628 */
2629 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2630 return 1;
2631 /*
2632 * If an exclusive group is already on, no other hardware
2633 * events can go on.
2634 */
2635 if (cpuctx->exclusive)
2636 return 0;
2637 /*
2638 * If this group is exclusive and there are already
2639 * events on the CPU, it can't go on.
2640 */
2641 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2642 return 0;
2643 /*
2644 * Otherwise, try to add it if all previous groups were able
2645 * to go on.
2646 */
2647 return can_add_hw;
2648 }
2649
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2650 static void add_event_to_ctx(struct perf_event *event,
2651 struct perf_event_context *ctx)
2652 {
2653 list_add_event(event, ctx);
2654 perf_group_attach(event);
2655 }
2656
2657 static void ctx_sched_out(struct perf_event_context *ctx,
2658 struct perf_cpu_context *cpuctx,
2659 enum event_type_t event_type);
2660 static void
2661 ctx_sched_in(struct perf_event_context *ctx,
2662 struct perf_cpu_context *cpuctx,
2663 enum event_type_t event_type,
2664 struct task_struct *task);
2665
task_ctx_sched_out(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,enum event_type_t event_type)2666 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2667 struct perf_event_context *ctx,
2668 enum event_type_t event_type)
2669 {
2670 if (!cpuctx->task_ctx)
2671 return;
2672
2673 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2674 return;
2675
2676 ctx_sched_out(ctx, cpuctx, event_type);
2677 }
2678
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2679 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2680 struct perf_event_context *ctx,
2681 struct task_struct *task)
2682 {
2683 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2684 if (ctx)
2685 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2686 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2687 if (ctx)
2688 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2689 }
2690
2691 /*
2692 * We want to maintain the following priority of scheduling:
2693 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2694 * - task pinned (EVENT_PINNED)
2695 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2696 * - task flexible (EVENT_FLEXIBLE).
2697 *
2698 * In order to avoid unscheduling and scheduling back in everything every
2699 * time an event is added, only do it for the groups of equal priority and
2700 * below.
2701 *
2702 * This can be called after a batch operation on task events, in which case
2703 * event_type is a bit mask of the types of events involved. For CPU events,
2704 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2705 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2706 static void ctx_resched(struct perf_cpu_context *cpuctx,
2707 struct perf_event_context *task_ctx,
2708 enum event_type_t event_type)
2709 {
2710 enum event_type_t ctx_event_type;
2711 bool cpu_event = !!(event_type & EVENT_CPU);
2712
2713 /*
2714 * If pinned groups are involved, flexible groups also need to be
2715 * scheduled out.
2716 */
2717 if (event_type & EVENT_PINNED)
2718 event_type |= EVENT_FLEXIBLE;
2719
2720 ctx_event_type = event_type & EVENT_ALL;
2721
2722 perf_pmu_disable(cpuctx->ctx.pmu);
2723 if (task_ctx)
2724 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2725
2726 /*
2727 * Decide which cpu ctx groups to schedule out based on the types
2728 * of events that caused rescheduling:
2729 * - EVENT_CPU: schedule out corresponding groups;
2730 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2731 * - otherwise, do nothing more.
2732 */
2733 if (cpu_event)
2734 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2735 else if (ctx_event_type & EVENT_PINNED)
2736 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2737
2738 perf_event_sched_in(cpuctx, task_ctx, current);
2739 perf_pmu_enable(cpuctx->ctx.pmu);
2740 }
2741
perf_pmu_resched(struct pmu * pmu)2742 void perf_pmu_resched(struct pmu *pmu)
2743 {
2744 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2745 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2746
2747 perf_ctx_lock(cpuctx, task_ctx);
2748 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2749 perf_ctx_unlock(cpuctx, task_ctx);
2750 }
2751
2752 /*
2753 * Cross CPU call to install and enable a performance event
2754 *
2755 * Very similar to remote_function() + event_function() but cannot assume that
2756 * things like ctx->is_active and cpuctx->task_ctx are set.
2757 */
__perf_install_in_context(void * info)2758 static int __perf_install_in_context(void *info)
2759 {
2760 struct perf_event *event = info;
2761 struct perf_event_context *ctx = event->ctx;
2762 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2763 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2764 bool reprogram = true;
2765 int ret = 0;
2766
2767 raw_spin_lock(&cpuctx->ctx.lock);
2768 if (ctx->task) {
2769 raw_spin_lock(&ctx->lock);
2770 task_ctx = ctx;
2771
2772 reprogram = (ctx->task == current);
2773
2774 /*
2775 * If the task is running, it must be running on this CPU,
2776 * otherwise we cannot reprogram things.
2777 *
2778 * If its not running, we don't care, ctx->lock will
2779 * serialize against it becoming runnable.
2780 */
2781 if (task_curr(ctx->task) && !reprogram) {
2782 ret = -ESRCH;
2783 goto unlock;
2784 }
2785
2786 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2787 } else if (task_ctx) {
2788 raw_spin_lock(&task_ctx->lock);
2789 }
2790
2791 #ifdef CONFIG_CGROUP_PERF
2792 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2793 /*
2794 * If the current cgroup doesn't match the event's
2795 * cgroup, we should not try to schedule it.
2796 */
2797 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2798 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2799 event->cgrp->css.cgroup);
2800 }
2801 #endif
2802
2803 if (reprogram) {
2804 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2805 add_event_to_ctx(event, ctx);
2806 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2807 } else {
2808 add_event_to_ctx(event, ctx);
2809 }
2810
2811 unlock:
2812 perf_ctx_unlock(cpuctx, task_ctx);
2813
2814 return ret;
2815 }
2816
2817 static bool exclusive_event_installable(struct perf_event *event,
2818 struct perf_event_context *ctx);
2819
2820 /*
2821 * Attach a performance event to a context.
2822 *
2823 * Very similar to event_function_call, see comment there.
2824 */
2825 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2826 perf_install_in_context(struct perf_event_context *ctx,
2827 struct perf_event *event,
2828 int cpu)
2829 {
2830 struct task_struct *task = READ_ONCE(ctx->task);
2831
2832 lockdep_assert_held(&ctx->mutex);
2833
2834 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2835
2836 if (event->cpu != -1)
2837 event->cpu = cpu;
2838
2839 /*
2840 * Ensures that if we can observe event->ctx, both the event and ctx
2841 * will be 'complete'. See perf_iterate_sb_cpu().
2842 */
2843 smp_store_release(&event->ctx, ctx);
2844
2845 /*
2846 * perf_event_attr::disabled events will not run and can be initialized
2847 * without IPI. Except when this is the first event for the context, in
2848 * that case we need the magic of the IPI to set ctx->is_active.
2849 *
2850 * The IOC_ENABLE that is sure to follow the creation of a disabled
2851 * event will issue the IPI and reprogram the hardware.
2852 */
2853 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2854 raw_spin_lock_irq(&ctx->lock);
2855 if (ctx->task == TASK_TOMBSTONE) {
2856 raw_spin_unlock_irq(&ctx->lock);
2857 return;
2858 }
2859 add_event_to_ctx(event, ctx);
2860 raw_spin_unlock_irq(&ctx->lock);
2861 return;
2862 }
2863
2864 if (!task) {
2865 cpu_function_call(cpu, __perf_install_in_context, event);
2866 return;
2867 }
2868
2869 /*
2870 * Should not happen, we validate the ctx is still alive before calling.
2871 */
2872 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2873 return;
2874
2875 /*
2876 * Installing events is tricky because we cannot rely on ctx->is_active
2877 * to be set in case this is the nr_events 0 -> 1 transition.
2878 *
2879 * Instead we use task_curr(), which tells us if the task is running.
2880 * However, since we use task_curr() outside of rq::lock, we can race
2881 * against the actual state. This means the result can be wrong.
2882 *
2883 * If we get a false positive, we retry, this is harmless.
2884 *
2885 * If we get a false negative, things are complicated. If we are after
2886 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2887 * value must be correct. If we're before, it doesn't matter since
2888 * perf_event_context_sched_in() will program the counter.
2889 *
2890 * However, this hinges on the remote context switch having observed
2891 * our task->perf_event_ctxp[] store, such that it will in fact take
2892 * ctx::lock in perf_event_context_sched_in().
2893 *
2894 * We do this by task_function_call(), if the IPI fails to hit the task
2895 * we know any future context switch of task must see the
2896 * perf_event_ctpx[] store.
2897 */
2898
2899 /*
2900 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2901 * task_cpu() load, such that if the IPI then does not find the task
2902 * running, a future context switch of that task must observe the
2903 * store.
2904 */
2905 smp_mb();
2906 again:
2907 if (!task_function_call(task, __perf_install_in_context, event))
2908 return;
2909
2910 raw_spin_lock_irq(&ctx->lock);
2911 task = ctx->task;
2912 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2913 /*
2914 * Cannot happen because we already checked above (which also
2915 * cannot happen), and we hold ctx->mutex, which serializes us
2916 * against perf_event_exit_task_context().
2917 */
2918 raw_spin_unlock_irq(&ctx->lock);
2919 return;
2920 }
2921 /*
2922 * If the task is not running, ctx->lock will avoid it becoming so,
2923 * thus we can safely install the event.
2924 */
2925 if (task_curr(task)) {
2926 raw_spin_unlock_irq(&ctx->lock);
2927 goto again;
2928 }
2929 add_event_to_ctx(event, ctx);
2930 raw_spin_unlock_irq(&ctx->lock);
2931 }
2932
2933 /*
2934 * Cross CPU call to enable a performance event
2935 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2936 static void __perf_event_enable(struct perf_event *event,
2937 struct perf_cpu_context *cpuctx,
2938 struct perf_event_context *ctx,
2939 void *info)
2940 {
2941 struct perf_event *leader = event->group_leader;
2942 struct perf_event_context *task_ctx;
2943
2944 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2945 event->state <= PERF_EVENT_STATE_ERROR)
2946 return;
2947
2948 if (ctx->is_active)
2949 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2950
2951 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2952 perf_cgroup_event_enable(event, ctx);
2953
2954 if (!ctx->is_active)
2955 return;
2956
2957 if (!event_filter_match(event)) {
2958 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2959 return;
2960 }
2961
2962 /*
2963 * If the event is in a group and isn't the group leader,
2964 * then don't put it on unless the group is on.
2965 */
2966 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2967 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2968 return;
2969 }
2970
2971 task_ctx = cpuctx->task_ctx;
2972 if (ctx->task)
2973 WARN_ON_ONCE(task_ctx != ctx);
2974
2975 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2976 }
2977
2978 /*
2979 * Enable an event.
2980 *
2981 * If event->ctx is a cloned context, callers must make sure that
2982 * every task struct that event->ctx->task could possibly point to
2983 * remains valid. This condition is satisfied when called through
2984 * perf_event_for_each_child or perf_event_for_each as described
2985 * for perf_event_disable.
2986 */
_perf_event_enable(struct perf_event * event)2987 static void _perf_event_enable(struct perf_event *event)
2988 {
2989 struct perf_event_context *ctx = event->ctx;
2990
2991 raw_spin_lock_irq(&ctx->lock);
2992 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2993 event->state < PERF_EVENT_STATE_ERROR) {
2994 out:
2995 raw_spin_unlock_irq(&ctx->lock);
2996 return;
2997 }
2998
2999 /*
3000 * If the event is in error state, clear that first.
3001 *
3002 * That way, if we see the event in error state below, we know that it
3003 * has gone back into error state, as distinct from the task having
3004 * been scheduled away before the cross-call arrived.
3005 */
3006 if (event->state == PERF_EVENT_STATE_ERROR) {
3007 /*
3008 * Detached SIBLING events cannot leave ERROR state.
3009 */
3010 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3011 event->group_leader == event)
3012 goto out;
3013
3014 event->state = PERF_EVENT_STATE_OFF;
3015 }
3016 raw_spin_unlock_irq(&ctx->lock);
3017
3018 event_function_call(event, __perf_event_enable, NULL);
3019 }
3020
3021 /*
3022 * See perf_event_disable();
3023 */
perf_event_enable(struct perf_event * event)3024 void perf_event_enable(struct perf_event *event)
3025 {
3026 struct perf_event_context *ctx;
3027
3028 ctx = perf_event_ctx_lock(event);
3029 _perf_event_enable(event);
3030 perf_event_ctx_unlock(event, ctx);
3031 }
3032 EXPORT_SYMBOL_GPL(perf_event_enable);
3033
3034 struct stop_event_data {
3035 struct perf_event *event;
3036 unsigned int restart;
3037 };
3038
__perf_event_stop(void * info)3039 static int __perf_event_stop(void *info)
3040 {
3041 struct stop_event_data *sd = info;
3042 struct perf_event *event = sd->event;
3043
3044 /* if it's already INACTIVE, do nothing */
3045 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3046 return 0;
3047
3048 /* matches smp_wmb() in event_sched_in() */
3049 smp_rmb();
3050
3051 /*
3052 * There is a window with interrupts enabled before we get here,
3053 * so we need to check again lest we try to stop another CPU's event.
3054 */
3055 if (READ_ONCE(event->oncpu) != smp_processor_id())
3056 return -EAGAIN;
3057
3058 event->pmu->stop(event, PERF_EF_UPDATE);
3059
3060 /*
3061 * May race with the actual stop (through perf_pmu_output_stop()),
3062 * but it is only used for events with AUX ring buffer, and such
3063 * events will refuse to restart because of rb::aux_mmap_count==0,
3064 * see comments in perf_aux_output_begin().
3065 *
3066 * Since this is happening on an event-local CPU, no trace is lost
3067 * while restarting.
3068 */
3069 if (sd->restart)
3070 event->pmu->start(event, 0);
3071
3072 return 0;
3073 }
3074
perf_event_stop(struct perf_event * event,int restart)3075 static int perf_event_stop(struct perf_event *event, int restart)
3076 {
3077 struct stop_event_data sd = {
3078 .event = event,
3079 .restart = restart,
3080 };
3081 int ret = 0;
3082
3083 do {
3084 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3085 return 0;
3086
3087 /* matches smp_wmb() in event_sched_in() */
3088 smp_rmb();
3089
3090 /*
3091 * We only want to restart ACTIVE events, so if the event goes
3092 * inactive here (event->oncpu==-1), there's nothing more to do;
3093 * fall through with ret==-ENXIO.
3094 */
3095 ret = cpu_function_call(READ_ONCE(event->oncpu),
3096 __perf_event_stop, &sd);
3097 } while (ret == -EAGAIN);
3098
3099 return ret;
3100 }
3101
3102 /*
3103 * In order to contain the amount of racy and tricky in the address filter
3104 * configuration management, it is a two part process:
3105 *
3106 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3107 * we update the addresses of corresponding vmas in
3108 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3109 * (p2) when an event is scheduled in (pmu::add), it calls
3110 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3111 * if the generation has changed since the previous call.
3112 *
3113 * If (p1) happens while the event is active, we restart it to force (p2).
3114 *
3115 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3116 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3117 * ioctl;
3118 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3119 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3120 * for reading;
3121 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3122 * of exec.
3123 */
perf_event_addr_filters_sync(struct perf_event * event)3124 void perf_event_addr_filters_sync(struct perf_event *event)
3125 {
3126 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3127
3128 if (!has_addr_filter(event))
3129 return;
3130
3131 raw_spin_lock(&ifh->lock);
3132 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3133 event->pmu->addr_filters_sync(event);
3134 event->hw.addr_filters_gen = event->addr_filters_gen;
3135 }
3136 raw_spin_unlock(&ifh->lock);
3137 }
3138 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3139
_perf_event_refresh(struct perf_event * event,int refresh)3140 static int _perf_event_refresh(struct perf_event *event, int refresh)
3141 {
3142 /*
3143 * not supported on inherited events
3144 */
3145 if (event->attr.inherit || !is_sampling_event(event))
3146 return -EINVAL;
3147
3148 atomic_add(refresh, &event->event_limit);
3149 _perf_event_enable(event);
3150
3151 return 0;
3152 }
3153
3154 /*
3155 * See perf_event_disable()
3156 */
perf_event_refresh(struct perf_event * event,int refresh)3157 int perf_event_refresh(struct perf_event *event, int refresh)
3158 {
3159 struct perf_event_context *ctx;
3160 int ret;
3161
3162 ctx = perf_event_ctx_lock(event);
3163 ret = _perf_event_refresh(event, refresh);
3164 perf_event_ctx_unlock(event, ctx);
3165
3166 return ret;
3167 }
3168 EXPORT_SYMBOL_GPL(perf_event_refresh);
3169
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3170 static int perf_event_modify_breakpoint(struct perf_event *bp,
3171 struct perf_event_attr *attr)
3172 {
3173 int err;
3174
3175 _perf_event_disable(bp);
3176
3177 err = modify_user_hw_breakpoint_check(bp, attr, true);
3178
3179 if (!bp->attr.disabled)
3180 _perf_event_enable(bp);
3181
3182 return err;
3183 }
3184
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3185 static int perf_event_modify_attr(struct perf_event *event,
3186 struct perf_event_attr *attr)
3187 {
3188 if (event->attr.type != attr->type)
3189 return -EINVAL;
3190
3191 switch (event->attr.type) {
3192 case PERF_TYPE_BREAKPOINT:
3193 return perf_event_modify_breakpoint(event, attr);
3194 default:
3195 /* Place holder for future additions. */
3196 return -EOPNOTSUPP;
3197 }
3198 }
3199
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)3200 static void ctx_sched_out(struct perf_event_context *ctx,
3201 struct perf_cpu_context *cpuctx,
3202 enum event_type_t event_type)
3203 {
3204 struct perf_event *event, *tmp;
3205 int is_active = ctx->is_active;
3206
3207 lockdep_assert_held(&ctx->lock);
3208
3209 if (likely(!ctx->nr_events)) {
3210 /*
3211 * See __perf_remove_from_context().
3212 */
3213 WARN_ON_ONCE(ctx->is_active);
3214 if (ctx->task)
3215 WARN_ON_ONCE(cpuctx->task_ctx);
3216 return;
3217 }
3218
3219 ctx->is_active &= ~event_type;
3220 if (!(ctx->is_active & EVENT_ALL))
3221 ctx->is_active = 0;
3222
3223 if (ctx->task) {
3224 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3225 if (!ctx->is_active)
3226 cpuctx->task_ctx = NULL;
3227 }
3228
3229 /*
3230 * Always update time if it was set; not only when it changes.
3231 * Otherwise we can 'forget' to update time for any but the last
3232 * context we sched out. For example:
3233 *
3234 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3235 * ctx_sched_out(.event_type = EVENT_PINNED)
3236 *
3237 * would only update time for the pinned events.
3238 */
3239 if (is_active & EVENT_TIME) {
3240 /* update (and stop) ctx time */
3241 update_context_time(ctx);
3242 update_cgrp_time_from_cpuctx(cpuctx);
3243 }
3244
3245 is_active ^= ctx->is_active; /* changed bits */
3246
3247 if (!ctx->nr_active || !(is_active & EVENT_ALL))
3248 return;
3249
3250 perf_pmu_disable(ctx->pmu);
3251 if (is_active & EVENT_PINNED) {
3252 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3253 group_sched_out(event, cpuctx, ctx);
3254 }
3255
3256 if (is_active & EVENT_FLEXIBLE) {
3257 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3258 group_sched_out(event, cpuctx, ctx);
3259
3260 /*
3261 * Since we cleared EVENT_FLEXIBLE, also clear
3262 * rotate_necessary, is will be reset by
3263 * ctx_flexible_sched_in() when needed.
3264 */
3265 ctx->rotate_necessary = 0;
3266 }
3267 perf_pmu_enable(ctx->pmu);
3268 }
3269
3270 /*
3271 * Test whether two contexts are equivalent, i.e. whether they have both been
3272 * cloned from the same version of the same context.
3273 *
3274 * Equivalence is measured using a generation number in the context that is
3275 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3276 * and list_del_event().
3277 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3278 static int context_equiv(struct perf_event_context *ctx1,
3279 struct perf_event_context *ctx2)
3280 {
3281 lockdep_assert_held(&ctx1->lock);
3282 lockdep_assert_held(&ctx2->lock);
3283
3284 /* Pinning disables the swap optimization */
3285 if (ctx1->pin_count || ctx2->pin_count)
3286 return 0;
3287
3288 /* If ctx1 is the parent of ctx2 */
3289 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3290 return 1;
3291
3292 /* If ctx2 is the parent of ctx1 */
3293 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3294 return 1;
3295
3296 /*
3297 * If ctx1 and ctx2 have the same parent; we flatten the parent
3298 * hierarchy, see perf_event_init_context().
3299 */
3300 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3301 ctx1->parent_gen == ctx2->parent_gen)
3302 return 1;
3303
3304 /* Unmatched */
3305 return 0;
3306 }
3307
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3308 static void __perf_event_sync_stat(struct perf_event *event,
3309 struct perf_event *next_event)
3310 {
3311 u64 value;
3312
3313 if (!event->attr.inherit_stat)
3314 return;
3315
3316 /*
3317 * Update the event value, we cannot use perf_event_read()
3318 * because we're in the middle of a context switch and have IRQs
3319 * disabled, which upsets smp_call_function_single(), however
3320 * we know the event must be on the current CPU, therefore we
3321 * don't need to use it.
3322 */
3323 if (event->state == PERF_EVENT_STATE_ACTIVE)
3324 event->pmu->read(event);
3325
3326 perf_event_update_time(event);
3327
3328 /*
3329 * In order to keep per-task stats reliable we need to flip the event
3330 * values when we flip the contexts.
3331 */
3332 value = local64_read(&next_event->count);
3333 value = local64_xchg(&event->count, value);
3334 local64_set(&next_event->count, value);
3335
3336 swap(event->total_time_enabled, next_event->total_time_enabled);
3337 swap(event->total_time_running, next_event->total_time_running);
3338
3339 /*
3340 * Since we swizzled the values, update the user visible data too.
3341 */
3342 perf_event_update_userpage(event);
3343 perf_event_update_userpage(next_event);
3344 }
3345
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3346 static void perf_event_sync_stat(struct perf_event_context *ctx,
3347 struct perf_event_context *next_ctx)
3348 {
3349 struct perf_event *event, *next_event;
3350
3351 if (!ctx->nr_stat)
3352 return;
3353
3354 update_context_time(ctx);
3355
3356 event = list_first_entry(&ctx->event_list,
3357 struct perf_event, event_entry);
3358
3359 next_event = list_first_entry(&next_ctx->event_list,
3360 struct perf_event, event_entry);
3361
3362 while (&event->event_entry != &ctx->event_list &&
3363 &next_event->event_entry != &next_ctx->event_list) {
3364
3365 __perf_event_sync_stat(event, next_event);
3366
3367 event = list_next_entry(event, event_entry);
3368 next_event = list_next_entry(next_event, event_entry);
3369 }
3370 }
3371
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)3372 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3373 struct task_struct *next)
3374 {
3375 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3376 struct perf_event_context *next_ctx;
3377 struct perf_event_context *parent, *next_parent;
3378 struct perf_cpu_context *cpuctx;
3379 int do_switch = 1;
3380 struct pmu *pmu;
3381
3382 if (likely(!ctx))
3383 return;
3384
3385 pmu = ctx->pmu;
3386 cpuctx = __get_cpu_context(ctx);
3387 if (!cpuctx->task_ctx)
3388 return;
3389
3390 rcu_read_lock();
3391 next_ctx = next->perf_event_ctxp[ctxn];
3392 if (!next_ctx)
3393 goto unlock;
3394
3395 parent = rcu_dereference(ctx->parent_ctx);
3396 next_parent = rcu_dereference(next_ctx->parent_ctx);
3397
3398 /* If neither context have a parent context; they cannot be clones. */
3399 if (!parent && !next_parent)
3400 goto unlock;
3401
3402 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3403 /*
3404 * Looks like the two contexts are clones, so we might be
3405 * able to optimize the context switch. We lock both
3406 * contexts and check that they are clones under the
3407 * lock (including re-checking that neither has been
3408 * uncloned in the meantime). It doesn't matter which
3409 * order we take the locks because no other cpu could
3410 * be trying to lock both of these tasks.
3411 */
3412 raw_spin_lock(&ctx->lock);
3413 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3414 if (context_equiv(ctx, next_ctx)) {
3415
3416 WRITE_ONCE(ctx->task, next);
3417 WRITE_ONCE(next_ctx->task, task);
3418
3419 perf_pmu_disable(pmu);
3420
3421 if (cpuctx->sched_cb_usage && pmu->sched_task)
3422 pmu->sched_task(ctx, false);
3423
3424 /*
3425 * PMU specific parts of task perf context can require
3426 * additional synchronization. As an example of such
3427 * synchronization see implementation details of Intel
3428 * LBR call stack data profiling;
3429 */
3430 if (pmu->swap_task_ctx)
3431 pmu->swap_task_ctx(ctx, next_ctx);
3432 else
3433 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3434
3435 perf_pmu_enable(pmu);
3436
3437 /*
3438 * RCU_INIT_POINTER here is safe because we've not
3439 * modified the ctx and the above modification of
3440 * ctx->task and ctx->task_ctx_data are immaterial
3441 * since those values are always verified under
3442 * ctx->lock which we're now holding.
3443 */
3444 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3445 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3446
3447 do_switch = 0;
3448
3449 perf_event_sync_stat(ctx, next_ctx);
3450 }
3451 raw_spin_unlock(&next_ctx->lock);
3452 raw_spin_unlock(&ctx->lock);
3453 }
3454 unlock:
3455 rcu_read_unlock();
3456
3457 if (do_switch) {
3458 raw_spin_lock(&ctx->lock);
3459 perf_pmu_disable(pmu);
3460
3461 if (cpuctx->sched_cb_usage && pmu->sched_task)
3462 pmu->sched_task(ctx, false);
3463 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3464
3465 perf_pmu_enable(pmu);
3466 raw_spin_unlock(&ctx->lock);
3467 }
3468 }
3469
3470 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3471
perf_sched_cb_dec(struct pmu * pmu)3472 void perf_sched_cb_dec(struct pmu *pmu)
3473 {
3474 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3475
3476 this_cpu_dec(perf_sched_cb_usages);
3477
3478 if (!--cpuctx->sched_cb_usage)
3479 list_del(&cpuctx->sched_cb_entry);
3480 }
3481
3482
perf_sched_cb_inc(struct pmu * pmu)3483 void perf_sched_cb_inc(struct pmu *pmu)
3484 {
3485 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3486
3487 if (!cpuctx->sched_cb_usage++)
3488 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3489
3490 this_cpu_inc(perf_sched_cb_usages);
3491 }
3492
3493 /*
3494 * This function provides the context switch callback to the lower code
3495 * layer. It is invoked ONLY when the context switch callback is enabled.
3496 *
3497 * This callback is relevant even to per-cpu events; for example multi event
3498 * PEBS requires this to provide PID/TID information. This requires we flush
3499 * all queued PEBS records before we context switch to a new task.
3500 */
__perf_pmu_sched_task(struct perf_cpu_context * cpuctx,bool sched_in)3501 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3502 {
3503 struct pmu *pmu;
3504
3505 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3506
3507 if (WARN_ON_ONCE(!pmu->sched_task))
3508 return;
3509
3510 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3511 perf_pmu_disable(pmu);
3512
3513 pmu->sched_task(cpuctx->task_ctx, sched_in);
3514
3515 perf_pmu_enable(pmu);
3516 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3517 }
3518
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3519 static void perf_pmu_sched_task(struct task_struct *prev,
3520 struct task_struct *next,
3521 bool sched_in)
3522 {
3523 struct perf_cpu_context *cpuctx;
3524
3525 if (prev == next)
3526 return;
3527
3528 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3529 /* will be handled in perf_event_context_sched_in/out */
3530 if (cpuctx->task_ctx)
3531 continue;
3532
3533 __perf_pmu_sched_task(cpuctx, sched_in);
3534 }
3535 }
3536
3537 static void perf_event_switch(struct task_struct *task,
3538 struct task_struct *next_prev, bool sched_in);
3539
3540 #define for_each_task_context_nr(ctxn) \
3541 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3542
3543 /*
3544 * Called from scheduler to remove the events of the current task,
3545 * with interrupts disabled.
3546 *
3547 * We stop each event and update the event value in event->count.
3548 *
3549 * This does not protect us against NMI, but disable()
3550 * sets the disabled bit in the control field of event _before_
3551 * accessing the event control register. If a NMI hits, then it will
3552 * not restart the event.
3553 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3554 void __perf_event_task_sched_out(struct task_struct *task,
3555 struct task_struct *next)
3556 {
3557 int ctxn;
3558
3559 if (__this_cpu_read(perf_sched_cb_usages))
3560 perf_pmu_sched_task(task, next, false);
3561
3562 if (atomic_read(&nr_switch_events))
3563 perf_event_switch(task, next, false);
3564
3565 for_each_task_context_nr(ctxn)
3566 perf_event_context_sched_out(task, ctxn, next);
3567
3568 /*
3569 * if cgroup events exist on this CPU, then we need
3570 * to check if we have to switch out PMU state.
3571 * cgroup event are system-wide mode only
3572 */
3573 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3574 perf_cgroup_sched_out(task, next);
3575 }
3576
3577 /*
3578 * Called with IRQs disabled
3579 */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)3580 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3581 enum event_type_t event_type)
3582 {
3583 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3584 }
3585
perf_less_group_idx(const void * l,const void * r)3586 static bool perf_less_group_idx(const void *l, const void *r)
3587 {
3588 const struct perf_event *le = *(const struct perf_event **)l;
3589 const struct perf_event *re = *(const struct perf_event **)r;
3590
3591 return le->group_index < re->group_index;
3592 }
3593
swap_ptr(void * l,void * r)3594 static void swap_ptr(void *l, void *r)
3595 {
3596 void **lp = l, **rp = r;
3597
3598 swap(*lp, *rp);
3599 }
3600
3601 static const struct min_heap_callbacks perf_min_heap = {
3602 .elem_size = sizeof(struct perf_event *),
3603 .less = perf_less_group_idx,
3604 .swp = swap_ptr,
3605 };
3606
__heap_add(struct min_heap * heap,struct perf_event * event)3607 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3608 {
3609 struct perf_event **itrs = heap->data;
3610
3611 if (event) {
3612 itrs[heap->nr] = event;
3613 heap->nr++;
3614 }
3615 }
3616
visit_groups_merge(struct perf_cpu_context * cpuctx,struct perf_event_groups * groups,int cpu,int (* func)(struct perf_event *,void *),void * data)3617 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3618 struct perf_event_groups *groups, int cpu,
3619 int (*func)(struct perf_event *, void *),
3620 void *data)
3621 {
3622 #ifdef CONFIG_CGROUP_PERF
3623 struct cgroup_subsys_state *css = NULL;
3624 #endif
3625 /* Space for per CPU and/or any CPU event iterators. */
3626 struct perf_event *itrs[2];
3627 struct min_heap event_heap;
3628 struct perf_event **evt;
3629 int ret;
3630
3631 if (cpuctx) {
3632 event_heap = (struct min_heap){
3633 .data = cpuctx->heap,
3634 .nr = 0,
3635 .size = cpuctx->heap_size,
3636 };
3637
3638 lockdep_assert_held(&cpuctx->ctx.lock);
3639
3640 #ifdef CONFIG_CGROUP_PERF
3641 if (cpuctx->cgrp)
3642 css = &cpuctx->cgrp->css;
3643 #endif
3644 } else {
3645 event_heap = (struct min_heap){
3646 .data = itrs,
3647 .nr = 0,
3648 .size = ARRAY_SIZE(itrs),
3649 };
3650 /* Events not within a CPU context may be on any CPU. */
3651 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3652 }
3653 evt = event_heap.data;
3654
3655 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3656
3657 #ifdef CONFIG_CGROUP_PERF
3658 for (; css; css = css->parent)
3659 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3660 #endif
3661
3662 min_heapify_all(&event_heap, &perf_min_heap);
3663
3664 while (event_heap.nr) {
3665 ret = func(*evt, data);
3666 if (ret)
3667 return ret;
3668
3669 *evt = perf_event_groups_next(*evt);
3670 if (*evt)
3671 min_heapify(&event_heap, 0, &perf_min_heap);
3672 else
3673 min_heap_pop(&event_heap, &perf_min_heap);
3674 }
3675
3676 return 0;
3677 }
3678
event_update_userpage(struct perf_event * event)3679 static inline bool event_update_userpage(struct perf_event *event)
3680 {
3681 if (likely(!atomic_read(&event->mmap_count)))
3682 return false;
3683
3684 perf_event_update_time(event);
3685 perf_set_shadow_time(event, event->ctx);
3686 perf_event_update_userpage(event);
3687
3688 return true;
3689 }
3690
group_update_userpage(struct perf_event * group_event)3691 static inline void group_update_userpage(struct perf_event *group_event)
3692 {
3693 struct perf_event *event;
3694
3695 if (!event_update_userpage(group_event))
3696 return;
3697
3698 for_each_sibling_event(event, group_event)
3699 event_update_userpage(event);
3700 }
3701
merge_sched_in(struct perf_event * event,void * data)3702 static int merge_sched_in(struct perf_event *event, void *data)
3703 {
3704 struct perf_event_context *ctx = event->ctx;
3705 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3706 int *can_add_hw = data;
3707
3708 if (event->state <= PERF_EVENT_STATE_OFF)
3709 return 0;
3710
3711 if (!event_filter_match(event))
3712 return 0;
3713
3714 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3715 if (!group_sched_in(event, cpuctx, ctx))
3716 list_add_tail(&event->active_list, get_event_list(event));
3717 }
3718
3719 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3720 *can_add_hw = 0;
3721 if (event->attr.pinned) {
3722 perf_cgroup_event_disable(event, ctx);
3723 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3724 } else {
3725 ctx->rotate_necessary = 1;
3726 perf_mux_hrtimer_restart(cpuctx);
3727 group_update_userpage(event);
3728 }
3729 }
3730
3731 return 0;
3732 }
3733
3734 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3735 ctx_pinned_sched_in(struct perf_event_context *ctx,
3736 struct perf_cpu_context *cpuctx)
3737 {
3738 int can_add_hw = 1;
3739
3740 if (ctx != &cpuctx->ctx)
3741 cpuctx = NULL;
3742
3743 visit_groups_merge(cpuctx, &ctx->pinned_groups,
3744 smp_processor_id(),
3745 merge_sched_in, &can_add_hw);
3746 }
3747
3748 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3749 ctx_flexible_sched_in(struct perf_event_context *ctx,
3750 struct perf_cpu_context *cpuctx)
3751 {
3752 int can_add_hw = 1;
3753
3754 if (ctx != &cpuctx->ctx)
3755 cpuctx = NULL;
3756
3757 visit_groups_merge(cpuctx, &ctx->flexible_groups,
3758 smp_processor_id(),
3759 merge_sched_in, &can_add_hw);
3760 }
3761
3762 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3763 ctx_sched_in(struct perf_event_context *ctx,
3764 struct perf_cpu_context *cpuctx,
3765 enum event_type_t event_type,
3766 struct task_struct *task)
3767 {
3768 int is_active = ctx->is_active;
3769 u64 now;
3770
3771 lockdep_assert_held(&ctx->lock);
3772
3773 if (likely(!ctx->nr_events))
3774 return;
3775
3776 ctx->is_active |= (event_type | EVENT_TIME);
3777 if (ctx->task) {
3778 if (!is_active)
3779 cpuctx->task_ctx = ctx;
3780 else
3781 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3782 }
3783
3784 is_active ^= ctx->is_active; /* changed bits */
3785
3786 if (is_active & EVENT_TIME) {
3787 /* start ctx time */
3788 now = perf_clock();
3789 ctx->timestamp = now;
3790 perf_cgroup_set_timestamp(task, ctx);
3791 }
3792
3793 /*
3794 * First go through the list and put on any pinned groups
3795 * in order to give them the best chance of going on.
3796 */
3797 if (is_active & EVENT_PINNED)
3798 ctx_pinned_sched_in(ctx, cpuctx);
3799
3800 /* Then walk through the lower prio flexible groups */
3801 if (is_active & EVENT_FLEXIBLE)
3802 ctx_flexible_sched_in(ctx, cpuctx);
3803 }
3804
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3805 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3806 enum event_type_t event_type,
3807 struct task_struct *task)
3808 {
3809 struct perf_event_context *ctx = &cpuctx->ctx;
3810
3811 ctx_sched_in(ctx, cpuctx, event_type, task);
3812 }
3813
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)3814 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3815 struct task_struct *task)
3816 {
3817 struct perf_cpu_context *cpuctx;
3818 struct pmu *pmu = ctx->pmu;
3819
3820 cpuctx = __get_cpu_context(ctx);
3821 if (cpuctx->task_ctx == ctx) {
3822 if (cpuctx->sched_cb_usage)
3823 __perf_pmu_sched_task(cpuctx, true);
3824 return;
3825 }
3826
3827 perf_ctx_lock(cpuctx, ctx);
3828 /*
3829 * We must check ctx->nr_events while holding ctx->lock, such
3830 * that we serialize against perf_install_in_context().
3831 */
3832 if (!ctx->nr_events)
3833 goto unlock;
3834
3835 perf_pmu_disable(pmu);
3836 /*
3837 * We want to keep the following priority order:
3838 * cpu pinned (that don't need to move), task pinned,
3839 * cpu flexible, task flexible.
3840 *
3841 * However, if task's ctx is not carrying any pinned
3842 * events, no need to flip the cpuctx's events around.
3843 */
3844 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3845 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3846 perf_event_sched_in(cpuctx, ctx, task);
3847
3848 if (cpuctx->sched_cb_usage && pmu->sched_task)
3849 pmu->sched_task(cpuctx->task_ctx, true);
3850
3851 perf_pmu_enable(pmu);
3852
3853 unlock:
3854 perf_ctx_unlock(cpuctx, ctx);
3855 }
3856
3857 /*
3858 * Called from scheduler to add the events of the current task
3859 * with interrupts disabled.
3860 *
3861 * We restore the event value and then enable it.
3862 *
3863 * This does not protect us against NMI, but enable()
3864 * sets the enabled bit in the control field of event _before_
3865 * accessing the event control register. If a NMI hits, then it will
3866 * keep the event running.
3867 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)3868 void __perf_event_task_sched_in(struct task_struct *prev,
3869 struct task_struct *task)
3870 {
3871 struct perf_event_context *ctx;
3872 int ctxn;
3873
3874 /*
3875 * If cgroup events exist on this CPU, then we need to check if we have
3876 * to switch in PMU state; cgroup event are system-wide mode only.
3877 *
3878 * Since cgroup events are CPU events, we must schedule these in before
3879 * we schedule in the task events.
3880 */
3881 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3882 perf_cgroup_sched_in(prev, task);
3883
3884 for_each_task_context_nr(ctxn) {
3885 ctx = task->perf_event_ctxp[ctxn];
3886 if (likely(!ctx))
3887 continue;
3888
3889 perf_event_context_sched_in(ctx, task);
3890 }
3891
3892 if (atomic_read(&nr_switch_events))
3893 perf_event_switch(task, prev, true);
3894
3895 if (__this_cpu_read(perf_sched_cb_usages))
3896 perf_pmu_sched_task(prev, task, true);
3897 }
3898
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)3899 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3900 {
3901 u64 frequency = event->attr.sample_freq;
3902 u64 sec = NSEC_PER_SEC;
3903 u64 divisor, dividend;
3904
3905 int count_fls, nsec_fls, frequency_fls, sec_fls;
3906
3907 count_fls = fls64(count);
3908 nsec_fls = fls64(nsec);
3909 frequency_fls = fls64(frequency);
3910 sec_fls = 30;
3911
3912 /*
3913 * We got @count in @nsec, with a target of sample_freq HZ
3914 * the target period becomes:
3915 *
3916 * @count * 10^9
3917 * period = -------------------
3918 * @nsec * sample_freq
3919 *
3920 */
3921
3922 /*
3923 * Reduce accuracy by one bit such that @a and @b converge
3924 * to a similar magnitude.
3925 */
3926 #define REDUCE_FLS(a, b) \
3927 do { \
3928 if (a##_fls > b##_fls) { \
3929 a >>= 1; \
3930 a##_fls--; \
3931 } else { \
3932 b >>= 1; \
3933 b##_fls--; \
3934 } \
3935 } while (0)
3936
3937 /*
3938 * Reduce accuracy until either term fits in a u64, then proceed with
3939 * the other, so that finally we can do a u64/u64 division.
3940 */
3941 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3942 REDUCE_FLS(nsec, frequency);
3943 REDUCE_FLS(sec, count);
3944 }
3945
3946 if (count_fls + sec_fls > 64) {
3947 divisor = nsec * frequency;
3948
3949 while (count_fls + sec_fls > 64) {
3950 REDUCE_FLS(count, sec);
3951 divisor >>= 1;
3952 }
3953
3954 dividend = count * sec;
3955 } else {
3956 dividend = count * sec;
3957
3958 while (nsec_fls + frequency_fls > 64) {
3959 REDUCE_FLS(nsec, frequency);
3960 dividend >>= 1;
3961 }
3962
3963 divisor = nsec * frequency;
3964 }
3965
3966 if (!divisor)
3967 return dividend;
3968
3969 return div64_u64(dividend, divisor);
3970 }
3971
3972 static DEFINE_PER_CPU(int, perf_throttled_count);
3973 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3974
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)3975 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3976 {
3977 struct hw_perf_event *hwc = &event->hw;
3978 s64 period, sample_period;
3979 s64 delta;
3980
3981 period = perf_calculate_period(event, nsec, count);
3982
3983 delta = (s64)(period - hwc->sample_period);
3984 delta = (delta + 7) / 8; /* low pass filter */
3985
3986 sample_period = hwc->sample_period + delta;
3987
3988 if (!sample_period)
3989 sample_period = 1;
3990
3991 hwc->sample_period = sample_period;
3992
3993 if (local64_read(&hwc->period_left) > 8*sample_period) {
3994 if (disable)
3995 event->pmu->stop(event, PERF_EF_UPDATE);
3996
3997 local64_set(&hwc->period_left, 0);
3998
3999 if (disable)
4000 event->pmu->start(event, PERF_EF_RELOAD);
4001 }
4002 }
4003
4004 /*
4005 * combine freq adjustment with unthrottling to avoid two passes over the
4006 * events. At the same time, make sure, having freq events does not change
4007 * the rate of unthrottling as that would introduce bias.
4008 */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)4009 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4010 int needs_unthr)
4011 {
4012 struct perf_event *event;
4013 struct hw_perf_event *hwc;
4014 u64 now, period = TICK_NSEC;
4015 s64 delta;
4016
4017 /*
4018 * only need to iterate over all events iff:
4019 * - context have events in frequency mode (needs freq adjust)
4020 * - there are events to unthrottle on this cpu
4021 */
4022 if (!(ctx->nr_freq || needs_unthr))
4023 return;
4024
4025 raw_spin_lock(&ctx->lock);
4026 perf_pmu_disable(ctx->pmu);
4027
4028 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4029 if (event->state != PERF_EVENT_STATE_ACTIVE)
4030 continue;
4031
4032 if (!event_filter_match(event))
4033 continue;
4034
4035 perf_pmu_disable(event->pmu);
4036
4037 hwc = &event->hw;
4038
4039 if (hwc->interrupts == MAX_INTERRUPTS) {
4040 hwc->interrupts = 0;
4041 perf_log_throttle(event, 1);
4042 event->pmu->start(event, 0);
4043 }
4044
4045 if (!event->attr.freq || !event->attr.sample_freq)
4046 goto next;
4047
4048 /*
4049 * stop the event and update event->count
4050 */
4051 event->pmu->stop(event, PERF_EF_UPDATE);
4052
4053 now = local64_read(&event->count);
4054 delta = now - hwc->freq_count_stamp;
4055 hwc->freq_count_stamp = now;
4056
4057 /*
4058 * restart the event
4059 * reload only if value has changed
4060 * we have stopped the event so tell that
4061 * to perf_adjust_period() to avoid stopping it
4062 * twice.
4063 */
4064 if (delta > 0)
4065 perf_adjust_period(event, period, delta, false);
4066
4067 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4068 next:
4069 perf_pmu_enable(event->pmu);
4070 }
4071
4072 perf_pmu_enable(ctx->pmu);
4073 raw_spin_unlock(&ctx->lock);
4074 }
4075
4076 /*
4077 * Move @event to the tail of the @ctx's elegible events.
4078 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4079 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4080 {
4081 /*
4082 * Rotate the first entry last of non-pinned groups. Rotation might be
4083 * disabled by the inheritance code.
4084 */
4085 if (ctx->rotate_disable)
4086 return;
4087
4088 perf_event_groups_delete(&ctx->flexible_groups, event);
4089 perf_event_groups_insert(&ctx->flexible_groups, event);
4090 }
4091
4092 /* pick an event from the flexible_groups to rotate */
4093 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_context * ctx)4094 ctx_event_to_rotate(struct perf_event_context *ctx)
4095 {
4096 struct perf_event *event;
4097
4098 /* pick the first active flexible event */
4099 event = list_first_entry_or_null(&ctx->flexible_active,
4100 struct perf_event, active_list);
4101
4102 /* if no active flexible event, pick the first event */
4103 if (!event) {
4104 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4105 typeof(*event), group_node);
4106 }
4107
4108 /*
4109 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4110 * finds there are unschedulable events, it will set it again.
4111 */
4112 ctx->rotate_necessary = 0;
4113
4114 return event;
4115 }
4116
perf_rotate_context(struct perf_cpu_context * cpuctx)4117 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4118 {
4119 struct perf_event *cpu_event = NULL, *task_event = NULL;
4120 struct perf_event_context *task_ctx = NULL;
4121 int cpu_rotate, task_rotate;
4122
4123 /*
4124 * Since we run this from IRQ context, nobody can install new
4125 * events, thus the event count values are stable.
4126 */
4127
4128 cpu_rotate = cpuctx->ctx.rotate_necessary;
4129 task_ctx = cpuctx->task_ctx;
4130 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4131
4132 if (!(cpu_rotate || task_rotate))
4133 return false;
4134
4135 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4136 perf_pmu_disable(cpuctx->ctx.pmu);
4137
4138 if (task_rotate)
4139 task_event = ctx_event_to_rotate(task_ctx);
4140 if (cpu_rotate)
4141 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4142
4143 /*
4144 * As per the order given at ctx_resched() first 'pop' task flexible
4145 * and then, if needed CPU flexible.
4146 */
4147 if (task_event || (task_ctx && cpu_event))
4148 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4149 if (cpu_event)
4150 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4151
4152 if (task_event)
4153 rotate_ctx(task_ctx, task_event);
4154 if (cpu_event)
4155 rotate_ctx(&cpuctx->ctx, cpu_event);
4156
4157 perf_event_sched_in(cpuctx, task_ctx, current);
4158
4159 perf_pmu_enable(cpuctx->ctx.pmu);
4160 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4161
4162 return true;
4163 }
4164
perf_event_task_tick(void)4165 void perf_event_task_tick(void)
4166 {
4167 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4168 struct perf_event_context *ctx, *tmp;
4169 int throttled;
4170
4171 lockdep_assert_irqs_disabled();
4172
4173 __this_cpu_inc(perf_throttled_seq);
4174 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4175 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4176
4177 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4178 perf_adjust_freq_unthr_context(ctx, throttled);
4179 }
4180
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4181 static int event_enable_on_exec(struct perf_event *event,
4182 struct perf_event_context *ctx)
4183 {
4184 if (!event->attr.enable_on_exec)
4185 return 0;
4186
4187 event->attr.enable_on_exec = 0;
4188 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4189 return 0;
4190
4191 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4192
4193 return 1;
4194 }
4195
4196 /*
4197 * Enable all of a task's events that have been marked enable-on-exec.
4198 * This expects task == current.
4199 */
perf_event_enable_on_exec(int ctxn)4200 static void perf_event_enable_on_exec(int ctxn)
4201 {
4202 struct perf_event_context *ctx, *clone_ctx = NULL;
4203 enum event_type_t event_type = 0;
4204 struct perf_cpu_context *cpuctx;
4205 struct perf_event *event;
4206 unsigned long flags;
4207 int enabled = 0;
4208
4209 local_irq_save(flags);
4210 ctx = current->perf_event_ctxp[ctxn];
4211 if (!ctx || !ctx->nr_events)
4212 goto out;
4213
4214 cpuctx = __get_cpu_context(ctx);
4215 perf_ctx_lock(cpuctx, ctx);
4216 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4217 list_for_each_entry(event, &ctx->event_list, event_entry) {
4218 enabled |= event_enable_on_exec(event, ctx);
4219 event_type |= get_event_type(event);
4220 }
4221
4222 /*
4223 * Unclone and reschedule this context if we enabled any event.
4224 */
4225 if (enabled) {
4226 clone_ctx = unclone_ctx(ctx);
4227 ctx_resched(cpuctx, ctx, event_type);
4228 } else {
4229 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4230 }
4231 perf_ctx_unlock(cpuctx, ctx);
4232
4233 out:
4234 local_irq_restore(flags);
4235
4236 if (clone_ctx)
4237 put_ctx(clone_ctx);
4238 }
4239
4240 struct perf_read_data {
4241 struct perf_event *event;
4242 bool group;
4243 int ret;
4244 };
4245
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4246 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4247 {
4248 u16 local_pkg, event_pkg;
4249
4250 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4251 int local_cpu = smp_processor_id();
4252
4253 event_pkg = topology_physical_package_id(event_cpu);
4254 local_pkg = topology_physical_package_id(local_cpu);
4255
4256 if (event_pkg == local_pkg)
4257 return local_cpu;
4258 }
4259
4260 return event_cpu;
4261 }
4262
4263 /*
4264 * Cross CPU call to read the hardware event
4265 */
__perf_event_read(void * info)4266 static void __perf_event_read(void *info)
4267 {
4268 struct perf_read_data *data = info;
4269 struct perf_event *sub, *event = data->event;
4270 struct perf_event_context *ctx = event->ctx;
4271 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4272 struct pmu *pmu = event->pmu;
4273
4274 /*
4275 * If this is a task context, we need to check whether it is
4276 * the current task context of this cpu. If not it has been
4277 * scheduled out before the smp call arrived. In that case
4278 * event->count would have been updated to a recent sample
4279 * when the event was scheduled out.
4280 */
4281 if (ctx->task && cpuctx->task_ctx != ctx)
4282 return;
4283
4284 raw_spin_lock(&ctx->lock);
4285 if (ctx->is_active & EVENT_TIME) {
4286 update_context_time(ctx);
4287 update_cgrp_time_from_event(event);
4288 }
4289
4290 perf_event_update_time(event);
4291 if (data->group)
4292 perf_event_update_sibling_time(event);
4293
4294 if (event->state != PERF_EVENT_STATE_ACTIVE)
4295 goto unlock;
4296
4297 if (!data->group) {
4298 pmu->read(event);
4299 data->ret = 0;
4300 goto unlock;
4301 }
4302
4303 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4304
4305 pmu->read(event);
4306
4307 for_each_sibling_event(sub, event) {
4308 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4309 /*
4310 * Use sibling's PMU rather than @event's since
4311 * sibling could be on different (eg: software) PMU.
4312 */
4313 sub->pmu->read(sub);
4314 }
4315 }
4316
4317 data->ret = pmu->commit_txn(pmu);
4318
4319 unlock:
4320 raw_spin_unlock(&ctx->lock);
4321 }
4322
perf_event_count(struct perf_event * event)4323 static inline u64 perf_event_count(struct perf_event *event)
4324 {
4325 return local64_read(&event->count) + atomic64_read(&event->child_count);
4326 }
4327
4328 /*
4329 * NMI-safe method to read a local event, that is an event that
4330 * is:
4331 * - either for the current task, or for this CPU
4332 * - does not have inherit set, for inherited task events
4333 * will not be local and we cannot read them atomically
4334 * - must not have a pmu::count method
4335 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4336 int perf_event_read_local(struct perf_event *event, u64 *value,
4337 u64 *enabled, u64 *running)
4338 {
4339 unsigned long flags;
4340 int ret = 0;
4341
4342 /*
4343 * Disabling interrupts avoids all counter scheduling (context
4344 * switches, timer based rotation and IPIs).
4345 */
4346 local_irq_save(flags);
4347
4348 /*
4349 * It must not be an event with inherit set, we cannot read
4350 * all child counters from atomic context.
4351 */
4352 if (event->attr.inherit) {
4353 ret = -EOPNOTSUPP;
4354 goto out;
4355 }
4356
4357 /* If this is a per-task event, it must be for current */
4358 if ((event->attach_state & PERF_ATTACH_TASK) &&
4359 event->hw.target != current) {
4360 ret = -EINVAL;
4361 goto out;
4362 }
4363
4364 /* If this is a per-CPU event, it must be for this CPU */
4365 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4366 event->cpu != smp_processor_id()) {
4367 ret = -EINVAL;
4368 goto out;
4369 }
4370
4371 /* If this is a pinned event it must be running on this CPU */
4372 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4373 ret = -EBUSY;
4374 goto out;
4375 }
4376
4377 /*
4378 * If the event is currently on this CPU, its either a per-task event,
4379 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4380 * oncpu == -1).
4381 */
4382 if (event->oncpu == smp_processor_id())
4383 event->pmu->read(event);
4384
4385 *value = local64_read(&event->count);
4386 if (enabled || running) {
4387 u64 now = event->shadow_ctx_time + perf_clock();
4388 u64 __enabled, __running;
4389
4390 __perf_update_times(event, now, &__enabled, &__running);
4391 if (enabled)
4392 *enabled = __enabled;
4393 if (running)
4394 *running = __running;
4395 }
4396 out:
4397 local_irq_restore(flags);
4398
4399 return ret;
4400 }
4401 EXPORT_SYMBOL_GPL(perf_event_read_local);
4402
perf_event_read(struct perf_event * event,bool group)4403 static int perf_event_read(struct perf_event *event, bool group)
4404 {
4405 enum perf_event_state state = READ_ONCE(event->state);
4406 int event_cpu, ret = 0;
4407
4408 /*
4409 * If event is enabled and currently active on a CPU, update the
4410 * value in the event structure:
4411 */
4412 again:
4413 if (state == PERF_EVENT_STATE_ACTIVE) {
4414 struct perf_read_data data;
4415
4416 /*
4417 * Orders the ->state and ->oncpu loads such that if we see
4418 * ACTIVE we must also see the right ->oncpu.
4419 *
4420 * Matches the smp_wmb() from event_sched_in().
4421 */
4422 smp_rmb();
4423
4424 event_cpu = READ_ONCE(event->oncpu);
4425 if ((unsigned)event_cpu >= nr_cpu_ids)
4426 return 0;
4427
4428 data = (struct perf_read_data){
4429 .event = event,
4430 .group = group,
4431 .ret = 0,
4432 };
4433
4434 preempt_disable();
4435 event_cpu = __perf_event_read_cpu(event, event_cpu);
4436
4437 /*
4438 * Purposely ignore the smp_call_function_single() return
4439 * value.
4440 *
4441 * If event_cpu isn't a valid CPU it means the event got
4442 * scheduled out and that will have updated the event count.
4443 *
4444 * Therefore, either way, we'll have an up-to-date event count
4445 * after this.
4446 */
4447 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4448 preempt_enable();
4449 ret = data.ret;
4450
4451 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4452 struct perf_event_context *ctx = event->ctx;
4453 unsigned long flags;
4454
4455 raw_spin_lock_irqsave(&ctx->lock, flags);
4456 state = event->state;
4457 if (state != PERF_EVENT_STATE_INACTIVE) {
4458 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4459 goto again;
4460 }
4461
4462 /*
4463 * May read while context is not active (e.g., thread is
4464 * blocked), in that case we cannot update context time
4465 */
4466 if (ctx->is_active & EVENT_TIME) {
4467 update_context_time(ctx);
4468 update_cgrp_time_from_event(event);
4469 }
4470
4471 perf_event_update_time(event);
4472 if (group)
4473 perf_event_update_sibling_time(event);
4474 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4475 }
4476
4477 return ret;
4478 }
4479
4480 /*
4481 * Initialize the perf_event context in a task_struct:
4482 */
__perf_event_init_context(struct perf_event_context * ctx)4483 static void __perf_event_init_context(struct perf_event_context *ctx)
4484 {
4485 raw_spin_lock_init(&ctx->lock);
4486 mutex_init(&ctx->mutex);
4487 INIT_LIST_HEAD(&ctx->active_ctx_list);
4488 perf_event_groups_init(&ctx->pinned_groups);
4489 perf_event_groups_init(&ctx->flexible_groups);
4490 INIT_LIST_HEAD(&ctx->event_list);
4491 INIT_LIST_HEAD(&ctx->pinned_active);
4492 INIT_LIST_HEAD(&ctx->flexible_active);
4493 refcount_set(&ctx->refcount, 1);
4494 }
4495
4496 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)4497 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4498 {
4499 struct perf_event_context *ctx;
4500
4501 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4502 if (!ctx)
4503 return NULL;
4504
4505 __perf_event_init_context(ctx);
4506 if (task)
4507 ctx->task = get_task_struct(task);
4508 ctx->pmu = pmu;
4509
4510 return ctx;
4511 }
4512
4513 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4514 find_lively_task_by_vpid(pid_t vpid)
4515 {
4516 struct task_struct *task;
4517
4518 rcu_read_lock();
4519 if (!vpid)
4520 task = current;
4521 else
4522 task = find_task_by_vpid(vpid);
4523 if (task)
4524 get_task_struct(task);
4525 rcu_read_unlock();
4526
4527 if (!task)
4528 return ERR_PTR(-ESRCH);
4529
4530 return task;
4531 }
4532
4533 /*
4534 * Returns a matching context with refcount and pincount.
4535 */
4536 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)4537 find_get_context(struct pmu *pmu, struct task_struct *task,
4538 struct perf_event *event)
4539 {
4540 struct perf_event_context *ctx, *clone_ctx = NULL;
4541 struct perf_cpu_context *cpuctx;
4542 void *task_ctx_data = NULL;
4543 unsigned long flags;
4544 int ctxn, err;
4545 int cpu = event->cpu;
4546
4547 if (!task) {
4548 /* Must be root to operate on a CPU event: */
4549 err = perf_allow_cpu(&event->attr);
4550 if (err)
4551 return ERR_PTR(err);
4552
4553 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4554 ctx = &cpuctx->ctx;
4555 get_ctx(ctx);
4556 raw_spin_lock_irqsave(&ctx->lock, flags);
4557 ++ctx->pin_count;
4558 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4559
4560 return ctx;
4561 }
4562
4563 err = -EINVAL;
4564 ctxn = pmu->task_ctx_nr;
4565 if (ctxn < 0)
4566 goto errout;
4567
4568 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4569 task_ctx_data = alloc_task_ctx_data(pmu);
4570 if (!task_ctx_data) {
4571 err = -ENOMEM;
4572 goto errout;
4573 }
4574 }
4575
4576 retry:
4577 ctx = perf_lock_task_context(task, ctxn, &flags);
4578 if (ctx) {
4579 clone_ctx = unclone_ctx(ctx);
4580 ++ctx->pin_count;
4581
4582 if (task_ctx_data && !ctx->task_ctx_data) {
4583 ctx->task_ctx_data = task_ctx_data;
4584 task_ctx_data = NULL;
4585 }
4586 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4587
4588 if (clone_ctx)
4589 put_ctx(clone_ctx);
4590 } else {
4591 ctx = alloc_perf_context(pmu, task);
4592 err = -ENOMEM;
4593 if (!ctx)
4594 goto errout;
4595
4596 if (task_ctx_data) {
4597 ctx->task_ctx_data = task_ctx_data;
4598 task_ctx_data = NULL;
4599 }
4600
4601 err = 0;
4602 mutex_lock(&task->perf_event_mutex);
4603 /*
4604 * If it has already passed perf_event_exit_task().
4605 * we must see PF_EXITING, it takes this mutex too.
4606 */
4607 if (task->flags & PF_EXITING)
4608 err = -ESRCH;
4609 else if (task->perf_event_ctxp[ctxn])
4610 err = -EAGAIN;
4611 else {
4612 get_ctx(ctx);
4613 ++ctx->pin_count;
4614 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4615 }
4616 mutex_unlock(&task->perf_event_mutex);
4617
4618 if (unlikely(err)) {
4619 put_ctx(ctx);
4620
4621 if (err == -EAGAIN)
4622 goto retry;
4623 goto errout;
4624 }
4625 }
4626
4627 free_task_ctx_data(pmu, task_ctx_data);
4628 return ctx;
4629
4630 errout:
4631 free_task_ctx_data(pmu, task_ctx_data);
4632 return ERR_PTR(err);
4633 }
4634
4635 static void perf_event_free_filter(struct perf_event *event);
4636 static void perf_event_free_bpf_prog(struct perf_event *event);
4637
free_event_rcu(struct rcu_head * head)4638 static void free_event_rcu(struct rcu_head *head)
4639 {
4640 struct perf_event *event;
4641
4642 event = container_of(head, struct perf_event, rcu_head);
4643 if (event->ns)
4644 put_pid_ns(event->ns);
4645 perf_event_free_filter(event);
4646 kfree(event);
4647 }
4648
4649 static void ring_buffer_attach(struct perf_event *event,
4650 struct perf_buffer *rb);
4651
detach_sb_event(struct perf_event * event)4652 static void detach_sb_event(struct perf_event *event)
4653 {
4654 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4655
4656 raw_spin_lock(&pel->lock);
4657 list_del_rcu(&event->sb_list);
4658 raw_spin_unlock(&pel->lock);
4659 }
4660
is_sb_event(struct perf_event * event)4661 static bool is_sb_event(struct perf_event *event)
4662 {
4663 struct perf_event_attr *attr = &event->attr;
4664
4665 if (event->parent)
4666 return false;
4667
4668 if (event->attach_state & PERF_ATTACH_TASK)
4669 return false;
4670
4671 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4672 attr->comm || attr->comm_exec ||
4673 attr->task || attr->ksymbol ||
4674 attr->context_switch || attr->text_poke ||
4675 attr->bpf_event)
4676 return true;
4677 return false;
4678 }
4679
unaccount_pmu_sb_event(struct perf_event * event)4680 static void unaccount_pmu_sb_event(struct perf_event *event)
4681 {
4682 if (is_sb_event(event))
4683 detach_sb_event(event);
4684 }
4685
unaccount_event_cpu(struct perf_event * event,int cpu)4686 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4687 {
4688 if (event->parent)
4689 return;
4690
4691 if (is_cgroup_event(event))
4692 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4693 }
4694
4695 #ifdef CONFIG_NO_HZ_FULL
4696 static DEFINE_SPINLOCK(nr_freq_lock);
4697 #endif
4698
unaccount_freq_event_nohz(void)4699 static void unaccount_freq_event_nohz(void)
4700 {
4701 #ifdef CONFIG_NO_HZ_FULL
4702 spin_lock(&nr_freq_lock);
4703 if (atomic_dec_and_test(&nr_freq_events))
4704 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4705 spin_unlock(&nr_freq_lock);
4706 #endif
4707 }
4708
unaccount_freq_event(void)4709 static void unaccount_freq_event(void)
4710 {
4711 if (tick_nohz_full_enabled())
4712 unaccount_freq_event_nohz();
4713 else
4714 atomic_dec(&nr_freq_events);
4715 }
4716
unaccount_event(struct perf_event * event)4717 static void unaccount_event(struct perf_event *event)
4718 {
4719 bool dec = false;
4720
4721 if (event->parent)
4722 return;
4723
4724 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4725 dec = true;
4726 if (event->attr.mmap || event->attr.mmap_data)
4727 atomic_dec(&nr_mmap_events);
4728 if (event->attr.comm)
4729 atomic_dec(&nr_comm_events);
4730 if (event->attr.namespaces)
4731 atomic_dec(&nr_namespaces_events);
4732 if (event->attr.cgroup)
4733 atomic_dec(&nr_cgroup_events);
4734 if (event->attr.task)
4735 atomic_dec(&nr_task_events);
4736 if (event->attr.freq)
4737 unaccount_freq_event();
4738 if (event->attr.context_switch) {
4739 dec = true;
4740 atomic_dec(&nr_switch_events);
4741 }
4742 if (is_cgroup_event(event))
4743 dec = true;
4744 if (has_branch_stack(event))
4745 dec = true;
4746 if (event->attr.ksymbol)
4747 atomic_dec(&nr_ksymbol_events);
4748 if (event->attr.bpf_event)
4749 atomic_dec(&nr_bpf_events);
4750 if (event->attr.text_poke)
4751 atomic_dec(&nr_text_poke_events);
4752
4753 if (dec) {
4754 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4755 schedule_delayed_work(&perf_sched_work, HZ);
4756 }
4757
4758 unaccount_event_cpu(event, event->cpu);
4759
4760 unaccount_pmu_sb_event(event);
4761 }
4762
perf_sched_delayed(struct work_struct * work)4763 static void perf_sched_delayed(struct work_struct *work)
4764 {
4765 mutex_lock(&perf_sched_mutex);
4766 if (atomic_dec_and_test(&perf_sched_count))
4767 static_branch_disable(&perf_sched_events);
4768 mutex_unlock(&perf_sched_mutex);
4769 }
4770
4771 /*
4772 * The following implement mutual exclusion of events on "exclusive" pmus
4773 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4774 * at a time, so we disallow creating events that might conflict, namely:
4775 *
4776 * 1) cpu-wide events in the presence of per-task events,
4777 * 2) per-task events in the presence of cpu-wide events,
4778 * 3) two matching events on the same context.
4779 *
4780 * The former two cases are handled in the allocation path (perf_event_alloc(),
4781 * _free_event()), the latter -- before the first perf_install_in_context().
4782 */
exclusive_event_init(struct perf_event * event)4783 static int exclusive_event_init(struct perf_event *event)
4784 {
4785 struct pmu *pmu = event->pmu;
4786
4787 if (!is_exclusive_pmu(pmu))
4788 return 0;
4789
4790 /*
4791 * Prevent co-existence of per-task and cpu-wide events on the
4792 * same exclusive pmu.
4793 *
4794 * Negative pmu::exclusive_cnt means there are cpu-wide
4795 * events on this "exclusive" pmu, positive means there are
4796 * per-task events.
4797 *
4798 * Since this is called in perf_event_alloc() path, event::ctx
4799 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4800 * to mean "per-task event", because unlike other attach states it
4801 * never gets cleared.
4802 */
4803 if (event->attach_state & PERF_ATTACH_TASK) {
4804 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4805 return -EBUSY;
4806 } else {
4807 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4808 return -EBUSY;
4809 }
4810
4811 return 0;
4812 }
4813
exclusive_event_destroy(struct perf_event * event)4814 static void exclusive_event_destroy(struct perf_event *event)
4815 {
4816 struct pmu *pmu = event->pmu;
4817
4818 if (!is_exclusive_pmu(pmu))
4819 return;
4820
4821 /* see comment in exclusive_event_init() */
4822 if (event->attach_state & PERF_ATTACH_TASK)
4823 atomic_dec(&pmu->exclusive_cnt);
4824 else
4825 atomic_inc(&pmu->exclusive_cnt);
4826 }
4827
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)4828 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4829 {
4830 if ((e1->pmu == e2->pmu) &&
4831 (e1->cpu == e2->cpu ||
4832 e1->cpu == -1 ||
4833 e2->cpu == -1))
4834 return true;
4835 return false;
4836 }
4837
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)4838 static bool exclusive_event_installable(struct perf_event *event,
4839 struct perf_event_context *ctx)
4840 {
4841 struct perf_event *iter_event;
4842 struct pmu *pmu = event->pmu;
4843
4844 lockdep_assert_held(&ctx->mutex);
4845
4846 if (!is_exclusive_pmu(pmu))
4847 return true;
4848
4849 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4850 if (exclusive_event_match(iter_event, event))
4851 return false;
4852 }
4853
4854 return true;
4855 }
4856
4857 static void perf_addr_filters_splice(struct perf_event *event,
4858 struct list_head *head);
4859
_free_event(struct perf_event * event)4860 static void _free_event(struct perf_event *event)
4861 {
4862 irq_work_sync(&event->pending);
4863
4864 unaccount_event(event);
4865
4866 security_perf_event_free(event);
4867
4868 if (event->rb) {
4869 /*
4870 * Can happen when we close an event with re-directed output.
4871 *
4872 * Since we have a 0 refcount, perf_mmap_close() will skip
4873 * over us; possibly making our ring_buffer_put() the last.
4874 */
4875 mutex_lock(&event->mmap_mutex);
4876 ring_buffer_attach(event, NULL);
4877 mutex_unlock(&event->mmap_mutex);
4878 }
4879
4880 if (is_cgroup_event(event))
4881 perf_detach_cgroup(event);
4882
4883 if (!event->parent) {
4884 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4885 put_callchain_buffers();
4886 }
4887
4888 perf_event_free_bpf_prog(event);
4889 perf_addr_filters_splice(event, NULL);
4890 kfree(event->addr_filter_ranges);
4891
4892 if (event->destroy)
4893 event->destroy(event);
4894
4895 /*
4896 * Must be after ->destroy(), due to uprobe_perf_close() using
4897 * hw.target.
4898 */
4899 if (event->hw.target)
4900 put_task_struct(event->hw.target);
4901
4902 /*
4903 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4904 * all task references must be cleaned up.
4905 */
4906 if (event->ctx)
4907 put_ctx(event->ctx);
4908
4909 exclusive_event_destroy(event);
4910 module_put(event->pmu->module);
4911
4912 call_rcu(&event->rcu_head, free_event_rcu);
4913 }
4914
4915 /*
4916 * Used to free events which have a known refcount of 1, such as in error paths
4917 * where the event isn't exposed yet and inherited events.
4918 */
free_event(struct perf_event * event)4919 static void free_event(struct perf_event *event)
4920 {
4921 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4922 "unexpected event refcount: %ld; ptr=%p\n",
4923 atomic_long_read(&event->refcount), event)) {
4924 /* leak to avoid use-after-free */
4925 return;
4926 }
4927
4928 _free_event(event);
4929 }
4930
4931 /*
4932 * Remove user event from the owner task.
4933 */
perf_remove_from_owner(struct perf_event * event)4934 static void perf_remove_from_owner(struct perf_event *event)
4935 {
4936 struct task_struct *owner;
4937
4938 rcu_read_lock();
4939 /*
4940 * Matches the smp_store_release() in perf_event_exit_task(). If we
4941 * observe !owner it means the list deletion is complete and we can
4942 * indeed free this event, otherwise we need to serialize on
4943 * owner->perf_event_mutex.
4944 */
4945 owner = READ_ONCE(event->owner);
4946 if (owner) {
4947 /*
4948 * Since delayed_put_task_struct() also drops the last
4949 * task reference we can safely take a new reference
4950 * while holding the rcu_read_lock().
4951 */
4952 get_task_struct(owner);
4953 }
4954 rcu_read_unlock();
4955
4956 if (owner) {
4957 /*
4958 * If we're here through perf_event_exit_task() we're already
4959 * holding ctx->mutex which would be an inversion wrt. the
4960 * normal lock order.
4961 *
4962 * However we can safely take this lock because its the child
4963 * ctx->mutex.
4964 */
4965 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4966
4967 /*
4968 * We have to re-check the event->owner field, if it is cleared
4969 * we raced with perf_event_exit_task(), acquiring the mutex
4970 * ensured they're done, and we can proceed with freeing the
4971 * event.
4972 */
4973 if (event->owner) {
4974 list_del_init(&event->owner_entry);
4975 smp_store_release(&event->owner, NULL);
4976 }
4977 mutex_unlock(&owner->perf_event_mutex);
4978 put_task_struct(owner);
4979 }
4980 }
4981
put_event(struct perf_event * event)4982 static void put_event(struct perf_event *event)
4983 {
4984 if (!atomic_long_dec_and_test(&event->refcount))
4985 return;
4986
4987 _free_event(event);
4988 }
4989
4990 /*
4991 * Kill an event dead; while event:refcount will preserve the event
4992 * object, it will not preserve its functionality. Once the last 'user'
4993 * gives up the object, we'll destroy the thing.
4994 */
perf_event_release_kernel(struct perf_event * event)4995 int perf_event_release_kernel(struct perf_event *event)
4996 {
4997 struct perf_event_context *ctx = event->ctx;
4998 struct perf_event *child, *tmp;
4999 LIST_HEAD(free_list);
5000
5001 /*
5002 * If we got here through err_file: fput(event_file); we will not have
5003 * attached to a context yet.
5004 */
5005 if (!ctx) {
5006 WARN_ON_ONCE(event->attach_state &
5007 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5008 goto no_ctx;
5009 }
5010
5011 if (!is_kernel_event(event))
5012 perf_remove_from_owner(event);
5013
5014 ctx = perf_event_ctx_lock(event);
5015 WARN_ON_ONCE(ctx->parent_ctx);
5016 perf_remove_from_context(event, DETACH_GROUP);
5017
5018 raw_spin_lock_irq(&ctx->lock);
5019 /*
5020 * Mark this event as STATE_DEAD, there is no external reference to it
5021 * anymore.
5022 *
5023 * Anybody acquiring event->child_mutex after the below loop _must_
5024 * also see this, most importantly inherit_event() which will avoid
5025 * placing more children on the list.
5026 *
5027 * Thus this guarantees that we will in fact observe and kill _ALL_
5028 * child events.
5029 */
5030 event->state = PERF_EVENT_STATE_DEAD;
5031 raw_spin_unlock_irq(&ctx->lock);
5032
5033 perf_event_ctx_unlock(event, ctx);
5034
5035 again:
5036 mutex_lock(&event->child_mutex);
5037 list_for_each_entry(child, &event->child_list, child_list) {
5038
5039 /*
5040 * Cannot change, child events are not migrated, see the
5041 * comment with perf_event_ctx_lock_nested().
5042 */
5043 ctx = READ_ONCE(child->ctx);
5044 /*
5045 * Since child_mutex nests inside ctx::mutex, we must jump
5046 * through hoops. We start by grabbing a reference on the ctx.
5047 *
5048 * Since the event cannot get freed while we hold the
5049 * child_mutex, the context must also exist and have a !0
5050 * reference count.
5051 */
5052 get_ctx(ctx);
5053
5054 /*
5055 * Now that we have a ctx ref, we can drop child_mutex, and
5056 * acquire ctx::mutex without fear of it going away. Then we
5057 * can re-acquire child_mutex.
5058 */
5059 mutex_unlock(&event->child_mutex);
5060 mutex_lock(&ctx->mutex);
5061 mutex_lock(&event->child_mutex);
5062
5063 /*
5064 * Now that we hold ctx::mutex and child_mutex, revalidate our
5065 * state, if child is still the first entry, it didn't get freed
5066 * and we can continue doing so.
5067 */
5068 tmp = list_first_entry_or_null(&event->child_list,
5069 struct perf_event, child_list);
5070 if (tmp == child) {
5071 perf_remove_from_context(child, DETACH_GROUP);
5072 list_move(&child->child_list, &free_list);
5073 /*
5074 * This matches the refcount bump in inherit_event();
5075 * this can't be the last reference.
5076 */
5077 put_event(event);
5078 }
5079
5080 mutex_unlock(&event->child_mutex);
5081 mutex_unlock(&ctx->mutex);
5082 put_ctx(ctx);
5083 goto again;
5084 }
5085 mutex_unlock(&event->child_mutex);
5086
5087 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5088 void *var = &child->ctx->refcount;
5089
5090 list_del(&child->child_list);
5091 free_event(child);
5092
5093 /*
5094 * Wake any perf_event_free_task() waiting for this event to be
5095 * freed.
5096 */
5097 smp_mb(); /* pairs with wait_var_event() */
5098 wake_up_var(var);
5099 }
5100
5101 no_ctx:
5102 put_event(event); /* Must be the 'last' reference */
5103 return 0;
5104 }
5105 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5106
5107 /*
5108 * Called when the last reference to the file is gone.
5109 */
perf_release(struct inode * inode,struct file * file)5110 static int perf_release(struct inode *inode, struct file *file)
5111 {
5112 perf_event_release_kernel(file->private_data);
5113 return 0;
5114 }
5115
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5116 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5117 {
5118 struct perf_event *child;
5119 u64 total = 0;
5120
5121 *enabled = 0;
5122 *running = 0;
5123
5124 mutex_lock(&event->child_mutex);
5125
5126 (void)perf_event_read(event, false);
5127 total += perf_event_count(event);
5128
5129 *enabled += event->total_time_enabled +
5130 atomic64_read(&event->child_total_time_enabled);
5131 *running += event->total_time_running +
5132 atomic64_read(&event->child_total_time_running);
5133
5134 list_for_each_entry(child, &event->child_list, child_list) {
5135 (void)perf_event_read(child, false);
5136 total += perf_event_count(child);
5137 *enabled += child->total_time_enabled;
5138 *running += child->total_time_running;
5139 }
5140 mutex_unlock(&event->child_mutex);
5141
5142 return total;
5143 }
5144
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5145 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5146 {
5147 struct perf_event_context *ctx;
5148 u64 count;
5149
5150 ctx = perf_event_ctx_lock(event);
5151 count = __perf_event_read_value(event, enabled, running);
5152 perf_event_ctx_unlock(event, ctx);
5153
5154 return count;
5155 }
5156 EXPORT_SYMBOL_GPL(perf_event_read_value);
5157
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5158 static int __perf_read_group_add(struct perf_event *leader,
5159 u64 read_format, u64 *values)
5160 {
5161 struct perf_event_context *ctx = leader->ctx;
5162 struct perf_event *sub;
5163 unsigned long flags;
5164 int n = 1; /* skip @nr */
5165 int ret;
5166
5167 ret = perf_event_read(leader, true);
5168 if (ret)
5169 return ret;
5170
5171 raw_spin_lock_irqsave(&ctx->lock, flags);
5172
5173 /*
5174 * Since we co-schedule groups, {enabled,running} times of siblings
5175 * will be identical to those of the leader, so we only publish one
5176 * set.
5177 */
5178 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5179 values[n++] += leader->total_time_enabled +
5180 atomic64_read(&leader->child_total_time_enabled);
5181 }
5182
5183 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5184 values[n++] += leader->total_time_running +
5185 atomic64_read(&leader->child_total_time_running);
5186 }
5187
5188 /*
5189 * Write {count,id} tuples for every sibling.
5190 */
5191 values[n++] += perf_event_count(leader);
5192 if (read_format & PERF_FORMAT_ID)
5193 values[n++] = primary_event_id(leader);
5194
5195 for_each_sibling_event(sub, leader) {
5196 values[n++] += perf_event_count(sub);
5197 if (read_format & PERF_FORMAT_ID)
5198 values[n++] = primary_event_id(sub);
5199 }
5200
5201 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5202 return 0;
5203 }
5204
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5205 static int perf_read_group(struct perf_event *event,
5206 u64 read_format, char __user *buf)
5207 {
5208 struct perf_event *leader = event->group_leader, *child;
5209 struct perf_event_context *ctx = leader->ctx;
5210 int ret;
5211 u64 *values;
5212
5213 lockdep_assert_held(&ctx->mutex);
5214
5215 values = kzalloc(event->read_size, GFP_KERNEL);
5216 if (!values)
5217 return -ENOMEM;
5218
5219 values[0] = 1 + leader->nr_siblings;
5220
5221 /*
5222 * By locking the child_mutex of the leader we effectively
5223 * lock the child list of all siblings.. XXX explain how.
5224 */
5225 mutex_lock(&leader->child_mutex);
5226
5227 ret = __perf_read_group_add(leader, read_format, values);
5228 if (ret)
5229 goto unlock;
5230
5231 list_for_each_entry(child, &leader->child_list, child_list) {
5232 ret = __perf_read_group_add(child, read_format, values);
5233 if (ret)
5234 goto unlock;
5235 }
5236
5237 mutex_unlock(&leader->child_mutex);
5238
5239 ret = event->read_size;
5240 if (copy_to_user(buf, values, event->read_size))
5241 ret = -EFAULT;
5242 goto out;
5243
5244 unlock:
5245 mutex_unlock(&leader->child_mutex);
5246 out:
5247 kfree(values);
5248 return ret;
5249 }
5250
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5251 static int perf_read_one(struct perf_event *event,
5252 u64 read_format, char __user *buf)
5253 {
5254 u64 enabled, running;
5255 u64 values[4];
5256 int n = 0;
5257
5258 values[n++] = __perf_event_read_value(event, &enabled, &running);
5259 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5260 values[n++] = enabled;
5261 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5262 values[n++] = running;
5263 if (read_format & PERF_FORMAT_ID)
5264 values[n++] = primary_event_id(event);
5265
5266 if (copy_to_user(buf, values, n * sizeof(u64)))
5267 return -EFAULT;
5268
5269 return n * sizeof(u64);
5270 }
5271
is_event_hup(struct perf_event * event)5272 static bool is_event_hup(struct perf_event *event)
5273 {
5274 bool no_children;
5275
5276 if (event->state > PERF_EVENT_STATE_EXIT)
5277 return false;
5278
5279 mutex_lock(&event->child_mutex);
5280 no_children = list_empty(&event->child_list);
5281 mutex_unlock(&event->child_mutex);
5282 return no_children;
5283 }
5284
5285 /*
5286 * Read the performance event - simple non blocking version for now
5287 */
5288 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5289 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5290 {
5291 u64 read_format = event->attr.read_format;
5292 int ret;
5293
5294 /*
5295 * Return end-of-file for a read on an event that is in
5296 * error state (i.e. because it was pinned but it couldn't be
5297 * scheduled on to the CPU at some point).
5298 */
5299 if (event->state == PERF_EVENT_STATE_ERROR)
5300 return 0;
5301
5302 if (count < event->read_size)
5303 return -ENOSPC;
5304
5305 WARN_ON_ONCE(event->ctx->parent_ctx);
5306 if (read_format & PERF_FORMAT_GROUP)
5307 ret = perf_read_group(event, read_format, buf);
5308 else
5309 ret = perf_read_one(event, read_format, buf);
5310
5311 return ret;
5312 }
5313
5314 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5315 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5316 {
5317 struct perf_event *event = file->private_data;
5318 struct perf_event_context *ctx;
5319 int ret;
5320
5321 ret = security_perf_event_read(event);
5322 if (ret)
5323 return ret;
5324
5325 ctx = perf_event_ctx_lock(event);
5326 ret = __perf_read(event, buf, count);
5327 perf_event_ctx_unlock(event, ctx);
5328
5329 return ret;
5330 }
5331
perf_poll(struct file * file,poll_table * wait)5332 static __poll_t perf_poll(struct file *file, poll_table *wait)
5333 {
5334 struct perf_event *event = file->private_data;
5335 struct perf_buffer *rb;
5336 __poll_t events = EPOLLHUP;
5337
5338 poll_wait(file, &event->waitq, wait);
5339
5340 if (is_event_hup(event))
5341 return events;
5342
5343 /*
5344 * Pin the event->rb by taking event->mmap_mutex; otherwise
5345 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5346 */
5347 mutex_lock(&event->mmap_mutex);
5348 rb = event->rb;
5349 if (rb)
5350 events = atomic_xchg(&rb->poll, 0);
5351 mutex_unlock(&event->mmap_mutex);
5352 return events;
5353 }
5354
_perf_event_reset(struct perf_event * event)5355 static void _perf_event_reset(struct perf_event *event)
5356 {
5357 (void)perf_event_read(event, false);
5358 local64_set(&event->count, 0);
5359 perf_event_update_userpage(event);
5360 }
5361
5362 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5363 u64 perf_event_pause(struct perf_event *event, bool reset)
5364 {
5365 struct perf_event_context *ctx;
5366 u64 count;
5367
5368 ctx = perf_event_ctx_lock(event);
5369 WARN_ON_ONCE(event->attr.inherit);
5370 _perf_event_disable(event);
5371 count = local64_read(&event->count);
5372 if (reset)
5373 local64_set(&event->count, 0);
5374 perf_event_ctx_unlock(event, ctx);
5375
5376 return count;
5377 }
5378 EXPORT_SYMBOL_GPL(perf_event_pause);
5379
5380 /*
5381 * Holding the top-level event's child_mutex means that any
5382 * descendant process that has inherited this event will block
5383 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5384 * task existence requirements of perf_event_enable/disable.
5385 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5386 static void perf_event_for_each_child(struct perf_event *event,
5387 void (*func)(struct perf_event *))
5388 {
5389 struct perf_event *child;
5390
5391 WARN_ON_ONCE(event->ctx->parent_ctx);
5392
5393 mutex_lock(&event->child_mutex);
5394 func(event);
5395 list_for_each_entry(child, &event->child_list, child_list)
5396 func(child);
5397 mutex_unlock(&event->child_mutex);
5398 }
5399
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5400 static void perf_event_for_each(struct perf_event *event,
5401 void (*func)(struct perf_event *))
5402 {
5403 struct perf_event_context *ctx = event->ctx;
5404 struct perf_event *sibling;
5405
5406 lockdep_assert_held(&ctx->mutex);
5407
5408 event = event->group_leader;
5409
5410 perf_event_for_each_child(event, func);
5411 for_each_sibling_event(sibling, event)
5412 perf_event_for_each_child(sibling, func);
5413 }
5414
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5415 static void __perf_event_period(struct perf_event *event,
5416 struct perf_cpu_context *cpuctx,
5417 struct perf_event_context *ctx,
5418 void *info)
5419 {
5420 u64 value = *((u64 *)info);
5421 bool active;
5422
5423 if (event->attr.freq) {
5424 event->attr.sample_freq = value;
5425 } else {
5426 event->attr.sample_period = value;
5427 event->hw.sample_period = value;
5428 }
5429
5430 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5431 if (active) {
5432 perf_pmu_disable(ctx->pmu);
5433 /*
5434 * We could be throttled; unthrottle now to avoid the tick
5435 * trying to unthrottle while we already re-started the event.
5436 */
5437 if (event->hw.interrupts == MAX_INTERRUPTS) {
5438 event->hw.interrupts = 0;
5439 perf_log_throttle(event, 1);
5440 }
5441 event->pmu->stop(event, PERF_EF_UPDATE);
5442 }
5443
5444 local64_set(&event->hw.period_left, 0);
5445
5446 if (active) {
5447 event->pmu->start(event, PERF_EF_RELOAD);
5448 perf_pmu_enable(ctx->pmu);
5449 }
5450 }
5451
perf_event_check_period(struct perf_event * event,u64 value)5452 static int perf_event_check_period(struct perf_event *event, u64 value)
5453 {
5454 return event->pmu->check_period(event, value);
5455 }
5456
_perf_event_period(struct perf_event * event,u64 value)5457 static int _perf_event_period(struct perf_event *event, u64 value)
5458 {
5459 if (!is_sampling_event(event))
5460 return -EINVAL;
5461
5462 if (!value)
5463 return -EINVAL;
5464
5465 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5466 return -EINVAL;
5467
5468 if (perf_event_check_period(event, value))
5469 return -EINVAL;
5470
5471 if (!event->attr.freq && (value & (1ULL << 63)))
5472 return -EINVAL;
5473
5474 event_function_call(event, __perf_event_period, &value);
5475
5476 return 0;
5477 }
5478
perf_event_period(struct perf_event * event,u64 value)5479 int perf_event_period(struct perf_event *event, u64 value)
5480 {
5481 struct perf_event_context *ctx;
5482 int ret;
5483
5484 ctx = perf_event_ctx_lock(event);
5485 ret = _perf_event_period(event, value);
5486 perf_event_ctx_unlock(event, ctx);
5487
5488 return ret;
5489 }
5490 EXPORT_SYMBOL_GPL(perf_event_period);
5491
5492 static const struct file_operations perf_fops;
5493
perf_fget_light(int fd,struct fd * p)5494 static inline int perf_fget_light(int fd, struct fd *p)
5495 {
5496 struct fd f = fdget(fd);
5497 if (!f.file)
5498 return -EBADF;
5499
5500 if (f.file->f_op != &perf_fops) {
5501 fdput(f);
5502 return -EBADF;
5503 }
5504 *p = f;
5505 return 0;
5506 }
5507
5508 static int perf_event_set_output(struct perf_event *event,
5509 struct perf_event *output_event);
5510 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5511 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5512 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5513 struct perf_event_attr *attr);
5514
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5515 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5516 {
5517 void (*func)(struct perf_event *);
5518 u32 flags = arg;
5519
5520 switch (cmd) {
5521 case PERF_EVENT_IOC_ENABLE:
5522 func = _perf_event_enable;
5523 break;
5524 case PERF_EVENT_IOC_DISABLE:
5525 func = _perf_event_disable;
5526 break;
5527 case PERF_EVENT_IOC_RESET:
5528 func = _perf_event_reset;
5529 break;
5530
5531 case PERF_EVENT_IOC_REFRESH:
5532 return _perf_event_refresh(event, arg);
5533
5534 case PERF_EVENT_IOC_PERIOD:
5535 {
5536 u64 value;
5537
5538 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5539 return -EFAULT;
5540
5541 return _perf_event_period(event, value);
5542 }
5543 case PERF_EVENT_IOC_ID:
5544 {
5545 u64 id = primary_event_id(event);
5546
5547 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5548 return -EFAULT;
5549 return 0;
5550 }
5551
5552 case PERF_EVENT_IOC_SET_OUTPUT:
5553 {
5554 int ret;
5555 if (arg != -1) {
5556 struct perf_event *output_event;
5557 struct fd output;
5558 ret = perf_fget_light(arg, &output);
5559 if (ret)
5560 return ret;
5561 output_event = output.file->private_data;
5562 ret = perf_event_set_output(event, output_event);
5563 fdput(output);
5564 } else {
5565 ret = perf_event_set_output(event, NULL);
5566 }
5567 return ret;
5568 }
5569
5570 case PERF_EVENT_IOC_SET_FILTER:
5571 return perf_event_set_filter(event, (void __user *)arg);
5572
5573 case PERF_EVENT_IOC_SET_BPF:
5574 return perf_event_set_bpf_prog(event, arg);
5575
5576 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5577 struct perf_buffer *rb;
5578
5579 rcu_read_lock();
5580 rb = rcu_dereference(event->rb);
5581 if (!rb || !rb->nr_pages) {
5582 rcu_read_unlock();
5583 return -EINVAL;
5584 }
5585 rb_toggle_paused(rb, !!arg);
5586 rcu_read_unlock();
5587 return 0;
5588 }
5589
5590 case PERF_EVENT_IOC_QUERY_BPF:
5591 return perf_event_query_prog_array(event, (void __user *)arg);
5592
5593 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5594 struct perf_event_attr new_attr;
5595 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5596 &new_attr);
5597
5598 if (err)
5599 return err;
5600
5601 return perf_event_modify_attr(event, &new_attr);
5602 }
5603 default:
5604 return -ENOTTY;
5605 }
5606
5607 if (flags & PERF_IOC_FLAG_GROUP)
5608 perf_event_for_each(event, func);
5609 else
5610 perf_event_for_each_child(event, func);
5611
5612 return 0;
5613 }
5614
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5615 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5616 {
5617 struct perf_event *event = file->private_data;
5618 struct perf_event_context *ctx;
5619 long ret;
5620
5621 /* Treat ioctl like writes as it is likely a mutating operation. */
5622 ret = security_perf_event_write(event);
5623 if (ret)
5624 return ret;
5625
5626 ctx = perf_event_ctx_lock(event);
5627 ret = _perf_ioctl(event, cmd, arg);
5628 perf_event_ctx_unlock(event, ctx);
5629
5630 return ret;
5631 }
5632
5633 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5634 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5635 unsigned long arg)
5636 {
5637 switch (_IOC_NR(cmd)) {
5638 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5639 case _IOC_NR(PERF_EVENT_IOC_ID):
5640 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5641 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5642 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5643 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5644 cmd &= ~IOCSIZE_MASK;
5645 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5646 }
5647 break;
5648 }
5649 return perf_ioctl(file, cmd, arg);
5650 }
5651 #else
5652 # define perf_compat_ioctl NULL
5653 #endif
5654
perf_event_task_enable(void)5655 int perf_event_task_enable(void)
5656 {
5657 struct perf_event_context *ctx;
5658 struct perf_event *event;
5659
5660 mutex_lock(¤t->perf_event_mutex);
5661 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5662 ctx = perf_event_ctx_lock(event);
5663 perf_event_for_each_child(event, _perf_event_enable);
5664 perf_event_ctx_unlock(event, ctx);
5665 }
5666 mutex_unlock(¤t->perf_event_mutex);
5667
5668 return 0;
5669 }
5670
perf_event_task_disable(void)5671 int perf_event_task_disable(void)
5672 {
5673 struct perf_event_context *ctx;
5674 struct perf_event *event;
5675
5676 mutex_lock(¤t->perf_event_mutex);
5677 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5678 ctx = perf_event_ctx_lock(event);
5679 perf_event_for_each_child(event, _perf_event_disable);
5680 perf_event_ctx_unlock(event, ctx);
5681 }
5682 mutex_unlock(¤t->perf_event_mutex);
5683
5684 return 0;
5685 }
5686
perf_event_index(struct perf_event * event)5687 static int perf_event_index(struct perf_event *event)
5688 {
5689 if (event->hw.state & PERF_HES_STOPPED)
5690 return 0;
5691
5692 if (event->state != PERF_EVENT_STATE_ACTIVE)
5693 return 0;
5694
5695 return event->pmu->event_idx(event);
5696 }
5697
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)5698 static void calc_timer_values(struct perf_event *event,
5699 u64 *now,
5700 u64 *enabled,
5701 u64 *running)
5702 {
5703 u64 ctx_time;
5704
5705 *now = perf_clock();
5706 ctx_time = event->shadow_ctx_time + *now;
5707 __perf_update_times(event, ctx_time, enabled, running);
5708 }
5709
perf_event_init_userpage(struct perf_event * event)5710 static void perf_event_init_userpage(struct perf_event *event)
5711 {
5712 struct perf_event_mmap_page *userpg;
5713 struct perf_buffer *rb;
5714
5715 rcu_read_lock();
5716 rb = rcu_dereference(event->rb);
5717 if (!rb)
5718 goto unlock;
5719
5720 userpg = rb->user_page;
5721
5722 /* Allow new userspace to detect that bit 0 is deprecated */
5723 userpg->cap_bit0_is_deprecated = 1;
5724 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5725 userpg->data_offset = PAGE_SIZE;
5726 userpg->data_size = perf_data_size(rb);
5727
5728 unlock:
5729 rcu_read_unlock();
5730 }
5731
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)5732 void __weak arch_perf_update_userpage(
5733 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5734 {
5735 }
5736
5737 /*
5738 * Callers need to ensure there can be no nesting of this function, otherwise
5739 * the seqlock logic goes bad. We can not serialize this because the arch
5740 * code calls this from NMI context.
5741 */
perf_event_update_userpage(struct perf_event * event)5742 void perf_event_update_userpage(struct perf_event *event)
5743 {
5744 struct perf_event_mmap_page *userpg;
5745 struct perf_buffer *rb;
5746 u64 enabled, running, now;
5747
5748 rcu_read_lock();
5749 rb = rcu_dereference(event->rb);
5750 if (!rb)
5751 goto unlock;
5752
5753 /*
5754 * compute total_time_enabled, total_time_running
5755 * based on snapshot values taken when the event
5756 * was last scheduled in.
5757 *
5758 * we cannot simply called update_context_time()
5759 * because of locking issue as we can be called in
5760 * NMI context
5761 */
5762 calc_timer_values(event, &now, &enabled, &running);
5763
5764 userpg = rb->user_page;
5765 /*
5766 * Disable preemption to guarantee consistent time stamps are stored to
5767 * the user page.
5768 */
5769 preempt_disable();
5770 ++userpg->lock;
5771 barrier();
5772 userpg->index = perf_event_index(event);
5773 userpg->offset = perf_event_count(event);
5774 if (userpg->index)
5775 userpg->offset -= local64_read(&event->hw.prev_count);
5776
5777 userpg->time_enabled = enabled +
5778 atomic64_read(&event->child_total_time_enabled);
5779
5780 userpg->time_running = running +
5781 atomic64_read(&event->child_total_time_running);
5782
5783 arch_perf_update_userpage(event, userpg, now);
5784
5785 barrier();
5786 ++userpg->lock;
5787 preempt_enable();
5788 unlock:
5789 rcu_read_unlock();
5790 }
5791 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5792
perf_mmap_fault(struct vm_fault * vmf)5793 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5794 {
5795 struct perf_event *event = vmf->vma->vm_file->private_data;
5796 struct perf_buffer *rb;
5797 vm_fault_t ret = VM_FAULT_SIGBUS;
5798
5799 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5800 if (vmf->pgoff == 0)
5801 ret = 0;
5802 return ret;
5803 }
5804
5805 rcu_read_lock();
5806 rb = rcu_dereference(event->rb);
5807 if (!rb)
5808 goto unlock;
5809
5810 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5811 goto unlock;
5812
5813 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5814 if (!vmf->page)
5815 goto unlock;
5816
5817 get_page(vmf->page);
5818 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5819 vmf->page->index = vmf->pgoff;
5820
5821 ret = 0;
5822 unlock:
5823 rcu_read_unlock();
5824
5825 return ret;
5826 }
5827
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)5828 static void ring_buffer_attach(struct perf_event *event,
5829 struct perf_buffer *rb)
5830 {
5831 struct perf_buffer *old_rb = NULL;
5832 unsigned long flags;
5833
5834 WARN_ON_ONCE(event->parent);
5835
5836 if (event->rb) {
5837 /*
5838 * Should be impossible, we set this when removing
5839 * event->rb_entry and wait/clear when adding event->rb_entry.
5840 */
5841 WARN_ON_ONCE(event->rcu_pending);
5842
5843 old_rb = event->rb;
5844 spin_lock_irqsave(&old_rb->event_lock, flags);
5845 list_del_rcu(&event->rb_entry);
5846 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5847
5848 event->rcu_batches = get_state_synchronize_rcu();
5849 event->rcu_pending = 1;
5850 }
5851
5852 if (rb) {
5853 if (event->rcu_pending) {
5854 cond_synchronize_rcu(event->rcu_batches);
5855 event->rcu_pending = 0;
5856 }
5857
5858 spin_lock_irqsave(&rb->event_lock, flags);
5859 list_add_rcu(&event->rb_entry, &rb->event_list);
5860 spin_unlock_irqrestore(&rb->event_lock, flags);
5861 }
5862
5863 /*
5864 * Avoid racing with perf_mmap_close(AUX): stop the event
5865 * before swizzling the event::rb pointer; if it's getting
5866 * unmapped, its aux_mmap_count will be 0 and it won't
5867 * restart. See the comment in __perf_pmu_output_stop().
5868 *
5869 * Data will inevitably be lost when set_output is done in
5870 * mid-air, but then again, whoever does it like this is
5871 * not in for the data anyway.
5872 */
5873 if (has_aux(event))
5874 perf_event_stop(event, 0);
5875
5876 rcu_assign_pointer(event->rb, rb);
5877
5878 if (old_rb) {
5879 ring_buffer_put(old_rb);
5880 /*
5881 * Since we detached before setting the new rb, so that we
5882 * could attach the new rb, we could have missed a wakeup.
5883 * Provide it now.
5884 */
5885 wake_up_all(&event->waitq);
5886 }
5887 }
5888
ring_buffer_wakeup(struct perf_event * event)5889 static void ring_buffer_wakeup(struct perf_event *event)
5890 {
5891 struct perf_buffer *rb;
5892
5893 if (event->parent)
5894 event = event->parent;
5895
5896 rcu_read_lock();
5897 rb = rcu_dereference(event->rb);
5898 if (rb) {
5899 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5900 wake_up_all(&event->waitq);
5901 }
5902 rcu_read_unlock();
5903 }
5904
ring_buffer_get(struct perf_event * event)5905 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5906 {
5907 struct perf_buffer *rb;
5908
5909 if (event->parent)
5910 event = event->parent;
5911
5912 rcu_read_lock();
5913 rb = rcu_dereference(event->rb);
5914 if (rb) {
5915 if (!refcount_inc_not_zero(&rb->refcount))
5916 rb = NULL;
5917 }
5918 rcu_read_unlock();
5919
5920 return rb;
5921 }
5922
ring_buffer_put(struct perf_buffer * rb)5923 void ring_buffer_put(struct perf_buffer *rb)
5924 {
5925 if (!refcount_dec_and_test(&rb->refcount))
5926 return;
5927
5928 WARN_ON_ONCE(!list_empty(&rb->event_list));
5929
5930 call_rcu(&rb->rcu_head, rb_free_rcu);
5931 }
5932
perf_mmap_open(struct vm_area_struct * vma)5933 static void perf_mmap_open(struct vm_area_struct *vma)
5934 {
5935 struct perf_event *event = vma->vm_file->private_data;
5936
5937 atomic_inc(&event->mmap_count);
5938 atomic_inc(&event->rb->mmap_count);
5939
5940 if (vma->vm_pgoff)
5941 atomic_inc(&event->rb->aux_mmap_count);
5942
5943 if (event->pmu->event_mapped)
5944 event->pmu->event_mapped(event, vma->vm_mm);
5945 }
5946
5947 static void perf_pmu_output_stop(struct perf_event *event);
5948
5949 /*
5950 * A buffer can be mmap()ed multiple times; either directly through the same
5951 * event, or through other events by use of perf_event_set_output().
5952 *
5953 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5954 * the buffer here, where we still have a VM context. This means we need
5955 * to detach all events redirecting to us.
5956 */
perf_mmap_close(struct vm_area_struct * vma)5957 static void perf_mmap_close(struct vm_area_struct *vma)
5958 {
5959 struct perf_event *event = vma->vm_file->private_data;
5960 struct perf_buffer *rb = ring_buffer_get(event);
5961 struct user_struct *mmap_user = rb->mmap_user;
5962 int mmap_locked = rb->mmap_locked;
5963 unsigned long size = perf_data_size(rb);
5964 bool detach_rest = false;
5965
5966 if (event->pmu->event_unmapped)
5967 event->pmu->event_unmapped(event, vma->vm_mm);
5968
5969 /*
5970 * rb->aux_mmap_count will always drop before rb->mmap_count and
5971 * event->mmap_count, so it is ok to use event->mmap_mutex to
5972 * serialize with perf_mmap here.
5973 */
5974 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5975 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5976 /*
5977 * Stop all AUX events that are writing to this buffer,
5978 * so that we can free its AUX pages and corresponding PMU
5979 * data. Note that after rb::aux_mmap_count dropped to zero,
5980 * they won't start any more (see perf_aux_output_begin()).
5981 */
5982 perf_pmu_output_stop(event);
5983
5984 /* now it's safe to free the pages */
5985 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5986 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5987
5988 /* this has to be the last one */
5989 rb_free_aux(rb);
5990 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5991
5992 mutex_unlock(&event->mmap_mutex);
5993 }
5994
5995 if (atomic_dec_and_test(&rb->mmap_count))
5996 detach_rest = true;
5997
5998 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5999 goto out_put;
6000
6001 ring_buffer_attach(event, NULL);
6002 mutex_unlock(&event->mmap_mutex);
6003
6004 /* If there's still other mmap()s of this buffer, we're done. */
6005 if (!detach_rest)
6006 goto out_put;
6007
6008 /*
6009 * No other mmap()s, detach from all other events that might redirect
6010 * into the now unreachable buffer. Somewhat complicated by the
6011 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6012 */
6013 again:
6014 rcu_read_lock();
6015 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6016 if (!atomic_long_inc_not_zero(&event->refcount)) {
6017 /*
6018 * This event is en-route to free_event() which will
6019 * detach it and remove it from the list.
6020 */
6021 continue;
6022 }
6023 rcu_read_unlock();
6024
6025 mutex_lock(&event->mmap_mutex);
6026 /*
6027 * Check we didn't race with perf_event_set_output() which can
6028 * swizzle the rb from under us while we were waiting to
6029 * acquire mmap_mutex.
6030 *
6031 * If we find a different rb; ignore this event, a next
6032 * iteration will no longer find it on the list. We have to
6033 * still restart the iteration to make sure we're not now
6034 * iterating the wrong list.
6035 */
6036 if (event->rb == rb)
6037 ring_buffer_attach(event, NULL);
6038
6039 mutex_unlock(&event->mmap_mutex);
6040 put_event(event);
6041
6042 /*
6043 * Restart the iteration; either we're on the wrong list or
6044 * destroyed its integrity by doing a deletion.
6045 */
6046 goto again;
6047 }
6048 rcu_read_unlock();
6049
6050 /*
6051 * It could be there's still a few 0-ref events on the list; they'll
6052 * get cleaned up by free_event() -- they'll also still have their
6053 * ref on the rb and will free it whenever they are done with it.
6054 *
6055 * Aside from that, this buffer is 'fully' detached and unmapped,
6056 * undo the VM accounting.
6057 */
6058
6059 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6060 &mmap_user->locked_vm);
6061 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6062 free_uid(mmap_user);
6063
6064 out_put:
6065 ring_buffer_put(rb); /* could be last */
6066 }
6067
6068 static const struct vm_operations_struct perf_mmap_vmops = {
6069 .open = perf_mmap_open,
6070 .close = perf_mmap_close, /* non mergeable */
6071 .fault = perf_mmap_fault,
6072 .page_mkwrite = perf_mmap_fault,
6073 };
6074
perf_mmap(struct file * file,struct vm_area_struct * vma)6075 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6076 {
6077 struct perf_event *event = file->private_data;
6078 unsigned long user_locked, user_lock_limit;
6079 struct user_struct *user = current_user();
6080 struct perf_buffer *rb = NULL;
6081 unsigned long locked, lock_limit;
6082 unsigned long vma_size;
6083 unsigned long nr_pages;
6084 long user_extra = 0, extra = 0;
6085 int ret = 0, flags = 0;
6086
6087 /*
6088 * Don't allow mmap() of inherited per-task counters. This would
6089 * create a performance issue due to all children writing to the
6090 * same rb.
6091 */
6092 if (event->cpu == -1 && event->attr.inherit)
6093 return -EINVAL;
6094
6095 if (!(vma->vm_flags & VM_SHARED))
6096 return -EINVAL;
6097
6098 ret = security_perf_event_read(event);
6099 if (ret)
6100 return ret;
6101
6102 vma_size = vma->vm_end - vma->vm_start;
6103
6104 if (vma->vm_pgoff == 0) {
6105 nr_pages = (vma_size / PAGE_SIZE) - 1;
6106 } else {
6107 /*
6108 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6109 * mapped, all subsequent mappings should have the same size
6110 * and offset. Must be above the normal perf buffer.
6111 */
6112 u64 aux_offset, aux_size;
6113
6114 if (!event->rb)
6115 return -EINVAL;
6116
6117 nr_pages = vma_size / PAGE_SIZE;
6118
6119 mutex_lock(&event->mmap_mutex);
6120 ret = -EINVAL;
6121
6122 rb = event->rb;
6123 if (!rb)
6124 goto aux_unlock;
6125
6126 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6127 aux_size = READ_ONCE(rb->user_page->aux_size);
6128
6129 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6130 goto aux_unlock;
6131
6132 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6133 goto aux_unlock;
6134
6135 /* already mapped with a different offset */
6136 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6137 goto aux_unlock;
6138
6139 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6140 goto aux_unlock;
6141
6142 /* already mapped with a different size */
6143 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6144 goto aux_unlock;
6145
6146 if (!is_power_of_2(nr_pages))
6147 goto aux_unlock;
6148
6149 if (!atomic_inc_not_zero(&rb->mmap_count))
6150 goto aux_unlock;
6151
6152 if (rb_has_aux(rb)) {
6153 atomic_inc(&rb->aux_mmap_count);
6154 ret = 0;
6155 goto unlock;
6156 }
6157
6158 atomic_set(&rb->aux_mmap_count, 1);
6159 user_extra = nr_pages;
6160
6161 goto accounting;
6162 }
6163
6164 /*
6165 * If we have rb pages ensure they're a power-of-two number, so we
6166 * can do bitmasks instead of modulo.
6167 */
6168 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6169 return -EINVAL;
6170
6171 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6172 return -EINVAL;
6173
6174 WARN_ON_ONCE(event->ctx->parent_ctx);
6175 again:
6176 mutex_lock(&event->mmap_mutex);
6177 if (event->rb) {
6178 if (data_page_nr(event->rb) != nr_pages) {
6179 ret = -EINVAL;
6180 goto unlock;
6181 }
6182
6183 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6184 /*
6185 * Raced against perf_mmap_close(); remove the
6186 * event and try again.
6187 */
6188 ring_buffer_attach(event, NULL);
6189 mutex_unlock(&event->mmap_mutex);
6190 goto again;
6191 }
6192
6193 goto unlock;
6194 }
6195
6196 user_extra = nr_pages + 1;
6197
6198 accounting:
6199 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6200
6201 /*
6202 * Increase the limit linearly with more CPUs:
6203 */
6204 user_lock_limit *= num_online_cpus();
6205
6206 user_locked = atomic_long_read(&user->locked_vm);
6207
6208 /*
6209 * sysctl_perf_event_mlock may have changed, so that
6210 * user->locked_vm > user_lock_limit
6211 */
6212 if (user_locked > user_lock_limit)
6213 user_locked = user_lock_limit;
6214 user_locked += user_extra;
6215
6216 if (user_locked > user_lock_limit) {
6217 /*
6218 * charge locked_vm until it hits user_lock_limit;
6219 * charge the rest from pinned_vm
6220 */
6221 extra = user_locked - user_lock_limit;
6222 user_extra -= extra;
6223 }
6224
6225 lock_limit = rlimit(RLIMIT_MEMLOCK);
6226 lock_limit >>= PAGE_SHIFT;
6227 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6228
6229 if ((locked > lock_limit) && perf_is_paranoid() &&
6230 !capable(CAP_IPC_LOCK)) {
6231 ret = -EPERM;
6232 goto unlock;
6233 }
6234
6235 WARN_ON(!rb && event->rb);
6236
6237 if (vma->vm_flags & VM_WRITE)
6238 flags |= RING_BUFFER_WRITABLE;
6239
6240 if (!rb) {
6241 rb = rb_alloc(nr_pages,
6242 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6243 event->cpu, flags);
6244
6245 if (!rb) {
6246 ret = -ENOMEM;
6247 goto unlock;
6248 }
6249
6250 atomic_set(&rb->mmap_count, 1);
6251 rb->mmap_user = get_current_user();
6252 rb->mmap_locked = extra;
6253
6254 ring_buffer_attach(event, rb);
6255
6256 perf_event_update_time(event);
6257 perf_set_shadow_time(event, event->ctx);
6258 perf_event_init_userpage(event);
6259 perf_event_update_userpage(event);
6260 } else {
6261 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6262 event->attr.aux_watermark, flags);
6263 if (!ret)
6264 rb->aux_mmap_locked = extra;
6265 }
6266
6267 unlock:
6268 if (!ret) {
6269 atomic_long_add(user_extra, &user->locked_vm);
6270 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6271
6272 atomic_inc(&event->mmap_count);
6273 } else if (rb) {
6274 atomic_dec(&rb->mmap_count);
6275 }
6276 aux_unlock:
6277 mutex_unlock(&event->mmap_mutex);
6278
6279 /*
6280 * Since pinned accounting is per vm we cannot allow fork() to copy our
6281 * vma.
6282 */
6283 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6284 vma->vm_ops = &perf_mmap_vmops;
6285
6286 if (event->pmu->event_mapped)
6287 event->pmu->event_mapped(event, vma->vm_mm);
6288
6289 return ret;
6290 }
6291
perf_fasync(int fd,struct file * filp,int on)6292 static int perf_fasync(int fd, struct file *filp, int on)
6293 {
6294 struct inode *inode = file_inode(filp);
6295 struct perf_event *event = filp->private_data;
6296 int retval;
6297
6298 inode_lock(inode);
6299 retval = fasync_helper(fd, filp, on, &event->fasync);
6300 inode_unlock(inode);
6301
6302 if (retval < 0)
6303 return retval;
6304
6305 return 0;
6306 }
6307
6308 static const struct file_operations perf_fops = {
6309 .llseek = no_llseek,
6310 .release = perf_release,
6311 .read = perf_read,
6312 .poll = perf_poll,
6313 .unlocked_ioctl = perf_ioctl,
6314 .compat_ioctl = perf_compat_ioctl,
6315 .mmap = perf_mmap,
6316 .fasync = perf_fasync,
6317 };
6318
6319 /*
6320 * Perf event wakeup
6321 *
6322 * If there's data, ensure we set the poll() state and publish everything
6323 * to user-space before waking everybody up.
6324 */
6325
perf_event_fasync(struct perf_event * event)6326 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6327 {
6328 /* only the parent has fasync state */
6329 if (event->parent)
6330 event = event->parent;
6331 return &event->fasync;
6332 }
6333
perf_event_wakeup(struct perf_event * event)6334 void perf_event_wakeup(struct perf_event *event)
6335 {
6336 ring_buffer_wakeup(event);
6337
6338 if (event->pending_kill) {
6339 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6340 event->pending_kill = 0;
6341 }
6342 }
6343
perf_pending_event_disable(struct perf_event * event)6344 static void perf_pending_event_disable(struct perf_event *event)
6345 {
6346 int cpu = READ_ONCE(event->pending_disable);
6347
6348 if (cpu < 0)
6349 return;
6350
6351 if (cpu == smp_processor_id()) {
6352 WRITE_ONCE(event->pending_disable, -1);
6353 perf_event_disable_local(event);
6354 return;
6355 }
6356
6357 /*
6358 * CPU-A CPU-B
6359 *
6360 * perf_event_disable_inatomic()
6361 * @pending_disable = CPU-A;
6362 * irq_work_queue();
6363 *
6364 * sched-out
6365 * @pending_disable = -1;
6366 *
6367 * sched-in
6368 * perf_event_disable_inatomic()
6369 * @pending_disable = CPU-B;
6370 * irq_work_queue(); // FAILS
6371 *
6372 * irq_work_run()
6373 * perf_pending_event()
6374 *
6375 * But the event runs on CPU-B and wants disabling there.
6376 */
6377 irq_work_queue_on(&event->pending, cpu);
6378 }
6379
perf_pending_event(struct irq_work * entry)6380 static void perf_pending_event(struct irq_work *entry)
6381 {
6382 struct perf_event *event = container_of(entry, struct perf_event, pending);
6383 int rctx;
6384
6385 rctx = perf_swevent_get_recursion_context();
6386 /*
6387 * If we 'fail' here, that's OK, it means recursion is already disabled
6388 * and we won't recurse 'further'.
6389 */
6390
6391 perf_pending_event_disable(event);
6392
6393 if (event->pending_wakeup) {
6394 event->pending_wakeup = 0;
6395 perf_event_wakeup(event);
6396 }
6397
6398 if (rctx >= 0)
6399 perf_swevent_put_recursion_context(rctx);
6400 }
6401
6402 /*
6403 * We assume there is only KVM supporting the callbacks.
6404 * Later on, we might change it to a list if there is
6405 * another virtualization implementation supporting the callbacks.
6406 */
6407 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6408
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6409 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6410 {
6411 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6412 return -EBUSY;
6413
6414 rcu_assign_pointer(perf_guest_cbs, cbs);
6415 return 0;
6416 }
6417 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6418
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6419 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6420 {
6421 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6422 return -EINVAL;
6423
6424 rcu_assign_pointer(perf_guest_cbs, NULL);
6425 synchronize_rcu();
6426 return 0;
6427 }
6428 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6429
6430 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6431 perf_output_sample_regs(struct perf_output_handle *handle,
6432 struct pt_regs *regs, u64 mask)
6433 {
6434 int bit;
6435 DECLARE_BITMAP(_mask, 64);
6436
6437 bitmap_from_u64(_mask, mask);
6438 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6439 u64 val;
6440
6441 val = perf_reg_value(regs, bit);
6442 perf_output_put(handle, val);
6443 }
6444 }
6445
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6446 static void perf_sample_regs_user(struct perf_regs *regs_user,
6447 struct pt_regs *regs)
6448 {
6449 if (user_mode(regs)) {
6450 regs_user->abi = perf_reg_abi(current);
6451 regs_user->regs = regs;
6452 } else if (!(current->flags & PF_KTHREAD)) {
6453 perf_get_regs_user(regs_user, regs);
6454 } else {
6455 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6456 regs_user->regs = NULL;
6457 }
6458 }
6459
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6460 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6461 struct pt_regs *regs)
6462 {
6463 regs_intr->regs = regs;
6464 regs_intr->abi = perf_reg_abi(current);
6465 }
6466
6467
6468 /*
6469 * Get remaining task size from user stack pointer.
6470 *
6471 * It'd be better to take stack vma map and limit this more
6472 * precisely, but there's no way to get it safely under interrupt,
6473 * so using TASK_SIZE as limit.
6474 */
perf_ustack_task_size(struct pt_regs * regs)6475 static u64 perf_ustack_task_size(struct pt_regs *regs)
6476 {
6477 unsigned long addr = perf_user_stack_pointer(regs);
6478
6479 if (!addr || addr >= TASK_SIZE)
6480 return 0;
6481
6482 return TASK_SIZE - addr;
6483 }
6484
6485 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6486 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6487 struct pt_regs *regs)
6488 {
6489 u64 task_size;
6490
6491 /* No regs, no stack pointer, no dump. */
6492 if (!regs)
6493 return 0;
6494
6495 /*
6496 * Check if we fit in with the requested stack size into the:
6497 * - TASK_SIZE
6498 * If we don't, we limit the size to the TASK_SIZE.
6499 *
6500 * - remaining sample size
6501 * If we don't, we customize the stack size to
6502 * fit in to the remaining sample size.
6503 */
6504
6505 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6506 stack_size = min(stack_size, (u16) task_size);
6507
6508 /* Current header size plus static size and dynamic size. */
6509 header_size += 2 * sizeof(u64);
6510
6511 /* Do we fit in with the current stack dump size? */
6512 if ((u16) (header_size + stack_size) < header_size) {
6513 /*
6514 * If we overflow the maximum size for the sample,
6515 * we customize the stack dump size to fit in.
6516 */
6517 stack_size = USHRT_MAX - header_size - sizeof(u64);
6518 stack_size = round_up(stack_size, sizeof(u64));
6519 }
6520
6521 return stack_size;
6522 }
6523
6524 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6525 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6526 struct pt_regs *regs)
6527 {
6528 /* Case of a kernel thread, nothing to dump */
6529 if (!regs) {
6530 u64 size = 0;
6531 perf_output_put(handle, size);
6532 } else {
6533 unsigned long sp;
6534 unsigned int rem;
6535 u64 dyn_size;
6536 mm_segment_t fs;
6537
6538 /*
6539 * We dump:
6540 * static size
6541 * - the size requested by user or the best one we can fit
6542 * in to the sample max size
6543 * data
6544 * - user stack dump data
6545 * dynamic size
6546 * - the actual dumped size
6547 */
6548
6549 /* Static size. */
6550 perf_output_put(handle, dump_size);
6551
6552 /* Data. */
6553 sp = perf_user_stack_pointer(regs);
6554 fs = force_uaccess_begin();
6555 rem = __output_copy_user(handle, (void *) sp, dump_size);
6556 force_uaccess_end(fs);
6557 dyn_size = dump_size - rem;
6558
6559 perf_output_skip(handle, rem);
6560
6561 /* Dynamic size. */
6562 perf_output_put(handle, dyn_size);
6563 }
6564 }
6565
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)6566 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6567 struct perf_sample_data *data,
6568 size_t size)
6569 {
6570 struct perf_event *sampler = event->aux_event;
6571 struct perf_buffer *rb;
6572
6573 data->aux_size = 0;
6574
6575 if (!sampler)
6576 goto out;
6577
6578 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6579 goto out;
6580
6581 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6582 goto out;
6583
6584 rb = ring_buffer_get(sampler);
6585 if (!rb)
6586 goto out;
6587
6588 /*
6589 * If this is an NMI hit inside sampling code, don't take
6590 * the sample. See also perf_aux_sample_output().
6591 */
6592 if (READ_ONCE(rb->aux_in_sampling)) {
6593 data->aux_size = 0;
6594 } else {
6595 size = min_t(size_t, size, perf_aux_size(rb));
6596 data->aux_size = ALIGN(size, sizeof(u64));
6597 }
6598 ring_buffer_put(rb);
6599
6600 out:
6601 return data->aux_size;
6602 }
6603
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)6604 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6605 struct perf_event *event,
6606 struct perf_output_handle *handle,
6607 unsigned long size)
6608 {
6609 unsigned long flags;
6610 long ret;
6611
6612 /*
6613 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6614 * paths. If we start calling them in NMI context, they may race with
6615 * the IRQ ones, that is, for example, re-starting an event that's just
6616 * been stopped, which is why we're using a separate callback that
6617 * doesn't change the event state.
6618 *
6619 * IRQs need to be disabled to prevent IPIs from racing with us.
6620 */
6621 local_irq_save(flags);
6622 /*
6623 * Guard against NMI hits inside the critical section;
6624 * see also perf_prepare_sample_aux().
6625 */
6626 WRITE_ONCE(rb->aux_in_sampling, 1);
6627 barrier();
6628
6629 ret = event->pmu->snapshot_aux(event, handle, size);
6630
6631 barrier();
6632 WRITE_ONCE(rb->aux_in_sampling, 0);
6633 local_irq_restore(flags);
6634
6635 return ret;
6636 }
6637
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)6638 static void perf_aux_sample_output(struct perf_event *event,
6639 struct perf_output_handle *handle,
6640 struct perf_sample_data *data)
6641 {
6642 struct perf_event *sampler = event->aux_event;
6643 struct perf_buffer *rb;
6644 unsigned long pad;
6645 long size;
6646
6647 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6648 return;
6649
6650 rb = ring_buffer_get(sampler);
6651 if (!rb)
6652 return;
6653
6654 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6655
6656 /*
6657 * An error here means that perf_output_copy() failed (returned a
6658 * non-zero surplus that it didn't copy), which in its current
6659 * enlightened implementation is not possible. If that changes, we'd
6660 * like to know.
6661 */
6662 if (WARN_ON_ONCE(size < 0))
6663 goto out_put;
6664
6665 /*
6666 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6667 * perf_prepare_sample_aux(), so should not be more than that.
6668 */
6669 pad = data->aux_size - size;
6670 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6671 pad = 8;
6672
6673 if (pad) {
6674 u64 zero = 0;
6675 perf_output_copy(handle, &zero, pad);
6676 }
6677
6678 out_put:
6679 ring_buffer_put(rb);
6680 }
6681
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6682 static void __perf_event_header__init_id(struct perf_event_header *header,
6683 struct perf_sample_data *data,
6684 struct perf_event *event)
6685 {
6686 u64 sample_type = event->attr.sample_type;
6687
6688 data->type = sample_type;
6689 header->size += event->id_header_size;
6690
6691 if (sample_type & PERF_SAMPLE_TID) {
6692 /* namespace issues */
6693 data->tid_entry.pid = perf_event_pid(event, current);
6694 data->tid_entry.tid = perf_event_tid(event, current);
6695 }
6696
6697 if (sample_type & PERF_SAMPLE_TIME)
6698 data->time = perf_event_clock(event);
6699
6700 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6701 data->id = primary_event_id(event);
6702
6703 if (sample_type & PERF_SAMPLE_STREAM_ID)
6704 data->stream_id = event->id;
6705
6706 if (sample_type & PERF_SAMPLE_CPU) {
6707 data->cpu_entry.cpu = raw_smp_processor_id();
6708 data->cpu_entry.reserved = 0;
6709 }
6710 }
6711
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6712 void perf_event_header__init_id(struct perf_event_header *header,
6713 struct perf_sample_data *data,
6714 struct perf_event *event)
6715 {
6716 if (event->attr.sample_id_all)
6717 __perf_event_header__init_id(header, data, event);
6718 }
6719
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)6720 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6721 struct perf_sample_data *data)
6722 {
6723 u64 sample_type = data->type;
6724
6725 if (sample_type & PERF_SAMPLE_TID)
6726 perf_output_put(handle, data->tid_entry);
6727
6728 if (sample_type & PERF_SAMPLE_TIME)
6729 perf_output_put(handle, data->time);
6730
6731 if (sample_type & PERF_SAMPLE_ID)
6732 perf_output_put(handle, data->id);
6733
6734 if (sample_type & PERF_SAMPLE_STREAM_ID)
6735 perf_output_put(handle, data->stream_id);
6736
6737 if (sample_type & PERF_SAMPLE_CPU)
6738 perf_output_put(handle, data->cpu_entry);
6739
6740 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6741 perf_output_put(handle, data->id);
6742 }
6743
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)6744 void perf_event__output_id_sample(struct perf_event *event,
6745 struct perf_output_handle *handle,
6746 struct perf_sample_data *sample)
6747 {
6748 if (event->attr.sample_id_all)
6749 __perf_event__output_id_sample(handle, sample);
6750 }
6751
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6752 static void perf_output_read_one(struct perf_output_handle *handle,
6753 struct perf_event *event,
6754 u64 enabled, u64 running)
6755 {
6756 u64 read_format = event->attr.read_format;
6757 u64 values[4];
6758 int n = 0;
6759
6760 values[n++] = perf_event_count(event);
6761 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6762 values[n++] = enabled +
6763 atomic64_read(&event->child_total_time_enabled);
6764 }
6765 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6766 values[n++] = running +
6767 atomic64_read(&event->child_total_time_running);
6768 }
6769 if (read_format & PERF_FORMAT_ID)
6770 values[n++] = primary_event_id(event);
6771
6772 __output_copy(handle, values, n * sizeof(u64));
6773 }
6774
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6775 static void perf_output_read_group(struct perf_output_handle *handle,
6776 struct perf_event *event,
6777 u64 enabled, u64 running)
6778 {
6779 struct perf_event *leader = event->group_leader, *sub;
6780 u64 read_format = event->attr.read_format;
6781 u64 values[5];
6782 int n = 0;
6783
6784 values[n++] = 1 + leader->nr_siblings;
6785
6786 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6787 values[n++] = enabled;
6788
6789 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6790 values[n++] = running;
6791
6792 if ((leader != event) &&
6793 (leader->state == PERF_EVENT_STATE_ACTIVE))
6794 leader->pmu->read(leader);
6795
6796 values[n++] = perf_event_count(leader);
6797 if (read_format & PERF_FORMAT_ID)
6798 values[n++] = primary_event_id(leader);
6799
6800 __output_copy(handle, values, n * sizeof(u64));
6801
6802 for_each_sibling_event(sub, leader) {
6803 n = 0;
6804
6805 if ((sub != event) &&
6806 (sub->state == PERF_EVENT_STATE_ACTIVE))
6807 sub->pmu->read(sub);
6808
6809 values[n++] = perf_event_count(sub);
6810 if (read_format & PERF_FORMAT_ID)
6811 values[n++] = primary_event_id(sub);
6812
6813 __output_copy(handle, values, n * sizeof(u64));
6814 }
6815 }
6816
6817 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6818 PERF_FORMAT_TOTAL_TIME_RUNNING)
6819
6820 /*
6821 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6822 *
6823 * The problem is that its both hard and excessively expensive to iterate the
6824 * child list, not to mention that its impossible to IPI the children running
6825 * on another CPU, from interrupt/NMI context.
6826 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)6827 static void perf_output_read(struct perf_output_handle *handle,
6828 struct perf_event *event)
6829 {
6830 u64 enabled = 0, running = 0, now;
6831 u64 read_format = event->attr.read_format;
6832
6833 /*
6834 * compute total_time_enabled, total_time_running
6835 * based on snapshot values taken when the event
6836 * was last scheduled in.
6837 *
6838 * we cannot simply called update_context_time()
6839 * because of locking issue as we are called in
6840 * NMI context
6841 */
6842 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6843 calc_timer_values(event, &now, &enabled, &running);
6844
6845 if (event->attr.read_format & PERF_FORMAT_GROUP)
6846 perf_output_read_group(handle, event, enabled, running);
6847 else
6848 perf_output_read_one(handle, event, enabled, running);
6849 }
6850
perf_sample_save_hw_index(struct perf_event * event)6851 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6852 {
6853 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6854 }
6855
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6856 void perf_output_sample(struct perf_output_handle *handle,
6857 struct perf_event_header *header,
6858 struct perf_sample_data *data,
6859 struct perf_event *event)
6860 {
6861 u64 sample_type = data->type;
6862
6863 perf_output_put(handle, *header);
6864
6865 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6866 perf_output_put(handle, data->id);
6867
6868 if (sample_type & PERF_SAMPLE_IP)
6869 perf_output_put(handle, data->ip);
6870
6871 if (sample_type & PERF_SAMPLE_TID)
6872 perf_output_put(handle, data->tid_entry);
6873
6874 if (sample_type & PERF_SAMPLE_TIME)
6875 perf_output_put(handle, data->time);
6876
6877 if (sample_type & PERF_SAMPLE_ADDR)
6878 perf_output_put(handle, data->addr);
6879
6880 if (sample_type & PERF_SAMPLE_ID)
6881 perf_output_put(handle, data->id);
6882
6883 if (sample_type & PERF_SAMPLE_STREAM_ID)
6884 perf_output_put(handle, data->stream_id);
6885
6886 if (sample_type & PERF_SAMPLE_CPU)
6887 perf_output_put(handle, data->cpu_entry);
6888
6889 if (sample_type & PERF_SAMPLE_PERIOD)
6890 perf_output_put(handle, data->period);
6891
6892 if (sample_type & PERF_SAMPLE_READ)
6893 perf_output_read(handle, event);
6894
6895 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6896 int size = 1;
6897
6898 size += data->callchain->nr;
6899 size *= sizeof(u64);
6900 __output_copy(handle, data->callchain, size);
6901 }
6902
6903 if (sample_type & PERF_SAMPLE_RAW) {
6904 struct perf_raw_record *raw = data->raw;
6905
6906 if (raw) {
6907 struct perf_raw_frag *frag = &raw->frag;
6908
6909 perf_output_put(handle, raw->size);
6910 do {
6911 if (frag->copy) {
6912 __output_custom(handle, frag->copy,
6913 frag->data, frag->size);
6914 } else {
6915 __output_copy(handle, frag->data,
6916 frag->size);
6917 }
6918 if (perf_raw_frag_last(frag))
6919 break;
6920 frag = frag->next;
6921 } while (1);
6922 if (frag->pad)
6923 __output_skip(handle, NULL, frag->pad);
6924 } else {
6925 struct {
6926 u32 size;
6927 u32 data;
6928 } raw = {
6929 .size = sizeof(u32),
6930 .data = 0,
6931 };
6932 perf_output_put(handle, raw);
6933 }
6934 }
6935
6936 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6937 if (data->br_stack) {
6938 size_t size;
6939
6940 size = data->br_stack->nr
6941 * sizeof(struct perf_branch_entry);
6942
6943 perf_output_put(handle, data->br_stack->nr);
6944 if (perf_sample_save_hw_index(event))
6945 perf_output_put(handle, data->br_stack->hw_idx);
6946 perf_output_copy(handle, data->br_stack->entries, size);
6947 } else {
6948 /*
6949 * we always store at least the value of nr
6950 */
6951 u64 nr = 0;
6952 perf_output_put(handle, nr);
6953 }
6954 }
6955
6956 if (sample_type & PERF_SAMPLE_REGS_USER) {
6957 u64 abi = data->regs_user.abi;
6958
6959 /*
6960 * If there are no regs to dump, notice it through
6961 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6962 */
6963 perf_output_put(handle, abi);
6964
6965 if (abi) {
6966 u64 mask = event->attr.sample_regs_user;
6967 perf_output_sample_regs(handle,
6968 data->regs_user.regs,
6969 mask);
6970 }
6971 }
6972
6973 if (sample_type & PERF_SAMPLE_STACK_USER) {
6974 perf_output_sample_ustack(handle,
6975 data->stack_user_size,
6976 data->regs_user.regs);
6977 }
6978
6979 if (sample_type & PERF_SAMPLE_WEIGHT)
6980 perf_output_put(handle, data->weight);
6981
6982 if (sample_type & PERF_SAMPLE_DATA_SRC)
6983 perf_output_put(handle, data->data_src.val);
6984
6985 if (sample_type & PERF_SAMPLE_TRANSACTION)
6986 perf_output_put(handle, data->txn);
6987
6988 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6989 u64 abi = data->regs_intr.abi;
6990 /*
6991 * If there are no regs to dump, notice it through
6992 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6993 */
6994 perf_output_put(handle, abi);
6995
6996 if (abi) {
6997 u64 mask = event->attr.sample_regs_intr;
6998
6999 perf_output_sample_regs(handle,
7000 data->regs_intr.regs,
7001 mask);
7002 }
7003 }
7004
7005 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7006 perf_output_put(handle, data->phys_addr);
7007
7008 if (sample_type & PERF_SAMPLE_CGROUP)
7009 perf_output_put(handle, data->cgroup);
7010
7011 if (sample_type & PERF_SAMPLE_AUX) {
7012 perf_output_put(handle, data->aux_size);
7013
7014 if (data->aux_size)
7015 perf_aux_sample_output(event, handle, data);
7016 }
7017
7018 if (!event->attr.watermark) {
7019 int wakeup_events = event->attr.wakeup_events;
7020
7021 if (wakeup_events) {
7022 struct perf_buffer *rb = handle->rb;
7023 int events = local_inc_return(&rb->events);
7024
7025 if (events >= wakeup_events) {
7026 local_sub(wakeup_events, &rb->events);
7027 local_inc(&rb->wakeup);
7028 }
7029 }
7030 }
7031 }
7032
perf_virt_to_phys(u64 virt)7033 static u64 perf_virt_to_phys(u64 virt)
7034 {
7035 u64 phys_addr = 0;
7036
7037 if (!virt)
7038 return 0;
7039
7040 if (virt >= TASK_SIZE) {
7041 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7042 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7043 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7044 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7045 } else {
7046 /*
7047 * Walking the pages tables for user address.
7048 * Interrupts are disabled, so it prevents any tear down
7049 * of the page tables.
7050 * Try IRQ-safe get_user_page_fast_only first.
7051 * If failed, leave phys_addr as 0.
7052 */
7053 if (current->mm != NULL) {
7054 struct page *p;
7055
7056 pagefault_disable();
7057 if (get_user_page_fast_only(virt, 0, &p)) {
7058 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7059 put_page(p);
7060 }
7061 pagefault_enable();
7062 }
7063 }
7064
7065 return phys_addr;
7066 }
7067
7068 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7069
7070 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7071 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7072 {
7073 bool kernel = !event->attr.exclude_callchain_kernel;
7074 bool user = !event->attr.exclude_callchain_user;
7075 /* Disallow cross-task user callchains. */
7076 bool crosstask = event->ctx->task && event->ctx->task != current;
7077 const u32 max_stack = event->attr.sample_max_stack;
7078 struct perf_callchain_entry *callchain;
7079
7080 if (!kernel && !user)
7081 return &__empty_callchain;
7082
7083 callchain = get_perf_callchain(regs, 0, kernel, user,
7084 max_stack, crosstask, true);
7085 return callchain ?: &__empty_callchain;
7086 }
7087
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7088 void perf_prepare_sample(struct perf_event_header *header,
7089 struct perf_sample_data *data,
7090 struct perf_event *event,
7091 struct pt_regs *regs)
7092 {
7093 u64 sample_type = event->attr.sample_type;
7094
7095 header->type = PERF_RECORD_SAMPLE;
7096 header->size = sizeof(*header) + event->header_size;
7097
7098 header->misc = 0;
7099 header->misc |= perf_misc_flags(regs);
7100
7101 __perf_event_header__init_id(header, data, event);
7102
7103 if (sample_type & PERF_SAMPLE_IP)
7104 data->ip = perf_instruction_pointer(regs);
7105
7106 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7107 int size = 1;
7108
7109 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7110 data->callchain = perf_callchain(event, regs);
7111
7112 size += data->callchain->nr;
7113
7114 header->size += size * sizeof(u64);
7115 }
7116
7117 if (sample_type & PERF_SAMPLE_RAW) {
7118 struct perf_raw_record *raw = data->raw;
7119 int size;
7120
7121 if (raw) {
7122 struct perf_raw_frag *frag = &raw->frag;
7123 u32 sum = 0;
7124
7125 do {
7126 sum += frag->size;
7127 if (perf_raw_frag_last(frag))
7128 break;
7129 frag = frag->next;
7130 } while (1);
7131
7132 size = round_up(sum + sizeof(u32), sizeof(u64));
7133 raw->size = size - sizeof(u32);
7134 frag->pad = raw->size - sum;
7135 } else {
7136 size = sizeof(u64);
7137 }
7138
7139 header->size += size;
7140 }
7141
7142 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7143 int size = sizeof(u64); /* nr */
7144 if (data->br_stack) {
7145 if (perf_sample_save_hw_index(event))
7146 size += sizeof(u64);
7147
7148 size += data->br_stack->nr
7149 * sizeof(struct perf_branch_entry);
7150 }
7151 header->size += size;
7152 }
7153
7154 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7155 perf_sample_regs_user(&data->regs_user, regs);
7156
7157 if (sample_type & PERF_SAMPLE_REGS_USER) {
7158 /* regs dump ABI info */
7159 int size = sizeof(u64);
7160
7161 if (data->regs_user.regs) {
7162 u64 mask = event->attr.sample_regs_user;
7163 size += hweight64(mask) * sizeof(u64);
7164 }
7165
7166 header->size += size;
7167 }
7168
7169 if (sample_type & PERF_SAMPLE_STACK_USER) {
7170 /*
7171 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7172 * processed as the last one or have additional check added
7173 * in case new sample type is added, because we could eat
7174 * up the rest of the sample size.
7175 */
7176 u16 stack_size = event->attr.sample_stack_user;
7177 u16 size = sizeof(u64);
7178
7179 stack_size = perf_sample_ustack_size(stack_size, header->size,
7180 data->regs_user.regs);
7181
7182 /*
7183 * If there is something to dump, add space for the dump
7184 * itself and for the field that tells the dynamic size,
7185 * which is how many have been actually dumped.
7186 */
7187 if (stack_size)
7188 size += sizeof(u64) + stack_size;
7189
7190 data->stack_user_size = stack_size;
7191 header->size += size;
7192 }
7193
7194 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7195 /* regs dump ABI info */
7196 int size = sizeof(u64);
7197
7198 perf_sample_regs_intr(&data->regs_intr, regs);
7199
7200 if (data->regs_intr.regs) {
7201 u64 mask = event->attr.sample_regs_intr;
7202
7203 size += hweight64(mask) * sizeof(u64);
7204 }
7205
7206 header->size += size;
7207 }
7208
7209 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7210 data->phys_addr = perf_virt_to_phys(data->addr);
7211
7212 #ifdef CONFIG_CGROUP_PERF
7213 if (sample_type & PERF_SAMPLE_CGROUP) {
7214 struct cgroup *cgrp;
7215
7216 /* protected by RCU */
7217 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7218 data->cgroup = cgroup_id(cgrp);
7219 }
7220 #endif
7221
7222 if (sample_type & PERF_SAMPLE_AUX) {
7223 u64 size;
7224
7225 header->size += sizeof(u64); /* size */
7226
7227 /*
7228 * Given the 16bit nature of header::size, an AUX sample can
7229 * easily overflow it, what with all the preceding sample bits.
7230 * Make sure this doesn't happen by using up to U16_MAX bytes
7231 * per sample in total (rounded down to 8 byte boundary).
7232 */
7233 size = min_t(size_t, U16_MAX - header->size,
7234 event->attr.aux_sample_size);
7235 size = rounddown(size, 8);
7236 size = perf_prepare_sample_aux(event, data, size);
7237
7238 WARN_ON_ONCE(size + header->size > U16_MAX);
7239 header->size += size;
7240 }
7241 /*
7242 * If you're adding more sample types here, you likely need to do
7243 * something about the overflowing header::size, like repurpose the
7244 * lowest 3 bits of size, which should be always zero at the moment.
7245 * This raises a more important question, do we really need 512k sized
7246 * samples and why, so good argumentation is in order for whatever you
7247 * do here next.
7248 */
7249 WARN_ON_ONCE(header->size & 7);
7250 }
7251
7252 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7253 __perf_event_output(struct perf_event *event,
7254 struct perf_sample_data *data,
7255 struct pt_regs *regs,
7256 int (*output_begin)(struct perf_output_handle *,
7257 struct perf_sample_data *,
7258 struct perf_event *,
7259 unsigned int))
7260 {
7261 struct perf_output_handle handle;
7262 struct perf_event_header header;
7263 int err;
7264
7265 /* protect the callchain buffers */
7266 rcu_read_lock();
7267
7268 perf_prepare_sample(&header, data, event, regs);
7269
7270 err = output_begin(&handle, data, event, header.size);
7271 if (err)
7272 goto exit;
7273
7274 perf_output_sample(&handle, &header, data, event);
7275
7276 perf_output_end(&handle);
7277
7278 exit:
7279 rcu_read_unlock();
7280 return err;
7281 }
7282
7283 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7284 perf_event_output_forward(struct perf_event *event,
7285 struct perf_sample_data *data,
7286 struct pt_regs *regs)
7287 {
7288 __perf_event_output(event, data, regs, perf_output_begin_forward);
7289 }
7290
7291 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7292 perf_event_output_backward(struct perf_event *event,
7293 struct perf_sample_data *data,
7294 struct pt_regs *regs)
7295 {
7296 __perf_event_output(event, data, regs, perf_output_begin_backward);
7297 }
7298
7299 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7300 perf_event_output(struct perf_event *event,
7301 struct perf_sample_data *data,
7302 struct pt_regs *regs)
7303 {
7304 return __perf_event_output(event, data, regs, perf_output_begin);
7305 }
7306
7307 /*
7308 * read event_id
7309 */
7310
7311 struct perf_read_event {
7312 struct perf_event_header header;
7313
7314 u32 pid;
7315 u32 tid;
7316 };
7317
7318 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7319 perf_event_read_event(struct perf_event *event,
7320 struct task_struct *task)
7321 {
7322 struct perf_output_handle handle;
7323 struct perf_sample_data sample;
7324 struct perf_read_event read_event = {
7325 .header = {
7326 .type = PERF_RECORD_READ,
7327 .misc = 0,
7328 .size = sizeof(read_event) + event->read_size,
7329 },
7330 .pid = perf_event_pid(event, task),
7331 .tid = perf_event_tid(event, task),
7332 };
7333 int ret;
7334
7335 perf_event_header__init_id(&read_event.header, &sample, event);
7336 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7337 if (ret)
7338 return;
7339
7340 perf_output_put(&handle, read_event);
7341 perf_output_read(&handle, event);
7342 perf_event__output_id_sample(event, &handle, &sample);
7343
7344 perf_output_end(&handle);
7345 }
7346
7347 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7348
7349 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)7350 perf_iterate_ctx(struct perf_event_context *ctx,
7351 perf_iterate_f output,
7352 void *data, bool all)
7353 {
7354 struct perf_event *event;
7355
7356 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7357 if (!all) {
7358 if (event->state < PERF_EVENT_STATE_INACTIVE)
7359 continue;
7360 if (!event_filter_match(event))
7361 continue;
7362 }
7363
7364 output(event, data);
7365 }
7366 }
7367
perf_iterate_sb_cpu(perf_iterate_f output,void * data)7368 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7369 {
7370 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7371 struct perf_event *event;
7372
7373 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7374 /*
7375 * Skip events that are not fully formed yet; ensure that
7376 * if we observe event->ctx, both event and ctx will be
7377 * complete enough. See perf_install_in_context().
7378 */
7379 if (!smp_load_acquire(&event->ctx))
7380 continue;
7381
7382 if (event->state < PERF_EVENT_STATE_INACTIVE)
7383 continue;
7384 if (!event_filter_match(event))
7385 continue;
7386 output(event, data);
7387 }
7388 }
7389
7390 /*
7391 * Iterate all events that need to receive side-band events.
7392 *
7393 * For new callers; ensure that account_pmu_sb_event() includes
7394 * your event, otherwise it might not get delivered.
7395 */
7396 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)7397 perf_iterate_sb(perf_iterate_f output, void *data,
7398 struct perf_event_context *task_ctx)
7399 {
7400 struct perf_event_context *ctx;
7401 int ctxn;
7402
7403 rcu_read_lock();
7404 preempt_disable();
7405
7406 /*
7407 * If we have task_ctx != NULL we only notify the task context itself.
7408 * The task_ctx is set only for EXIT events before releasing task
7409 * context.
7410 */
7411 if (task_ctx) {
7412 perf_iterate_ctx(task_ctx, output, data, false);
7413 goto done;
7414 }
7415
7416 perf_iterate_sb_cpu(output, data);
7417
7418 for_each_task_context_nr(ctxn) {
7419 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7420 if (ctx)
7421 perf_iterate_ctx(ctx, output, data, false);
7422 }
7423 done:
7424 preempt_enable();
7425 rcu_read_unlock();
7426 }
7427
7428 /*
7429 * Clear all file-based filters at exec, they'll have to be
7430 * re-instated when/if these objects are mmapped again.
7431 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)7432 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7433 {
7434 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7435 struct perf_addr_filter *filter;
7436 unsigned int restart = 0, count = 0;
7437 unsigned long flags;
7438
7439 if (!has_addr_filter(event))
7440 return;
7441
7442 raw_spin_lock_irqsave(&ifh->lock, flags);
7443 list_for_each_entry(filter, &ifh->list, entry) {
7444 if (filter->path.dentry) {
7445 event->addr_filter_ranges[count].start = 0;
7446 event->addr_filter_ranges[count].size = 0;
7447 restart++;
7448 }
7449
7450 count++;
7451 }
7452
7453 if (restart)
7454 event->addr_filters_gen++;
7455 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7456
7457 if (restart)
7458 perf_event_stop(event, 1);
7459 }
7460
perf_event_exec(void)7461 void perf_event_exec(void)
7462 {
7463 struct perf_event_context *ctx;
7464 int ctxn;
7465
7466 rcu_read_lock();
7467 for_each_task_context_nr(ctxn) {
7468 ctx = current->perf_event_ctxp[ctxn];
7469 if (!ctx)
7470 continue;
7471
7472 perf_event_enable_on_exec(ctxn);
7473
7474 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7475 true);
7476 }
7477 rcu_read_unlock();
7478 }
7479
7480 struct remote_output {
7481 struct perf_buffer *rb;
7482 int err;
7483 };
7484
__perf_event_output_stop(struct perf_event * event,void * data)7485 static void __perf_event_output_stop(struct perf_event *event, void *data)
7486 {
7487 struct perf_event *parent = event->parent;
7488 struct remote_output *ro = data;
7489 struct perf_buffer *rb = ro->rb;
7490 struct stop_event_data sd = {
7491 .event = event,
7492 };
7493
7494 if (!has_aux(event))
7495 return;
7496
7497 if (!parent)
7498 parent = event;
7499
7500 /*
7501 * In case of inheritance, it will be the parent that links to the
7502 * ring-buffer, but it will be the child that's actually using it.
7503 *
7504 * We are using event::rb to determine if the event should be stopped,
7505 * however this may race with ring_buffer_attach() (through set_output),
7506 * which will make us skip the event that actually needs to be stopped.
7507 * So ring_buffer_attach() has to stop an aux event before re-assigning
7508 * its rb pointer.
7509 */
7510 if (rcu_dereference(parent->rb) == rb)
7511 ro->err = __perf_event_stop(&sd);
7512 }
7513
__perf_pmu_output_stop(void * info)7514 static int __perf_pmu_output_stop(void *info)
7515 {
7516 struct perf_event *event = info;
7517 struct pmu *pmu = event->ctx->pmu;
7518 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7519 struct remote_output ro = {
7520 .rb = event->rb,
7521 };
7522
7523 rcu_read_lock();
7524 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7525 if (cpuctx->task_ctx)
7526 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7527 &ro, false);
7528 rcu_read_unlock();
7529
7530 return ro.err;
7531 }
7532
perf_pmu_output_stop(struct perf_event * event)7533 static void perf_pmu_output_stop(struct perf_event *event)
7534 {
7535 struct perf_event *iter;
7536 int err, cpu;
7537
7538 restart:
7539 rcu_read_lock();
7540 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7541 /*
7542 * For per-CPU events, we need to make sure that neither they
7543 * nor their children are running; for cpu==-1 events it's
7544 * sufficient to stop the event itself if it's active, since
7545 * it can't have children.
7546 */
7547 cpu = iter->cpu;
7548 if (cpu == -1)
7549 cpu = READ_ONCE(iter->oncpu);
7550
7551 if (cpu == -1)
7552 continue;
7553
7554 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7555 if (err == -EAGAIN) {
7556 rcu_read_unlock();
7557 goto restart;
7558 }
7559 }
7560 rcu_read_unlock();
7561 }
7562
7563 /*
7564 * task tracking -- fork/exit
7565 *
7566 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7567 */
7568
7569 struct perf_task_event {
7570 struct task_struct *task;
7571 struct perf_event_context *task_ctx;
7572
7573 struct {
7574 struct perf_event_header header;
7575
7576 u32 pid;
7577 u32 ppid;
7578 u32 tid;
7579 u32 ptid;
7580 u64 time;
7581 } event_id;
7582 };
7583
perf_event_task_match(struct perf_event * event)7584 static int perf_event_task_match(struct perf_event *event)
7585 {
7586 return event->attr.comm || event->attr.mmap ||
7587 event->attr.mmap2 || event->attr.mmap_data ||
7588 event->attr.task;
7589 }
7590
perf_event_task_output(struct perf_event * event,void * data)7591 static void perf_event_task_output(struct perf_event *event,
7592 void *data)
7593 {
7594 struct perf_task_event *task_event = data;
7595 struct perf_output_handle handle;
7596 struct perf_sample_data sample;
7597 struct task_struct *task = task_event->task;
7598 int ret, size = task_event->event_id.header.size;
7599
7600 if (!perf_event_task_match(event))
7601 return;
7602
7603 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7604
7605 ret = perf_output_begin(&handle, &sample, event,
7606 task_event->event_id.header.size);
7607 if (ret)
7608 goto out;
7609
7610 task_event->event_id.pid = perf_event_pid(event, task);
7611 task_event->event_id.tid = perf_event_tid(event, task);
7612
7613 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7614 task_event->event_id.ppid = perf_event_pid(event,
7615 task->real_parent);
7616 task_event->event_id.ptid = perf_event_pid(event,
7617 task->real_parent);
7618 } else { /* PERF_RECORD_FORK */
7619 task_event->event_id.ppid = perf_event_pid(event, current);
7620 task_event->event_id.ptid = perf_event_tid(event, current);
7621 }
7622
7623 task_event->event_id.time = perf_event_clock(event);
7624
7625 perf_output_put(&handle, task_event->event_id);
7626
7627 perf_event__output_id_sample(event, &handle, &sample);
7628
7629 perf_output_end(&handle);
7630 out:
7631 task_event->event_id.header.size = size;
7632 }
7633
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)7634 static void perf_event_task(struct task_struct *task,
7635 struct perf_event_context *task_ctx,
7636 int new)
7637 {
7638 struct perf_task_event task_event;
7639
7640 if (!atomic_read(&nr_comm_events) &&
7641 !atomic_read(&nr_mmap_events) &&
7642 !atomic_read(&nr_task_events))
7643 return;
7644
7645 task_event = (struct perf_task_event){
7646 .task = task,
7647 .task_ctx = task_ctx,
7648 .event_id = {
7649 .header = {
7650 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7651 .misc = 0,
7652 .size = sizeof(task_event.event_id),
7653 },
7654 /* .pid */
7655 /* .ppid */
7656 /* .tid */
7657 /* .ptid */
7658 /* .time */
7659 },
7660 };
7661
7662 perf_iterate_sb(perf_event_task_output,
7663 &task_event,
7664 task_ctx);
7665 }
7666
perf_event_fork(struct task_struct * task)7667 void perf_event_fork(struct task_struct *task)
7668 {
7669 perf_event_task(task, NULL, 1);
7670 perf_event_namespaces(task);
7671 }
7672
7673 /*
7674 * comm tracking
7675 */
7676
7677 struct perf_comm_event {
7678 struct task_struct *task;
7679 char *comm;
7680 int comm_size;
7681
7682 struct {
7683 struct perf_event_header header;
7684
7685 u32 pid;
7686 u32 tid;
7687 } event_id;
7688 };
7689
perf_event_comm_match(struct perf_event * event)7690 static int perf_event_comm_match(struct perf_event *event)
7691 {
7692 return event->attr.comm;
7693 }
7694
perf_event_comm_output(struct perf_event * event,void * data)7695 static void perf_event_comm_output(struct perf_event *event,
7696 void *data)
7697 {
7698 struct perf_comm_event *comm_event = data;
7699 struct perf_output_handle handle;
7700 struct perf_sample_data sample;
7701 int size = comm_event->event_id.header.size;
7702 int ret;
7703
7704 if (!perf_event_comm_match(event))
7705 return;
7706
7707 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7708 ret = perf_output_begin(&handle, &sample, event,
7709 comm_event->event_id.header.size);
7710
7711 if (ret)
7712 goto out;
7713
7714 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7715 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7716
7717 perf_output_put(&handle, comm_event->event_id);
7718 __output_copy(&handle, comm_event->comm,
7719 comm_event->comm_size);
7720
7721 perf_event__output_id_sample(event, &handle, &sample);
7722
7723 perf_output_end(&handle);
7724 out:
7725 comm_event->event_id.header.size = size;
7726 }
7727
perf_event_comm_event(struct perf_comm_event * comm_event)7728 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7729 {
7730 char comm[TASK_COMM_LEN];
7731 unsigned int size;
7732
7733 memset(comm, 0, sizeof(comm));
7734 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7735 size = ALIGN(strlen(comm)+1, sizeof(u64));
7736
7737 comm_event->comm = comm;
7738 comm_event->comm_size = size;
7739
7740 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7741
7742 perf_iterate_sb(perf_event_comm_output,
7743 comm_event,
7744 NULL);
7745 }
7746
perf_event_comm(struct task_struct * task,bool exec)7747 void perf_event_comm(struct task_struct *task, bool exec)
7748 {
7749 struct perf_comm_event comm_event;
7750
7751 if (!atomic_read(&nr_comm_events))
7752 return;
7753
7754 comm_event = (struct perf_comm_event){
7755 .task = task,
7756 /* .comm */
7757 /* .comm_size */
7758 .event_id = {
7759 .header = {
7760 .type = PERF_RECORD_COMM,
7761 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7762 /* .size */
7763 },
7764 /* .pid */
7765 /* .tid */
7766 },
7767 };
7768
7769 perf_event_comm_event(&comm_event);
7770 }
7771
7772 /*
7773 * namespaces tracking
7774 */
7775
7776 struct perf_namespaces_event {
7777 struct task_struct *task;
7778
7779 struct {
7780 struct perf_event_header header;
7781
7782 u32 pid;
7783 u32 tid;
7784 u64 nr_namespaces;
7785 struct perf_ns_link_info link_info[NR_NAMESPACES];
7786 } event_id;
7787 };
7788
perf_event_namespaces_match(struct perf_event * event)7789 static int perf_event_namespaces_match(struct perf_event *event)
7790 {
7791 return event->attr.namespaces;
7792 }
7793
perf_event_namespaces_output(struct perf_event * event,void * data)7794 static void perf_event_namespaces_output(struct perf_event *event,
7795 void *data)
7796 {
7797 struct perf_namespaces_event *namespaces_event = data;
7798 struct perf_output_handle handle;
7799 struct perf_sample_data sample;
7800 u16 header_size = namespaces_event->event_id.header.size;
7801 int ret;
7802
7803 if (!perf_event_namespaces_match(event))
7804 return;
7805
7806 perf_event_header__init_id(&namespaces_event->event_id.header,
7807 &sample, event);
7808 ret = perf_output_begin(&handle, &sample, event,
7809 namespaces_event->event_id.header.size);
7810 if (ret)
7811 goto out;
7812
7813 namespaces_event->event_id.pid = perf_event_pid(event,
7814 namespaces_event->task);
7815 namespaces_event->event_id.tid = perf_event_tid(event,
7816 namespaces_event->task);
7817
7818 perf_output_put(&handle, namespaces_event->event_id);
7819
7820 perf_event__output_id_sample(event, &handle, &sample);
7821
7822 perf_output_end(&handle);
7823 out:
7824 namespaces_event->event_id.header.size = header_size;
7825 }
7826
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)7827 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7828 struct task_struct *task,
7829 const struct proc_ns_operations *ns_ops)
7830 {
7831 struct path ns_path;
7832 struct inode *ns_inode;
7833 int error;
7834
7835 error = ns_get_path(&ns_path, task, ns_ops);
7836 if (!error) {
7837 ns_inode = ns_path.dentry->d_inode;
7838 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7839 ns_link_info->ino = ns_inode->i_ino;
7840 path_put(&ns_path);
7841 }
7842 }
7843
perf_event_namespaces(struct task_struct * task)7844 void perf_event_namespaces(struct task_struct *task)
7845 {
7846 struct perf_namespaces_event namespaces_event;
7847 struct perf_ns_link_info *ns_link_info;
7848
7849 if (!atomic_read(&nr_namespaces_events))
7850 return;
7851
7852 namespaces_event = (struct perf_namespaces_event){
7853 .task = task,
7854 .event_id = {
7855 .header = {
7856 .type = PERF_RECORD_NAMESPACES,
7857 .misc = 0,
7858 .size = sizeof(namespaces_event.event_id),
7859 },
7860 /* .pid */
7861 /* .tid */
7862 .nr_namespaces = NR_NAMESPACES,
7863 /* .link_info[NR_NAMESPACES] */
7864 },
7865 };
7866
7867 ns_link_info = namespaces_event.event_id.link_info;
7868
7869 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7870 task, &mntns_operations);
7871
7872 #ifdef CONFIG_USER_NS
7873 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7874 task, &userns_operations);
7875 #endif
7876 #ifdef CONFIG_NET_NS
7877 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7878 task, &netns_operations);
7879 #endif
7880 #ifdef CONFIG_UTS_NS
7881 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7882 task, &utsns_operations);
7883 #endif
7884 #ifdef CONFIG_IPC_NS
7885 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7886 task, &ipcns_operations);
7887 #endif
7888 #ifdef CONFIG_PID_NS
7889 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7890 task, &pidns_operations);
7891 #endif
7892 #ifdef CONFIG_CGROUPS
7893 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7894 task, &cgroupns_operations);
7895 #endif
7896
7897 perf_iterate_sb(perf_event_namespaces_output,
7898 &namespaces_event,
7899 NULL);
7900 }
7901
7902 /*
7903 * cgroup tracking
7904 */
7905 #ifdef CONFIG_CGROUP_PERF
7906
7907 struct perf_cgroup_event {
7908 char *path;
7909 int path_size;
7910 struct {
7911 struct perf_event_header header;
7912 u64 id;
7913 char path[];
7914 } event_id;
7915 };
7916
perf_event_cgroup_match(struct perf_event * event)7917 static int perf_event_cgroup_match(struct perf_event *event)
7918 {
7919 return event->attr.cgroup;
7920 }
7921
perf_event_cgroup_output(struct perf_event * event,void * data)7922 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7923 {
7924 struct perf_cgroup_event *cgroup_event = data;
7925 struct perf_output_handle handle;
7926 struct perf_sample_data sample;
7927 u16 header_size = cgroup_event->event_id.header.size;
7928 int ret;
7929
7930 if (!perf_event_cgroup_match(event))
7931 return;
7932
7933 perf_event_header__init_id(&cgroup_event->event_id.header,
7934 &sample, event);
7935 ret = perf_output_begin(&handle, &sample, event,
7936 cgroup_event->event_id.header.size);
7937 if (ret)
7938 goto out;
7939
7940 perf_output_put(&handle, cgroup_event->event_id);
7941 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7942
7943 perf_event__output_id_sample(event, &handle, &sample);
7944
7945 perf_output_end(&handle);
7946 out:
7947 cgroup_event->event_id.header.size = header_size;
7948 }
7949
perf_event_cgroup(struct cgroup * cgrp)7950 static void perf_event_cgroup(struct cgroup *cgrp)
7951 {
7952 struct perf_cgroup_event cgroup_event;
7953 char path_enomem[16] = "//enomem";
7954 char *pathname;
7955 size_t size;
7956
7957 if (!atomic_read(&nr_cgroup_events))
7958 return;
7959
7960 cgroup_event = (struct perf_cgroup_event){
7961 .event_id = {
7962 .header = {
7963 .type = PERF_RECORD_CGROUP,
7964 .misc = 0,
7965 .size = sizeof(cgroup_event.event_id),
7966 },
7967 .id = cgroup_id(cgrp),
7968 },
7969 };
7970
7971 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7972 if (pathname == NULL) {
7973 cgroup_event.path = path_enomem;
7974 } else {
7975 /* just to be sure to have enough space for alignment */
7976 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7977 cgroup_event.path = pathname;
7978 }
7979
7980 /*
7981 * Since our buffer works in 8 byte units we need to align our string
7982 * size to a multiple of 8. However, we must guarantee the tail end is
7983 * zero'd out to avoid leaking random bits to userspace.
7984 */
7985 size = strlen(cgroup_event.path) + 1;
7986 while (!IS_ALIGNED(size, sizeof(u64)))
7987 cgroup_event.path[size++] = '\0';
7988
7989 cgroup_event.event_id.header.size += size;
7990 cgroup_event.path_size = size;
7991
7992 perf_iterate_sb(perf_event_cgroup_output,
7993 &cgroup_event,
7994 NULL);
7995
7996 kfree(pathname);
7997 }
7998
7999 #endif
8000
8001 /*
8002 * mmap tracking
8003 */
8004
8005 struct perf_mmap_event {
8006 struct vm_area_struct *vma;
8007
8008 const char *file_name;
8009 int file_size;
8010 int maj, min;
8011 u64 ino;
8012 u64 ino_generation;
8013 u32 prot, flags;
8014
8015 struct {
8016 struct perf_event_header header;
8017
8018 u32 pid;
8019 u32 tid;
8020 u64 start;
8021 u64 len;
8022 u64 pgoff;
8023 } event_id;
8024 };
8025
perf_event_mmap_match(struct perf_event * event,void * data)8026 static int perf_event_mmap_match(struct perf_event *event,
8027 void *data)
8028 {
8029 struct perf_mmap_event *mmap_event = data;
8030 struct vm_area_struct *vma = mmap_event->vma;
8031 int executable = vma->vm_flags & VM_EXEC;
8032
8033 return (!executable && event->attr.mmap_data) ||
8034 (executable && (event->attr.mmap || event->attr.mmap2));
8035 }
8036
perf_event_mmap_output(struct perf_event * event,void * data)8037 static void perf_event_mmap_output(struct perf_event *event,
8038 void *data)
8039 {
8040 struct perf_mmap_event *mmap_event = data;
8041 struct perf_output_handle handle;
8042 struct perf_sample_data sample;
8043 int size = mmap_event->event_id.header.size;
8044 u32 type = mmap_event->event_id.header.type;
8045 int ret;
8046
8047 if (!perf_event_mmap_match(event, data))
8048 return;
8049
8050 if (event->attr.mmap2) {
8051 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8052 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8053 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8054 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8055 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8056 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8057 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8058 }
8059
8060 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8061 ret = perf_output_begin(&handle, &sample, event,
8062 mmap_event->event_id.header.size);
8063 if (ret)
8064 goto out;
8065
8066 mmap_event->event_id.pid = perf_event_pid(event, current);
8067 mmap_event->event_id.tid = perf_event_tid(event, current);
8068
8069 perf_output_put(&handle, mmap_event->event_id);
8070
8071 if (event->attr.mmap2) {
8072 perf_output_put(&handle, mmap_event->maj);
8073 perf_output_put(&handle, mmap_event->min);
8074 perf_output_put(&handle, mmap_event->ino);
8075 perf_output_put(&handle, mmap_event->ino_generation);
8076 perf_output_put(&handle, mmap_event->prot);
8077 perf_output_put(&handle, mmap_event->flags);
8078 }
8079
8080 __output_copy(&handle, mmap_event->file_name,
8081 mmap_event->file_size);
8082
8083 perf_event__output_id_sample(event, &handle, &sample);
8084
8085 perf_output_end(&handle);
8086 out:
8087 mmap_event->event_id.header.size = size;
8088 mmap_event->event_id.header.type = type;
8089 }
8090
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8091 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8092 {
8093 struct vm_area_struct *vma = mmap_event->vma;
8094 struct file *file = vma->vm_file;
8095 int maj = 0, min = 0;
8096 u64 ino = 0, gen = 0;
8097 u32 prot = 0, flags = 0;
8098 unsigned int size;
8099 char tmp[16];
8100 char *buf = NULL;
8101 char *name;
8102
8103 if (vma->vm_flags & VM_READ)
8104 prot |= PROT_READ;
8105 if (vma->vm_flags & VM_WRITE)
8106 prot |= PROT_WRITE;
8107 if (vma->vm_flags & VM_EXEC)
8108 prot |= PROT_EXEC;
8109
8110 if (vma->vm_flags & VM_MAYSHARE)
8111 flags = MAP_SHARED;
8112 else
8113 flags = MAP_PRIVATE;
8114
8115 if (vma->vm_flags & VM_DENYWRITE)
8116 flags |= MAP_DENYWRITE;
8117 if (vma->vm_flags & VM_MAYEXEC)
8118 flags |= MAP_EXECUTABLE;
8119 if (vma->vm_flags & VM_LOCKED)
8120 flags |= MAP_LOCKED;
8121 if (is_vm_hugetlb_page(vma))
8122 flags |= MAP_HUGETLB;
8123
8124 if (file) {
8125 struct inode *inode;
8126 dev_t dev;
8127
8128 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8129 if (!buf) {
8130 name = "//enomem";
8131 goto cpy_name;
8132 }
8133 /*
8134 * d_path() works from the end of the rb backwards, so we
8135 * need to add enough zero bytes after the string to handle
8136 * the 64bit alignment we do later.
8137 */
8138 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8139 if (IS_ERR(name)) {
8140 name = "//toolong";
8141 goto cpy_name;
8142 }
8143 inode = file_inode(vma->vm_file);
8144 dev = inode->i_sb->s_dev;
8145 ino = inode->i_ino;
8146 gen = inode->i_generation;
8147 maj = MAJOR(dev);
8148 min = MINOR(dev);
8149
8150 goto got_name;
8151 } else {
8152 if (vma->vm_ops && vma->vm_ops->name) {
8153 name = (char *) vma->vm_ops->name(vma);
8154 if (name)
8155 goto cpy_name;
8156 }
8157
8158 name = (char *)arch_vma_name(vma);
8159 if (name)
8160 goto cpy_name;
8161
8162 if (vma->vm_start <= vma->vm_mm->start_brk &&
8163 vma->vm_end >= vma->vm_mm->brk) {
8164 name = "[heap]";
8165 goto cpy_name;
8166 }
8167 if (vma->vm_start <= vma->vm_mm->start_stack &&
8168 vma->vm_end >= vma->vm_mm->start_stack) {
8169 name = "[stack]";
8170 goto cpy_name;
8171 }
8172
8173 name = "//anon";
8174 goto cpy_name;
8175 }
8176
8177 cpy_name:
8178 strlcpy(tmp, name, sizeof(tmp));
8179 name = tmp;
8180 got_name:
8181 /*
8182 * Since our buffer works in 8 byte units we need to align our string
8183 * size to a multiple of 8. However, we must guarantee the tail end is
8184 * zero'd out to avoid leaking random bits to userspace.
8185 */
8186 size = strlen(name)+1;
8187 while (!IS_ALIGNED(size, sizeof(u64)))
8188 name[size++] = '\0';
8189
8190 mmap_event->file_name = name;
8191 mmap_event->file_size = size;
8192 mmap_event->maj = maj;
8193 mmap_event->min = min;
8194 mmap_event->ino = ino;
8195 mmap_event->ino_generation = gen;
8196 mmap_event->prot = prot;
8197 mmap_event->flags = flags;
8198
8199 if (!(vma->vm_flags & VM_EXEC))
8200 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8201
8202 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8203
8204 perf_iterate_sb(perf_event_mmap_output,
8205 mmap_event,
8206 NULL);
8207
8208 kfree(buf);
8209 }
8210
8211 /*
8212 * Check whether inode and address range match filter criteria.
8213 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8214 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8215 struct file *file, unsigned long offset,
8216 unsigned long size)
8217 {
8218 /* d_inode(NULL) won't be equal to any mapped user-space file */
8219 if (!filter->path.dentry)
8220 return false;
8221
8222 if (d_inode(filter->path.dentry) != file_inode(file))
8223 return false;
8224
8225 if (filter->offset > offset + size)
8226 return false;
8227
8228 if (filter->offset + filter->size < offset)
8229 return false;
8230
8231 return true;
8232 }
8233
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8234 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8235 struct vm_area_struct *vma,
8236 struct perf_addr_filter_range *fr)
8237 {
8238 unsigned long vma_size = vma->vm_end - vma->vm_start;
8239 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8240 struct file *file = vma->vm_file;
8241
8242 if (!perf_addr_filter_match(filter, file, off, vma_size))
8243 return false;
8244
8245 if (filter->offset < off) {
8246 fr->start = vma->vm_start;
8247 fr->size = min(vma_size, filter->size - (off - filter->offset));
8248 } else {
8249 fr->start = vma->vm_start + filter->offset - off;
8250 fr->size = min(vma->vm_end - fr->start, filter->size);
8251 }
8252
8253 return true;
8254 }
8255
__perf_addr_filters_adjust(struct perf_event * event,void * data)8256 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8257 {
8258 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8259 struct vm_area_struct *vma = data;
8260 struct perf_addr_filter *filter;
8261 unsigned int restart = 0, count = 0;
8262 unsigned long flags;
8263
8264 if (!has_addr_filter(event))
8265 return;
8266
8267 if (!vma->vm_file)
8268 return;
8269
8270 raw_spin_lock_irqsave(&ifh->lock, flags);
8271 list_for_each_entry(filter, &ifh->list, entry) {
8272 if (perf_addr_filter_vma_adjust(filter, vma,
8273 &event->addr_filter_ranges[count]))
8274 restart++;
8275
8276 count++;
8277 }
8278
8279 if (restart)
8280 event->addr_filters_gen++;
8281 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8282
8283 if (restart)
8284 perf_event_stop(event, 1);
8285 }
8286
8287 /*
8288 * Adjust all task's events' filters to the new vma
8289 */
perf_addr_filters_adjust(struct vm_area_struct * vma)8290 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8291 {
8292 struct perf_event_context *ctx;
8293 int ctxn;
8294
8295 /*
8296 * Data tracing isn't supported yet and as such there is no need
8297 * to keep track of anything that isn't related to executable code:
8298 */
8299 if (!(vma->vm_flags & VM_EXEC))
8300 return;
8301
8302 rcu_read_lock();
8303 for_each_task_context_nr(ctxn) {
8304 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8305 if (!ctx)
8306 continue;
8307
8308 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8309 }
8310 rcu_read_unlock();
8311 }
8312
perf_event_mmap(struct vm_area_struct * vma)8313 void perf_event_mmap(struct vm_area_struct *vma)
8314 {
8315 struct perf_mmap_event mmap_event;
8316
8317 if (!atomic_read(&nr_mmap_events))
8318 return;
8319
8320 mmap_event = (struct perf_mmap_event){
8321 .vma = vma,
8322 /* .file_name */
8323 /* .file_size */
8324 .event_id = {
8325 .header = {
8326 .type = PERF_RECORD_MMAP,
8327 .misc = PERF_RECORD_MISC_USER,
8328 /* .size */
8329 },
8330 /* .pid */
8331 /* .tid */
8332 .start = vma->vm_start,
8333 .len = vma->vm_end - vma->vm_start,
8334 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8335 },
8336 /* .maj (attr_mmap2 only) */
8337 /* .min (attr_mmap2 only) */
8338 /* .ino (attr_mmap2 only) */
8339 /* .ino_generation (attr_mmap2 only) */
8340 /* .prot (attr_mmap2 only) */
8341 /* .flags (attr_mmap2 only) */
8342 };
8343
8344 perf_addr_filters_adjust(vma);
8345 perf_event_mmap_event(&mmap_event);
8346 }
8347
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8348 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8349 unsigned long size, u64 flags)
8350 {
8351 struct perf_output_handle handle;
8352 struct perf_sample_data sample;
8353 struct perf_aux_event {
8354 struct perf_event_header header;
8355 u64 offset;
8356 u64 size;
8357 u64 flags;
8358 } rec = {
8359 .header = {
8360 .type = PERF_RECORD_AUX,
8361 .misc = 0,
8362 .size = sizeof(rec),
8363 },
8364 .offset = head,
8365 .size = size,
8366 .flags = flags,
8367 };
8368 int ret;
8369
8370 perf_event_header__init_id(&rec.header, &sample, event);
8371 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8372
8373 if (ret)
8374 return;
8375
8376 perf_output_put(&handle, rec);
8377 perf_event__output_id_sample(event, &handle, &sample);
8378
8379 perf_output_end(&handle);
8380 }
8381
8382 /*
8383 * Lost/dropped samples logging
8384 */
perf_log_lost_samples(struct perf_event * event,u64 lost)8385 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8386 {
8387 struct perf_output_handle handle;
8388 struct perf_sample_data sample;
8389 int ret;
8390
8391 struct {
8392 struct perf_event_header header;
8393 u64 lost;
8394 } lost_samples_event = {
8395 .header = {
8396 .type = PERF_RECORD_LOST_SAMPLES,
8397 .misc = 0,
8398 .size = sizeof(lost_samples_event),
8399 },
8400 .lost = lost,
8401 };
8402
8403 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8404
8405 ret = perf_output_begin(&handle, &sample, event,
8406 lost_samples_event.header.size);
8407 if (ret)
8408 return;
8409
8410 perf_output_put(&handle, lost_samples_event);
8411 perf_event__output_id_sample(event, &handle, &sample);
8412 perf_output_end(&handle);
8413 }
8414
8415 /*
8416 * context_switch tracking
8417 */
8418
8419 struct perf_switch_event {
8420 struct task_struct *task;
8421 struct task_struct *next_prev;
8422
8423 struct {
8424 struct perf_event_header header;
8425 u32 next_prev_pid;
8426 u32 next_prev_tid;
8427 } event_id;
8428 };
8429
perf_event_switch_match(struct perf_event * event)8430 static int perf_event_switch_match(struct perf_event *event)
8431 {
8432 return event->attr.context_switch;
8433 }
8434
perf_event_switch_output(struct perf_event * event,void * data)8435 static void perf_event_switch_output(struct perf_event *event, void *data)
8436 {
8437 struct perf_switch_event *se = data;
8438 struct perf_output_handle handle;
8439 struct perf_sample_data sample;
8440 int ret;
8441
8442 if (!perf_event_switch_match(event))
8443 return;
8444
8445 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8446 if (event->ctx->task) {
8447 se->event_id.header.type = PERF_RECORD_SWITCH;
8448 se->event_id.header.size = sizeof(se->event_id.header);
8449 } else {
8450 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8451 se->event_id.header.size = sizeof(se->event_id);
8452 se->event_id.next_prev_pid =
8453 perf_event_pid(event, se->next_prev);
8454 se->event_id.next_prev_tid =
8455 perf_event_tid(event, se->next_prev);
8456 }
8457
8458 perf_event_header__init_id(&se->event_id.header, &sample, event);
8459
8460 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8461 if (ret)
8462 return;
8463
8464 if (event->ctx->task)
8465 perf_output_put(&handle, se->event_id.header);
8466 else
8467 perf_output_put(&handle, se->event_id);
8468
8469 perf_event__output_id_sample(event, &handle, &sample);
8470
8471 perf_output_end(&handle);
8472 }
8473
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)8474 static void perf_event_switch(struct task_struct *task,
8475 struct task_struct *next_prev, bool sched_in)
8476 {
8477 struct perf_switch_event switch_event;
8478
8479 /* N.B. caller checks nr_switch_events != 0 */
8480
8481 switch_event = (struct perf_switch_event){
8482 .task = task,
8483 .next_prev = next_prev,
8484 .event_id = {
8485 .header = {
8486 /* .type */
8487 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8488 /* .size */
8489 },
8490 /* .next_prev_pid */
8491 /* .next_prev_tid */
8492 },
8493 };
8494
8495 if (!sched_in && task->state == TASK_RUNNING)
8496 switch_event.event_id.header.misc |=
8497 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8498
8499 perf_iterate_sb(perf_event_switch_output,
8500 &switch_event,
8501 NULL);
8502 }
8503
8504 /*
8505 * IRQ throttle logging
8506 */
8507
perf_log_throttle(struct perf_event * event,int enable)8508 static void perf_log_throttle(struct perf_event *event, int enable)
8509 {
8510 struct perf_output_handle handle;
8511 struct perf_sample_data sample;
8512 int ret;
8513
8514 struct {
8515 struct perf_event_header header;
8516 u64 time;
8517 u64 id;
8518 u64 stream_id;
8519 } throttle_event = {
8520 .header = {
8521 .type = PERF_RECORD_THROTTLE,
8522 .misc = 0,
8523 .size = sizeof(throttle_event),
8524 },
8525 .time = perf_event_clock(event),
8526 .id = primary_event_id(event),
8527 .stream_id = event->id,
8528 };
8529
8530 if (enable)
8531 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8532
8533 perf_event_header__init_id(&throttle_event.header, &sample, event);
8534
8535 ret = perf_output_begin(&handle, &sample, event,
8536 throttle_event.header.size);
8537 if (ret)
8538 return;
8539
8540 perf_output_put(&handle, throttle_event);
8541 perf_event__output_id_sample(event, &handle, &sample);
8542 perf_output_end(&handle);
8543 }
8544
8545 /*
8546 * ksymbol register/unregister tracking
8547 */
8548
8549 struct perf_ksymbol_event {
8550 const char *name;
8551 int name_len;
8552 struct {
8553 struct perf_event_header header;
8554 u64 addr;
8555 u32 len;
8556 u16 ksym_type;
8557 u16 flags;
8558 } event_id;
8559 };
8560
perf_event_ksymbol_match(struct perf_event * event)8561 static int perf_event_ksymbol_match(struct perf_event *event)
8562 {
8563 return event->attr.ksymbol;
8564 }
8565
perf_event_ksymbol_output(struct perf_event * event,void * data)8566 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8567 {
8568 struct perf_ksymbol_event *ksymbol_event = data;
8569 struct perf_output_handle handle;
8570 struct perf_sample_data sample;
8571 int ret;
8572
8573 if (!perf_event_ksymbol_match(event))
8574 return;
8575
8576 perf_event_header__init_id(&ksymbol_event->event_id.header,
8577 &sample, event);
8578 ret = perf_output_begin(&handle, &sample, event,
8579 ksymbol_event->event_id.header.size);
8580 if (ret)
8581 return;
8582
8583 perf_output_put(&handle, ksymbol_event->event_id);
8584 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8585 perf_event__output_id_sample(event, &handle, &sample);
8586
8587 perf_output_end(&handle);
8588 }
8589
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)8590 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8591 const char *sym)
8592 {
8593 struct perf_ksymbol_event ksymbol_event;
8594 char name[KSYM_NAME_LEN];
8595 u16 flags = 0;
8596 int name_len;
8597
8598 if (!atomic_read(&nr_ksymbol_events))
8599 return;
8600
8601 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8602 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8603 goto err;
8604
8605 strlcpy(name, sym, KSYM_NAME_LEN);
8606 name_len = strlen(name) + 1;
8607 while (!IS_ALIGNED(name_len, sizeof(u64)))
8608 name[name_len++] = '\0';
8609 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8610
8611 if (unregister)
8612 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8613
8614 ksymbol_event = (struct perf_ksymbol_event){
8615 .name = name,
8616 .name_len = name_len,
8617 .event_id = {
8618 .header = {
8619 .type = PERF_RECORD_KSYMBOL,
8620 .size = sizeof(ksymbol_event.event_id) +
8621 name_len,
8622 },
8623 .addr = addr,
8624 .len = len,
8625 .ksym_type = ksym_type,
8626 .flags = flags,
8627 },
8628 };
8629
8630 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8631 return;
8632 err:
8633 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8634 }
8635
8636 /*
8637 * bpf program load/unload tracking
8638 */
8639
8640 struct perf_bpf_event {
8641 struct bpf_prog *prog;
8642 struct {
8643 struct perf_event_header header;
8644 u16 type;
8645 u16 flags;
8646 u32 id;
8647 u8 tag[BPF_TAG_SIZE];
8648 } event_id;
8649 };
8650
perf_event_bpf_match(struct perf_event * event)8651 static int perf_event_bpf_match(struct perf_event *event)
8652 {
8653 return event->attr.bpf_event;
8654 }
8655
perf_event_bpf_output(struct perf_event * event,void * data)8656 static void perf_event_bpf_output(struct perf_event *event, void *data)
8657 {
8658 struct perf_bpf_event *bpf_event = data;
8659 struct perf_output_handle handle;
8660 struct perf_sample_data sample;
8661 int ret;
8662
8663 if (!perf_event_bpf_match(event))
8664 return;
8665
8666 perf_event_header__init_id(&bpf_event->event_id.header,
8667 &sample, event);
8668 ret = perf_output_begin(&handle, data, event,
8669 bpf_event->event_id.header.size);
8670 if (ret)
8671 return;
8672
8673 perf_output_put(&handle, bpf_event->event_id);
8674 perf_event__output_id_sample(event, &handle, &sample);
8675
8676 perf_output_end(&handle);
8677 }
8678
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)8679 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8680 enum perf_bpf_event_type type)
8681 {
8682 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8683 int i;
8684
8685 if (prog->aux->func_cnt == 0) {
8686 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8687 (u64)(unsigned long)prog->bpf_func,
8688 prog->jited_len, unregister,
8689 prog->aux->ksym.name);
8690 } else {
8691 for (i = 0; i < prog->aux->func_cnt; i++) {
8692 struct bpf_prog *subprog = prog->aux->func[i];
8693
8694 perf_event_ksymbol(
8695 PERF_RECORD_KSYMBOL_TYPE_BPF,
8696 (u64)(unsigned long)subprog->bpf_func,
8697 subprog->jited_len, unregister,
8698 subprog->aux->ksym.name);
8699 }
8700 }
8701 }
8702
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)8703 void perf_event_bpf_event(struct bpf_prog *prog,
8704 enum perf_bpf_event_type type,
8705 u16 flags)
8706 {
8707 struct perf_bpf_event bpf_event;
8708
8709 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8710 type >= PERF_BPF_EVENT_MAX)
8711 return;
8712
8713 switch (type) {
8714 case PERF_BPF_EVENT_PROG_LOAD:
8715 case PERF_BPF_EVENT_PROG_UNLOAD:
8716 if (atomic_read(&nr_ksymbol_events))
8717 perf_event_bpf_emit_ksymbols(prog, type);
8718 break;
8719 default:
8720 break;
8721 }
8722
8723 if (!atomic_read(&nr_bpf_events))
8724 return;
8725
8726 bpf_event = (struct perf_bpf_event){
8727 .prog = prog,
8728 .event_id = {
8729 .header = {
8730 .type = PERF_RECORD_BPF_EVENT,
8731 .size = sizeof(bpf_event.event_id),
8732 },
8733 .type = type,
8734 .flags = flags,
8735 .id = prog->aux->id,
8736 },
8737 };
8738
8739 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8740
8741 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8742 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8743 }
8744
8745 struct perf_text_poke_event {
8746 const void *old_bytes;
8747 const void *new_bytes;
8748 size_t pad;
8749 u16 old_len;
8750 u16 new_len;
8751
8752 struct {
8753 struct perf_event_header header;
8754
8755 u64 addr;
8756 } event_id;
8757 };
8758
perf_event_text_poke_match(struct perf_event * event)8759 static int perf_event_text_poke_match(struct perf_event *event)
8760 {
8761 return event->attr.text_poke;
8762 }
8763
perf_event_text_poke_output(struct perf_event * event,void * data)8764 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8765 {
8766 struct perf_text_poke_event *text_poke_event = data;
8767 struct perf_output_handle handle;
8768 struct perf_sample_data sample;
8769 u64 padding = 0;
8770 int ret;
8771
8772 if (!perf_event_text_poke_match(event))
8773 return;
8774
8775 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8776
8777 ret = perf_output_begin(&handle, &sample, event,
8778 text_poke_event->event_id.header.size);
8779 if (ret)
8780 return;
8781
8782 perf_output_put(&handle, text_poke_event->event_id);
8783 perf_output_put(&handle, text_poke_event->old_len);
8784 perf_output_put(&handle, text_poke_event->new_len);
8785
8786 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8787 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8788
8789 if (text_poke_event->pad)
8790 __output_copy(&handle, &padding, text_poke_event->pad);
8791
8792 perf_event__output_id_sample(event, &handle, &sample);
8793
8794 perf_output_end(&handle);
8795 }
8796
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)8797 void perf_event_text_poke(const void *addr, const void *old_bytes,
8798 size_t old_len, const void *new_bytes, size_t new_len)
8799 {
8800 struct perf_text_poke_event text_poke_event;
8801 size_t tot, pad;
8802
8803 if (!atomic_read(&nr_text_poke_events))
8804 return;
8805
8806 tot = sizeof(text_poke_event.old_len) + old_len;
8807 tot += sizeof(text_poke_event.new_len) + new_len;
8808 pad = ALIGN(tot, sizeof(u64)) - tot;
8809
8810 text_poke_event = (struct perf_text_poke_event){
8811 .old_bytes = old_bytes,
8812 .new_bytes = new_bytes,
8813 .pad = pad,
8814 .old_len = old_len,
8815 .new_len = new_len,
8816 .event_id = {
8817 .header = {
8818 .type = PERF_RECORD_TEXT_POKE,
8819 .misc = PERF_RECORD_MISC_KERNEL,
8820 .size = sizeof(text_poke_event.event_id) + tot + pad,
8821 },
8822 .addr = (unsigned long)addr,
8823 },
8824 };
8825
8826 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8827 }
8828
perf_event_itrace_started(struct perf_event * event)8829 void perf_event_itrace_started(struct perf_event *event)
8830 {
8831 event->attach_state |= PERF_ATTACH_ITRACE;
8832 }
8833
perf_log_itrace_start(struct perf_event * event)8834 static void perf_log_itrace_start(struct perf_event *event)
8835 {
8836 struct perf_output_handle handle;
8837 struct perf_sample_data sample;
8838 struct perf_aux_event {
8839 struct perf_event_header header;
8840 u32 pid;
8841 u32 tid;
8842 } rec;
8843 int ret;
8844
8845 if (event->parent)
8846 event = event->parent;
8847
8848 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8849 event->attach_state & PERF_ATTACH_ITRACE)
8850 return;
8851
8852 rec.header.type = PERF_RECORD_ITRACE_START;
8853 rec.header.misc = 0;
8854 rec.header.size = sizeof(rec);
8855 rec.pid = perf_event_pid(event, current);
8856 rec.tid = perf_event_tid(event, current);
8857
8858 perf_event_header__init_id(&rec.header, &sample, event);
8859 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8860
8861 if (ret)
8862 return;
8863
8864 perf_output_put(&handle, rec);
8865 perf_event__output_id_sample(event, &handle, &sample);
8866
8867 perf_output_end(&handle);
8868 }
8869
8870 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)8871 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8872 {
8873 struct hw_perf_event *hwc = &event->hw;
8874 int ret = 0;
8875 u64 seq;
8876
8877 seq = __this_cpu_read(perf_throttled_seq);
8878 if (seq != hwc->interrupts_seq) {
8879 hwc->interrupts_seq = seq;
8880 hwc->interrupts = 1;
8881 } else {
8882 hwc->interrupts++;
8883 if (unlikely(throttle
8884 && hwc->interrupts >= max_samples_per_tick)) {
8885 __this_cpu_inc(perf_throttled_count);
8886 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8887 hwc->interrupts = MAX_INTERRUPTS;
8888 perf_log_throttle(event, 0);
8889 ret = 1;
8890 }
8891 }
8892
8893 if (event->attr.freq) {
8894 u64 now = perf_clock();
8895 s64 delta = now - hwc->freq_time_stamp;
8896
8897 hwc->freq_time_stamp = now;
8898
8899 if (delta > 0 && delta < 2*TICK_NSEC)
8900 perf_adjust_period(event, delta, hwc->last_period, true);
8901 }
8902
8903 return ret;
8904 }
8905
perf_event_account_interrupt(struct perf_event * event)8906 int perf_event_account_interrupt(struct perf_event *event)
8907 {
8908 return __perf_event_account_interrupt(event, 1);
8909 }
8910
8911 /*
8912 * Generic event overflow handling, sampling.
8913 */
8914
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)8915 static int __perf_event_overflow(struct perf_event *event,
8916 int throttle, struct perf_sample_data *data,
8917 struct pt_regs *regs)
8918 {
8919 int events = atomic_read(&event->event_limit);
8920 int ret = 0;
8921
8922 /*
8923 * Non-sampling counters might still use the PMI to fold short
8924 * hardware counters, ignore those.
8925 */
8926 if (unlikely(!is_sampling_event(event)))
8927 return 0;
8928
8929 ret = __perf_event_account_interrupt(event, throttle);
8930
8931 /*
8932 * XXX event_limit might not quite work as expected on inherited
8933 * events
8934 */
8935
8936 event->pending_kill = POLL_IN;
8937 if (events && atomic_dec_and_test(&event->event_limit)) {
8938 ret = 1;
8939 event->pending_kill = POLL_HUP;
8940
8941 perf_event_disable_inatomic(event);
8942 }
8943
8944 READ_ONCE(event->overflow_handler)(event, data, regs);
8945
8946 if (*perf_event_fasync(event) && event->pending_kill) {
8947 event->pending_wakeup = 1;
8948 irq_work_queue(&event->pending);
8949 }
8950
8951 return ret;
8952 }
8953
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8954 int perf_event_overflow(struct perf_event *event,
8955 struct perf_sample_data *data,
8956 struct pt_regs *regs)
8957 {
8958 return __perf_event_overflow(event, 1, data, regs);
8959 }
8960
8961 /*
8962 * Generic software event infrastructure
8963 */
8964
8965 struct swevent_htable {
8966 struct swevent_hlist *swevent_hlist;
8967 struct mutex hlist_mutex;
8968 int hlist_refcount;
8969
8970 /* Recursion avoidance in each contexts */
8971 int recursion[PERF_NR_CONTEXTS];
8972 };
8973
8974 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8975
8976 /*
8977 * We directly increment event->count and keep a second value in
8978 * event->hw.period_left to count intervals. This period event
8979 * is kept in the range [-sample_period, 0] so that we can use the
8980 * sign as trigger.
8981 */
8982
perf_swevent_set_period(struct perf_event * event)8983 u64 perf_swevent_set_period(struct perf_event *event)
8984 {
8985 struct hw_perf_event *hwc = &event->hw;
8986 u64 period = hwc->last_period;
8987 u64 nr, offset;
8988 s64 old, val;
8989
8990 hwc->last_period = hwc->sample_period;
8991
8992 again:
8993 old = val = local64_read(&hwc->period_left);
8994 if (val < 0)
8995 return 0;
8996
8997 nr = div64_u64(period + val, period);
8998 offset = nr * period;
8999 val -= offset;
9000 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9001 goto again;
9002
9003 return nr;
9004 }
9005
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9006 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9007 struct perf_sample_data *data,
9008 struct pt_regs *regs)
9009 {
9010 struct hw_perf_event *hwc = &event->hw;
9011 int throttle = 0;
9012
9013 if (!overflow)
9014 overflow = perf_swevent_set_period(event);
9015
9016 if (hwc->interrupts == MAX_INTERRUPTS)
9017 return;
9018
9019 for (; overflow; overflow--) {
9020 if (__perf_event_overflow(event, throttle,
9021 data, regs)) {
9022 /*
9023 * We inhibit the overflow from happening when
9024 * hwc->interrupts == MAX_INTERRUPTS.
9025 */
9026 break;
9027 }
9028 throttle = 1;
9029 }
9030 }
9031
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9032 static void perf_swevent_event(struct perf_event *event, u64 nr,
9033 struct perf_sample_data *data,
9034 struct pt_regs *regs)
9035 {
9036 struct hw_perf_event *hwc = &event->hw;
9037
9038 local64_add(nr, &event->count);
9039
9040 if (!regs)
9041 return;
9042
9043 if (!is_sampling_event(event))
9044 return;
9045
9046 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9047 data->period = nr;
9048 return perf_swevent_overflow(event, 1, data, regs);
9049 } else
9050 data->period = event->hw.last_period;
9051
9052 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9053 return perf_swevent_overflow(event, 1, data, regs);
9054
9055 if (local64_add_negative(nr, &hwc->period_left))
9056 return;
9057
9058 perf_swevent_overflow(event, 0, data, regs);
9059 }
9060
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9061 static int perf_exclude_event(struct perf_event *event,
9062 struct pt_regs *regs)
9063 {
9064 if (event->hw.state & PERF_HES_STOPPED)
9065 return 1;
9066
9067 if (regs) {
9068 if (event->attr.exclude_user && user_mode(regs))
9069 return 1;
9070
9071 if (event->attr.exclude_kernel && !user_mode(regs))
9072 return 1;
9073 }
9074
9075 return 0;
9076 }
9077
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9078 static int perf_swevent_match(struct perf_event *event,
9079 enum perf_type_id type,
9080 u32 event_id,
9081 struct perf_sample_data *data,
9082 struct pt_regs *regs)
9083 {
9084 if (event->attr.type != type)
9085 return 0;
9086
9087 if (event->attr.config != event_id)
9088 return 0;
9089
9090 if (perf_exclude_event(event, regs))
9091 return 0;
9092
9093 return 1;
9094 }
9095
swevent_hash(u64 type,u32 event_id)9096 static inline u64 swevent_hash(u64 type, u32 event_id)
9097 {
9098 u64 val = event_id | (type << 32);
9099
9100 return hash_64(val, SWEVENT_HLIST_BITS);
9101 }
9102
9103 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9104 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9105 {
9106 u64 hash = swevent_hash(type, event_id);
9107
9108 return &hlist->heads[hash];
9109 }
9110
9111 /* For the read side: events when they trigger */
9112 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9113 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9114 {
9115 struct swevent_hlist *hlist;
9116
9117 hlist = rcu_dereference(swhash->swevent_hlist);
9118 if (!hlist)
9119 return NULL;
9120
9121 return __find_swevent_head(hlist, type, event_id);
9122 }
9123
9124 /* For the event head insertion and removal in the hlist */
9125 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9126 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9127 {
9128 struct swevent_hlist *hlist;
9129 u32 event_id = event->attr.config;
9130 u64 type = event->attr.type;
9131
9132 /*
9133 * Event scheduling is always serialized against hlist allocation
9134 * and release. Which makes the protected version suitable here.
9135 * The context lock guarantees that.
9136 */
9137 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9138 lockdep_is_held(&event->ctx->lock));
9139 if (!hlist)
9140 return NULL;
9141
9142 return __find_swevent_head(hlist, type, event_id);
9143 }
9144
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9145 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9146 u64 nr,
9147 struct perf_sample_data *data,
9148 struct pt_regs *regs)
9149 {
9150 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9151 struct perf_event *event;
9152 struct hlist_head *head;
9153
9154 rcu_read_lock();
9155 head = find_swevent_head_rcu(swhash, type, event_id);
9156 if (!head)
9157 goto end;
9158
9159 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9160 if (perf_swevent_match(event, type, event_id, data, regs))
9161 perf_swevent_event(event, nr, data, regs);
9162 }
9163 end:
9164 rcu_read_unlock();
9165 }
9166
9167 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9168
perf_swevent_get_recursion_context(void)9169 int perf_swevent_get_recursion_context(void)
9170 {
9171 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9172
9173 return get_recursion_context(swhash->recursion);
9174 }
9175 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9176
perf_swevent_put_recursion_context(int rctx)9177 void perf_swevent_put_recursion_context(int rctx)
9178 {
9179 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9180
9181 put_recursion_context(swhash->recursion, rctx);
9182 }
9183
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9184 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9185 {
9186 struct perf_sample_data data;
9187
9188 if (WARN_ON_ONCE(!regs))
9189 return;
9190
9191 perf_sample_data_init(&data, addr, 0);
9192 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9193 }
9194
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9195 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9196 {
9197 int rctx;
9198
9199 preempt_disable_notrace();
9200 rctx = perf_swevent_get_recursion_context();
9201 if (unlikely(rctx < 0))
9202 goto fail;
9203
9204 ___perf_sw_event(event_id, nr, regs, addr);
9205
9206 perf_swevent_put_recursion_context(rctx);
9207 fail:
9208 preempt_enable_notrace();
9209 }
9210
perf_swevent_read(struct perf_event * event)9211 static void perf_swevent_read(struct perf_event *event)
9212 {
9213 }
9214
perf_swevent_add(struct perf_event * event,int flags)9215 static int perf_swevent_add(struct perf_event *event, int flags)
9216 {
9217 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9218 struct hw_perf_event *hwc = &event->hw;
9219 struct hlist_head *head;
9220
9221 if (is_sampling_event(event)) {
9222 hwc->last_period = hwc->sample_period;
9223 perf_swevent_set_period(event);
9224 }
9225
9226 hwc->state = !(flags & PERF_EF_START);
9227
9228 head = find_swevent_head(swhash, event);
9229 if (WARN_ON_ONCE(!head))
9230 return -EINVAL;
9231
9232 hlist_add_head_rcu(&event->hlist_entry, head);
9233 perf_event_update_userpage(event);
9234
9235 return 0;
9236 }
9237
perf_swevent_del(struct perf_event * event,int flags)9238 static void perf_swevent_del(struct perf_event *event, int flags)
9239 {
9240 hlist_del_rcu(&event->hlist_entry);
9241 }
9242
perf_swevent_start(struct perf_event * event,int flags)9243 static void perf_swevent_start(struct perf_event *event, int flags)
9244 {
9245 event->hw.state = 0;
9246 }
9247
perf_swevent_stop(struct perf_event * event,int flags)9248 static void perf_swevent_stop(struct perf_event *event, int flags)
9249 {
9250 event->hw.state = PERF_HES_STOPPED;
9251 }
9252
9253 /* Deref the hlist from the update side */
9254 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9255 swevent_hlist_deref(struct swevent_htable *swhash)
9256 {
9257 return rcu_dereference_protected(swhash->swevent_hlist,
9258 lockdep_is_held(&swhash->hlist_mutex));
9259 }
9260
swevent_hlist_release(struct swevent_htable * swhash)9261 static void swevent_hlist_release(struct swevent_htable *swhash)
9262 {
9263 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9264
9265 if (!hlist)
9266 return;
9267
9268 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9269 kfree_rcu(hlist, rcu_head);
9270 }
9271
swevent_hlist_put_cpu(int cpu)9272 static void swevent_hlist_put_cpu(int cpu)
9273 {
9274 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9275
9276 mutex_lock(&swhash->hlist_mutex);
9277
9278 if (!--swhash->hlist_refcount)
9279 swevent_hlist_release(swhash);
9280
9281 mutex_unlock(&swhash->hlist_mutex);
9282 }
9283
swevent_hlist_put(void)9284 static void swevent_hlist_put(void)
9285 {
9286 int cpu;
9287
9288 for_each_possible_cpu(cpu)
9289 swevent_hlist_put_cpu(cpu);
9290 }
9291
swevent_hlist_get_cpu(int cpu)9292 static int swevent_hlist_get_cpu(int cpu)
9293 {
9294 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9295 int err = 0;
9296
9297 mutex_lock(&swhash->hlist_mutex);
9298 if (!swevent_hlist_deref(swhash) &&
9299 cpumask_test_cpu(cpu, perf_online_mask)) {
9300 struct swevent_hlist *hlist;
9301
9302 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9303 if (!hlist) {
9304 err = -ENOMEM;
9305 goto exit;
9306 }
9307 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9308 }
9309 swhash->hlist_refcount++;
9310 exit:
9311 mutex_unlock(&swhash->hlist_mutex);
9312
9313 return err;
9314 }
9315
swevent_hlist_get(void)9316 static int swevent_hlist_get(void)
9317 {
9318 int err, cpu, failed_cpu;
9319
9320 mutex_lock(&pmus_lock);
9321 for_each_possible_cpu(cpu) {
9322 err = swevent_hlist_get_cpu(cpu);
9323 if (err) {
9324 failed_cpu = cpu;
9325 goto fail;
9326 }
9327 }
9328 mutex_unlock(&pmus_lock);
9329 return 0;
9330 fail:
9331 for_each_possible_cpu(cpu) {
9332 if (cpu == failed_cpu)
9333 break;
9334 swevent_hlist_put_cpu(cpu);
9335 }
9336 mutex_unlock(&pmus_lock);
9337 return err;
9338 }
9339
9340 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9341
sw_perf_event_destroy(struct perf_event * event)9342 static void sw_perf_event_destroy(struct perf_event *event)
9343 {
9344 u64 event_id = event->attr.config;
9345
9346 WARN_ON(event->parent);
9347
9348 static_key_slow_dec(&perf_swevent_enabled[event_id]);
9349 swevent_hlist_put();
9350 }
9351
perf_swevent_init(struct perf_event * event)9352 static int perf_swevent_init(struct perf_event *event)
9353 {
9354 u64 event_id = event->attr.config;
9355
9356 if (event->attr.type != PERF_TYPE_SOFTWARE)
9357 return -ENOENT;
9358
9359 /*
9360 * no branch sampling for software events
9361 */
9362 if (has_branch_stack(event))
9363 return -EOPNOTSUPP;
9364
9365 switch (event_id) {
9366 case PERF_COUNT_SW_CPU_CLOCK:
9367 case PERF_COUNT_SW_TASK_CLOCK:
9368 return -ENOENT;
9369
9370 default:
9371 break;
9372 }
9373
9374 if (event_id >= PERF_COUNT_SW_MAX)
9375 return -ENOENT;
9376
9377 if (!event->parent) {
9378 int err;
9379
9380 err = swevent_hlist_get();
9381 if (err)
9382 return err;
9383
9384 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9385 event->destroy = sw_perf_event_destroy;
9386 }
9387
9388 return 0;
9389 }
9390
9391 static struct pmu perf_swevent = {
9392 .task_ctx_nr = perf_sw_context,
9393
9394 .capabilities = PERF_PMU_CAP_NO_NMI,
9395
9396 .event_init = perf_swevent_init,
9397 .add = perf_swevent_add,
9398 .del = perf_swevent_del,
9399 .start = perf_swevent_start,
9400 .stop = perf_swevent_stop,
9401 .read = perf_swevent_read,
9402 };
9403
9404 #ifdef CONFIG_EVENT_TRACING
9405
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)9406 static int perf_tp_filter_match(struct perf_event *event,
9407 struct perf_sample_data *data)
9408 {
9409 void *record = data->raw->frag.data;
9410
9411 /* only top level events have filters set */
9412 if (event->parent)
9413 event = event->parent;
9414
9415 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9416 return 1;
9417 return 0;
9418 }
9419
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9420 static int perf_tp_event_match(struct perf_event *event,
9421 struct perf_sample_data *data,
9422 struct pt_regs *regs)
9423 {
9424 if (event->hw.state & PERF_HES_STOPPED)
9425 return 0;
9426 /*
9427 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9428 */
9429 if (event->attr.exclude_kernel && !user_mode(regs))
9430 return 0;
9431
9432 if (!perf_tp_filter_match(event, data))
9433 return 0;
9434
9435 return 1;
9436 }
9437
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)9438 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9439 struct trace_event_call *call, u64 count,
9440 struct pt_regs *regs, struct hlist_head *head,
9441 struct task_struct *task)
9442 {
9443 if (bpf_prog_array_valid(call)) {
9444 *(struct pt_regs **)raw_data = regs;
9445 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9446 perf_swevent_put_recursion_context(rctx);
9447 return;
9448 }
9449 }
9450 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9451 rctx, task);
9452 }
9453 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9454
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)9455 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9456 struct pt_regs *regs, struct hlist_head *head, int rctx,
9457 struct task_struct *task)
9458 {
9459 struct perf_sample_data data;
9460 struct perf_event *event;
9461
9462 struct perf_raw_record raw = {
9463 .frag = {
9464 .size = entry_size,
9465 .data = record,
9466 },
9467 };
9468
9469 perf_sample_data_init(&data, 0, 0);
9470 data.raw = &raw;
9471
9472 perf_trace_buf_update(record, event_type);
9473
9474 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9475 if (perf_tp_event_match(event, &data, regs))
9476 perf_swevent_event(event, count, &data, regs);
9477 }
9478
9479 /*
9480 * If we got specified a target task, also iterate its context and
9481 * deliver this event there too.
9482 */
9483 if (task && task != current) {
9484 struct perf_event_context *ctx;
9485 struct trace_entry *entry = record;
9486
9487 rcu_read_lock();
9488 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9489 if (!ctx)
9490 goto unlock;
9491
9492 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9493 if (event->cpu != smp_processor_id())
9494 continue;
9495 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9496 continue;
9497 if (event->attr.config != entry->type)
9498 continue;
9499 if (perf_tp_event_match(event, &data, regs))
9500 perf_swevent_event(event, count, &data, regs);
9501 }
9502 unlock:
9503 rcu_read_unlock();
9504 }
9505
9506 perf_swevent_put_recursion_context(rctx);
9507 }
9508 EXPORT_SYMBOL_GPL(perf_tp_event);
9509
tp_perf_event_destroy(struct perf_event * event)9510 static void tp_perf_event_destroy(struct perf_event *event)
9511 {
9512 perf_trace_destroy(event);
9513 }
9514
perf_tp_event_init(struct perf_event * event)9515 static int perf_tp_event_init(struct perf_event *event)
9516 {
9517 int err;
9518
9519 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9520 return -ENOENT;
9521
9522 /*
9523 * no branch sampling for tracepoint events
9524 */
9525 if (has_branch_stack(event))
9526 return -EOPNOTSUPP;
9527
9528 err = perf_trace_init(event);
9529 if (err)
9530 return err;
9531
9532 event->destroy = tp_perf_event_destroy;
9533
9534 return 0;
9535 }
9536
9537 static struct pmu perf_tracepoint = {
9538 .task_ctx_nr = perf_sw_context,
9539
9540 .event_init = perf_tp_event_init,
9541 .add = perf_trace_add,
9542 .del = perf_trace_del,
9543 .start = perf_swevent_start,
9544 .stop = perf_swevent_stop,
9545 .read = perf_swevent_read,
9546 };
9547
9548 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9549 /*
9550 * Flags in config, used by dynamic PMU kprobe and uprobe
9551 * The flags should match following PMU_FORMAT_ATTR().
9552 *
9553 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9554 * if not set, create kprobe/uprobe
9555 *
9556 * The following values specify a reference counter (or semaphore in the
9557 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9558 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9559 *
9560 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9561 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9562 */
9563 enum perf_probe_config {
9564 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
9565 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9566 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9567 };
9568
9569 PMU_FORMAT_ATTR(retprobe, "config:0");
9570 #endif
9571
9572 #ifdef CONFIG_KPROBE_EVENTS
9573 static struct attribute *kprobe_attrs[] = {
9574 &format_attr_retprobe.attr,
9575 NULL,
9576 };
9577
9578 static struct attribute_group kprobe_format_group = {
9579 .name = "format",
9580 .attrs = kprobe_attrs,
9581 };
9582
9583 static const struct attribute_group *kprobe_attr_groups[] = {
9584 &kprobe_format_group,
9585 NULL,
9586 };
9587
9588 static int perf_kprobe_event_init(struct perf_event *event);
9589 static struct pmu perf_kprobe = {
9590 .task_ctx_nr = perf_sw_context,
9591 .event_init = perf_kprobe_event_init,
9592 .add = perf_trace_add,
9593 .del = perf_trace_del,
9594 .start = perf_swevent_start,
9595 .stop = perf_swevent_stop,
9596 .read = perf_swevent_read,
9597 .attr_groups = kprobe_attr_groups,
9598 };
9599
perf_kprobe_event_init(struct perf_event * event)9600 static int perf_kprobe_event_init(struct perf_event *event)
9601 {
9602 int err;
9603 bool is_retprobe;
9604
9605 if (event->attr.type != perf_kprobe.type)
9606 return -ENOENT;
9607
9608 if (!perfmon_capable())
9609 return -EACCES;
9610
9611 /*
9612 * no branch sampling for probe events
9613 */
9614 if (has_branch_stack(event))
9615 return -EOPNOTSUPP;
9616
9617 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9618 err = perf_kprobe_init(event, is_retprobe);
9619 if (err)
9620 return err;
9621
9622 event->destroy = perf_kprobe_destroy;
9623
9624 return 0;
9625 }
9626 #endif /* CONFIG_KPROBE_EVENTS */
9627
9628 #ifdef CONFIG_UPROBE_EVENTS
9629 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9630
9631 static struct attribute *uprobe_attrs[] = {
9632 &format_attr_retprobe.attr,
9633 &format_attr_ref_ctr_offset.attr,
9634 NULL,
9635 };
9636
9637 static struct attribute_group uprobe_format_group = {
9638 .name = "format",
9639 .attrs = uprobe_attrs,
9640 };
9641
9642 static const struct attribute_group *uprobe_attr_groups[] = {
9643 &uprobe_format_group,
9644 NULL,
9645 };
9646
9647 static int perf_uprobe_event_init(struct perf_event *event);
9648 static struct pmu perf_uprobe = {
9649 .task_ctx_nr = perf_sw_context,
9650 .event_init = perf_uprobe_event_init,
9651 .add = perf_trace_add,
9652 .del = perf_trace_del,
9653 .start = perf_swevent_start,
9654 .stop = perf_swevent_stop,
9655 .read = perf_swevent_read,
9656 .attr_groups = uprobe_attr_groups,
9657 };
9658
perf_uprobe_event_init(struct perf_event * event)9659 static int perf_uprobe_event_init(struct perf_event *event)
9660 {
9661 int err;
9662 unsigned long ref_ctr_offset;
9663 bool is_retprobe;
9664
9665 if (event->attr.type != perf_uprobe.type)
9666 return -ENOENT;
9667
9668 if (!perfmon_capable())
9669 return -EACCES;
9670
9671 /*
9672 * no branch sampling for probe events
9673 */
9674 if (has_branch_stack(event))
9675 return -EOPNOTSUPP;
9676
9677 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9678 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9679 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9680 if (err)
9681 return err;
9682
9683 event->destroy = perf_uprobe_destroy;
9684
9685 return 0;
9686 }
9687 #endif /* CONFIG_UPROBE_EVENTS */
9688
perf_tp_register(void)9689 static inline void perf_tp_register(void)
9690 {
9691 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9692 #ifdef CONFIG_KPROBE_EVENTS
9693 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9694 #endif
9695 #ifdef CONFIG_UPROBE_EVENTS
9696 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9697 #endif
9698 }
9699
perf_event_free_filter(struct perf_event * event)9700 static void perf_event_free_filter(struct perf_event *event)
9701 {
9702 ftrace_profile_free_filter(event);
9703 }
9704
9705 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9706 static void bpf_overflow_handler(struct perf_event *event,
9707 struct perf_sample_data *data,
9708 struct pt_regs *regs)
9709 {
9710 struct bpf_perf_event_data_kern ctx = {
9711 .data = data,
9712 .event = event,
9713 };
9714 int ret = 0;
9715
9716 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9717 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9718 goto out;
9719 rcu_read_lock();
9720 ret = BPF_PROG_RUN(event->prog, &ctx);
9721 rcu_read_unlock();
9722 out:
9723 __this_cpu_dec(bpf_prog_active);
9724 if (!ret)
9725 return;
9726
9727 event->orig_overflow_handler(event, data, regs);
9728 }
9729
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9730 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9731 {
9732 struct bpf_prog *prog;
9733
9734 if (event->overflow_handler_context)
9735 /* hw breakpoint or kernel counter */
9736 return -EINVAL;
9737
9738 if (event->prog)
9739 return -EEXIST;
9740
9741 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9742 if (IS_ERR(prog))
9743 return PTR_ERR(prog);
9744
9745 if (event->attr.precise_ip &&
9746 prog->call_get_stack &&
9747 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9748 event->attr.exclude_callchain_kernel ||
9749 event->attr.exclude_callchain_user)) {
9750 /*
9751 * On perf_event with precise_ip, calling bpf_get_stack()
9752 * may trigger unwinder warnings and occasional crashes.
9753 * bpf_get_[stack|stackid] works around this issue by using
9754 * callchain attached to perf_sample_data. If the
9755 * perf_event does not full (kernel and user) callchain
9756 * attached to perf_sample_data, do not allow attaching BPF
9757 * program that calls bpf_get_[stack|stackid].
9758 */
9759 bpf_prog_put(prog);
9760 return -EPROTO;
9761 }
9762
9763 event->prog = prog;
9764 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9765 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9766 return 0;
9767 }
9768
perf_event_free_bpf_handler(struct perf_event * event)9769 static void perf_event_free_bpf_handler(struct perf_event *event)
9770 {
9771 struct bpf_prog *prog = event->prog;
9772
9773 if (!prog)
9774 return;
9775
9776 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9777 event->prog = NULL;
9778 bpf_prog_put(prog);
9779 }
9780 #else
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9781 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9782 {
9783 return -EOPNOTSUPP;
9784 }
perf_event_free_bpf_handler(struct perf_event * event)9785 static void perf_event_free_bpf_handler(struct perf_event *event)
9786 {
9787 }
9788 #endif
9789
9790 /*
9791 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9792 * with perf_event_open()
9793 */
perf_event_is_tracing(struct perf_event * event)9794 static inline bool perf_event_is_tracing(struct perf_event *event)
9795 {
9796 if (event->pmu == &perf_tracepoint)
9797 return true;
9798 #ifdef CONFIG_KPROBE_EVENTS
9799 if (event->pmu == &perf_kprobe)
9800 return true;
9801 #endif
9802 #ifdef CONFIG_UPROBE_EVENTS
9803 if (event->pmu == &perf_uprobe)
9804 return true;
9805 #endif
9806 return false;
9807 }
9808
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9809 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9810 {
9811 bool is_kprobe, is_tracepoint, is_syscall_tp;
9812 struct bpf_prog *prog;
9813 int ret;
9814
9815 if (!perf_event_is_tracing(event))
9816 return perf_event_set_bpf_handler(event, prog_fd);
9817
9818 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9819 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9820 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9821 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9822 /* bpf programs can only be attached to u/kprobe or tracepoint */
9823 return -EINVAL;
9824
9825 prog = bpf_prog_get(prog_fd);
9826 if (IS_ERR(prog))
9827 return PTR_ERR(prog);
9828
9829 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9830 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9831 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9832 /* valid fd, but invalid bpf program type */
9833 bpf_prog_put(prog);
9834 return -EINVAL;
9835 }
9836
9837 /* Kprobe override only works for kprobes, not uprobes. */
9838 if (prog->kprobe_override &&
9839 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9840 bpf_prog_put(prog);
9841 return -EINVAL;
9842 }
9843
9844 if (is_tracepoint || is_syscall_tp) {
9845 int off = trace_event_get_offsets(event->tp_event);
9846
9847 if (prog->aux->max_ctx_offset > off) {
9848 bpf_prog_put(prog);
9849 return -EACCES;
9850 }
9851 }
9852
9853 ret = perf_event_attach_bpf_prog(event, prog);
9854 if (ret)
9855 bpf_prog_put(prog);
9856 return ret;
9857 }
9858
perf_event_free_bpf_prog(struct perf_event * event)9859 static void perf_event_free_bpf_prog(struct perf_event *event)
9860 {
9861 if (!perf_event_is_tracing(event)) {
9862 perf_event_free_bpf_handler(event);
9863 return;
9864 }
9865 perf_event_detach_bpf_prog(event);
9866 }
9867
9868 #else
9869
perf_tp_register(void)9870 static inline void perf_tp_register(void)
9871 {
9872 }
9873
perf_event_free_filter(struct perf_event * event)9874 static void perf_event_free_filter(struct perf_event *event)
9875 {
9876 }
9877
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9878 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9879 {
9880 return -ENOENT;
9881 }
9882
perf_event_free_bpf_prog(struct perf_event * event)9883 static void perf_event_free_bpf_prog(struct perf_event *event)
9884 {
9885 }
9886 #endif /* CONFIG_EVENT_TRACING */
9887
9888 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)9889 void perf_bp_event(struct perf_event *bp, void *data)
9890 {
9891 struct perf_sample_data sample;
9892 struct pt_regs *regs = data;
9893
9894 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9895
9896 if (!bp->hw.state && !perf_exclude_event(bp, regs))
9897 perf_swevent_event(bp, 1, &sample, regs);
9898 }
9899 #endif
9900
9901 /*
9902 * Allocate a new address filter
9903 */
9904 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)9905 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9906 {
9907 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9908 struct perf_addr_filter *filter;
9909
9910 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9911 if (!filter)
9912 return NULL;
9913
9914 INIT_LIST_HEAD(&filter->entry);
9915 list_add_tail(&filter->entry, filters);
9916
9917 return filter;
9918 }
9919
free_filters_list(struct list_head * filters)9920 static void free_filters_list(struct list_head *filters)
9921 {
9922 struct perf_addr_filter *filter, *iter;
9923
9924 list_for_each_entry_safe(filter, iter, filters, entry) {
9925 path_put(&filter->path);
9926 list_del(&filter->entry);
9927 kfree(filter);
9928 }
9929 }
9930
9931 /*
9932 * Free existing address filters and optionally install new ones
9933 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)9934 static void perf_addr_filters_splice(struct perf_event *event,
9935 struct list_head *head)
9936 {
9937 unsigned long flags;
9938 LIST_HEAD(list);
9939
9940 if (!has_addr_filter(event))
9941 return;
9942
9943 /* don't bother with children, they don't have their own filters */
9944 if (event->parent)
9945 return;
9946
9947 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9948
9949 list_splice_init(&event->addr_filters.list, &list);
9950 if (head)
9951 list_splice(head, &event->addr_filters.list);
9952
9953 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9954
9955 free_filters_list(&list);
9956 }
9957
9958 /*
9959 * Scan through mm's vmas and see if one of them matches the
9960 * @filter; if so, adjust filter's address range.
9961 * Called with mm::mmap_lock down for reading.
9962 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)9963 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9964 struct mm_struct *mm,
9965 struct perf_addr_filter_range *fr)
9966 {
9967 struct vm_area_struct *vma;
9968
9969 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9970 if (!vma->vm_file)
9971 continue;
9972
9973 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9974 return;
9975 }
9976 }
9977
9978 /*
9979 * Update event's address range filters based on the
9980 * task's existing mappings, if any.
9981 */
perf_event_addr_filters_apply(struct perf_event * event)9982 static void perf_event_addr_filters_apply(struct perf_event *event)
9983 {
9984 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9985 struct task_struct *task = READ_ONCE(event->ctx->task);
9986 struct perf_addr_filter *filter;
9987 struct mm_struct *mm = NULL;
9988 unsigned int count = 0;
9989 unsigned long flags;
9990
9991 /*
9992 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9993 * will stop on the parent's child_mutex that our caller is also holding
9994 */
9995 if (task == TASK_TOMBSTONE)
9996 return;
9997
9998 if (ifh->nr_file_filters) {
9999 mm = get_task_mm(task);
10000 if (!mm)
10001 goto restart;
10002
10003 mmap_read_lock(mm);
10004 }
10005
10006 raw_spin_lock_irqsave(&ifh->lock, flags);
10007 list_for_each_entry(filter, &ifh->list, entry) {
10008 if (filter->path.dentry) {
10009 /*
10010 * Adjust base offset if the filter is associated to a
10011 * binary that needs to be mapped:
10012 */
10013 event->addr_filter_ranges[count].start = 0;
10014 event->addr_filter_ranges[count].size = 0;
10015
10016 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10017 } else {
10018 event->addr_filter_ranges[count].start = filter->offset;
10019 event->addr_filter_ranges[count].size = filter->size;
10020 }
10021
10022 count++;
10023 }
10024
10025 event->addr_filters_gen++;
10026 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10027
10028 if (ifh->nr_file_filters) {
10029 mmap_read_unlock(mm);
10030
10031 mmput(mm);
10032 }
10033
10034 restart:
10035 perf_event_stop(event, 1);
10036 }
10037
10038 /*
10039 * Address range filtering: limiting the data to certain
10040 * instruction address ranges. Filters are ioctl()ed to us from
10041 * userspace as ascii strings.
10042 *
10043 * Filter string format:
10044 *
10045 * ACTION RANGE_SPEC
10046 * where ACTION is one of the
10047 * * "filter": limit the trace to this region
10048 * * "start": start tracing from this address
10049 * * "stop": stop tracing at this address/region;
10050 * RANGE_SPEC is
10051 * * for kernel addresses: <start address>[/<size>]
10052 * * for object files: <start address>[/<size>]@</path/to/object/file>
10053 *
10054 * if <size> is not specified or is zero, the range is treated as a single
10055 * address; not valid for ACTION=="filter".
10056 */
10057 enum {
10058 IF_ACT_NONE = -1,
10059 IF_ACT_FILTER,
10060 IF_ACT_START,
10061 IF_ACT_STOP,
10062 IF_SRC_FILE,
10063 IF_SRC_KERNEL,
10064 IF_SRC_FILEADDR,
10065 IF_SRC_KERNELADDR,
10066 };
10067
10068 enum {
10069 IF_STATE_ACTION = 0,
10070 IF_STATE_SOURCE,
10071 IF_STATE_END,
10072 };
10073
10074 static const match_table_t if_tokens = {
10075 { IF_ACT_FILTER, "filter" },
10076 { IF_ACT_START, "start" },
10077 { IF_ACT_STOP, "stop" },
10078 { IF_SRC_FILE, "%u/%u@%s" },
10079 { IF_SRC_KERNEL, "%u/%u" },
10080 { IF_SRC_FILEADDR, "%u@%s" },
10081 { IF_SRC_KERNELADDR, "%u" },
10082 { IF_ACT_NONE, NULL },
10083 };
10084
10085 /*
10086 * Address filter string parser
10087 */
10088 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10089 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10090 struct list_head *filters)
10091 {
10092 struct perf_addr_filter *filter = NULL;
10093 char *start, *orig, *filename = NULL;
10094 substring_t args[MAX_OPT_ARGS];
10095 int state = IF_STATE_ACTION, token;
10096 unsigned int kernel = 0;
10097 int ret = -EINVAL;
10098
10099 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10100 if (!fstr)
10101 return -ENOMEM;
10102
10103 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10104 static const enum perf_addr_filter_action_t actions[] = {
10105 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10106 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10107 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10108 };
10109 ret = -EINVAL;
10110
10111 if (!*start)
10112 continue;
10113
10114 /* filter definition begins */
10115 if (state == IF_STATE_ACTION) {
10116 filter = perf_addr_filter_new(event, filters);
10117 if (!filter)
10118 goto fail;
10119 }
10120
10121 token = match_token(start, if_tokens, args);
10122 switch (token) {
10123 case IF_ACT_FILTER:
10124 case IF_ACT_START:
10125 case IF_ACT_STOP:
10126 if (state != IF_STATE_ACTION)
10127 goto fail;
10128
10129 filter->action = actions[token];
10130 state = IF_STATE_SOURCE;
10131 break;
10132
10133 case IF_SRC_KERNELADDR:
10134 case IF_SRC_KERNEL:
10135 kernel = 1;
10136 fallthrough;
10137
10138 case IF_SRC_FILEADDR:
10139 case IF_SRC_FILE:
10140 if (state != IF_STATE_SOURCE)
10141 goto fail;
10142
10143 *args[0].to = 0;
10144 ret = kstrtoul(args[0].from, 0, &filter->offset);
10145 if (ret)
10146 goto fail;
10147
10148 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10149 *args[1].to = 0;
10150 ret = kstrtoul(args[1].from, 0, &filter->size);
10151 if (ret)
10152 goto fail;
10153 }
10154
10155 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10156 int fpos = token == IF_SRC_FILE ? 2 : 1;
10157
10158 kfree(filename);
10159 filename = match_strdup(&args[fpos]);
10160 if (!filename) {
10161 ret = -ENOMEM;
10162 goto fail;
10163 }
10164 }
10165
10166 state = IF_STATE_END;
10167 break;
10168
10169 default:
10170 goto fail;
10171 }
10172
10173 /*
10174 * Filter definition is fully parsed, validate and install it.
10175 * Make sure that it doesn't contradict itself or the event's
10176 * attribute.
10177 */
10178 if (state == IF_STATE_END) {
10179 ret = -EINVAL;
10180 if (kernel && event->attr.exclude_kernel)
10181 goto fail;
10182
10183 /*
10184 * ACTION "filter" must have a non-zero length region
10185 * specified.
10186 */
10187 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10188 !filter->size)
10189 goto fail;
10190
10191 if (!kernel) {
10192 if (!filename)
10193 goto fail;
10194
10195 /*
10196 * For now, we only support file-based filters
10197 * in per-task events; doing so for CPU-wide
10198 * events requires additional context switching
10199 * trickery, since same object code will be
10200 * mapped at different virtual addresses in
10201 * different processes.
10202 */
10203 ret = -EOPNOTSUPP;
10204 if (!event->ctx->task)
10205 goto fail;
10206
10207 /* look up the path and grab its inode */
10208 ret = kern_path(filename, LOOKUP_FOLLOW,
10209 &filter->path);
10210 if (ret)
10211 goto fail;
10212
10213 ret = -EINVAL;
10214 if (!filter->path.dentry ||
10215 !S_ISREG(d_inode(filter->path.dentry)
10216 ->i_mode))
10217 goto fail;
10218
10219 event->addr_filters.nr_file_filters++;
10220 }
10221
10222 /* ready to consume more filters */
10223 kfree(filename);
10224 filename = NULL;
10225 state = IF_STATE_ACTION;
10226 filter = NULL;
10227 kernel = 0;
10228 }
10229 }
10230
10231 if (state != IF_STATE_ACTION)
10232 goto fail;
10233
10234 kfree(filename);
10235 kfree(orig);
10236
10237 return 0;
10238
10239 fail:
10240 kfree(filename);
10241 free_filters_list(filters);
10242 kfree(orig);
10243
10244 return ret;
10245 }
10246
10247 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)10248 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10249 {
10250 LIST_HEAD(filters);
10251 int ret;
10252
10253 /*
10254 * Since this is called in perf_ioctl() path, we're already holding
10255 * ctx::mutex.
10256 */
10257 lockdep_assert_held(&event->ctx->mutex);
10258
10259 if (WARN_ON_ONCE(event->parent))
10260 return -EINVAL;
10261
10262 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10263 if (ret)
10264 goto fail_clear_files;
10265
10266 ret = event->pmu->addr_filters_validate(&filters);
10267 if (ret)
10268 goto fail_free_filters;
10269
10270 /* remove existing filters, if any */
10271 perf_addr_filters_splice(event, &filters);
10272
10273 /* install new filters */
10274 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10275
10276 return ret;
10277
10278 fail_free_filters:
10279 free_filters_list(&filters);
10280
10281 fail_clear_files:
10282 event->addr_filters.nr_file_filters = 0;
10283
10284 return ret;
10285 }
10286
perf_event_set_filter(struct perf_event * event,void __user * arg)10287 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10288 {
10289 int ret = -EINVAL;
10290 char *filter_str;
10291
10292 filter_str = strndup_user(arg, PAGE_SIZE);
10293 if (IS_ERR(filter_str))
10294 return PTR_ERR(filter_str);
10295
10296 #ifdef CONFIG_EVENT_TRACING
10297 if (perf_event_is_tracing(event)) {
10298 struct perf_event_context *ctx = event->ctx;
10299
10300 /*
10301 * Beware, here be dragons!!
10302 *
10303 * the tracepoint muck will deadlock against ctx->mutex, but
10304 * the tracepoint stuff does not actually need it. So
10305 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10306 * already have a reference on ctx.
10307 *
10308 * This can result in event getting moved to a different ctx,
10309 * but that does not affect the tracepoint state.
10310 */
10311 mutex_unlock(&ctx->mutex);
10312 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10313 mutex_lock(&ctx->mutex);
10314 } else
10315 #endif
10316 if (has_addr_filter(event))
10317 ret = perf_event_set_addr_filter(event, filter_str);
10318
10319 kfree(filter_str);
10320 return ret;
10321 }
10322
10323 /*
10324 * hrtimer based swevent callback
10325 */
10326
perf_swevent_hrtimer(struct hrtimer * hrtimer)10327 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10328 {
10329 enum hrtimer_restart ret = HRTIMER_RESTART;
10330 struct perf_sample_data data;
10331 struct pt_regs *regs;
10332 struct perf_event *event;
10333 u64 period;
10334
10335 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10336
10337 if (event->state != PERF_EVENT_STATE_ACTIVE)
10338 return HRTIMER_NORESTART;
10339
10340 event->pmu->read(event);
10341
10342 perf_sample_data_init(&data, 0, event->hw.last_period);
10343 regs = get_irq_regs();
10344
10345 if (regs && !perf_exclude_event(event, regs)) {
10346 if (!(event->attr.exclude_idle && is_idle_task(current)))
10347 if (__perf_event_overflow(event, 1, &data, regs))
10348 ret = HRTIMER_NORESTART;
10349 }
10350
10351 period = max_t(u64, 10000, event->hw.sample_period);
10352 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10353
10354 return ret;
10355 }
10356
perf_swevent_start_hrtimer(struct perf_event * event)10357 static void perf_swevent_start_hrtimer(struct perf_event *event)
10358 {
10359 struct hw_perf_event *hwc = &event->hw;
10360 s64 period;
10361
10362 if (!is_sampling_event(event))
10363 return;
10364
10365 period = local64_read(&hwc->period_left);
10366 if (period) {
10367 if (period < 0)
10368 period = 10000;
10369
10370 local64_set(&hwc->period_left, 0);
10371 } else {
10372 period = max_t(u64, 10000, hwc->sample_period);
10373 }
10374 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10375 HRTIMER_MODE_REL_PINNED_HARD);
10376 }
10377
perf_swevent_cancel_hrtimer(struct perf_event * event)10378 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10379 {
10380 struct hw_perf_event *hwc = &event->hw;
10381
10382 if (is_sampling_event(event)) {
10383 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10384 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10385
10386 hrtimer_cancel(&hwc->hrtimer);
10387 }
10388 }
10389
perf_swevent_init_hrtimer(struct perf_event * event)10390 static void perf_swevent_init_hrtimer(struct perf_event *event)
10391 {
10392 struct hw_perf_event *hwc = &event->hw;
10393
10394 if (!is_sampling_event(event))
10395 return;
10396
10397 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10398 hwc->hrtimer.function = perf_swevent_hrtimer;
10399
10400 /*
10401 * Since hrtimers have a fixed rate, we can do a static freq->period
10402 * mapping and avoid the whole period adjust feedback stuff.
10403 */
10404 if (event->attr.freq) {
10405 long freq = event->attr.sample_freq;
10406
10407 event->attr.sample_period = NSEC_PER_SEC / freq;
10408 hwc->sample_period = event->attr.sample_period;
10409 local64_set(&hwc->period_left, hwc->sample_period);
10410 hwc->last_period = hwc->sample_period;
10411 event->attr.freq = 0;
10412 }
10413 }
10414
10415 /*
10416 * Software event: cpu wall time clock
10417 */
10418
cpu_clock_event_update(struct perf_event * event)10419 static void cpu_clock_event_update(struct perf_event *event)
10420 {
10421 s64 prev;
10422 u64 now;
10423
10424 now = local_clock();
10425 prev = local64_xchg(&event->hw.prev_count, now);
10426 local64_add(now - prev, &event->count);
10427 }
10428
cpu_clock_event_start(struct perf_event * event,int flags)10429 static void cpu_clock_event_start(struct perf_event *event, int flags)
10430 {
10431 local64_set(&event->hw.prev_count, local_clock());
10432 perf_swevent_start_hrtimer(event);
10433 }
10434
cpu_clock_event_stop(struct perf_event * event,int flags)10435 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10436 {
10437 perf_swevent_cancel_hrtimer(event);
10438 cpu_clock_event_update(event);
10439 }
10440
cpu_clock_event_add(struct perf_event * event,int flags)10441 static int cpu_clock_event_add(struct perf_event *event, int flags)
10442 {
10443 if (flags & PERF_EF_START)
10444 cpu_clock_event_start(event, flags);
10445 perf_event_update_userpage(event);
10446
10447 return 0;
10448 }
10449
cpu_clock_event_del(struct perf_event * event,int flags)10450 static void cpu_clock_event_del(struct perf_event *event, int flags)
10451 {
10452 cpu_clock_event_stop(event, flags);
10453 }
10454
cpu_clock_event_read(struct perf_event * event)10455 static void cpu_clock_event_read(struct perf_event *event)
10456 {
10457 cpu_clock_event_update(event);
10458 }
10459
cpu_clock_event_init(struct perf_event * event)10460 static int cpu_clock_event_init(struct perf_event *event)
10461 {
10462 if (event->attr.type != PERF_TYPE_SOFTWARE)
10463 return -ENOENT;
10464
10465 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10466 return -ENOENT;
10467
10468 /*
10469 * no branch sampling for software events
10470 */
10471 if (has_branch_stack(event))
10472 return -EOPNOTSUPP;
10473
10474 perf_swevent_init_hrtimer(event);
10475
10476 return 0;
10477 }
10478
10479 static struct pmu perf_cpu_clock = {
10480 .task_ctx_nr = perf_sw_context,
10481
10482 .capabilities = PERF_PMU_CAP_NO_NMI,
10483
10484 .event_init = cpu_clock_event_init,
10485 .add = cpu_clock_event_add,
10486 .del = cpu_clock_event_del,
10487 .start = cpu_clock_event_start,
10488 .stop = cpu_clock_event_stop,
10489 .read = cpu_clock_event_read,
10490 };
10491
10492 /*
10493 * Software event: task time clock
10494 */
10495
task_clock_event_update(struct perf_event * event,u64 now)10496 static void task_clock_event_update(struct perf_event *event, u64 now)
10497 {
10498 u64 prev;
10499 s64 delta;
10500
10501 prev = local64_xchg(&event->hw.prev_count, now);
10502 delta = now - prev;
10503 local64_add(delta, &event->count);
10504 }
10505
task_clock_event_start(struct perf_event * event,int flags)10506 static void task_clock_event_start(struct perf_event *event, int flags)
10507 {
10508 local64_set(&event->hw.prev_count, event->ctx->time);
10509 perf_swevent_start_hrtimer(event);
10510 }
10511
task_clock_event_stop(struct perf_event * event,int flags)10512 static void task_clock_event_stop(struct perf_event *event, int flags)
10513 {
10514 perf_swevent_cancel_hrtimer(event);
10515 task_clock_event_update(event, event->ctx->time);
10516 }
10517
task_clock_event_add(struct perf_event * event,int flags)10518 static int task_clock_event_add(struct perf_event *event, int flags)
10519 {
10520 if (flags & PERF_EF_START)
10521 task_clock_event_start(event, flags);
10522 perf_event_update_userpage(event);
10523
10524 return 0;
10525 }
10526
task_clock_event_del(struct perf_event * event,int flags)10527 static void task_clock_event_del(struct perf_event *event, int flags)
10528 {
10529 task_clock_event_stop(event, PERF_EF_UPDATE);
10530 }
10531
task_clock_event_read(struct perf_event * event)10532 static void task_clock_event_read(struct perf_event *event)
10533 {
10534 u64 now = perf_clock();
10535 u64 delta = now - event->ctx->timestamp;
10536 u64 time = event->ctx->time + delta;
10537
10538 task_clock_event_update(event, time);
10539 }
10540
task_clock_event_init(struct perf_event * event)10541 static int task_clock_event_init(struct perf_event *event)
10542 {
10543 if (event->attr.type != PERF_TYPE_SOFTWARE)
10544 return -ENOENT;
10545
10546 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10547 return -ENOENT;
10548
10549 /*
10550 * no branch sampling for software events
10551 */
10552 if (has_branch_stack(event))
10553 return -EOPNOTSUPP;
10554
10555 perf_swevent_init_hrtimer(event);
10556
10557 return 0;
10558 }
10559
10560 static struct pmu perf_task_clock = {
10561 .task_ctx_nr = perf_sw_context,
10562
10563 .capabilities = PERF_PMU_CAP_NO_NMI,
10564
10565 .event_init = task_clock_event_init,
10566 .add = task_clock_event_add,
10567 .del = task_clock_event_del,
10568 .start = task_clock_event_start,
10569 .stop = task_clock_event_stop,
10570 .read = task_clock_event_read,
10571 };
10572
perf_pmu_nop_void(struct pmu * pmu)10573 static void perf_pmu_nop_void(struct pmu *pmu)
10574 {
10575 }
10576
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)10577 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10578 {
10579 }
10580
perf_pmu_nop_int(struct pmu * pmu)10581 static int perf_pmu_nop_int(struct pmu *pmu)
10582 {
10583 return 0;
10584 }
10585
perf_event_nop_int(struct perf_event * event,u64 value)10586 static int perf_event_nop_int(struct perf_event *event, u64 value)
10587 {
10588 return 0;
10589 }
10590
10591 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10592
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)10593 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10594 {
10595 __this_cpu_write(nop_txn_flags, flags);
10596
10597 if (flags & ~PERF_PMU_TXN_ADD)
10598 return;
10599
10600 perf_pmu_disable(pmu);
10601 }
10602
perf_pmu_commit_txn(struct pmu * pmu)10603 static int perf_pmu_commit_txn(struct pmu *pmu)
10604 {
10605 unsigned int flags = __this_cpu_read(nop_txn_flags);
10606
10607 __this_cpu_write(nop_txn_flags, 0);
10608
10609 if (flags & ~PERF_PMU_TXN_ADD)
10610 return 0;
10611
10612 perf_pmu_enable(pmu);
10613 return 0;
10614 }
10615
perf_pmu_cancel_txn(struct pmu * pmu)10616 static void perf_pmu_cancel_txn(struct pmu *pmu)
10617 {
10618 unsigned int flags = __this_cpu_read(nop_txn_flags);
10619
10620 __this_cpu_write(nop_txn_flags, 0);
10621
10622 if (flags & ~PERF_PMU_TXN_ADD)
10623 return;
10624
10625 perf_pmu_enable(pmu);
10626 }
10627
perf_event_idx_default(struct perf_event * event)10628 static int perf_event_idx_default(struct perf_event *event)
10629 {
10630 return 0;
10631 }
10632
10633 /*
10634 * Ensures all contexts with the same task_ctx_nr have the same
10635 * pmu_cpu_context too.
10636 */
find_pmu_context(int ctxn)10637 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10638 {
10639 struct pmu *pmu;
10640
10641 if (ctxn < 0)
10642 return NULL;
10643
10644 list_for_each_entry(pmu, &pmus, entry) {
10645 if (pmu->task_ctx_nr == ctxn)
10646 return pmu->pmu_cpu_context;
10647 }
10648
10649 return NULL;
10650 }
10651
free_pmu_context(struct pmu * pmu)10652 static void free_pmu_context(struct pmu *pmu)
10653 {
10654 /*
10655 * Static contexts such as perf_sw_context have a global lifetime
10656 * and may be shared between different PMUs. Avoid freeing them
10657 * when a single PMU is going away.
10658 */
10659 if (pmu->task_ctx_nr > perf_invalid_context)
10660 return;
10661
10662 free_percpu(pmu->pmu_cpu_context);
10663 }
10664
10665 /*
10666 * Let userspace know that this PMU supports address range filtering:
10667 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)10668 static ssize_t nr_addr_filters_show(struct device *dev,
10669 struct device_attribute *attr,
10670 char *page)
10671 {
10672 struct pmu *pmu = dev_get_drvdata(dev);
10673
10674 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10675 }
10676 DEVICE_ATTR_RO(nr_addr_filters);
10677
10678 static struct idr pmu_idr;
10679
10680 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)10681 type_show(struct device *dev, struct device_attribute *attr, char *page)
10682 {
10683 struct pmu *pmu = dev_get_drvdata(dev);
10684
10685 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10686 }
10687 static DEVICE_ATTR_RO(type);
10688
10689 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)10690 perf_event_mux_interval_ms_show(struct device *dev,
10691 struct device_attribute *attr,
10692 char *page)
10693 {
10694 struct pmu *pmu = dev_get_drvdata(dev);
10695
10696 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10697 }
10698
10699 static DEFINE_MUTEX(mux_interval_mutex);
10700
10701 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)10702 perf_event_mux_interval_ms_store(struct device *dev,
10703 struct device_attribute *attr,
10704 const char *buf, size_t count)
10705 {
10706 struct pmu *pmu = dev_get_drvdata(dev);
10707 int timer, cpu, ret;
10708
10709 ret = kstrtoint(buf, 0, &timer);
10710 if (ret)
10711 return ret;
10712
10713 if (timer < 1)
10714 return -EINVAL;
10715
10716 /* same value, noting to do */
10717 if (timer == pmu->hrtimer_interval_ms)
10718 return count;
10719
10720 mutex_lock(&mux_interval_mutex);
10721 pmu->hrtimer_interval_ms = timer;
10722
10723 /* update all cpuctx for this PMU */
10724 cpus_read_lock();
10725 for_each_online_cpu(cpu) {
10726 struct perf_cpu_context *cpuctx;
10727 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10728 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10729
10730 cpu_function_call(cpu,
10731 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10732 }
10733 cpus_read_unlock();
10734 mutex_unlock(&mux_interval_mutex);
10735
10736 return count;
10737 }
10738 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10739
10740 static struct attribute *pmu_dev_attrs[] = {
10741 &dev_attr_type.attr,
10742 &dev_attr_perf_event_mux_interval_ms.attr,
10743 NULL,
10744 };
10745 ATTRIBUTE_GROUPS(pmu_dev);
10746
10747 static int pmu_bus_running;
10748 static struct bus_type pmu_bus = {
10749 .name = "event_source",
10750 .dev_groups = pmu_dev_groups,
10751 };
10752
pmu_dev_release(struct device * dev)10753 static void pmu_dev_release(struct device *dev)
10754 {
10755 kfree(dev);
10756 }
10757
pmu_dev_alloc(struct pmu * pmu)10758 static int pmu_dev_alloc(struct pmu *pmu)
10759 {
10760 int ret = -ENOMEM;
10761
10762 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10763 if (!pmu->dev)
10764 goto out;
10765
10766 pmu->dev->groups = pmu->attr_groups;
10767 device_initialize(pmu->dev);
10768 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10769 if (ret)
10770 goto free_dev;
10771
10772 dev_set_drvdata(pmu->dev, pmu);
10773 pmu->dev->bus = &pmu_bus;
10774 pmu->dev->release = pmu_dev_release;
10775 ret = device_add(pmu->dev);
10776 if (ret)
10777 goto free_dev;
10778
10779 /* For PMUs with address filters, throw in an extra attribute: */
10780 if (pmu->nr_addr_filters)
10781 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10782
10783 if (ret)
10784 goto del_dev;
10785
10786 if (pmu->attr_update)
10787 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10788
10789 if (ret)
10790 goto del_dev;
10791
10792 out:
10793 return ret;
10794
10795 del_dev:
10796 device_del(pmu->dev);
10797
10798 free_dev:
10799 put_device(pmu->dev);
10800 goto out;
10801 }
10802
10803 static struct lock_class_key cpuctx_mutex;
10804 static struct lock_class_key cpuctx_lock;
10805
perf_pmu_register(struct pmu * pmu,const char * name,int type)10806 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10807 {
10808 int cpu, ret, max = PERF_TYPE_MAX;
10809
10810 mutex_lock(&pmus_lock);
10811 ret = -ENOMEM;
10812 pmu->pmu_disable_count = alloc_percpu(int);
10813 if (!pmu->pmu_disable_count)
10814 goto unlock;
10815
10816 pmu->type = -1;
10817 if (!name)
10818 goto skip_type;
10819 pmu->name = name;
10820
10821 if (type != PERF_TYPE_SOFTWARE) {
10822 if (type >= 0)
10823 max = type;
10824
10825 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10826 if (ret < 0)
10827 goto free_pdc;
10828
10829 WARN_ON(type >= 0 && ret != type);
10830
10831 type = ret;
10832 }
10833 pmu->type = type;
10834
10835 if (pmu_bus_running) {
10836 ret = pmu_dev_alloc(pmu);
10837 if (ret)
10838 goto free_idr;
10839 }
10840
10841 skip_type:
10842 if (pmu->task_ctx_nr == perf_hw_context) {
10843 static int hw_context_taken = 0;
10844
10845 /*
10846 * Other than systems with heterogeneous CPUs, it never makes
10847 * sense for two PMUs to share perf_hw_context. PMUs which are
10848 * uncore must use perf_invalid_context.
10849 */
10850 if (WARN_ON_ONCE(hw_context_taken &&
10851 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10852 pmu->task_ctx_nr = perf_invalid_context;
10853
10854 hw_context_taken = 1;
10855 }
10856
10857 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10858 if (pmu->pmu_cpu_context)
10859 goto got_cpu_context;
10860
10861 ret = -ENOMEM;
10862 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10863 if (!pmu->pmu_cpu_context)
10864 goto free_dev;
10865
10866 for_each_possible_cpu(cpu) {
10867 struct perf_cpu_context *cpuctx;
10868
10869 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10870 __perf_event_init_context(&cpuctx->ctx);
10871 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10872 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10873 cpuctx->ctx.pmu = pmu;
10874 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10875
10876 __perf_mux_hrtimer_init(cpuctx, cpu);
10877
10878 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10879 cpuctx->heap = cpuctx->heap_default;
10880 }
10881
10882 got_cpu_context:
10883 if (!pmu->start_txn) {
10884 if (pmu->pmu_enable) {
10885 /*
10886 * If we have pmu_enable/pmu_disable calls, install
10887 * transaction stubs that use that to try and batch
10888 * hardware accesses.
10889 */
10890 pmu->start_txn = perf_pmu_start_txn;
10891 pmu->commit_txn = perf_pmu_commit_txn;
10892 pmu->cancel_txn = perf_pmu_cancel_txn;
10893 } else {
10894 pmu->start_txn = perf_pmu_nop_txn;
10895 pmu->commit_txn = perf_pmu_nop_int;
10896 pmu->cancel_txn = perf_pmu_nop_void;
10897 }
10898 }
10899
10900 if (!pmu->pmu_enable) {
10901 pmu->pmu_enable = perf_pmu_nop_void;
10902 pmu->pmu_disable = perf_pmu_nop_void;
10903 }
10904
10905 if (!pmu->check_period)
10906 pmu->check_period = perf_event_nop_int;
10907
10908 if (!pmu->event_idx)
10909 pmu->event_idx = perf_event_idx_default;
10910
10911 /*
10912 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10913 * since these cannot be in the IDR. This way the linear search
10914 * is fast, provided a valid software event is provided.
10915 */
10916 if (type == PERF_TYPE_SOFTWARE || !name)
10917 list_add_rcu(&pmu->entry, &pmus);
10918 else
10919 list_add_tail_rcu(&pmu->entry, &pmus);
10920
10921 atomic_set(&pmu->exclusive_cnt, 0);
10922 ret = 0;
10923 unlock:
10924 mutex_unlock(&pmus_lock);
10925
10926 return ret;
10927
10928 free_dev:
10929 device_del(pmu->dev);
10930 put_device(pmu->dev);
10931
10932 free_idr:
10933 if (pmu->type != PERF_TYPE_SOFTWARE)
10934 idr_remove(&pmu_idr, pmu->type);
10935
10936 free_pdc:
10937 free_percpu(pmu->pmu_disable_count);
10938 goto unlock;
10939 }
10940 EXPORT_SYMBOL_GPL(perf_pmu_register);
10941
perf_pmu_unregister(struct pmu * pmu)10942 void perf_pmu_unregister(struct pmu *pmu)
10943 {
10944 mutex_lock(&pmus_lock);
10945 list_del_rcu(&pmu->entry);
10946
10947 /*
10948 * We dereference the pmu list under both SRCU and regular RCU, so
10949 * synchronize against both of those.
10950 */
10951 synchronize_srcu(&pmus_srcu);
10952 synchronize_rcu();
10953
10954 free_percpu(pmu->pmu_disable_count);
10955 if (pmu->type != PERF_TYPE_SOFTWARE)
10956 idr_remove(&pmu_idr, pmu->type);
10957 if (pmu_bus_running) {
10958 if (pmu->nr_addr_filters)
10959 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10960 device_del(pmu->dev);
10961 put_device(pmu->dev);
10962 }
10963 free_pmu_context(pmu);
10964 mutex_unlock(&pmus_lock);
10965 }
10966 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10967
has_extended_regs(struct perf_event * event)10968 static inline bool has_extended_regs(struct perf_event *event)
10969 {
10970 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10971 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10972 }
10973
perf_try_init_event(struct pmu * pmu,struct perf_event * event)10974 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10975 {
10976 struct perf_event_context *ctx = NULL;
10977 int ret;
10978
10979 if (!try_module_get(pmu->module))
10980 return -ENODEV;
10981
10982 /*
10983 * A number of pmu->event_init() methods iterate the sibling_list to,
10984 * for example, validate if the group fits on the PMU. Therefore,
10985 * if this is a sibling event, acquire the ctx->mutex to protect
10986 * the sibling_list.
10987 */
10988 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10989 /*
10990 * This ctx->mutex can nest when we're called through
10991 * inheritance. See the perf_event_ctx_lock_nested() comment.
10992 */
10993 ctx = perf_event_ctx_lock_nested(event->group_leader,
10994 SINGLE_DEPTH_NESTING);
10995 BUG_ON(!ctx);
10996 }
10997
10998 event->pmu = pmu;
10999 ret = pmu->event_init(event);
11000
11001 if (ctx)
11002 perf_event_ctx_unlock(event->group_leader, ctx);
11003
11004 if (!ret) {
11005 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11006 has_extended_regs(event))
11007 ret = -EOPNOTSUPP;
11008
11009 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11010 event_has_any_exclude_flag(event))
11011 ret = -EINVAL;
11012
11013 if (ret && event->destroy)
11014 event->destroy(event);
11015 }
11016
11017 if (ret)
11018 module_put(pmu->module);
11019
11020 return ret;
11021 }
11022
perf_init_event(struct perf_event * event)11023 static struct pmu *perf_init_event(struct perf_event *event)
11024 {
11025 int idx, type, ret;
11026 struct pmu *pmu;
11027
11028 idx = srcu_read_lock(&pmus_srcu);
11029
11030 /* Try parent's PMU first: */
11031 if (event->parent && event->parent->pmu) {
11032 pmu = event->parent->pmu;
11033 ret = perf_try_init_event(pmu, event);
11034 if (!ret)
11035 goto unlock;
11036 }
11037
11038 /*
11039 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11040 * are often aliases for PERF_TYPE_RAW.
11041 */
11042 type = event->attr.type;
11043 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
11044 type = PERF_TYPE_RAW;
11045
11046 again:
11047 rcu_read_lock();
11048 pmu = idr_find(&pmu_idr, type);
11049 rcu_read_unlock();
11050 if (pmu) {
11051 ret = perf_try_init_event(pmu, event);
11052 if (ret == -ENOENT && event->attr.type != type) {
11053 type = event->attr.type;
11054 goto again;
11055 }
11056
11057 if (ret)
11058 pmu = ERR_PTR(ret);
11059
11060 goto unlock;
11061 }
11062
11063 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11064 ret = perf_try_init_event(pmu, event);
11065 if (!ret)
11066 goto unlock;
11067
11068 if (ret != -ENOENT) {
11069 pmu = ERR_PTR(ret);
11070 goto unlock;
11071 }
11072 }
11073 pmu = ERR_PTR(-ENOENT);
11074 unlock:
11075 srcu_read_unlock(&pmus_srcu, idx);
11076
11077 return pmu;
11078 }
11079
attach_sb_event(struct perf_event * event)11080 static void attach_sb_event(struct perf_event *event)
11081 {
11082 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11083
11084 raw_spin_lock(&pel->lock);
11085 list_add_rcu(&event->sb_list, &pel->list);
11086 raw_spin_unlock(&pel->lock);
11087 }
11088
11089 /*
11090 * We keep a list of all !task (and therefore per-cpu) events
11091 * that need to receive side-band records.
11092 *
11093 * This avoids having to scan all the various PMU per-cpu contexts
11094 * looking for them.
11095 */
account_pmu_sb_event(struct perf_event * event)11096 static void account_pmu_sb_event(struct perf_event *event)
11097 {
11098 if (is_sb_event(event))
11099 attach_sb_event(event);
11100 }
11101
account_event_cpu(struct perf_event * event,int cpu)11102 static void account_event_cpu(struct perf_event *event, int cpu)
11103 {
11104 if (event->parent)
11105 return;
11106
11107 if (is_cgroup_event(event))
11108 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11109 }
11110
11111 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11112 static void account_freq_event_nohz(void)
11113 {
11114 #ifdef CONFIG_NO_HZ_FULL
11115 /* Lock so we don't race with concurrent unaccount */
11116 spin_lock(&nr_freq_lock);
11117 if (atomic_inc_return(&nr_freq_events) == 1)
11118 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11119 spin_unlock(&nr_freq_lock);
11120 #endif
11121 }
11122
account_freq_event(void)11123 static void account_freq_event(void)
11124 {
11125 if (tick_nohz_full_enabled())
11126 account_freq_event_nohz();
11127 else
11128 atomic_inc(&nr_freq_events);
11129 }
11130
11131
account_event(struct perf_event * event)11132 static void account_event(struct perf_event *event)
11133 {
11134 bool inc = false;
11135
11136 if (event->parent)
11137 return;
11138
11139 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11140 inc = true;
11141 if (event->attr.mmap || event->attr.mmap_data)
11142 atomic_inc(&nr_mmap_events);
11143 if (event->attr.comm)
11144 atomic_inc(&nr_comm_events);
11145 if (event->attr.namespaces)
11146 atomic_inc(&nr_namespaces_events);
11147 if (event->attr.cgroup)
11148 atomic_inc(&nr_cgroup_events);
11149 if (event->attr.task)
11150 atomic_inc(&nr_task_events);
11151 if (event->attr.freq)
11152 account_freq_event();
11153 if (event->attr.context_switch) {
11154 atomic_inc(&nr_switch_events);
11155 inc = true;
11156 }
11157 if (has_branch_stack(event))
11158 inc = true;
11159 if (is_cgroup_event(event))
11160 inc = true;
11161 if (event->attr.ksymbol)
11162 atomic_inc(&nr_ksymbol_events);
11163 if (event->attr.bpf_event)
11164 atomic_inc(&nr_bpf_events);
11165 if (event->attr.text_poke)
11166 atomic_inc(&nr_text_poke_events);
11167
11168 if (inc) {
11169 /*
11170 * We need the mutex here because static_branch_enable()
11171 * must complete *before* the perf_sched_count increment
11172 * becomes visible.
11173 */
11174 if (atomic_inc_not_zero(&perf_sched_count))
11175 goto enabled;
11176
11177 mutex_lock(&perf_sched_mutex);
11178 if (!atomic_read(&perf_sched_count)) {
11179 static_branch_enable(&perf_sched_events);
11180 /*
11181 * Guarantee that all CPUs observe they key change and
11182 * call the perf scheduling hooks before proceeding to
11183 * install events that need them.
11184 */
11185 synchronize_rcu();
11186 }
11187 /*
11188 * Now that we have waited for the sync_sched(), allow further
11189 * increments to by-pass the mutex.
11190 */
11191 atomic_inc(&perf_sched_count);
11192 mutex_unlock(&perf_sched_mutex);
11193 }
11194 enabled:
11195
11196 account_event_cpu(event, event->cpu);
11197
11198 account_pmu_sb_event(event);
11199 }
11200
11201 /*
11202 * Allocate and initialize an event structure
11203 */
11204 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11205 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11206 struct task_struct *task,
11207 struct perf_event *group_leader,
11208 struct perf_event *parent_event,
11209 perf_overflow_handler_t overflow_handler,
11210 void *context, int cgroup_fd)
11211 {
11212 struct pmu *pmu;
11213 struct perf_event *event;
11214 struct hw_perf_event *hwc;
11215 long err = -EINVAL;
11216
11217 if ((unsigned)cpu >= nr_cpu_ids) {
11218 if (!task || cpu != -1)
11219 return ERR_PTR(-EINVAL);
11220 }
11221
11222 event = kzalloc(sizeof(*event), GFP_KERNEL);
11223 if (!event)
11224 return ERR_PTR(-ENOMEM);
11225
11226 /*
11227 * Single events are their own group leaders, with an
11228 * empty sibling list:
11229 */
11230 if (!group_leader)
11231 group_leader = event;
11232
11233 mutex_init(&event->child_mutex);
11234 INIT_LIST_HEAD(&event->child_list);
11235
11236 INIT_LIST_HEAD(&event->event_entry);
11237 INIT_LIST_HEAD(&event->sibling_list);
11238 INIT_LIST_HEAD(&event->active_list);
11239 init_event_group(event);
11240 INIT_LIST_HEAD(&event->rb_entry);
11241 INIT_LIST_HEAD(&event->active_entry);
11242 INIT_LIST_HEAD(&event->addr_filters.list);
11243 INIT_HLIST_NODE(&event->hlist_entry);
11244
11245
11246 init_waitqueue_head(&event->waitq);
11247 event->pending_disable = -1;
11248 init_irq_work(&event->pending, perf_pending_event);
11249
11250 mutex_init(&event->mmap_mutex);
11251 raw_spin_lock_init(&event->addr_filters.lock);
11252
11253 atomic_long_set(&event->refcount, 1);
11254 event->cpu = cpu;
11255 event->attr = *attr;
11256 event->group_leader = group_leader;
11257 event->pmu = NULL;
11258 event->oncpu = -1;
11259
11260 event->parent = parent_event;
11261
11262 event->ns = get_pid_ns(task_active_pid_ns(current));
11263 event->id = atomic64_inc_return(&perf_event_id);
11264
11265 event->state = PERF_EVENT_STATE_INACTIVE;
11266
11267 if (task) {
11268 event->attach_state = PERF_ATTACH_TASK;
11269 /*
11270 * XXX pmu::event_init needs to know what task to account to
11271 * and we cannot use the ctx information because we need the
11272 * pmu before we get a ctx.
11273 */
11274 event->hw.target = get_task_struct(task);
11275 }
11276
11277 event->clock = &local_clock;
11278 if (parent_event)
11279 event->clock = parent_event->clock;
11280
11281 if (!overflow_handler && parent_event) {
11282 overflow_handler = parent_event->overflow_handler;
11283 context = parent_event->overflow_handler_context;
11284 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11285 if (overflow_handler == bpf_overflow_handler) {
11286 struct bpf_prog *prog = parent_event->prog;
11287
11288 bpf_prog_inc(prog);
11289 event->prog = prog;
11290 event->orig_overflow_handler =
11291 parent_event->orig_overflow_handler;
11292 }
11293 #endif
11294 }
11295
11296 if (overflow_handler) {
11297 event->overflow_handler = overflow_handler;
11298 event->overflow_handler_context = context;
11299 } else if (is_write_backward(event)){
11300 event->overflow_handler = perf_event_output_backward;
11301 event->overflow_handler_context = NULL;
11302 } else {
11303 event->overflow_handler = perf_event_output_forward;
11304 event->overflow_handler_context = NULL;
11305 }
11306
11307 perf_event__state_init(event);
11308
11309 pmu = NULL;
11310
11311 hwc = &event->hw;
11312 hwc->sample_period = attr->sample_period;
11313 if (attr->freq && attr->sample_freq)
11314 hwc->sample_period = 1;
11315 hwc->last_period = hwc->sample_period;
11316
11317 local64_set(&hwc->period_left, hwc->sample_period);
11318
11319 /*
11320 * We currently do not support PERF_SAMPLE_READ on inherited events.
11321 * See perf_output_read().
11322 */
11323 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11324 goto err_ns;
11325
11326 if (!has_branch_stack(event))
11327 event->attr.branch_sample_type = 0;
11328
11329 pmu = perf_init_event(event);
11330 if (IS_ERR(pmu)) {
11331 err = PTR_ERR(pmu);
11332 goto err_ns;
11333 }
11334
11335 /*
11336 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11337 * be different on other CPUs in the uncore mask.
11338 */
11339 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11340 err = -EINVAL;
11341 goto err_pmu;
11342 }
11343
11344 if (event->attr.aux_output &&
11345 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11346 err = -EOPNOTSUPP;
11347 goto err_pmu;
11348 }
11349
11350 if (cgroup_fd != -1) {
11351 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11352 if (err)
11353 goto err_pmu;
11354 }
11355
11356 err = exclusive_event_init(event);
11357 if (err)
11358 goto err_pmu;
11359
11360 if (has_addr_filter(event)) {
11361 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11362 sizeof(struct perf_addr_filter_range),
11363 GFP_KERNEL);
11364 if (!event->addr_filter_ranges) {
11365 err = -ENOMEM;
11366 goto err_per_task;
11367 }
11368
11369 /*
11370 * Clone the parent's vma offsets: they are valid until exec()
11371 * even if the mm is not shared with the parent.
11372 */
11373 if (event->parent) {
11374 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11375
11376 raw_spin_lock_irq(&ifh->lock);
11377 memcpy(event->addr_filter_ranges,
11378 event->parent->addr_filter_ranges,
11379 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11380 raw_spin_unlock_irq(&ifh->lock);
11381 }
11382
11383 /* force hw sync on the address filters */
11384 event->addr_filters_gen = 1;
11385 }
11386
11387 if (!event->parent) {
11388 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11389 err = get_callchain_buffers(attr->sample_max_stack);
11390 if (err)
11391 goto err_addr_filters;
11392 }
11393 }
11394
11395 err = security_perf_event_alloc(event);
11396 if (err)
11397 goto err_callchain_buffer;
11398
11399 /* symmetric to unaccount_event() in _free_event() */
11400 account_event(event);
11401
11402 return event;
11403
11404 err_callchain_buffer:
11405 if (!event->parent) {
11406 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11407 put_callchain_buffers();
11408 }
11409 err_addr_filters:
11410 kfree(event->addr_filter_ranges);
11411
11412 err_per_task:
11413 exclusive_event_destroy(event);
11414
11415 err_pmu:
11416 if (is_cgroup_event(event))
11417 perf_detach_cgroup(event);
11418 if (event->destroy)
11419 event->destroy(event);
11420 module_put(pmu->module);
11421 err_ns:
11422 if (event->ns)
11423 put_pid_ns(event->ns);
11424 if (event->hw.target)
11425 put_task_struct(event->hw.target);
11426 kfree(event);
11427
11428 return ERR_PTR(err);
11429 }
11430
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)11431 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11432 struct perf_event_attr *attr)
11433 {
11434 u32 size;
11435 int ret;
11436
11437 /* Zero the full structure, so that a short copy will be nice. */
11438 memset(attr, 0, sizeof(*attr));
11439
11440 ret = get_user(size, &uattr->size);
11441 if (ret)
11442 return ret;
11443
11444 /* ABI compatibility quirk: */
11445 if (!size)
11446 size = PERF_ATTR_SIZE_VER0;
11447 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11448 goto err_size;
11449
11450 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11451 if (ret) {
11452 if (ret == -E2BIG)
11453 goto err_size;
11454 return ret;
11455 }
11456
11457 attr->size = size;
11458
11459 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11460 return -EINVAL;
11461
11462 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11463 return -EINVAL;
11464
11465 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11466 return -EINVAL;
11467
11468 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11469 u64 mask = attr->branch_sample_type;
11470
11471 /* only using defined bits */
11472 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11473 return -EINVAL;
11474
11475 /* at least one branch bit must be set */
11476 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11477 return -EINVAL;
11478
11479 /* propagate priv level, when not set for branch */
11480 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11481
11482 /* exclude_kernel checked on syscall entry */
11483 if (!attr->exclude_kernel)
11484 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11485
11486 if (!attr->exclude_user)
11487 mask |= PERF_SAMPLE_BRANCH_USER;
11488
11489 if (!attr->exclude_hv)
11490 mask |= PERF_SAMPLE_BRANCH_HV;
11491 /*
11492 * adjust user setting (for HW filter setup)
11493 */
11494 attr->branch_sample_type = mask;
11495 }
11496 /* privileged levels capture (kernel, hv): check permissions */
11497 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11498 ret = perf_allow_kernel(attr);
11499 if (ret)
11500 return ret;
11501 }
11502 }
11503
11504 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11505 ret = perf_reg_validate(attr->sample_regs_user);
11506 if (ret)
11507 return ret;
11508 }
11509
11510 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11511 if (!arch_perf_have_user_stack_dump())
11512 return -ENOSYS;
11513
11514 /*
11515 * We have __u32 type for the size, but so far
11516 * we can only use __u16 as maximum due to the
11517 * __u16 sample size limit.
11518 */
11519 if (attr->sample_stack_user >= USHRT_MAX)
11520 return -EINVAL;
11521 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11522 return -EINVAL;
11523 }
11524
11525 if (!attr->sample_max_stack)
11526 attr->sample_max_stack = sysctl_perf_event_max_stack;
11527
11528 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11529 ret = perf_reg_validate(attr->sample_regs_intr);
11530
11531 #ifndef CONFIG_CGROUP_PERF
11532 if (attr->sample_type & PERF_SAMPLE_CGROUP)
11533 return -EINVAL;
11534 #endif
11535
11536 out:
11537 return ret;
11538
11539 err_size:
11540 put_user(sizeof(*attr), &uattr->size);
11541 ret = -E2BIG;
11542 goto out;
11543 }
11544
mutex_lock_double(struct mutex * a,struct mutex * b)11545 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11546 {
11547 if (b < a)
11548 swap(a, b);
11549
11550 mutex_lock(a);
11551 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11552 }
11553
11554 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)11555 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11556 {
11557 struct perf_buffer *rb = NULL;
11558 int ret = -EINVAL;
11559
11560 if (!output_event) {
11561 mutex_lock(&event->mmap_mutex);
11562 goto set;
11563 }
11564
11565 /* don't allow circular references */
11566 if (event == output_event)
11567 goto out;
11568
11569 /*
11570 * Don't allow cross-cpu buffers
11571 */
11572 if (output_event->cpu != event->cpu)
11573 goto out;
11574
11575 /*
11576 * If its not a per-cpu rb, it must be the same task.
11577 */
11578 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11579 goto out;
11580
11581 /*
11582 * Mixing clocks in the same buffer is trouble you don't need.
11583 */
11584 if (output_event->clock != event->clock)
11585 goto out;
11586
11587 /*
11588 * Either writing ring buffer from beginning or from end.
11589 * Mixing is not allowed.
11590 */
11591 if (is_write_backward(output_event) != is_write_backward(event))
11592 goto out;
11593
11594 /*
11595 * If both events generate aux data, they must be on the same PMU
11596 */
11597 if (has_aux(event) && has_aux(output_event) &&
11598 event->pmu != output_event->pmu)
11599 goto out;
11600
11601 /*
11602 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
11603 * output_event is already on rb->event_list, and the list iteration
11604 * restarts after every removal, it is guaranteed this new event is
11605 * observed *OR* if output_event is already removed, it's guaranteed we
11606 * observe !rb->mmap_count.
11607 */
11608 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
11609 set:
11610 /* Can't redirect output if we've got an active mmap() */
11611 if (atomic_read(&event->mmap_count))
11612 goto unlock;
11613
11614 if (output_event) {
11615 /* get the rb we want to redirect to */
11616 rb = ring_buffer_get(output_event);
11617 if (!rb)
11618 goto unlock;
11619
11620 /* did we race against perf_mmap_close() */
11621 if (!atomic_read(&rb->mmap_count)) {
11622 ring_buffer_put(rb);
11623 goto unlock;
11624 }
11625 }
11626
11627 ring_buffer_attach(event, rb);
11628
11629 ret = 0;
11630 unlock:
11631 mutex_unlock(&event->mmap_mutex);
11632 if (output_event)
11633 mutex_unlock(&output_event->mmap_mutex);
11634
11635 out:
11636 return ret;
11637 }
11638
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)11639 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11640 {
11641 bool nmi_safe = false;
11642
11643 switch (clk_id) {
11644 case CLOCK_MONOTONIC:
11645 event->clock = &ktime_get_mono_fast_ns;
11646 nmi_safe = true;
11647 break;
11648
11649 case CLOCK_MONOTONIC_RAW:
11650 event->clock = &ktime_get_raw_fast_ns;
11651 nmi_safe = true;
11652 break;
11653
11654 case CLOCK_REALTIME:
11655 event->clock = &ktime_get_real_ns;
11656 break;
11657
11658 case CLOCK_BOOTTIME:
11659 event->clock = &ktime_get_boottime_ns;
11660 break;
11661
11662 case CLOCK_TAI:
11663 event->clock = &ktime_get_clocktai_ns;
11664 break;
11665
11666 default:
11667 return -EINVAL;
11668 }
11669
11670 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11671 return -EINVAL;
11672
11673 return 0;
11674 }
11675
11676 /*
11677 * Variation on perf_event_ctx_lock_nested(), except we take two context
11678 * mutexes.
11679 */
11680 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)11681 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11682 struct perf_event_context *ctx)
11683 {
11684 struct perf_event_context *gctx;
11685
11686 again:
11687 rcu_read_lock();
11688 gctx = READ_ONCE(group_leader->ctx);
11689 if (!refcount_inc_not_zero(&gctx->refcount)) {
11690 rcu_read_unlock();
11691 goto again;
11692 }
11693 rcu_read_unlock();
11694
11695 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11696
11697 if (group_leader->ctx != gctx) {
11698 mutex_unlock(&ctx->mutex);
11699 mutex_unlock(&gctx->mutex);
11700 put_ctx(gctx);
11701 goto again;
11702 }
11703
11704 return gctx;
11705 }
11706
11707 /**
11708 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11709 *
11710 * @attr_uptr: event_id type attributes for monitoring/sampling
11711 * @pid: target pid
11712 * @cpu: target cpu
11713 * @group_fd: group leader event fd
11714 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)11715 SYSCALL_DEFINE5(perf_event_open,
11716 struct perf_event_attr __user *, attr_uptr,
11717 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11718 {
11719 struct perf_event *group_leader = NULL, *output_event = NULL;
11720 struct perf_event *event, *sibling;
11721 struct perf_event_attr attr;
11722 struct perf_event_context *ctx, *gctx;
11723 struct file *event_file = NULL;
11724 struct fd group = {NULL, 0};
11725 struct task_struct *task = NULL;
11726 struct pmu *pmu;
11727 int event_fd;
11728 int move_group = 0;
11729 int err;
11730 int f_flags = O_RDWR;
11731 int cgroup_fd = -1;
11732
11733 /* for future expandability... */
11734 if (flags & ~PERF_FLAG_ALL)
11735 return -EINVAL;
11736
11737 /* Do we allow access to perf_event_open(2) ? */
11738 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11739 if (err)
11740 return err;
11741
11742 err = perf_copy_attr(attr_uptr, &attr);
11743 if (err)
11744 return err;
11745
11746 if (!attr.exclude_kernel) {
11747 err = perf_allow_kernel(&attr);
11748 if (err)
11749 return err;
11750 }
11751
11752 if (attr.namespaces) {
11753 if (!perfmon_capable())
11754 return -EACCES;
11755 }
11756
11757 if (attr.freq) {
11758 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11759 return -EINVAL;
11760 } else {
11761 if (attr.sample_period & (1ULL << 63))
11762 return -EINVAL;
11763 }
11764
11765 /* Only privileged users can get physical addresses */
11766 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11767 err = perf_allow_kernel(&attr);
11768 if (err)
11769 return err;
11770 }
11771
11772 /* REGS_INTR can leak data, lockdown must prevent this */
11773 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11774 err = security_locked_down(LOCKDOWN_PERF);
11775 if (err)
11776 return err;
11777 }
11778
11779 /*
11780 * In cgroup mode, the pid argument is used to pass the fd
11781 * opened to the cgroup directory in cgroupfs. The cpu argument
11782 * designates the cpu on which to monitor threads from that
11783 * cgroup.
11784 */
11785 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11786 return -EINVAL;
11787
11788 if (flags & PERF_FLAG_FD_CLOEXEC)
11789 f_flags |= O_CLOEXEC;
11790
11791 event_fd = get_unused_fd_flags(f_flags);
11792 if (event_fd < 0)
11793 return event_fd;
11794
11795 if (group_fd != -1) {
11796 err = perf_fget_light(group_fd, &group);
11797 if (err)
11798 goto err_fd;
11799 group_leader = group.file->private_data;
11800 if (flags & PERF_FLAG_FD_OUTPUT)
11801 output_event = group_leader;
11802 if (flags & PERF_FLAG_FD_NO_GROUP)
11803 group_leader = NULL;
11804 }
11805
11806 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11807 task = find_lively_task_by_vpid(pid);
11808 if (IS_ERR(task)) {
11809 err = PTR_ERR(task);
11810 goto err_group_fd;
11811 }
11812 }
11813
11814 if (task && group_leader &&
11815 group_leader->attr.inherit != attr.inherit) {
11816 err = -EINVAL;
11817 goto err_task;
11818 }
11819
11820 if (flags & PERF_FLAG_PID_CGROUP)
11821 cgroup_fd = pid;
11822
11823 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11824 NULL, NULL, cgroup_fd);
11825 if (IS_ERR(event)) {
11826 err = PTR_ERR(event);
11827 goto err_task;
11828 }
11829
11830 if (is_sampling_event(event)) {
11831 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11832 err = -EOPNOTSUPP;
11833 goto err_alloc;
11834 }
11835 }
11836
11837 /*
11838 * Special case software events and allow them to be part of
11839 * any hardware group.
11840 */
11841 pmu = event->pmu;
11842
11843 if (attr.use_clockid) {
11844 err = perf_event_set_clock(event, attr.clockid);
11845 if (err)
11846 goto err_alloc;
11847 }
11848
11849 if (pmu->task_ctx_nr == perf_sw_context)
11850 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11851
11852 if (group_leader) {
11853 if (is_software_event(event) &&
11854 !in_software_context(group_leader)) {
11855 /*
11856 * If the event is a sw event, but the group_leader
11857 * is on hw context.
11858 *
11859 * Allow the addition of software events to hw
11860 * groups, this is safe because software events
11861 * never fail to schedule.
11862 */
11863 pmu = group_leader->ctx->pmu;
11864 } else if (!is_software_event(event) &&
11865 is_software_event(group_leader) &&
11866 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11867 /*
11868 * In case the group is a pure software group, and we
11869 * try to add a hardware event, move the whole group to
11870 * the hardware context.
11871 */
11872 move_group = 1;
11873 }
11874 }
11875
11876 /*
11877 * Get the target context (task or percpu):
11878 */
11879 ctx = find_get_context(pmu, task, event);
11880 if (IS_ERR(ctx)) {
11881 err = PTR_ERR(ctx);
11882 goto err_alloc;
11883 }
11884
11885 /*
11886 * Look up the group leader (we will attach this event to it):
11887 */
11888 if (group_leader) {
11889 err = -EINVAL;
11890
11891 /*
11892 * Do not allow a recursive hierarchy (this new sibling
11893 * becoming part of another group-sibling):
11894 */
11895 if (group_leader->group_leader != group_leader)
11896 goto err_context;
11897
11898 /* All events in a group should have the same clock */
11899 if (group_leader->clock != event->clock)
11900 goto err_context;
11901
11902 /*
11903 * Make sure we're both events for the same CPU;
11904 * grouping events for different CPUs is broken; since
11905 * you can never concurrently schedule them anyhow.
11906 */
11907 if (group_leader->cpu != event->cpu)
11908 goto err_context;
11909
11910 /*
11911 * Make sure we're both on the same task, or both
11912 * per-CPU events.
11913 */
11914 if (group_leader->ctx->task != ctx->task)
11915 goto err_context;
11916
11917 /*
11918 * Do not allow to attach to a group in a different task
11919 * or CPU context. If we're moving SW events, we'll fix
11920 * this up later, so allow that.
11921 *
11922 * Racy, not holding group_leader->ctx->mutex, see comment with
11923 * perf_event_ctx_lock().
11924 */
11925 if (!move_group && group_leader->ctx != ctx)
11926 goto err_context;
11927
11928 /*
11929 * Only a group leader can be exclusive or pinned
11930 */
11931 if (attr.exclusive || attr.pinned)
11932 goto err_context;
11933 }
11934
11935 if (output_event) {
11936 err = perf_event_set_output(event, output_event);
11937 if (err)
11938 goto err_context;
11939 }
11940
11941 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11942 f_flags);
11943 if (IS_ERR(event_file)) {
11944 err = PTR_ERR(event_file);
11945 event_file = NULL;
11946 goto err_context;
11947 }
11948
11949 if (task) {
11950 err = down_read_interruptible(&task->signal->exec_update_lock);
11951 if (err)
11952 goto err_file;
11953
11954 /*
11955 * Preserve ptrace permission check for backwards compatibility.
11956 *
11957 * We must hold exec_update_lock across this and any potential
11958 * perf_install_in_context() call for this new event to
11959 * serialize against exec() altering our credentials (and the
11960 * perf_event_exit_task() that could imply).
11961 */
11962 err = -EACCES;
11963 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11964 goto err_cred;
11965 }
11966
11967 if (move_group) {
11968 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11969
11970 if (gctx->task == TASK_TOMBSTONE) {
11971 err = -ESRCH;
11972 goto err_locked;
11973 }
11974
11975 /*
11976 * Check if we raced against another sys_perf_event_open() call
11977 * moving the software group underneath us.
11978 */
11979 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11980 /*
11981 * If someone moved the group out from under us, check
11982 * if this new event wound up on the same ctx, if so
11983 * its the regular !move_group case, otherwise fail.
11984 */
11985 if (gctx != ctx) {
11986 err = -EINVAL;
11987 goto err_locked;
11988 } else {
11989 perf_event_ctx_unlock(group_leader, gctx);
11990 move_group = 0;
11991 goto not_move_group;
11992 }
11993 }
11994
11995 /*
11996 * Failure to create exclusive events returns -EBUSY.
11997 */
11998 err = -EBUSY;
11999 if (!exclusive_event_installable(group_leader, ctx))
12000 goto err_locked;
12001
12002 for_each_sibling_event(sibling, group_leader) {
12003 if (!exclusive_event_installable(sibling, ctx))
12004 goto err_locked;
12005 }
12006 } else {
12007 mutex_lock(&ctx->mutex);
12008
12009 /*
12010 * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12011 * see the group_leader && !move_group test earlier.
12012 */
12013 if (group_leader && group_leader->ctx != ctx) {
12014 err = -EINVAL;
12015 goto err_locked;
12016 }
12017 }
12018 not_move_group:
12019
12020 if (ctx->task == TASK_TOMBSTONE) {
12021 err = -ESRCH;
12022 goto err_locked;
12023 }
12024
12025 if (!perf_event_validate_size(event)) {
12026 err = -E2BIG;
12027 goto err_locked;
12028 }
12029
12030 if (!task) {
12031 /*
12032 * Check if the @cpu we're creating an event for is online.
12033 *
12034 * We use the perf_cpu_context::ctx::mutex to serialize against
12035 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12036 */
12037 struct perf_cpu_context *cpuctx =
12038 container_of(ctx, struct perf_cpu_context, ctx);
12039
12040 if (!cpuctx->online) {
12041 err = -ENODEV;
12042 goto err_locked;
12043 }
12044 }
12045
12046 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12047 err = -EINVAL;
12048 goto err_locked;
12049 }
12050
12051 /*
12052 * Must be under the same ctx::mutex as perf_install_in_context(),
12053 * because we need to serialize with concurrent event creation.
12054 */
12055 if (!exclusive_event_installable(event, ctx)) {
12056 err = -EBUSY;
12057 goto err_locked;
12058 }
12059
12060 WARN_ON_ONCE(ctx->parent_ctx);
12061
12062 /*
12063 * This is the point on no return; we cannot fail hereafter. This is
12064 * where we start modifying current state.
12065 */
12066
12067 if (move_group) {
12068 /*
12069 * See perf_event_ctx_lock() for comments on the details
12070 * of swizzling perf_event::ctx.
12071 */
12072 perf_remove_from_context(group_leader, 0);
12073 put_ctx(gctx);
12074
12075 for_each_sibling_event(sibling, group_leader) {
12076 perf_remove_from_context(sibling, 0);
12077 put_ctx(gctx);
12078 }
12079
12080 /*
12081 * Wait for everybody to stop referencing the events through
12082 * the old lists, before installing it on new lists.
12083 */
12084 synchronize_rcu();
12085
12086 /*
12087 * Install the group siblings before the group leader.
12088 *
12089 * Because a group leader will try and install the entire group
12090 * (through the sibling list, which is still in-tact), we can
12091 * end up with siblings installed in the wrong context.
12092 *
12093 * By installing siblings first we NO-OP because they're not
12094 * reachable through the group lists.
12095 */
12096 for_each_sibling_event(sibling, group_leader) {
12097 perf_event__state_init(sibling);
12098 perf_install_in_context(ctx, sibling, sibling->cpu);
12099 get_ctx(ctx);
12100 }
12101
12102 /*
12103 * Removing from the context ends up with disabled
12104 * event. What we want here is event in the initial
12105 * startup state, ready to be add into new context.
12106 */
12107 perf_event__state_init(group_leader);
12108 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12109 get_ctx(ctx);
12110 }
12111
12112 /*
12113 * Precalculate sample_data sizes; do while holding ctx::mutex such
12114 * that we're serialized against further additions and before
12115 * perf_install_in_context() which is the point the event is active and
12116 * can use these values.
12117 */
12118 perf_event__header_size(event);
12119 perf_event__id_header_size(event);
12120
12121 event->owner = current;
12122
12123 perf_install_in_context(ctx, event, event->cpu);
12124 perf_unpin_context(ctx);
12125
12126 if (move_group)
12127 perf_event_ctx_unlock(group_leader, gctx);
12128 mutex_unlock(&ctx->mutex);
12129
12130 if (task) {
12131 up_read(&task->signal->exec_update_lock);
12132 put_task_struct(task);
12133 }
12134
12135 mutex_lock(¤t->perf_event_mutex);
12136 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
12137 mutex_unlock(¤t->perf_event_mutex);
12138
12139 /*
12140 * Drop the reference on the group_event after placing the
12141 * new event on the sibling_list. This ensures destruction
12142 * of the group leader will find the pointer to itself in
12143 * perf_group_detach().
12144 */
12145 fdput(group);
12146 fd_install(event_fd, event_file);
12147 return event_fd;
12148
12149 err_locked:
12150 if (move_group)
12151 perf_event_ctx_unlock(group_leader, gctx);
12152 mutex_unlock(&ctx->mutex);
12153 err_cred:
12154 if (task)
12155 up_read(&task->signal->exec_update_lock);
12156 err_file:
12157 fput(event_file);
12158 err_context:
12159 perf_unpin_context(ctx);
12160 put_ctx(ctx);
12161 err_alloc:
12162 /*
12163 * If event_file is set, the fput() above will have called ->release()
12164 * and that will take care of freeing the event.
12165 */
12166 if (!event_file)
12167 free_event(event);
12168 err_task:
12169 if (task)
12170 put_task_struct(task);
12171 err_group_fd:
12172 fdput(group);
12173 err_fd:
12174 put_unused_fd(event_fd);
12175 return err;
12176 }
12177
12178 /**
12179 * perf_event_create_kernel_counter
12180 *
12181 * @attr: attributes of the counter to create
12182 * @cpu: cpu in which the counter is bound
12183 * @task: task to profile (NULL for percpu)
12184 */
12185 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12186 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12187 struct task_struct *task,
12188 perf_overflow_handler_t overflow_handler,
12189 void *context)
12190 {
12191 struct perf_event_context *ctx;
12192 struct perf_event *event;
12193 int err;
12194
12195 /*
12196 * Grouping is not supported for kernel events, neither is 'AUX',
12197 * make sure the caller's intentions are adjusted.
12198 */
12199 if (attr->aux_output)
12200 return ERR_PTR(-EINVAL);
12201
12202 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12203 overflow_handler, context, -1);
12204 if (IS_ERR(event)) {
12205 err = PTR_ERR(event);
12206 goto err;
12207 }
12208
12209 /* Mark owner so we could distinguish it from user events. */
12210 event->owner = TASK_TOMBSTONE;
12211
12212 /*
12213 * Get the target context (task or percpu):
12214 */
12215 ctx = find_get_context(event->pmu, task, event);
12216 if (IS_ERR(ctx)) {
12217 err = PTR_ERR(ctx);
12218 goto err_free;
12219 }
12220
12221 WARN_ON_ONCE(ctx->parent_ctx);
12222 mutex_lock(&ctx->mutex);
12223 if (ctx->task == TASK_TOMBSTONE) {
12224 err = -ESRCH;
12225 goto err_unlock;
12226 }
12227
12228 if (!task) {
12229 /*
12230 * Check if the @cpu we're creating an event for is online.
12231 *
12232 * We use the perf_cpu_context::ctx::mutex to serialize against
12233 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12234 */
12235 struct perf_cpu_context *cpuctx =
12236 container_of(ctx, struct perf_cpu_context, ctx);
12237 if (!cpuctx->online) {
12238 err = -ENODEV;
12239 goto err_unlock;
12240 }
12241 }
12242
12243 if (!exclusive_event_installable(event, ctx)) {
12244 err = -EBUSY;
12245 goto err_unlock;
12246 }
12247
12248 perf_install_in_context(ctx, event, event->cpu);
12249 perf_unpin_context(ctx);
12250 mutex_unlock(&ctx->mutex);
12251
12252 return event;
12253
12254 err_unlock:
12255 mutex_unlock(&ctx->mutex);
12256 perf_unpin_context(ctx);
12257 put_ctx(ctx);
12258 err_free:
12259 free_event(event);
12260 err:
12261 return ERR_PTR(err);
12262 }
12263 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12264
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)12265 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12266 {
12267 struct perf_event_context *src_ctx;
12268 struct perf_event_context *dst_ctx;
12269 struct perf_event *event, *tmp;
12270 LIST_HEAD(events);
12271
12272 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12273 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12274
12275 /*
12276 * See perf_event_ctx_lock() for comments on the details
12277 * of swizzling perf_event::ctx.
12278 */
12279 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12280 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12281 event_entry) {
12282 perf_remove_from_context(event, 0);
12283 unaccount_event_cpu(event, src_cpu);
12284 put_ctx(src_ctx);
12285 list_add(&event->migrate_entry, &events);
12286 }
12287
12288 /*
12289 * Wait for the events to quiesce before re-instating them.
12290 */
12291 synchronize_rcu();
12292
12293 /*
12294 * Re-instate events in 2 passes.
12295 *
12296 * Skip over group leaders and only install siblings on this first
12297 * pass, siblings will not get enabled without a leader, however a
12298 * leader will enable its siblings, even if those are still on the old
12299 * context.
12300 */
12301 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12302 if (event->group_leader == event)
12303 continue;
12304
12305 list_del(&event->migrate_entry);
12306 if (event->state >= PERF_EVENT_STATE_OFF)
12307 event->state = PERF_EVENT_STATE_INACTIVE;
12308 account_event_cpu(event, dst_cpu);
12309 perf_install_in_context(dst_ctx, event, dst_cpu);
12310 get_ctx(dst_ctx);
12311 }
12312
12313 /*
12314 * Once all the siblings are setup properly, install the group leaders
12315 * to make it go.
12316 */
12317 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12318 list_del(&event->migrate_entry);
12319 if (event->state >= PERF_EVENT_STATE_OFF)
12320 event->state = PERF_EVENT_STATE_INACTIVE;
12321 account_event_cpu(event, dst_cpu);
12322 perf_install_in_context(dst_ctx, event, dst_cpu);
12323 get_ctx(dst_ctx);
12324 }
12325 mutex_unlock(&dst_ctx->mutex);
12326 mutex_unlock(&src_ctx->mutex);
12327 }
12328 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12329
sync_child_event(struct perf_event * child_event,struct task_struct * child)12330 static void sync_child_event(struct perf_event *child_event,
12331 struct task_struct *child)
12332 {
12333 struct perf_event *parent_event = child_event->parent;
12334 u64 child_val;
12335
12336 if (child_event->attr.inherit_stat)
12337 perf_event_read_event(child_event, child);
12338
12339 child_val = perf_event_count(child_event);
12340
12341 /*
12342 * Add back the child's count to the parent's count:
12343 */
12344 atomic64_add(child_val, &parent_event->child_count);
12345 atomic64_add(child_event->total_time_enabled,
12346 &parent_event->child_total_time_enabled);
12347 atomic64_add(child_event->total_time_running,
12348 &parent_event->child_total_time_running);
12349 }
12350
12351 static void
perf_event_exit_event(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)12352 perf_event_exit_event(struct perf_event *child_event,
12353 struct perf_event_context *child_ctx,
12354 struct task_struct *child)
12355 {
12356 struct perf_event *parent_event = child_event->parent;
12357
12358 /*
12359 * Do not destroy the 'original' grouping; because of the context
12360 * switch optimization the original events could've ended up in a
12361 * random child task.
12362 *
12363 * If we were to destroy the original group, all group related
12364 * operations would cease to function properly after this random
12365 * child dies.
12366 *
12367 * Do destroy all inherited groups, we don't care about those
12368 * and being thorough is better.
12369 */
12370 raw_spin_lock_irq(&child_ctx->lock);
12371 WARN_ON_ONCE(child_ctx->is_active);
12372
12373 if (parent_event)
12374 perf_group_detach(child_event);
12375 list_del_event(child_event, child_ctx);
12376 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12377 raw_spin_unlock_irq(&child_ctx->lock);
12378
12379 /*
12380 * Parent events are governed by their filedesc, retain them.
12381 */
12382 if (!parent_event) {
12383 perf_event_wakeup(child_event);
12384 return;
12385 }
12386 /*
12387 * Child events can be cleaned up.
12388 */
12389
12390 sync_child_event(child_event, child);
12391
12392 /*
12393 * Remove this event from the parent's list
12394 */
12395 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12396 mutex_lock(&parent_event->child_mutex);
12397 list_del_init(&child_event->child_list);
12398 mutex_unlock(&parent_event->child_mutex);
12399
12400 /*
12401 * Kick perf_poll() for is_event_hup().
12402 */
12403 perf_event_wakeup(parent_event);
12404 free_event(child_event);
12405 put_event(parent_event);
12406 }
12407
perf_event_exit_task_context(struct task_struct * child,int ctxn)12408 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12409 {
12410 struct perf_event_context *child_ctx, *clone_ctx = NULL;
12411 struct perf_event *child_event, *next;
12412
12413 WARN_ON_ONCE(child != current);
12414
12415 child_ctx = perf_pin_task_context(child, ctxn);
12416 if (!child_ctx)
12417 return;
12418
12419 /*
12420 * In order to reduce the amount of tricky in ctx tear-down, we hold
12421 * ctx::mutex over the entire thing. This serializes against almost
12422 * everything that wants to access the ctx.
12423 *
12424 * The exception is sys_perf_event_open() /
12425 * perf_event_create_kernel_count() which does find_get_context()
12426 * without ctx::mutex (it cannot because of the move_group double mutex
12427 * lock thing). See the comments in perf_install_in_context().
12428 */
12429 mutex_lock(&child_ctx->mutex);
12430
12431 /*
12432 * In a single ctx::lock section, de-schedule the events and detach the
12433 * context from the task such that we cannot ever get it scheduled back
12434 * in.
12435 */
12436 raw_spin_lock_irq(&child_ctx->lock);
12437 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12438
12439 /*
12440 * Now that the context is inactive, destroy the task <-> ctx relation
12441 * and mark the context dead.
12442 */
12443 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12444 put_ctx(child_ctx); /* cannot be last */
12445 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12446 put_task_struct(current); /* cannot be last */
12447
12448 clone_ctx = unclone_ctx(child_ctx);
12449 raw_spin_unlock_irq(&child_ctx->lock);
12450
12451 if (clone_ctx)
12452 put_ctx(clone_ctx);
12453
12454 /*
12455 * Report the task dead after unscheduling the events so that we
12456 * won't get any samples after PERF_RECORD_EXIT. We can however still
12457 * get a few PERF_RECORD_READ events.
12458 */
12459 perf_event_task(child, child_ctx, 0);
12460
12461 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12462 perf_event_exit_event(child_event, child_ctx, child);
12463
12464 mutex_unlock(&child_ctx->mutex);
12465
12466 put_ctx(child_ctx);
12467 }
12468
12469 /*
12470 * When a child task exits, feed back event values to parent events.
12471 *
12472 * Can be called with exec_update_lock held when called from
12473 * setup_new_exec().
12474 */
perf_event_exit_task(struct task_struct * child)12475 void perf_event_exit_task(struct task_struct *child)
12476 {
12477 struct perf_event *event, *tmp;
12478 int ctxn;
12479
12480 mutex_lock(&child->perf_event_mutex);
12481 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12482 owner_entry) {
12483 list_del_init(&event->owner_entry);
12484
12485 /*
12486 * Ensure the list deletion is visible before we clear
12487 * the owner, closes a race against perf_release() where
12488 * we need to serialize on the owner->perf_event_mutex.
12489 */
12490 smp_store_release(&event->owner, NULL);
12491 }
12492 mutex_unlock(&child->perf_event_mutex);
12493
12494 for_each_task_context_nr(ctxn)
12495 perf_event_exit_task_context(child, ctxn);
12496
12497 /*
12498 * The perf_event_exit_task_context calls perf_event_task
12499 * with child's task_ctx, which generates EXIT events for
12500 * child contexts and sets child->perf_event_ctxp[] to NULL.
12501 * At this point we need to send EXIT events to cpu contexts.
12502 */
12503 perf_event_task(child, NULL, 0);
12504 }
12505
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)12506 static void perf_free_event(struct perf_event *event,
12507 struct perf_event_context *ctx)
12508 {
12509 struct perf_event *parent = event->parent;
12510
12511 if (WARN_ON_ONCE(!parent))
12512 return;
12513
12514 mutex_lock(&parent->child_mutex);
12515 list_del_init(&event->child_list);
12516 mutex_unlock(&parent->child_mutex);
12517
12518 put_event(parent);
12519
12520 raw_spin_lock_irq(&ctx->lock);
12521 perf_group_detach(event);
12522 list_del_event(event, ctx);
12523 raw_spin_unlock_irq(&ctx->lock);
12524 free_event(event);
12525 }
12526
12527 /*
12528 * Free a context as created by inheritance by perf_event_init_task() below,
12529 * used by fork() in case of fail.
12530 *
12531 * Even though the task has never lived, the context and events have been
12532 * exposed through the child_list, so we must take care tearing it all down.
12533 */
perf_event_free_task(struct task_struct * task)12534 void perf_event_free_task(struct task_struct *task)
12535 {
12536 struct perf_event_context *ctx;
12537 struct perf_event *event, *tmp;
12538 int ctxn;
12539
12540 for_each_task_context_nr(ctxn) {
12541 ctx = task->perf_event_ctxp[ctxn];
12542 if (!ctx)
12543 continue;
12544
12545 mutex_lock(&ctx->mutex);
12546 raw_spin_lock_irq(&ctx->lock);
12547 /*
12548 * Destroy the task <-> ctx relation and mark the context dead.
12549 *
12550 * This is important because even though the task hasn't been
12551 * exposed yet the context has been (through child_list).
12552 */
12553 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12554 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12555 put_task_struct(task); /* cannot be last */
12556 raw_spin_unlock_irq(&ctx->lock);
12557
12558 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12559 perf_free_event(event, ctx);
12560
12561 mutex_unlock(&ctx->mutex);
12562
12563 /*
12564 * perf_event_release_kernel() could've stolen some of our
12565 * child events and still have them on its free_list. In that
12566 * case we must wait for these events to have been freed (in
12567 * particular all their references to this task must've been
12568 * dropped).
12569 *
12570 * Without this copy_process() will unconditionally free this
12571 * task (irrespective of its reference count) and
12572 * _free_event()'s put_task_struct(event->hw.target) will be a
12573 * use-after-free.
12574 *
12575 * Wait for all events to drop their context reference.
12576 */
12577 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12578 put_ctx(ctx); /* must be last */
12579 }
12580 }
12581
perf_event_delayed_put(struct task_struct * task)12582 void perf_event_delayed_put(struct task_struct *task)
12583 {
12584 int ctxn;
12585
12586 for_each_task_context_nr(ctxn)
12587 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12588 }
12589
perf_event_get(unsigned int fd)12590 struct file *perf_event_get(unsigned int fd)
12591 {
12592 struct file *file = fget(fd);
12593 if (!file)
12594 return ERR_PTR(-EBADF);
12595
12596 if (file->f_op != &perf_fops) {
12597 fput(file);
12598 return ERR_PTR(-EBADF);
12599 }
12600
12601 return file;
12602 }
12603
perf_get_event(struct file * file)12604 const struct perf_event *perf_get_event(struct file *file)
12605 {
12606 if (file->f_op != &perf_fops)
12607 return ERR_PTR(-EINVAL);
12608
12609 return file->private_data;
12610 }
12611
perf_event_attrs(struct perf_event * event)12612 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12613 {
12614 if (!event)
12615 return ERR_PTR(-EINVAL);
12616
12617 return &event->attr;
12618 }
12619
12620 /*
12621 * Inherit an event from parent task to child task.
12622 *
12623 * Returns:
12624 * - valid pointer on success
12625 * - NULL for orphaned events
12626 * - IS_ERR() on error
12627 */
12628 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)12629 inherit_event(struct perf_event *parent_event,
12630 struct task_struct *parent,
12631 struct perf_event_context *parent_ctx,
12632 struct task_struct *child,
12633 struct perf_event *group_leader,
12634 struct perf_event_context *child_ctx)
12635 {
12636 enum perf_event_state parent_state = parent_event->state;
12637 struct perf_event *child_event;
12638 unsigned long flags;
12639
12640 /*
12641 * Instead of creating recursive hierarchies of events,
12642 * we link inherited events back to the original parent,
12643 * which has a filp for sure, which we use as the reference
12644 * count:
12645 */
12646 if (parent_event->parent)
12647 parent_event = parent_event->parent;
12648
12649 child_event = perf_event_alloc(&parent_event->attr,
12650 parent_event->cpu,
12651 child,
12652 group_leader, parent_event,
12653 NULL, NULL, -1);
12654 if (IS_ERR(child_event))
12655 return child_event;
12656
12657
12658 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12659 !child_ctx->task_ctx_data) {
12660 struct pmu *pmu = child_event->pmu;
12661
12662 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12663 if (!child_ctx->task_ctx_data) {
12664 free_event(child_event);
12665 return ERR_PTR(-ENOMEM);
12666 }
12667 }
12668
12669 /*
12670 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12671 * must be under the same lock in order to serialize against
12672 * perf_event_release_kernel(), such that either we must observe
12673 * is_orphaned_event() or they will observe us on the child_list.
12674 */
12675 mutex_lock(&parent_event->child_mutex);
12676 if (is_orphaned_event(parent_event) ||
12677 !atomic_long_inc_not_zero(&parent_event->refcount)) {
12678 mutex_unlock(&parent_event->child_mutex);
12679 /* task_ctx_data is freed with child_ctx */
12680 free_event(child_event);
12681 return NULL;
12682 }
12683
12684 get_ctx(child_ctx);
12685
12686 /*
12687 * Make the child state follow the state of the parent event,
12688 * not its attr.disabled bit. We hold the parent's mutex,
12689 * so we won't race with perf_event_{en, dis}able_family.
12690 */
12691 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12692 child_event->state = PERF_EVENT_STATE_INACTIVE;
12693 else
12694 child_event->state = PERF_EVENT_STATE_OFF;
12695
12696 if (parent_event->attr.freq) {
12697 u64 sample_period = parent_event->hw.sample_period;
12698 struct hw_perf_event *hwc = &child_event->hw;
12699
12700 hwc->sample_period = sample_period;
12701 hwc->last_period = sample_period;
12702
12703 local64_set(&hwc->period_left, sample_period);
12704 }
12705
12706 child_event->ctx = child_ctx;
12707 child_event->overflow_handler = parent_event->overflow_handler;
12708 child_event->overflow_handler_context
12709 = parent_event->overflow_handler_context;
12710
12711 /*
12712 * Precalculate sample_data sizes
12713 */
12714 perf_event__header_size(child_event);
12715 perf_event__id_header_size(child_event);
12716
12717 /*
12718 * Link it up in the child's context:
12719 */
12720 raw_spin_lock_irqsave(&child_ctx->lock, flags);
12721 add_event_to_ctx(child_event, child_ctx);
12722 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12723
12724 /*
12725 * Link this into the parent event's child list
12726 */
12727 list_add_tail(&child_event->child_list, &parent_event->child_list);
12728 mutex_unlock(&parent_event->child_mutex);
12729
12730 return child_event;
12731 }
12732
12733 /*
12734 * Inherits an event group.
12735 *
12736 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12737 * This matches with perf_event_release_kernel() removing all child events.
12738 *
12739 * Returns:
12740 * - 0 on success
12741 * - <0 on error
12742 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)12743 static int inherit_group(struct perf_event *parent_event,
12744 struct task_struct *parent,
12745 struct perf_event_context *parent_ctx,
12746 struct task_struct *child,
12747 struct perf_event_context *child_ctx)
12748 {
12749 struct perf_event *leader;
12750 struct perf_event *sub;
12751 struct perf_event *child_ctr;
12752
12753 leader = inherit_event(parent_event, parent, parent_ctx,
12754 child, NULL, child_ctx);
12755 if (IS_ERR(leader))
12756 return PTR_ERR(leader);
12757 /*
12758 * @leader can be NULL here because of is_orphaned_event(). In this
12759 * case inherit_event() will create individual events, similar to what
12760 * perf_group_detach() would do anyway.
12761 */
12762 for_each_sibling_event(sub, parent_event) {
12763 child_ctr = inherit_event(sub, parent, parent_ctx,
12764 child, leader, child_ctx);
12765 if (IS_ERR(child_ctr))
12766 return PTR_ERR(child_ctr);
12767
12768 if (sub->aux_event == parent_event && child_ctr &&
12769 !perf_get_aux_event(child_ctr, leader))
12770 return -EINVAL;
12771 }
12772 return 0;
12773 }
12774
12775 /*
12776 * Creates the child task context and tries to inherit the event-group.
12777 *
12778 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12779 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12780 * consistent with perf_event_release_kernel() removing all child events.
12781 *
12782 * Returns:
12783 * - 0 on success
12784 * - <0 on error
12785 */
12786 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)12787 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12788 struct perf_event_context *parent_ctx,
12789 struct task_struct *child, int ctxn,
12790 int *inherited_all)
12791 {
12792 int ret;
12793 struct perf_event_context *child_ctx;
12794
12795 if (!event->attr.inherit) {
12796 *inherited_all = 0;
12797 return 0;
12798 }
12799
12800 child_ctx = child->perf_event_ctxp[ctxn];
12801 if (!child_ctx) {
12802 /*
12803 * This is executed from the parent task context, so
12804 * inherit events that have been marked for cloning.
12805 * First allocate and initialize a context for the
12806 * child.
12807 */
12808 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12809 if (!child_ctx)
12810 return -ENOMEM;
12811
12812 child->perf_event_ctxp[ctxn] = child_ctx;
12813 }
12814
12815 ret = inherit_group(event, parent, parent_ctx,
12816 child, child_ctx);
12817
12818 if (ret)
12819 *inherited_all = 0;
12820
12821 return ret;
12822 }
12823
12824 /*
12825 * Initialize the perf_event context in task_struct
12826 */
perf_event_init_context(struct task_struct * child,int ctxn)12827 static int perf_event_init_context(struct task_struct *child, int ctxn)
12828 {
12829 struct perf_event_context *child_ctx, *parent_ctx;
12830 struct perf_event_context *cloned_ctx;
12831 struct perf_event *event;
12832 struct task_struct *parent = current;
12833 int inherited_all = 1;
12834 unsigned long flags;
12835 int ret = 0;
12836
12837 if (likely(!parent->perf_event_ctxp[ctxn]))
12838 return 0;
12839
12840 /*
12841 * If the parent's context is a clone, pin it so it won't get
12842 * swapped under us.
12843 */
12844 parent_ctx = perf_pin_task_context(parent, ctxn);
12845 if (!parent_ctx)
12846 return 0;
12847
12848 /*
12849 * No need to check if parent_ctx != NULL here; since we saw
12850 * it non-NULL earlier, the only reason for it to become NULL
12851 * is if we exit, and since we're currently in the middle of
12852 * a fork we can't be exiting at the same time.
12853 */
12854
12855 /*
12856 * Lock the parent list. No need to lock the child - not PID
12857 * hashed yet and not running, so nobody can access it.
12858 */
12859 mutex_lock(&parent_ctx->mutex);
12860
12861 /*
12862 * We dont have to disable NMIs - we are only looking at
12863 * the list, not manipulating it:
12864 */
12865 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12866 ret = inherit_task_group(event, parent, parent_ctx,
12867 child, ctxn, &inherited_all);
12868 if (ret)
12869 goto out_unlock;
12870 }
12871
12872 /*
12873 * We can't hold ctx->lock when iterating the ->flexible_group list due
12874 * to allocations, but we need to prevent rotation because
12875 * rotate_ctx() will change the list from interrupt context.
12876 */
12877 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12878 parent_ctx->rotate_disable = 1;
12879 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12880
12881 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12882 ret = inherit_task_group(event, parent, parent_ctx,
12883 child, ctxn, &inherited_all);
12884 if (ret)
12885 goto out_unlock;
12886 }
12887
12888 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12889 parent_ctx->rotate_disable = 0;
12890
12891 child_ctx = child->perf_event_ctxp[ctxn];
12892
12893 if (child_ctx && inherited_all) {
12894 /*
12895 * Mark the child context as a clone of the parent
12896 * context, or of whatever the parent is a clone of.
12897 *
12898 * Note that if the parent is a clone, the holding of
12899 * parent_ctx->lock avoids it from being uncloned.
12900 */
12901 cloned_ctx = parent_ctx->parent_ctx;
12902 if (cloned_ctx) {
12903 child_ctx->parent_ctx = cloned_ctx;
12904 child_ctx->parent_gen = parent_ctx->parent_gen;
12905 } else {
12906 child_ctx->parent_ctx = parent_ctx;
12907 child_ctx->parent_gen = parent_ctx->generation;
12908 }
12909 get_ctx(child_ctx->parent_ctx);
12910 }
12911
12912 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12913 out_unlock:
12914 mutex_unlock(&parent_ctx->mutex);
12915
12916 perf_unpin_context(parent_ctx);
12917 put_ctx(parent_ctx);
12918
12919 return ret;
12920 }
12921
12922 /*
12923 * Initialize the perf_event context in task_struct
12924 */
perf_event_init_task(struct task_struct * child)12925 int perf_event_init_task(struct task_struct *child)
12926 {
12927 int ctxn, ret;
12928
12929 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12930 mutex_init(&child->perf_event_mutex);
12931 INIT_LIST_HEAD(&child->perf_event_list);
12932
12933 for_each_task_context_nr(ctxn) {
12934 ret = perf_event_init_context(child, ctxn);
12935 if (ret) {
12936 perf_event_free_task(child);
12937 return ret;
12938 }
12939 }
12940
12941 return 0;
12942 }
12943
perf_event_init_all_cpus(void)12944 static void __init perf_event_init_all_cpus(void)
12945 {
12946 struct swevent_htable *swhash;
12947 int cpu;
12948
12949 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12950
12951 for_each_possible_cpu(cpu) {
12952 swhash = &per_cpu(swevent_htable, cpu);
12953 mutex_init(&swhash->hlist_mutex);
12954 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12955
12956 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12957 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12958
12959 #ifdef CONFIG_CGROUP_PERF
12960 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12961 #endif
12962 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12963 }
12964 }
12965
perf_swevent_init_cpu(unsigned int cpu)12966 static void perf_swevent_init_cpu(unsigned int cpu)
12967 {
12968 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12969
12970 mutex_lock(&swhash->hlist_mutex);
12971 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12972 struct swevent_hlist *hlist;
12973
12974 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12975 WARN_ON(!hlist);
12976 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12977 }
12978 mutex_unlock(&swhash->hlist_mutex);
12979 }
12980
12981 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)12982 static void __perf_event_exit_context(void *__info)
12983 {
12984 struct perf_event_context *ctx = __info;
12985 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12986 struct perf_event *event;
12987
12988 raw_spin_lock(&ctx->lock);
12989 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12990 list_for_each_entry(event, &ctx->event_list, event_entry)
12991 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12992 raw_spin_unlock(&ctx->lock);
12993 }
12994
perf_event_exit_cpu_context(int cpu)12995 static void perf_event_exit_cpu_context(int cpu)
12996 {
12997 struct perf_cpu_context *cpuctx;
12998 struct perf_event_context *ctx;
12999 struct pmu *pmu;
13000
13001 mutex_lock(&pmus_lock);
13002 list_for_each_entry(pmu, &pmus, entry) {
13003 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13004 ctx = &cpuctx->ctx;
13005
13006 mutex_lock(&ctx->mutex);
13007 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13008 cpuctx->online = 0;
13009 mutex_unlock(&ctx->mutex);
13010 }
13011 cpumask_clear_cpu(cpu, perf_online_mask);
13012 mutex_unlock(&pmus_lock);
13013 }
13014 #else
13015
perf_event_exit_cpu_context(int cpu)13016 static void perf_event_exit_cpu_context(int cpu) { }
13017
13018 #endif
13019
perf_event_init_cpu(unsigned int cpu)13020 int perf_event_init_cpu(unsigned int cpu)
13021 {
13022 struct perf_cpu_context *cpuctx;
13023 struct perf_event_context *ctx;
13024 struct pmu *pmu;
13025
13026 perf_swevent_init_cpu(cpu);
13027
13028 mutex_lock(&pmus_lock);
13029 cpumask_set_cpu(cpu, perf_online_mask);
13030 list_for_each_entry(pmu, &pmus, entry) {
13031 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13032 ctx = &cpuctx->ctx;
13033
13034 mutex_lock(&ctx->mutex);
13035 cpuctx->online = 1;
13036 mutex_unlock(&ctx->mutex);
13037 }
13038 mutex_unlock(&pmus_lock);
13039
13040 return 0;
13041 }
13042
perf_event_exit_cpu(unsigned int cpu)13043 int perf_event_exit_cpu(unsigned int cpu)
13044 {
13045 perf_event_exit_cpu_context(cpu);
13046 return 0;
13047 }
13048
13049 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13050 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13051 {
13052 int cpu;
13053
13054 for_each_online_cpu(cpu)
13055 perf_event_exit_cpu(cpu);
13056
13057 return NOTIFY_OK;
13058 }
13059
13060 /*
13061 * Run the perf reboot notifier at the very last possible moment so that
13062 * the generic watchdog code runs as long as possible.
13063 */
13064 static struct notifier_block perf_reboot_notifier = {
13065 .notifier_call = perf_reboot,
13066 .priority = INT_MIN,
13067 };
13068
perf_event_init(void)13069 void __init perf_event_init(void)
13070 {
13071 int ret;
13072
13073 idr_init(&pmu_idr);
13074
13075 perf_event_init_all_cpus();
13076 init_srcu_struct(&pmus_srcu);
13077 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13078 perf_pmu_register(&perf_cpu_clock, NULL, -1);
13079 perf_pmu_register(&perf_task_clock, NULL, -1);
13080 perf_tp_register();
13081 perf_event_init_cpu(smp_processor_id());
13082 register_reboot_notifier(&perf_reboot_notifier);
13083
13084 ret = init_hw_breakpoint();
13085 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13086
13087 /*
13088 * Build time assertion that we keep the data_head at the intended
13089 * location. IOW, validation we got the __reserved[] size right.
13090 */
13091 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13092 != 1024);
13093 }
13094
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13095 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13096 char *page)
13097 {
13098 struct perf_pmu_events_attr *pmu_attr =
13099 container_of(attr, struct perf_pmu_events_attr, attr);
13100
13101 if (pmu_attr->event_str)
13102 return sprintf(page, "%s\n", pmu_attr->event_str);
13103
13104 return 0;
13105 }
13106 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13107
perf_event_sysfs_init(void)13108 static int __init perf_event_sysfs_init(void)
13109 {
13110 struct pmu *pmu;
13111 int ret;
13112
13113 mutex_lock(&pmus_lock);
13114
13115 ret = bus_register(&pmu_bus);
13116 if (ret)
13117 goto unlock;
13118
13119 list_for_each_entry(pmu, &pmus, entry) {
13120 if (!pmu->name || pmu->type < 0)
13121 continue;
13122
13123 ret = pmu_dev_alloc(pmu);
13124 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13125 }
13126 pmu_bus_running = 1;
13127 ret = 0;
13128
13129 unlock:
13130 mutex_unlock(&pmus_lock);
13131
13132 return ret;
13133 }
13134 device_initcall(perf_event_sysfs_init);
13135
13136 #ifdef CONFIG_CGROUP_PERF
13137 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13138 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13139 {
13140 struct perf_cgroup *jc;
13141
13142 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13143 if (!jc)
13144 return ERR_PTR(-ENOMEM);
13145
13146 jc->info = alloc_percpu(struct perf_cgroup_info);
13147 if (!jc->info) {
13148 kfree(jc);
13149 return ERR_PTR(-ENOMEM);
13150 }
13151
13152 return &jc->css;
13153 }
13154
perf_cgroup_css_free(struct cgroup_subsys_state * css)13155 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13156 {
13157 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13158
13159 free_percpu(jc->info);
13160 kfree(jc);
13161 }
13162
perf_cgroup_css_online(struct cgroup_subsys_state * css)13163 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13164 {
13165 perf_event_cgroup(css->cgroup);
13166 return 0;
13167 }
13168
__perf_cgroup_move(void * info)13169 static int __perf_cgroup_move(void *info)
13170 {
13171 struct task_struct *task = info;
13172 rcu_read_lock();
13173 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13174 rcu_read_unlock();
13175 return 0;
13176 }
13177
perf_cgroup_attach(struct cgroup_taskset * tset)13178 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13179 {
13180 struct task_struct *task;
13181 struct cgroup_subsys_state *css;
13182
13183 cgroup_taskset_for_each(task, css, tset)
13184 task_function_call(task, __perf_cgroup_move, task);
13185 }
13186
13187 struct cgroup_subsys perf_event_cgrp_subsys = {
13188 .css_alloc = perf_cgroup_css_alloc,
13189 .css_free = perf_cgroup_css_free,
13190 .css_online = perf_cgroup_css_online,
13191 .attach = perf_cgroup_attach,
13192 /*
13193 * Implicitly enable on dfl hierarchy so that perf events can
13194 * always be filtered by cgroup2 path as long as perf_event
13195 * controller is not mounted on a legacy hierarchy.
13196 */
13197 .implicit_on_dfl = true,
13198 .threaded = true,
13199 };
13200 #endif /* CONFIG_CGROUP_PERF */
13201