xref: /OK3568_Linux_fs/kernel/mm/page_alloc.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/page_pinner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <trace/hooks/mm.h>
75 #include <trace/hooks/vmscan.h>
76 
77 #include <asm/sections.h>
78 #include <asm/tlbflush.h>
79 #include <asm/div64.h>
80 #include "internal.h"
81 #include "shuffle.h"
82 #include "page_reporting.h"
83 
84 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
85 typedef int __bitwise fpi_t;
86 
87 /* No special request */
88 #define FPI_NONE		((__force fpi_t)0)
89 
90 /*
91  * Skip free page reporting notification for the (possibly merged) page.
92  * This does not hinder free page reporting from grabbing the page,
93  * reporting it and marking it "reported" -  it only skips notifying
94  * the free page reporting infrastructure about a newly freed page. For
95  * example, used when temporarily pulling a page from a freelist and
96  * putting it back unmodified.
97  */
98 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
99 
100 /*
101  * Place the (possibly merged) page to the tail of the freelist. Will ignore
102  * page shuffling (relevant code - e.g., memory onlining - is expected to
103  * shuffle the whole zone).
104  *
105  * Note: No code should rely on this flag for correctness - it's purely
106  *       to allow for optimizations when handing back either fresh pages
107  *       (memory onlining) or untouched pages (page isolation, free page
108  *       reporting).
109  */
110 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
111 
112 /*
113  * Don't poison memory with KASAN (only for the tag-based modes).
114  * During boot, all non-reserved memblock memory is exposed to page_alloc.
115  * Poisoning all that memory lengthens boot time, especially on systems with
116  * large amount of RAM. This flag is used to skip that poisoning.
117  * This is only done for the tag-based KASAN modes, as those are able to
118  * detect memory corruptions with the memory tags assigned by default.
119  * All memory allocated normally after boot gets poisoned as usual.
120  */
121 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
122 
123 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
124 static DEFINE_MUTEX(pcp_batch_high_lock);
125 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
126 
127 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
128 DEFINE_PER_CPU(int, numa_node);
129 EXPORT_PER_CPU_SYMBOL(numa_node);
130 #endif
131 
132 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
133 
134 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
135 /*
136  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
137  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
138  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
139  * defined in <linux/topology.h>.
140  */
141 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
142 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
143 #endif
144 
145 /* work_structs for global per-cpu drains */
146 struct pcpu_drain {
147 	struct zone *zone;
148 	struct work_struct work;
149 };
150 static DEFINE_MUTEX(pcpu_drain_mutex);
151 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
152 
153 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
154 volatile unsigned long latent_entropy __latent_entropy;
155 EXPORT_SYMBOL(latent_entropy);
156 #endif
157 
158 /*
159  * Array of node states.
160  */
161 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
162 	[N_POSSIBLE] = NODE_MASK_ALL,
163 	[N_ONLINE] = { { [0] = 1UL } },
164 #ifndef CONFIG_NUMA
165 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
166 #ifdef CONFIG_HIGHMEM
167 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
168 #endif
169 	[N_MEMORY] = { { [0] = 1UL } },
170 	[N_CPU] = { { [0] = 1UL } },
171 #endif	/* NUMA */
172 };
173 EXPORT_SYMBOL(node_states);
174 
175 atomic_long_t _totalram_pages __read_mostly;
176 EXPORT_SYMBOL(_totalram_pages);
177 unsigned long totalreserve_pages __read_mostly;
178 unsigned long totalcma_pages __read_mostly;
179 
180 int percpu_pagelist_fraction;
181 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
182 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
183 EXPORT_SYMBOL(init_on_alloc);
184 
185 DEFINE_STATIC_KEY_FALSE(init_on_free);
186 EXPORT_SYMBOL(init_on_free);
187 
188 static bool _init_on_alloc_enabled_early __read_mostly
189 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)190 static int __init early_init_on_alloc(char *buf)
191 {
192 
193 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
194 }
195 early_param("init_on_alloc", early_init_on_alloc);
196 
197 static bool _init_on_free_enabled_early __read_mostly
198 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)199 static int __init early_init_on_free(char *buf)
200 {
201 	return kstrtobool(buf, &_init_on_free_enabled_early);
202 }
203 early_param("init_on_free", early_init_on_free);
204 
205 /*
206  * A cached value of the page's pageblock's migratetype, used when the page is
207  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
208  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
209  * Also the migratetype set in the page does not necessarily match the pcplist
210  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
211  * other index - this ensures that it will be put on the correct CMA freelist.
212  */
get_pcppage_migratetype(struct page * page)213 static inline int get_pcppage_migratetype(struct page *page)
214 {
215 	return page->index;
216 }
217 
set_pcppage_migratetype(struct page * page,int migratetype)218 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
219 {
220 	page->index = migratetype;
221 }
222 
223 #ifdef CONFIG_PM_SLEEP
224 /*
225  * The following functions are used by the suspend/hibernate code to temporarily
226  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
227  * while devices are suspended.  To avoid races with the suspend/hibernate code,
228  * they should always be called with system_transition_mutex held
229  * (gfp_allowed_mask also should only be modified with system_transition_mutex
230  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
231  * with that modification).
232  */
233 
234 static gfp_t saved_gfp_mask;
235 
pm_restore_gfp_mask(void)236 void pm_restore_gfp_mask(void)
237 {
238 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
239 	if (saved_gfp_mask) {
240 		gfp_allowed_mask = saved_gfp_mask;
241 		saved_gfp_mask = 0;
242 	}
243 }
244 
pm_restrict_gfp_mask(void)245 void pm_restrict_gfp_mask(void)
246 {
247 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
248 	WARN_ON(saved_gfp_mask);
249 	saved_gfp_mask = gfp_allowed_mask;
250 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
251 }
252 
pm_suspended_storage(void)253 bool pm_suspended_storage(void)
254 {
255 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
256 		return false;
257 	return true;
258 }
259 #endif /* CONFIG_PM_SLEEP */
260 
261 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
262 unsigned int pageblock_order __read_mostly;
263 #endif
264 
265 static void __free_pages_ok(struct page *page, unsigned int order,
266 			    fpi_t fpi_flags);
267 
268 /*
269  * results with 256, 32 in the lowmem_reserve sysctl:
270  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
271  *	1G machine -> (16M dma, 784M normal, 224M high)
272  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
273  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
274  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
275  *
276  * TBD: should special case ZONE_DMA32 machines here - in those we normally
277  * don't need any ZONE_NORMAL reservation
278  */
279 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
280 #ifdef CONFIG_ZONE_DMA
281 	[ZONE_DMA] = 256,
282 #endif
283 #ifdef CONFIG_ZONE_DMA32
284 	[ZONE_DMA32] = 256,
285 #endif
286 	[ZONE_NORMAL] = 32,
287 #ifdef CONFIG_HIGHMEM
288 	[ZONE_HIGHMEM] = 0,
289 #endif
290 	[ZONE_MOVABLE] = 0,
291 };
292 
293 static char * const zone_names[MAX_NR_ZONES] = {
294 #ifdef CONFIG_ZONE_DMA
295 	 "DMA",
296 #endif
297 #ifdef CONFIG_ZONE_DMA32
298 	 "DMA32",
299 #endif
300 	 "Normal",
301 #ifdef CONFIG_HIGHMEM
302 	 "HighMem",
303 #endif
304 	 "Movable",
305 #ifdef CONFIG_ZONE_DEVICE
306 	 "Device",
307 #endif
308 };
309 
310 const char * const migratetype_names[MIGRATE_TYPES] = {
311 	"Unmovable",
312 	"Movable",
313 	"Reclaimable",
314 #ifdef CONFIG_CMA
315 	"CMA",
316 #endif
317 	"HighAtomic",
318 #ifdef CONFIG_MEMORY_ISOLATION
319 	"Isolate",
320 #endif
321 };
322 
323 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
324 	[NULL_COMPOUND_DTOR] = NULL,
325 	[COMPOUND_PAGE_DTOR] = free_compound_page,
326 #ifdef CONFIG_HUGETLB_PAGE
327 	[HUGETLB_PAGE_DTOR] = free_huge_page,
328 #endif
329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
330 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
331 #endif
332 };
333 
334 /*
335  * Try to keep at least this much lowmem free.  Do not allow normal
336  * allocations below this point, only high priority ones. Automatically
337  * tuned according to the amount of memory in the system.
338  */
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 #ifdef CONFIG_DISCONTIGMEM
342 /*
343  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
344  * are not on separate NUMA nodes. Functionally this works but with
345  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
346  * quite small. By default, do not boost watermarks on discontigmem as in
347  * many cases very high-order allocations like THP are likely to be
348  * unsupported and the premature reclaim offsets the advantage of long-term
349  * fragmentation avoidance.
350  */
351 int watermark_boost_factor __read_mostly;
352 #else
353 int watermark_boost_factor __read_mostly = 15000;
354 #endif
355 int watermark_scale_factor = 10;
356 
357 /*
358  * Extra memory for the system to try freeing. Used to temporarily
359  * free memory, to make space for new workloads. Anyone can allocate
360  * down to the min watermarks controlled by min_free_kbytes above.
361  */
362 int extra_free_kbytes = 0;
363 
364 static unsigned long nr_kernel_pages __initdata;
365 static unsigned long nr_all_pages __initdata;
366 static unsigned long dma_reserve __initdata;
367 
368 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
369 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
370 static unsigned long required_kernelcore __initdata;
371 static unsigned long required_kernelcore_percent __initdata;
372 static unsigned long required_movablecore __initdata;
373 static unsigned long required_movablecore_percent __initdata;
374 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
375 static bool mirrored_kernelcore __meminitdata;
376 
377 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
378 int movable_zone;
379 EXPORT_SYMBOL(movable_zone);
380 
381 #if MAX_NUMNODES > 1
382 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
383 unsigned int nr_online_nodes __read_mostly = 1;
384 EXPORT_SYMBOL(nr_node_ids);
385 EXPORT_SYMBOL(nr_online_nodes);
386 #endif
387 
388 int page_group_by_mobility_disabled __read_mostly;
389 
390 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
391 /*
392  * During boot we initialize deferred pages on-demand, as needed, but once
393  * page_alloc_init_late() has finished, the deferred pages are all initialized,
394  * and we can permanently disable that path.
395  */
396 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
397 
398 /*
399  * Calling kasan_poison_pages() only after deferred memory initialization
400  * has completed. Poisoning pages during deferred memory init will greatly
401  * lengthen the process and cause problem in large memory systems as the
402  * deferred pages initialization is done with interrupt disabled.
403  *
404  * Assuming that there will be no reference to those newly initialized
405  * pages before they are ever allocated, this should have no effect on
406  * KASAN memory tracking as the poison will be properly inserted at page
407  * allocation time. The only corner case is when pages are allocated by
408  * on-demand allocation and then freed again before the deferred pages
409  * initialization is done, but this is not likely to happen.
410  */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)411 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
412 {
413 	return static_branch_unlikely(&deferred_pages) ||
414 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
415 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
416 	       PageSkipKASanPoison(page);
417 }
418 
419 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)420 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
421 {
422 	int nid = early_pfn_to_nid(pfn);
423 
424 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
425 		return true;
426 
427 	return false;
428 }
429 
430 /*
431  * Returns true when the remaining initialisation should be deferred until
432  * later in the boot cycle when it can be parallelised.
433  */
434 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)435 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
436 {
437 	static unsigned long prev_end_pfn, nr_initialised;
438 
439 	/*
440 	 * prev_end_pfn static that contains the end of previous zone
441 	 * No need to protect because called very early in boot before smp_init.
442 	 */
443 	if (prev_end_pfn != end_pfn) {
444 		prev_end_pfn = end_pfn;
445 		nr_initialised = 0;
446 	}
447 
448 	/* Always populate low zones for address-constrained allocations */
449 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
450 		return false;
451 
452 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
453 		return true;
454 	/*
455 	 * We start only with one section of pages, more pages are added as
456 	 * needed until the rest of deferred pages are initialized.
457 	 */
458 	nr_initialised++;
459 	if ((nr_initialised > PAGES_PER_SECTION) &&
460 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
461 		NODE_DATA(nid)->first_deferred_pfn = pfn;
462 		return true;
463 	}
464 	return false;
465 }
466 #else
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)467 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
468 {
469 	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
470 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
471 	       PageSkipKASanPoison(page);
472 }
473 
early_page_uninitialised(unsigned long pfn)474 static inline bool early_page_uninitialised(unsigned long pfn)
475 {
476 	return false;
477 }
478 
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)479 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
480 {
481 	return false;
482 }
483 #endif
484 
485 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct page * page,unsigned long pfn)486 static inline unsigned long *get_pageblock_bitmap(struct page *page,
487 							unsigned long pfn)
488 {
489 #ifdef CONFIG_SPARSEMEM
490 	return section_to_usemap(__pfn_to_section(pfn));
491 #else
492 	return page_zone(page)->pageblock_flags;
493 #endif /* CONFIG_SPARSEMEM */
494 }
495 
pfn_to_bitidx(struct page * page,unsigned long pfn)496 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
497 {
498 #ifdef CONFIG_SPARSEMEM
499 	pfn &= (PAGES_PER_SECTION-1);
500 #else
501 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
502 #endif /* CONFIG_SPARSEMEM */
503 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
504 }
505 
506 /**
507  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
508  * @page: The page within the block of interest
509  * @pfn: The target page frame number
510  * @mask: mask of bits that the caller is interested in
511  *
512  * Return: pageblock_bits flags
513  */
514 static __always_inline
__get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long mask)515 unsigned long __get_pfnblock_flags_mask(struct page *page,
516 					unsigned long pfn,
517 					unsigned long mask)
518 {
519 	unsigned long *bitmap;
520 	unsigned long bitidx, word_bitidx;
521 	unsigned long word;
522 
523 	bitmap = get_pageblock_bitmap(page, pfn);
524 	bitidx = pfn_to_bitidx(page, pfn);
525 	word_bitidx = bitidx / BITS_PER_LONG;
526 	bitidx &= (BITS_PER_LONG-1);
527 
528 	word = bitmap[word_bitidx];
529 	return (word >> bitidx) & mask;
530 }
531 
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long mask)532 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
533 					unsigned long mask)
534 {
535 	return __get_pfnblock_flags_mask(page, pfn, mask);
536 }
537 EXPORT_SYMBOL_GPL(get_pfnblock_flags_mask);
538 
isolate_anon_lru_page(struct page * page)539 int isolate_anon_lru_page(struct page *page)
540 {
541 	int ret;
542 
543 	if (!PageLRU(page) || !PageAnon(page))
544 		return -EINVAL;
545 
546 	if (!get_page_unless_zero(page))
547 		return -EINVAL;
548 
549 	ret = isolate_lru_page(page);
550 	put_page(page);
551 
552 	return ret;
553 }
554 EXPORT_SYMBOL_GPL(isolate_anon_lru_page);
555 
get_pfnblock_migratetype(struct page * page,unsigned long pfn)556 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
557 {
558 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
559 }
560 
561 /**
562  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
563  * @page: The page within the block of interest
564  * @flags: The flags to set
565  * @pfn: The target page frame number
566  * @mask: mask of bits that the caller is interested in
567  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)568 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
569 					unsigned long pfn,
570 					unsigned long mask)
571 {
572 	unsigned long *bitmap;
573 	unsigned long bitidx, word_bitidx;
574 	unsigned long old_word, word;
575 
576 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
577 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
578 
579 	bitmap = get_pageblock_bitmap(page, pfn);
580 	bitidx = pfn_to_bitidx(page, pfn);
581 	word_bitidx = bitidx / BITS_PER_LONG;
582 	bitidx &= (BITS_PER_LONG-1);
583 
584 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
585 
586 	mask <<= bitidx;
587 	flags <<= bitidx;
588 
589 	word = READ_ONCE(bitmap[word_bitidx]);
590 	for (;;) {
591 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
592 		if (word == old_word)
593 			break;
594 		word = old_word;
595 	}
596 }
597 
set_pageblock_migratetype(struct page * page,int migratetype)598 void set_pageblock_migratetype(struct page *page, int migratetype)
599 {
600 	if (unlikely(page_group_by_mobility_disabled &&
601 		     migratetype < MIGRATE_PCPTYPES))
602 		migratetype = MIGRATE_UNMOVABLE;
603 
604 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
605 				page_to_pfn(page), MIGRATETYPE_MASK);
606 }
607 
608 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)609 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
610 {
611 	int ret = 0;
612 	unsigned seq;
613 	unsigned long pfn = page_to_pfn(page);
614 	unsigned long sp, start_pfn;
615 
616 	do {
617 		seq = zone_span_seqbegin(zone);
618 		start_pfn = zone->zone_start_pfn;
619 		sp = zone->spanned_pages;
620 		if (!zone_spans_pfn(zone, pfn))
621 			ret = 1;
622 	} while (zone_span_seqretry(zone, seq));
623 
624 	if (ret)
625 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
626 			pfn, zone_to_nid(zone), zone->name,
627 			start_pfn, start_pfn + sp);
628 
629 	return ret;
630 }
631 
page_is_consistent(struct zone * zone,struct page * page)632 static int page_is_consistent(struct zone *zone, struct page *page)
633 {
634 	if (!pfn_valid_within(page_to_pfn(page)))
635 		return 0;
636 	if (zone != page_zone(page))
637 		return 0;
638 
639 	return 1;
640 }
641 /*
642  * Temporary debugging check for pages not lying within a given zone.
643  */
bad_range(struct zone * zone,struct page * page)644 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
645 {
646 	if (page_outside_zone_boundaries(zone, page))
647 		return 1;
648 	if (!page_is_consistent(zone, page))
649 		return 1;
650 
651 	return 0;
652 }
653 #else
bad_range(struct zone * zone,struct page * page)654 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
655 {
656 	return 0;
657 }
658 #endif
659 
bad_page(struct page * page,const char * reason)660 static void bad_page(struct page *page, const char *reason)
661 {
662 	static unsigned long resume;
663 	static unsigned long nr_shown;
664 	static unsigned long nr_unshown;
665 
666 	/*
667 	 * Allow a burst of 60 reports, then keep quiet for that minute;
668 	 * or allow a steady drip of one report per second.
669 	 */
670 	if (nr_shown == 60) {
671 		if (time_before(jiffies, resume)) {
672 			nr_unshown++;
673 			goto out;
674 		}
675 		if (nr_unshown) {
676 			pr_alert(
677 			      "BUG: Bad page state: %lu messages suppressed\n",
678 				nr_unshown);
679 			nr_unshown = 0;
680 		}
681 		nr_shown = 0;
682 	}
683 	if (nr_shown++ == 0)
684 		resume = jiffies + 60 * HZ;
685 
686 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
687 		current->comm, page_to_pfn(page));
688 	__dump_page(page, reason);
689 	dump_page_owner(page);
690 
691 	print_modules();
692 	dump_stack();
693 out:
694 	/* Leave bad fields for debug, except PageBuddy could make trouble */
695 	page_mapcount_reset(page); /* remove PageBuddy */
696 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
697 }
698 
699 /*
700  * Higher-order pages are called "compound pages".  They are structured thusly:
701  *
702  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
703  *
704  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
705  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
706  *
707  * The first tail page's ->compound_dtor holds the offset in array of compound
708  * page destructors. See compound_page_dtors.
709  *
710  * The first tail page's ->compound_order holds the order of allocation.
711  * This usage means that zero-order pages may not be compound.
712  */
713 
free_compound_page(struct page * page)714 void free_compound_page(struct page *page)
715 {
716 	mem_cgroup_uncharge(page);
717 	__free_pages_ok(page, compound_order(page), FPI_NONE);
718 }
719 
prep_compound_page(struct page * page,unsigned int order)720 void prep_compound_page(struct page *page, unsigned int order)
721 {
722 	int i;
723 	int nr_pages = 1 << order;
724 
725 	__SetPageHead(page);
726 	for (i = 1; i < nr_pages; i++) {
727 		struct page *p = page + i;
728 		set_page_count(p, 0);
729 		p->mapping = TAIL_MAPPING;
730 		set_compound_head(p, page);
731 	}
732 
733 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
734 	set_compound_order(page, order);
735 	atomic_set(compound_mapcount_ptr(page), -1);
736 	if (hpage_pincount_available(page))
737 		atomic_set(compound_pincount_ptr(page), 0);
738 }
739 
740 #ifdef CONFIG_DEBUG_PAGEALLOC
741 unsigned int _debug_guardpage_minorder;
742 
743 bool _debug_pagealloc_enabled_early __read_mostly
744 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
745 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
746 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
747 EXPORT_SYMBOL(_debug_pagealloc_enabled);
748 
749 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
750 
early_debug_pagealloc(char * buf)751 static int __init early_debug_pagealloc(char *buf)
752 {
753 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
754 }
755 early_param("debug_pagealloc", early_debug_pagealloc);
756 
debug_guardpage_minorder_setup(char * buf)757 static int __init debug_guardpage_minorder_setup(char *buf)
758 {
759 	unsigned long res;
760 
761 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
762 		pr_err("Bad debug_guardpage_minorder value\n");
763 		return 0;
764 	}
765 	_debug_guardpage_minorder = res;
766 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
767 	return 0;
768 }
769 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
770 
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)771 static inline bool set_page_guard(struct zone *zone, struct page *page,
772 				unsigned int order, int migratetype)
773 {
774 	if (!debug_guardpage_enabled())
775 		return false;
776 
777 	if (order >= debug_guardpage_minorder())
778 		return false;
779 
780 	__SetPageGuard(page);
781 	INIT_LIST_HEAD(&page->lru);
782 	set_page_private(page, order);
783 	/* Guard pages are not available for any usage */
784 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
785 
786 	return true;
787 }
788 
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)789 static inline void clear_page_guard(struct zone *zone, struct page *page,
790 				unsigned int order, int migratetype)
791 {
792 	if (!debug_guardpage_enabled())
793 		return;
794 
795 	__ClearPageGuard(page);
796 
797 	set_page_private(page, 0);
798 	if (!is_migrate_isolate(migratetype))
799 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
800 }
801 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)802 static inline bool set_page_guard(struct zone *zone, struct page *page,
803 			unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)804 static inline void clear_page_guard(struct zone *zone, struct page *page,
805 				unsigned int order, int migratetype) {}
806 #endif
807 
808 /*
809  * Enable static keys related to various memory debugging and hardening options.
810  * Some override others, and depend on early params that are evaluated in the
811  * order of appearance. So we need to first gather the full picture of what was
812  * enabled, and then make decisions.
813  */
init_mem_debugging_and_hardening(void)814 void init_mem_debugging_and_hardening(void)
815 {
816 	bool page_poisoning_requested = false;
817 
818 #ifdef CONFIG_PAGE_POISONING
819 	/*
820 	 * Page poisoning is debug page alloc for some arches. If
821 	 * either of those options are enabled, enable poisoning.
822 	 */
823 	if (page_poisoning_enabled() ||
824 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
825 	      debug_pagealloc_enabled())) {
826 		static_branch_enable(&_page_poisoning_enabled);
827 		page_poisoning_requested = true;
828 	}
829 #endif
830 
831 	if (_init_on_alloc_enabled_early) {
832 		if (page_poisoning_requested)
833 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
834 				"will take precedence over init_on_alloc\n");
835 		else
836 			static_branch_enable(&init_on_alloc);
837 	}
838 	if (_init_on_free_enabled_early) {
839 		if (page_poisoning_requested)
840 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
841 				"will take precedence over init_on_free\n");
842 		else
843 			static_branch_enable(&init_on_free);
844 	}
845 
846 #ifdef CONFIG_DEBUG_PAGEALLOC
847 	if (!debug_pagealloc_enabled())
848 		return;
849 
850 	static_branch_enable(&_debug_pagealloc_enabled);
851 
852 	if (!debug_guardpage_minorder())
853 		return;
854 
855 	static_branch_enable(&_debug_guardpage_enabled);
856 #endif
857 }
858 
set_buddy_order(struct page * page,unsigned int order)859 static inline void set_buddy_order(struct page *page, unsigned int order)
860 {
861 	set_page_private(page, order);
862 	__SetPageBuddy(page);
863 }
864 
865 /*
866  * This function checks whether a page is free && is the buddy
867  * we can coalesce a page and its buddy if
868  * (a) the buddy is not in a hole (check before calling!) &&
869  * (b) the buddy is in the buddy system &&
870  * (c) a page and its buddy have the same order &&
871  * (d) a page and its buddy are in the same zone.
872  *
873  * For recording whether a page is in the buddy system, we set PageBuddy.
874  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
875  *
876  * For recording page's order, we use page_private(page).
877  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)878 static inline bool page_is_buddy(struct page *page, struct page *buddy,
879 							unsigned int order)
880 {
881 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
882 		return false;
883 
884 	if (buddy_order(buddy) != order)
885 		return false;
886 
887 	/*
888 	 * zone check is done late to avoid uselessly calculating
889 	 * zone/node ids for pages that could never merge.
890 	 */
891 	if (page_zone_id(page) != page_zone_id(buddy))
892 		return false;
893 
894 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
895 
896 	return true;
897 }
898 
899 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)900 static inline struct capture_control *task_capc(struct zone *zone)
901 {
902 	struct capture_control *capc = current->capture_control;
903 
904 	return unlikely(capc) &&
905 		!(current->flags & PF_KTHREAD) &&
906 		!capc->page &&
907 		capc->cc->zone == zone ? capc : NULL;
908 }
909 
910 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)911 compaction_capture(struct capture_control *capc, struct page *page,
912 		   int order, int migratetype)
913 {
914 	if (!capc || order != capc->cc->order)
915 		return false;
916 
917 	/* Do not accidentally pollute CMA or isolated regions*/
918 	if (is_migrate_cma(migratetype) ||
919 	    is_migrate_isolate(migratetype))
920 		return false;
921 
922 	/*
923 	 * Do not let lower order allocations polluate a movable pageblock.
924 	 * This might let an unmovable request use a reclaimable pageblock
925 	 * and vice-versa but no more than normal fallback logic which can
926 	 * have trouble finding a high-order free page.
927 	 */
928 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
929 		return false;
930 
931 	capc->page = page;
932 	return true;
933 }
934 
935 #else
task_capc(struct zone * zone)936 static inline struct capture_control *task_capc(struct zone *zone)
937 {
938 	return NULL;
939 }
940 
941 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)942 compaction_capture(struct capture_control *capc, struct page *page,
943 		   int order, int migratetype)
944 {
945 	return false;
946 }
947 #endif /* CONFIG_COMPACTION */
948 
949 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)950 static inline void add_to_free_list(struct page *page, struct zone *zone,
951 				    unsigned int order, int migratetype)
952 {
953 	struct free_area *area = &zone->free_area[order];
954 
955 	list_add(&page->lru, &area->free_list[migratetype]);
956 	area->nr_free++;
957 }
958 
959 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)960 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
961 					 unsigned int order, int migratetype)
962 {
963 	struct free_area *area = &zone->free_area[order];
964 
965 	list_add_tail(&page->lru, &area->free_list[migratetype]);
966 	area->nr_free++;
967 }
968 
969 /*
970  * Used for pages which are on another list. Move the pages to the tail
971  * of the list - so the moved pages won't immediately be considered for
972  * allocation again (e.g., optimization for memory onlining).
973  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)974 static inline void move_to_free_list(struct page *page, struct zone *zone,
975 				     unsigned int order, int migratetype)
976 {
977 	struct free_area *area = &zone->free_area[order];
978 
979 	list_move_tail(&page->lru, &area->free_list[migratetype]);
980 }
981 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)982 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
983 					   unsigned int order)
984 {
985 	/* clear reported state and update reported page count */
986 	if (page_reported(page))
987 		__ClearPageReported(page);
988 
989 	list_del(&page->lru);
990 	__ClearPageBuddy(page);
991 	set_page_private(page, 0);
992 	zone->free_area[order].nr_free--;
993 }
994 
995 /*
996  * If this is not the largest possible page, check if the buddy
997  * of the next-highest order is free. If it is, it's possible
998  * that pages are being freed that will coalesce soon. In case,
999  * that is happening, add the free page to the tail of the list
1000  * so it's less likely to be used soon and more likely to be merged
1001  * as a higher order page
1002  */
1003 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)1004 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1005 		   struct page *page, unsigned int order)
1006 {
1007 	struct page *higher_page, *higher_buddy;
1008 	unsigned long combined_pfn;
1009 
1010 	if (order >= MAX_ORDER - 2)
1011 		return false;
1012 
1013 	if (!pfn_valid_within(buddy_pfn))
1014 		return false;
1015 
1016 	combined_pfn = buddy_pfn & pfn;
1017 	higher_page = page + (combined_pfn - pfn);
1018 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1019 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1020 
1021 	return pfn_valid_within(buddy_pfn) &&
1022 	       page_is_buddy(higher_page, higher_buddy, order + 1);
1023 }
1024 
1025 /*
1026  * Freeing function for a buddy system allocator.
1027  *
1028  * The concept of a buddy system is to maintain direct-mapped table
1029  * (containing bit values) for memory blocks of various "orders".
1030  * The bottom level table contains the map for the smallest allocatable
1031  * units of memory (here, pages), and each level above it describes
1032  * pairs of units from the levels below, hence, "buddies".
1033  * At a high level, all that happens here is marking the table entry
1034  * at the bottom level available, and propagating the changes upward
1035  * as necessary, plus some accounting needed to play nicely with other
1036  * parts of the VM system.
1037  * At each level, we keep a list of pages, which are heads of continuous
1038  * free pages of length of (1 << order) and marked with PageBuddy.
1039  * Page's order is recorded in page_private(page) field.
1040  * So when we are allocating or freeing one, we can derive the state of the
1041  * other.  That is, if we allocate a small block, and both were
1042  * free, the remainder of the region must be split into blocks.
1043  * If a block is freed, and its buddy is also free, then this
1044  * triggers coalescing into a block of larger size.
1045  *
1046  * -- nyc
1047  */
1048 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)1049 static inline void __free_one_page(struct page *page,
1050 		unsigned long pfn,
1051 		struct zone *zone, unsigned int order,
1052 		int migratetype, fpi_t fpi_flags)
1053 {
1054 	struct capture_control *capc = task_capc(zone);
1055 	unsigned long buddy_pfn;
1056 	unsigned long combined_pfn;
1057 	unsigned int max_order;
1058 	struct page *buddy;
1059 	bool to_tail;
1060 
1061 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1062 
1063 	VM_BUG_ON(!zone_is_initialized(zone));
1064 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1065 
1066 	VM_BUG_ON(migratetype == -1);
1067 	if (likely(!is_migrate_isolate(migratetype)))
1068 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1069 
1070 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1071 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1072 
1073 continue_merging:
1074 	while (order < max_order) {
1075 		if (compaction_capture(capc, page, order, migratetype)) {
1076 			__mod_zone_freepage_state(zone, -(1 << order),
1077 								migratetype);
1078 			return;
1079 		}
1080 		buddy_pfn = __find_buddy_pfn(pfn, order);
1081 		buddy = page + (buddy_pfn - pfn);
1082 
1083 		if (!pfn_valid_within(buddy_pfn))
1084 			goto done_merging;
1085 		if (!page_is_buddy(page, buddy, order))
1086 			goto done_merging;
1087 		/*
1088 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1089 		 * merge with it and move up one order.
1090 		 */
1091 		if (page_is_guard(buddy))
1092 			clear_page_guard(zone, buddy, order, migratetype);
1093 		else
1094 			del_page_from_free_list(buddy, zone, order);
1095 		combined_pfn = buddy_pfn & pfn;
1096 		page = page + (combined_pfn - pfn);
1097 		pfn = combined_pfn;
1098 		order++;
1099 	}
1100 	if (order < MAX_ORDER - 1) {
1101 		/* If we are here, it means order is >= pageblock_order.
1102 		 * We want to prevent merge between freepages on isolate
1103 		 * pageblock and normal pageblock. Without this, pageblock
1104 		 * isolation could cause incorrect freepage or CMA accounting.
1105 		 *
1106 		 * We don't want to hit this code for the more frequent
1107 		 * low-order merging.
1108 		 */
1109 		if (unlikely(has_isolate_pageblock(zone))) {
1110 			int buddy_mt;
1111 
1112 			buddy_pfn = __find_buddy_pfn(pfn, order);
1113 			buddy = page + (buddy_pfn - pfn);
1114 			buddy_mt = get_pageblock_migratetype(buddy);
1115 
1116 			if (migratetype != buddy_mt
1117 					&& (is_migrate_isolate(migratetype) ||
1118 						is_migrate_isolate(buddy_mt)))
1119 				goto done_merging;
1120 		}
1121 		max_order = order + 1;
1122 		goto continue_merging;
1123 	}
1124 
1125 done_merging:
1126 	set_buddy_order(page, order);
1127 
1128 	if (fpi_flags & FPI_TO_TAIL)
1129 		to_tail = true;
1130 	else if (is_shuffle_order(order))
1131 		to_tail = shuffle_pick_tail();
1132 	else
1133 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1134 
1135 	if (to_tail)
1136 		add_to_free_list_tail(page, zone, order, migratetype);
1137 	else
1138 		add_to_free_list(page, zone, order, migratetype);
1139 
1140 	/* Notify page reporting subsystem of freed page */
1141 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1142 		page_reporting_notify_free(order);
1143 }
1144 
1145 /*
1146  * A bad page could be due to a number of fields. Instead of multiple branches,
1147  * try and check multiple fields with one check. The caller must do a detailed
1148  * check if necessary.
1149  */
page_expected_state(struct page * page,unsigned long check_flags)1150 static inline bool page_expected_state(struct page *page,
1151 					unsigned long check_flags)
1152 {
1153 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1154 		return false;
1155 
1156 	if (unlikely((unsigned long)page->mapping |
1157 			page_ref_count(page) |
1158 #ifdef CONFIG_MEMCG
1159 			(unsigned long)page->mem_cgroup |
1160 #endif
1161 			(page->flags & check_flags)))
1162 		return false;
1163 
1164 	return true;
1165 }
1166 
page_bad_reason(struct page * page,unsigned long flags)1167 static const char *page_bad_reason(struct page *page, unsigned long flags)
1168 {
1169 	const char *bad_reason = NULL;
1170 
1171 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1172 		bad_reason = "nonzero mapcount";
1173 	if (unlikely(page->mapping != NULL))
1174 		bad_reason = "non-NULL mapping";
1175 	if (unlikely(page_ref_count(page) != 0))
1176 		bad_reason = "nonzero _refcount";
1177 	if (unlikely(page->flags & flags)) {
1178 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1179 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1180 		else
1181 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1182 	}
1183 #ifdef CONFIG_MEMCG
1184 	if (unlikely(page->mem_cgroup))
1185 		bad_reason = "page still charged to cgroup";
1186 #endif
1187 	return bad_reason;
1188 }
1189 
check_free_page_bad(struct page * page)1190 static void check_free_page_bad(struct page *page)
1191 {
1192 	bad_page(page,
1193 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1194 }
1195 
check_free_page(struct page * page)1196 static inline int check_free_page(struct page *page)
1197 {
1198 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1199 		return 0;
1200 
1201 	/* Something has gone sideways, find it */
1202 	check_free_page_bad(page);
1203 	return 1;
1204 }
1205 
free_tail_pages_check(struct page * head_page,struct page * page)1206 static int free_tail_pages_check(struct page *head_page, struct page *page)
1207 {
1208 	int ret = 1;
1209 
1210 	/*
1211 	 * We rely page->lru.next never has bit 0 set, unless the page
1212 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1213 	 */
1214 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1215 
1216 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1217 		ret = 0;
1218 		goto out;
1219 	}
1220 	switch (page - head_page) {
1221 	case 1:
1222 		/* the first tail page: ->mapping may be compound_mapcount() */
1223 		if (unlikely(compound_mapcount(page))) {
1224 			bad_page(page, "nonzero compound_mapcount");
1225 			goto out;
1226 		}
1227 		break;
1228 	case 2:
1229 		/*
1230 		 * the second tail page: ->mapping is
1231 		 * deferred_list.next -- ignore value.
1232 		 */
1233 		break;
1234 	default:
1235 		if (page->mapping != TAIL_MAPPING) {
1236 			bad_page(page, "corrupted mapping in tail page");
1237 			goto out;
1238 		}
1239 		break;
1240 	}
1241 	if (unlikely(!PageTail(page))) {
1242 		bad_page(page, "PageTail not set");
1243 		goto out;
1244 	}
1245 	if (unlikely(compound_head(page) != head_page)) {
1246 		bad_page(page, "compound_head not consistent");
1247 		goto out;
1248 	}
1249 	ret = 0;
1250 out:
1251 	page->mapping = NULL;
1252 	clear_compound_head(page);
1253 	return ret;
1254 }
1255 
kernel_init_free_pages(struct page * page,int numpages,bool zero_tags)1256 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1257 {
1258 	int i;
1259 
1260 	if (zero_tags) {
1261 		for (i = 0; i < numpages; i++)
1262 			tag_clear_highpage(page + i);
1263 		return;
1264 	}
1265 
1266 	/* s390's use of memset() could override KASAN redzones. */
1267 	kasan_disable_current();
1268 	for (i = 0; i < numpages; i++) {
1269 		u8 tag = page_kasan_tag(page + i);
1270 		page_kasan_tag_reset(page + i);
1271 		clear_highpage(page + i);
1272 		page_kasan_tag_set(page + i, tag);
1273 	}
1274 	kasan_enable_current();
1275 }
1276 
free_pages_prepare(struct page * page,unsigned int order,bool check_free,fpi_t fpi_flags)1277 static __always_inline bool free_pages_prepare(struct page *page,
1278 			unsigned int order, bool check_free, fpi_t fpi_flags)
1279 {
1280 	int bad = 0;
1281 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1282 
1283 	VM_BUG_ON_PAGE(PageTail(page), page);
1284 
1285 	trace_mm_page_free(page, order);
1286 
1287 	if (unlikely(PageHWPoison(page)) && !order) {
1288 		/*
1289 		 * Do not let hwpoison pages hit pcplists/buddy
1290 		 * Untie memcg state and reset page's owner
1291 		 */
1292 		if (memcg_kmem_enabled() && PageKmemcg(page))
1293 			__memcg_kmem_uncharge_page(page, order);
1294 		reset_page_owner(page, order);
1295 		free_page_pinner(page, order);
1296 		return false;
1297 	}
1298 
1299 	/*
1300 	 * Check tail pages before head page information is cleared to
1301 	 * avoid checking PageCompound for order-0 pages.
1302 	 */
1303 	if (unlikely(order)) {
1304 		bool compound = PageCompound(page);
1305 		int i;
1306 
1307 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1308 
1309 		if (compound)
1310 			ClearPageDoubleMap(page);
1311 		for (i = 1; i < (1 << order); i++) {
1312 			if (compound)
1313 				bad += free_tail_pages_check(page, page + i);
1314 			if (unlikely(check_free_page(page + i))) {
1315 				bad++;
1316 				continue;
1317 			}
1318 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1319 		}
1320 	}
1321 	if (PageMappingFlags(page))
1322 		page->mapping = NULL;
1323 	if (memcg_kmem_enabled() && PageKmemcg(page))
1324 		__memcg_kmem_uncharge_page(page, order);
1325 	if (check_free)
1326 		bad += check_free_page(page);
1327 	if (bad)
1328 		return false;
1329 
1330 	page_cpupid_reset_last(page);
1331 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1332 	reset_page_owner(page, order);
1333 	free_page_pinner(page, order);
1334 
1335 	if (!PageHighMem(page)) {
1336 		debug_check_no_locks_freed(page_address(page),
1337 					   PAGE_SIZE << order);
1338 		debug_check_no_obj_freed(page_address(page),
1339 					   PAGE_SIZE << order);
1340 	}
1341 
1342 	kernel_poison_pages(page, 1 << order);
1343 
1344 	/*
1345 	 * As memory initialization might be integrated into KASAN,
1346 	 * kasan_free_pages and kernel_init_free_pages must be
1347 	 * kept together to avoid discrepancies in behavior.
1348 	 *
1349 	 * With hardware tag-based KASAN, memory tags must be set before the
1350 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1351 	 */
1352 	if (kasan_has_integrated_init()) {
1353 		if (!skip_kasan_poison)
1354 			kasan_free_pages(page, order);
1355 	} else {
1356 		bool init = want_init_on_free();
1357 
1358 		if (init)
1359 			kernel_init_free_pages(page, 1 << order, false);
1360 		if (!skip_kasan_poison)
1361 			kasan_poison_pages(page, order, init);
1362 	}
1363 
1364 	/*
1365 	 * arch_free_page() can make the page's contents inaccessible.  s390
1366 	 * does this.  So nothing which can access the page's contents should
1367 	 * happen after this.
1368 	 */
1369 	arch_free_page(page, order);
1370 
1371 	debug_pagealloc_unmap_pages(page, 1 << order);
1372 
1373 	return true;
1374 }
1375 
1376 #ifdef CONFIG_DEBUG_VM
1377 /*
1378  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1379  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1380  * moved from pcp lists to free lists.
1381  */
free_pcp_prepare(struct page * page)1382 static bool free_pcp_prepare(struct page *page)
1383 {
1384 	return free_pages_prepare(page, 0, true, FPI_NONE);
1385 }
1386 
bulkfree_pcp_prepare(struct page * page)1387 static bool bulkfree_pcp_prepare(struct page *page)
1388 {
1389 	if (debug_pagealloc_enabled_static())
1390 		return check_free_page(page);
1391 	else
1392 		return false;
1393 }
1394 #else
1395 /*
1396  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1397  * moving from pcp lists to free list in order to reduce overhead. With
1398  * debug_pagealloc enabled, they are checked also immediately when being freed
1399  * to the pcp lists.
1400  */
free_pcp_prepare(struct page * page)1401 static bool free_pcp_prepare(struct page *page)
1402 {
1403 	if (debug_pagealloc_enabled_static())
1404 		return free_pages_prepare(page, 0, true, FPI_NONE);
1405 	else
1406 		return free_pages_prepare(page, 0, false, FPI_NONE);
1407 }
1408 
bulkfree_pcp_prepare(struct page * page)1409 static bool bulkfree_pcp_prepare(struct page *page)
1410 {
1411 	return check_free_page(page);
1412 }
1413 #endif /* CONFIG_DEBUG_VM */
1414 
prefetch_buddy(struct page * page)1415 static inline void prefetch_buddy(struct page *page)
1416 {
1417 	unsigned long pfn = page_to_pfn(page);
1418 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1419 	struct page *buddy = page + (buddy_pfn - pfn);
1420 
1421 	prefetch(buddy);
1422 }
1423 
1424 /*
1425  * Frees a number of pages from the PCP lists
1426  * Assumes all pages on list are in same zone, and of same order.
1427  * count is the number of pages to free.
1428  *
1429  * If the zone was previously in an "all pages pinned" state then look to
1430  * see if this freeing clears that state.
1431  *
1432  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1433  * pinned" detection logic.
1434  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1435 static void free_pcppages_bulk(struct zone *zone, int count,
1436 					struct per_cpu_pages *pcp)
1437 {
1438 	int migratetype = 0;
1439 	int batch_free = 0;
1440 	int prefetch_nr = 0;
1441 	bool isolated_pageblocks;
1442 	struct page *page, *tmp;
1443 	LIST_HEAD(head);
1444 
1445 	/*
1446 	 * Ensure proper count is passed which otherwise would stuck in the
1447 	 * below while (list_empty(list)) loop.
1448 	 */
1449 	count = min(pcp->count, count);
1450 	while (count) {
1451 		struct list_head *list;
1452 
1453 		/*
1454 		 * Remove pages from lists in a round-robin fashion. A
1455 		 * batch_free count is maintained that is incremented when an
1456 		 * empty list is encountered.  This is so more pages are freed
1457 		 * off fuller lists instead of spinning excessively around empty
1458 		 * lists
1459 		 */
1460 		do {
1461 			batch_free++;
1462 			if (++migratetype == MIGRATE_PCPTYPES)
1463 				migratetype = 0;
1464 			list = &pcp->lists[migratetype];
1465 		} while (list_empty(list));
1466 
1467 		/* This is the only non-empty list. Free them all. */
1468 		if (batch_free == MIGRATE_PCPTYPES)
1469 			batch_free = count;
1470 
1471 		do {
1472 			page = list_last_entry(list, struct page, lru);
1473 			/* must delete to avoid corrupting pcp list */
1474 			list_del(&page->lru);
1475 			pcp->count--;
1476 
1477 			if (bulkfree_pcp_prepare(page))
1478 				continue;
1479 
1480 			list_add_tail(&page->lru, &head);
1481 
1482 			/*
1483 			 * We are going to put the page back to the global
1484 			 * pool, prefetch its buddy to speed up later access
1485 			 * under zone->lock. It is believed the overhead of
1486 			 * an additional test and calculating buddy_pfn here
1487 			 * can be offset by reduced memory latency later. To
1488 			 * avoid excessive prefetching due to large count, only
1489 			 * prefetch buddy for the first pcp->batch nr of pages.
1490 			 */
1491 			if (prefetch_nr++ < pcp->batch)
1492 				prefetch_buddy(page);
1493 		} while (--count && --batch_free && !list_empty(list));
1494 	}
1495 
1496 	spin_lock(&zone->lock);
1497 	isolated_pageblocks = has_isolate_pageblock(zone);
1498 
1499 	/*
1500 	 * Use safe version since after __free_one_page(),
1501 	 * page->lru.next will not point to original list.
1502 	 */
1503 	list_for_each_entry_safe(page, tmp, &head, lru) {
1504 		int mt = get_pcppage_migratetype(page);
1505 		/* MIGRATE_ISOLATE page should not go to pcplists */
1506 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1507 		/* Pageblock could have been isolated meanwhile */
1508 		if (unlikely(isolated_pageblocks))
1509 			mt = get_pageblock_migratetype(page);
1510 
1511 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1512 		trace_mm_page_pcpu_drain(page, 0, mt);
1513 	}
1514 	spin_unlock(&zone->lock);
1515 }
1516 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1517 static void free_one_page(struct zone *zone,
1518 				struct page *page, unsigned long pfn,
1519 				unsigned int order,
1520 				int migratetype, fpi_t fpi_flags)
1521 {
1522 	spin_lock(&zone->lock);
1523 	if (unlikely(has_isolate_pageblock(zone) ||
1524 		is_migrate_isolate(migratetype))) {
1525 		migratetype = get_pfnblock_migratetype(page, pfn);
1526 	}
1527 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1528 	spin_unlock(&zone->lock);
1529 }
1530 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid,bool zero_page_struct __maybe_unused)1531 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1532 				unsigned long zone, int nid,
1533 				bool zero_page_struct __maybe_unused)
1534 {
1535 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT
1536 	if (zero_page_struct)
1537 		mm_zero_struct_page(page);
1538 #else
1539 	mm_zero_struct_page(page);
1540 #endif
1541 	set_page_links(page, zone, nid, pfn);
1542 	init_page_count(page);
1543 	page_mapcount_reset(page);
1544 	page_cpupid_reset_last(page);
1545 	page_kasan_tag_reset(page);
1546 
1547 	INIT_LIST_HEAD(&page->lru);
1548 #ifdef WANT_PAGE_VIRTUAL
1549 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1550 	if (!is_highmem_idx(zone))
1551 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1552 #endif
1553 }
1554 
1555 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1556 static void __meminit init_reserved_page(unsigned long pfn)
1557 {
1558 	pg_data_t *pgdat;
1559 	int nid, zid;
1560 
1561 	if (!early_page_uninitialised(pfn))
1562 		return;
1563 
1564 	nid = early_pfn_to_nid(pfn);
1565 	pgdat = NODE_DATA(nid);
1566 
1567 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1568 		struct zone *zone = &pgdat->node_zones[zid];
1569 
1570 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1571 			break;
1572 	}
1573 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid, true);
1574 }
1575 #else
init_reserved_page(unsigned long pfn)1576 static inline void init_reserved_page(unsigned long pfn)
1577 {
1578 }
1579 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1580 
1581 /*
1582  * Initialised pages do not have PageReserved set. This function is
1583  * called for each range allocated by the bootmem allocator and
1584  * marks the pages PageReserved. The remaining valid pages are later
1585  * sent to the buddy page allocator.
1586  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1587 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1588 {
1589 	unsigned long start_pfn = PFN_DOWN(start);
1590 	unsigned long end_pfn = PFN_UP(end);
1591 
1592 	for (; start_pfn < end_pfn; start_pfn++) {
1593 		if (pfn_valid(start_pfn)) {
1594 			struct page *page = pfn_to_page(start_pfn);
1595 
1596 			init_reserved_page(start_pfn);
1597 
1598 			/* Avoid false-positive PageTail() */
1599 			INIT_LIST_HEAD(&page->lru);
1600 
1601 			/*
1602 			 * no need for atomic set_bit because the struct
1603 			 * page is not visible yet so nobody should
1604 			 * access it yet.
1605 			 */
1606 			__SetPageReserved(page);
1607 		}
1608 	}
1609 }
1610 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1611 static void __free_pages_ok(struct page *page, unsigned int order,
1612 			    fpi_t fpi_flags)
1613 {
1614 	unsigned long flags;
1615 	int migratetype;
1616 	unsigned long pfn = page_to_pfn(page);
1617 
1618 	if (!free_pages_prepare(page, order, true, fpi_flags))
1619 		return;
1620 
1621 	migratetype = get_pfnblock_migratetype(page, pfn);
1622 	local_irq_save(flags);
1623 	__count_vm_events(PGFREE, 1 << order);
1624 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1625 		      fpi_flags);
1626 	local_irq_restore(flags);
1627 }
1628 
__free_pages_core(struct page * page,unsigned int order)1629 void __free_pages_core(struct page *page, unsigned int order)
1630 {
1631 	unsigned int nr_pages = 1 << order;
1632 	struct page *p = page;
1633 	unsigned int loop;
1634 
1635 	/*
1636 	 * When initializing the memmap, __init_single_page() sets the refcount
1637 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1638 	 * refcount of all involved pages to 0.
1639 	 */
1640 	prefetchw(p);
1641 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1642 		prefetchw(p + 1);
1643 		__ClearPageReserved(p);
1644 		set_page_count(p, 0);
1645 	}
1646 	__ClearPageReserved(p);
1647 	set_page_count(p, 0);
1648 
1649 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1650 
1651 	/*
1652 	 * Bypass PCP and place fresh pages right to the tail, primarily
1653 	 * relevant for memory onlining.
1654 	 */
1655 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1656 }
1657 
1658 #ifdef CONFIG_NEED_MULTIPLE_NODES
1659 
1660 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1661 
1662 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1663 
1664 /*
1665  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1666  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)1667 int __meminit __early_pfn_to_nid(unsigned long pfn,
1668 					struct mminit_pfnnid_cache *state)
1669 {
1670 	unsigned long start_pfn, end_pfn;
1671 	int nid;
1672 
1673 	if (state->last_start <= pfn && pfn < state->last_end)
1674 		return state->last_nid;
1675 
1676 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1677 	if (nid != NUMA_NO_NODE) {
1678 		state->last_start = start_pfn;
1679 		state->last_end = end_pfn;
1680 		state->last_nid = nid;
1681 	}
1682 
1683 	return nid;
1684 }
1685 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1686 
early_pfn_to_nid(unsigned long pfn)1687 int __meminit early_pfn_to_nid(unsigned long pfn)
1688 {
1689 	static DEFINE_SPINLOCK(early_pfn_lock);
1690 	int nid;
1691 
1692 	spin_lock(&early_pfn_lock);
1693 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1694 	if (nid < 0)
1695 		nid = first_online_node;
1696 	spin_unlock(&early_pfn_lock);
1697 
1698 	return nid;
1699 }
1700 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1701 
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1702 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1703 							unsigned int order)
1704 {
1705 	if (early_page_uninitialised(pfn))
1706 		return;
1707 	__free_pages_core(page, order);
1708 }
1709 
1710 /*
1711  * Check that the whole (or subset of) a pageblock given by the interval of
1712  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1713  * with the migration of free compaction scanner. The scanners then need to
1714  * use only pfn_valid_within() check for arches that allow holes within
1715  * pageblocks.
1716  *
1717  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1718  *
1719  * It's possible on some configurations to have a setup like node0 node1 node0
1720  * i.e. it's possible that all pages within a zones range of pages do not
1721  * belong to a single zone. We assume that a border between node0 and node1
1722  * can occur within a single pageblock, but not a node0 node1 node0
1723  * interleaving within a single pageblock. It is therefore sufficient to check
1724  * the first and last page of a pageblock and avoid checking each individual
1725  * page in a pageblock.
1726  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1727 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1728 				     unsigned long end_pfn, struct zone *zone)
1729 {
1730 	struct page *start_page;
1731 	struct page *end_page;
1732 
1733 	/* end_pfn is one past the range we are checking */
1734 	end_pfn--;
1735 
1736 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1737 		return NULL;
1738 
1739 	start_page = pfn_to_online_page(start_pfn);
1740 	if (!start_page)
1741 		return NULL;
1742 
1743 	if (page_zone(start_page) != zone)
1744 		return NULL;
1745 
1746 	end_page = pfn_to_page(end_pfn);
1747 
1748 	/* This gives a shorter code than deriving page_zone(end_page) */
1749 	if (page_zone_id(start_page) != page_zone_id(end_page))
1750 		return NULL;
1751 
1752 	return start_page;
1753 }
1754 
set_zone_contiguous(struct zone * zone)1755 void set_zone_contiguous(struct zone *zone)
1756 {
1757 	unsigned long block_start_pfn = zone->zone_start_pfn;
1758 	unsigned long block_end_pfn;
1759 
1760 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1761 	for (; block_start_pfn < zone_end_pfn(zone);
1762 			block_start_pfn = block_end_pfn,
1763 			 block_end_pfn += pageblock_nr_pages) {
1764 
1765 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1766 
1767 		if (!__pageblock_pfn_to_page(block_start_pfn,
1768 					     block_end_pfn, zone))
1769 			return;
1770 		cond_resched();
1771 	}
1772 
1773 	/* We confirm that there is no hole */
1774 	zone->contiguous = true;
1775 }
1776 
clear_zone_contiguous(struct zone * zone)1777 void clear_zone_contiguous(struct zone *zone)
1778 {
1779 	zone->contiguous = false;
1780 }
1781 
1782 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1783 static void __init deferred_free_range(unsigned long pfn,
1784 				       unsigned long nr_pages)
1785 {
1786 	struct page *page;
1787 	unsigned long i;
1788 
1789 	if (!nr_pages)
1790 		return;
1791 
1792 	page = pfn_to_page(pfn);
1793 
1794 	/* Free a large naturally-aligned chunk if possible */
1795 	if (nr_pages == pageblock_nr_pages &&
1796 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1797 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1798 		__free_pages_core(page, pageblock_order);
1799 		return;
1800 	}
1801 
1802 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1803 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1804 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1805 		__free_pages_core(page, 0);
1806 	}
1807 }
1808 
1809 /* Completion tracking for deferred_init_memmap() threads */
1810 static atomic_t pgdat_init_n_undone __initdata;
1811 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1812 
pgdat_init_report_one_done(void)1813 static inline void __init pgdat_init_report_one_done(void)
1814 {
1815 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1816 		complete(&pgdat_init_all_done_comp);
1817 }
1818 
1819 /*
1820  * Returns true if page needs to be initialized or freed to buddy allocator.
1821  *
1822  * First we check if pfn is valid on architectures where it is possible to have
1823  * holes within pageblock_nr_pages. On systems where it is not possible, this
1824  * function is optimized out.
1825  *
1826  * Then, we check if a current large page is valid by only checking the validity
1827  * of the head pfn.
1828  */
deferred_pfn_valid(unsigned long pfn)1829 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1830 {
1831 	if (!pfn_valid_within(pfn))
1832 		return false;
1833 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1834 		return false;
1835 	return true;
1836 }
1837 
1838 /*
1839  * Free pages to buddy allocator. Try to free aligned pages in
1840  * pageblock_nr_pages sizes.
1841  */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)1842 static void __init deferred_free_pages(unsigned long pfn,
1843 				       unsigned long end_pfn)
1844 {
1845 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1846 	unsigned long nr_free = 0;
1847 
1848 	for (; pfn < end_pfn; pfn++) {
1849 		if (!deferred_pfn_valid(pfn)) {
1850 			deferred_free_range(pfn - nr_free, nr_free);
1851 			nr_free = 0;
1852 		} else if (!(pfn & nr_pgmask)) {
1853 			deferred_free_range(pfn - nr_free, nr_free);
1854 			nr_free = 1;
1855 		} else {
1856 			nr_free++;
1857 		}
1858 	}
1859 	/* Free the last block of pages to allocator */
1860 	deferred_free_range(pfn - nr_free, nr_free);
1861 }
1862 
1863 /*
1864  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1865  * by performing it only once every pageblock_nr_pages.
1866  * Return number of pages initialized.
1867  */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)1868 static unsigned long  __init deferred_init_pages(struct zone *zone,
1869 						 unsigned long pfn,
1870 						 unsigned long end_pfn)
1871 {
1872 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1873 	int nid = zone_to_nid(zone);
1874 	unsigned long nr_pages = 0;
1875 	int zid = zone_idx(zone);
1876 	struct page *page = NULL;
1877 
1878 	for (; pfn < end_pfn; pfn++) {
1879 		if (!deferred_pfn_valid(pfn)) {
1880 			page = NULL;
1881 			continue;
1882 		} else if (!page || !(pfn & nr_pgmask)) {
1883 			page = pfn_to_page(pfn);
1884 		} else {
1885 			page++;
1886 		}
1887 		__init_single_page(page, pfn, zid, nid, true);
1888 		nr_pages++;
1889 	}
1890 	return (nr_pages);
1891 }
1892 
1893 /*
1894  * This function is meant to pre-load the iterator for the zone init.
1895  * Specifically it walks through the ranges until we are caught up to the
1896  * first_init_pfn value and exits there. If we never encounter the value we
1897  * return false indicating there are no valid ranges left.
1898  */
1899 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)1900 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1901 				    unsigned long *spfn, unsigned long *epfn,
1902 				    unsigned long first_init_pfn)
1903 {
1904 	u64 j;
1905 
1906 	/*
1907 	 * Start out by walking through the ranges in this zone that have
1908 	 * already been initialized. We don't need to do anything with them
1909 	 * so we just need to flush them out of the system.
1910 	 */
1911 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1912 		if (*epfn <= first_init_pfn)
1913 			continue;
1914 		if (*spfn < first_init_pfn)
1915 			*spfn = first_init_pfn;
1916 		*i = j;
1917 		return true;
1918 	}
1919 
1920 	return false;
1921 }
1922 
1923 /*
1924  * Initialize and free pages. We do it in two loops: first we initialize
1925  * struct page, then free to buddy allocator, because while we are
1926  * freeing pages we can access pages that are ahead (computing buddy
1927  * page in __free_one_page()).
1928  *
1929  * In order to try and keep some memory in the cache we have the loop
1930  * broken along max page order boundaries. This way we will not cause
1931  * any issues with the buddy page computation.
1932  */
1933 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)1934 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1935 		       unsigned long *end_pfn)
1936 {
1937 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1938 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1939 	unsigned long nr_pages = 0;
1940 	u64 j = *i;
1941 
1942 	/* First we loop through and initialize the page values */
1943 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1944 		unsigned long t;
1945 
1946 		if (mo_pfn <= *start_pfn)
1947 			break;
1948 
1949 		t = min(mo_pfn, *end_pfn);
1950 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1951 
1952 		if (mo_pfn < *end_pfn) {
1953 			*start_pfn = mo_pfn;
1954 			break;
1955 		}
1956 	}
1957 
1958 	/* Reset values and now loop through freeing pages as needed */
1959 	swap(j, *i);
1960 
1961 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1962 		unsigned long t;
1963 
1964 		if (mo_pfn <= spfn)
1965 			break;
1966 
1967 		t = min(mo_pfn, epfn);
1968 		deferred_free_pages(spfn, t);
1969 
1970 		if (mo_pfn <= epfn)
1971 			break;
1972 	}
1973 
1974 	return nr_pages;
1975 }
1976 
1977 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)1978 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1979 			   void *arg)
1980 {
1981 	unsigned long spfn, epfn;
1982 	struct zone *zone = arg;
1983 	u64 i;
1984 
1985 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1986 
1987 	/*
1988 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1989 	 * can avoid introducing any issues with the buddy allocator.
1990 	 */
1991 	while (spfn < end_pfn) {
1992 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1993 		cond_resched();
1994 	}
1995 }
1996 
1997 /* An arch may override for more concurrency. */
1998 __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)1999 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2000 {
2001 	return 1;
2002 }
2003 
2004 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2005 static int __init deferred_init_memmap(void *data)
2006 {
2007 	pg_data_t *pgdat = data;
2008 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2009 	unsigned long spfn = 0, epfn = 0;
2010 	unsigned long first_init_pfn, flags;
2011 	unsigned long start = jiffies;
2012 	struct zone *zone;
2013 	int zid, max_threads;
2014 	u64 i;
2015 
2016 	/* Bind memory initialisation thread to a local node if possible */
2017 	if (!cpumask_empty(cpumask))
2018 		set_cpus_allowed_ptr(current, cpumask);
2019 
2020 	pgdat_resize_lock(pgdat, &flags);
2021 	first_init_pfn = pgdat->first_deferred_pfn;
2022 	if (first_init_pfn == ULONG_MAX) {
2023 		pgdat_resize_unlock(pgdat, &flags);
2024 		pgdat_init_report_one_done();
2025 		return 0;
2026 	}
2027 
2028 	/* Sanity check boundaries */
2029 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2030 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2031 	pgdat->first_deferred_pfn = ULONG_MAX;
2032 
2033 	/*
2034 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2035 	 * interrupt thread must allocate this early in boot, zone must be
2036 	 * pre-grown prior to start of deferred page initialization.
2037 	 */
2038 	pgdat_resize_unlock(pgdat, &flags);
2039 
2040 	/* Only the highest zone is deferred so find it */
2041 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2042 		zone = pgdat->node_zones + zid;
2043 		if (first_init_pfn < zone_end_pfn(zone))
2044 			break;
2045 	}
2046 
2047 	/* If the zone is empty somebody else may have cleared out the zone */
2048 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2049 						 first_init_pfn))
2050 		goto zone_empty;
2051 
2052 	max_threads = deferred_page_init_max_threads(cpumask);
2053 
2054 	while (spfn < epfn) {
2055 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2056 		struct padata_mt_job job = {
2057 			.thread_fn   = deferred_init_memmap_chunk,
2058 			.fn_arg      = zone,
2059 			.start       = spfn,
2060 			.size        = epfn_align - spfn,
2061 			.align       = PAGES_PER_SECTION,
2062 			.min_chunk   = PAGES_PER_SECTION,
2063 			.max_threads = max_threads,
2064 		};
2065 
2066 		padata_do_multithreaded(&job);
2067 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2068 						    epfn_align);
2069 	}
2070 zone_empty:
2071 	/* Sanity check that the next zone really is unpopulated */
2072 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2073 
2074 	pr_info("node %d deferred pages initialised in %ums\n",
2075 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2076 
2077 	pgdat_init_report_one_done();
2078 	return 0;
2079 }
2080 
2081 /*
2082  * If this zone has deferred pages, try to grow it by initializing enough
2083  * deferred pages to satisfy the allocation specified by order, rounded up to
2084  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2085  * of SECTION_SIZE bytes by initializing struct pages in increments of
2086  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2087  *
2088  * Return true when zone was grown, otherwise return false. We return true even
2089  * when we grow less than requested, to let the caller decide if there are
2090  * enough pages to satisfy the allocation.
2091  *
2092  * Note: We use noinline because this function is needed only during boot, and
2093  * it is called from a __ref function _deferred_grow_zone. This way we are
2094  * making sure that it is not inlined into permanent text section.
2095  */
2096 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)2097 deferred_grow_zone(struct zone *zone, unsigned int order)
2098 {
2099 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2100 	pg_data_t *pgdat = zone->zone_pgdat;
2101 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2102 	unsigned long spfn, epfn, flags;
2103 	unsigned long nr_pages = 0;
2104 	u64 i;
2105 
2106 	/* Only the last zone may have deferred pages */
2107 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2108 		return false;
2109 
2110 	pgdat_resize_lock(pgdat, &flags);
2111 
2112 	/*
2113 	 * If someone grew this zone while we were waiting for spinlock, return
2114 	 * true, as there might be enough pages already.
2115 	 */
2116 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2117 		pgdat_resize_unlock(pgdat, &flags);
2118 		return true;
2119 	}
2120 
2121 	/* If the zone is empty somebody else may have cleared out the zone */
2122 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2123 						 first_deferred_pfn)) {
2124 		pgdat->first_deferred_pfn = ULONG_MAX;
2125 		pgdat_resize_unlock(pgdat, &flags);
2126 		/* Retry only once. */
2127 		return first_deferred_pfn != ULONG_MAX;
2128 	}
2129 
2130 	/*
2131 	 * Initialize and free pages in MAX_ORDER sized increments so
2132 	 * that we can avoid introducing any issues with the buddy
2133 	 * allocator.
2134 	 */
2135 	while (spfn < epfn) {
2136 		/* update our first deferred PFN for this section */
2137 		first_deferred_pfn = spfn;
2138 
2139 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2140 		touch_nmi_watchdog();
2141 
2142 		/* We should only stop along section boundaries */
2143 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2144 			continue;
2145 
2146 		/* If our quota has been met we can stop here */
2147 		if (nr_pages >= nr_pages_needed)
2148 			break;
2149 	}
2150 
2151 	pgdat->first_deferred_pfn = spfn;
2152 	pgdat_resize_unlock(pgdat, &flags);
2153 
2154 	return nr_pages > 0;
2155 }
2156 
2157 /*
2158  * deferred_grow_zone() is __init, but it is called from
2159  * get_page_from_freelist() during early boot until deferred_pages permanently
2160  * disables this call. This is why we have refdata wrapper to avoid warning,
2161  * and to ensure that the function body gets unloaded.
2162  */
2163 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)2164 _deferred_grow_zone(struct zone *zone, unsigned int order)
2165 {
2166 	return deferred_grow_zone(zone, order);
2167 }
2168 
2169 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2170 
page_alloc_init_late(void)2171 void __init page_alloc_init_late(void)
2172 {
2173 	struct zone *zone;
2174 	int nid;
2175 
2176 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2177 
2178 	/* There will be num_node_state(N_MEMORY) threads */
2179 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2180 	for_each_node_state(nid, N_MEMORY) {
2181 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2182 	}
2183 
2184 	/* Block until all are initialised */
2185 	wait_for_completion(&pgdat_init_all_done_comp);
2186 
2187 	/*
2188 	 * The number of managed pages has changed due to the initialisation
2189 	 * so the pcpu batch and high limits needs to be updated or the limits
2190 	 * will be artificially small.
2191 	 */
2192 	for_each_populated_zone(zone)
2193 		zone_pcp_update(zone);
2194 
2195 	/*
2196 	 * We initialized the rest of the deferred pages.  Permanently disable
2197 	 * on-demand struct page initialization.
2198 	 */
2199 	static_branch_disable(&deferred_pages);
2200 
2201 	/* Reinit limits that are based on free pages after the kernel is up */
2202 	files_maxfiles_init();
2203 #endif
2204 
2205 	/* Discard memblock private memory */
2206 	memblock_discard();
2207 
2208 	for_each_node_state(nid, N_MEMORY)
2209 		shuffle_free_memory(NODE_DATA(nid));
2210 
2211 	for_each_populated_zone(zone)
2212 		set_zone_contiguous(zone);
2213 }
2214 
2215 #ifdef CONFIG_CMA
2216 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)2217 void __init init_cma_reserved_pageblock(struct page *page)
2218 {
2219 	unsigned i = pageblock_nr_pages;
2220 	struct page *p = page;
2221 
2222 	do {
2223 		__ClearPageReserved(p);
2224 		set_page_count(p, 0);
2225 	} while (++p, --i);
2226 
2227 	set_pageblock_migratetype(page, MIGRATE_CMA);
2228 
2229 	if (pageblock_order >= MAX_ORDER) {
2230 		i = pageblock_nr_pages;
2231 		p = page;
2232 		do {
2233 			set_page_refcounted(p);
2234 			__free_pages(p, MAX_ORDER - 1);
2235 			p += MAX_ORDER_NR_PAGES;
2236 		} while (i -= MAX_ORDER_NR_PAGES);
2237 	} else {
2238 		set_page_refcounted(page);
2239 		__free_pages(page, pageblock_order);
2240 	}
2241 
2242 	adjust_managed_page_count(page, pageblock_nr_pages);
2243 	page_zone(page)->cma_pages += pageblock_nr_pages;
2244 }
2245 #endif
2246 
2247 /*
2248  * The order of subdivision here is critical for the IO subsystem.
2249  * Please do not alter this order without good reasons and regression
2250  * testing. Specifically, as large blocks of memory are subdivided,
2251  * the order in which smaller blocks are delivered depends on the order
2252  * they're subdivided in this function. This is the primary factor
2253  * influencing the order in which pages are delivered to the IO
2254  * subsystem according to empirical testing, and this is also justified
2255  * by considering the behavior of a buddy system containing a single
2256  * large block of memory acted on by a series of small allocations.
2257  * This behavior is a critical factor in sglist merging's success.
2258  *
2259  * -- nyc
2260  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)2261 static inline void expand(struct zone *zone, struct page *page,
2262 	int low, int high, int migratetype)
2263 {
2264 	unsigned long size = 1 << high;
2265 
2266 	while (high > low) {
2267 		high--;
2268 		size >>= 1;
2269 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2270 
2271 		/*
2272 		 * Mark as guard pages (or page), that will allow to
2273 		 * merge back to allocator when buddy will be freed.
2274 		 * Corresponding page table entries will not be touched,
2275 		 * pages will stay not present in virtual address space
2276 		 */
2277 		if (set_page_guard(zone, &page[size], high, migratetype))
2278 			continue;
2279 
2280 		add_to_free_list(&page[size], zone, high, migratetype);
2281 		set_buddy_order(&page[size], high);
2282 	}
2283 }
2284 
check_new_page_bad(struct page * page)2285 static void check_new_page_bad(struct page *page)
2286 {
2287 	if (unlikely(page->flags & __PG_HWPOISON)) {
2288 		/* Don't complain about hwpoisoned pages */
2289 		page_mapcount_reset(page); /* remove PageBuddy */
2290 		return;
2291 	}
2292 
2293 	bad_page(page,
2294 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2295 }
2296 
2297 /*
2298  * This page is about to be returned from the page allocator
2299  */
check_new_page(struct page * page)2300 static inline int check_new_page(struct page *page)
2301 {
2302 	if (likely(page_expected_state(page,
2303 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2304 		return 0;
2305 
2306 	check_new_page_bad(page);
2307 	return 1;
2308 }
2309 
2310 #ifdef CONFIG_DEBUG_VM
2311 /*
2312  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2313  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2314  * also checked when pcp lists are refilled from the free lists.
2315  */
check_pcp_refill(struct page * page)2316 static inline bool check_pcp_refill(struct page *page)
2317 {
2318 	if (debug_pagealloc_enabled_static())
2319 		return check_new_page(page);
2320 	else
2321 		return false;
2322 }
2323 
check_new_pcp(struct page * page)2324 static inline bool check_new_pcp(struct page *page)
2325 {
2326 	return check_new_page(page);
2327 }
2328 #else
2329 /*
2330  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2331  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2332  * enabled, they are also checked when being allocated from the pcp lists.
2333  */
check_pcp_refill(struct page * page)2334 static inline bool check_pcp_refill(struct page *page)
2335 {
2336 	return check_new_page(page);
2337 }
check_new_pcp(struct page * page)2338 static inline bool check_new_pcp(struct page *page)
2339 {
2340 	if (debug_pagealloc_enabled_static())
2341 		return check_new_page(page);
2342 	else
2343 		return false;
2344 }
2345 #endif /* CONFIG_DEBUG_VM */
2346 
check_new_pages(struct page * page,unsigned int order)2347 static bool check_new_pages(struct page *page, unsigned int order)
2348 {
2349 	int i;
2350 	for (i = 0; i < (1 << order); i++) {
2351 		struct page *p = page + i;
2352 
2353 		if (unlikely(check_new_page(p)))
2354 			return true;
2355 	}
2356 
2357 	return false;
2358 }
2359 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2360 inline void post_alloc_hook(struct page *page, unsigned int order,
2361 				gfp_t gfp_flags)
2362 {
2363 	set_page_private(page, 0);
2364 	set_page_refcounted(page);
2365 
2366 	arch_alloc_page(page, order);
2367 	debug_pagealloc_map_pages(page, 1 << order);
2368 
2369 	/*
2370 	 * Page unpoisoning must happen before memory initialization.
2371 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2372 	 * allocations and the page unpoisoning code will complain.
2373 	 */
2374 	kernel_unpoison_pages(page, 1 << order);
2375 
2376 	/*
2377 	 * As memory initialization might be integrated into KASAN,
2378 	 * kasan_alloc_pages and kernel_init_free_pages must be
2379 	 * kept together to avoid discrepancies in behavior.
2380 	 */
2381 	if (kasan_has_integrated_init()) {
2382 		kasan_alloc_pages(page, order, gfp_flags);
2383 	} else {
2384 		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2385 
2386 		kasan_unpoison_pages(page, order, init);
2387 		if (init)
2388 			kernel_init_free_pages(page, 1 << order,
2389 					       gfp_flags & __GFP_ZEROTAGS);
2390 	}
2391 
2392 	set_page_owner(page, order, gfp_flags);
2393 }
2394 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2395 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2396 							unsigned int alloc_flags)
2397 {
2398 	post_alloc_hook(page, order, gfp_flags);
2399 
2400 	if (order && (gfp_flags & __GFP_COMP))
2401 		prep_compound_page(page, order);
2402 
2403 	/*
2404 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2405 	 * allocate the page. The expectation is that the caller is taking
2406 	 * steps that will free more memory. The caller should avoid the page
2407 	 * being used for !PFMEMALLOC purposes.
2408 	 */
2409 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2410 		set_page_pfmemalloc(page);
2411 	else
2412 		clear_page_pfmemalloc(page);
2413 	trace_android_vh_test_clear_look_around_ref(page);
2414 }
2415 
2416 /*
2417  * Go through the free lists for the given migratetype and remove
2418  * the smallest available page from the freelists
2419  */
2420 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2421 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2422 						int migratetype)
2423 {
2424 	unsigned int current_order;
2425 	struct free_area *area;
2426 	struct page *page;
2427 
2428 	/* Find a page of the appropriate size in the preferred list */
2429 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2430 		area = &(zone->free_area[current_order]);
2431 		page = get_page_from_free_area(area, migratetype);
2432 		if (!page)
2433 			continue;
2434 		del_page_from_free_list(page, zone, current_order);
2435 		expand(zone, page, order, current_order, migratetype);
2436 		set_pcppage_migratetype(page, migratetype);
2437 		return page;
2438 	}
2439 
2440 	return NULL;
2441 }
2442 
2443 
2444 /*
2445  * This array describes the order lists are fallen back to when
2446  * the free lists for the desirable migrate type are depleted
2447  */
2448 static int fallbacks[MIGRATE_TYPES][3] = {
2449 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2450 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2451 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2452 #ifdef CONFIG_CMA
2453 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2454 #endif
2455 #ifdef CONFIG_MEMORY_ISOLATION
2456 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2457 #endif
2458 };
2459 
2460 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2461 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2462 					unsigned int order)
2463 {
2464 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2465 }
2466 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2467 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2468 					unsigned int order) { return NULL; }
2469 #endif
2470 
2471 /*
2472  * Move the free pages in a range to the freelist tail of the requested type.
2473  * Note that start_page and end_pages are not aligned on a pageblock
2474  * boundary. If alignment is required, use move_freepages_block()
2475  */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype,int * num_movable)2476 static int move_freepages(struct zone *zone,
2477 			  struct page *start_page, struct page *end_page,
2478 			  int migratetype, int *num_movable)
2479 {
2480 	struct page *page;
2481 	unsigned int order;
2482 	int pages_moved = 0;
2483 
2484 	for (page = start_page; page <= end_page;) {
2485 		if (!pfn_valid_within(page_to_pfn(page))) {
2486 			page++;
2487 			continue;
2488 		}
2489 
2490 		if (!PageBuddy(page)) {
2491 			/*
2492 			 * We assume that pages that could be isolated for
2493 			 * migration are movable. But we don't actually try
2494 			 * isolating, as that would be expensive.
2495 			 */
2496 			if (num_movable &&
2497 					(PageLRU(page) || __PageMovable(page)))
2498 				(*num_movable)++;
2499 
2500 			page++;
2501 			continue;
2502 		}
2503 
2504 		/* Make sure we are not inadvertently changing nodes */
2505 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2506 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2507 
2508 		order = buddy_order(page);
2509 		move_to_free_list(page, zone, order, migratetype);
2510 		page += 1 << order;
2511 		pages_moved += 1 << order;
2512 	}
2513 
2514 	return pages_moved;
2515 }
2516 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2517 int move_freepages_block(struct zone *zone, struct page *page,
2518 				int migratetype, int *num_movable)
2519 {
2520 	unsigned long start_pfn, end_pfn;
2521 	struct page *start_page, *end_page;
2522 
2523 	if (num_movable)
2524 		*num_movable = 0;
2525 
2526 	start_pfn = page_to_pfn(page);
2527 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2528 	start_page = pfn_to_page(start_pfn);
2529 	end_page = start_page + pageblock_nr_pages - 1;
2530 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2531 
2532 	/* Do not cross zone boundaries */
2533 	if (!zone_spans_pfn(zone, start_pfn))
2534 		start_page = page;
2535 	if (!zone_spans_pfn(zone, end_pfn))
2536 		return 0;
2537 
2538 	return move_freepages(zone, start_page, end_page, migratetype,
2539 								num_movable);
2540 }
2541 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2542 static void change_pageblock_range(struct page *pageblock_page,
2543 					int start_order, int migratetype)
2544 {
2545 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2546 
2547 	while (nr_pageblocks--) {
2548 		set_pageblock_migratetype(pageblock_page, migratetype);
2549 		pageblock_page += pageblock_nr_pages;
2550 	}
2551 }
2552 
2553 /*
2554  * When we are falling back to another migratetype during allocation, try to
2555  * steal extra free pages from the same pageblocks to satisfy further
2556  * allocations, instead of polluting multiple pageblocks.
2557  *
2558  * If we are stealing a relatively large buddy page, it is likely there will
2559  * be more free pages in the pageblock, so try to steal them all. For
2560  * reclaimable and unmovable allocations, we steal regardless of page size,
2561  * as fragmentation caused by those allocations polluting movable pageblocks
2562  * is worse than movable allocations stealing from unmovable and reclaimable
2563  * pageblocks.
2564  */
can_steal_fallback(unsigned int order,int start_mt)2565 static bool can_steal_fallback(unsigned int order, int start_mt)
2566 {
2567 	/*
2568 	 * Leaving this order check is intended, although there is
2569 	 * relaxed order check in next check. The reason is that
2570 	 * we can actually steal whole pageblock if this condition met,
2571 	 * but, below check doesn't guarantee it and that is just heuristic
2572 	 * so could be changed anytime.
2573 	 */
2574 	if (order >= pageblock_order)
2575 		return true;
2576 
2577 	if (order >= pageblock_order / 2 ||
2578 		start_mt == MIGRATE_RECLAIMABLE ||
2579 		start_mt == MIGRATE_UNMOVABLE ||
2580 		page_group_by_mobility_disabled)
2581 		return true;
2582 
2583 	return false;
2584 }
2585 
boost_watermark(struct zone * zone)2586 static inline bool boost_watermark(struct zone *zone)
2587 {
2588 	unsigned long max_boost;
2589 
2590 	if (!watermark_boost_factor)
2591 		return false;
2592 	/*
2593 	 * Don't bother in zones that are unlikely to produce results.
2594 	 * On small machines, including kdump capture kernels running
2595 	 * in a small area, boosting the watermark can cause an out of
2596 	 * memory situation immediately.
2597 	 */
2598 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2599 		return false;
2600 
2601 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2602 			watermark_boost_factor, 10000);
2603 
2604 	/*
2605 	 * high watermark may be uninitialised if fragmentation occurs
2606 	 * very early in boot so do not boost. We do not fall
2607 	 * through and boost by pageblock_nr_pages as failing
2608 	 * allocations that early means that reclaim is not going
2609 	 * to help and it may even be impossible to reclaim the
2610 	 * boosted watermark resulting in a hang.
2611 	 */
2612 	if (!max_boost)
2613 		return false;
2614 
2615 	max_boost = max(pageblock_nr_pages, max_boost);
2616 
2617 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2618 		max_boost);
2619 
2620 	return true;
2621 }
2622 
2623 /*
2624  * This function implements actual steal behaviour. If order is large enough,
2625  * we can steal whole pageblock. If not, we first move freepages in this
2626  * pageblock to our migratetype and determine how many already-allocated pages
2627  * are there in the pageblock with a compatible migratetype. If at least half
2628  * of pages are free or compatible, we can change migratetype of the pageblock
2629  * itself, so pages freed in the future will be put on the correct free list.
2630  */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2631 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2632 		unsigned int alloc_flags, int start_type, bool whole_block)
2633 {
2634 	unsigned int current_order = buddy_order(page);
2635 	int free_pages, movable_pages, alike_pages;
2636 	int old_block_type;
2637 
2638 	old_block_type = get_pageblock_migratetype(page);
2639 
2640 	/*
2641 	 * This can happen due to races and we want to prevent broken
2642 	 * highatomic accounting.
2643 	 */
2644 	if (is_migrate_highatomic(old_block_type))
2645 		goto single_page;
2646 
2647 	/* Take ownership for orders >= pageblock_order */
2648 	if (current_order >= pageblock_order) {
2649 		change_pageblock_range(page, current_order, start_type);
2650 		goto single_page;
2651 	}
2652 
2653 	/*
2654 	 * Boost watermarks to increase reclaim pressure to reduce the
2655 	 * likelihood of future fallbacks. Wake kswapd now as the node
2656 	 * may be balanced overall and kswapd will not wake naturally.
2657 	 */
2658 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2659 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2660 
2661 	/* We are not allowed to try stealing from the whole block */
2662 	if (!whole_block)
2663 		goto single_page;
2664 
2665 	free_pages = move_freepages_block(zone, page, start_type,
2666 						&movable_pages);
2667 	/*
2668 	 * Determine how many pages are compatible with our allocation.
2669 	 * For movable allocation, it's the number of movable pages which
2670 	 * we just obtained. For other types it's a bit more tricky.
2671 	 */
2672 	if (start_type == MIGRATE_MOVABLE) {
2673 		alike_pages = movable_pages;
2674 	} else {
2675 		/*
2676 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2677 		 * to MOVABLE pageblock, consider all non-movable pages as
2678 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2679 		 * vice versa, be conservative since we can't distinguish the
2680 		 * exact migratetype of non-movable pages.
2681 		 */
2682 		if (old_block_type == MIGRATE_MOVABLE)
2683 			alike_pages = pageblock_nr_pages
2684 						- (free_pages + movable_pages);
2685 		else
2686 			alike_pages = 0;
2687 	}
2688 
2689 	/* moving whole block can fail due to zone boundary conditions */
2690 	if (!free_pages)
2691 		goto single_page;
2692 
2693 	/*
2694 	 * If a sufficient number of pages in the block are either free or of
2695 	 * comparable migratability as our allocation, claim the whole block.
2696 	 */
2697 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2698 			page_group_by_mobility_disabled)
2699 		set_pageblock_migratetype(page, start_type);
2700 
2701 	return;
2702 
2703 single_page:
2704 	move_to_free_list(page, zone, current_order, start_type);
2705 }
2706 
2707 /*
2708  * Check whether there is a suitable fallback freepage with requested order.
2709  * If only_stealable is true, this function returns fallback_mt only if
2710  * we can steal other freepages all together. This would help to reduce
2711  * fragmentation due to mixed migratetype pages in one pageblock.
2712  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2713 int find_suitable_fallback(struct free_area *area, unsigned int order,
2714 			int migratetype, bool only_stealable, bool *can_steal)
2715 {
2716 	int i;
2717 	int fallback_mt;
2718 
2719 	if (area->nr_free == 0)
2720 		return -1;
2721 
2722 	*can_steal = false;
2723 	for (i = 0;; i++) {
2724 		fallback_mt = fallbacks[migratetype][i];
2725 		if (fallback_mt == MIGRATE_TYPES)
2726 			break;
2727 
2728 		if (free_area_empty(area, fallback_mt))
2729 			continue;
2730 
2731 		if (can_steal_fallback(order, migratetype))
2732 			*can_steal = true;
2733 
2734 		if (!only_stealable)
2735 			return fallback_mt;
2736 
2737 		if (*can_steal)
2738 			return fallback_mt;
2739 	}
2740 
2741 	return -1;
2742 }
2743 
2744 /*
2745  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2746  * there are no empty page blocks that contain a page with a suitable order
2747  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2748 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2749 				unsigned int alloc_order)
2750 {
2751 	int mt;
2752 	unsigned long max_managed, flags;
2753 
2754 	/*
2755 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2756 	 * Check is race-prone but harmless.
2757 	 */
2758 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2759 	if (zone->nr_reserved_highatomic >= max_managed)
2760 		return;
2761 
2762 	spin_lock_irqsave(&zone->lock, flags);
2763 
2764 	/* Recheck the nr_reserved_highatomic limit under the lock */
2765 	if (zone->nr_reserved_highatomic >= max_managed)
2766 		goto out_unlock;
2767 
2768 	/* Yoink! */
2769 	mt = get_pageblock_migratetype(page);
2770 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2771 	    && !is_migrate_cma(mt)) {
2772 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2773 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2774 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2775 	}
2776 
2777 out_unlock:
2778 	spin_unlock_irqrestore(&zone->lock, flags);
2779 }
2780 
2781 /*
2782  * Used when an allocation is about to fail under memory pressure. This
2783  * potentially hurts the reliability of high-order allocations when under
2784  * intense memory pressure but failed atomic allocations should be easier
2785  * to recover from than an OOM.
2786  *
2787  * If @force is true, try to unreserve a pageblock even though highatomic
2788  * pageblock is exhausted.
2789  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2790 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2791 						bool force)
2792 {
2793 	struct zonelist *zonelist = ac->zonelist;
2794 	unsigned long flags;
2795 	struct zoneref *z;
2796 	struct zone *zone;
2797 	struct page *page;
2798 	int order;
2799 	bool ret;
2800 
2801 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2802 								ac->nodemask) {
2803 		/*
2804 		 * Preserve at least one pageblock unless memory pressure
2805 		 * is really high.
2806 		 */
2807 		if (!force && zone->nr_reserved_highatomic <=
2808 					pageblock_nr_pages)
2809 			continue;
2810 
2811 		spin_lock_irqsave(&zone->lock, flags);
2812 		for (order = 0; order < MAX_ORDER; order++) {
2813 			struct free_area *area = &(zone->free_area[order]);
2814 
2815 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2816 			if (!page)
2817 				continue;
2818 
2819 			/*
2820 			 * In page freeing path, migratetype change is racy so
2821 			 * we can counter several free pages in a pageblock
2822 			 * in this loop althoug we changed the pageblock type
2823 			 * from highatomic to ac->migratetype. So we should
2824 			 * adjust the count once.
2825 			 */
2826 			if (is_migrate_highatomic_page(page)) {
2827 				/*
2828 				 * It should never happen but changes to
2829 				 * locking could inadvertently allow a per-cpu
2830 				 * drain to add pages to MIGRATE_HIGHATOMIC
2831 				 * while unreserving so be safe and watch for
2832 				 * underflows.
2833 				 */
2834 				zone->nr_reserved_highatomic -= min(
2835 						pageblock_nr_pages,
2836 						zone->nr_reserved_highatomic);
2837 			}
2838 
2839 			/*
2840 			 * Convert to ac->migratetype and avoid the normal
2841 			 * pageblock stealing heuristics. Minimally, the caller
2842 			 * is doing the work and needs the pages. More
2843 			 * importantly, if the block was always converted to
2844 			 * MIGRATE_UNMOVABLE or another type then the number
2845 			 * of pageblocks that cannot be completely freed
2846 			 * may increase.
2847 			 */
2848 			set_pageblock_migratetype(page, ac->migratetype);
2849 			ret = move_freepages_block(zone, page, ac->migratetype,
2850 									NULL);
2851 			if (ret) {
2852 				spin_unlock_irqrestore(&zone->lock, flags);
2853 				return ret;
2854 			}
2855 		}
2856 		spin_unlock_irqrestore(&zone->lock, flags);
2857 	}
2858 
2859 	return false;
2860 }
2861 
2862 /*
2863  * Try finding a free buddy page on the fallback list and put it on the free
2864  * list of requested migratetype, possibly along with other pages from the same
2865  * block, depending on fragmentation avoidance heuristics. Returns true if
2866  * fallback was found so that __rmqueue_smallest() can grab it.
2867  *
2868  * The use of signed ints for order and current_order is a deliberate
2869  * deviation from the rest of this file, to make the for loop
2870  * condition simpler.
2871  */
2872 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2873 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2874 						unsigned int alloc_flags)
2875 {
2876 	struct free_area *area;
2877 	int current_order;
2878 	int min_order = order;
2879 	struct page *page;
2880 	int fallback_mt;
2881 	bool can_steal;
2882 
2883 	/*
2884 	 * Do not steal pages from freelists belonging to other pageblocks
2885 	 * i.e. orders < pageblock_order. If there are no local zones free,
2886 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2887 	 */
2888 	if (alloc_flags & ALLOC_NOFRAGMENT)
2889 		min_order = pageblock_order;
2890 
2891 	/*
2892 	 * Find the largest available free page in the other list. This roughly
2893 	 * approximates finding the pageblock with the most free pages, which
2894 	 * would be too costly to do exactly.
2895 	 */
2896 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2897 				--current_order) {
2898 		area = &(zone->free_area[current_order]);
2899 		fallback_mt = find_suitable_fallback(area, current_order,
2900 				start_migratetype, false, &can_steal);
2901 		if (fallback_mt == -1)
2902 			continue;
2903 
2904 		/*
2905 		 * We cannot steal all free pages from the pageblock and the
2906 		 * requested migratetype is movable. In that case it's better to
2907 		 * steal and split the smallest available page instead of the
2908 		 * largest available page, because even if the next movable
2909 		 * allocation falls back into a different pageblock than this
2910 		 * one, it won't cause permanent fragmentation.
2911 		 */
2912 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2913 					&& current_order > order)
2914 			goto find_smallest;
2915 
2916 		goto do_steal;
2917 	}
2918 
2919 	return false;
2920 
2921 find_smallest:
2922 	for (current_order = order; current_order < MAX_ORDER;
2923 							current_order++) {
2924 		area = &(zone->free_area[current_order]);
2925 		fallback_mt = find_suitable_fallback(area, current_order,
2926 				start_migratetype, false, &can_steal);
2927 		if (fallback_mt != -1)
2928 			break;
2929 	}
2930 
2931 	/*
2932 	 * This should not happen - we already found a suitable fallback
2933 	 * when looking for the largest page.
2934 	 */
2935 	VM_BUG_ON(current_order == MAX_ORDER);
2936 
2937 do_steal:
2938 	page = get_page_from_free_area(area, fallback_mt);
2939 
2940 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2941 								can_steal);
2942 
2943 	trace_mm_page_alloc_extfrag(page, order, current_order,
2944 		start_migratetype, fallback_mt);
2945 
2946 	return true;
2947 
2948 }
2949 
2950 /*
2951  * Do the hard work of removing an element from the buddy allocator.
2952  * Call me with the zone->lock already held.
2953  */
2954 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2955 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2956 						unsigned int alloc_flags)
2957 {
2958 	struct page *page;
2959 
2960 retry:
2961 	page = __rmqueue_smallest(zone, order, migratetype);
2962 
2963 	if (unlikely(!page) && __rmqueue_fallback(zone, order, migratetype,
2964 						  alloc_flags))
2965 		goto retry;
2966 
2967 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2968 	return page;
2969 }
2970 
2971 #ifdef CONFIG_CMA
__rmqueue_cma(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2972 static struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
2973 				  int migratetype,
2974 				  unsigned int alloc_flags)
2975 {
2976 	struct page *page = __rmqueue_cma_fallback(zone, order);
2977 	trace_mm_page_alloc_zone_locked(page, order, MIGRATE_CMA);
2978 	return page;
2979 }
2980 #else
__rmqueue_cma(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2981 static inline struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
2982 					 int migratetype,
2983 					 unsigned int alloc_flags)
2984 {
2985 	return NULL;
2986 }
2987 #endif
2988 
2989 /*
2990  * Obtain a specified number of elements from the buddy allocator, all under
2991  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2992  * Returns the number of new pages which were placed at *list.
2993  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2994 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2995 			unsigned long count, struct list_head *list,
2996 			int migratetype, unsigned int alloc_flags)
2997 {
2998 	int i, alloced = 0;
2999 
3000 	spin_lock(&zone->lock);
3001 	for (i = 0; i < count; ++i) {
3002 		struct page *page;
3003 
3004 		if (is_migrate_cma(migratetype))
3005 			page = __rmqueue_cma(zone, order, migratetype,
3006 					     alloc_flags);
3007 		else
3008 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3009 
3010 		if (unlikely(page == NULL))
3011 			break;
3012 
3013 		if (unlikely(check_pcp_refill(page)))
3014 			continue;
3015 
3016 		/*
3017 		 * Split buddy pages returned by expand() are received here in
3018 		 * physical page order. The page is added to the tail of
3019 		 * caller's list. From the callers perspective, the linked list
3020 		 * is ordered by page number under some conditions. This is
3021 		 * useful for IO devices that can forward direction from the
3022 		 * head, thus also in the physical page order. This is useful
3023 		 * for IO devices that can merge IO requests if the physical
3024 		 * pages are ordered properly.
3025 		 */
3026 		list_add_tail(&page->lru, list);
3027 		alloced++;
3028 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3029 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3030 					      -(1 << order));
3031 	}
3032 
3033 	/*
3034 	 * i pages were removed from the buddy list even if some leak due
3035 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3036 	 * on i. Do not confuse with 'alloced' which is the number of
3037 	 * pages added to the pcp list.
3038 	 */
3039 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3040 	spin_unlock(&zone->lock);
3041 	return alloced;
3042 }
3043 
3044 /*
3045  * Return the pcp list that corresponds to the migrate type if that list isn't
3046  * empty.
3047  * If the list is empty return NULL.
3048  */
get_populated_pcp_list(struct zone * zone,unsigned int order,struct per_cpu_pages * pcp,int migratetype,unsigned int alloc_flags)3049 static struct list_head *get_populated_pcp_list(struct zone *zone,
3050 			unsigned int order, struct per_cpu_pages *pcp,
3051 			int migratetype, unsigned int alloc_flags)
3052 {
3053 	struct list_head *list = &pcp->lists[migratetype];
3054 
3055 	if (list_empty(list)) {
3056 		pcp->count += rmqueue_bulk(zone, order,
3057 				pcp->batch, list,
3058 				migratetype, alloc_flags);
3059 
3060 		if (list_empty(list))
3061 			list = NULL;
3062 	}
3063 	return list;
3064 }
3065 
3066 #ifdef CONFIG_NUMA
3067 /*
3068  * Called from the vmstat counter updater to drain pagesets of this
3069  * currently executing processor on remote nodes after they have
3070  * expired.
3071  *
3072  * Note that this function must be called with the thread pinned to
3073  * a single processor.
3074  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)3075 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3076 {
3077 	unsigned long flags;
3078 	int to_drain, batch;
3079 
3080 	local_irq_save(flags);
3081 	batch = READ_ONCE(pcp->batch);
3082 	to_drain = min(pcp->count, batch);
3083 	if (to_drain > 0)
3084 		free_pcppages_bulk(zone, to_drain, pcp);
3085 	local_irq_restore(flags);
3086 }
3087 #endif
3088 
3089 /*
3090  * Drain pcplists of the indicated processor and zone.
3091  *
3092  * The processor must either be the current processor and the
3093  * thread pinned to the current processor or a processor that
3094  * is not online.
3095  */
drain_pages_zone(unsigned int cpu,struct zone * zone)3096 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3097 {
3098 	unsigned long flags;
3099 	struct per_cpu_pageset *pset;
3100 	struct per_cpu_pages *pcp;
3101 
3102 	local_irq_save(flags);
3103 	pset = per_cpu_ptr(zone->pageset, cpu);
3104 
3105 	pcp = &pset->pcp;
3106 	if (pcp->count)
3107 		free_pcppages_bulk(zone, pcp->count, pcp);
3108 	local_irq_restore(flags);
3109 }
3110 
3111 /*
3112  * Drain pcplists of all zones on the indicated processor.
3113  *
3114  * The processor must either be the current processor and the
3115  * thread pinned to the current processor or a processor that
3116  * is not online.
3117  */
drain_pages(unsigned int cpu)3118 static void drain_pages(unsigned int cpu)
3119 {
3120 	struct zone *zone;
3121 
3122 	for_each_populated_zone(zone) {
3123 		drain_pages_zone(cpu, zone);
3124 	}
3125 }
3126 
3127 /*
3128  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3129  *
3130  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3131  * the single zone's pages.
3132  */
drain_local_pages(struct zone * zone)3133 void drain_local_pages(struct zone *zone)
3134 {
3135 	int cpu = smp_processor_id();
3136 
3137 	if (zone)
3138 		drain_pages_zone(cpu, zone);
3139 	else
3140 		drain_pages(cpu);
3141 }
3142 
drain_local_pages_wq(struct work_struct * work)3143 static void drain_local_pages_wq(struct work_struct *work)
3144 {
3145 	struct pcpu_drain *drain;
3146 
3147 	drain = container_of(work, struct pcpu_drain, work);
3148 
3149 	/*
3150 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3151 	 * we can race with cpu offline when the WQ can move this from
3152 	 * a cpu pinned worker to an unbound one. We can operate on a different
3153 	 * cpu which is allright but we also have to make sure to not move to
3154 	 * a different one.
3155 	 */
3156 	preempt_disable();
3157 	drain_local_pages(drain->zone);
3158 	preempt_enable();
3159 }
3160 
3161 /*
3162  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3163  *
3164  * When zone parameter is non-NULL, spill just the single zone's pages.
3165  *
3166  * Note that this can be extremely slow as the draining happens in a workqueue.
3167  */
drain_all_pages(struct zone * zone)3168 void drain_all_pages(struct zone *zone)
3169 {
3170 	int cpu;
3171 
3172 	/*
3173 	 * Allocate in the BSS so we wont require allocation in
3174 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3175 	 */
3176 	static cpumask_t cpus_with_pcps;
3177 
3178 	/*
3179 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3180 	 * initialized.
3181 	 */
3182 	if (WARN_ON_ONCE(!mm_percpu_wq))
3183 		return;
3184 
3185 	/*
3186 	 * Do not drain if one is already in progress unless it's specific to
3187 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3188 	 * the drain to be complete when the call returns.
3189 	 */
3190 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3191 		if (!zone)
3192 			return;
3193 		mutex_lock(&pcpu_drain_mutex);
3194 	}
3195 
3196 	/*
3197 	 * We don't care about racing with CPU hotplug event
3198 	 * as offline notification will cause the notified
3199 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3200 	 * disables preemption as part of its processing
3201 	 */
3202 	for_each_online_cpu(cpu) {
3203 		struct per_cpu_pageset *pcp;
3204 		struct zone *z;
3205 		bool has_pcps = false;
3206 
3207 		if (zone) {
3208 			pcp = per_cpu_ptr(zone->pageset, cpu);
3209 			if (pcp->pcp.count)
3210 				has_pcps = true;
3211 		} else {
3212 			for_each_populated_zone(z) {
3213 				pcp = per_cpu_ptr(z->pageset, cpu);
3214 				if (pcp->pcp.count) {
3215 					has_pcps = true;
3216 					break;
3217 				}
3218 			}
3219 		}
3220 
3221 		if (has_pcps)
3222 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3223 		else
3224 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3225 	}
3226 
3227 	for_each_cpu(cpu, &cpus_with_pcps) {
3228 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3229 
3230 		drain->zone = zone;
3231 		INIT_WORK(&drain->work, drain_local_pages_wq);
3232 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3233 	}
3234 	for_each_cpu(cpu, &cpus_with_pcps)
3235 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3236 
3237 	mutex_unlock(&pcpu_drain_mutex);
3238 }
3239 
3240 #ifdef CONFIG_HIBERNATION
3241 
3242 /*
3243  * Touch the watchdog for every WD_PAGE_COUNT pages.
3244  */
3245 #define WD_PAGE_COUNT	(128*1024)
3246 
mark_free_pages(struct zone * zone)3247 void mark_free_pages(struct zone *zone)
3248 {
3249 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3250 	unsigned long flags;
3251 	unsigned int order, t;
3252 	struct page *page;
3253 
3254 	if (zone_is_empty(zone))
3255 		return;
3256 
3257 	spin_lock_irqsave(&zone->lock, flags);
3258 
3259 	max_zone_pfn = zone_end_pfn(zone);
3260 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3261 		if (pfn_valid(pfn)) {
3262 			page = pfn_to_page(pfn);
3263 
3264 			if (!--page_count) {
3265 				touch_nmi_watchdog();
3266 				page_count = WD_PAGE_COUNT;
3267 			}
3268 
3269 			if (page_zone(page) != zone)
3270 				continue;
3271 
3272 			if (!swsusp_page_is_forbidden(page))
3273 				swsusp_unset_page_free(page);
3274 		}
3275 
3276 	for_each_migratetype_order(order, t) {
3277 		list_for_each_entry(page,
3278 				&zone->free_area[order].free_list[t], lru) {
3279 			unsigned long i;
3280 
3281 			pfn = page_to_pfn(page);
3282 			for (i = 0; i < (1UL << order); i++) {
3283 				if (!--page_count) {
3284 					touch_nmi_watchdog();
3285 					page_count = WD_PAGE_COUNT;
3286 				}
3287 				swsusp_set_page_free(pfn_to_page(pfn + i));
3288 			}
3289 		}
3290 	}
3291 	spin_unlock_irqrestore(&zone->lock, flags);
3292 }
3293 #endif /* CONFIG_PM */
3294 
free_unref_page_prepare(struct page * page,unsigned long pfn)3295 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3296 {
3297 	int migratetype;
3298 
3299 	if (!free_pcp_prepare(page))
3300 		return false;
3301 
3302 	migratetype = get_pfnblock_migratetype(page, pfn);
3303 	set_pcppage_migratetype(page, migratetype);
3304 	return true;
3305 }
3306 
free_unref_page_commit(struct page * page,unsigned long pfn)3307 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3308 {
3309 	struct zone *zone = page_zone(page);
3310 	struct per_cpu_pages *pcp;
3311 	int migratetype;
3312 	bool pcp_skip_cma_pages = false;
3313 
3314 	migratetype = get_pcppage_migratetype(page);
3315 	__count_vm_event(PGFREE);
3316 
3317 	/*
3318 	 * We only track unmovable, reclaimable and movable on pcp lists.
3319 	 * Free ISOLATE pages back to the allocator because they are being
3320 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3321 	 * areas back if necessary. Otherwise, we may have to free
3322 	 * excessively into the page allocator
3323 	 */
3324 	if (migratetype >= MIGRATE_PCPTYPES) {
3325 		trace_android_vh_pcplist_add_cma_pages_bypass(migratetype,
3326 			&pcp_skip_cma_pages);
3327 		if (unlikely(is_migrate_isolate(migratetype)) ||
3328 				pcp_skip_cma_pages) {
3329 			free_one_page(zone, page, pfn, 0, migratetype,
3330 				      FPI_NONE);
3331 			return;
3332 		}
3333 		migratetype = MIGRATE_MOVABLE;
3334 	}
3335 
3336 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3337 	list_add(&page->lru, &pcp->lists[migratetype]);
3338 	pcp->count++;
3339 	if (pcp->count >= pcp->high) {
3340 		unsigned long batch = READ_ONCE(pcp->batch);
3341 		free_pcppages_bulk(zone, batch, pcp);
3342 	}
3343 }
3344 
3345 /*
3346  * Free a 0-order page
3347  */
free_unref_page(struct page * page)3348 void free_unref_page(struct page *page)
3349 {
3350 	unsigned long flags;
3351 	unsigned long pfn = page_to_pfn(page);
3352 
3353 	if (!free_unref_page_prepare(page, pfn))
3354 		return;
3355 
3356 	local_irq_save(flags);
3357 	free_unref_page_commit(page, pfn);
3358 	local_irq_restore(flags);
3359 }
3360 
3361 /*
3362  * Free a list of 0-order pages
3363  */
free_unref_page_list(struct list_head * list)3364 void free_unref_page_list(struct list_head *list)
3365 {
3366 	struct page *page, *next;
3367 	unsigned long flags, pfn;
3368 	int batch_count = 0;
3369 
3370 	/* Prepare pages for freeing */
3371 	list_for_each_entry_safe(page, next, list, lru) {
3372 		pfn = page_to_pfn(page);
3373 		if (!free_unref_page_prepare(page, pfn))
3374 			list_del(&page->lru);
3375 		set_page_private(page, pfn);
3376 	}
3377 
3378 	local_irq_save(flags);
3379 	list_for_each_entry_safe(page, next, list, lru) {
3380 		unsigned long pfn = page_private(page);
3381 
3382 		set_page_private(page, 0);
3383 		trace_mm_page_free_batched(page);
3384 		free_unref_page_commit(page, pfn);
3385 
3386 		/*
3387 		 * Guard against excessive IRQ disabled times when we get
3388 		 * a large list of pages to free.
3389 		 */
3390 		if (++batch_count == SWAP_CLUSTER_MAX) {
3391 			local_irq_restore(flags);
3392 			batch_count = 0;
3393 			local_irq_save(flags);
3394 		}
3395 	}
3396 	local_irq_restore(flags);
3397 }
3398 
3399 /*
3400  * split_page takes a non-compound higher-order page, and splits it into
3401  * n (1<<order) sub-pages: page[0..n]
3402  * Each sub-page must be freed individually.
3403  *
3404  * Note: this is probably too low level an operation for use in drivers.
3405  * Please consult with lkml before using this in your driver.
3406  */
split_page(struct page * page,unsigned int order)3407 void split_page(struct page *page, unsigned int order)
3408 {
3409 	int i;
3410 
3411 	VM_BUG_ON_PAGE(PageCompound(page), page);
3412 	VM_BUG_ON_PAGE(!page_count(page), page);
3413 
3414 	for (i = 1; i < (1 << order); i++)
3415 		set_page_refcounted(page + i);
3416 	split_page_owner(page, 1 << order);
3417 	split_page_memcg(page, 1 << order);
3418 }
3419 EXPORT_SYMBOL_GPL(split_page);
3420 
__isolate_free_page(struct page * page,unsigned int order)3421 int __isolate_free_page(struct page *page, unsigned int order)
3422 {
3423 	unsigned long watermark;
3424 	struct zone *zone;
3425 	int mt;
3426 
3427 	BUG_ON(!PageBuddy(page));
3428 
3429 	zone = page_zone(page);
3430 	mt = get_pageblock_migratetype(page);
3431 
3432 	if (!is_migrate_isolate(mt)) {
3433 		/*
3434 		 * Obey watermarks as if the page was being allocated. We can
3435 		 * emulate a high-order watermark check with a raised order-0
3436 		 * watermark, because we already know our high-order page
3437 		 * exists.
3438 		 */
3439 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3440 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3441 			return 0;
3442 
3443 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3444 	}
3445 
3446 	/* Remove page from free list */
3447 
3448 	del_page_from_free_list(page, zone, order);
3449 
3450 	/*
3451 	 * Set the pageblock if the isolated page is at least half of a
3452 	 * pageblock
3453 	 */
3454 	if (order >= pageblock_order - 1) {
3455 		struct page *endpage = page + (1 << order) - 1;
3456 		for (; page < endpage; page += pageblock_nr_pages) {
3457 			int mt = get_pageblock_migratetype(page);
3458 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3459 			    && !is_migrate_highatomic(mt))
3460 				set_pageblock_migratetype(page,
3461 							  MIGRATE_MOVABLE);
3462 		}
3463 	}
3464 
3465 
3466 	return 1UL << order;
3467 }
3468 
3469 /**
3470  * __putback_isolated_page - Return a now-isolated page back where we got it
3471  * @page: Page that was isolated
3472  * @order: Order of the isolated page
3473  * @mt: The page's pageblock's migratetype
3474  *
3475  * This function is meant to return a page pulled from the free lists via
3476  * __isolate_free_page back to the free lists they were pulled from.
3477  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3478 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3479 {
3480 	struct zone *zone = page_zone(page);
3481 
3482 	/* zone lock should be held when this function is called */
3483 	lockdep_assert_held(&zone->lock);
3484 
3485 	/* Return isolated page to tail of freelist. */
3486 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3487 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3488 }
3489 
3490 /*
3491  * Update NUMA hit/miss statistics
3492  *
3493  * Must be called with interrupts disabled.
3494  */
zone_statistics(struct zone * preferred_zone,struct zone * z)3495 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3496 {
3497 #ifdef CONFIG_NUMA
3498 	enum numa_stat_item local_stat = NUMA_LOCAL;
3499 
3500 	/* skip numa counters update if numa stats is disabled */
3501 	if (!static_branch_likely(&vm_numa_stat_key))
3502 		return;
3503 
3504 	if (zone_to_nid(z) != numa_node_id())
3505 		local_stat = NUMA_OTHER;
3506 
3507 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3508 		__inc_numa_state(z, NUMA_HIT);
3509 	else {
3510 		__inc_numa_state(z, NUMA_MISS);
3511 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3512 	}
3513 	__inc_numa_state(z, local_stat);
3514 #endif
3515 }
3516 
3517 /* Remove page from the per-cpu list, caller must protect the list */
__rmqueue_pcplist(struct zone * zone,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,gfp_t gfp_flags)3518 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3519 			unsigned int alloc_flags,
3520 			struct per_cpu_pages *pcp,
3521 			gfp_t gfp_flags)
3522 {
3523 	struct page *page = NULL;
3524 	struct list_head *list = NULL;
3525 
3526 	do {
3527 		/* First try to get CMA pages */
3528 		if (migratetype == MIGRATE_MOVABLE &&
3529 				alloc_flags & ALLOC_CMA) {
3530 			list = get_populated_pcp_list(zone, 0, pcp,
3531 					get_cma_migrate_type(), alloc_flags);
3532 		}
3533 
3534 		if (list == NULL) {
3535 			/*
3536 			 * Either CMA is not suitable or there are no
3537 			 * free CMA pages.
3538 			 */
3539 			list = get_populated_pcp_list(zone, 0, pcp,
3540 					migratetype, alloc_flags);
3541 			if (unlikely(list == NULL) ||
3542 					unlikely(list_empty(list)))
3543 				return NULL;
3544 		}
3545 
3546 		page = list_first_entry(list, struct page, lru);
3547 		list_del(&page->lru);
3548 		pcp->count--;
3549 	} while (check_new_pcp(page));
3550 
3551 	return page;
3552 }
3553 
3554 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,gfp_t gfp_flags,int migratetype,unsigned int alloc_flags)3555 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3556 			struct zone *zone, gfp_t gfp_flags,
3557 			int migratetype, unsigned int alloc_flags)
3558 {
3559 	struct per_cpu_pages *pcp;
3560 	struct page *page;
3561 	unsigned long flags;
3562 
3563 	local_irq_save(flags);
3564 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3565 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp,
3566 				 gfp_flags);
3567 	if (page) {
3568 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3569 		zone_statistics(preferred_zone, zone);
3570 	}
3571 	local_irq_restore(flags);
3572 	return page;
3573 }
3574 
3575 /*
3576  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3577  */
3578 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3579 struct page *rmqueue(struct zone *preferred_zone,
3580 			struct zone *zone, unsigned int order,
3581 			gfp_t gfp_flags, unsigned int alloc_flags,
3582 			int migratetype)
3583 {
3584 	unsigned long flags;
3585 	struct page *page;
3586 
3587 	if (likely(order == 0)) {
3588 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3589 				       migratetype, alloc_flags);
3590 		goto out;
3591 	}
3592 
3593 	/*
3594 	 * We most definitely don't want callers attempting to
3595 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3596 	 */
3597 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3598 	spin_lock_irqsave(&zone->lock, flags);
3599 
3600 	do {
3601 		page = NULL;
3602 		/*
3603 		 * order-0 request can reach here when the pcplist is skipped
3604 		 * due to non-CMA allocation context. HIGHATOMIC area is
3605 		 * reserved for high-order atomic allocation, so order-0
3606 		 * request should skip it.
3607 		 */
3608 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3609 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3610 			if (page)
3611 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3612 		}
3613 		if (!page) {
3614 			if (migratetype == MIGRATE_MOVABLE &&
3615 					alloc_flags & ALLOC_CMA)
3616 				page = __rmqueue_cma(zone, order, migratetype,
3617 						     alloc_flags);
3618 			if (!page)
3619 				page = __rmqueue(zone, order, migratetype,
3620 						 alloc_flags);
3621 		}
3622 	} while (page && check_new_pages(page, order));
3623 	spin_unlock(&zone->lock);
3624 	if (!page)
3625 		goto failed;
3626 	__mod_zone_freepage_state(zone, -(1 << order),
3627 				  get_pcppage_migratetype(page));
3628 
3629 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3630 	zone_statistics(preferred_zone, zone);
3631 	trace_android_vh_rmqueue(preferred_zone, zone, order,
3632 			gfp_flags, alloc_flags, migratetype);
3633 	local_irq_restore(flags);
3634 
3635 out:
3636 	/* Separate test+clear to avoid unnecessary atomics */
3637 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3638 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3639 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3640 	}
3641 
3642 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3643 	return page;
3644 
3645 failed:
3646 	local_irq_restore(flags);
3647 	return NULL;
3648 }
3649 
3650 #ifdef CONFIG_FAIL_PAGE_ALLOC
3651 
3652 static struct {
3653 	struct fault_attr attr;
3654 
3655 	bool ignore_gfp_highmem;
3656 	bool ignore_gfp_reclaim;
3657 	u32 min_order;
3658 } fail_page_alloc = {
3659 	.attr = FAULT_ATTR_INITIALIZER,
3660 	.ignore_gfp_reclaim = true,
3661 	.ignore_gfp_highmem = true,
3662 	.min_order = 1,
3663 };
3664 
setup_fail_page_alloc(char * str)3665 static int __init setup_fail_page_alloc(char *str)
3666 {
3667 	return setup_fault_attr(&fail_page_alloc.attr, str);
3668 }
3669 __setup("fail_page_alloc=", setup_fail_page_alloc);
3670 
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3671 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3672 {
3673 	if (order < fail_page_alloc.min_order)
3674 		return false;
3675 	if (gfp_mask & __GFP_NOFAIL)
3676 		return false;
3677 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3678 		return false;
3679 	if (fail_page_alloc.ignore_gfp_reclaim &&
3680 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3681 		return false;
3682 
3683 	return should_fail(&fail_page_alloc.attr, 1 << order);
3684 }
3685 
3686 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3687 
fail_page_alloc_debugfs(void)3688 static int __init fail_page_alloc_debugfs(void)
3689 {
3690 	umode_t mode = S_IFREG | 0600;
3691 	struct dentry *dir;
3692 
3693 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3694 					&fail_page_alloc.attr);
3695 
3696 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3697 			    &fail_page_alloc.ignore_gfp_reclaim);
3698 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3699 			    &fail_page_alloc.ignore_gfp_highmem);
3700 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3701 
3702 	return 0;
3703 }
3704 
3705 late_initcall(fail_page_alloc_debugfs);
3706 
3707 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3708 
3709 #else /* CONFIG_FAIL_PAGE_ALLOC */
3710 
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3711 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3712 {
3713 	return false;
3714 }
3715 
3716 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3717 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3718 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3719 {
3720 	return __should_fail_alloc_page(gfp_mask, order);
3721 }
3722 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3723 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3724 static inline long __zone_watermark_unusable_free(struct zone *z,
3725 				unsigned int order, unsigned int alloc_flags)
3726 {
3727 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3728 	long unusable_free = (1 << order) - 1;
3729 
3730 	/*
3731 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3732 	 * the high-atomic reserves. This will over-estimate the size of the
3733 	 * atomic reserve but it avoids a search.
3734 	 */
3735 	if (likely(!alloc_harder))
3736 		unusable_free += z->nr_reserved_highatomic;
3737 
3738 #ifdef CONFIG_CMA
3739 	/* If allocation can't use CMA areas don't use free CMA pages */
3740 	if (!(alloc_flags & ALLOC_CMA))
3741 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3742 #endif
3743 
3744 	return unusable_free;
3745 }
3746 
3747 /*
3748  * Return true if free base pages are above 'mark'. For high-order checks it
3749  * will return true of the order-0 watermark is reached and there is at least
3750  * one free page of a suitable size. Checking now avoids taking the zone lock
3751  * to check in the allocation paths if no pages are free.
3752  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3753 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3754 			 int highest_zoneidx, unsigned int alloc_flags,
3755 			 long free_pages)
3756 {
3757 	long min = mark;
3758 	int o;
3759 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3760 
3761 	/* free_pages may go negative - that's OK */
3762 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3763 
3764 	if (alloc_flags & ALLOC_HIGH)
3765 		min -= min / 2;
3766 
3767 	if (unlikely(alloc_harder)) {
3768 		/*
3769 		 * OOM victims can try even harder than normal ALLOC_HARDER
3770 		 * users on the grounds that it's definitely going to be in
3771 		 * the exit path shortly and free memory. Any allocation it
3772 		 * makes during the free path will be small and short-lived.
3773 		 */
3774 		if (alloc_flags & ALLOC_OOM)
3775 			min -= min / 2;
3776 		else
3777 			min -= min / 4;
3778 	}
3779 
3780 	/*
3781 	 * Check watermarks for an order-0 allocation request. If these
3782 	 * are not met, then a high-order request also cannot go ahead
3783 	 * even if a suitable page happened to be free.
3784 	 */
3785 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3786 		return false;
3787 
3788 	/* If this is an order-0 request then the watermark is fine */
3789 	if (!order)
3790 		return true;
3791 
3792 	/* For a high-order request, check at least one suitable page is free */
3793 	for (o = order; o < MAX_ORDER; o++) {
3794 		struct free_area *area = &z->free_area[o];
3795 		int mt;
3796 
3797 		if (!area->nr_free)
3798 			continue;
3799 
3800 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3801 #ifdef CONFIG_CMA
3802 			/*
3803 			 * Note that this check is needed only
3804 			 * when MIGRATE_CMA < MIGRATE_PCPTYPES.
3805 			 */
3806 			if (mt == MIGRATE_CMA)
3807 				continue;
3808 #endif
3809 			if (!free_area_empty(area, mt))
3810 				return true;
3811 		}
3812 
3813 #ifdef CONFIG_CMA
3814 		if ((alloc_flags & ALLOC_CMA) &&
3815 		    !free_area_empty(area, MIGRATE_CMA)) {
3816 			return true;
3817 		}
3818 #endif
3819 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3820 			return true;
3821 	}
3822 	return false;
3823 }
3824 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3825 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3826 		      int highest_zoneidx, unsigned int alloc_flags)
3827 {
3828 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3829 					zone_page_state(z, NR_FREE_PAGES));
3830 }
3831 EXPORT_SYMBOL_GPL(zone_watermark_ok);
3832 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3833 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3834 				unsigned long mark, int highest_zoneidx,
3835 				unsigned int alloc_flags, gfp_t gfp_mask)
3836 {
3837 	long free_pages;
3838 
3839 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3840 
3841 	/*
3842 	 * Fast check for order-0 only. If this fails then the reserves
3843 	 * need to be calculated.
3844 	 */
3845 	if (!order) {
3846 		long usable_free;
3847 		long reserved;
3848 
3849 		usable_free = free_pages;
3850 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3851 
3852 		/* reserved may over estimate high-atomic reserves. */
3853 		usable_free -= min(usable_free, reserved);
3854 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3855 			return true;
3856 	}
3857 
3858 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3859 					free_pages))
3860 		return true;
3861 	/*
3862 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3863 	 * when checking the min watermark. The min watermark is the
3864 	 * point where boosting is ignored so that kswapd is woken up
3865 	 * when below the low watermark.
3866 	 */
3867 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3868 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3869 		mark = z->_watermark[WMARK_MIN];
3870 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3871 					alloc_flags, free_pages);
3872 	}
3873 
3874 	return false;
3875 }
3876 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3877 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3878 			unsigned long mark, int highest_zoneidx)
3879 {
3880 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3881 
3882 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3883 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3884 
3885 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3886 								free_pages);
3887 }
3888 EXPORT_SYMBOL_GPL(zone_watermark_ok_safe);
3889 
3890 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3891 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3892 {
3893 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3894 				node_reclaim_distance;
3895 }
3896 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3897 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3898 {
3899 	return true;
3900 }
3901 #endif	/* CONFIG_NUMA */
3902 
3903 /*
3904  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3905  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3906  * premature use of a lower zone may cause lowmem pressure problems that
3907  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3908  * probably too small. It only makes sense to spread allocations to avoid
3909  * fragmentation between the Normal and DMA32 zones.
3910  */
3911 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3912 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3913 {
3914 	unsigned int alloc_flags;
3915 
3916 	/*
3917 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3918 	 * to save a branch.
3919 	 */
3920 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3921 
3922 #ifdef CONFIG_ZONE_DMA32
3923 	if (!zone)
3924 		return alloc_flags;
3925 
3926 	if (zone_idx(zone) != ZONE_NORMAL)
3927 		return alloc_flags;
3928 
3929 	/*
3930 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3931 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3932 	 * on UMA that if Normal is populated then so is DMA32.
3933 	 */
3934 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3935 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3936 		return alloc_flags;
3937 
3938 	alloc_flags |= ALLOC_NOFRAGMENT;
3939 #endif /* CONFIG_ZONE_DMA32 */
3940 	return alloc_flags;
3941 }
3942 
current_alloc_flags(gfp_t gfp_mask,unsigned int alloc_flags)3943 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3944 					unsigned int alloc_flags)
3945 {
3946 #ifdef CONFIG_CMA
3947 	unsigned int pflags = current->flags;
3948 
3949 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3950 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE &&
3951 			gfp_mask & __GFP_CMA)
3952 		alloc_flags |= ALLOC_CMA;
3953 
3954 #endif
3955 	return alloc_flags;
3956 }
3957 
3958 /*
3959  * get_page_from_freelist goes through the zonelist trying to allocate
3960  * a page.
3961  */
3962 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3963 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3964 						const struct alloc_context *ac)
3965 {
3966 	struct zoneref *z;
3967 	struct zone *zone;
3968 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3969 	bool no_fallback;
3970 
3971 retry:
3972 	/*
3973 	 * Scan zonelist, looking for a zone with enough free.
3974 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3975 	 */
3976 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3977 	z = ac->preferred_zoneref;
3978 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3979 					ac->nodemask) {
3980 		struct page *page;
3981 		unsigned long mark;
3982 
3983 		if (cpusets_enabled() &&
3984 			(alloc_flags & ALLOC_CPUSET) &&
3985 			!__cpuset_zone_allowed(zone, gfp_mask))
3986 				continue;
3987 		/*
3988 		 * When allocating a page cache page for writing, we
3989 		 * want to get it from a node that is within its dirty
3990 		 * limit, such that no single node holds more than its
3991 		 * proportional share of globally allowed dirty pages.
3992 		 * The dirty limits take into account the node's
3993 		 * lowmem reserves and high watermark so that kswapd
3994 		 * should be able to balance it without having to
3995 		 * write pages from its LRU list.
3996 		 *
3997 		 * XXX: For now, allow allocations to potentially
3998 		 * exceed the per-node dirty limit in the slowpath
3999 		 * (spread_dirty_pages unset) before going into reclaim,
4000 		 * which is important when on a NUMA setup the allowed
4001 		 * nodes are together not big enough to reach the
4002 		 * global limit.  The proper fix for these situations
4003 		 * will require awareness of nodes in the
4004 		 * dirty-throttling and the flusher threads.
4005 		 */
4006 		if (ac->spread_dirty_pages) {
4007 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4008 				continue;
4009 
4010 			if (!node_dirty_ok(zone->zone_pgdat)) {
4011 				last_pgdat_dirty_limit = zone->zone_pgdat;
4012 				continue;
4013 			}
4014 		}
4015 
4016 		if (no_fallback && nr_online_nodes > 1 &&
4017 		    zone != ac->preferred_zoneref->zone) {
4018 			int local_nid;
4019 
4020 			/*
4021 			 * If moving to a remote node, retry but allow
4022 			 * fragmenting fallbacks. Locality is more important
4023 			 * than fragmentation avoidance.
4024 			 */
4025 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4026 			if (zone_to_nid(zone) != local_nid) {
4027 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4028 				goto retry;
4029 			}
4030 		}
4031 
4032 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4033 		if (!zone_watermark_fast(zone, order, mark,
4034 				       ac->highest_zoneidx, alloc_flags,
4035 				       gfp_mask)) {
4036 			int ret;
4037 
4038 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4039 			/*
4040 			 * Watermark failed for this zone, but see if we can
4041 			 * grow this zone if it contains deferred pages.
4042 			 */
4043 			if (static_branch_unlikely(&deferred_pages)) {
4044 				if (_deferred_grow_zone(zone, order))
4045 					goto try_this_zone;
4046 			}
4047 #endif
4048 			/* Checked here to keep the fast path fast */
4049 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4050 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4051 				goto try_this_zone;
4052 
4053 			if (node_reclaim_mode == 0 ||
4054 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4055 				continue;
4056 
4057 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4058 			switch (ret) {
4059 			case NODE_RECLAIM_NOSCAN:
4060 				/* did not scan */
4061 				continue;
4062 			case NODE_RECLAIM_FULL:
4063 				/* scanned but unreclaimable */
4064 				continue;
4065 			default:
4066 				/* did we reclaim enough */
4067 				if (zone_watermark_ok(zone, order, mark,
4068 					ac->highest_zoneidx, alloc_flags))
4069 					goto try_this_zone;
4070 
4071 				continue;
4072 			}
4073 		}
4074 
4075 try_this_zone:
4076 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4077 				gfp_mask, alloc_flags, ac->migratetype);
4078 		if (page) {
4079 			prep_new_page(page, order, gfp_mask, alloc_flags);
4080 
4081 			/*
4082 			 * If this is a high-order atomic allocation then check
4083 			 * if the pageblock should be reserved for the future
4084 			 */
4085 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4086 				reserve_highatomic_pageblock(page, zone, order);
4087 
4088 			return page;
4089 		} else {
4090 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4091 			/* Try again if zone has deferred pages */
4092 			if (static_branch_unlikely(&deferred_pages)) {
4093 				if (_deferred_grow_zone(zone, order))
4094 					goto try_this_zone;
4095 			}
4096 #endif
4097 		}
4098 	}
4099 
4100 	/*
4101 	 * It's possible on a UMA machine to get through all zones that are
4102 	 * fragmented. If avoiding fragmentation, reset and try again.
4103 	 */
4104 	if (no_fallback) {
4105 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4106 		goto retry;
4107 	}
4108 
4109 	return NULL;
4110 }
4111 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)4112 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4113 {
4114 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4115 
4116 	/*
4117 	 * This documents exceptions given to allocations in certain
4118 	 * contexts that are allowed to allocate outside current's set
4119 	 * of allowed nodes.
4120 	 */
4121 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4122 		if (tsk_is_oom_victim(current) ||
4123 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4124 			filter &= ~SHOW_MEM_FILTER_NODES;
4125 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4126 		filter &= ~SHOW_MEM_FILTER_NODES;
4127 
4128 	show_mem(filter, nodemask);
4129 }
4130 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)4131 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4132 {
4133 	struct va_format vaf;
4134 	va_list args;
4135 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4136 
4137 	if ((gfp_mask & __GFP_NOWARN) ||
4138 	     !__ratelimit(&nopage_rs) ||
4139 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4140 		return;
4141 
4142 	va_start(args, fmt);
4143 	vaf.fmt = fmt;
4144 	vaf.va = &args;
4145 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4146 			current->comm, &vaf, gfp_mask, &gfp_mask,
4147 			nodemask_pr_args(nodemask));
4148 	va_end(args);
4149 
4150 	cpuset_print_current_mems_allowed();
4151 	pr_cont("\n");
4152 	dump_stack();
4153 	warn_alloc_show_mem(gfp_mask, nodemask);
4154 }
4155 
4156 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)4157 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4158 			      unsigned int alloc_flags,
4159 			      const struct alloc_context *ac)
4160 {
4161 	struct page *page;
4162 
4163 	page = get_page_from_freelist(gfp_mask, order,
4164 			alloc_flags|ALLOC_CPUSET, ac);
4165 	/*
4166 	 * fallback to ignore cpuset restriction if our nodes
4167 	 * are depleted
4168 	 */
4169 	if (!page)
4170 		page = get_page_from_freelist(gfp_mask, order,
4171 				alloc_flags, ac);
4172 
4173 	return page;
4174 }
4175 
4176 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)4177 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4178 	const struct alloc_context *ac, unsigned long *did_some_progress)
4179 {
4180 	struct oom_control oc = {
4181 		.zonelist = ac->zonelist,
4182 		.nodemask = ac->nodemask,
4183 		.memcg = NULL,
4184 		.gfp_mask = gfp_mask,
4185 		.order = order,
4186 	};
4187 	struct page *page;
4188 
4189 	*did_some_progress = 0;
4190 
4191 	/*
4192 	 * Acquire the oom lock.  If that fails, somebody else is
4193 	 * making progress for us.
4194 	 */
4195 	if (!mutex_trylock(&oom_lock)) {
4196 		*did_some_progress = 1;
4197 		schedule_timeout_uninterruptible(1);
4198 		return NULL;
4199 	}
4200 
4201 	/*
4202 	 * Go through the zonelist yet one more time, keep very high watermark
4203 	 * here, this is only to catch a parallel oom killing, we must fail if
4204 	 * we're still under heavy pressure. But make sure that this reclaim
4205 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4206 	 * allocation which will never fail due to oom_lock already held.
4207 	 */
4208 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4209 				      ~__GFP_DIRECT_RECLAIM, order,
4210 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4211 	if (page)
4212 		goto out;
4213 
4214 	/* Coredumps can quickly deplete all memory reserves */
4215 	if (current->flags & PF_DUMPCORE)
4216 		goto out;
4217 	/* The OOM killer will not help higher order allocs */
4218 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4219 		goto out;
4220 	/*
4221 	 * We have already exhausted all our reclaim opportunities without any
4222 	 * success so it is time to admit defeat. We will skip the OOM killer
4223 	 * because it is very likely that the caller has a more reasonable
4224 	 * fallback than shooting a random task.
4225 	 *
4226 	 * The OOM killer may not free memory on a specific node.
4227 	 */
4228 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4229 		goto out;
4230 	/* The OOM killer does not needlessly kill tasks for lowmem */
4231 	if (ac->highest_zoneidx < ZONE_NORMAL)
4232 		goto out;
4233 	if (pm_suspended_storage())
4234 		goto out;
4235 	/*
4236 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4237 	 * other request to make a forward progress.
4238 	 * We are in an unfortunate situation where out_of_memory cannot
4239 	 * do much for this context but let's try it to at least get
4240 	 * access to memory reserved if the current task is killed (see
4241 	 * out_of_memory). Once filesystems are ready to handle allocation
4242 	 * failures more gracefully we should just bail out here.
4243 	 */
4244 
4245 	/* Exhausted what can be done so it's blame time */
4246 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4247 		*did_some_progress = 1;
4248 
4249 		/*
4250 		 * Help non-failing allocations by giving them access to memory
4251 		 * reserves
4252 		 */
4253 		if (gfp_mask & __GFP_NOFAIL)
4254 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4255 					ALLOC_NO_WATERMARKS, ac);
4256 	}
4257 out:
4258 	mutex_unlock(&oom_lock);
4259 	return page;
4260 }
4261 
4262 /*
4263  * Maximum number of compaction retries wit a progress before OOM
4264  * killer is consider as the only way to move forward.
4265  */
4266 #define MAX_COMPACT_RETRIES 16
4267 
4268 #ifdef CONFIG_COMPACTION
4269 /* Try memory compaction for high-order allocations before reclaim */
4270 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4271 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4272 		unsigned int alloc_flags, const struct alloc_context *ac,
4273 		enum compact_priority prio, enum compact_result *compact_result)
4274 {
4275 	struct page *page = NULL;
4276 	unsigned long pflags;
4277 	unsigned int noreclaim_flag;
4278 
4279 	if (!order)
4280 		return NULL;
4281 
4282 	psi_memstall_enter(&pflags);
4283 	noreclaim_flag = memalloc_noreclaim_save();
4284 
4285 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4286 								prio, &page);
4287 
4288 	memalloc_noreclaim_restore(noreclaim_flag);
4289 	psi_memstall_leave(&pflags);
4290 
4291 	/*
4292 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4293 	 * count a compaction stall
4294 	 */
4295 	count_vm_event(COMPACTSTALL);
4296 
4297 	/* Prep a captured page if available */
4298 	if (page)
4299 		prep_new_page(page, order, gfp_mask, alloc_flags);
4300 
4301 	/* Try get a page from the freelist if available */
4302 	if (!page)
4303 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4304 
4305 	if (page) {
4306 		struct zone *zone = page_zone(page);
4307 
4308 		zone->compact_blockskip_flush = false;
4309 		compaction_defer_reset(zone, order, true);
4310 		count_vm_event(COMPACTSUCCESS);
4311 		return page;
4312 	}
4313 
4314 	/*
4315 	 * It's bad if compaction run occurs and fails. The most likely reason
4316 	 * is that pages exist, but not enough to satisfy watermarks.
4317 	 */
4318 	count_vm_event(COMPACTFAIL);
4319 
4320 	cond_resched();
4321 
4322 	return NULL;
4323 }
4324 
4325 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4326 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4327 		     enum compact_result compact_result,
4328 		     enum compact_priority *compact_priority,
4329 		     int *compaction_retries)
4330 {
4331 	int max_retries = MAX_COMPACT_RETRIES;
4332 	int min_priority;
4333 	bool ret = false;
4334 	int retries = *compaction_retries;
4335 	enum compact_priority priority = *compact_priority;
4336 
4337 	if (!order)
4338 		return false;
4339 
4340 	if (compaction_made_progress(compact_result))
4341 		(*compaction_retries)++;
4342 
4343 	/*
4344 	 * compaction considers all the zone as desperately out of memory
4345 	 * so it doesn't really make much sense to retry except when the
4346 	 * failure could be caused by insufficient priority
4347 	 */
4348 	if (compaction_failed(compact_result))
4349 		goto check_priority;
4350 
4351 	/*
4352 	 * compaction was skipped because there are not enough order-0 pages
4353 	 * to work with, so we retry only if it looks like reclaim can help.
4354 	 */
4355 	if (compaction_needs_reclaim(compact_result)) {
4356 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4357 		goto out;
4358 	}
4359 
4360 	/*
4361 	 * make sure the compaction wasn't deferred or didn't bail out early
4362 	 * due to locks contention before we declare that we should give up.
4363 	 * But the next retry should use a higher priority if allowed, so
4364 	 * we don't just keep bailing out endlessly.
4365 	 */
4366 	if (compaction_withdrawn(compact_result)) {
4367 		goto check_priority;
4368 	}
4369 
4370 	/*
4371 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4372 	 * costly ones because they are de facto nofail and invoke OOM
4373 	 * killer to move on while costly can fail and users are ready
4374 	 * to cope with that. 1/4 retries is rather arbitrary but we
4375 	 * would need much more detailed feedback from compaction to
4376 	 * make a better decision.
4377 	 */
4378 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4379 		max_retries /= 4;
4380 	if (*compaction_retries <= max_retries) {
4381 		ret = true;
4382 		goto out;
4383 	}
4384 
4385 	/*
4386 	 * Make sure there are attempts at the highest priority if we exhausted
4387 	 * all retries or failed at the lower priorities.
4388 	 */
4389 check_priority:
4390 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4391 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4392 
4393 	if (*compact_priority > min_priority) {
4394 		(*compact_priority)--;
4395 		*compaction_retries = 0;
4396 		ret = true;
4397 	}
4398 out:
4399 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4400 	return ret;
4401 }
4402 #else
4403 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4404 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4405 		unsigned int alloc_flags, const struct alloc_context *ac,
4406 		enum compact_priority prio, enum compact_result *compact_result)
4407 {
4408 	*compact_result = COMPACT_SKIPPED;
4409 	return NULL;
4410 }
4411 
4412 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4413 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4414 		     enum compact_result compact_result,
4415 		     enum compact_priority *compact_priority,
4416 		     int *compaction_retries)
4417 {
4418 	struct zone *zone;
4419 	struct zoneref *z;
4420 
4421 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4422 		return false;
4423 
4424 	/*
4425 	 * There are setups with compaction disabled which would prefer to loop
4426 	 * inside the allocator rather than hit the oom killer prematurely.
4427 	 * Let's give them a good hope and keep retrying while the order-0
4428 	 * watermarks are OK.
4429 	 */
4430 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4431 				ac->highest_zoneidx, ac->nodemask) {
4432 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4433 					ac->highest_zoneidx, alloc_flags))
4434 			return true;
4435 	}
4436 	return false;
4437 }
4438 #endif /* CONFIG_COMPACTION */
4439 
4440 #ifdef CONFIG_LOCKDEP
4441 static struct lockdep_map __fs_reclaim_map =
4442 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4443 
__need_fs_reclaim(gfp_t gfp_mask)4444 static bool __need_fs_reclaim(gfp_t gfp_mask)
4445 {
4446 	gfp_mask = current_gfp_context(gfp_mask);
4447 
4448 	/* no reclaim without waiting on it */
4449 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4450 		return false;
4451 
4452 	/* this guy won't enter reclaim */
4453 	if (current->flags & PF_MEMALLOC)
4454 		return false;
4455 
4456 	/* We're only interested __GFP_FS allocations for now */
4457 	if (!(gfp_mask & __GFP_FS))
4458 		return false;
4459 
4460 	if (gfp_mask & __GFP_NOLOCKDEP)
4461 		return false;
4462 
4463 	return true;
4464 }
4465 
__fs_reclaim_acquire(void)4466 void __fs_reclaim_acquire(void)
4467 {
4468 	lock_map_acquire(&__fs_reclaim_map);
4469 }
4470 
__fs_reclaim_release(void)4471 void __fs_reclaim_release(void)
4472 {
4473 	lock_map_release(&__fs_reclaim_map);
4474 }
4475 
fs_reclaim_acquire(gfp_t gfp_mask)4476 void fs_reclaim_acquire(gfp_t gfp_mask)
4477 {
4478 	if (__need_fs_reclaim(gfp_mask))
4479 		__fs_reclaim_acquire();
4480 }
4481 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4482 
fs_reclaim_release(gfp_t gfp_mask)4483 void fs_reclaim_release(gfp_t gfp_mask)
4484 {
4485 	if (__need_fs_reclaim(gfp_mask))
4486 		__fs_reclaim_release();
4487 }
4488 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4489 #endif
4490 
4491 /*
4492  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4493  * have been rebuilt so allocation retries. Reader side does not lock and
4494  * retries the allocation if zonelist changes. Writer side is protected by the
4495  * embedded spin_lock.
4496  */
4497 static DEFINE_SEQLOCK(zonelist_update_seq);
4498 
zonelist_iter_begin(void)4499 static unsigned int zonelist_iter_begin(void)
4500 {
4501 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4502 		return read_seqbegin(&zonelist_update_seq);
4503 
4504 	return 0;
4505 }
4506 
check_retry_zonelist(unsigned int seq)4507 static unsigned int check_retry_zonelist(unsigned int seq)
4508 {
4509 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4510 		return read_seqretry(&zonelist_update_seq, seq);
4511 
4512 	return seq;
4513 }
4514 
4515 /* Perform direct synchronous page reclaim */
4516 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4517 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4518 					const struct alloc_context *ac)
4519 {
4520 	unsigned int noreclaim_flag;
4521 	unsigned long progress;
4522 
4523 	cond_resched();
4524 
4525 	/* We now go into synchronous reclaim */
4526 	cpuset_memory_pressure_bump();
4527 	fs_reclaim_acquire(gfp_mask);
4528 	noreclaim_flag = memalloc_noreclaim_save();
4529 
4530 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4531 								ac->nodemask);
4532 
4533 	memalloc_noreclaim_restore(noreclaim_flag);
4534 	fs_reclaim_release(gfp_mask);
4535 
4536 	cond_resched();
4537 
4538 	return progress;
4539 }
4540 
4541 /* The really slow allocator path where we enter direct reclaim */
4542 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4543 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4544 		unsigned int alloc_flags, const struct alloc_context *ac,
4545 		unsigned long *did_some_progress)
4546 {
4547 	struct page *page = NULL;
4548 	unsigned long pflags;
4549 	bool drained = false;
4550 	bool skip_pcp_drain = false;
4551 
4552 	psi_memstall_enter(&pflags);
4553 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4554 	if (unlikely(!(*did_some_progress)))
4555 		goto out;
4556 
4557 retry:
4558 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4559 
4560 	/*
4561 	 * If an allocation failed after direct reclaim, it could be because
4562 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4563 	 * Shrink them and try again
4564 	 */
4565 	if (!page && !drained) {
4566 		unreserve_highatomic_pageblock(ac, false);
4567 		trace_android_vh_drain_all_pages_bypass(gfp_mask, order,
4568 			alloc_flags, ac->migratetype, *did_some_progress, &skip_pcp_drain);
4569 		if (!skip_pcp_drain)
4570 			drain_all_pages(NULL);
4571 		drained = true;
4572 		goto retry;
4573 	}
4574 out:
4575 	psi_memstall_leave(&pflags);
4576 
4577 	return page;
4578 }
4579 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4580 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4581 			     const struct alloc_context *ac)
4582 {
4583 	struct zoneref *z;
4584 	struct zone *zone;
4585 	pg_data_t *last_pgdat = NULL;
4586 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4587 
4588 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4589 					ac->nodemask) {
4590 		if (last_pgdat != zone->zone_pgdat)
4591 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4592 		last_pgdat = zone->zone_pgdat;
4593 	}
4594 }
4595 
4596 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)4597 gfp_to_alloc_flags(gfp_t gfp_mask)
4598 {
4599 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4600 
4601 	/*
4602 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4603 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4604 	 * to save two branches.
4605 	 */
4606 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4607 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4608 
4609 	/*
4610 	 * The caller may dip into page reserves a bit more if the caller
4611 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4612 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4613 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4614 	 */
4615 	alloc_flags |= (__force int)
4616 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4617 
4618 	if (gfp_mask & __GFP_ATOMIC) {
4619 		/*
4620 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4621 		 * if it can't schedule.
4622 		 */
4623 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4624 			alloc_flags |= ALLOC_HARDER;
4625 		/*
4626 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4627 		 * comment for __cpuset_node_allowed().
4628 		 */
4629 		alloc_flags &= ~ALLOC_CPUSET;
4630 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4631 		alloc_flags |= ALLOC_HARDER;
4632 
4633 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4634 
4635 	return alloc_flags;
4636 }
4637 
oom_reserves_allowed(struct task_struct * tsk)4638 static bool oom_reserves_allowed(struct task_struct *tsk)
4639 {
4640 	if (!tsk_is_oom_victim(tsk))
4641 		return false;
4642 
4643 	/*
4644 	 * !MMU doesn't have oom reaper so give access to memory reserves
4645 	 * only to the thread with TIF_MEMDIE set
4646 	 */
4647 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4648 		return false;
4649 
4650 	return true;
4651 }
4652 
4653 /*
4654  * Distinguish requests which really need access to full memory
4655  * reserves from oom victims which can live with a portion of it
4656  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4657 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4658 {
4659 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4660 		return 0;
4661 	if (gfp_mask & __GFP_MEMALLOC)
4662 		return ALLOC_NO_WATERMARKS;
4663 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4664 		return ALLOC_NO_WATERMARKS;
4665 	if (!in_interrupt()) {
4666 		if (current->flags & PF_MEMALLOC)
4667 			return ALLOC_NO_WATERMARKS;
4668 		else if (oom_reserves_allowed(current))
4669 			return ALLOC_OOM;
4670 	}
4671 
4672 	return 0;
4673 }
4674 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4675 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4676 {
4677 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4678 }
4679 
4680 /*
4681  * Checks whether it makes sense to retry the reclaim to make a forward progress
4682  * for the given allocation request.
4683  *
4684  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4685  * without success, or when we couldn't even meet the watermark if we
4686  * reclaimed all remaining pages on the LRU lists.
4687  *
4688  * Returns true if a retry is viable or false to enter the oom path.
4689  */
4690 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4691 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4692 		     struct alloc_context *ac, int alloc_flags,
4693 		     bool did_some_progress, int *no_progress_loops)
4694 {
4695 	struct zone *zone;
4696 	struct zoneref *z;
4697 	bool ret = false;
4698 
4699 	/*
4700 	 * Costly allocations might have made a progress but this doesn't mean
4701 	 * their order will become available due to high fragmentation so
4702 	 * always increment the no progress counter for them
4703 	 */
4704 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4705 		*no_progress_loops = 0;
4706 	else
4707 		(*no_progress_loops)++;
4708 
4709 	/*
4710 	 * Make sure we converge to OOM if we cannot make any progress
4711 	 * several times in the row.
4712 	 */
4713 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4714 		/* Before OOM, exhaust highatomic_reserve */
4715 		return unreserve_highatomic_pageblock(ac, true);
4716 	}
4717 
4718 	/*
4719 	 * Keep reclaiming pages while there is a chance this will lead
4720 	 * somewhere.  If none of the target zones can satisfy our allocation
4721 	 * request even if all reclaimable pages are considered then we are
4722 	 * screwed and have to go OOM.
4723 	 */
4724 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4725 				ac->highest_zoneidx, ac->nodemask) {
4726 		unsigned long available;
4727 		unsigned long reclaimable;
4728 		unsigned long min_wmark = min_wmark_pages(zone);
4729 		bool wmark;
4730 
4731 		available = reclaimable = zone_reclaimable_pages(zone);
4732 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4733 
4734 		/*
4735 		 * Would the allocation succeed if we reclaimed all
4736 		 * reclaimable pages?
4737 		 */
4738 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4739 				ac->highest_zoneidx, alloc_flags, available);
4740 		trace_reclaim_retry_zone(z, order, reclaimable,
4741 				available, min_wmark, *no_progress_loops, wmark);
4742 		if (wmark) {
4743 			/*
4744 			 * If we didn't make any progress and have a lot of
4745 			 * dirty + writeback pages then we should wait for
4746 			 * an IO to complete to slow down the reclaim and
4747 			 * prevent from pre mature OOM
4748 			 */
4749 			if (!did_some_progress) {
4750 				unsigned long write_pending;
4751 
4752 				write_pending = zone_page_state_snapshot(zone,
4753 							NR_ZONE_WRITE_PENDING);
4754 
4755 				if (2 * write_pending > reclaimable) {
4756 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4757 					return true;
4758 				}
4759 			}
4760 
4761 			ret = true;
4762 			goto out;
4763 		}
4764 	}
4765 
4766 out:
4767 	/*
4768 	 * Memory allocation/reclaim might be called from a WQ context and the
4769 	 * current implementation of the WQ concurrency control doesn't
4770 	 * recognize that a particular WQ is congested if the worker thread is
4771 	 * looping without ever sleeping. Therefore we have to do a short sleep
4772 	 * here rather than calling cond_resched().
4773 	 */
4774 	if (current->flags & PF_WQ_WORKER)
4775 		schedule_timeout_uninterruptible(1);
4776 	else
4777 		cond_resched();
4778 	return ret;
4779 }
4780 
4781 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4782 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4783 {
4784 	/*
4785 	 * It's possible that cpuset's mems_allowed and the nodemask from
4786 	 * mempolicy don't intersect. This should be normally dealt with by
4787 	 * policy_nodemask(), but it's possible to race with cpuset update in
4788 	 * such a way the check therein was true, and then it became false
4789 	 * before we got our cpuset_mems_cookie here.
4790 	 * This assumes that for all allocations, ac->nodemask can come only
4791 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4792 	 * when it does not intersect with the cpuset restrictions) or the
4793 	 * caller can deal with a violated nodemask.
4794 	 */
4795 	if (cpusets_enabled() && ac->nodemask &&
4796 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4797 		ac->nodemask = NULL;
4798 		return true;
4799 	}
4800 
4801 	/*
4802 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4803 	 * possible to race with parallel threads in such a way that our
4804 	 * allocation can fail while the mask is being updated. If we are about
4805 	 * to fail, check if the cpuset changed during allocation and if so,
4806 	 * retry.
4807 	 */
4808 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4809 		return true;
4810 
4811 	return false;
4812 }
4813 
4814 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4815 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4816 						struct alloc_context *ac)
4817 {
4818 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4819 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4820 	struct page *page = NULL;
4821 	unsigned int alloc_flags;
4822 	unsigned long did_some_progress;
4823 	enum compact_priority compact_priority;
4824 	enum compact_result compact_result;
4825 	int compaction_retries;
4826 	int no_progress_loops;
4827 	unsigned int cpuset_mems_cookie;
4828 	unsigned int zonelist_iter_cookie;
4829 	int reserve_flags;
4830 	unsigned long vh_record;
4831 
4832 	trace_android_vh_alloc_pages_slowpath_begin(gfp_mask, order, &vh_record);
4833 	/*
4834 	 * We also sanity check to catch abuse of atomic reserves being used by
4835 	 * callers that are not in atomic context.
4836 	 */
4837 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4838 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4839 		gfp_mask &= ~__GFP_ATOMIC;
4840 
4841 restart:
4842 	compaction_retries = 0;
4843 	no_progress_loops = 0;
4844 	compact_priority = DEF_COMPACT_PRIORITY;
4845 	cpuset_mems_cookie = read_mems_allowed_begin();
4846 	zonelist_iter_cookie = zonelist_iter_begin();
4847 
4848 	/*
4849 	 * The fast path uses conservative alloc_flags to succeed only until
4850 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4851 	 * alloc_flags precisely. So we do that now.
4852 	 */
4853 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4854 
4855 	/*
4856 	 * We need to recalculate the starting point for the zonelist iterator
4857 	 * because we might have used different nodemask in the fast path, or
4858 	 * there was a cpuset modification and we are retrying - otherwise we
4859 	 * could end up iterating over non-eligible zones endlessly.
4860 	 */
4861 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4862 					ac->highest_zoneidx, ac->nodemask);
4863 	if (!ac->preferred_zoneref->zone)
4864 		goto nopage;
4865 
4866 	if (alloc_flags & ALLOC_KSWAPD)
4867 		wake_all_kswapds(order, gfp_mask, ac);
4868 
4869 	/*
4870 	 * The adjusted alloc_flags might result in immediate success, so try
4871 	 * that first
4872 	 */
4873 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4874 	if (page)
4875 		goto got_pg;
4876 
4877 	/*
4878 	 * For costly allocations, try direct compaction first, as it's likely
4879 	 * that we have enough base pages and don't need to reclaim. For non-
4880 	 * movable high-order allocations, do that as well, as compaction will
4881 	 * try prevent permanent fragmentation by migrating from blocks of the
4882 	 * same migratetype.
4883 	 * Don't try this for allocations that are allowed to ignore
4884 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4885 	 */
4886 	if (can_direct_reclaim &&
4887 			(costly_order ||
4888 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4889 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4890 		page = __alloc_pages_direct_compact(gfp_mask, order,
4891 						alloc_flags, ac,
4892 						INIT_COMPACT_PRIORITY,
4893 						&compact_result);
4894 		if (page)
4895 			goto got_pg;
4896 
4897 		/*
4898 		 * Checks for costly allocations with __GFP_NORETRY, which
4899 		 * includes some THP page fault allocations
4900 		 */
4901 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4902 			/*
4903 			 * If allocating entire pageblock(s) and compaction
4904 			 * failed because all zones are below low watermarks
4905 			 * or is prohibited because it recently failed at this
4906 			 * order, fail immediately unless the allocator has
4907 			 * requested compaction and reclaim retry.
4908 			 *
4909 			 * Reclaim is
4910 			 *  - potentially very expensive because zones are far
4911 			 *    below their low watermarks or this is part of very
4912 			 *    bursty high order allocations,
4913 			 *  - not guaranteed to help because isolate_freepages()
4914 			 *    may not iterate over freed pages as part of its
4915 			 *    linear scan, and
4916 			 *  - unlikely to make entire pageblocks free on its
4917 			 *    own.
4918 			 */
4919 			if (compact_result == COMPACT_SKIPPED ||
4920 			    compact_result == COMPACT_DEFERRED)
4921 				goto nopage;
4922 
4923 			/*
4924 			 * Looks like reclaim/compaction is worth trying, but
4925 			 * sync compaction could be very expensive, so keep
4926 			 * using async compaction.
4927 			 */
4928 			compact_priority = INIT_COMPACT_PRIORITY;
4929 		}
4930 	}
4931 
4932 retry:
4933 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4934 	if (alloc_flags & ALLOC_KSWAPD)
4935 		wake_all_kswapds(order, gfp_mask, ac);
4936 
4937 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4938 	if (reserve_flags)
4939 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4940 
4941 	/*
4942 	 * Reset the nodemask and zonelist iterators if memory policies can be
4943 	 * ignored. These allocations are high priority and system rather than
4944 	 * user oriented.
4945 	 */
4946 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4947 		ac->nodemask = NULL;
4948 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4949 					ac->highest_zoneidx, ac->nodemask);
4950 	}
4951 
4952 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4953 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4954 	if (page)
4955 		goto got_pg;
4956 
4957 	/* Caller is not willing to reclaim, we can't balance anything */
4958 	if (!can_direct_reclaim)
4959 		goto nopage;
4960 
4961 	/* Avoid recursion of direct reclaim */
4962 	if (current->flags & PF_MEMALLOC)
4963 		goto nopage;
4964 
4965 	trace_android_vh_alloc_pages_reclaim_bypass(gfp_mask, order,
4966 		alloc_flags, ac->migratetype, &page);
4967 
4968 	if (page)
4969 		goto got_pg;
4970 
4971 	/* Try direct reclaim and then allocating */
4972 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4973 							&did_some_progress);
4974 	if (page)
4975 		goto got_pg;
4976 
4977 	/* Try direct compaction and then allocating */
4978 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4979 					compact_priority, &compact_result);
4980 	if (page)
4981 		goto got_pg;
4982 
4983 	/* Do not loop if specifically requested */
4984 	if (gfp_mask & __GFP_NORETRY)
4985 		goto nopage;
4986 
4987 	/*
4988 	 * Do not retry costly high order allocations unless they are
4989 	 * __GFP_RETRY_MAYFAIL
4990 	 */
4991 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4992 		goto nopage;
4993 
4994 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4995 				 did_some_progress > 0, &no_progress_loops))
4996 		goto retry;
4997 
4998 	/*
4999 	 * It doesn't make any sense to retry for the compaction if the order-0
5000 	 * reclaim is not able to make any progress because the current
5001 	 * implementation of the compaction depends on the sufficient amount
5002 	 * of free memory (see __compaction_suitable)
5003 	 */
5004 	if (did_some_progress > 0 &&
5005 			should_compact_retry(ac, order, alloc_flags,
5006 				compact_result, &compact_priority,
5007 				&compaction_retries))
5008 		goto retry;
5009 
5010 
5011 	/*
5012 	 * Deal with possible cpuset update races or zonelist updates to avoid
5013 	 * a unnecessary OOM kill.
5014 	 */
5015 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5016 	    check_retry_zonelist(zonelist_iter_cookie))
5017 		goto restart;
5018 
5019 	/* Reclaim has failed us, start killing things */
5020 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5021 	if (page)
5022 		goto got_pg;
5023 
5024 	/* Avoid allocations with no watermarks from looping endlessly */
5025 	if (tsk_is_oom_victim(current) &&
5026 	    (alloc_flags & ALLOC_OOM ||
5027 	     (gfp_mask & __GFP_NOMEMALLOC)))
5028 		goto nopage;
5029 
5030 	/* Retry as long as the OOM killer is making progress */
5031 	if (did_some_progress) {
5032 		no_progress_loops = 0;
5033 		goto retry;
5034 	}
5035 
5036 nopage:
5037 	/*
5038 	 * Deal with possible cpuset update races or zonelist updates to avoid
5039 	 * a unnecessary OOM kill.
5040 	 */
5041 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5042 	    check_retry_zonelist(zonelist_iter_cookie))
5043 		goto restart;
5044 
5045 	/*
5046 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5047 	 * we always retry
5048 	 */
5049 	if (gfp_mask & __GFP_NOFAIL) {
5050 		/*
5051 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5052 		 * of any new users that actually require GFP_NOWAIT
5053 		 */
5054 		if (WARN_ON_ONCE(!can_direct_reclaim))
5055 			goto fail;
5056 
5057 		/*
5058 		 * PF_MEMALLOC request from this context is rather bizarre
5059 		 * because we cannot reclaim anything and only can loop waiting
5060 		 * for somebody to do a work for us
5061 		 */
5062 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5063 
5064 		/*
5065 		 * non failing costly orders are a hard requirement which we
5066 		 * are not prepared for much so let's warn about these users
5067 		 * so that we can identify them and convert them to something
5068 		 * else.
5069 		 */
5070 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5071 
5072 		/*
5073 		 * Help non-failing allocations by giving them access to memory
5074 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5075 		 * could deplete whole memory reserves which would just make
5076 		 * the situation worse
5077 		 */
5078 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5079 		if (page)
5080 			goto got_pg;
5081 
5082 		cond_resched();
5083 		goto retry;
5084 	}
5085 fail:
5086 	trace_android_vh_alloc_pages_failure_bypass(gfp_mask, order,
5087 		alloc_flags, ac->migratetype, &page);
5088 	if (page)
5089 		goto got_pg;
5090 
5091 	warn_alloc(gfp_mask, ac->nodemask,
5092 			"page allocation failure: order:%u", order);
5093 got_pg:
5094 	trace_android_vh_alloc_pages_slowpath_end(gfp_mask, order, vh_record);
5095 	return page;
5096 }
5097 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_mask,unsigned int * alloc_flags)5098 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5099 		int preferred_nid, nodemask_t *nodemask,
5100 		struct alloc_context *ac, gfp_t *alloc_mask,
5101 		unsigned int *alloc_flags)
5102 {
5103 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5104 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5105 	ac->nodemask = nodemask;
5106 	ac->migratetype = gfp_migratetype(gfp_mask);
5107 
5108 	if (cpusets_enabled()) {
5109 		*alloc_mask |= __GFP_HARDWALL;
5110 		/*
5111 		 * When we are in the interrupt context, it is irrelevant
5112 		 * to the current task context. It means that any node ok.
5113 		 */
5114 		if (!in_interrupt() && !ac->nodemask)
5115 			ac->nodemask = &cpuset_current_mems_allowed;
5116 		else
5117 			*alloc_flags |= ALLOC_CPUSET;
5118 	}
5119 
5120 	fs_reclaim_acquire(gfp_mask);
5121 	fs_reclaim_release(gfp_mask);
5122 
5123 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5124 
5125 	if (should_fail_alloc_page(gfp_mask, order))
5126 		return false;
5127 
5128 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
5129 
5130 	/* Dirty zone balancing only done in the fast path */
5131 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5132 
5133 	/*
5134 	 * The preferred zone is used for statistics but crucially it is
5135 	 * also used as the starting point for the zonelist iterator. It
5136 	 * may get reset for allocations that ignore memory policies.
5137 	 */
5138 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5139 					ac->highest_zoneidx, ac->nodemask);
5140 
5141 	return true;
5142 }
5143 
5144 /*
5145  * This is the 'heart' of the zoned buddy allocator.
5146  */
5147 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask)5148 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
5149 							nodemask_t *nodemask)
5150 {
5151 	struct page *page;
5152 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5153 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
5154 	struct alloc_context ac = { };
5155 
5156 	/*
5157 	 * There are several places where we assume that the order value is sane
5158 	 * so bail out early if the request is out of bound.
5159 	 */
5160 	if (unlikely(order >= MAX_ORDER)) {
5161 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
5162 		return NULL;
5163 	}
5164 
5165 	gfp_mask &= gfp_allowed_mask;
5166 	alloc_mask = gfp_mask;
5167 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
5168 		return NULL;
5169 
5170 	/*
5171 	 * Forbid the first pass from falling back to types that fragment
5172 	 * memory until all local zones are considered.
5173 	 */
5174 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
5175 
5176 	/* First allocation attempt */
5177 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
5178 	if (likely(page))
5179 		goto out;
5180 
5181 	/*
5182 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5183 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5184 	 * from a particular context which has been marked by
5185 	 * memalloc_no{fs,io}_{save,restore}.
5186 	 */
5187 	alloc_mask = current_gfp_context(gfp_mask);
5188 	ac.spread_dirty_pages = false;
5189 
5190 	/*
5191 	 * Restore the original nodemask if it was potentially replaced with
5192 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5193 	 */
5194 	ac.nodemask = nodemask;
5195 
5196 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5197 
5198 out:
5199 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5200 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5201 		__free_pages(page, order);
5202 		page = NULL;
5203 	}
5204 
5205 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5206 
5207 	return page;
5208 }
5209 EXPORT_SYMBOL(__alloc_pages_nodemask);
5210 
5211 /*
5212  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5213  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5214  * you need to access high mem.
5215  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)5216 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5217 {
5218 	struct page *page;
5219 
5220 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5221 	if (!page)
5222 		return 0;
5223 	return (unsigned long) page_address(page);
5224 }
5225 EXPORT_SYMBOL(__get_free_pages);
5226 
get_zeroed_page(gfp_t gfp_mask)5227 unsigned long get_zeroed_page(gfp_t gfp_mask)
5228 {
5229 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5230 }
5231 EXPORT_SYMBOL(get_zeroed_page);
5232 
free_the_page(struct page * page,unsigned int order)5233 static inline void free_the_page(struct page *page, unsigned int order)
5234 {
5235 	if (order == 0)		/* Via pcp? */
5236 		free_unref_page(page);
5237 	else
5238 		__free_pages_ok(page, order, FPI_NONE);
5239 }
5240 
__free_pages(struct page * page,unsigned int order)5241 void __free_pages(struct page *page, unsigned int order)
5242 {
5243 	trace_android_vh_free_pages(page, order);
5244 	if (put_page_testzero(page))
5245 		free_the_page(page, order);
5246 	else if (!PageHead(page))
5247 		while (order-- > 0)
5248 			free_the_page(page + (1 << order), order);
5249 }
5250 EXPORT_SYMBOL(__free_pages);
5251 
free_pages(unsigned long addr,unsigned int order)5252 void free_pages(unsigned long addr, unsigned int order)
5253 {
5254 	if (addr != 0) {
5255 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5256 		__free_pages(virt_to_page((void *)addr), order);
5257 	}
5258 }
5259 
5260 EXPORT_SYMBOL(free_pages);
5261 
5262 /*
5263  * Page Fragment:
5264  *  An arbitrary-length arbitrary-offset area of memory which resides
5265  *  within a 0 or higher order page.  Multiple fragments within that page
5266  *  are individually refcounted, in the page's reference counter.
5267  *
5268  * The page_frag functions below provide a simple allocation framework for
5269  * page fragments.  This is used by the network stack and network device
5270  * drivers to provide a backing region of memory for use as either an
5271  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5272  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)5273 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5274 					     gfp_t gfp_mask)
5275 {
5276 	struct page *page = NULL;
5277 	gfp_t gfp = gfp_mask;
5278 
5279 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5280 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5281 		    __GFP_NOMEMALLOC;
5282 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5283 				PAGE_FRAG_CACHE_MAX_ORDER);
5284 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5285 #endif
5286 	if (unlikely(!page))
5287 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5288 
5289 	nc->va = page ? page_address(page) : NULL;
5290 
5291 	return page;
5292 }
5293 
__page_frag_cache_drain(struct page * page,unsigned int count)5294 void __page_frag_cache_drain(struct page *page, unsigned int count)
5295 {
5296 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5297 
5298 	if (page_ref_sub_and_test(page, count))
5299 		free_the_page(page, compound_order(page));
5300 }
5301 EXPORT_SYMBOL(__page_frag_cache_drain);
5302 
page_frag_alloc(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)5303 void *page_frag_alloc(struct page_frag_cache *nc,
5304 		      unsigned int fragsz, gfp_t gfp_mask)
5305 {
5306 	unsigned int size = PAGE_SIZE;
5307 	struct page *page;
5308 	int offset;
5309 
5310 	if (unlikely(!nc->va)) {
5311 refill:
5312 		page = __page_frag_cache_refill(nc, gfp_mask);
5313 		if (!page)
5314 			return NULL;
5315 
5316 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5317 		/* if size can vary use size else just use PAGE_SIZE */
5318 		size = nc->size;
5319 #endif
5320 		/* Even if we own the page, we do not use atomic_set().
5321 		 * This would break get_page_unless_zero() users.
5322 		 */
5323 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5324 
5325 		/* reset page count bias and offset to start of new frag */
5326 		nc->pfmemalloc = page_is_pfmemalloc(page);
5327 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5328 		nc->offset = size;
5329 	}
5330 
5331 	offset = nc->offset - fragsz;
5332 	if (unlikely(offset < 0)) {
5333 		page = virt_to_page(nc->va);
5334 
5335 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5336 			goto refill;
5337 
5338 		if (unlikely(nc->pfmemalloc)) {
5339 			free_the_page(page, compound_order(page));
5340 			goto refill;
5341 		}
5342 
5343 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5344 		/* if size can vary use size else just use PAGE_SIZE */
5345 		size = nc->size;
5346 #endif
5347 		/* OK, page count is 0, we can safely set it */
5348 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5349 
5350 		/* reset page count bias and offset to start of new frag */
5351 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5352 		offset = size - fragsz;
5353 		if (unlikely(offset < 0)) {
5354 			/*
5355 			 * The caller is trying to allocate a fragment
5356 			 * with fragsz > PAGE_SIZE but the cache isn't big
5357 			 * enough to satisfy the request, this may
5358 			 * happen in low memory conditions.
5359 			 * We don't release the cache page because
5360 			 * it could make memory pressure worse
5361 			 * so we simply return NULL here.
5362 			 */
5363 			return NULL;
5364 		}
5365 	}
5366 
5367 	nc->pagecnt_bias--;
5368 	nc->offset = offset;
5369 
5370 	return nc->va + offset;
5371 }
5372 EXPORT_SYMBOL(page_frag_alloc);
5373 
5374 /*
5375  * Frees a page fragment allocated out of either a compound or order 0 page.
5376  */
page_frag_free(void * addr)5377 void page_frag_free(void *addr)
5378 {
5379 	struct page *page = virt_to_head_page(addr);
5380 
5381 	if (unlikely(put_page_testzero(page)))
5382 		free_the_page(page, compound_order(page));
5383 }
5384 EXPORT_SYMBOL(page_frag_free);
5385 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5386 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5387 		size_t size)
5388 {
5389 	if (addr) {
5390 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5391 		unsigned long used = addr + PAGE_ALIGN(size);
5392 
5393 		split_page(virt_to_page((void *)addr), order);
5394 		while (used < alloc_end) {
5395 			free_page(used);
5396 			used += PAGE_SIZE;
5397 		}
5398 	}
5399 	return (void *)addr;
5400 }
5401 
5402 /**
5403  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5404  * @size: the number of bytes to allocate
5405  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5406  *
5407  * This function is similar to alloc_pages(), except that it allocates the
5408  * minimum number of pages to satisfy the request.  alloc_pages() can only
5409  * allocate memory in power-of-two pages.
5410  *
5411  * This function is also limited by MAX_ORDER.
5412  *
5413  * Memory allocated by this function must be released by free_pages_exact().
5414  *
5415  * Return: pointer to the allocated area or %NULL in case of error.
5416  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)5417 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5418 {
5419 	unsigned int order = get_order(size);
5420 	unsigned long addr;
5421 
5422 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5423 		gfp_mask &= ~__GFP_COMP;
5424 
5425 	addr = __get_free_pages(gfp_mask, order);
5426 	return make_alloc_exact(addr, order, size);
5427 }
5428 EXPORT_SYMBOL(alloc_pages_exact);
5429 
5430 /**
5431  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5432  *			   pages on a node.
5433  * @nid: the preferred node ID where memory should be allocated
5434  * @size: the number of bytes to allocate
5435  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5436  *
5437  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5438  * back.
5439  *
5440  * Return: pointer to the allocated area or %NULL in case of error.
5441  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5442 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5443 {
5444 	unsigned int order = get_order(size);
5445 	struct page *p;
5446 
5447 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5448 		gfp_mask &= ~__GFP_COMP;
5449 
5450 	p = alloc_pages_node(nid, gfp_mask, order);
5451 	if (!p)
5452 		return NULL;
5453 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5454 }
5455 
5456 /**
5457  * free_pages_exact - release memory allocated via alloc_pages_exact()
5458  * @virt: the value returned by alloc_pages_exact.
5459  * @size: size of allocation, same value as passed to alloc_pages_exact().
5460  *
5461  * Release the memory allocated by a previous call to alloc_pages_exact.
5462  */
free_pages_exact(void * virt,size_t size)5463 void free_pages_exact(void *virt, size_t size)
5464 {
5465 	unsigned long addr = (unsigned long)virt;
5466 	unsigned long end = addr + PAGE_ALIGN(size);
5467 
5468 	while (addr < end) {
5469 		free_page(addr);
5470 		addr += PAGE_SIZE;
5471 	}
5472 }
5473 EXPORT_SYMBOL(free_pages_exact);
5474 
5475 /**
5476  * nr_free_zone_pages - count number of pages beyond high watermark
5477  * @offset: The zone index of the highest zone
5478  *
5479  * nr_free_zone_pages() counts the number of pages which are beyond the
5480  * high watermark within all zones at or below a given zone index.  For each
5481  * zone, the number of pages is calculated as:
5482  *
5483  *     nr_free_zone_pages = managed_pages - high_pages
5484  *
5485  * Return: number of pages beyond high watermark.
5486  */
nr_free_zone_pages(int offset)5487 static unsigned long nr_free_zone_pages(int offset)
5488 {
5489 	struct zoneref *z;
5490 	struct zone *zone;
5491 
5492 	/* Just pick one node, since fallback list is circular */
5493 	unsigned long sum = 0;
5494 
5495 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5496 
5497 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5498 		unsigned long size = zone_managed_pages(zone);
5499 		unsigned long high = high_wmark_pages(zone);
5500 		if (size > high)
5501 			sum += size - high;
5502 	}
5503 
5504 	return sum;
5505 }
5506 
5507 /**
5508  * nr_free_buffer_pages - count number of pages beyond high watermark
5509  *
5510  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5511  * watermark within ZONE_DMA and ZONE_NORMAL.
5512  *
5513  * Return: number of pages beyond high watermark within ZONE_DMA and
5514  * ZONE_NORMAL.
5515  */
nr_free_buffer_pages(void)5516 unsigned long nr_free_buffer_pages(void)
5517 {
5518 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5519 }
5520 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5521 
show_node(struct zone * zone)5522 static inline void show_node(struct zone *zone)
5523 {
5524 	if (IS_ENABLED(CONFIG_NUMA))
5525 		printk("Node %d ", zone_to_nid(zone));
5526 }
5527 
si_mem_available(void)5528 long si_mem_available(void)
5529 {
5530 	long available;
5531 	unsigned long pagecache;
5532 	unsigned long wmark_low = 0;
5533 	unsigned long pages[NR_LRU_LISTS];
5534 	unsigned long reclaimable;
5535 	struct zone *zone;
5536 	int lru;
5537 
5538 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5539 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5540 
5541 	for_each_zone(zone)
5542 		wmark_low += low_wmark_pages(zone);
5543 
5544 	/*
5545 	 * Estimate the amount of memory available for userspace allocations,
5546 	 * without causing swapping.
5547 	 */
5548 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5549 
5550 	/*
5551 	 * Not all the page cache can be freed, otherwise the system will
5552 	 * start swapping. Assume at least half of the page cache, or the
5553 	 * low watermark worth of cache, needs to stay.
5554 	 */
5555 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5556 	pagecache -= min(pagecache / 2, wmark_low);
5557 	available += pagecache;
5558 
5559 	/*
5560 	 * Part of the reclaimable slab and other kernel memory consists of
5561 	 * items that are in use, and cannot be freed. Cap this estimate at the
5562 	 * low watermark.
5563 	 */
5564 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5565 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5566 	available += reclaimable - min(reclaimable / 2, wmark_low);
5567 
5568 	if (available < 0)
5569 		available = 0;
5570 	return available;
5571 }
5572 EXPORT_SYMBOL_GPL(si_mem_available);
5573 
si_meminfo(struct sysinfo * val)5574 void si_meminfo(struct sysinfo *val)
5575 {
5576 	val->totalram = totalram_pages();
5577 	val->sharedram = global_node_page_state(NR_SHMEM);
5578 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5579 	val->bufferram = nr_blockdev_pages();
5580 	val->totalhigh = totalhigh_pages();
5581 	val->freehigh = nr_free_highpages();
5582 	val->mem_unit = PAGE_SIZE;
5583 }
5584 
5585 EXPORT_SYMBOL(si_meminfo);
5586 
5587 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)5588 void si_meminfo_node(struct sysinfo *val, int nid)
5589 {
5590 	int zone_type;		/* needs to be signed */
5591 	unsigned long managed_pages = 0;
5592 	unsigned long managed_highpages = 0;
5593 	unsigned long free_highpages = 0;
5594 	pg_data_t *pgdat = NODE_DATA(nid);
5595 
5596 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5597 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5598 	val->totalram = managed_pages;
5599 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5600 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5601 #ifdef CONFIG_HIGHMEM
5602 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5603 		struct zone *zone = &pgdat->node_zones[zone_type];
5604 
5605 		if (is_highmem(zone)) {
5606 			managed_highpages += zone_managed_pages(zone);
5607 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5608 		}
5609 	}
5610 	val->totalhigh = managed_highpages;
5611 	val->freehigh = free_highpages;
5612 #else
5613 	val->totalhigh = managed_highpages;
5614 	val->freehigh = free_highpages;
5615 #endif
5616 	val->mem_unit = PAGE_SIZE;
5617 }
5618 #endif
5619 
5620 /*
5621  * Determine whether the node should be displayed or not, depending on whether
5622  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5623  */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)5624 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5625 {
5626 	if (!(flags & SHOW_MEM_FILTER_NODES))
5627 		return false;
5628 
5629 	/*
5630 	 * no node mask - aka implicit memory numa policy. Do not bother with
5631 	 * the synchronization - read_mems_allowed_begin - because we do not
5632 	 * have to be precise here.
5633 	 */
5634 	if (!nodemask)
5635 		nodemask = &cpuset_current_mems_allowed;
5636 
5637 	return !node_isset(nid, *nodemask);
5638 }
5639 
5640 #define K(x) ((x) << (PAGE_SHIFT-10))
5641 
show_migration_types(unsigned char type)5642 static void show_migration_types(unsigned char type)
5643 {
5644 	static const char types[MIGRATE_TYPES] = {
5645 		[MIGRATE_UNMOVABLE]	= 'U',
5646 		[MIGRATE_MOVABLE]	= 'M',
5647 		[MIGRATE_RECLAIMABLE]	= 'E',
5648 		[MIGRATE_HIGHATOMIC]	= 'H',
5649 #ifdef CONFIG_CMA
5650 		[MIGRATE_CMA]		= 'C',
5651 #endif
5652 #ifdef CONFIG_MEMORY_ISOLATION
5653 		[MIGRATE_ISOLATE]	= 'I',
5654 #endif
5655 	};
5656 	char tmp[MIGRATE_TYPES + 1];
5657 	char *p = tmp;
5658 	int i;
5659 
5660 	for (i = 0; i < MIGRATE_TYPES; i++) {
5661 		if (type & (1 << i))
5662 			*p++ = types[i];
5663 	}
5664 
5665 	*p = '\0';
5666 	printk(KERN_CONT "(%s) ", tmp);
5667 }
5668 
5669 /*
5670  * Show free area list (used inside shift_scroll-lock stuff)
5671  * We also calculate the percentage fragmentation. We do this by counting the
5672  * memory on each free list with the exception of the first item on the list.
5673  *
5674  * Bits in @filter:
5675  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5676  *   cpuset.
5677  */
show_free_areas(unsigned int filter,nodemask_t * nodemask)5678 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5679 {
5680 	unsigned long free_pcp = 0;
5681 	int cpu;
5682 	struct zone *zone;
5683 	pg_data_t *pgdat;
5684 
5685 	for_each_populated_zone(zone) {
5686 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5687 			continue;
5688 
5689 		for_each_online_cpu(cpu)
5690 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5691 	}
5692 
5693 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5694 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5695 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5696 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5697 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5698 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5699 		global_node_page_state(NR_ACTIVE_ANON),
5700 		global_node_page_state(NR_INACTIVE_ANON),
5701 		global_node_page_state(NR_ISOLATED_ANON),
5702 		global_node_page_state(NR_ACTIVE_FILE),
5703 		global_node_page_state(NR_INACTIVE_FILE),
5704 		global_node_page_state(NR_ISOLATED_FILE),
5705 		global_node_page_state(NR_UNEVICTABLE),
5706 		global_node_page_state(NR_FILE_DIRTY),
5707 		global_node_page_state(NR_WRITEBACK),
5708 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5709 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5710 		global_node_page_state(NR_FILE_MAPPED),
5711 		global_node_page_state(NR_SHMEM),
5712 		global_zone_page_state(NR_PAGETABLE),
5713 		global_zone_page_state(NR_BOUNCE),
5714 		global_zone_page_state(NR_FREE_PAGES),
5715 		free_pcp,
5716 		global_zone_page_state(NR_FREE_CMA_PAGES));
5717 
5718 	trace_android_vh_show_mapcount_pages(NULL);
5719 	for_each_online_pgdat(pgdat) {
5720 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5721 			continue;
5722 
5723 		printk("Node %d"
5724 			" active_anon:%lukB"
5725 			" inactive_anon:%lukB"
5726 			" active_file:%lukB"
5727 			" inactive_file:%lukB"
5728 			" unevictable:%lukB"
5729 			" isolated(anon):%lukB"
5730 			" isolated(file):%lukB"
5731 			" mapped:%lukB"
5732 			" dirty:%lukB"
5733 			" writeback:%lukB"
5734 			" shmem:%lukB"
5735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5736 			" shmem_thp: %lukB"
5737 			" shmem_pmdmapped: %lukB"
5738 			" anon_thp: %lukB"
5739 #endif
5740 			" writeback_tmp:%lukB"
5741 			" kernel_stack:%lukB"
5742 #ifdef CONFIG_SHADOW_CALL_STACK
5743 			" shadow_call_stack:%lukB"
5744 #endif
5745 			" all_unreclaimable? %s"
5746 			"\n",
5747 			pgdat->node_id,
5748 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5749 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5750 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5751 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5752 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5753 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5754 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5755 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5756 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5757 			K(node_page_state(pgdat, NR_WRITEBACK)),
5758 			K(node_page_state(pgdat, NR_SHMEM)),
5759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5760 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5761 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5762 					* HPAGE_PMD_NR),
5763 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5764 #endif
5765 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5766 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5767 #ifdef CONFIG_SHADOW_CALL_STACK
5768 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5769 #endif
5770 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5771 				"yes" : "no");
5772 	}
5773 
5774 	for_each_populated_zone(zone) {
5775 		int i;
5776 
5777 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5778 			continue;
5779 
5780 		free_pcp = 0;
5781 		for_each_online_cpu(cpu)
5782 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5783 
5784 		show_node(zone);
5785 		printk(KERN_CONT
5786 			"%s"
5787 			" free:%lukB"
5788 			" min:%lukB"
5789 			" low:%lukB"
5790 			" high:%lukB"
5791 			" reserved_highatomic:%luKB"
5792 			" active_anon:%lukB"
5793 			" inactive_anon:%lukB"
5794 			" active_file:%lukB"
5795 			" inactive_file:%lukB"
5796 			" unevictable:%lukB"
5797 			" writepending:%lukB"
5798 			" present:%lukB"
5799 			" managed:%lukB"
5800 			" mlocked:%lukB"
5801 			" pagetables:%lukB"
5802 			" bounce:%lukB"
5803 			" free_pcp:%lukB"
5804 			" local_pcp:%ukB"
5805 			" free_cma:%lukB"
5806 			"\n",
5807 			zone->name,
5808 			K(zone_page_state(zone, NR_FREE_PAGES)),
5809 			K(min_wmark_pages(zone)),
5810 			K(low_wmark_pages(zone)),
5811 			K(high_wmark_pages(zone)),
5812 			K(zone->nr_reserved_highatomic),
5813 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5814 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5815 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5816 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5817 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5818 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5819 			K(zone->present_pages),
5820 			K(zone_managed_pages(zone)),
5821 			K(zone_page_state(zone, NR_MLOCK)),
5822 			K(zone_page_state(zone, NR_PAGETABLE)),
5823 			K(zone_page_state(zone, NR_BOUNCE)),
5824 			K(free_pcp),
5825 			K(this_cpu_read(zone->pageset->pcp.count)),
5826 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5827 		printk("lowmem_reserve[]:");
5828 		for (i = 0; i < MAX_NR_ZONES; i++)
5829 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5830 		printk(KERN_CONT "\n");
5831 	}
5832 
5833 	for_each_populated_zone(zone) {
5834 		unsigned int order;
5835 		unsigned long nr[MAX_ORDER], flags, total = 0;
5836 		unsigned char types[MAX_ORDER];
5837 
5838 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5839 			continue;
5840 		show_node(zone);
5841 		printk(KERN_CONT "%s: ", zone->name);
5842 
5843 		spin_lock_irqsave(&zone->lock, flags);
5844 		for (order = 0; order < MAX_ORDER; order++) {
5845 			struct free_area *area = &zone->free_area[order];
5846 			int type;
5847 
5848 			nr[order] = area->nr_free;
5849 			total += nr[order] << order;
5850 
5851 			types[order] = 0;
5852 			for (type = 0; type < MIGRATE_TYPES; type++) {
5853 				if (!free_area_empty(area, type))
5854 					types[order] |= 1 << type;
5855 			}
5856 		}
5857 		spin_unlock_irqrestore(&zone->lock, flags);
5858 		for (order = 0; order < MAX_ORDER; order++) {
5859 			printk(KERN_CONT "%lu*%lukB ",
5860 			       nr[order], K(1UL) << order);
5861 			if (nr[order])
5862 				show_migration_types(types[order]);
5863 		}
5864 		printk(KERN_CONT "= %lukB\n", K(total));
5865 	}
5866 
5867 	hugetlb_show_meminfo();
5868 
5869 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5870 
5871 	show_swap_cache_info();
5872 }
5873 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5874 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5875 {
5876 	zoneref->zone = zone;
5877 	zoneref->zone_idx = zone_idx(zone);
5878 }
5879 
5880 /*
5881  * Builds allocation fallback zone lists.
5882  *
5883  * Add all populated zones of a node to the zonelist.
5884  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5885 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5886 {
5887 	struct zone *zone;
5888 	enum zone_type zone_type = MAX_NR_ZONES;
5889 	int nr_zones = 0;
5890 
5891 	do {
5892 		zone_type--;
5893 		zone = pgdat->node_zones + zone_type;
5894 		if (populated_zone(zone)) {
5895 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5896 			check_highest_zone(zone_type);
5897 		}
5898 	} while (zone_type);
5899 
5900 	return nr_zones;
5901 }
5902 
5903 #ifdef CONFIG_NUMA
5904 
__parse_numa_zonelist_order(char * s)5905 static int __parse_numa_zonelist_order(char *s)
5906 {
5907 	/*
5908 	 * We used to support different zonlists modes but they turned
5909 	 * out to be just not useful. Let's keep the warning in place
5910 	 * if somebody still use the cmd line parameter so that we do
5911 	 * not fail it silently
5912 	 */
5913 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5914 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5915 		return -EINVAL;
5916 	}
5917 	return 0;
5918 }
5919 
5920 char numa_zonelist_order[] = "Node";
5921 
5922 /*
5923  * sysctl handler for numa_zonelist_order
5924  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5925 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5926 		void *buffer, size_t *length, loff_t *ppos)
5927 {
5928 	if (write)
5929 		return __parse_numa_zonelist_order(buffer);
5930 	return proc_dostring(table, write, buffer, length, ppos);
5931 }
5932 
5933 
5934 #define MAX_NODE_LOAD (nr_online_nodes)
5935 static int node_load[MAX_NUMNODES];
5936 
5937 /**
5938  * find_next_best_node - find the next node that should appear in a given node's fallback list
5939  * @node: node whose fallback list we're appending
5940  * @used_node_mask: nodemask_t of already used nodes
5941  *
5942  * We use a number of factors to determine which is the next node that should
5943  * appear on a given node's fallback list.  The node should not have appeared
5944  * already in @node's fallback list, and it should be the next closest node
5945  * according to the distance array (which contains arbitrary distance values
5946  * from each node to each node in the system), and should also prefer nodes
5947  * with no CPUs, since presumably they'll have very little allocation pressure
5948  * on them otherwise.
5949  *
5950  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5951  */
find_next_best_node(int node,nodemask_t * used_node_mask)5952 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5953 {
5954 	int n, val;
5955 	int min_val = INT_MAX;
5956 	int best_node = NUMA_NO_NODE;
5957 
5958 	/* Use the local node if we haven't already */
5959 	if (!node_isset(node, *used_node_mask)) {
5960 		node_set(node, *used_node_mask);
5961 		return node;
5962 	}
5963 
5964 	for_each_node_state(n, N_MEMORY) {
5965 
5966 		/* Don't want a node to appear more than once */
5967 		if (node_isset(n, *used_node_mask))
5968 			continue;
5969 
5970 		/* Use the distance array to find the distance */
5971 		val = node_distance(node, n);
5972 
5973 		/* Penalize nodes under us ("prefer the next node") */
5974 		val += (n < node);
5975 
5976 		/* Give preference to headless and unused nodes */
5977 		if (!cpumask_empty(cpumask_of_node(n)))
5978 			val += PENALTY_FOR_NODE_WITH_CPUS;
5979 
5980 		/* Slight preference for less loaded node */
5981 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5982 		val += node_load[n];
5983 
5984 		if (val < min_val) {
5985 			min_val = val;
5986 			best_node = n;
5987 		}
5988 	}
5989 
5990 	if (best_node >= 0)
5991 		node_set(best_node, *used_node_mask);
5992 
5993 	return best_node;
5994 }
5995 
5996 
5997 /*
5998  * Build zonelists ordered by node and zones within node.
5999  * This results in maximum locality--normal zone overflows into local
6000  * DMA zone, if any--but risks exhausting DMA zone.
6001  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)6002 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6003 		unsigned nr_nodes)
6004 {
6005 	struct zoneref *zonerefs;
6006 	int i;
6007 
6008 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6009 
6010 	for (i = 0; i < nr_nodes; i++) {
6011 		int nr_zones;
6012 
6013 		pg_data_t *node = NODE_DATA(node_order[i]);
6014 
6015 		nr_zones = build_zonerefs_node(node, zonerefs);
6016 		zonerefs += nr_zones;
6017 	}
6018 	zonerefs->zone = NULL;
6019 	zonerefs->zone_idx = 0;
6020 }
6021 
6022 /*
6023  * Build gfp_thisnode zonelists
6024  */
build_thisnode_zonelists(pg_data_t * pgdat)6025 static void build_thisnode_zonelists(pg_data_t *pgdat)
6026 {
6027 	struct zoneref *zonerefs;
6028 	int nr_zones;
6029 
6030 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6031 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6032 	zonerefs += nr_zones;
6033 	zonerefs->zone = NULL;
6034 	zonerefs->zone_idx = 0;
6035 }
6036 
6037 /*
6038  * Build zonelists ordered by zone and nodes within zones.
6039  * This results in conserving DMA zone[s] until all Normal memory is
6040  * exhausted, but results in overflowing to remote node while memory
6041  * may still exist in local DMA zone.
6042  */
6043 
build_zonelists(pg_data_t * pgdat)6044 static void build_zonelists(pg_data_t *pgdat)
6045 {
6046 	static int node_order[MAX_NUMNODES];
6047 	int node, load, nr_nodes = 0;
6048 	nodemask_t used_mask = NODE_MASK_NONE;
6049 	int local_node, prev_node;
6050 
6051 	/* NUMA-aware ordering of nodes */
6052 	local_node = pgdat->node_id;
6053 	load = nr_online_nodes;
6054 	prev_node = local_node;
6055 
6056 	memset(node_order, 0, sizeof(node_order));
6057 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6058 		/*
6059 		 * We don't want to pressure a particular node.
6060 		 * So adding penalty to the first node in same
6061 		 * distance group to make it round-robin.
6062 		 */
6063 		if (node_distance(local_node, node) !=
6064 		    node_distance(local_node, prev_node))
6065 			node_load[node] = load;
6066 
6067 		node_order[nr_nodes++] = node;
6068 		prev_node = node;
6069 		load--;
6070 	}
6071 
6072 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6073 	build_thisnode_zonelists(pgdat);
6074 }
6075 
6076 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6077 /*
6078  * Return node id of node used for "local" allocations.
6079  * I.e., first node id of first zone in arg node's generic zonelist.
6080  * Used for initializing percpu 'numa_mem', which is used primarily
6081  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6082  */
local_memory_node(int node)6083 int local_memory_node(int node)
6084 {
6085 	struct zoneref *z;
6086 
6087 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6088 				   gfp_zone(GFP_KERNEL),
6089 				   NULL);
6090 	return zone_to_nid(z->zone);
6091 }
6092 #endif
6093 
6094 static void setup_min_unmapped_ratio(void);
6095 static void setup_min_slab_ratio(void);
6096 #else	/* CONFIG_NUMA */
6097 
build_zonelists(pg_data_t * pgdat)6098 static void build_zonelists(pg_data_t *pgdat)
6099 {
6100 	int node, local_node;
6101 	struct zoneref *zonerefs;
6102 	int nr_zones;
6103 
6104 	local_node = pgdat->node_id;
6105 
6106 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6107 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6108 	zonerefs += nr_zones;
6109 
6110 	/*
6111 	 * Now we build the zonelist so that it contains the zones
6112 	 * of all the other nodes.
6113 	 * We don't want to pressure a particular node, so when
6114 	 * building the zones for node N, we make sure that the
6115 	 * zones coming right after the local ones are those from
6116 	 * node N+1 (modulo N)
6117 	 */
6118 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6119 		if (!node_online(node))
6120 			continue;
6121 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6122 		zonerefs += nr_zones;
6123 	}
6124 	for (node = 0; node < local_node; node++) {
6125 		if (!node_online(node))
6126 			continue;
6127 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6128 		zonerefs += nr_zones;
6129 	}
6130 
6131 	zonerefs->zone = NULL;
6132 	zonerefs->zone_idx = 0;
6133 }
6134 
6135 #endif	/* CONFIG_NUMA */
6136 
6137 /*
6138  * Boot pageset table. One per cpu which is going to be used for all
6139  * zones and all nodes. The parameters will be set in such a way
6140  * that an item put on a list will immediately be handed over to
6141  * the buddy list. This is safe since pageset manipulation is done
6142  * with interrupts disabled.
6143  *
6144  * The boot_pagesets must be kept even after bootup is complete for
6145  * unused processors and/or zones. They do play a role for bootstrapping
6146  * hotplugged processors.
6147  *
6148  * zoneinfo_show() and maybe other functions do
6149  * not check if the processor is online before following the pageset pointer.
6150  * Other parts of the kernel may not check if the zone is available.
6151  */
6152 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
6153 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6154 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6155 
__build_all_zonelists(void * data)6156 static void __build_all_zonelists(void *data)
6157 {
6158 	int nid;
6159 	int __maybe_unused cpu;
6160 	pg_data_t *self = data;
6161 
6162 	write_seqlock(&zonelist_update_seq);
6163 
6164 #ifdef CONFIG_NUMA
6165 	memset(node_load, 0, sizeof(node_load));
6166 #endif
6167 
6168 	/*
6169 	 * This node is hotadded and no memory is yet present.   So just
6170 	 * building zonelists is fine - no need to touch other nodes.
6171 	 */
6172 	if (self && !node_online(self->node_id)) {
6173 		build_zonelists(self);
6174 	} else {
6175 		for_each_online_node(nid) {
6176 			pg_data_t *pgdat = NODE_DATA(nid);
6177 
6178 			build_zonelists(pgdat);
6179 		}
6180 
6181 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6182 		/*
6183 		 * We now know the "local memory node" for each node--
6184 		 * i.e., the node of the first zone in the generic zonelist.
6185 		 * Set up numa_mem percpu variable for on-line cpus.  During
6186 		 * boot, only the boot cpu should be on-line;  we'll init the
6187 		 * secondary cpus' numa_mem as they come on-line.  During
6188 		 * node/memory hotplug, we'll fixup all on-line cpus.
6189 		 */
6190 		for_each_online_cpu(cpu)
6191 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6192 #endif
6193 	}
6194 
6195 	write_sequnlock(&zonelist_update_seq);
6196 }
6197 
6198 static noinline void __init
build_all_zonelists_init(void)6199 build_all_zonelists_init(void)
6200 {
6201 	int cpu;
6202 
6203 	__build_all_zonelists(NULL);
6204 
6205 	/*
6206 	 * Initialize the boot_pagesets that are going to be used
6207 	 * for bootstrapping processors. The real pagesets for
6208 	 * each zone will be allocated later when the per cpu
6209 	 * allocator is available.
6210 	 *
6211 	 * boot_pagesets are used also for bootstrapping offline
6212 	 * cpus if the system is already booted because the pagesets
6213 	 * are needed to initialize allocators on a specific cpu too.
6214 	 * F.e. the percpu allocator needs the page allocator which
6215 	 * needs the percpu allocator in order to allocate its pagesets
6216 	 * (a chicken-egg dilemma).
6217 	 */
6218 	for_each_possible_cpu(cpu)
6219 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
6220 
6221 	mminit_verify_zonelist();
6222 	cpuset_init_current_mems_allowed();
6223 }
6224 
6225 /*
6226  * unless system_state == SYSTEM_BOOTING.
6227  *
6228  * __ref due to call of __init annotated helper build_all_zonelists_init
6229  * [protected by SYSTEM_BOOTING].
6230  */
build_all_zonelists(pg_data_t * pgdat)6231 void __ref build_all_zonelists(pg_data_t *pgdat)
6232 {
6233 	unsigned long vm_total_pages;
6234 
6235 	if (system_state == SYSTEM_BOOTING) {
6236 		build_all_zonelists_init();
6237 	} else {
6238 		__build_all_zonelists(pgdat);
6239 		/* cpuset refresh routine should be here */
6240 	}
6241 	/* Get the number of free pages beyond high watermark in all zones. */
6242 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6243 	/*
6244 	 * Disable grouping by mobility if the number of pages in the
6245 	 * system is too low to allow the mechanism to work. It would be
6246 	 * more accurate, but expensive to check per-zone. This check is
6247 	 * made on memory-hotadd so a system can start with mobility
6248 	 * disabled and enable it later
6249 	 */
6250 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6251 		page_group_by_mobility_disabled = 1;
6252 	else
6253 		page_group_by_mobility_disabled = 0;
6254 
6255 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6256 		nr_online_nodes,
6257 		page_group_by_mobility_disabled ? "off" : "on",
6258 		vm_total_pages);
6259 #ifdef CONFIG_NUMA
6260 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6261 #endif
6262 }
6263 
6264 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6265 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)6266 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6267 {
6268 	static struct memblock_region *r;
6269 
6270 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6271 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6272 			for_each_mem_region(r) {
6273 				if (*pfn < memblock_region_memory_end_pfn(r))
6274 					break;
6275 			}
6276 		}
6277 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6278 		    memblock_is_mirror(r)) {
6279 			*pfn = memblock_region_memory_end_pfn(r);
6280 			return true;
6281 		}
6282 	}
6283 	return false;
6284 }
6285 
6286 /*
6287  * Initially all pages are reserved - free ones are freed
6288  * up by memblock_free_all() once the early boot process is
6289  * done. Non-atomic initialization, single-pass.
6290  *
6291  * All aligned pageblocks are initialized to the specified migratetype
6292  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6293  * zone stats (e.g., nr_isolate_pageblock) are touched.
6294  */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)6295 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6296 		unsigned long start_pfn, unsigned long zone_end_pfn,
6297 		enum meminit_context context,
6298 		struct vmem_altmap *altmap, int migratetype)
6299 {
6300 	unsigned long pfn, end_pfn = start_pfn + size;
6301 	struct page *page;
6302 
6303 	if (highest_memmap_pfn < end_pfn - 1)
6304 		highest_memmap_pfn = end_pfn - 1;
6305 
6306 #ifdef CONFIG_ZONE_DEVICE
6307 	/*
6308 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6309 	 * memory. We limit the total number of pages to initialize to just
6310 	 * those that might contain the memory mapping. We will defer the
6311 	 * ZONE_DEVICE page initialization until after we have released
6312 	 * the hotplug lock.
6313 	 */
6314 	if (zone == ZONE_DEVICE) {
6315 		if (!altmap)
6316 			return;
6317 
6318 		if (start_pfn == altmap->base_pfn)
6319 			start_pfn += altmap->reserve;
6320 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6321 	}
6322 #endif
6323 
6324 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT
6325 	/* Zero all page struct in advance */
6326 	memset(pfn_to_page(start_pfn), 0, sizeof(struct page) * size);
6327 #endif
6328 
6329 	for (pfn = start_pfn; pfn < end_pfn; ) {
6330 		/*
6331 		 * There can be holes in boot-time mem_map[]s handed to this
6332 		 * function.  They do not exist on hotplugged memory.
6333 		 */
6334 		if (context == MEMINIT_EARLY) {
6335 			if (overlap_memmap_init(zone, &pfn))
6336 				continue;
6337 			if (defer_init(nid, pfn, zone_end_pfn))
6338 				break;
6339 		}
6340 
6341 		page = pfn_to_page(pfn);
6342 		__init_single_page(page, pfn, zone, nid, false);
6343 		if (context == MEMINIT_HOTPLUG)
6344 			__SetPageReserved(page);
6345 
6346 		/*
6347 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6348 		 * such that unmovable allocations won't be scattered all
6349 		 * over the place during system boot.
6350 		 */
6351 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6352 			set_pageblock_migratetype(page, migratetype);
6353 			cond_resched();
6354 		}
6355 		pfn++;
6356 	}
6357 }
6358 
6359 #ifdef CONFIG_ZONE_DEVICE
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)6360 void __ref memmap_init_zone_device(struct zone *zone,
6361 				   unsigned long start_pfn,
6362 				   unsigned long nr_pages,
6363 				   struct dev_pagemap *pgmap)
6364 {
6365 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6366 	struct pglist_data *pgdat = zone->zone_pgdat;
6367 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6368 	unsigned long zone_idx = zone_idx(zone);
6369 	unsigned long start = jiffies;
6370 	int nid = pgdat->node_id;
6371 
6372 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6373 		return;
6374 
6375 	/*
6376 	 * The call to memmap_init should have already taken care
6377 	 * of the pages reserved for the memmap, so we can just jump to
6378 	 * the end of that region and start processing the device pages.
6379 	 */
6380 	if (altmap) {
6381 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6382 		nr_pages = end_pfn - start_pfn;
6383 	}
6384 
6385 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6386 		struct page *page = pfn_to_page(pfn);
6387 
6388 		__init_single_page(page, pfn, zone_idx, nid, true);
6389 
6390 		/*
6391 		 * Mark page reserved as it will need to wait for onlining
6392 		 * phase for it to be fully associated with a zone.
6393 		 *
6394 		 * We can use the non-atomic __set_bit operation for setting
6395 		 * the flag as we are still initializing the pages.
6396 		 */
6397 		__SetPageReserved(page);
6398 
6399 		/*
6400 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6401 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6402 		 * ever freed or placed on a driver-private list.
6403 		 */
6404 		page->pgmap = pgmap;
6405 		page->zone_device_data = NULL;
6406 
6407 		/*
6408 		 * Mark the block movable so that blocks are reserved for
6409 		 * movable at startup. This will force kernel allocations
6410 		 * to reserve their blocks rather than leaking throughout
6411 		 * the address space during boot when many long-lived
6412 		 * kernel allocations are made.
6413 		 *
6414 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6415 		 * because this is done early in section_activate()
6416 		 */
6417 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6418 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6419 			cond_resched();
6420 		}
6421 	}
6422 
6423 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6424 		nr_pages, jiffies_to_msecs(jiffies - start));
6425 }
6426 
6427 #endif
zone_init_free_lists(struct zone * zone)6428 static void __meminit zone_init_free_lists(struct zone *zone)
6429 {
6430 	unsigned int order, t;
6431 	for_each_migratetype_order(order, t) {
6432 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6433 		zone->free_area[order].nr_free = 0;
6434 	}
6435 }
6436 
6437 /*
6438  * Only struct pages that correspond to ranges defined by memblock.memory
6439  * are zeroed and initialized by going through __init_single_page() during
6440  * memmap_init_zone_range().
6441  *
6442  * But, there could be struct pages that correspond to holes in
6443  * memblock.memory. This can happen because of the following reasons:
6444  * - physical memory bank size is not necessarily the exact multiple of the
6445  *   arbitrary section size
6446  * - early reserved memory may not be listed in memblock.memory
6447  * - memory layouts defined with memmap= kernel parameter may not align
6448  *   nicely with memmap sections
6449  *
6450  * Explicitly initialize those struct pages so that:
6451  * - PG_Reserved is set
6452  * - zone and node links point to zone and node that span the page if the
6453  *   hole is in the middle of a zone
6454  * - zone and node links point to adjacent zone/node if the hole falls on
6455  *   the zone boundary; the pages in such holes will be prepended to the
6456  *   zone/node above the hole except for the trailing pages in the last
6457  *   section that will be appended to the zone/node below.
6458  */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)6459 static void __init init_unavailable_range(unsigned long spfn,
6460 					  unsigned long epfn,
6461 					  int zone, int node)
6462 {
6463 	unsigned long pfn;
6464 	u64 pgcnt = 0;
6465 
6466 	for (pfn = spfn; pfn < epfn; pfn++) {
6467 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6468 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6469 				+ pageblock_nr_pages - 1;
6470 			continue;
6471 		}
6472 		__init_single_page(pfn_to_page(pfn), pfn, zone, node, true);
6473 		__SetPageReserved(pfn_to_page(pfn));
6474 		pgcnt++;
6475 	}
6476 
6477 	if (pgcnt)
6478 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6479 			node, zone_names[zone], pgcnt);
6480 }
6481 
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)6482 static void __init memmap_init_zone_range(struct zone *zone,
6483 					  unsigned long start_pfn,
6484 					  unsigned long end_pfn,
6485 					  unsigned long *hole_pfn)
6486 {
6487 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6488 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6489 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6490 
6491 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6492 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6493 
6494 	if (start_pfn >= end_pfn)
6495 		return;
6496 
6497 	memmap_init_zone(end_pfn - start_pfn, nid, zone_id, start_pfn,
6498 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6499 
6500 	if (*hole_pfn < start_pfn)
6501 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6502 
6503 	*hole_pfn = end_pfn;
6504 }
6505 
memmap_init(void)6506 void __init __weak memmap_init(void)
6507 {
6508 	unsigned long start_pfn, end_pfn;
6509 	unsigned long hole_pfn = 0;
6510 	int i, j, zone_id, nid;
6511 
6512 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6513 		struct pglist_data *node = NODE_DATA(nid);
6514 
6515 		for (j = 0; j < MAX_NR_ZONES; j++) {
6516 			struct zone *zone = node->node_zones + j;
6517 
6518 			if (!populated_zone(zone))
6519 				continue;
6520 
6521 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6522 					       &hole_pfn);
6523 			zone_id = j;
6524 		}
6525 	}
6526 
6527 #ifdef CONFIG_SPARSEMEM
6528 	/*
6529 	 * Initialize the memory map for hole in the range [memory_end,
6530 	 * section_end].
6531 	 * Append the pages in this hole to the highest zone in the last
6532 	 * node.
6533 	 * The call to init_unavailable_range() is outside the ifdef to
6534 	 * silence the compiler warining about zone_id set but not used;
6535 	 * for FLATMEM it is a nop anyway
6536 	 */
6537 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6538 	if (hole_pfn < end_pfn)
6539 #endif
6540 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6541 }
6542 
6543 /* A stub for backwards compatibility with custom implementatin on IA-64 */
arch_memmap_init(unsigned long size,int nid,unsigned long zone,unsigned long range_start_pfn)6544 void __meminit __weak arch_memmap_init(unsigned long size, int nid,
6545 				       unsigned long zone,
6546 				       unsigned long range_start_pfn)
6547 {
6548 }
6549 
zone_batchsize(struct zone * zone)6550 static int zone_batchsize(struct zone *zone)
6551 {
6552 #ifdef CONFIG_MMU
6553 	int batch;
6554 
6555 	/*
6556 	 * The per-cpu-pages pools are set to around 1000th of the
6557 	 * size of the zone.
6558 	 */
6559 	batch = zone_managed_pages(zone) / 1024;
6560 	/* But no more than a meg. */
6561 	if (batch * PAGE_SIZE > 1024 * 1024)
6562 		batch = (1024 * 1024) / PAGE_SIZE;
6563 	batch /= 4;		/* We effectively *= 4 below */
6564 	if (batch < 1)
6565 		batch = 1;
6566 
6567 	/*
6568 	 * Clamp the batch to a 2^n - 1 value. Having a power
6569 	 * of 2 value was found to be more likely to have
6570 	 * suboptimal cache aliasing properties in some cases.
6571 	 *
6572 	 * For example if 2 tasks are alternately allocating
6573 	 * batches of pages, one task can end up with a lot
6574 	 * of pages of one half of the possible page colors
6575 	 * and the other with pages of the other colors.
6576 	 */
6577 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6578 
6579 	return batch;
6580 
6581 #else
6582 	/* The deferral and batching of frees should be suppressed under NOMMU
6583 	 * conditions.
6584 	 *
6585 	 * The problem is that NOMMU needs to be able to allocate large chunks
6586 	 * of contiguous memory as there's no hardware page translation to
6587 	 * assemble apparent contiguous memory from discontiguous pages.
6588 	 *
6589 	 * Queueing large contiguous runs of pages for batching, however,
6590 	 * causes the pages to actually be freed in smaller chunks.  As there
6591 	 * can be a significant delay between the individual batches being
6592 	 * recycled, this leads to the once large chunks of space being
6593 	 * fragmented and becoming unavailable for high-order allocations.
6594 	 */
6595 	return 0;
6596 #endif
6597 }
6598 
6599 /*
6600  * pcp->high and pcp->batch values are related and dependent on one another:
6601  * ->batch must never be higher then ->high.
6602  * The following function updates them in a safe manner without read side
6603  * locking.
6604  *
6605  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6606  * those fields changing asynchronously (acording to the above rule).
6607  *
6608  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6609  * outside of boot time (or some other assurance that no concurrent updaters
6610  * exist).
6611  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)6612 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6613 		unsigned long batch)
6614 {
6615        /* start with a fail safe value for batch */
6616 	pcp->batch = 1;
6617 	smp_wmb();
6618 
6619        /* Update high, then batch, in order */
6620 	pcp->high = high;
6621 	smp_wmb();
6622 
6623 	pcp->batch = batch;
6624 }
6625 
6626 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)6627 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6628 {
6629 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6630 }
6631 
pageset_init(struct per_cpu_pageset * p)6632 static void pageset_init(struct per_cpu_pageset *p)
6633 {
6634 	struct per_cpu_pages *pcp;
6635 	int migratetype;
6636 
6637 	memset(p, 0, sizeof(*p));
6638 
6639 	pcp = &p->pcp;
6640 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6641 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6642 }
6643 
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)6644 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6645 {
6646 	pageset_init(p);
6647 	pageset_set_batch(p, batch);
6648 }
6649 
6650 /*
6651  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6652  * to the value high for the pageset p.
6653  */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)6654 static void pageset_set_high(struct per_cpu_pageset *p,
6655 				unsigned long high)
6656 {
6657 	unsigned long batch = max(1UL, high / 4);
6658 	if ((high / 4) > (PAGE_SHIFT * 8))
6659 		batch = PAGE_SHIFT * 8;
6660 
6661 	pageset_update(&p->pcp, high, batch);
6662 }
6663 
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)6664 static void pageset_set_high_and_batch(struct zone *zone,
6665 				       struct per_cpu_pageset *pcp)
6666 {
6667 	if (percpu_pagelist_fraction)
6668 		pageset_set_high(pcp,
6669 			(zone_managed_pages(zone) /
6670 				percpu_pagelist_fraction));
6671 	else
6672 		pageset_set_batch(pcp, zone_batchsize(zone));
6673 }
6674 
zone_pageset_init(struct zone * zone,int cpu)6675 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6676 {
6677 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6678 
6679 	pageset_init(pcp);
6680 	pageset_set_high_and_batch(zone, pcp);
6681 }
6682 
setup_zone_pageset(struct zone * zone)6683 void __meminit setup_zone_pageset(struct zone *zone)
6684 {
6685 	int cpu;
6686 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6687 	for_each_possible_cpu(cpu)
6688 		zone_pageset_init(zone, cpu);
6689 }
6690 
6691 /*
6692  * Allocate per cpu pagesets and initialize them.
6693  * Before this call only boot pagesets were available.
6694  */
setup_per_cpu_pageset(void)6695 void __init setup_per_cpu_pageset(void)
6696 {
6697 	struct pglist_data *pgdat;
6698 	struct zone *zone;
6699 	int __maybe_unused cpu;
6700 
6701 	for_each_populated_zone(zone)
6702 		setup_zone_pageset(zone);
6703 
6704 #ifdef CONFIG_NUMA
6705 	/*
6706 	 * Unpopulated zones continue using the boot pagesets.
6707 	 * The numa stats for these pagesets need to be reset.
6708 	 * Otherwise, they will end up skewing the stats of
6709 	 * the nodes these zones are associated with.
6710 	 */
6711 	for_each_possible_cpu(cpu) {
6712 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6713 		memset(pcp->vm_numa_stat_diff, 0,
6714 		       sizeof(pcp->vm_numa_stat_diff));
6715 	}
6716 #endif
6717 
6718 	for_each_online_pgdat(pgdat)
6719 		pgdat->per_cpu_nodestats =
6720 			alloc_percpu(struct per_cpu_nodestat);
6721 }
6722 
zone_pcp_init(struct zone * zone)6723 static __meminit void zone_pcp_init(struct zone *zone)
6724 {
6725 	/*
6726 	 * per cpu subsystem is not up at this point. The following code
6727 	 * relies on the ability of the linker to provide the
6728 	 * offset of a (static) per cpu variable into the per cpu area.
6729 	 */
6730 	zone->pageset = &boot_pageset;
6731 
6732 	if (populated_zone(zone))
6733 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6734 			zone->name, zone->present_pages,
6735 					 zone_batchsize(zone));
6736 }
6737 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)6738 void __meminit init_currently_empty_zone(struct zone *zone,
6739 					unsigned long zone_start_pfn,
6740 					unsigned long size)
6741 {
6742 	struct pglist_data *pgdat = zone->zone_pgdat;
6743 	int zone_idx = zone_idx(zone) + 1;
6744 
6745 	if (zone_idx > pgdat->nr_zones)
6746 		pgdat->nr_zones = zone_idx;
6747 
6748 	zone->zone_start_pfn = zone_start_pfn;
6749 
6750 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6751 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6752 			pgdat->node_id,
6753 			(unsigned long)zone_idx(zone),
6754 			zone_start_pfn, (zone_start_pfn + size));
6755 
6756 	zone_init_free_lists(zone);
6757 	zone->initialized = 1;
6758 }
6759 
6760 /**
6761  * get_pfn_range_for_nid - Return the start and end page frames for a node
6762  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6763  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6764  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6765  *
6766  * It returns the start and end page frame of a node based on information
6767  * provided by memblock_set_node(). If called for a node
6768  * with no available memory, a warning is printed and the start and end
6769  * PFNs will be 0.
6770  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)6771 void __init get_pfn_range_for_nid(unsigned int nid,
6772 			unsigned long *start_pfn, unsigned long *end_pfn)
6773 {
6774 	unsigned long this_start_pfn, this_end_pfn;
6775 	int i;
6776 
6777 	*start_pfn = -1UL;
6778 	*end_pfn = 0;
6779 
6780 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6781 		*start_pfn = min(*start_pfn, this_start_pfn);
6782 		*end_pfn = max(*end_pfn, this_end_pfn);
6783 	}
6784 
6785 	if (*start_pfn == -1UL)
6786 		*start_pfn = 0;
6787 }
6788 
6789 /*
6790  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6791  * assumption is made that zones within a node are ordered in monotonic
6792  * increasing memory addresses so that the "highest" populated zone is used
6793  */
find_usable_zone_for_movable(void)6794 static void __init find_usable_zone_for_movable(void)
6795 {
6796 	int zone_index;
6797 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6798 		if (zone_index == ZONE_MOVABLE)
6799 			continue;
6800 
6801 		if (arch_zone_highest_possible_pfn[zone_index] >
6802 				arch_zone_lowest_possible_pfn[zone_index])
6803 			break;
6804 	}
6805 
6806 	VM_BUG_ON(zone_index == -1);
6807 	movable_zone = zone_index;
6808 }
6809 
6810 /*
6811  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6812  * because it is sized independent of architecture. Unlike the other zones,
6813  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6814  * in each node depending on the size of each node and how evenly kernelcore
6815  * is distributed. This helper function adjusts the zone ranges
6816  * provided by the architecture for a given node by using the end of the
6817  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6818  * zones within a node are in order of monotonic increases memory addresses
6819  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)6820 static void __init adjust_zone_range_for_zone_movable(int nid,
6821 					unsigned long zone_type,
6822 					unsigned long node_start_pfn,
6823 					unsigned long node_end_pfn,
6824 					unsigned long *zone_start_pfn,
6825 					unsigned long *zone_end_pfn)
6826 {
6827 	/* Only adjust if ZONE_MOVABLE is on this node */
6828 	if (zone_movable_pfn[nid]) {
6829 		/* Size ZONE_MOVABLE */
6830 		if (zone_type == ZONE_MOVABLE) {
6831 			*zone_start_pfn = zone_movable_pfn[nid];
6832 			*zone_end_pfn = min(node_end_pfn,
6833 				arch_zone_highest_possible_pfn[movable_zone]);
6834 
6835 		/* Adjust for ZONE_MOVABLE starting within this range */
6836 		} else if (!mirrored_kernelcore &&
6837 			*zone_start_pfn < zone_movable_pfn[nid] &&
6838 			*zone_end_pfn > zone_movable_pfn[nid]) {
6839 			*zone_end_pfn = zone_movable_pfn[nid];
6840 
6841 		/* Check if this whole range is within ZONE_MOVABLE */
6842 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6843 			*zone_start_pfn = *zone_end_pfn;
6844 	}
6845 }
6846 
6847 /*
6848  * Return the number of pages a zone spans in a node, including holes
6849  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6850  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)6851 static unsigned long __init zone_spanned_pages_in_node(int nid,
6852 					unsigned long zone_type,
6853 					unsigned long node_start_pfn,
6854 					unsigned long node_end_pfn,
6855 					unsigned long *zone_start_pfn,
6856 					unsigned long *zone_end_pfn)
6857 {
6858 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6859 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6860 	/* When hotadd a new node from cpu_up(), the node should be empty */
6861 	if (!node_start_pfn && !node_end_pfn)
6862 		return 0;
6863 
6864 	/* Get the start and end of the zone */
6865 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6866 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6867 	adjust_zone_range_for_zone_movable(nid, zone_type,
6868 				node_start_pfn, node_end_pfn,
6869 				zone_start_pfn, zone_end_pfn);
6870 
6871 	/* Check that this node has pages within the zone's required range */
6872 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6873 		return 0;
6874 
6875 	/* Move the zone boundaries inside the node if necessary */
6876 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6877 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6878 
6879 	/* Return the spanned pages */
6880 	return *zone_end_pfn - *zone_start_pfn;
6881 }
6882 
6883 /*
6884  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6885  * then all holes in the requested range will be accounted for.
6886  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)6887 unsigned long __init __absent_pages_in_range(int nid,
6888 				unsigned long range_start_pfn,
6889 				unsigned long range_end_pfn)
6890 {
6891 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6892 	unsigned long start_pfn, end_pfn;
6893 	int i;
6894 
6895 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6896 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6897 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6898 		nr_absent -= end_pfn - start_pfn;
6899 	}
6900 	return nr_absent;
6901 }
6902 
6903 /**
6904  * absent_pages_in_range - Return number of page frames in holes within a range
6905  * @start_pfn: The start PFN to start searching for holes
6906  * @end_pfn: The end PFN to stop searching for holes
6907  *
6908  * Return: the number of pages frames in memory holes within a range.
6909  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)6910 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6911 							unsigned long end_pfn)
6912 {
6913 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6914 }
6915 
6916 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn)6917 static unsigned long __init zone_absent_pages_in_node(int nid,
6918 					unsigned long zone_type,
6919 					unsigned long node_start_pfn,
6920 					unsigned long node_end_pfn)
6921 {
6922 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6923 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6924 	unsigned long zone_start_pfn, zone_end_pfn;
6925 	unsigned long nr_absent;
6926 
6927 	/* When hotadd a new node from cpu_up(), the node should be empty */
6928 	if (!node_start_pfn && !node_end_pfn)
6929 		return 0;
6930 
6931 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6932 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6933 
6934 	adjust_zone_range_for_zone_movable(nid, zone_type,
6935 			node_start_pfn, node_end_pfn,
6936 			&zone_start_pfn, &zone_end_pfn);
6937 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6938 
6939 	/*
6940 	 * ZONE_MOVABLE handling.
6941 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6942 	 * and vice versa.
6943 	 */
6944 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6945 		unsigned long start_pfn, end_pfn;
6946 		struct memblock_region *r;
6947 
6948 		for_each_mem_region(r) {
6949 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6950 					  zone_start_pfn, zone_end_pfn);
6951 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6952 					zone_start_pfn, zone_end_pfn);
6953 
6954 			if (zone_type == ZONE_MOVABLE &&
6955 			    memblock_is_mirror(r))
6956 				nr_absent += end_pfn - start_pfn;
6957 
6958 			if (zone_type == ZONE_NORMAL &&
6959 			    !memblock_is_mirror(r))
6960 				nr_absent += end_pfn - start_pfn;
6961 		}
6962 	}
6963 
6964 	return nr_absent;
6965 }
6966 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)6967 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6968 						unsigned long node_start_pfn,
6969 						unsigned long node_end_pfn)
6970 {
6971 	unsigned long realtotalpages = 0, totalpages = 0;
6972 	enum zone_type i;
6973 
6974 	for (i = 0; i < MAX_NR_ZONES; i++) {
6975 		struct zone *zone = pgdat->node_zones + i;
6976 		unsigned long zone_start_pfn, zone_end_pfn;
6977 		unsigned long spanned, absent;
6978 		unsigned long size, real_size;
6979 
6980 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6981 						     node_start_pfn,
6982 						     node_end_pfn,
6983 						     &zone_start_pfn,
6984 						     &zone_end_pfn);
6985 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6986 						   node_start_pfn,
6987 						   node_end_pfn);
6988 
6989 		size = spanned;
6990 		real_size = size - absent;
6991 
6992 		if (size)
6993 			zone->zone_start_pfn = zone_start_pfn;
6994 		else
6995 			zone->zone_start_pfn = 0;
6996 		zone->spanned_pages = size;
6997 		zone->present_pages = real_size;
6998 
6999 		totalpages += size;
7000 		realtotalpages += real_size;
7001 	}
7002 
7003 	pgdat->node_spanned_pages = totalpages;
7004 	pgdat->node_present_pages = realtotalpages;
7005 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
7006 							realtotalpages);
7007 }
7008 
7009 #ifndef CONFIG_SPARSEMEM
7010 /*
7011  * Calculate the size of the zone->blockflags rounded to an unsigned long
7012  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7013  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7014  * round what is now in bits to nearest long in bits, then return it in
7015  * bytes.
7016  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)7017 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7018 {
7019 	unsigned long usemapsize;
7020 
7021 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7022 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7023 	usemapsize = usemapsize >> pageblock_order;
7024 	usemapsize *= NR_PAGEBLOCK_BITS;
7025 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7026 
7027 	return usemapsize / 8;
7028 }
7029 
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)7030 static void __ref setup_usemap(struct pglist_data *pgdat,
7031 				struct zone *zone,
7032 				unsigned long zone_start_pfn,
7033 				unsigned long zonesize)
7034 {
7035 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
7036 	zone->pageblock_flags = NULL;
7037 	if (usemapsize) {
7038 		zone->pageblock_flags =
7039 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7040 					    pgdat->node_id);
7041 		if (!zone->pageblock_flags)
7042 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7043 			      usemapsize, zone->name, pgdat->node_id);
7044 	}
7045 }
7046 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)7047 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
7048 				unsigned long zone_start_pfn, unsigned long zonesize) {}
7049 #endif /* CONFIG_SPARSEMEM */
7050 
7051 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7052 
7053 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)7054 void __init set_pageblock_order(void)
7055 {
7056 	unsigned int order;
7057 
7058 	/* Check that pageblock_nr_pages has not already been setup */
7059 	if (pageblock_order)
7060 		return;
7061 
7062 	if (HPAGE_SHIFT > PAGE_SHIFT)
7063 		order = HUGETLB_PAGE_ORDER;
7064 	else
7065 		order = MAX_ORDER - 1;
7066 
7067 	/*
7068 	 * Assume the largest contiguous order of interest is a huge page.
7069 	 * This value may be variable depending on boot parameters on IA64 and
7070 	 * powerpc.
7071 	 */
7072 	pageblock_order = order;
7073 }
7074 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7075 
7076 /*
7077  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7078  * is unused as pageblock_order is set at compile-time. See
7079  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7080  * the kernel config
7081  */
set_pageblock_order(void)7082 void __init set_pageblock_order(void)
7083 {
7084 }
7085 
7086 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7087 
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)7088 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7089 						unsigned long present_pages)
7090 {
7091 	unsigned long pages = spanned_pages;
7092 
7093 	/*
7094 	 * Provide a more accurate estimation if there are holes within
7095 	 * the zone and SPARSEMEM is in use. If there are holes within the
7096 	 * zone, each populated memory region may cost us one or two extra
7097 	 * memmap pages due to alignment because memmap pages for each
7098 	 * populated regions may not be naturally aligned on page boundary.
7099 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7100 	 */
7101 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7102 	    IS_ENABLED(CONFIG_SPARSEMEM))
7103 		pages = present_pages;
7104 
7105 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7106 }
7107 
7108 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)7109 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7110 {
7111 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7112 
7113 	spin_lock_init(&ds_queue->split_queue_lock);
7114 	INIT_LIST_HEAD(&ds_queue->split_queue);
7115 	ds_queue->split_queue_len = 0;
7116 }
7117 #else
pgdat_init_split_queue(struct pglist_data * pgdat)7118 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7119 #endif
7120 
7121 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)7122 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7123 {
7124 	init_waitqueue_head(&pgdat->kcompactd_wait);
7125 }
7126 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)7127 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7128 #endif
7129 
pgdat_init_internals(struct pglist_data * pgdat)7130 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7131 {
7132 	pgdat_resize_init(pgdat);
7133 
7134 	pgdat_init_split_queue(pgdat);
7135 	pgdat_init_kcompactd(pgdat);
7136 
7137 	init_waitqueue_head(&pgdat->kswapd_wait);
7138 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7139 
7140 	pgdat_page_ext_init(pgdat);
7141 	spin_lock_init(&pgdat->lru_lock);
7142 	lruvec_init(&pgdat->__lruvec);
7143 }
7144 
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)7145 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7146 							unsigned long remaining_pages)
7147 {
7148 	atomic_long_set(&zone->managed_pages, remaining_pages);
7149 	zone_set_nid(zone, nid);
7150 	zone->name = zone_names[idx];
7151 	zone->zone_pgdat = NODE_DATA(nid);
7152 	spin_lock_init(&zone->lock);
7153 	zone_seqlock_init(zone);
7154 	zone_pcp_init(zone);
7155 }
7156 
7157 /*
7158  * Set up the zone data structures
7159  * - init pgdat internals
7160  * - init all zones belonging to this node
7161  *
7162  * NOTE: this function is only called during memory hotplug
7163  */
7164 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)7165 void __ref free_area_init_core_hotplug(int nid)
7166 {
7167 	enum zone_type z;
7168 	pg_data_t *pgdat = NODE_DATA(nid);
7169 
7170 	pgdat_init_internals(pgdat);
7171 	for (z = 0; z < MAX_NR_ZONES; z++)
7172 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7173 }
7174 #endif
7175 
7176 /*
7177  * Set up the zone data structures:
7178  *   - mark all pages reserved
7179  *   - mark all memory queues empty
7180  *   - clear the memory bitmaps
7181  *
7182  * NOTE: pgdat should get zeroed by caller.
7183  * NOTE: this function is only called during early init.
7184  */
free_area_init_core(struct pglist_data * pgdat)7185 static void __init free_area_init_core(struct pglist_data *pgdat)
7186 {
7187 	enum zone_type j;
7188 	int nid = pgdat->node_id;
7189 
7190 	pgdat_init_internals(pgdat);
7191 	pgdat->per_cpu_nodestats = &boot_nodestats;
7192 
7193 	for (j = 0; j < MAX_NR_ZONES; j++) {
7194 		struct zone *zone = pgdat->node_zones + j;
7195 		unsigned long size, freesize, memmap_pages;
7196 		unsigned long zone_start_pfn = zone->zone_start_pfn;
7197 
7198 		size = zone->spanned_pages;
7199 		freesize = zone->present_pages;
7200 
7201 		/*
7202 		 * Adjust freesize so that it accounts for how much memory
7203 		 * is used by this zone for memmap. This affects the watermark
7204 		 * and per-cpu initialisations
7205 		 */
7206 		memmap_pages = calc_memmap_size(size, freesize);
7207 		if (!is_highmem_idx(j)) {
7208 			if (freesize >= memmap_pages) {
7209 				freesize -= memmap_pages;
7210 				if (memmap_pages)
7211 					printk(KERN_DEBUG
7212 					       "  %s zone: %lu pages used for memmap\n",
7213 					       zone_names[j], memmap_pages);
7214 			} else
7215 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
7216 					zone_names[j], memmap_pages, freesize);
7217 		}
7218 
7219 		/* Account for reserved pages */
7220 		if (j == 0 && freesize > dma_reserve) {
7221 			freesize -= dma_reserve;
7222 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
7223 					zone_names[0], dma_reserve);
7224 		}
7225 
7226 		if (!is_highmem_idx(j))
7227 			nr_kernel_pages += freesize;
7228 		/* Charge for highmem memmap if there are enough kernel pages */
7229 		else if (nr_kernel_pages > memmap_pages * 2)
7230 			nr_kernel_pages -= memmap_pages;
7231 		nr_all_pages += freesize;
7232 
7233 		/*
7234 		 * Set an approximate value for lowmem here, it will be adjusted
7235 		 * when the bootmem allocator frees pages into the buddy system.
7236 		 * And all highmem pages will be managed by the buddy system.
7237 		 */
7238 		zone_init_internals(zone, j, nid, freesize);
7239 
7240 		if (!size)
7241 			continue;
7242 
7243 		set_pageblock_order();
7244 		setup_usemap(pgdat, zone, zone_start_pfn, size);
7245 		init_currently_empty_zone(zone, zone_start_pfn, size);
7246 		arch_memmap_init(size, nid, j, zone_start_pfn);
7247 	}
7248 }
7249 
7250 #ifdef CONFIG_FLAT_NODE_MEM_MAP
alloc_node_mem_map(struct pglist_data * pgdat)7251 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7252 {
7253 	unsigned long __maybe_unused start = 0;
7254 	unsigned long __maybe_unused offset = 0;
7255 
7256 	/* Skip empty nodes */
7257 	if (!pgdat->node_spanned_pages)
7258 		return;
7259 
7260 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7261 	offset = pgdat->node_start_pfn - start;
7262 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7263 	if (!pgdat->node_mem_map) {
7264 		unsigned long size, end;
7265 		struct page *map;
7266 
7267 		/*
7268 		 * The zone's endpoints aren't required to be MAX_ORDER
7269 		 * aligned but the node_mem_map endpoints must be in order
7270 		 * for the buddy allocator to function correctly.
7271 		 */
7272 		end = pgdat_end_pfn(pgdat);
7273 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7274 		size =  (end - start) * sizeof(struct page);
7275 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7276 					  pgdat->node_id);
7277 		if (!map)
7278 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7279 			      size, pgdat->node_id);
7280 		pgdat->node_mem_map = map + offset;
7281 	}
7282 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7283 				__func__, pgdat->node_id, (unsigned long)pgdat,
7284 				(unsigned long)pgdat->node_mem_map);
7285 #ifndef CONFIG_NEED_MULTIPLE_NODES
7286 	/*
7287 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7288 	 */
7289 	if (pgdat == NODE_DATA(0)) {
7290 		mem_map = NODE_DATA(0)->node_mem_map;
7291 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7292 			mem_map -= offset;
7293 	}
7294 #endif
7295 }
7296 #else
alloc_node_mem_map(struct pglist_data * pgdat)7297 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7298 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7299 
7300 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)7301 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7302 {
7303 	pgdat->first_deferred_pfn = ULONG_MAX;
7304 }
7305 #else
pgdat_set_deferred_range(pg_data_t * pgdat)7306 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7307 #endif
7308 
free_area_init_node(int nid)7309 static void __init free_area_init_node(int nid)
7310 {
7311 	pg_data_t *pgdat = NODE_DATA(nid);
7312 	unsigned long start_pfn = 0;
7313 	unsigned long end_pfn = 0;
7314 
7315 	/* pg_data_t should be reset to zero when it's allocated */
7316 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7317 
7318 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7319 
7320 	pgdat->node_id = nid;
7321 	pgdat->node_start_pfn = start_pfn;
7322 	pgdat->per_cpu_nodestats = NULL;
7323 
7324 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7325 		(u64)start_pfn << PAGE_SHIFT,
7326 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7327 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7328 
7329 	alloc_node_mem_map(pgdat);
7330 	pgdat_set_deferred_range(pgdat);
7331 
7332 	free_area_init_core(pgdat);
7333 }
7334 
free_area_init_memoryless_node(int nid)7335 void __init free_area_init_memoryless_node(int nid)
7336 {
7337 	free_area_init_node(nid);
7338 }
7339 
7340 #if MAX_NUMNODES > 1
7341 /*
7342  * Figure out the number of possible node ids.
7343  */
setup_nr_node_ids(void)7344 void __init setup_nr_node_ids(void)
7345 {
7346 	unsigned int highest;
7347 
7348 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7349 	nr_node_ids = highest + 1;
7350 }
7351 #endif
7352 
7353 /**
7354  * node_map_pfn_alignment - determine the maximum internode alignment
7355  *
7356  * This function should be called after node map is populated and sorted.
7357  * It calculates the maximum power of two alignment which can distinguish
7358  * all the nodes.
7359  *
7360  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7361  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7362  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7363  * shifted, 1GiB is enough and this function will indicate so.
7364  *
7365  * This is used to test whether pfn -> nid mapping of the chosen memory
7366  * model has fine enough granularity to avoid incorrect mapping for the
7367  * populated node map.
7368  *
7369  * Return: the determined alignment in pfn's.  0 if there is no alignment
7370  * requirement (single node).
7371  */
node_map_pfn_alignment(void)7372 unsigned long __init node_map_pfn_alignment(void)
7373 {
7374 	unsigned long accl_mask = 0, last_end = 0;
7375 	unsigned long start, end, mask;
7376 	int last_nid = NUMA_NO_NODE;
7377 	int i, nid;
7378 
7379 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7380 		if (!start || last_nid < 0 || last_nid == nid) {
7381 			last_nid = nid;
7382 			last_end = end;
7383 			continue;
7384 		}
7385 
7386 		/*
7387 		 * Start with a mask granular enough to pin-point to the
7388 		 * start pfn and tick off bits one-by-one until it becomes
7389 		 * too coarse to separate the current node from the last.
7390 		 */
7391 		mask = ~((1 << __ffs(start)) - 1);
7392 		while (mask && last_end <= (start & (mask << 1)))
7393 			mask <<= 1;
7394 
7395 		/* accumulate all internode masks */
7396 		accl_mask |= mask;
7397 	}
7398 
7399 	/* convert mask to number of pages */
7400 	return ~accl_mask + 1;
7401 }
7402 
7403 /**
7404  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7405  *
7406  * Return: the minimum PFN based on information provided via
7407  * memblock_set_node().
7408  */
find_min_pfn_with_active_regions(void)7409 unsigned long __init find_min_pfn_with_active_regions(void)
7410 {
7411 	return PHYS_PFN(memblock_start_of_DRAM());
7412 }
7413 
7414 /*
7415  * early_calculate_totalpages()
7416  * Sum pages in active regions for movable zone.
7417  * Populate N_MEMORY for calculating usable_nodes.
7418  */
early_calculate_totalpages(void)7419 static unsigned long __init early_calculate_totalpages(void)
7420 {
7421 	unsigned long totalpages = 0;
7422 	unsigned long start_pfn, end_pfn;
7423 	int i, nid;
7424 
7425 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7426 		unsigned long pages = end_pfn - start_pfn;
7427 
7428 		totalpages += pages;
7429 		if (pages)
7430 			node_set_state(nid, N_MEMORY);
7431 	}
7432 	return totalpages;
7433 }
7434 
7435 /*
7436  * Find the PFN the Movable zone begins in each node. Kernel memory
7437  * is spread evenly between nodes as long as the nodes have enough
7438  * memory. When they don't, some nodes will have more kernelcore than
7439  * others
7440  */
find_zone_movable_pfns_for_nodes(void)7441 static void __init find_zone_movable_pfns_for_nodes(void)
7442 {
7443 	int i, nid;
7444 	unsigned long usable_startpfn;
7445 	unsigned long kernelcore_node, kernelcore_remaining;
7446 	/* save the state before borrow the nodemask */
7447 	nodemask_t saved_node_state = node_states[N_MEMORY];
7448 	unsigned long totalpages = early_calculate_totalpages();
7449 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7450 	struct memblock_region *r;
7451 
7452 	/* Need to find movable_zone earlier when movable_node is specified. */
7453 	find_usable_zone_for_movable();
7454 
7455 	/*
7456 	 * If movable_node is specified, ignore kernelcore and movablecore
7457 	 * options.
7458 	 */
7459 	if (movable_node_is_enabled()) {
7460 		for_each_mem_region(r) {
7461 			if (!memblock_is_hotpluggable(r))
7462 				continue;
7463 
7464 			nid = memblock_get_region_node(r);
7465 
7466 			usable_startpfn = PFN_DOWN(r->base);
7467 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7468 				min(usable_startpfn, zone_movable_pfn[nid]) :
7469 				usable_startpfn;
7470 		}
7471 
7472 		goto out2;
7473 	}
7474 
7475 	/*
7476 	 * If kernelcore=mirror is specified, ignore movablecore option
7477 	 */
7478 	if (mirrored_kernelcore) {
7479 		bool mem_below_4gb_not_mirrored = false;
7480 
7481 		for_each_mem_region(r) {
7482 			if (memblock_is_mirror(r))
7483 				continue;
7484 
7485 			nid = memblock_get_region_node(r);
7486 
7487 			usable_startpfn = memblock_region_memory_base_pfn(r);
7488 
7489 			if (usable_startpfn < 0x100000) {
7490 				mem_below_4gb_not_mirrored = true;
7491 				continue;
7492 			}
7493 
7494 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7495 				min(usable_startpfn, zone_movable_pfn[nid]) :
7496 				usable_startpfn;
7497 		}
7498 
7499 		if (mem_below_4gb_not_mirrored)
7500 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7501 
7502 		goto out2;
7503 	}
7504 
7505 	/*
7506 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7507 	 * amount of necessary memory.
7508 	 */
7509 	if (required_kernelcore_percent)
7510 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7511 				       10000UL;
7512 	if (required_movablecore_percent)
7513 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7514 					10000UL;
7515 
7516 	/*
7517 	 * If movablecore= was specified, calculate what size of
7518 	 * kernelcore that corresponds so that memory usable for
7519 	 * any allocation type is evenly spread. If both kernelcore
7520 	 * and movablecore are specified, then the value of kernelcore
7521 	 * will be used for required_kernelcore if it's greater than
7522 	 * what movablecore would have allowed.
7523 	 */
7524 	if (required_movablecore) {
7525 		unsigned long corepages;
7526 
7527 		/*
7528 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7529 		 * was requested by the user
7530 		 */
7531 		required_movablecore =
7532 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7533 		required_movablecore = min(totalpages, required_movablecore);
7534 		corepages = totalpages - required_movablecore;
7535 
7536 		required_kernelcore = max(required_kernelcore, corepages);
7537 	}
7538 
7539 	/*
7540 	 * If kernelcore was not specified or kernelcore size is larger
7541 	 * than totalpages, there is no ZONE_MOVABLE.
7542 	 */
7543 	if (!required_kernelcore || required_kernelcore >= totalpages)
7544 		goto out;
7545 
7546 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7547 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7548 
7549 restart:
7550 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7551 	kernelcore_node = required_kernelcore / usable_nodes;
7552 	for_each_node_state(nid, N_MEMORY) {
7553 		unsigned long start_pfn, end_pfn;
7554 
7555 		/*
7556 		 * Recalculate kernelcore_node if the division per node
7557 		 * now exceeds what is necessary to satisfy the requested
7558 		 * amount of memory for the kernel
7559 		 */
7560 		if (required_kernelcore < kernelcore_node)
7561 			kernelcore_node = required_kernelcore / usable_nodes;
7562 
7563 		/*
7564 		 * As the map is walked, we track how much memory is usable
7565 		 * by the kernel using kernelcore_remaining. When it is
7566 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7567 		 */
7568 		kernelcore_remaining = kernelcore_node;
7569 
7570 		/* Go through each range of PFNs within this node */
7571 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7572 			unsigned long size_pages;
7573 
7574 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7575 			if (start_pfn >= end_pfn)
7576 				continue;
7577 
7578 			/* Account for what is only usable for kernelcore */
7579 			if (start_pfn < usable_startpfn) {
7580 				unsigned long kernel_pages;
7581 				kernel_pages = min(end_pfn, usable_startpfn)
7582 								- start_pfn;
7583 
7584 				kernelcore_remaining -= min(kernel_pages,
7585 							kernelcore_remaining);
7586 				required_kernelcore -= min(kernel_pages,
7587 							required_kernelcore);
7588 
7589 				/* Continue if range is now fully accounted */
7590 				if (end_pfn <= usable_startpfn) {
7591 
7592 					/*
7593 					 * Push zone_movable_pfn to the end so
7594 					 * that if we have to rebalance
7595 					 * kernelcore across nodes, we will
7596 					 * not double account here
7597 					 */
7598 					zone_movable_pfn[nid] = end_pfn;
7599 					continue;
7600 				}
7601 				start_pfn = usable_startpfn;
7602 			}
7603 
7604 			/*
7605 			 * The usable PFN range for ZONE_MOVABLE is from
7606 			 * start_pfn->end_pfn. Calculate size_pages as the
7607 			 * number of pages used as kernelcore
7608 			 */
7609 			size_pages = end_pfn - start_pfn;
7610 			if (size_pages > kernelcore_remaining)
7611 				size_pages = kernelcore_remaining;
7612 			zone_movable_pfn[nid] = start_pfn + size_pages;
7613 
7614 			/*
7615 			 * Some kernelcore has been met, update counts and
7616 			 * break if the kernelcore for this node has been
7617 			 * satisfied
7618 			 */
7619 			required_kernelcore -= min(required_kernelcore,
7620 								size_pages);
7621 			kernelcore_remaining -= size_pages;
7622 			if (!kernelcore_remaining)
7623 				break;
7624 		}
7625 	}
7626 
7627 	/*
7628 	 * If there is still required_kernelcore, we do another pass with one
7629 	 * less node in the count. This will push zone_movable_pfn[nid] further
7630 	 * along on the nodes that still have memory until kernelcore is
7631 	 * satisfied
7632 	 */
7633 	usable_nodes--;
7634 	if (usable_nodes && required_kernelcore > usable_nodes)
7635 		goto restart;
7636 
7637 out2:
7638 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7639 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7640 		unsigned long start_pfn, end_pfn;
7641 
7642 		zone_movable_pfn[nid] =
7643 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7644 
7645 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7646 		if (zone_movable_pfn[nid] >= end_pfn)
7647 			zone_movable_pfn[nid] = 0;
7648 	}
7649 
7650 out:
7651 	/* restore the node_state */
7652 	node_states[N_MEMORY] = saved_node_state;
7653 }
7654 
7655 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)7656 static void check_for_memory(pg_data_t *pgdat, int nid)
7657 {
7658 	enum zone_type zone_type;
7659 
7660 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7661 		struct zone *zone = &pgdat->node_zones[zone_type];
7662 		if (populated_zone(zone)) {
7663 			if (IS_ENABLED(CONFIG_HIGHMEM))
7664 				node_set_state(nid, N_HIGH_MEMORY);
7665 			if (zone_type <= ZONE_NORMAL)
7666 				node_set_state(nid, N_NORMAL_MEMORY);
7667 			break;
7668 		}
7669 	}
7670 }
7671 
7672 /*
7673  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7674  * such cases we allow max_zone_pfn sorted in the descending order
7675  */
arch_has_descending_max_zone_pfns(void)7676 bool __weak arch_has_descending_max_zone_pfns(void)
7677 {
7678 	return false;
7679 }
7680 
7681 /**
7682  * free_area_init - Initialise all pg_data_t and zone data
7683  * @max_zone_pfn: an array of max PFNs for each zone
7684  *
7685  * This will call free_area_init_node() for each active node in the system.
7686  * Using the page ranges provided by memblock_set_node(), the size of each
7687  * zone in each node and their holes is calculated. If the maximum PFN
7688  * between two adjacent zones match, it is assumed that the zone is empty.
7689  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7690  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7691  * starts where the previous one ended. For example, ZONE_DMA32 starts
7692  * at arch_max_dma_pfn.
7693  */
free_area_init(unsigned long * max_zone_pfn)7694 void __init free_area_init(unsigned long *max_zone_pfn)
7695 {
7696 	unsigned long start_pfn, end_pfn;
7697 	int i, nid, zone;
7698 	bool descending;
7699 
7700 	/* Record where the zone boundaries are */
7701 	memset(arch_zone_lowest_possible_pfn, 0,
7702 				sizeof(arch_zone_lowest_possible_pfn));
7703 	memset(arch_zone_highest_possible_pfn, 0,
7704 				sizeof(arch_zone_highest_possible_pfn));
7705 
7706 	start_pfn = find_min_pfn_with_active_regions();
7707 	descending = arch_has_descending_max_zone_pfns();
7708 
7709 	for (i = 0; i < MAX_NR_ZONES; i++) {
7710 		if (descending)
7711 			zone = MAX_NR_ZONES - i - 1;
7712 		else
7713 			zone = i;
7714 
7715 		if (zone == ZONE_MOVABLE)
7716 			continue;
7717 
7718 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7719 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7720 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7721 
7722 		start_pfn = end_pfn;
7723 	}
7724 
7725 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7726 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7727 	find_zone_movable_pfns_for_nodes();
7728 
7729 	/* Print out the zone ranges */
7730 	pr_info("Zone ranges:\n");
7731 	for (i = 0; i < MAX_NR_ZONES; i++) {
7732 		if (i == ZONE_MOVABLE)
7733 			continue;
7734 		pr_info("  %-8s ", zone_names[i]);
7735 		if (arch_zone_lowest_possible_pfn[i] ==
7736 				arch_zone_highest_possible_pfn[i])
7737 			pr_cont("empty\n");
7738 		else
7739 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7740 				(u64)arch_zone_lowest_possible_pfn[i]
7741 					<< PAGE_SHIFT,
7742 				((u64)arch_zone_highest_possible_pfn[i]
7743 					<< PAGE_SHIFT) - 1);
7744 	}
7745 
7746 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7747 	pr_info("Movable zone start for each node\n");
7748 	for (i = 0; i < MAX_NUMNODES; i++) {
7749 		if (zone_movable_pfn[i])
7750 			pr_info("  Node %d: %#018Lx\n", i,
7751 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7752 	}
7753 
7754 	/*
7755 	 * Print out the early node map, and initialize the
7756 	 * subsection-map relative to active online memory ranges to
7757 	 * enable future "sub-section" extensions of the memory map.
7758 	 */
7759 	pr_info("Early memory node ranges\n");
7760 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7761 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7762 			(u64)start_pfn << PAGE_SHIFT,
7763 			((u64)end_pfn << PAGE_SHIFT) - 1);
7764 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7765 	}
7766 
7767 	/* Initialise every node */
7768 	mminit_verify_pageflags_layout();
7769 	setup_nr_node_ids();
7770 	for_each_online_node(nid) {
7771 		pg_data_t *pgdat = NODE_DATA(nid);
7772 		free_area_init_node(nid);
7773 
7774 		/* Any memory on that node */
7775 		if (pgdat->node_present_pages)
7776 			node_set_state(nid, N_MEMORY);
7777 		check_for_memory(pgdat, nid);
7778 	}
7779 
7780 	memmap_init();
7781 }
7782 
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)7783 static int __init cmdline_parse_core(char *p, unsigned long *core,
7784 				     unsigned long *percent)
7785 {
7786 	unsigned long long coremem;
7787 	char *endptr;
7788 
7789 	if (!p)
7790 		return -EINVAL;
7791 
7792 	/* Value may be a percentage of total memory, otherwise bytes */
7793 	coremem = simple_strtoull(p, &endptr, 0);
7794 	if (*endptr == '%') {
7795 		/* Paranoid check for percent values greater than 100 */
7796 		WARN_ON(coremem > 100);
7797 
7798 		*percent = coremem;
7799 	} else {
7800 		coremem = memparse(p, &p);
7801 		/* Paranoid check that UL is enough for the coremem value */
7802 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7803 
7804 		*core = coremem >> PAGE_SHIFT;
7805 		*percent = 0UL;
7806 	}
7807 	return 0;
7808 }
7809 
7810 /*
7811  * kernelcore=size sets the amount of memory for use for allocations that
7812  * cannot be reclaimed or migrated.
7813  */
cmdline_parse_kernelcore(char * p)7814 static int __init cmdline_parse_kernelcore(char *p)
7815 {
7816 	/* parse kernelcore=mirror */
7817 	if (parse_option_str(p, "mirror")) {
7818 		mirrored_kernelcore = true;
7819 		return 0;
7820 	}
7821 
7822 	return cmdline_parse_core(p, &required_kernelcore,
7823 				  &required_kernelcore_percent);
7824 }
7825 
7826 /*
7827  * movablecore=size sets the amount of memory for use for allocations that
7828  * can be reclaimed or migrated.
7829  */
cmdline_parse_movablecore(char * p)7830 static int __init cmdline_parse_movablecore(char *p)
7831 {
7832 	return cmdline_parse_core(p, &required_movablecore,
7833 				  &required_movablecore_percent);
7834 }
7835 
7836 early_param("kernelcore", cmdline_parse_kernelcore);
7837 early_param("movablecore", cmdline_parse_movablecore);
7838 
adjust_managed_page_count(struct page * page,long count)7839 void adjust_managed_page_count(struct page *page, long count)
7840 {
7841 	atomic_long_add(count, &page_zone(page)->managed_pages);
7842 	totalram_pages_add(count);
7843 #ifdef CONFIG_HIGHMEM
7844 	if (PageHighMem(page))
7845 		totalhigh_pages_add(count);
7846 #endif
7847 }
7848 EXPORT_SYMBOL(adjust_managed_page_count);
7849 
free_reserved_area(void * start,void * end,int poison,const char * s)7850 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7851 {
7852 	void *pos;
7853 	unsigned long pages = 0;
7854 
7855 	start = (void *)PAGE_ALIGN((unsigned long)start);
7856 	end = (void *)((unsigned long)end & PAGE_MASK);
7857 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7858 		struct page *page = virt_to_page(pos);
7859 		void *direct_map_addr;
7860 
7861 		/*
7862 		 * 'direct_map_addr' might be different from 'pos'
7863 		 * because some architectures' virt_to_page()
7864 		 * work with aliases.  Getting the direct map
7865 		 * address ensures that we get a _writeable_
7866 		 * alias for the memset().
7867 		 */
7868 		direct_map_addr = page_address(page);
7869 		/*
7870 		 * Perform a kasan-unchecked memset() since this memory
7871 		 * has not been initialized.
7872 		 */
7873 		direct_map_addr = kasan_reset_tag(direct_map_addr);
7874 		if ((unsigned int)poison <= 0xFF)
7875 			memset(direct_map_addr, poison, PAGE_SIZE);
7876 
7877 		free_reserved_page(page);
7878 	}
7879 
7880 	if (pages && s)
7881 		pr_info("Freeing %s memory: %ldK\n",
7882 			s, pages << (PAGE_SHIFT - 10));
7883 
7884 	return pages;
7885 }
7886 
7887 #ifdef	CONFIG_HIGHMEM
free_highmem_page(struct page * page)7888 void free_highmem_page(struct page *page)
7889 {
7890 	__free_reserved_page(page);
7891 	totalram_pages_inc();
7892 	atomic_long_inc(&page_zone(page)->managed_pages);
7893 	totalhigh_pages_inc();
7894 }
7895 #endif
7896 
7897 
mem_init_print_info(const char * str)7898 void __init mem_init_print_info(const char *str)
7899 {
7900 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7901 	unsigned long init_code_size, init_data_size;
7902 
7903 	physpages = get_num_physpages();
7904 	codesize = _etext - _stext;
7905 	datasize = _edata - _sdata;
7906 	rosize = __end_rodata - __start_rodata;
7907 	bss_size = __bss_stop - __bss_start;
7908 	init_data_size = __init_end - __init_begin;
7909 	init_code_size = _einittext - _sinittext;
7910 
7911 	/*
7912 	 * Detect special cases and adjust section sizes accordingly:
7913 	 * 1) .init.* may be embedded into .data sections
7914 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7915 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7916 	 * 3) .rodata.* may be embedded into .text or .data sections.
7917 	 */
7918 #define adj_init_size(start, end, size, pos, adj) \
7919 	do { \
7920 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
7921 			size -= adj; \
7922 	} while (0)
7923 
7924 	adj_init_size(__init_begin, __init_end, init_data_size,
7925 		     _sinittext, init_code_size);
7926 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7927 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7928 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7929 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7930 
7931 #undef	adj_init_size
7932 
7933 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7934 #ifdef	CONFIG_HIGHMEM
7935 		", %luK highmem"
7936 #endif
7937 		"%s%s)\n",
7938 		nr_free_pages() << (PAGE_SHIFT - 10),
7939 		physpages << (PAGE_SHIFT - 10),
7940 		codesize >> 10, datasize >> 10, rosize >> 10,
7941 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7942 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7943 		totalcma_pages << (PAGE_SHIFT - 10),
7944 #ifdef	CONFIG_HIGHMEM
7945 		totalhigh_pages() << (PAGE_SHIFT - 10),
7946 #endif
7947 		str ? ", " : "", str ? str : "");
7948 }
7949 
7950 /**
7951  * set_dma_reserve - set the specified number of pages reserved in the first zone
7952  * @new_dma_reserve: The number of pages to mark reserved
7953  *
7954  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7955  * In the DMA zone, a significant percentage may be consumed by kernel image
7956  * and other unfreeable allocations which can skew the watermarks badly. This
7957  * function may optionally be used to account for unfreeable pages in the
7958  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7959  * smaller per-cpu batchsize.
7960  */
set_dma_reserve(unsigned long new_dma_reserve)7961 void __init set_dma_reserve(unsigned long new_dma_reserve)
7962 {
7963 	dma_reserve = new_dma_reserve;
7964 }
7965 
page_alloc_cpu_dead(unsigned int cpu)7966 static int page_alloc_cpu_dead(unsigned int cpu)
7967 {
7968 
7969 	lru_add_drain_cpu(cpu);
7970 	drain_pages(cpu);
7971 
7972 	/*
7973 	 * Spill the event counters of the dead processor
7974 	 * into the current processors event counters.
7975 	 * This artificially elevates the count of the current
7976 	 * processor.
7977 	 */
7978 	vm_events_fold_cpu(cpu);
7979 
7980 	/*
7981 	 * Zero the differential counters of the dead processor
7982 	 * so that the vm statistics are consistent.
7983 	 *
7984 	 * This is only okay since the processor is dead and cannot
7985 	 * race with what we are doing.
7986 	 */
7987 	cpu_vm_stats_fold(cpu);
7988 	return 0;
7989 }
7990 
7991 #ifdef CONFIG_NUMA
7992 int hashdist = HASHDIST_DEFAULT;
7993 
set_hashdist(char * str)7994 static int __init set_hashdist(char *str)
7995 {
7996 	if (!str)
7997 		return 0;
7998 	hashdist = simple_strtoul(str, &str, 0);
7999 	return 1;
8000 }
8001 __setup("hashdist=", set_hashdist);
8002 #endif
8003 
page_alloc_init(void)8004 void __init page_alloc_init(void)
8005 {
8006 	int ret;
8007 
8008 #ifdef CONFIG_NUMA
8009 	if (num_node_state(N_MEMORY) == 1)
8010 		hashdist = 0;
8011 #endif
8012 
8013 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
8014 					"mm/page_alloc:dead", NULL,
8015 					page_alloc_cpu_dead);
8016 	WARN_ON(ret < 0);
8017 }
8018 
8019 /*
8020  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8021  *	or min_free_kbytes changes.
8022  */
calculate_totalreserve_pages(void)8023 static void calculate_totalreserve_pages(void)
8024 {
8025 	struct pglist_data *pgdat;
8026 	unsigned long reserve_pages = 0;
8027 	enum zone_type i, j;
8028 
8029 	for_each_online_pgdat(pgdat) {
8030 
8031 		pgdat->totalreserve_pages = 0;
8032 
8033 		for (i = 0; i < MAX_NR_ZONES; i++) {
8034 			struct zone *zone = pgdat->node_zones + i;
8035 			long max = 0;
8036 			unsigned long managed_pages = zone_managed_pages(zone);
8037 
8038 			/* Find valid and maximum lowmem_reserve in the zone */
8039 			for (j = i; j < MAX_NR_ZONES; j++) {
8040 				if (zone->lowmem_reserve[j] > max)
8041 					max = zone->lowmem_reserve[j];
8042 			}
8043 
8044 			/* we treat the high watermark as reserved pages. */
8045 			max += high_wmark_pages(zone);
8046 
8047 			if (max > managed_pages)
8048 				max = managed_pages;
8049 
8050 			pgdat->totalreserve_pages += max;
8051 
8052 			reserve_pages += max;
8053 		}
8054 	}
8055 	totalreserve_pages = reserve_pages;
8056 }
8057 
8058 /*
8059  * setup_per_zone_lowmem_reserve - called whenever
8060  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8061  *	has a correct pages reserved value, so an adequate number of
8062  *	pages are left in the zone after a successful __alloc_pages().
8063  */
setup_per_zone_lowmem_reserve(void)8064 static void setup_per_zone_lowmem_reserve(void)
8065 {
8066 	struct pglist_data *pgdat;
8067 	enum zone_type i, j;
8068 
8069 	for_each_online_pgdat(pgdat) {
8070 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8071 			struct zone *zone = &pgdat->node_zones[i];
8072 			int ratio = sysctl_lowmem_reserve_ratio[i];
8073 			bool clear = !ratio || !zone_managed_pages(zone);
8074 			unsigned long managed_pages = 0;
8075 
8076 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8077 				struct zone *upper_zone = &pgdat->node_zones[j];
8078 
8079 				managed_pages += zone_managed_pages(upper_zone);
8080 
8081 				if (clear)
8082 					zone->lowmem_reserve[j] = 0;
8083 				else
8084 					zone->lowmem_reserve[j] = managed_pages / ratio;
8085 			}
8086 		}
8087 	}
8088 
8089 	/* update totalreserve_pages */
8090 	calculate_totalreserve_pages();
8091 }
8092 
__setup_per_zone_wmarks(void)8093 static void __setup_per_zone_wmarks(void)
8094 {
8095 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8096 	unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
8097 	unsigned long lowmem_pages = 0;
8098 	struct zone *zone;
8099 	unsigned long flags;
8100 
8101 	/* Calculate total number of !ZONE_HIGHMEM pages */
8102 	for_each_zone(zone) {
8103 		if (!is_highmem(zone))
8104 			lowmem_pages += zone_managed_pages(zone);
8105 	}
8106 
8107 	for_each_zone(zone) {
8108 		u64 tmp, low;
8109 
8110 		spin_lock_irqsave(&zone->lock, flags);
8111 		tmp = (u64)pages_min * zone_managed_pages(zone);
8112 		do_div(tmp, lowmem_pages);
8113 		low = (u64)pages_low * zone_managed_pages(zone);
8114 		do_div(low, nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)));
8115 		if (is_highmem(zone)) {
8116 			/*
8117 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8118 			 * need highmem pages, so cap pages_min to a small
8119 			 * value here.
8120 			 *
8121 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8122 			 * deltas control async page reclaim, and so should
8123 			 * not be capped for highmem.
8124 			 */
8125 			unsigned long min_pages;
8126 
8127 			min_pages = zone_managed_pages(zone) / 1024;
8128 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8129 			zone->_watermark[WMARK_MIN] = min_pages;
8130 		} else {
8131 			/*
8132 			 * If it's a lowmem zone, reserve a number of pages
8133 			 * proportionate to the zone's size.
8134 			 */
8135 			zone->_watermark[WMARK_MIN] = tmp;
8136 		}
8137 
8138 		/*
8139 		 * Set the kswapd watermarks distance according to the
8140 		 * scale factor in proportion to available memory, but
8141 		 * ensure a minimum size on small systems.
8142 		 */
8143 		tmp = max_t(u64, tmp >> 2,
8144 			    mult_frac(zone_managed_pages(zone),
8145 				      watermark_scale_factor, 10000));
8146 
8147 		zone->watermark_boost = 0;
8148 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + low + tmp;
8149 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + low + tmp * 2;
8150 
8151 		spin_unlock_irqrestore(&zone->lock, flags);
8152 	}
8153 
8154 	/* update totalreserve_pages */
8155 	calculate_totalreserve_pages();
8156 }
8157 
8158 /**
8159  * setup_per_zone_wmarks - called when min_free_kbytes changes
8160  * or when memory is hot-{added|removed}
8161  *
8162  * Ensures that the watermark[min,low,high] values for each zone are set
8163  * correctly with respect to min_free_kbytes.
8164  */
setup_per_zone_wmarks(void)8165 void setup_per_zone_wmarks(void)
8166 {
8167 	static DEFINE_SPINLOCK(lock);
8168 
8169 	spin_lock(&lock);
8170 	__setup_per_zone_wmarks();
8171 	spin_unlock(&lock);
8172 }
8173 
8174 /*
8175  * Initialise min_free_kbytes.
8176  *
8177  * For small machines we want it small (128k min).  For large machines
8178  * we want it large (256MB max).  But it is not linear, because network
8179  * bandwidth does not increase linearly with machine size.  We use
8180  *
8181  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8182  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8183  *
8184  * which yields
8185  *
8186  * 16MB:	512k
8187  * 32MB:	724k
8188  * 64MB:	1024k
8189  * 128MB:	1448k
8190  * 256MB:	2048k
8191  * 512MB:	2896k
8192  * 1024MB:	4096k
8193  * 2048MB:	5792k
8194  * 4096MB:	8192k
8195  * 8192MB:	11584k
8196  * 16384MB:	16384k
8197  */
init_per_zone_wmark_min(void)8198 int __meminit init_per_zone_wmark_min(void)
8199 {
8200 	unsigned long lowmem_kbytes;
8201 	int new_min_free_kbytes;
8202 
8203 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8204 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8205 
8206 	if (new_min_free_kbytes > user_min_free_kbytes) {
8207 		min_free_kbytes = new_min_free_kbytes;
8208 		if (min_free_kbytes < 128)
8209 			min_free_kbytes = 128;
8210 		if (min_free_kbytes > 262144)
8211 			min_free_kbytes = 262144;
8212 	} else {
8213 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8214 				new_min_free_kbytes, user_min_free_kbytes);
8215 	}
8216 	setup_per_zone_wmarks();
8217 	refresh_zone_stat_thresholds();
8218 	setup_per_zone_lowmem_reserve();
8219 
8220 #ifdef CONFIG_NUMA
8221 	setup_min_unmapped_ratio();
8222 	setup_min_slab_ratio();
8223 #endif
8224 
8225 	khugepaged_min_free_kbytes_update();
8226 
8227 	return 0;
8228 }
postcore_initcall(init_per_zone_wmark_min)8229 postcore_initcall(init_per_zone_wmark_min)
8230 
8231 /*
8232  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8233  *	that we can call two helper functions whenever min_free_kbytes
8234  *	or extra_free_kbytes changes.
8235  */
8236 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8237 		void *buffer, size_t *length, loff_t *ppos)
8238 {
8239 	int rc;
8240 
8241 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8242 	if (rc)
8243 		return rc;
8244 
8245 	if (write) {
8246 		user_min_free_kbytes = min_free_kbytes;
8247 		setup_per_zone_wmarks();
8248 	}
8249 	return 0;
8250 }
8251 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8252 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8253 		void *buffer, size_t *length, loff_t *ppos)
8254 {
8255 	int rc;
8256 
8257 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8258 	if (rc)
8259 		return rc;
8260 
8261 	if (write)
8262 		setup_per_zone_wmarks();
8263 
8264 	return 0;
8265 }
8266 
8267 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)8268 static void setup_min_unmapped_ratio(void)
8269 {
8270 	pg_data_t *pgdat;
8271 	struct zone *zone;
8272 
8273 	for_each_online_pgdat(pgdat)
8274 		pgdat->min_unmapped_pages = 0;
8275 
8276 	for_each_zone(zone)
8277 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8278 						         sysctl_min_unmapped_ratio) / 100;
8279 }
8280 
8281 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8282 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8283 		void *buffer, size_t *length, loff_t *ppos)
8284 {
8285 	int rc;
8286 
8287 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8288 	if (rc)
8289 		return rc;
8290 
8291 	setup_min_unmapped_ratio();
8292 
8293 	return 0;
8294 }
8295 
setup_min_slab_ratio(void)8296 static void setup_min_slab_ratio(void)
8297 {
8298 	pg_data_t *pgdat;
8299 	struct zone *zone;
8300 
8301 	for_each_online_pgdat(pgdat)
8302 		pgdat->min_slab_pages = 0;
8303 
8304 	for_each_zone(zone)
8305 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8306 						     sysctl_min_slab_ratio) / 100;
8307 }
8308 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8309 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8310 		void *buffer, size_t *length, loff_t *ppos)
8311 {
8312 	int rc;
8313 
8314 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8315 	if (rc)
8316 		return rc;
8317 
8318 	setup_min_slab_ratio();
8319 
8320 	return 0;
8321 }
8322 #endif
8323 
8324 /*
8325  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8326  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8327  *	whenever sysctl_lowmem_reserve_ratio changes.
8328  *
8329  * The reserve ratio obviously has absolutely no relation with the
8330  * minimum watermarks. The lowmem reserve ratio can only make sense
8331  * if in function of the boot time zone sizes.
8332  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8333 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8334 		void *buffer, size_t *length, loff_t *ppos)
8335 {
8336 	int i;
8337 
8338 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8339 
8340 	for (i = 0; i < MAX_NR_ZONES; i++) {
8341 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8342 			sysctl_lowmem_reserve_ratio[i] = 0;
8343 	}
8344 
8345 	setup_per_zone_lowmem_reserve();
8346 	return 0;
8347 }
8348 
__zone_pcp_update(struct zone * zone)8349 static void __zone_pcp_update(struct zone *zone)
8350 {
8351 	unsigned int cpu;
8352 
8353 	for_each_possible_cpu(cpu)
8354 		pageset_set_high_and_batch(zone,
8355 				per_cpu_ptr(zone->pageset, cpu));
8356 }
8357 
8358 /*
8359  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8360  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8361  * pagelist can have before it gets flushed back to buddy allocator.
8362  */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8363 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8364 		void *buffer, size_t *length, loff_t *ppos)
8365 {
8366 	struct zone *zone;
8367 	int old_percpu_pagelist_fraction;
8368 	int ret;
8369 
8370 	mutex_lock(&pcp_batch_high_lock);
8371 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8372 
8373 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8374 	if (!write || ret < 0)
8375 		goto out;
8376 
8377 	/* Sanity checking to avoid pcp imbalance */
8378 	if (percpu_pagelist_fraction &&
8379 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8380 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8381 		ret = -EINVAL;
8382 		goto out;
8383 	}
8384 
8385 	/* No change? */
8386 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8387 		goto out;
8388 
8389 	for_each_populated_zone(zone)
8390 		__zone_pcp_update(zone);
8391 out:
8392 	mutex_unlock(&pcp_batch_high_lock);
8393 	return ret;
8394 }
8395 
8396 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8397 /*
8398  * Returns the number of pages that arch has reserved but
8399  * is not known to alloc_large_system_hash().
8400  */
arch_reserved_kernel_pages(void)8401 static unsigned long __init arch_reserved_kernel_pages(void)
8402 {
8403 	return 0;
8404 }
8405 #endif
8406 
8407 /*
8408  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8409  * machines. As memory size is increased the scale is also increased but at
8410  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8411  * quadruples the scale is increased by one, which means the size of hash table
8412  * only doubles, instead of quadrupling as well.
8413  * Because 32-bit systems cannot have large physical memory, where this scaling
8414  * makes sense, it is disabled on such platforms.
8415  */
8416 #if __BITS_PER_LONG > 32
8417 #define ADAPT_SCALE_BASE	(64ul << 30)
8418 #define ADAPT_SCALE_SHIFT	2
8419 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8420 #endif
8421 
8422 /*
8423  * allocate a large system hash table from bootmem
8424  * - it is assumed that the hash table must contain an exact power-of-2
8425  *   quantity of entries
8426  * - limit is the number of hash buckets, not the total allocation size
8427  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)8428 void *__init alloc_large_system_hash(const char *tablename,
8429 				     unsigned long bucketsize,
8430 				     unsigned long numentries,
8431 				     int scale,
8432 				     int flags,
8433 				     unsigned int *_hash_shift,
8434 				     unsigned int *_hash_mask,
8435 				     unsigned long low_limit,
8436 				     unsigned long high_limit)
8437 {
8438 	unsigned long long max = high_limit;
8439 	unsigned long log2qty, size;
8440 	void *table = NULL;
8441 	gfp_t gfp_flags;
8442 	bool virt;
8443 
8444 	/* allow the kernel cmdline to have a say */
8445 	if (!numentries) {
8446 		/* round applicable memory size up to nearest megabyte */
8447 		numentries = nr_kernel_pages;
8448 		numentries -= arch_reserved_kernel_pages();
8449 
8450 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8451 		if (PAGE_SHIFT < 20)
8452 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8453 
8454 #if __BITS_PER_LONG > 32
8455 		if (!high_limit) {
8456 			unsigned long adapt;
8457 
8458 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8459 			     adapt <<= ADAPT_SCALE_SHIFT)
8460 				scale++;
8461 		}
8462 #endif
8463 
8464 		/* limit to 1 bucket per 2^scale bytes of low memory */
8465 		if (scale > PAGE_SHIFT)
8466 			numentries >>= (scale - PAGE_SHIFT);
8467 		else
8468 			numentries <<= (PAGE_SHIFT - scale);
8469 
8470 		/* Make sure we've got at least a 0-order allocation.. */
8471 		if (unlikely(flags & HASH_SMALL)) {
8472 			/* Makes no sense without HASH_EARLY */
8473 			WARN_ON(!(flags & HASH_EARLY));
8474 			if (!(numentries >> *_hash_shift)) {
8475 				numentries = 1UL << *_hash_shift;
8476 				BUG_ON(!numentries);
8477 			}
8478 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8479 			numentries = PAGE_SIZE / bucketsize;
8480 	}
8481 	numentries = roundup_pow_of_two(numentries);
8482 
8483 	/* limit allocation size to 1/16 total memory by default */
8484 	if (max == 0) {
8485 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8486 		do_div(max, bucketsize);
8487 	}
8488 	max = min(max, 0x80000000ULL);
8489 
8490 	if (numentries < low_limit)
8491 		numentries = low_limit;
8492 	if (numentries > max)
8493 		numentries = max;
8494 
8495 	log2qty = ilog2(numentries);
8496 
8497 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8498 	do {
8499 		virt = false;
8500 		size = bucketsize << log2qty;
8501 		if (flags & HASH_EARLY) {
8502 			if (flags & HASH_ZERO)
8503 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8504 			else
8505 				table = memblock_alloc_raw(size,
8506 							   SMP_CACHE_BYTES);
8507 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8508 			table = __vmalloc(size, gfp_flags);
8509 			virt = true;
8510 		} else {
8511 			/*
8512 			 * If bucketsize is not a power-of-two, we may free
8513 			 * some pages at the end of hash table which
8514 			 * alloc_pages_exact() automatically does
8515 			 */
8516 			table = alloc_pages_exact(size, gfp_flags);
8517 			kmemleak_alloc(table, size, 1, gfp_flags);
8518 		}
8519 	} while (!table && size > PAGE_SIZE && --log2qty);
8520 
8521 	if (!table)
8522 		panic("Failed to allocate %s hash table\n", tablename);
8523 
8524 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8525 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8526 		virt ? "vmalloc" : "linear");
8527 
8528 	if (_hash_shift)
8529 		*_hash_shift = log2qty;
8530 	if (_hash_mask)
8531 		*_hash_mask = (1 << log2qty) - 1;
8532 
8533 	return table;
8534 }
8535 
8536 /*
8537  * This function checks whether pageblock includes unmovable pages or not.
8538  *
8539  * PageLRU check without isolation or lru_lock could race so that
8540  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8541  * check without lock_page also may miss some movable non-lru pages at
8542  * race condition. So you can't expect this function should be exact.
8543  *
8544  * Returns a page without holding a reference. If the caller wants to
8545  * dereference that page (e.g., dumping), it has to make sure that it
8546  * cannot get removed (e.g., via memory unplug) concurrently.
8547  *
8548  */
has_unmovable_pages(struct zone * zone,struct page * page,int migratetype,int flags)8549 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8550 				 int migratetype, int flags)
8551 {
8552 	unsigned long iter = 0;
8553 	unsigned long pfn = page_to_pfn(page);
8554 	unsigned long offset = pfn % pageblock_nr_pages;
8555 
8556 	if (is_migrate_cma_page(page)) {
8557 		/*
8558 		 * CMA allocations (alloc_contig_range) really need to mark
8559 		 * isolate CMA pageblocks even when they are not movable in fact
8560 		 * so consider them movable here.
8561 		 */
8562 		if (is_migrate_cma(migratetype))
8563 			return NULL;
8564 
8565 		return page;
8566 	}
8567 
8568 	for (; iter < pageblock_nr_pages - offset; iter++) {
8569 		if (!pfn_valid_within(pfn + iter))
8570 			continue;
8571 
8572 		page = pfn_to_page(pfn + iter);
8573 
8574 		/*
8575 		 * Both, bootmem allocations and memory holes are marked
8576 		 * PG_reserved and are unmovable. We can even have unmovable
8577 		 * allocations inside ZONE_MOVABLE, for example when
8578 		 * specifying "movablecore".
8579 		 */
8580 		if (PageReserved(page))
8581 			return page;
8582 
8583 		/*
8584 		 * If the zone is movable and we have ruled out all reserved
8585 		 * pages then it should be reasonably safe to assume the rest
8586 		 * is movable.
8587 		 */
8588 		if (zone_idx(zone) == ZONE_MOVABLE)
8589 			continue;
8590 
8591 		/*
8592 		 * Hugepages are not in LRU lists, but they're movable.
8593 		 * THPs are on the LRU, but need to be counted as #small pages.
8594 		 * We need not scan over tail pages because we don't
8595 		 * handle each tail page individually in migration.
8596 		 */
8597 		if (PageHuge(page) || PageTransCompound(page)) {
8598 			struct page *head = compound_head(page);
8599 			unsigned int skip_pages;
8600 
8601 			if (PageHuge(page)) {
8602 				if (!hugepage_migration_supported(page_hstate(head)))
8603 					return page;
8604 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8605 				return page;
8606 			}
8607 
8608 			skip_pages = compound_nr(head) - (page - head);
8609 			iter += skip_pages - 1;
8610 			continue;
8611 		}
8612 
8613 		/*
8614 		 * We can't use page_count without pin a page
8615 		 * because another CPU can free compound page.
8616 		 * This check already skips compound tails of THP
8617 		 * because their page->_refcount is zero at all time.
8618 		 */
8619 		if (!page_ref_count(page)) {
8620 			if (PageBuddy(page))
8621 				iter += (1 << buddy_order(page)) - 1;
8622 			continue;
8623 		}
8624 
8625 		/*
8626 		 * The HWPoisoned page may be not in buddy system, and
8627 		 * page_count() is not 0.
8628 		 */
8629 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8630 			continue;
8631 
8632 		/*
8633 		 * We treat all PageOffline() pages as movable when offlining
8634 		 * to give drivers a chance to decrement their reference count
8635 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8636 		 * can be offlined as there are no direct references anymore.
8637 		 * For actually unmovable PageOffline() where the driver does
8638 		 * not support this, we will fail later when trying to actually
8639 		 * move these pages that still have a reference count > 0.
8640 		 * (false negatives in this function only)
8641 		 */
8642 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8643 			continue;
8644 
8645 		if (__PageMovable(page) || PageLRU(page))
8646 			continue;
8647 
8648 		/*
8649 		 * If there are RECLAIMABLE pages, we need to check
8650 		 * it.  But now, memory offline itself doesn't call
8651 		 * shrink_node_slabs() and it still to be fixed.
8652 		 */
8653 		return page;
8654 	}
8655 	return NULL;
8656 }
8657 
8658 #ifdef CONFIG_CONTIG_ALLOC
pfn_max_align_down(unsigned long pfn)8659 static unsigned long pfn_max_align_down(unsigned long pfn)
8660 {
8661 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8662 			     pageblock_nr_pages) - 1);
8663 }
8664 
pfn_max_align_up(unsigned long pfn)8665 unsigned long pfn_max_align_up(unsigned long pfn)
8666 {
8667 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8668 				pageblock_nr_pages));
8669 }
8670 
8671 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8672 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8673 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)8674 static void alloc_contig_dump_pages(struct list_head *page_list)
8675 {
8676 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8677 
8678 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8679 		struct page *page;
8680 		unsigned long nr_skip = 0;
8681 		unsigned long nr_pages = 0;
8682 
8683 		dump_stack();
8684 		list_for_each_entry(page, page_list, lru) {
8685 			nr_pages++;
8686 			/* The page will be freed by putback_movable_pages soon */
8687 			if (page_count(page) == 1) {
8688 				nr_skip++;
8689 				continue;
8690 			}
8691 			dump_page(page, "migration failure");
8692 		}
8693 		pr_warn("total dump_pages %lu skipping %lu\n", nr_pages, nr_skip);
8694 	}
8695 }
8696 #else
alloc_contig_dump_pages(struct list_head * page_list)8697 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8698 {
8699 }
8700 #endif
8701 
8702 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,struct acr_info * info)8703 static int __alloc_contig_migrate_range(struct compact_control *cc,
8704 					unsigned long start, unsigned long end,
8705 					struct acr_info *info)
8706 {
8707 	/* This function is based on compact_zone() from compaction.c. */
8708 	unsigned int nr_reclaimed;
8709 	unsigned long pfn = start;
8710 	unsigned int tries = 0;
8711 	unsigned int max_tries = 5;
8712 	int ret = 0;
8713 	struct page *page;
8714 	struct migration_target_control mtc = {
8715 		.nid = zone_to_nid(cc->zone),
8716 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8717 	};
8718 
8719 	if (cc->alloc_contig && cc->mode == MIGRATE_ASYNC)
8720 		max_tries = 1;
8721 
8722 	lru_cache_disable();
8723 
8724 	while (pfn < end || !list_empty(&cc->migratepages)) {
8725 		if (fatal_signal_pending(current)) {
8726 			ret = -EINTR;
8727 			break;
8728 		}
8729 
8730 		if (list_empty(&cc->migratepages)) {
8731 			cc->nr_migratepages = 0;
8732 			pfn = isolate_migratepages_range(cc, pfn, end);
8733 			if (!pfn) {
8734 				ret = -EINTR;
8735 				break;
8736 			}
8737 			tries = 0;
8738 		} else if (++tries == max_tries) {
8739 			ret = ret < 0 ? ret : -EBUSY;
8740 			break;
8741 		}
8742 
8743 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8744 							&cc->migratepages);
8745 		info->nr_reclaimed += nr_reclaimed;
8746 		cc->nr_migratepages -= nr_reclaimed;
8747 
8748 		list_for_each_entry(page, &cc->migratepages, lru)
8749 			info->nr_mapped += page_mapcount(page);
8750 
8751 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8752 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8753 		if (!ret)
8754 			info->nr_migrated += cc->nr_migratepages;
8755 	}
8756 
8757 	lru_cache_enable();
8758 	if (ret < 0) {
8759 		if (ret == -EBUSY) {
8760 			alloc_contig_dump_pages(&cc->migratepages);
8761 			page_pinner_mark_migration_failed_pages(&cc->migratepages);
8762 		}
8763 
8764 		if (!list_empty(&cc->migratepages)) {
8765 			page = list_first_entry(&cc->migratepages, struct page , lru);
8766 			info->failed_pfn = page_to_pfn(page);
8767 		}
8768 
8769 		putback_movable_pages(&cc->migratepages);
8770 		info->err |= ACR_ERR_MIGRATE;
8771 		return ret;
8772 	}
8773 	return 0;
8774 }
8775 
8776 /**
8777  * alloc_contig_range() -- tries to allocate given range of pages
8778  * @start:	start PFN to allocate
8779  * @end:	one-past-the-last PFN to allocate
8780  * @migratetype:	migratetype of the underlaying pageblocks (either
8781  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8782  *			in range must have the same migratetype and it must
8783  *			be either of the two.
8784  * @gfp_mask:	GFP mask to use during compaction
8785  *
8786  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8787  * aligned.  The PFN range must belong to a single zone.
8788  *
8789  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8790  * pageblocks in the range.  Once isolated, the pageblocks should not
8791  * be modified by others.
8792  *
8793  * Return: zero on success or negative error code.  On success all
8794  * pages which PFN is in [start, end) are allocated for the caller and
8795  * need to be freed with free_contig_range().
8796  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask,struct acr_info * info)8797 int alloc_contig_range(unsigned long start, unsigned long end,
8798 		       unsigned migratetype, gfp_t gfp_mask,
8799 		       struct acr_info *info)
8800 {
8801 	unsigned long outer_start, outer_end;
8802 	unsigned int order;
8803 	int ret = 0;
8804 	bool skip_drain_all_pages = false;
8805 
8806 	struct compact_control cc = {
8807 		.nr_migratepages = 0,
8808 		.order = -1,
8809 		.zone = page_zone(pfn_to_page(start)),
8810 		.mode = gfp_mask & __GFP_NORETRY ? MIGRATE_ASYNC : MIGRATE_SYNC,
8811 		.ignore_skip_hint = true,
8812 		.no_set_skip_hint = true,
8813 		.gfp_mask = current_gfp_context(gfp_mask),
8814 		.alloc_contig = true,
8815 	};
8816 	INIT_LIST_HEAD(&cc.migratepages);
8817 
8818 	/*
8819 	 * What we do here is we mark all pageblocks in range as
8820 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8821 	 * have different sizes, and due to the way page allocator
8822 	 * work, we align the range to biggest of the two pages so
8823 	 * that page allocator won't try to merge buddies from
8824 	 * different pageblocks and change MIGRATE_ISOLATE to some
8825 	 * other migration type.
8826 	 *
8827 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8828 	 * migrate the pages from an unaligned range (ie. pages that
8829 	 * we are interested in).  This will put all the pages in
8830 	 * range back to page allocator as MIGRATE_ISOLATE.
8831 	 *
8832 	 * When this is done, we take the pages in range from page
8833 	 * allocator removing them from the buddy system.  This way
8834 	 * page allocator will never consider using them.
8835 	 *
8836 	 * This lets us mark the pageblocks back as
8837 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8838 	 * aligned range but not in the unaligned, original range are
8839 	 * put back to page allocator so that buddy can use them.
8840 	 */
8841 
8842 	ret = start_isolate_page_range(pfn_max_align_down(start),
8843 				       pfn_max_align_up(end), migratetype, 0,
8844 				       &info->failed_pfn);
8845 	if (ret) {
8846 		info->err |= ACR_ERR_ISOLATE;
8847 		return ret;
8848 	}
8849 
8850 	trace_android_vh_cma_drain_all_pages_bypass(migratetype,
8851 						&skip_drain_all_pages);
8852 	if (!skip_drain_all_pages)
8853 		drain_all_pages(cc.zone);
8854 
8855 	/*
8856 	 * In case of -EBUSY, we'd like to know which page causes problem.
8857 	 * So, just fall through. test_pages_isolated() has a tracepoint
8858 	 * which will report the busy page.
8859 	 *
8860 	 * It is possible that busy pages could become available before
8861 	 * the call to test_pages_isolated, and the range will actually be
8862 	 * allocated.  So, if we fall through be sure to clear ret so that
8863 	 * -EBUSY is not accidentally used or returned to caller.
8864 	 */
8865 	ret = __alloc_contig_migrate_range(&cc, start, end, info);
8866 	if (ret && (ret != -EBUSY || (gfp_mask & __GFP_NORETRY)))
8867 		goto done;
8868 	ret =0;
8869 
8870 	/*
8871 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8872 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8873 	 * more, all pages in [start, end) are free in page allocator.
8874 	 * What we are going to do is to allocate all pages from
8875 	 * [start, end) (that is remove them from page allocator).
8876 	 *
8877 	 * The only problem is that pages at the beginning and at the
8878 	 * end of interesting range may be not aligned with pages that
8879 	 * page allocator holds, ie. they can be part of higher order
8880 	 * pages.  Because of this, we reserve the bigger range and
8881 	 * once this is done free the pages we are not interested in.
8882 	 *
8883 	 * We don't have to hold zone->lock here because the pages are
8884 	 * isolated thus they won't get removed from buddy.
8885 	 */
8886 
8887 	order = 0;
8888 	outer_start = start;
8889 	while (!PageBuddy(pfn_to_page(outer_start))) {
8890 		if (++order >= MAX_ORDER) {
8891 			outer_start = start;
8892 			break;
8893 		}
8894 		outer_start &= ~0UL << order;
8895 	}
8896 
8897 	if (outer_start != start) {
8898 		order = buddy_order(pfn_to_page(outer_start));
8899 
8900 		/*
8901 		 * outer_start page could be small order buddy page and
8902 		 * it doesn't include start page. Adjust outer_start
8903 		 * in this case to report failed page properly
8904 		 * on tracepoint in test_pages_isolated()
8905 		 */
8906 		if (outer_start + (1UL << order) <= start)
8907 			outer_start = start;
8908 	}
8909 
8910 	/* Make sure the range is really isolated. */
8911 	if (test_pages_isolated(outer_start, end, 0, &info->failed_pfn)) {
8912 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8913 			__func__, outer_start, end);
8914 		ret = -EBUSY;
8915 		info->err |= ACR_ERR_TEST;
8916 		goto done;
8917 	}
8918 
8919 	/* Grab isolated pages from freelists. */
8920 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8921 	if (!outer_end) {
8922 		ret = -EBUSY;
8923 		goto done;
8924 	}
8925 
8926 	/* Free head and tail (if any) */
8927 	if (start != outer_start)
8928 		free_contig_range(outer_start, start - outer_start);
8929 	if (end != outer_end)
8930 		free_contig_range(end, outer_end - end);
8931 
8932 done:
8933 	undo_isolate_page_range(pfn_max_align_down(start),
8934 				pfn_max_align_up(end), migratetype);
8935 	return ret;
8936 }
8937 EXPORT_SYMBOL(alloc_contig_range);
8938 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)8939 static int __alloc_contig_pages(unsigned long start_pfn,
8940 				unsigned long nr_pages, gfp_t gfp_mask)
8941 {
8942 	struct acr_info dummy;
8943 	unsigned long end_pfn = start_pfn + nr_pages;
8944 
8945 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8946 				  gfp_mask, &dummy);
8947 }
8948 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)8949 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8950 				   unsigned long nr_pages)
8951 {
8952 	unsigned long i, end_pfn = start_pfn + nr_pages;
8953 	struct page *page;
8954 
8955 	for (i = start_pfn; i < end_pfn; i++) {
8956 		page = pfn_to_online_page(i);
8957 		if (!page)
8958 			return false;
8959 
8960 		if (page_zone(page) != z)
8961 			return false;
8962 
8963 		if (PageReserved(page))
8964 			return false;
8965 
8966 		if (page_count(page) > 0)
8967 			return false;
8968 
8969 		if (PageHuge(page))
8970 			return false;
8971 	}
8972 	return true;
8973 }
8974 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)8975 static bool zone_spans_last_pfn(const struct zone *zone,
8976 				unsigned long start_pfn, unsigned long nr_pages)
8977 {
8978 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8979 
8980 	return zone_spans_pfn(zone, last_pfn);
8981 }
8982 
8983 /**
8984  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8985  * @nr_pages:	Number of contiguous pages to allocate
8986  * @gfp_mask:	GFP mask to limit search and used during compaction
8987  * @nid:	Target node
8988  * @nodemask:	Mask for other possible nodes
8989  *
8990  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8991  * on an applicable zonelist to find a contiguous pfn range which can then be
8992  * tried for allocation with alloc_contig_range(). This routine is intended
8993  * for allocation requests which can not be fulfilled with the buddy allocator.
8994  *
8995  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8996  * power of two then the alignment is guaranteed to be to the given nr_pages
8997  * (e.g. 1GB request would be aligned to 1GB).
8998  *
8999  * Allocated pages can be freed with free_contig_range() or by manually calling
9000  * __free_page() on each allocated page.
9001  *
9002  * Return: pointer to contiguous pages on success, or NULL if not successful.
9003  */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)9004 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9005 				int nid, nodemask_t *nodemask)
9006 {
9007 	unsigned long ret, pfn, flags;
9008 	struct zonelist *zonelist;
9009 	struct zone *zone;
9010 	struct zoneref *z;
9011 
9012 	zonelist = node_zonelist(nid, gfp_mask);
9013 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9014 					gfp_zone(gfp_mask), nodemask) {
9015 		spin_lock_irqsave(&zone->lock, flags);
9016 
9017 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9018 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9019 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9020 				/*
9021 				 * We release the zone lock here because
9022 				 * alloc_contig_range() will also lock the zone
9023 				 * at some point. If there's an allocation
9024 				 * spinning on this lock, it may win the race
9025 				 * and cause alloc_contig_range() to fail...
9026 				 */
9027 				spin_unlock_irqrestore(&zone->lock, flags);
9028 				ret = __alloc_contig_pages(pfn, nr_pages,
9029 							gfp_mask);
9030 				if (!ret)
9031 					return pfn_to_page(pfn);
9032 				spin_lock_irqsave(&zone->lock, flags);
9033 			}
9034 			pfn += nr_pages;
9035 		}
9036 		spin_unlock_irqrestore(&zone->lock, flags);
9037 	}
9038 	return NULL;
9039 }
9040 #endif /* CONFIG_CONTIG_ALLOC */
9041 
free_contig_range(unsigned long pfn,unsigned int nr_pages)9042 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
9043 {
9044 	unsigned int count = 0;
9045 
9046 	for (; nr_pages--; pfn++) {
9047 		struct page *page = pfn_to_page(pfn);
9048 
9049 		count += page_count(page) != 1;
9050 		__free_page(page);
9051 	}
9052 	WARN(count != 0, "%d pages are still in use!\n", count);
9053 }
9054 EXPORT_SYMBOL(free_contig_range);
9055 
9056 /*
9057  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9058  * page high values need to be recalulated.
9059  */
zone_pcp_update(struct zone * zone)9060 void __meminit zone_pcp_update(struct zone *zone)
9061 {
9062 	mutex_lock(&pcp_batch_high_lock);
9063 	__zone_pcp_update(zone);
9064 	mutex_unlock(&pcp_batch_high_lock);
9065 }
9066 
zone_pcp_reset(struct zone * zone)9067 void zone_pcp_reset(struct zone *zone)
9068 {
9069 	unsigned long flags;
9070 	int cpu;
9071 	struct per_cpu_pageset *pset;
9072 
9073 	/* avoid races with drain_pages()  */
9074 	local_irq_save(flags);
9075 	if (zone->pageset != &boot_pageset) {
9076 		for_each_online_cpu(cpu) {
9077 			pset = per_cpu_ptr(zone->pageset, cpu);
9078 			drain_zonestat(zone, pset);
9079 		}
9080 		free_percpu(zone->pageset);
9081 		zone->pageset = &boot_pageset;
9082 	}
9083 	local_irq_restore(flags);
9084 }
9085 
9086 #ifdef CONFIG_MEMORY_HOTREMOVE
9087 /*
9088  * All pages in the range must be in a single zone, must not contain holes,
9089  * must span full sections, and must be isolated before calling this function.
9090  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)9091 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9092 {
9093 	unsigned long pfn = start_pfn;
9094 	struct page *page;
9095 	struct zone *zone;
9096 	unsigned int order;
9097 	unsigned long flags;
9098 
9099 	offline_mem_sections(pfn, end_pfn);
9100 	zone = page_zone(pfn_to_page(pfn));
9101 	spin_lock_irqsave(&zone->lock, flags);
9102 	while (pfn < end_pfn) {
9103 		page = pfn_to_page(pfn);
9104 		/*
9105 		 * The HWPoisoned page may be not in buddy system, and
9106 		 * page_count() is not 0.
9107 		 */
9108 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9109 			pfn++;
9110 			continue;
9111 		}
9112 		/*
9113 		 * At this point all remaining PageOffline() pages have a
9114 		 * reference count of 0 and can simply be skipped.
9115 		 */
9116 		if (PageOffline(page)) {
9117 			BUG_ON(page_count(page));
9118 			BUG_ON(PageBuddy(page));
9119 			pfn++;
9120 			continue;
9121 		}
9122 
9123 		BUG_ON(page_count(page));
9124 		BUG_ON(!PageBuddy(page));
9125 		order = buddy_order(page);
9126 		del_page_from_free_list(page, zone, order);
9127 		pfn += (1 << order);
9128 	}
9129 	spin_unlock_irqrestore(&zone->lock, flags);
9130 }
9131 #endif
9132 
is_free_buddy_page(struct page * page)9133 bool is_free_buddy_page(struct page *page)
9134 {
9135 	struct zone *zone = page_zone(page);
9136 	unsigned long pfn = page_to_pfn(page);
9137 	unsigned long flags;
9138 	unsigned int order;
9139 
9140 	spin_lock_irqsave(&zone->lock, flags);
9141 	for (order = 0; order < MAX_ORDER; order++) {
9142 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9143 
9144 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9145 			break;
9146 	}
9147 	spin_unlock_irqrestore(&zone->lock, flags);
9148 
9149 	return order < MAX_ORDER;
9150 }
9151 
9152 #ifdef CONFIG_MEMORY_FAILURE
9153 /*
9154  * Break down a higher-order page in sub-pages, and keep our target out of
9155  * buddy allocator.
9156  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)9157 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9158 				   struct page *target, int low, int high,
9159 				   int migratetype)
9160 {
9161 	unsigned long size = 1 << high;
9162 	struct page *current_buddy, *next_page;
9163 
9164 	while (high > low) {
9165 		high--;
9166 		size >>= 1;
9167 
9168 		if (target >= &page[size]) {
9169 			next_page = page + size;
9170 			current_buddy = page;
9171 		} else {
9172 			next_page = page;
9173 			current_buddy = page + size;
9174 		}
9175 
9176 		if (set_page_guard(zone, current_buddy, high, migratetype))
9177 			continue;
9178 
9179 		if (current_buddy != target) {
9180 			add_to_free_list(current_buddy, zone, high, migratetype);
9181 			set_buddy_order(current_buddy, high);
9182 			page = next_page;
9183 		}
9184 	}
9185 }
9186 
9187 /*
9188  * Take a page that will be marked as poisoned off the buddy allocator.
9189  */
take_page_off_buddy(struct page * page)9190 bool take_page_off_buddy(struct page *page)
9191 {
9192 	struct zone *zone = page_zone(page);
9193 	unsigned long pfn = page_to_pfn(page);
9194 	unsigned long flags;
9195 	unsigned int order;
9196 	bool ret = false;
9197 
9198 	spin_lock_irqsave(&zone->lock, flags);
9199 	for (order = 0; order < MAX_ORDER; order++) {
9200 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9201 		int page_order = buddy_order(page_head);
9202 
9203 		if (PageBuddy(page_head) && page_order >= order) {
9204 			unsigned long pfn_head = page_to_pfn(page_head);
9205 			int migratetype = get_pfnblock_migratetype(page_head,
9206 								   pfn_head);
9207 
9208 			del_page_from_free_list(page_head, zone, page_order);
9209 			break_down_buddy_pages(zone, page_head, page, 0,
9210 						page_order, migratetype);
9211 			if (!is_migrate_isolate(migratetype))
9212 				__mod_zone_freepage_state(zone, -1, migratetype);
9213 			ret = true;
9214 			break;
9215 		}
9216 		if (page_count(page_head) > 0)
9217 			break;
9218 	}
9219 	spin_unlock_irqrestore(&zone->lock, flags);
9220 	return ret;
9221 }
9222 #endif
9223 
9224 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)9225 bool has_managed_dma(void)
9226 {
9227 	struct pglist_data *pgdat;
9228 
9229 	for_each_online_pgdat(pgdat) {
9230 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9231 
9232 		if (managed_zone(zone))
9233 			return true;
9234 	}
9235 	return false;
9236 }
9237 #endif /* CONFIG_ZONE_DMA */
9238