1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * page->flags PG_locked (lock_page) * (see huegtlbfs below)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
31 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
36 * i_pages lock (widely used)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
47 *
48 * * hugetlbfs PageHuge() pages take locks in this order:
49 * mapping->i_mmap_rwsem
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * page->flags PG_locked (lock_page)
52 */
53
54 #include <linux/mm.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/task.h>
57 #include <linux/pagemap.h>
58 #include <linux/swap.h>
59 #include <linux/swapops.h>
60 #include <linux/slab.h>
61 #include <linux/init.h>
62 #include <linux/ksm.h>
63 #include <linux/rmap.h>
64 #include <linux/rcupdate.h>
65 #include <linux/export.h>
66 #include <linux/memcontrol.h>
67 #include <linux/mmu_notifier.h>
68 #include <linux/migrate.h>
69 #include <linux/hugetlb.h>
70 #include <linux/huge_mm.h>
71 #include <linux/backing-dev.h>
72 #include <linux/page_idle.h>
73 #include <linux/memremap.h>
74 #include <linux/userfaultfd_k.h>
75
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/tlb.h>
79
80 #include <trace/hooks/mm.h>
81
82 #include "internal.h"
83
84 static struct kmem_cache *anon_vma_cachep;
85 static struct kmem_cache *anon_vma_chain_cachep;
86
anon_vma_alloc(void)87 static inline struct anon_vma *anon_vma_alloc(void)
88 {
89 struct anon_vma *anon_vma;
90
91 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
92 if (anon_vma) {
93 atomic_set(&anon_vma->refcount, 1);
94 anon_vma->degree = 1; /* Reference for first vma */
95 anon_vma->parent = anon_vma;
96 /*
97 * Initialise the anon_vma root to point to itself. If called
98 * from fork, the root will be reset to the parents anon_vma.
99 */
100 anon_vma->root = anon_vma;
101 }
102
103 return anon_vma;
104 }
105
anon_vma_free(struct anon_vma * anon_vma)106 static inline void anon_vma_free(struct anon_vma *anon_vma)
107 {
108 VM_BUG_ON(atomic_read(&anon_vma->refcount));
109
110 /*
111 * Synchronize against page_lock_anon_vma_read() such that
112 * we can safely hold the lock without the anon_vma getting
113 * freed.
114 *
115 * Relies on the full mb implied by the atomic_dec_and_test() from
116 * put_anon_vma() against the acquire barrier implied by
117 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
118 *
119 * page_lock_anon_vma_read() VS put_anon_vma()
120 * down_read_trylock() atomic_dec_and_test()
121 * LOCK MB
122 * atomic_read() rwsem_is_locked()
123 *
124 * LOCK should suffice since the actual taking of the lock must
125 * happen _before_ what follows.
126 */
127 might_sleep();
128 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
129 anon_vma_lock_write(anon_vma);
130 anon_vma_unlock_write(anon_vma);
131 }
132
133 kmem_cache_free(anon_vma_cachep, anon_vma);
134 }
135
anon_vma_chain_alloc(gfp_t gfp)136 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
137 {
138 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
139 }
140
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)141 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
142 {
143 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
144 }
145
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)146 static void anon_vma_chain_link(struct vm_area_struct *vma,
147 struct anon_vma_chain *avc,
148 struct anon_vma *anon_vma)
149 {
150 avc->vma = vma;
151 avc->anon_vma = anon_vma;
152 list_add(&avc->same_vma, &vma->anon_vma_chain);
153 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
154 }
155
156 /**
157 * __anon_vma_prepare - attach an anon_vma to a memory region
158 * @vma: the memory region in question
159 *
160 * This makes sure the memory mapping described by 'vma' has
161 * an 'anon_vma' attached to it, so that we can associate the
162 * anonymous pages mapped into it with that anon_vma.
163 *
164 * The common case will be that we already have one, which
165 * is handled inline by anon_vma_prepare(). But if
166 * not we either need to find an adjacent mapping that we
167 * can re-use the anon_vma from (very common when the only
168 * reason for splitting a vma has been mprotect()), or we
169 * allocate a new one.
170 *
171 * Anon-vma allocations are very subtle, because we may have
172 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
173 * and that may actually touch the spinlock even in the newly
174 * allocated vma (it depends on RCU to make sure that the
175 * anon_vma isn't actually destroyed).
176 *
177 * As a result, we need to do proper anon_vma locking even
178 * for the new allocation. At the same time, we do not want
179 * to do any locking for the common case of already having
180 * an anon_vma.
181 *
182 * This must be called with the mmap_lock held for reading.
183 */
__anon_vma_prepare(struct vm_area_struct * vma)184 int __anon_vma_prepare(struct vm_area_struct *vma)
185 {
186 struct mm_struct *mm = vma->vm_mm;
187 struct anon_vma *anon_vma, *allocated;
188 struct anon_vma_chain *avc;
189
190 might_sleep();
191
192 avc = anon_vma_chain_alloc(GFP_KERNEL);
193 if (!avc)
194 goto out_enomem;
195
196 anon_vma = find_mergeable_anon_vma(vma);
197 allocated = NULL;
198 if (!anon_vma) {
199 anon_vma = anon_vma_alloc();
200 if (unlikely(!anon_vma))
201 goto out_enomem_free_avc;
202 allocated = anon_vma;
203 }
204
205 anon_vma_lock_write(anon_vma);
206 /* page_table_lock to protect against threads */
207 spin_lock(&mm->page_table_lock);
208 if (likely(!vma->anon_vma)) {
209 vma->anon_vma = anon_vma;
210 anon_vma_chain_link(vma, avc, anon_vma);
211 /* vma reference or self-parent link for new root */
212 anon_vma->degree++;
213 allocated = NULL;
214 avc = NULL;
215 }
216 spin_unlock(&mm->page_table_lock);
217 anon_vma_unlock_write(anon_vma);
218
219 if (unlikely(allocated))
220 put_anon_vma(allocated);
221 if (unlikely(avc))
222 anon_vma_chain_free(avc);
223
224 return 0;
225
226 out_enomem_free_avc:
227 anon_vma_chain_free(avc);
228 out_enomem:
229 return -ENOMEM;
230 }
231
232 /*
233 * This is a useful helper function for locking the anon_vma root as
234 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
235 * have the same vma.
236 *
237 * Such anon_vma's should have the same root, so you'd expect to see
238 * just a single mutex_lock for the whole traversal.
239 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)240 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
241 {
242 struct anon_vma *new_root = anon_vma->root;
243 if (new_root != root) {
244 if (WARN_ON_ONCE(root))
245 up_write(&root->rwsem);
246 root = new_root;
247 down_write(&root->rwsem);
248 }
249 return root;
250 }
251
unlock_anon_vma_root(struct anon_vma * root)252 static inline void unlock_anon_vma_root(struct anon_vma *root)
253 {
254 if (root)
255 up_write(&root->rwsem);
256 }
257
258 /*
259 * Attach the anon_vmas from src to dst.
260 * Returns 0 on success, -ENOMEM on failure.
261 *
262 * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
263 * anon_vma_fork(). The first three want an exact copy of src, while the last
264 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
265 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
266 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
267 *
268 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
269 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
270 * This prevents degradation of anon_vma hierarchy to endless linear chain in
271 * case of constantly forking task. On the other hand, an anon_vma with more
272 * than one child isn't reused even if there was no alive vma, thus rmap
273 * walker has a good chance of avoiding scanning the whole hierarchy when it
274 * searches where page is mapped.
275 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)276 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
277 {
278 struct anon_vma_chain *avc, *pavc;
279 struct anon_vma *root = NULL;
280
281 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
282 struct anon_vma *anon_vma;
283
284 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
285 if (unlikely(!avc)) {
286 unlock_anon_vma_root(root);
287 root = NULL;
288 avc = anon_vma_chain_alloc(GFP_KERNEL);
289 if (!avc)
290 goto enomem_failure;
291 }
292 anon_vma = pavc->anon_vma;
293 root = lock_anon_vma_root(root, anon_vma);
294 anon_vma_chain_link(dst, avc, anon_vma);
295
296 /*
297 * Reuse existing anon_vma if its degree lower than two,
298 * that means it has no vma and only one anon_vma child.
299 *
300 * Do not chose parent anon_vma, otherwise first child
301 * will always reuse it. Root anon_vma is never reused:
302 * it has self-parent reference and at least one child.
303 */
304 if (!dst->anon_vma && src->anon_vma &&
305 anon_vma != src->anon_vma && anon_vma->degree < 2)
306 dst->anon_vma = anon_vma;
307 }
308 if (dst->anon_vma)
309 dst->anon_vma->degree++;
310 unlock_anon_vma_root(root);
311 return 0;
312
313 enomem_failure:
314 /*
315 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
316 * decremented in unlink_anon_vmas().
317 * We can safely do this because callers of anon_vma_clone() don't care
318 * about dst->anon_vma if anon_vma_clone() failed.
319 */
320 dst->anon_vma = NULL;
321 unlink_anon_vmas(dst);
322 return -ENOMEM;
323 }
324
325 /*
326 * Attach vma to its own anon_vma, as well as to the anon_vmas that
327 * the corresponding VMA in the parent process is attached to.
328 * Returns 0 on success, non-zero on failure.
329 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)330 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
331 {
332 struct anon_vma_chain *avc;
333 struct anon_vma *anon_vma;
334 int error;
335
336 /* Don't bother if the parent process has no anon_vma here. */
337 if (!pvma->anon_vma)
338 return 0;
339
340 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
341 vma->anon_vma = NULL;
342
343 /*
344 * First, attach the new VMA to the parent VMA's anon_vmas,
345 * so rmap can find non-COWed pages in child processes.
346 */
347 error = anon_vma_clone(vma, pvma);
348 if (error)
349 return error;
350
351 /* An existing anon_vma has been reused, all done then. */
352 if (vma->anon_vma)
353 return 0;
354
355 /* Then add our own anon_vma. */
356 anon_vma = anon_vma_alloc();
357 if (!anon_vma)
358 goto out_error;
359 avc = anon_vma_chain_alloc(GFP_KERNEL);
360 if (!avc)
361 goto out_error_free_anon_vma;
362
363 /*
364 * The root anon_vma's spinlock is the lock actually used when we
365 * lock any of the anon_vmas in this anon_vma tree.
366 */
367 anon_vma->root = pvma->anon_vma->root;
368 anon_vma->parent = pvma->anon_vma;
369 /*
370 * With refcounts, an anon_vma can stay around longer than the
371 * process it belongs to. The root anon_vma needs to be pinned until
372 * this anon_vma is freed, because the lock lives in the root.
373 */
374 get_anon_vma(anon_vma->root);
375 /* Mark this anon_vma as the one where our new (COWed) pages go. */
376 vma->anon_vma = anon_vma;
377 anon_vma_lock_write(anon_vma);
378 anon_vma_chain_link(vma, avc, anon_vma);
379 anon_vma->parent->degree++;
380 anon_vma_unlock_write(anon_vma);
381
382 return 0;
383
384 out_error_free_anon_vma:
385 put_anon_vma(anon_vma);
386 out_error:
387 unlink_anon_vmas(vma);
388 return -ENOMEM;
389 }
390
unlink_anon_vmas(struct vm_area_struct * vma)391 void unlink_anon_vmas(struct vm_area_struct *vma)
392 {
393 struct anon_vma_chain *avc, *next;
394 struct anon_vma *root = NULL;
395
396 /*
397 * Unlink each anon_vma chained to the VMA. This list is ordered
398 * from newest to oldest, ensuring the root anon_vma gets freed last.
399 */
400 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
401 struct anon_vma *anon_vma = avc->anon_vma;
402
403 root = lock_anon_vma_root(root, anon_vma);
404 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
405
406 /*
407 * Leave empty anon_vmas on the list - we'll need
408 * to free them outside the lock.
409 */
410 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
411 anon_vma->parent->degree--;
412 continue;
413 }
414
415 list_del(&avc->same_vma);
416 anon_vma_chain_free(avc);
417 }
418 if (vma->anon_vma)
419 vma->anon_vma->degree--;
420 unlock_anon_vma_root(root);
421
422 /*
423 * Iterate the list once more, it now only contains empty and unlinked
424 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
425 * needing to write-acquire the anon_vma->root->rwsem.
426 */
427 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
428 struct anon_vma *anon_vma = avc->anon_vma;
429
430 VM_WARN_ON(anon_vma->degree);
431 put_anon_vma(anon_vma);
432
433 list_del(&avc->same_vma);
434 anon_vma_chain_free(avc);
435 }
436 }
437
anon_vma_ctor(void * data)438 static void anon_vma_ctor(void *data)
439 {
440 struct anon_vma *anon_vma = data;
441
442 init_rwsem(&anon_vma->rwsem);
443 atomic_set(&anon_vma->refcount, 0);
444 anon_vma->rb_root = RB_ROOT_CACHED;
445 }
446
anon_vma_init(void)447 void __init anon_vma_init(void)
448 {
449 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
450 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
451 anon_vma_ctor);
452 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
453 SLAB_PANIC|SLAB_ACCOUNT);
454 }
455
456 /*
457 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
458 *
459 * Since there is no serialization what so ever against page_remove_rmap()
460 * the best this function can do is return a locked anon_vma that might
461 * have been relevant to this page.
462 *
463 * The page might have been remapped to a different anon_vma or the anon_vma
464 * returned may already be freed (and even reused).
465 *
466 * In case it was remapped to a different anon_vma, the new anon_vma will be a
467 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
468 * ensure that any anon_vma obtained from the page will still be valid for as
469 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
470 *
471 * All users of this function must be very careful when walking the anon_vma
472 * chain and verify that the page in question is indeed mapped in it
473 * [ something equivalent to page_mapped_in_vma() ].
474 *
475 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
476 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
477 * if there is a mapcount, we can dereference the anon_vma after observing
478 * those.
479 */
page_get_anon_vma(struct page * page)480 struct anon_vma *page_get_anon_vma(struct page *page)
481 {
482 struct anon_vma *anon_vma = NULL;
483 unsigned long anon_mapping;
484
485 rcu_read_lock();
486 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
487 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
488 goto out;
489 if (!page_mapped(page))
490 goto out;
491
492 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
493 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
494 anon_vma = NULL;
495 goto out;
496 }
497
498 /*
499 * If this page is still mapped, then its anon_vma cannot have been
500 * freed. But if it has been unmapped, we have no security against the
501 * anon_vma structure being freed and reused (for another anon_vma:
502 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
503 * above cannot corrupt).
504 */
505 if (!page_mapped(page)) {
506 rcu_read_unlock();
507 put_anon_vma(anon_vma);
508 return NULL;
509 }
510 out:
511 rcu_read_unlock();
512
513 return anon_vma;
514 }
515
516 /*
517 * Similar to page_get_anon_vma() except it locks the anon_vma.
518 *
519 * Its a little more complex as it tries to keep the fast path to a single
520 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
521 * reference like with page_get_anon_vma() and then block on the mutex
522 * on !rwc->try_lock case.
523 */
page_lock_anon_vma_read(struct page * page,struct rmap_walk_control * rwc)524 struct anon_vma *page_lock_anon_vma_read(struct page *page,
525 struct rmap_walk_control *rwc)
526 {
527 struct anon_vma *anon_vma = NULL;
528 struct anon_vma *root_anon_vma;
529 unsigned long anon_mapping;
530 bool success = false;
531
532 rcu_read_lock();
533 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
534 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
535 goto out;
536 if (!page_mapped(page))
537 goto out;
538
539 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
540 root_anon_vma = READ_ONCE(anon_vma->root);
541 if (down_read_trylock(&root_anon_vma->rwsem)) {
542 /*
543 * If the page is still mapped, then this anon_vma is still
544 * its anon_vma, and holding the mutex ensures that it will
545 * not go away, see anon_vma_free().
546 */
547 if (!page_mapped(page)) {
548 up_read(&root_anon_vma->rwsem);
549 anon_vma = NULL;
550 }
551 goto out;
552 }
553 trace_android_vh_do_page_trylock(page, NULL, NULL, &success);
554 if (success) {
555 anon_vma = NULL;
556 goto out;
557 }
558
559 if (rwc && rwc->try_lock) {
560 anon_vma = NULL;
561 rwc->contended = true;
562 goto out;
563 }
564
565 /* trylock failed, we got to sleep */
566 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
567 anon_vma = NULL;
568 goto out;
569 }
570
571 if (!page_mapped(page)) {
572 rcu_read_unlock();
573 put_anon_vma(anon_vma);
574 return NULL;
575 }
576
577 /* we pinned the anon_vma, its safe to sleep */
578 rcu_read_unlock();
579 anon_vma_lock_read(anon_vma);
580
581 if (atomic_dec_and_test(&anon_vma->refcount)) {
582 /*
583 * Oops, we held the last refcount, release the lock
584 * and bail -- can't simply use put_anon_vma() because
585 * we'll deadlock on the anon_vma_lock_write() recursion.
586 */
587 anon_vma_unlock_read(anon_vma);
588 __put_anon_vma(anon_vma);
589 anon_vma = NULL;
590 }
591
592 return anon_vma;
593
594 out:
595 rcu_read_unlock();
596 return anon_vma;
597 }
598
page_unlock_anon_vma_read(struct anon_vma * anon_vma)599 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
600 {
601 anon_vma_unlock_read(anon_vma);
602 }
603
604 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
605 /*
606 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
607 * important if a PTE was dirty when it was unmapped that it's flushed
608 * before any IO is initiated on the page to prevent lost writes. Similarly,
609 * it must be flushed before freeing to prevent data leakage.
610 */
try_to_unmap_flush(void)611 void try_to_unmap_flush(void)
612 {
613 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
614
615 if (!tlb_ubc->flush_required)
616 return;
617
618 arch_tlbbatch_flush(&tlb_ubc->arch);
619 tlb_ubc->flush_required = false;
620 tlb_ubc->writable = false;
621 }
622
623 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)624 void try_to_unmap_flush_dirty(void)
625 {
626 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
627
628 if (tlb_ubc->writable)
629 try_to_unmap_flush();
630 }
631
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)632 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
633 {
634 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
635
636 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
637 tlb_ubc->flush_required = true;
638
639 /*
640 * Ensure compiler does not re-order the setting of tlb_flush_batched
641 * before the PTE is cleared.
642 */
643 barrier();
644 mm->tlb_flush_batched = true;
645
646 /*
647 * If the PTE was dirty then it's best to assume it's writable. The
648 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
649 * before the page is queued for IO.
650 */
651 if (writable)
652 tlb_ubc->writable = true;
653 }
654
655 /*
656 * Returns true if the TLB flush should be deferred to the end of a batch of
657 * unmap operations to reduce IPIs.
658 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)659 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
660 {
661 bool should_defer = false;
662
663 if (!(flags & TTU_BATCH_FLUSH))
664 return false;
665
666 /* If remote CPUs need to be flushed then defer batch the flush */
667 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
668 should_defer = true;
669 put_cpu();
670
671 return should_defer;
672 }
673
674 /*
675 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
676 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
677 * operation such as mprotect or munmap to race between reclaim unmapping
678 * the page and flushing the page. If this race occurs, it potentially allows
679 * access to data via a stale TLB entry. Tracking all mm's that have TLB
680 * batching in flight would be expensive during reclaim so instead track
681 * whether TLB batching occurred in the past and if so then do a flush here
682 * if required. This will cost one additional flush per reclaim cycle paid
683 * by the first operation at risk such as mprotect and mumap.
684 *
685 * This must be called under the PTL so that an access to tlb_flush_batched
686 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
687 * via the PTL.
688 */
flush_tlb_batched_pending(struct mm_struct * mm)689 void flush_tlb_batched_pending(struct mm_struct *mm)
690 {
691 if (data_race(mm->tlb_flush_batched)) {
692 flush_tlb_mm(mm);
693
694 /*
695 * Do not allow the compiler to re-order the clearing of
696 * tlb_flush_batched before the tlb is flushed.
697 */
698 barrier();
699 mm->tlb_flush_batched = false;
700 }
701 }
702 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)703 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
704 {
705 }
706
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)707 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
708 {
709 return false;
710 }
711 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
712
713 /*
714 * At what user virtual address is page expected in vma?
715 * Caller should check the page is actually part of the vma.
716 */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)717 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
718 {
719 if (PageAnon(page)) {
720 struct anon_vma *page__anon_vma = page_anon_vma(page);
721 /*
722 * Note: swapoff's unuse_vma() is more efficient with this
723 * check, and needs it to match anon_vma when KSM is active.
724 */
725 if (!vma->anon_vma || !page__anon_vma ||
726 vma->anon_vma->root != page__anon_vma->root)
727 return -EFAULT;
728 } else if (!vma->vm_file) {
729 return -EFAULT;
730 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
731 return -EFAULT;
732 }
733
734 return vma_address(page, vma);
735 }
736
mm_find_pmd(struct mm_struct * mm,unsigned long address)737 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
738 {
739 pgd_t *pgd;
740 p4d_t *p4d;
741 pud_t *pud;
742 pmd_t *pmd = NULL;
743 pmd_t pmde;
744
745 pgd = pgd_offset(mm, address);
746 if (!pgd_present(*pgd))
747 goto out;
748
749 p4d = p4d_offset(pgd, address);
750 if (!p4d_present(*p4d))
751 goto out;
752
753 pud = pud_offset(p4d, address);
754 if (!pud_present(*pud))
755 goto out;
756
757 pmd = pmd_offset(pud, address);
758 /*
759 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
760 * without holding anon_vma lock for write. So when looking for a
761 * genuine pmde (in which to find pte), test present and !THP together.
762 */
763 pmde = *pmd;
764 barrier();
765 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
766 pmd = NULL;
767 out:
768 return pmd;
769 }
770
771 struct page_referenced_arg {
772 int mapcount;
773 int referenced;
774 unsigned long vm_flags;
775 struct mem_cgroup *memcg;
776 };
777 /*
778 * arg: page_referenced_arg will be passed
779 */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)780 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
781 unsigned long address, void *arg)
782 {
783 struct page_referenced_arg *pra = arg;
784 struct page_vma_mapped_walk pvmw = {
785 .page = page,
786 .vma = vma,
787 .address = address,
788 };
789 int referenced = 0;
790
791 while (page_vma_mapped_walk(&pvmw)) {
792 address = pvmw.address;
793
794 if (vma->vm_flags & VM_LOCKED) {
795 page_vma_mapped_walk_done(&pvmw);
796 pra->vm_flags |= VM_LOCKED;
797 return false; /* To break the loop */
798 }
799
800 if (pvmw.pte) {
801 trace_android_vh_look_around(&pvmw, page, vma, &referenced);
802 if (ptep_clear_flush_young_notify(vma, address,
803 pvmw.pte)) {
804 /*
805 * Don't treat a reference through
806 * a sequentially read mapping as such.
807 * If the page has been used in another mapping,
808 * we will catch it; if this other mapping is
809 * already gone, the unmap path will have set
810 * PG_referenced or activated the page.
811 */
812 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
813 referenced++;
814 }
815 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
816 if (pmdp_clear_flush_young_notify(vma, address,
817 pvmw.pmd))
818 referenced++;
819 } else {
820 /* unexpected pmd-mapped page? */
821 WARN_ON_ONCE(1);
822 }
823
824 pra->mapcount--;
825 }
826
827 if (referenced)
828 clear_page_idle(page);
829 if (test_and_clear_page_young(page))
830 referenced++;
831
832 if (referenced) {
833 pra->referenced++;
834 pra->vm_flags |= vma->vm_flags;
835 }
836
837 trace_android_vh_page_referenced_one_end(vma, page, referenced);
838 if (!pra->mapcount)
839 return false; /* To break the loop */
840
841 return true;
842 }
843
invalid_page_referenced_vma(struct vm_area_struct * vma,void * arg)844 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
845 {
846 struct page_referenced_arg *pra = arg;
847 struct mem_cgroup *memcg = pra->memcg;
848
849 if (!mm_match_cgroup(vma->vm_mm, memcg))
850 return true;
851
852 return false;
853 }
854
855 /**
856 * page_referenced - test if the page was referenced
857 * @page: the page to test
858 * @is_locked: caller holds lock on the page
859 * @memcg: target memory cgroup
860 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
861 *
862 * Quick test_and_clear_referenced for all mappings of a page,
863 *
864 * Return: The number of mappings which referenced the page. Return -1 if
865 * the function bailed out due to rmap lock contention.
866 */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)867 int page_referenced(struct page *page,
868 int is_locked,
869 struct mem_cgroup *memcg,
870 unsigned long *vm_flags)
871 {
872 int we_locked = 0;
873 struct page_referenced_arg pra = {
874 .mapcount = total_mapcount(page),
875 .memcg = memcg,
876 };
877 struct rmap_walk_control rwc = {
878 .rmap_one = page_referenced_one,
879 .arg = (void *)&pra,
880 .anon_lock = page_lock_anon_vma_read,
881 .try_lock = true,
882 };
883
884 *vm_flags = 0;
885 if (!pra.mapcount)
886 return 0;
887
888 if (!page_rmapping(page))
889 return 0;
890
891 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
892 we_locked = trylock_page(page);
893 if (!we_locked)
894 return 1;
895 }
896
897 /*
898 * If we are reclaiming on behalf of a cgroup, skip
899 * counting on behalf of references from different
900 * cgroups
901 */
902 if (memcg) {
903 rwc.invalid_vma = invalid_page_referenced_vma;
904 }
905
906 rmap_walk(page, &rwc);
907 *vm_flags = pra.vm_flags;
908
909 if (we_locked)
910 unlock_page(page);
911
912 return rwc.contended ? -1 : pra.referenced;
913 }
914
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)915 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
916 unsigned long address, void *arg)
917 {
918 struct page_vma_mapped_walk pvmw = {
919 .page = page,
920 .vma = vma,
921 .address = address,
922 .flags = PVMW_SYNC,
923 };
924 struct mmu_notifier_range range;
925 int *cleaned = arg;
926
927 /*
928 * We have to assume the worse case ie pmd for invalidation. Note that
929 * the page can not be free from this function.
930 */
931 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
932 0, vma, vma->vm_mm, address,
933 vma_address_end(page, vma));
934 mmu_notifier_invalidate_range_start(&range);
935
936 while (page_vma_mapped_walk(&pvmw)) {
937 int ret = 0;
938
939 address = pvmw.address;
940 if (pvmw.pte) {
941 pte_t entry;
942 pte_t *pte = pvmw.pte;
943
944 if (!pte_dirty(*pte) && !pte_write(*pte))
945 continue;
946
947 flush_cache_page(vma, address, pte_pfn(*pte));
948 entry = ptep_clear_flush(vma, address, pte);
949 entry = pte_wrprotect(entry);
950 entry = pte_mkclean(entry);
951 set_pte_at(vma->vm_mm, address, pte, entry);
952 ret = 1;
953 } else {
954 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
955 pmd_t *pmd = pvmw.pmd;
956 pmd_t entry;
957
958 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
959 continue;
960
961 flush_cache_page(vma, address, page_to_pfn(page));
962 entry = pmdp_invalidate(vma, address, pmd);
963 entry = pmd_wrprotect(entry);
964 entry = pmd_mkclean(entry);
965 set_pmd_at(vma->vm_mm, address, pmd, entry);
966 ret = 1;
967 #else
968 /* unexpected pmd-mapped page? */
969 WARN_ON_ONCE(1);
970 #endif
971 }
972
973 /*
974 * No need to call mmu_notifier_invalidate_range() as we are
975 * downgrading page table protection not changing it to point
976 * to a new page.
977 *
978 * See Documentation/vm/mmu_notifier.rst
979 */
980 if (ret)
981 (*cleaned)++;
982 }
983
984 mmu_notifier_invalidate_range_end(&range);
985
986 return true;
987 }
988
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)989 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
990 {
991 if (vma->vm_flags & VM_SHARED)
992 return false;
993
994 return true;
995 }
996
page_mkclean(struct page * page)997 int page_mkclean(struct page *page)
998 {
999 int cleaned = 0;
1000 struct address_space *mapping;
1001 struct rmap_walk_control rwc = {
1002 .arg = (void *)&cleaned,
1003 .rmap_one = page_mkclean_one,
1004 .invalid_vma = invalid_mkclean_vma,
1005 };
1006
1007 BUG_ON(!PageLocked(page));
1008
1009 if (!page_mapped(page))
1010 return 0;
1011
1012 mapping = page_mapping(page);
1013 if (!mapping)
1014 return 0;
1015
1016 rmap_walk(page, &rwc);
1017
1018 return cleaned;
1019 }
1020 EXPORT_SYMBOL_GPL(page_mkclean);
1021
1022 /**
1023 * page_move_anon_rmap - move a page to our anon_vma
1024 * @page: the page to move to our anon_vma
1025 * @vma: the vma the page belongs to
1026 *
1027 * When a page belongs exclusively to one process after a COW event,
1028 * that page can be moved into the anon_vma that belongs to just that
1029 * process, so the rmap code will not search the parent or sibling
1030 * processes.
1031 */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma)1032 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1033 {
1034 struct anon_vma *anon_vma = vma->anon_vma;
1035
1036 page = compound_head(page);
1037
1038 VM_BUG_ON_PAGE(!PageLocked(page), page);
1039 VM_BUG_ON_VMA(!anon_vma, vma);
1040
1041 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1042 /*
1043 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1044 * simultaneously, so a concurrent reader (eg page_referenced()'s
1045 * PageAnon()) will not see one without the other.
1046 */
1047 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1048 }
1049
1050 /**
1051 * __page_set_anon_rmap - set up new anonymous rmap
1052 * @page: Page or Hugepage to add to rmap
1053 * @vma: VM area to add page to.
1054 * @address: User virtual address of the mapping
1055 * @exclusive: the page is exclusively owned by the current process
1056 */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1057 static void __page_set_anon_rmap(struct page *page,
1058 struct vm_area_struct *vma, unsigned long address, int exclusive)
1059 {
1060 struct anon_vma *anon_vma = vma->anon_vma;
1061
1062 BUG_ON(!anon_vma);
1063
1064 if (PageAnon(page))
1065 return;
1066
1067 /*
1068 * If the page isn't exclusively mapped into this vma,
1069 * we must use the _oldest_ possible anon_vma for the
1070 * page mapping!
1071 */
1072 if (!exclusive)
1073 anon_vma = anon_vma->root;
1074
1075 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1076 page->mapping = (struct address_space *) anon_vma;
1077 page->index = linear_page_index(vma, address);
1078 }
1079
1080 /**
1081 * __page_check_anon_rmap - sanity check anonymous rmap addition
1082 * @page: the page to add the mapping to
1083 * @vma: the vm area in which the mapping is added
1084 * @address: the user virtual address mapped
1085 */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1086 static void __page_check_anon_rmap(struct page *page,
1087 struct vm_area_struct *vma, unsigned long address)
1088 {
1089 /*
1090 * The page's anon-rmap details (mapping and index) are guaranteed to
1091 * be set up correctly at this point.
1092 *
1093 * We have exclusion against page_add_anon_rmap because the caller
1094 * always holds the page locked, except if called from page_dup_rmap,
1095 * in which case the page is already known to be setup.
1096 *
1097 * We have exclusion against page_add_new_anon_rmap because those pages
1098 * are initially only visible via the pagetables, and the pte is locked
1099 * over the call to page_add_new_anon_rmap.
1100 */
1101 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1102 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1103 page);
1104 }
1105
1106 /**
1107 * page_add_anon_rmap - add pte mapping to an anonymous page
1108 * @page: the page to add the mapping to
1109 * @vma: the vm area in which the mapping is added
1110 * @address: the user virtual address mapped
1111 * @compound: charge the page as compound or small page
1112 *
1113 * The caller needs to hold the pte lock, and the page must be locked in
1114 * the anon_vma case: to serialize mapping,index checking after setting,
1115 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1116 * (but PageKsm is never downgraded to PageAnon).
1117 */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1118 void page_add_anon_rmap(struct page *page,
1119 struct vm_area_struct *vma, unsigned long address, bool compound)
1120 {
1121 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1122 }
1123
1124 /*
1125 * Special version of the above for do_swap_page, which often runs
1126 * into pages that are exclusively owned by the current process.
1127 * Everybody else should continue to use page_add_anon_rmap above.
1128 */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int flags)1129 void do_page_add_anon_rmap(struct page *page,
1130 struct vm_area_struct *vma, unsigned long address, int flags)
1131 {
1132 bool compound = flags & RMAP_COMPOUND;
1133 bool first;
1134 bool success = false;
1135
1136 if (unlikely(PageKsm(page)))
1137 lock_page_memcg(page);
1138 else
1139 VM_BUG_ON_PAGE(!PageLocked(page), page);
1140
1141 if (compound) {
1142 atomic_t *mapcount;
1143 VM_BUG_ON_PAGE(!PageLocked(page), page);
1144 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1145 mapcount = compound_mapcount_ptr(page);
1146 first = atomic_inc_and_test(mapcount);
1147 } else {
1148 trace_android_vh_update_page_mapcount(page, true, compound,
1149 &first, &success);
1150 if (!success)
1151 first = atomic_inc_and_test(&page->_mapcount);
1152 }
1153
1154 if (first) {
1155 int nr = compound ? thp_nr_pages(page) : 1;
1156 /*
1157 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1158 * these counters are not modified in interrupt context, and
1159 * pte lock(a spinlock) is held, which implies preemption
1160 * disabled.
1161 */
1162 if (compound)
1163 __inc_lruvec_page_state(page, NR_ANON_THPS);
1164 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1165 }
1166
1167 if (unlikely(PageKsm(page))) {
1168 unlock_page_memcg(page);
1169 return;
1170 }
1171
1172 /* address might be in next vma when migration races vma_adjust */
1173 if (first)
1174 __page_set_anon_rmap(page, vma, address,
1175 flags & RMAP_EXCLUSIVE);
1176 else
1177 __page_check_anon_rmap(page, vma, address);
1178 }
1179
1180 /**
1181 * __page_add_new_anon_rmap - add pte mapping to a new anonymous page
1182 * @page: the page to add the mapping to
1183 * @vma: the vm area in which the mapping is added
1184 * @address: the user virtual address mapped
1185 * @compound: charge the page as compound or small page
1186 *
1187 * Same as page_add_anon_rmap but must only be called on *new* pages.
1188 * This means the inc-and-test can be bypassed.
1189 * Page does not have to be locked.
1190 */
__page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1191 void __page_add_new_anon_rmap(struct page *page,
1192 struct vm_area_struct *vma, unsigned long address, bool compound)
1193 {
1194 int nr = compound ? thp_nr_pages(page) : 1;
1195
1196 __SetPageSwapBacked(page);
1197 if (compound) {
1198 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1199 /* increment count (starts at -1) */
1200 atomic_set(compound_mapcount_ptr(page), 0);
1201 if (hpage_pincount_available(page))
1202 atomic_set(compound_pincount_ptr(page), 0);
1203
1204 __inc_lruvec_page_state(page, NR_ANON_THPS);
1205 } else {
1206 /* Anon THP always mapped first with PMD */
1207 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1208 /* increment count (starts at -1) */
1209 atomic_set(&page->_mapcount, 0);
1210 }
1211 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1212 __page_set_anon_rmap(page, vma, address, 1);
1213 }
1214
1215 /**
1216 * page_add_file_rmap - add pte mapping to a file page
1217 * @page: the page to add the mapping to
1218 * @compound: charge the page as compound or small page
1219 *
1220 * The caller needs to hold the pte lock.
1221 */
page_add_file_rmap(struct page * page,bool compound)1222 void page_add_file_rmap(struct page *page, bool compound)
1223 {
1224 int i, nr = 1;
1225 bool first_mapping;
1226 bool success = false;
1227
1228 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1229 lock_page_memcg(page);
1230 if (compound && PageTransHuge(page)) {
1231 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1232 trace_android_vh_update_page_mapcount(&page[i], true,
1233 compound, &first_mapping, &success);
1234 if ((success)) {
1235 if (first_mapping)
1236 nr++;
1237 } else {
1238 if (atomic_inc_and_test(&page[i]._mapcount))
1239 nr++;
1240 }
1241 }
1242 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1243 goto out;
1244 if (PageSwapBacked(page))
1245 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1246 else
1247 __inc_node_page_state(page, NR_FILE_PMDMAPPED);
1248 } else {
1249 if (PageTransCompound(page) && page_mapping(page)) {
1250 VM_WARN_ON_ONCE(!PageLocked(page));
1251
1252 SetPageDoubleMap(compound_head(page));
1253 if (PageMlocked(page))
1254 clear_page_mlock(compound_head(page));
1255 }
1256 trace_android_vh_update_page_mapcount(page, true,
1257 compound, &first_mapping, &success);
1258 if (success) {
1259 if (!first_mapping)
1260 goto out;
1261 } else {
1262 if (!atomic_inc_and_test(&page->_mapcount))
1263 goto out;
1264 }
1265 }
1266 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1267 out:
1268 unlock_page_memcg(page);
1269 }
1270
page_remove_file_rmap(struct page * page,bool compound)1271 static void page_remove_file_rmap(struct page *page, bool compound)
1272 {
1273 int i, nr = 1;
1274 bool first_mapping;
1275 bool success = false;
1276
1277 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1278
1279 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1280 if (unlikely(PageHuge(page))) {
1281 /* hugetlb pages are always mapped with pmds */
1282 atomic_dec(compound_mapcount_ptr(page));
1283 return;
1284 }
1285
1286 /* page still mapped by someone else? */
1287 if (compound && PageTransHuge(page)) {
1288 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1289 trace_android_vh_update_page_mapcount(&page[i], false,
1290 compound, &first_mapping, &success);
1291 if (success) {
1292 if (first_mapping)
1293 nr++;
1294 } else {
1295 if (atomic_add_negative(-1, &page[i]._mapcount))
1296 nr++;
1297 }
1298 }
1299 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1300 return;
1301 if (PageSwapBacked(page))
1302 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1303 else
1304 __dec_node_page_state(page, NR_FILE_PMDMAPPED);
1305 } else {
1306 trace_android_vh_update_page_mapcount(page, false,
1307 compound, &first_mapping, &success);
1308 if (success) {
1309 if (!first_mapping)
1310 return;
1311 } else {
1312 if (!atomic_add_negative(-1, &page->_mapcount))
1313 return;
1314 }
1315 }
1316
1317 /*
1318 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1319 * these counters are not modified in interrupt context, and
1320 * pte lock(a spinlock) is held, which implies preemption disabled.
1321 */
1322 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1323
1324 if (unlikely(PageMlocked(page)))
1325 clear_page_mlock(page);
1326 }
1327
page_remove_anon_compound_rmap(struct page * page)1328 static void page_remove_anon_compound_rmap(struct page *page)
1329 {
1330 int i, nr;
1331 bool first_mapping;
1332 bool success = false;
1333
1334 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1335 return;
1336
1337 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1338 if (unlikely(PageHuge(page)))
1339 return;
1340
1341 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1342 return;
1343
1344 __dec_lruvec_page_state(page, NR_ANON_THPS);
1345
1346 if (TestClearPageDoubleMap(page)) {
1347 /*
1348 * Subpages can be mapped with PTEs too. Check how many of
1349 * them are still mapped.
1350 */
1351 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1352 trace_android_vh_update_page_mapcount(&page[i], false,
1353 false, &first_mapping, &success);
1354 if (success) {
1355 if (first_mapping)
1356 nr++;
1357 } else {
1358 if (atomic_add_negative(-1, &page[i]._mapcount))
1359 nr++;
1360 }
1361 }
1362
1363 /*
1364 * Queue the page for deferred split if at least one small
1365 * page of the compound page is unmapped, but at least one
1366 * small page is still mapped.
1367 */
1368 if (nr && nr < thp_nr_pages(page))
1369 deferred_split_huge_page(page);
1370 } else {
1371 nr = thp_nr_pages(page);
1372 }
1373
1374 if (unlikely(PageMlocked(page)))
1375 clear_page_mlock(page);
1376
1377 if (nr)
1378 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1379 }
1380
1381 /**
1382 * page_remove_rmap - take down pte mapping from a page
1383 * @page: page to remove mapping from
1384 * @compound: uncharge the page as compound or small page
1385 *
1386 * The caller needs to hold the pte lock.
1387 */
page_remove_rmap(struct page * page,bool compound)1388 void page_remove_rmap(struct page *page, bool compound)
1389 {
1390 bool first_mapping;
1391 bool success = false;
1392 lock_page_memcg(page);
1393
1394 if (!PageAnon(page)) {
1395 page_remove_file_rmap(page, compound);
1396 goto out;
1397 }
1398
1399 if (compound) {
1400 page_remove_anon_compound_rmap(page);
1401 goto out;
1402 }
1403
1404 trace_android_vh_update_page_mapcount(page, false,
1405 compound, &first_mapping, &success);
1406 if (success) {
1407 if (!first_mapping)
1408 goto out;
1409 } else {
1410 /* page still mapped by someone else? */
1411 if (!atomic_add_negative(-1, &page->_mapcount))
1412 goto out;
1413 }
1414 /*
1415 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1416 * these counters are not modified in interrupt context, and
1417 * pte lock(a spinlock) is held, which implies preemption disabled.
1418 */
1419 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1420
1421 if (unlikely(PageMlocked(page)))
1422 clear_page_mlock(page);
1423
1424 if (PageTransCompound(page))
1425 deferred_split_huge_page(compound_head(page));
1426
1427 /*
1428 * It would be tidy to reset the PageAnon mapping here,
1429 * but that might overwrite a racing page_add_anon_rmap
1430 * which increments mapcount after us but sets mapping
1431 * before us: so leave the reset to free_unref_page,
1432 * and remember that it's only reliable while mapped.
1433 * Leaving it set also helps swapoff to reinstate ptes
1434 * faster for those pages still in swapcache.
1435 */
1436 out:
1437 unlock_page_memcg(page);
1438 }
1439
1440 /*
1441 * @arg: enum ttu_flags will be passed to this argument
1442 */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1443 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1444 unsigned long address, void *arg)
1445 {
1446 struct mm_struct *mm = vma->vm_mm;
1447 struct page_vma_mapped_walk pvmw = {
1448 .page = page,
1449 .vma = vma,
1450 .address = address,
1451 };
1452 pte_t pteval;
1453 struct page *subpage;
1454 bool ret = true;
1455 struct mmu_notifier_range range;
1456 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1457
1458 /*
1459 * When racing against e.g. zap_pte_range() on another cpu,
1460 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1461 * try_to_unmap() may return false when it is about to become true,
1462 * if page table locking is skipped: use TTU_SYNC to wait for that.
1463 */
1464 if (flags & TTU_SYNC)
1465 pvmw.flags = PVMW_SYNC;
1466
1467 /* munlock has nothing to gain from examining un-locked vmas */
1468 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1469 return true;
1470
1471 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1472 is_zone_device_page(page) && !is_device_private_page(page))
1473 return true;
1474
1475 if (flags & TTU_SPLIT_HUGE_PMD) {
1476 split_huge_pmd_address(vma, address,
1477 flags & TTU_SPLIT_FREEZE, page);
1478 }
1479
1480 /*
1481 * For THP, we have to assume the worse case ie pmd for invalidation.
1482 * For hugetlb, it could be much worse if we need to do pud
1483 * invalidation in the case of pmd sharing.
1484 *
1485 * Note that the page can not be free in this function as call of
1486 * try_to_unmap() must hold a reference on the page.
1487 */
1488 range.end = PageKsm(page) ?
1489 address + PAGE_SIZE : vma_address_end(page, vma);
1490 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1491 address, range.end);
1492 if (PageHuge(page)) {
1493 /*
1494 * If sharing is possible, start and end will be adjusted
1495 * accordingly.
1496 */
1497 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1498 &range.end);
1499 }
1500 mmu_notifier_invalidate_range_start(&range);
1501
1502 while (page_vma_mapped_walk(&pvmw)) {
1503 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1504 /* PMD-mapped THP migration entry */
1505 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1506 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1507
1508 set_pmd_migration_entry(&pvmw, page);
1509 continue;
1510 }
1511 #endif
1512
1513 /*
1514 * If the page is mlock()d, we cannot swap it out.
1515 * If it's recently referenced (perhaps page_referenced
1516 * skipped over this mm) then we should reactivate it.
1517 */
1518 if (!(flags & TTU_IGNORE_MLOCK)) {
1519 if (vma->vm_flags & VM_LOCKED) {
1520 /* PTE-mapped THP are never mlocked */
1521 if (!PageTransCompound(page)) {
1522 /*
1523 * Holding pte lock, we do *not* need
1524 * mmap_lock here
1525 */
1526 mlock_vma_page(page);
1527 }
1528 ret = false;
1529 page_vma_mapped_walk_done(&pvmw);
1530 break;
1531 }
1532 if (flags & TTU_MUNLOCK)
1533 continue;
1534 }
1535
1536 /* Unexpected PMD-mapped THP? */
1537 VM_BUG_ON_PAGE(!pvmw.pte, page);
1538
1539 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1540 address = pvmw.address;
1541
1542 if (PageHuge(page) && !PageAnon(page)) {
1543 /*
1544 * To call huge_pmd_unshare, i_mmap_rwsem must be
1545 * held in write mode. Caller needs to explicitly
1546 * do this outside rmap routines.
1547 */
1548 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1549 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1550 /*
1551 * huge_pmd_unshare unmapped an entire PMD
1552 * page. There is no way of knowing exactly
1553 * which PMDs may be cached for this mm, so
1554 * we must flush them all. start/end were
1555 * already adjusted above to cover this range.
1556 */
1557 flush_cache_range(vma, range.start, range.end);
1558 flush_tlb_range(vma, range.start, range.end);
1559 mmu_notifier_invalidate_range(mm, range.start,
1560 range.end);
1561
1562 /*
1563 * The ref count of the PMD page was dropped
1564 * which is part of the way map counting
1565 * is done for shared PMDs. Return 'true'
1566 * here. When there is no other sharing,
1567 * huge_pmd_unshare returns false and we will
1568 * unmap the actual page and drop map count
1569 * to zero.
1570 */
1571 page_vma_mapped_walk_done(&pvmw);
1572 break;
1573 }
1574 }
1575
1576 if (IS_ENABLED(CONFIG_MIGRATION) &&
1577 (flags & TTU_MIGRATION) &&
1578 is_zone_device_page(page)) {
1579 swp_entry_t entry;
1580 pte_t swp_pte;
1581
1582 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1583
1584 /*
1585 * Store the pfn of the page in a special migration
1586 * pte. do_swap_page() will wait until the migration
1587 * pte is removed and then restart fault handling.
1588 */
1589 entry = make_migration_entry(page, 0);
1590 swp_pte = swp_entry_to_pte(entry);
1591
1592 /*
1593 * pteval maps a zone device page and is therefore
1594 * a swap pte.
1595 */
1596 if (pte_swp_soft_dirty(pteval))
1597 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1598 if (pte_swp_uffd_wp(pteval))
1599 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1600 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1601 /*
1602 * No need to invalidate here it will synchronize on
1603 * against the special swap migration pte.
1604 *
1605 * The assignment to subpage above was computed from a
1606 * swap PTE which results in an invalid pointer.
1607 * Since only PAGE_SIZE pages can currently be
1608 * migrated, just set it to page. This will need to be
1609 * changed when hugepage migrations to device private
1610 * memory are supported.
1611 */
1612 subpage = page;
1613 goto discard;
1614 }
1615
1616 /* Nuke the page table entry. */
1617 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1618 if (should_defer_flush(mm, flags)) {
1619 /*
1620 * We clear the PTE but do not flush so potentially
1621 * a remote CPU could still be writing to the page.
1622 * If the entry was previously clean then the
1623 * architecture must guarantee that a clear->dirty
1624 * transition on a cached TLB entry is written through
1625 * and traps if the PTE is unmapped.
1626 */
1627 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1628
1629 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1630 } else {
1631 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1632 }
1633
1634 /* Move the dirty bit to the page. Now the pte is gone. */
1635 if (pte_dirty(pteval))
1636 set_page_dirty(page);
1637
1638 /* Update high watermark before we lower rss */
1639 update_hiwater_rss(mm);
1640
1641 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1642 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1643 if (PageHuge(page)) {
1644 hugetlb_count_sub(compound_nr(page), mm);
1645 set_huge_swap_pte_at(mm, address,
1646 pvmw.pte, pteval,
1647 vma_mmu_pagesize(vma));
1648 } else {
1649 dec_mm_counter(mm, mm_counter(page));
1650 set_pte_at(mm, address, pvmw.pte, pteval);
1651 }
1652
1653 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1654 /*
1655 * The guest indicated that the page content is of no
1656 * interest anymore. Simply discard the pte, vmscan
1657 * will take care of the rest.
1658 * A future reference will then fault in a new zero
1659 * page. When userfaultfd is active, we must not drop
1660 * this page though, as its main user (postcopy
1661 * migration) will not expect userfaults on already
1662 * copied pages.
1663 */
1664 dec_mm_counter(mm, mm_counter(page));
1665 /* We have to invalidate as we cleared the pte */
1666 mmu_notifier_invalidate_range(mm, address,
1667 address + PAGE_SIZE);
1668 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1669 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1670 swp_entry_t entry;
1671 pte_t swp_pte;
1672
1673 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1674 set_pte_at(mm, address, pvmw.pte, pteval);
1675 ret = false;
1676 page_vma_mapped_walk_done(&pvmw);
1677 break;
1678 }
1679
1680 /*
1681 * Store the pfn of the page in a special migration
1682 * pte. do_swap_page() will wait until the migration
1683 * pte is removed and then restart fault handling.
1684 */
1685 entry = make_migration_entry(subpage,
1686 pte_write(pteval));
1687 swp_pte = swp_entry_to_pte(entry);
1688 if (pte_soft_dirty(pteval))
1689 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1690 if (pte_uffd_wp(pteval))
1691 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1692 set_pte_at(mm, address, pvmw.pte, swp_pte);
1693 /*
1694 * No need to invalidate here it will synchronize on
1695 * against the special swap migration pte.
1696 */
1697 } else if (PageAnon(page)) {
1698 swp_entry_t entry = { .val = page_private(subpage) };
1699 pte_t swp_pte;
1700 /*
1701 * Store the swap location in the pte.
1702 * See handle_pte_fault() ...
1703 */
1704 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1705 WARN_ON_ONCE(1);
1706 ret = false;
1707 /* We have to invalidate as we cleared the pte */
1708 mmu_notifier_invalidate_range(mm, address,
1709 address + PAGE_SIZE);
1710 page_vma_mapped_walk_done(&pvmw);
1711 break;
1712 }
1713
1714 /* MADV_FREE page check */
1715 if (!PageSwapBacked(page)) {
1716 int ref_count, map_count;
1717
1718 /*
1719 * Synchronize with gup_pte_range():
1720 * - clear PTE; barrier; read refcount
1721 * - inc refcount; barrier; read PTE
1722 */
1723 smp_mb();
1724
1725 ref_count = page_ref_count(page);
1726 map_count = page_mapcount(page);
1727
1728 /*
1729 * Order reads for page refcount and dirty flag
1730 * (see comments in __remove_mapping()).
1731 */
1732 smp_rmb();
1733
1734 /*
1735 * The only page refs must be one from isolation
1736 * plus the rmap(s) (dropped by discard:).
1737 */
1738 if (ref_count == 1 + map_count &&
1739 !PageDirty(page)) {
1740 /* Invalidate as we cleared the pte */
1741 mmu_notifier_invalidate_range(mm,
1742 address, address + PAGE_SIZE);
1743 dec_mm_counter(mm, MM_ANONPAGES);
1744 goto discard;
1745 }
1746
1747 /*
1748 * If the page was redirtied, it cannot be
1749 * discarded. Remap the page to page table.
1750 */
1751 set_pte_at(mm, address, pvmw.pte, pteval);
1752 SetPageSwapBacked(page);
1753 ret = false;
1754 page_vma_mapped_walk_done(&pvmw);
1755 break;
1756 }
1757
1758 if (swap_duplicate(entry) < 0) {
1759 set_pte_at(mm, address, pvmw.pte, pteval);
1760 ret = false;
1761 page_vma_mapped_walk_done(&pvmw);
1762 break;
1763 }
1764 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1765 set_pte_at(mm, address, pvmw.pte, pteval);
1766 ret = false;
1767 page_vma_mapped_walk_done(&pvmw);
1768 break;
1769 }
1770 if (list_empty(&mm->mmlist)) {
1771 spin_lock(&mmlist_lock);
1772 if (list_empty(&mm->mmlist))
1773 list_add(&mm->mmlist, &init_mm.mmlist);
1774 spin_unlock(&mmlist_lock);
1775 }
1776 dec_mm_counter(mm, MM_ANONPAGES);
1777 inc_mm_counter(mm, MM_SWAPENTS);
1778 swp_pte = swp_entry_to_pte(entry);
1779 if (pte_soft_dirty(pteval))
1780 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1781 if (pte_uffd_wp(pteval))
1782 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1783 set_pte_at(mm, address, pvmw.pte, swp_pte);
1784 /* Invalidate as we cleared the pte */
1785 mmu_notifier_invalidate_range(mm, address,
1786 address + PAGE_SIZE);
1787 } else {
1788 /*
1789 * This is a locked file-backed page, thus it cannot
1790 * be removed from the page cache and replaced by a new
1791 * page before mmu_notifier_invalidate_range_end, so no
1792 * concurrent thread might update its page table to
1793 * point at new page while a device still is using this
1794 * page.
1795 *
1796 * See Documentation/vm/mmu_notifier.rst
1797 */
1798 dec_mm_counter(mm, mm_counter_file(page));
1799 }
1800 discard:
1801 /*
1802 * No need to call mmu_notifier_invalidate_range() it has be
1803 * done above for all cases requiring it to happen under page
1804 * table lock before mmu_notifier_invalidate_range_end()
1805 *
1806 * See Documentation/vm/mmu_notifier.rst
1807 */
1808 page_remove_rmap(subpage, PageHuge(page));
1809 put_page(page);
1810 }
1811
1812 mmu_notifier_invalidate_range_end(&range);
1813 trace_android_vh_try_to_unmap_one(vma, page, address, ret);
1814
1815 return ret;
1816 }
1817
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1818 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1819 {
1820 return vma_is_temporary_stack(vma);
1821 }
1822
page_not_mapped(struct page * page)1823 static int page_not_mapped(struct page *page)
1824 {
1825 return !page_mapped(page);
1826 }
1827
1828 /**
1829 * try_to_unmap - try to remove all page table mappings to a page
1830 * @page: the page to get unmapped
1831 * @flags: action and flags
1832 *
1833 * Tries to remove all the page table entries which are mapping this
1834 * page, used in the pageout path. Caller must hold the page lock.
1835 *
1836 * If unmap is successful, return true. Otherwise, false.
1837 */
try_to_unmap(struct page * page,enum ttu_flags flags)1838 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1839 {
1840 struct rmap_walk_control rwc = {
1841 .rmap_one = try_to_unmap_one,
1842 .arg = (void *)flags,
1843 .done = page_not_mapped,
1844 .anon_lock = page_lock_anon_vma_read,
1845 };
1846
1847 /*
1848 * During exec, a temporary VMA is setup and later moved.
1849 * The VMA is moved under the anon_vma lock but not the
1850 * page tables leading to a race where migration cannot
1851 * find the migration ptes. Rather than increasing the
1852 * locking requirements of exec(), migration skips
1853 * temporary VMAs until after exec() completes.
1854 */
1855 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1856 && !PageKsm(page) && PageAnon(page))
1857 rwc.invalid_vma = invalid_migration_vma;
1858
1859 if (flags & TTU_RMAP_LOCKED)
1860 rmap_walk_locked(page, &rwc);
1861 else
1862 rmap_walk(page, &rwc);
1863
1864 /*
1865 * When racing against e.g. zap_pte_range() on another cpu,
1866 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1867 * try_to_unmap() may return false when it is about to become true,
1868 * if page table locking is skipped: use TTU_SYNC to wait for that.
1869 */
1870 return !page_mapcount(page);
1871 }
1872
1873 /**
1874 * try_to_munlock - try to munlock a page
1875 * @page: the page to be munlocked
1876 *
1877 * Called from munlock code. Checks all of the VMAs mapping the page
1878 * to make sure nobody else has this page mlocked. The page will be
1879 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1880 */
1881
try_to_munlock(struct page * page)1882 void try_to_munlock(struct page *page)
1883 {
1884 struct rmap_walk_control rwc = {
1885 .rmap_one = try_to_unmap_one,
1886 .arg = (void *)TTU_MUNLOCK,
1887 .done = page_not_mapped,
1888 .anon_lock = page_lock_anon_vma_read,
1889
1890 };
1891
1892 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1893 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1894
1895 rmap_walk(page, &rwc);
1896 }
1897
__put_anon_vma(struct anon_vma * anon_vma)1898 void __put_anon_vma(struct anon_vma *anon_vma)
1899 {
1900 struct anon_vma *root = anon_vma->root;
1901
1902 anon_vma_free(anon_vma);
1903 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1904 anon_vma_free(root);
1905 }
1906
rmap_walk_anon_lock(struct page * page,struct rmap_walk_control * rwc)1907 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1908 struct rmap_walk_control *rwc)
1909 {
1910 struct anon_vma *anon_vma;
1911
1912 if (rwc->anon_lock)
1913 return rwc->anon_lock(page, rwc);
1914
1915 /*
1916 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1917 * because that depends on page_mapped(); but not all its usages
1918 * are holding mmap_lock. Users without mmap_lock are required to
1919 * take a reference count to prevent the anon_vma disappearing
1920 */
1921 anon_vma = page_anon_vma(page);
1922 if (!anon_vma)
1923 return NULL;
1924
1925 if (anon_vma_trylock_read(anon_vma))
1926 goto out;
1927
1928 if (rwc->try_lock) {
1929 anon_vma = NULL;
1930 rwc->contended = true;
1931 goto out;
1932 }
1933
1934 anon_vma_lock_read(anon_vma);
1935 out:
1936 return anon_vma;
1937 }
1938
1939 /*
1940 * rmap_walk_anon - do something to anonymous page using the object-based
1941 * rmap method
1942 * @page: the page to be handled
1943 * @rwc: control variable according to each walk type
1944 *
1945 * Find all the mappings of a page using the mapping pointer and the vma chains
1946 * contained in the anon_vma struct it points to.
1947 *
1948 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1949 * where the page was found will be held for write. So, we won't recheck
1950 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1951 * LOCKED.
1952 */
rmap_walk_anon(struct page * page,struct rmap_walk_control * rwc,bool locked)1953 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1954 bool locked)
1955 {
1956 struct anon_vma *anon_vma;
1957 pgoff_t pgoff_start, pgoff_end;
1958 struct anon_vma_chain *avc;
1959
1960 if (locked) {
1961 anon_vma = page_anon_vma(page);
1962 /* anon_vma disappear under us? */
1963 VM_BUG_ON_PAGE(!anon_vma, page);
1964 } else {
1965 anon_vma = rmap_walk_anon_lock(page, rwc);
1966 }
1967 if (!anon_vma)
1968 return;
1969
1970 pgoff_start = page_to_pgoff(page);
1971 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1972 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1973 pgoff_start, pgoff_end) {
1974 struct vm_area_struct *vma = avc->vma;
1975 unsigned long address = vma_address(page, vma);
1976
1977 VM_BUG_ON_VMA(address == -EFAULT, vma);
1978 cond_resched();
1979
1980 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1981 continue;
1982
1983 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1984 break;
1985 if (rwc->done && rwc->done(page))
1986 break;
1987 }
1988
1989 if (!locked)
1990 anon_vma_unlock_read(anon_vma);
1991 }
1992
1993 /*
1994 * rmap_walk_file - do something to file page using the object-based rmap method
1995 * @page: the page to be handled
1996 * @rwc: control variable according to each walk type
1997 *
1998 * Find all the mappings of a page using the mapping pointer and the vma chains
1999 * contained in the address_space struct it points to.
2000 *
2001 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
2002 * where the page was found will be held for write. So, we won't recheck
2003 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2004 * LOCKED.
2005 */
rmap_walk_file(struct page * page,struct rmap_walk_control * rwc,bool locked)2006 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2007 bool locked)
2008 {
2009 struct address_space *mapping = page_mapping(page);
2010 pgoff_t pgoff_start, pgoff_end;
2011 struct vm_area_struct *vma;
2012 bool got_lock = false, success = false;
2013
2014 /*
2015 * The page lock not only makes sure that page->mapping cannot
2016 * suddenly be NULLified by truncation, it makes sure that the
2017 * structure at mapping cannot be freed and reused yet,
2018 * so we can safely take mapping->i_mmap_rwsem.
2019 */
2020 VM_BUG_ON_PAGE(!PageLocked(page), page);
2021
2022 if (!mapping)
2023 return;
2024
2025 pgoff_start = page_to_pgoff(page);
2026 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2027 if (!locked) {
2028 trace_android_vh_do_page_trylock(page,
2029 &mapping->i_mmap_rwsem, &got_lock, &success);
2030 if (success) {
2031 if (!got_lock)
2032 return;
2033 } else {
2034 if (i_mmap_trylock_read(mapping))
2035 goto lookup;
2036
2037 if (rwc->try_lock) {
2038 rwc->contended = true;
2039 return;
2040 }
2041
2042 i_mmap_lock_read(mapping);
2043 }
2044 }
2045 lookup:
2046 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2047 pgoff_start, pgoff_end) {
2048 unsigned long address = vma_address(page, vma);
2049
2050 VM_BUG_ON_VMA(address == -EFAULT, vma);
2051 cond_resched();
2052
2053 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2054 continue;
2055
2056 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2057 goto done;
2058 if (rwc->done && rwc->done(page))
2059 goto done;
2060 }
2061
2062 done:
2063 if (!locked)
2064 i_mmap_unlock_read(mapping);
2065 }
2066
rmap_walk(struct page * page,struct rmap_walk_control * rwc)2067 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2068 {
2069 if (unlikely(PageKsm(page)))
2070 rmap_walk_ksm(page, rwc);
2071 else if (PageAnon(page))
2072 rmap_walk_anon(page, rwc, false);
2073 else
2074 rmap_walk_file(page, rwc, false);
2075 }
2076
2077 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct page * page,struct rmap_walk_control * rwc)2078 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2079 {
2080 /* no ksm support for now */
2081 VM_BUG_ON_PAGE(PageKsm(page), page);
2082 if (PageAnon(page))
2083 rmap_walk_anon(page, rwc, true);
2084 else
2085 rmap_walk_file(page, rwc, true);
2086 }
2087
2088 #ifdef CONFIG_HUGETLB_PAGE
2089 /*
2090 * The following two functions are for anonymous (private mapped) hugepages.
2091 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2092 * and no lru code, because we handle hugepages differently from common pages.
2093 */
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2094 void hugepage_add_anon_rmap(struct page *page,
2095 struct vm_area_struct *vma, unsigned long address)
2096 {
2097 struct anon_vma *anon_vma = vma->anon_vma;
2098 int first;
2099
2100 BUG_ON(!PageLocked(page));
2101 BUG_ON(!anon_vma);
2102 /* address might be in next vma when migration races vma_adjust */
2103 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2104 if (first)
2105 __page_set_anon_rmap(page, vma, address, 0);
2106 }
2107
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2108 void hugepage_add_new_anon_rmap(struct page *page,
2109 struct vm_area_struct *vma, unsigned long address)
2110 {
2111 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2112 atomic_set(compound_mapcount_ptr(page), 0);
2113 if (hpage_pincount_available(page))
2114 atomic_set(compound_pincount_ptr(page), 0);
2115
2116 __page_set_anon_rmap(page, vma, address, 1);
2117 }
2118 #endif /* CONFIG_HUGETLB_PAGE */
2119