1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34 };
35
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
61
62 struct perf_callchain_entry {
63 __u64 nr;
64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
65 };
66
67 struct perf_callchain_entry_ctx {
68 struct perf_callchain_entry *entry;
69 u32 max_stack;
70 u32 nr;
71 short contexts;
72 bool contexts_maxed;
73 };
74
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 unsigned long off, unsigned long len);
77
78 struct perf_raw_frag {
79 union {
80 struct perf_raw_frag *next;
81 unsigned long pad;
82 };
83 perf_copy_f copy;
84 void *data;
85 u32 size;
86 } __packed;
87
88 struct perf_raw_record {
89 struct perf_raw_frag frag;
90 u32 size;
91 };
92
93 /*
94 * branch stack layout:
95 * nr: number of taken branches stored in entries[]
96 * hw_idx: The low level index of raw branch records
97 * for the most recent branch.
98 * -1ULL means invalid/unknown.
99 *
100 * Note that nr can vary from sample to sample
101 * branches (to, from) are stored from most recent
102 * to least recent, i.e., entries[0] contains the most
103 * recent branch.
104 * The entries[] is an abstraction of raw branch records,
105 * which may not be stored in age order in HW, e.g. Intel LBR.
106 * The hw_idx is to expose the low level index of raw
107 * branch record for the most recent branch aka entries[0].
108 * The hw_idx index is between -1 (unknown) and max depth,
109 * which can be retrieved in /sys/devices/cpu/caps/branches.
110 * For the architectures whose raw branch records are
111 * already stored in age order, the hw_idx should be 0.
112 */
113 struct perf_branch_stack {
114 __u64 nr;
115 __u64 hw_idx;
116 struct perf_branch_entry entries[];
117 };
118
119 struct task_struct;
120
121 /*
122 * extra PMU register associated with an event
123 */
124 struct hw_perf_event_extra {
125 u64 config; /* register value */
126 unsigned int reg; /* register address or index */
127 int alloc; /* extra register already allocated */
128 int idx; /* index in shared_regs->regs[] */
129 };
130
131 /**
132 * struct hw_perf_event - performance event hardware details:
133 */
134 struct hw_perf_event {
135 #ifdef CONFIG_PERF_EVENTS
136 union {
137 struct { /* hardware */
138 u64 config;
139 u64 last_tag;
140 unsigned long config_base;
141 unsigned long event_base;
142 int event_base_rdpmc;
143 int idx;
144 int last_cpu;
145 int flags;
146
147 struct hw_perf_event_extra extra_reg;
148 struct hw_perf_event_extra branch_reg;
149 };
150 struct { /* software */
151 struct hrtimer hrtimer;
152 };
153 struct { /* tracepoint */
154 /* for tp_event->class */
155 struct list_head tp_list;
156 };
157 struct { /* amd_power */
158 u64 pwr_acc;
159 u64 ptsc;
160 };
161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
162 struct { /* breakpoint */
163 /*
164 * Crufty hack to avoid the chicken and egg
165 * problem hw_breakpoint has with context
166 * creation and event initalization.
167 */
168 struct arch_hw_breakpoint info;
169 struct list_head bp_list;
170 };
171 #endif
172 struct { /* amd_iommu */
173 u8 iommu_bank;
174 u8 iommu_cntr;
175 u16 padding;
176 u64 conf;
177 u64 conf1;
178 };
179 };
180 /*
181 * If the event is a per task event, this will point to the task in
182 * question. See the comment in perf_event_alloc().
183 */
184 struct task_struct *target;
185
186 /*
187 * PMU would store hardware filter configuration
188 * here.
189 */
190 void *addr_filters;
191
192 /* Last sync'ed generation of filters */
193 unsigned long addr_filters_gen;
194
195 /*
196 * hw_perf_event::state flags; used to track the PERF_EF_* state.
197 */
198 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
199 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
200 #define PERF_HES_ARCH 0x04
201
202 int state;
203
204 /*
205 * The last observed hardware counter value, updated with a
206 * local64_cmpxchg() such that pmu::read() can be called nested.
207 */
208 local64_t prev_count;
209
210 /*
211 * The period to start the next sample with.
212 */
213 u64 sample_period;
214
215 union {
216 struct { /* Sampling */
217 /*
218 * The period we started this sample with.
219 */
220 u64 last_period;
221
222 /*
223 * However much is left of the current period;
224 * note that this is a full 64bit value and
225 * allows for generation of periods longer
226 * than hardware might allow.
227 */
228 local64_t period_left;
229 };
230 struct { /* Topdown events counting for context switch */
231 u64 saved_metric;
232 u64 saved_slots;
233 };
234 };
235
236 /*
237 * State for throttling the event, see __perf_event_overflow() and
238 * perf_adjust_freq_unthr_context().
239 */
240 u64 interrupts_seq;
241 u64 interrupts;
242
243 /*
244 * State for freq target events, see __perf_event_overflow() and
245 * perf_adjust_freq_unthr_context().
246 */
247 u64 freq_time_stamp;
248 u64 freq_count_stamp;
249 #endif
250 };
251
252 struct perf_event;
253
254 /*
255 * Common implementation detail of pmu::{start,commit,cancel}_txn
256 */
257 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
258 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
259
260 /**
261 * pmu::capabilities flags
262 */
263 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
264 #define PERF_PMU_CAP_NO_NMI 0x02
265 #define PERF_PMU_CAP_AUX_NO_SG 0x04
266 #define PERF_PMU_CAP_EXTENDED_REGS 0x08
267 #define PERF_PMU_CAP_EXCLUSIVE 0x10
268 #define PERF_PMU_CAP_ITRACE 0x20
269 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
270 #define PERF_PMU_CAP_NO_EXCLUDE 0x80
271 #define PERF_PMU_CAP_AUX_OUTPUT 0x100
272
273 struct perf_output_handle;
274
275 /**
276 * struct pmu - generic performance monitoring unit
277 */
278 struct pmu {
279 struct list_head entry;
280
281 struct module *module;
282 struct device *dev;
283 const struct attribute_group **attr_groups;
284 const struct attribute_group **attr_update;
285 const char *name;
286 int type;
287
288 /*
289 * various common per-pmu feature flags
290 */
291 int capabilities;
292
293 int __percpu *pmu_disable_count;
294 struct perf_cpu_context __percpu *pmu_cpu_context;
295 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
296 int task_ctx_nr;
297 int hrtimer_interval_ms;
298
299 /* number of address filters this PMU can do */
300 unsigned int nr_addr_filters;
301
302 /*
303 * Fully disable/enable this PMU, can be used to protect from the PMI
304 * as well as for lazy/batch writing of the MSRs.
305 */
306 void (*pmu_enable) (struct pmu *pmu); /* optional */
307 void (*pmu_disable) (struct pmu *pmu); /* optional */
308
309 /*
310 * Try and initialize the event for this PMU.
311 *
312 * Returns:
313 * -ENOENT -- @event is not for this PMU
314 *
315 * -ENODEV -- @event is for this PMU but PMU not present
316 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
317 * -EINVAL -- @event is for this PMU but @event is not valid
318 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
319 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
320 *
321 * 0 -- @event is for this PMU and valid
322 *
323 * Other error return values are allowed.
324 */
325 int (*event_init) (struct perf_event *event);
326
327 /*
328 * Notification that the event was mapped or unmapped. Called
329 * in the context of the mapping task.
330 */
331 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
332 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
333
334 /*
335 * Flags for ->add()/->del()/ ->start()/->stop(). There are
336 * matching hw_perf_event::state flags.
337 */
338 #define PERF_EF_START 0x01 /* start the counter when adding */
339 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
340 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
341
342 /*
343 * Adds/Removes a counter to/from the PMU, can be done inside a
344 * transaction, see the ->*_txn() methods.
345 *
346 * The add/del callbacks will reserve all hardware resources required
347 * to service the event, this includes any counter constraint
348 * scheduling etc.
349 *
350 * Called with IRQs disabled and the PMU disabled on the CPU the event
351 * is on.
352 *
353 * ->add() called without PERF_EF_START should result in the same state
354 * as ->add() followed by ->stop().
355 *
356 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
357 * ->stop() that must deal with already being stopped without
358 * PERF_EF_UPDATE.
359 */
360 int (*add) (struct perf_event *event, int flags);
361 void (*del) (struct perf_event *event, int flags);
362
363 /*
364 * Starts/Stops a counter present on the PMU.
365 *
366 * The PMI handler should stop the counter when perf_event_overflow()
367 * returns !0. ->start() will be used to continue.
368 *
369 * Also used to change the sample period.
370 *
371 * Called with IRQs disabled and the PMU disabled on the CPU the event
372 * is on -- will be called from NMI context with the PMU generates
373 * NMIs.
374 *
375 * ->stop() with PERF_EF_UPDATE will read the counter and update
376 * period/count values like ->read() would.
377 *
378 * ->start() with PERF_EF_RELOAD will reprogram the counter
379 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
380 */
381 void (*start) (struct perf_event *event, int flags);
382 void (*stop) (struct perf_event *event, int flags);
383
384 /*
385 * Updates the counter value of the event.
386 *
387 * For sampling capable PMUs this will also update the software period
388 * hw_perf_event::period_left field.
389 */
390 void (*read) (struct perf_event *event);
391
392 /*
393 * Group events scheduling is treated as a transaction, add
394 * group events as a whole and perform one schedulability test.
395 * If the test fails, roll back the whole group
396 *
397 * Start the transaction, after this ->add() doesn't need to
398 * do schedulability tests.
399 *
400 * Optional.
401 */
402 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
403 /*
404 * If ->start_txn() disabled the ->add() schedulability test
405 * then ->commit_txn() is required to perform one. On success
406 * the transaction is closed. On error the transaction is kept
407 * open until ->cancel_txn() is called.
408 *
409 * Optional.
410 */
411 int (*commit_txn) (struct pmu *pmu);
412 /*
413 * Will cancel the transaction, assumes ->del() is called
414 * for each successful ->add() during the transaction.
415 *
416 * Optional.
417 */
418 void (*cancel_txn) (struct pmu *pmu);
419
420 /*
421 * Will return the value for perf_event_mmap_page::index for this event,
422 * if no implementation is provided it will default to: event->hw.idx + 1.
423 */
424 int (*event_idx) (struct perf_event *event); /*optional */
425
426 /*
427 * context-switches callback
428 */
429 void (*sched_task) (struct perf_event_context *ctx,
430 bool sched_in);
431
432 /*
433 * Kmem cache of PMU specific data
434 */
435 struct kmem_cache *task_ctx_cache;
436
437 /*
438 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
439 * can be synchronized using this function. See Intel LBR callstack support
440 * implementation and Perf core context switch handling callbacks for usage
441 * examples.
442 */
443 void (*swap_task_ctx) (struct perf_event_context *prev,
444 struct perf_event_context *next);
445 /* optional */
446
447 /*
448 * Set up pmu-private data structures for an AUX area
449 */
450 void *(*setup_aux) (struct perf_event *event, void **pages,
451 int nr_pages, bool overwrite);
452 /* optional */
453
454 /*
455 * Free pmu-private AUX data structures
456 */
457 void (*free_aux) (void *aux); /* optional */
458
459 /*
460 * Take a snapshot of the AUX buffer without touching the event
461 * state, so that preempting ->start()/->stop() callbacks does
462 * not interfere with their logic. Called in PMI context.
463 *
464 * Returns the size of AUX data copied to the output handle.
465 *
466 * Optional.
467 */
468 long (*snapshot_aux) (struct perf_event *event,
469 struct perf_output_handle *handle,
470 unsigned long size);
471
472 /*
473 * Validate address range filters: make sure the HW supports the
474 * requested configuration and number of filters; return 0 if the
475 * supplied filters are valid, -errno otherwise.
476 *
477 * Runs in the context of the ioctl()ing process and is not serialized
478 * with the rest of the PMU callbacks.
479 */
480 int (*addr_filters_validate) (struct list_head *filters);
481 /* optional */
482
483 /*
484 * Synchronize address range filter configuration:
485 * translate hw-agnostic filters into hardware configuration in
486 * event::hw::addr_filters.
487 *
488 * Runs as a part of filter sync sequence that is done in ->start()
489 * callback by calling perf_event_addr_filters_sync().
490 *
491 * May (and should) traverse event::addr_filters::list, for which its
492 * caller provides necessary serialization.
493 */
494 void (*addr_filters_sync) (struct perf_event *event);
495 /* optional */
496
497 /*
498 * Check if event can be used for aux_output purposes for
499 * events of this PMU.
500 *
501 * Runs from perf_event_open(). Should return 0 for "no match"
502 * or non-zero for "match".
503 */
504 int (*aux_output_match) (struct perf_event *event);
505 /* optional */
506
507 /*
508 * Filter events for PMU-specific reasons.
509 */
510 int (*filter_match) (struct perf_event *event); /* optional */
511
512 /*
513 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
514 */
515 int (*check_period) (struct perf_event *event, u64 value); /* optional */
516 };
517
518 enum perf_addr_filter_action_t {
519 PERF_ADDR_FILTER_ACTION_STOP = 0,
520 PERF_ADDR_FILTER_ACTION_START,
521 PERF_ADDR_FILTER_ACTION_FILTER,
522 };
523
524 /**
525 * struct perf_addr_filter - address range filter definition
526 * @entry: event's filter list linkage
527 * @path: object file's path for file-based filters
528 * @offset: filter range offset
529 * @size: filter range size (size==0 means single address trigger)
530 * @action: filter/start/stop
531 *
532 * This is a hardware-agnostic filter configuration as specified by the user.
533 */
534 struct perf_addr_filter {
535 struct list_head entry;
536 struct path path;
537 unsigned long offset;
538 unsigned long size;
539 enum perf_addr_filter_action_t action;
540 };
541
542 /**
543 * struct perf_addr_filters_head - container for address range filters
544 * @list: list of filters for this event
545 * @lock: spinlock that serializes accesses to the @list and event's
546 * (and its children's) filter generations.
547 * @nr_file_filters: number of file-based filters
548 *
549 * A child event will use parent's @list (and therefore @lock), so they are
550 * bundled together; see perf_event_addr_filters().
551 */
552 struct perf_addr_filters_head {
553 struct list_head list;
554 raw_spinlock_t lock;
555 unsigned int nr_file_filters;
556 };
557
558 struct perf_addr_filter_range {
559 unsigned long start;
560 unsigned long size;
561 };
562
563 /**
564 * enum perf_event_state - the states of an event:
565 */
566 enum perf_event_state {
567 PERF_EVENT_STATE_DEAD = -4,
568 PERF_EVENT_STATE_EXIT = -3,
569 PERF_EVENT_STATE_ERROR = -2,
570 PERF_EVENT_STATE_OFF = -1,
571 PERF_EVENT_STATE_INACTIVE = 0,
572 PERF_EVENT_STATE_ACTIVE = 1,
573 };
574
575 struct file;
576 struct perf_sample_data;
577
578 typedef void (*perf_overflow_handler_t)(struct perf_event *,
579 struct perf_sample_data *,
580 struct pt_regs *regs);
581
582 /*
583 * Event capabilities. For event_caps and groups caps.
584 *
585 * PERF_EV_CAP_SOFTWARE: Is a software event.
586 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
587 * from any CPU in the package where it is active.
588 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
589 * cannot be a group leader. If an event with this flag is detached from the
590 * group it is scheduled out and moved into an unrecoverable ERROR state.
591 */
592 #define PERF_EV_CAP_SOFTWARE BIT(0)
593 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
594 #define PERF_EV_CAP_SIBLING BIT(2)
595
596 #define SWEVENT_HLIST_BITS 8
597 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
598
599 struct swevent_hlist {
600 struct hlist_head heads[SWEVENT_HLIST_SIZE];
601 struct rcu_head rcu_head;
602 };
603
604 #define PERF_ATTACH_CONTEXT 0x01
605 #define PERF_ATTACH_GROUP 0x02
606 #define PERF_ATTACH_TASK 0x04
607 #define PERF_ATTACH_TASK_DATA 0x08
608 #define PERF_ATTACH_ITRACE 0x10
609 #define PERF_ATTACH_SCHED_CB 0x20
610
611 struct perf_cgroup;
612 struct perf_buffer;
613
614 struct pmu_event_list {
615 raw_spinlock_t lock;
616 struct list_head list;
617 };
618
619 #define for_each_sibling_event(sibling, event) \
620 if ((event)->group_leader == (event)) \
621 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
622
623 /**
624 * struct perf_event - performance event kernel representation:
625 */
626 struct perf_event {
627 #ifdef CONFIG_PERF_EVENTS
628 /*
629 * entry onto perf_event_context::event_list;
630 * modifications require ctx->lock
631 * RCU safe iterations.
632 */
633 struct list_head event_entry;
634
635 /*
636 * Locked for modification by both ctx->mutex and ctx->lock; holding
637 * either sufficies for read.
638 */
639 struct list_head sibling_list;
640 struct list_head active_list;
641 /*
642 * Node on the pinned or flexible tree located at the event context;
643 */
644 struct rb_node group_node;
645 u64 group_index;
646 /*
647 * We need storage to track the entries in perf_pmu_migrate_context; we
648 * cannot use the event_entry because of RCU and we want to keep the
649 * group in tact which avoids us using the other two entries.
650 */
651 struct list_head migrate_entry;
652
653 struct hlist_node hlist_entry;
654 struct list_head active_entry;
655 int nr_siblings;
656
657 /* Not serialized. Only written during event initialization. */
658 int event_caps;
659 /* The cumulative AND of all event_caps for events in this group. */
660 int group_caps;
661
662 struct perf_event *group_leader;
663 struct pmu *pmu;
664 void *pmu_private;
665
666 enum perf_event_state state;
667 unsigned int attach_state;
668 local64_t count;
669 atomic64_t child_count;
670
671 /*
672 * These are the total time in nanoseconds that the event
673 * has been enabled (i.e. eligible to run, and the task has
674 * been scheduled in, if this is a per-task event)
675 * and running (scheduled onto the CPU), respectively.
676 */
677 u64 total_time_enabled;
678 u64 total_time_running;
679 u64 tstamp;
680
681 /*
682 * timestamp shadows the actual context timing but it can
683 * be safely used in NMI interrupt context. It reflects the
684 * context time as it was when the event was last scheduled in,
685 * or when ctx_sched_in failed to schedule the event because we
686 * run out of PMC.
687 *
688 * ctx_time already accounts for ctx->timestamp. Therefore to
689 * compute ctx_time for a sample, simply add perf_clock().
690 */
691 u64 shadow_ctx_time;
692
693 struct perf_event_attr attr;
694 u16 header_size;
695 u16 id_header_size;
696 u16 read_size;
697 struct hw_perf_event hw;
698
699 struct perf_event_context *ctx;
700 atomic_long_t refcount;
701
702 /*
703 * These accumulate total time (in nanoseconds) that children
704 * events have been enabled and running, respectively.
705 */
706 atomic64_t child_total_time_enabled;
707 atomic64_t child_total_time_running;
708
709 /*
710 * Protect attach/detach and child_list:
711 */
712 struct mutex child_mutex;
713 struct list_head child_list;
714 struct perf_event *parent;
715
716 int oncpu;
717 int cpu;
718
719 struct list_head owner_entry;
720 struct task_struct *owner;
721
722 /* mmap bits */
723 struct mutex mmap_mutex;
724 atomic_t mmap_count;
725
726 struct perf_buffer *rb;
727 struct list_head rb_entry;
728 unsigned long rcu_batches;
729 int rcu_pending;
730
731 /* poll related */
732 wait_queue_head_t waitq;
733 struct fasync_struct *fasync;
734
735 /* delayed work for NMIs and such */
736 int pending_wakeup;
737 int pending_kill;
738 int pending_disable;
739 struct irq_work pending;
740
741 atomic_t event_limit;
742
743 /* address range filters */
744 struct perf_addr_filters_head addr_filters;
745 /* vma address array for file-based filders */
746 struct perf_addr_filter_range *addr_filter_ranges;
747 unsigned long addr_filters_gen;
748
749 /* for aux_output events */
750 struct perf_event *aux_event;
751
752 void (*destroy)(struct perf_event *);
753 struct rcu_head rcu_head;
754
755 struct pid_namespace *ns;
756 u64 id;
757
758 u64 (*clock)(void);
759 perf_overflow_handler_t overflow_handler;
760 void *overflow_handler_context;
761 #ifdef CONFIG_BPF_SYSCALL
762 perf_overflow_handler_t orig_overflow_handler;
763 struct bpf_prog *prog;
764 #endif
765
766 #ifdef CONFIG_EVENT_TRACING
767 struct trace_event_call *tp_event;
768 struct event_filter *filter;
769 #ifdef CONFIG_FUNCTION_TRACER
770 struct ftrace_ops ftrace_ops;
771 #endif
772 #endif
773
774 #ifdef CONFIG_CGROUP_PERF
775 struct perf_cgroup *cgrp; /* cgroup event is attach to */
776 #endif
777
778 #ifdef CONFIG_SECURITY
779 void *security;
780 #endif
781 struct list_head sb_list;
782 #endif /* CONFIG_PERF_EVENTS */
783 };
784
785
786 struct perf_event_groups {
787 struct rb_root tree;
788 u64 index;
789 };
790
791 /**
792 * struct perf_event_context - event context structure
793 *
794 * Used as a container for task events and CPU events as well:
795 */
796 struct perf_event_context {
797 struct pmu *pmu;
798 /*
799 * Protect the states of the events in the list,
800 * nr_active, and the list:
801 */
802 raw_spinlock_t lock;
803 /*
804 * Protect the list of events. Locking either mutex or lock
805 * is sufficient to ensure the list doesn't change; to change
806 * the list you need to lock both the mutex and the spinlock.
807 */
808 struct mutex mutex;
809
810 struct list_head active_ctx_list;
811 struct perf_event_groups pinned_groups;
812 struct perf_event_groups flexible_groups;
813 struct list_head event_list;
814
815 struct list_head pinned_active;
816 struct list_head flexible_active;
817
818 int nr_events;
819 int nr_active;
820 int is_active;
821 int nr_stat;
822 int nr_freq;
823 int rotate_disable;
824 /*
825 * Set when nr_events != nr_active, except tolerant to events not
826 * necessary to be active due to scheduling constraints, such as cgroups.
827 */
828 int rotate_necessary;
829 refcount_t refcount;
830 struct task_struct *task;
831
832 /*
833 * Context clock, runs when context enabled.
834 */
835 u64 time;
836 u64 timestamp;
837
838 /*
839 * These fields let us detect when two contexts have both
840 * been cloned (inherited) from a common ancestor.
841 */
842 struct perf_event_context *parent_ctx;
843 u64 parent_gen;
844 u64 generation;
845 int pin_count;
846 #ifdef CONFIG_CGROUP_PERF
847 int nr_cgroups; /* cgroup evts */
848 #endif
849 void *task_ctx_data; /* pmu specific data */
850 struct rcu_head rcu_head;
851 };
852
853 /*
854 * Number of contexts where an event can trigger:
855 * task, softirq, hardirq, nmi.
856 */
857 #define PERF_NR_CONTEXTS 4
858
859 /**
860 * struct perf_event_cpu_context - per cpu event context structure
861 */
862 struct perf_cpu_context {
863 struct perf_event_context ctx;
864 struct perf_event_context *task_ctx;
865 int active_oncpu;
866 int exclusive;
867
868 raw_spinlock_t hrtimer_lock;
869 struct hrtimer hrtimer;
870 ktime_t hrtimer_interval;
871 unsigned int hrtimer_active;
872
873 #ifdef CONFIG_CGROUP_PERF
874 struct perf_cgroup *cgrp;
875 struct list_head cgrp_cpuctx_entry;
876 #endif
877
878 struct list_head sched_cb_entry;
879 int sched_cb_usage;
880
881 int online;
882 /*
883 * Per-CPU storage for iterators used in visit_groups_merge. The default
884 * storage is of size 2 to hold the CPU and any CPU event iterators.
885 */
886 int heap_size;
887 struct perf_event **heap;
888 struct perf_event *heap_default[2];
889 };
890
891 struct perf_output_handle {
892 struct perf_event *event;
893 struct perf_buffer *rb;
894 unsigned long wakeup;
895 unsigned long size;
896 u64 aux_flags;
897 union {
898 void *addr;
899 unsigned long head;
900 };
901 int page;
902 };
903
904 struct bpf_perf_event_data_kern {
905 bpf_user_pt_regs_t *regs;
906 struct perf_sample_data *data;
907 struct perf_event *event;
908 };
909
910 #ifdef CONFIG_CGROUP_PERF
911
912 /*
913 * perf_cgroup_info keeps track of time_enabled for a cgroup.
914 * This is a per-cpu dynamically allocated data structure.
915 */
916 struct perf_cgroup_info {
917 u64 time;
918 u64 timestamp;
919 };
920
921 struct perf_cgroup {
922 struct cgroup_subsys_state css;
923 struct perf_cgroup_info __percpu *info;
924 };
925
926 /*
927 * Must ensure cgroup is pinned (css_get) before calling
928 * this function. In other words, we cannot call this function
929 * if there is no cgroup event for the current CPU context.
930 */
931 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)932 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
933 {
934 return container_of(task_css_check(task, perf_event_cgrp_id,
935 ctx ? lockdep_is_held(&ctx->lock)
936 : true),
937 struct perf_cgroup, css);
938 }
939 #endif /* CONFIG_CGROUP_PERF */
940
941 #ifdef CONFIG_PERF_EVENTS
942
943 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
944 struct perf_event *event);
945 extern void perf_aux_output_end(struct perf_output_handle *handle,
946 unsigned long size);
947 extern int perf_aux_output_skip(struct perf_output_handle *handle,
948 unsigned long size);
949 extern void *perf_get_aux(struct perf_output_handle *handle);
950 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
951 extern void perf_event_itrace_started(struct perf_event *event);
952
953 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
954 extern void perf_pmu_unregister(struct pmu *pmu);
955
956 extern int perf_num_counters(void);
957 extern const char *perf_pmu_name(void);
958 extern void __perf_event_task_sched_in(struct task_struct *prev,
959 struct task_struct *task);
960 extern void __perf_event_task_sched_out(struct task_struct *prev,
961 struct task_struct *next);
962 extern int perf_event_init_task(struct task_struct *child);
963 extern void perf_event_exit_task(struct task_struct *child);
964 extern void perf_event_free_task(struct task_struct *task);
965 extern void perf_event_delayed_put(struct task_struct *task);
966 extern struct file *perf_event_get(unsigned int fd);
967 extern const struct perf_event *perf_get_event(struct file *file);
968 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
969 extern void perf_event_print_debug(void);
970 extern void perf_pmu_disable(struct pmu *pmu);
971 extern void perf_pmu_enable(struct pmu *pmu);
972 extern void perf_sched_cb_dec(struct pmu *pmu);
973 extern void perf_sched_cb_inc(struct pmu *pmu);
974 extern int perf_event_task_disable(void);
975 extern int perf_event_task_enable(void);
976
977 extern void perf_pmu_resched(struct pmu *pmu);
978
979 extern int perf_event_refresh(struct perf_event *event, int refresh);
980 extern void perf_event_update_userpage(struct perf_event *event);
981 extern int perf_event_release_kernel(struct perf_event *event);
982 extern struct perf_event *
983 perf_event_create_kernel_counter(struct perf_event_attr *attr,
984 int cpu,
985 struct task_struct *task,
986 perf_overflow_handler_t callback,
987 void *context);
988 extern void perf_pmu_migrate_context(struct pmu *pmu,
989 int src_cpu, int dst_cpu);
990 int perf_event_read_local(struct perf_event *event, u64 *value,
991 u64 *enabled, u64 *running);
992 extern u64 perf_event_read_value(struct perf_event *event,
993 u64 *enabled, u64 *running);
994
995
996 struct perf_sample_data {
997 /*
998 * Fields set by perf_sample_data_init(), group so as to
999 * minimize the cachelines touched.
1000 */
1001 u64 addr;
1002 struct perf_raw_record *raw;
1003 struct perf_branch_stack *br_stack;
1004 u64 period;
1005 u64 weight;
1006 u64 txn;
1007 union perf_mem_data_src data_src;
1008
1009 /*
1010 * The other fields, optionally {set,used} by
1011 * perf_{prepare,output}_sample().
1012 */
1013 u64 type;
1014 u64 ip;
1015 struct {
1016 u32 pid;
1017 u32 tid;
1018 } tid_entry;
1019 u64 time;
1020 u64 id;
1021 u64 stream_id;
1022 struct {
1023 u32 cpu;
1024 u32 reserved;
1025 } cpu_entry;
1026 struct perf_callchain_entry *callchain;
1027 u64 aux_size;
1028
1029 struct perf_regs regs_user;
1030 struct perf_regs regs_intr;
1031 u64 stack_user_size;
1032
1033 u64 phys_addr;
1034 u64 cgroup;
1035 } ____cacheline_aligned;
1036
1037 /* default value for data source */
1038 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1039 PERF_MEM_S(LVL, NA) |\
1040 PERF_MEM_S(SNOOP, NA) |\
1041 PERF_MEM_S(LOCK, NA) |\
1042 PERF_MEM_S(TLB, NA))
1043
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1044 static inline void perf_sample_data_init(struct perf_sample_data *data,
1045 u64 addr, u64 period)
1046 {
1047 /* remaining struct members initialized in perf_prepare_sample() */
1048 data->addr = addr;
1049 data->raw = NULL;
1050 data->br_stack = NULL;
1051 data->period = period;
1052 data->weight = 0;
1053 data->data_src.val = PERF_MEM_NA;
1054 data->txn = 0;
1055 }
1056
1057 extern void perf_output_sample(struct perf_output_handle *handle,
1058 struct perf_event_header *header,
1059 struct perf_sample_data *data,
1060 struct perf_event *event);
1061 extern void perf_prepare_sample(struct perf_event_header *header,
1062 struct perf_sample_data *data,
1063 struct perf_event *event,
1064 struct pt_regs *regs);
1065
1066 extern int perf_event_overflow(struct perf_event *event,
1067 struct perf_sample_data *data,
1068 struct pt_regs *regs);
1069
1070 extern void perf_event_output_forward(struct perf_event *event,
1071 struct perf_sample_data *data,
1072 struct pt_regs *regs);
1073 extern void perf_event_output_backward(struct perf_event *event,
1074 struct perf_sample_data *data,
1075 struct pt_regs *regs);
1076 extern int perf_event_output(struct perf_event *event,
1077 struct perf_sample_data *data,
1078 struct pt_regs *regs);
1079
1080 static inline bool
is_default_overflow_handler(struct perf_event * event)1081 is_default_overflow_handler(struct perf_event *event)
1082 {
1083 if (likely(event->overflow_handler == perf_event_output_forward))
1084 return true;
1085 if (unlikely(event->overflow_handler == perf_event_output_backward))
1086 return true;
1087 return false;
1088 }
1089
1090 extern void
1091 perf_event_header__init_id(struct perf_event_header *header,
1092 struct perf_sample_data *data,
1093 struct perf_event *event);
1094 extern void
1095 perf_event__output_id_sample(struct perf_event *event,
1096 struct perf_output_handle *handle,
1097 struct perf_sample_data *sample);
1098
1099 extern void
1100 perf_log_lost_samples(struct perf_event *event, u64 lost);
1101
event_has_any_exclude_flag(struct perf_event * event)1102 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1103 {
1104 struct perf_event_attr *attr = &event->attr;
1105
1106 return attr->exclude_idle || attr->exclude_user ||
1107 attr->exclude_kernel || attr->exclude_hv ||
1108 attr->exclude_guest || attr->exclude_host;
1109 }
1110
is_sampling_event(struct perf_event * event)1111 static inline bool is_sampling_event(struct perf_event *event)
1112 {
1113 return event->attr.sample_period != 0;
1114 }
1115
1116 /*
1117 * Return 1 for a software event, 0 for a hardware event
1118 */
is_software_event(struct perf_event * event)1119 static inline int is_software_event(struct perf_event *event)
1120 {
1121 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1122 }
1123
1124 /*
1125 * Return 1 for event in sw context, 0 for event in hw context
1126 */
in_software_context(struct perf_event * event)1127 static inline int in_software_context(struct perf_event *event)
1128 {
1129 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1130 }
1131
is_exclusive_pmu(struct pmu * pmu)1132 static inline int is_exclusive_pmu(struct pmu *pmu)
1133 {
1134 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1135 }
1136
1137 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1138
1139 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1140 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1141
1142 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1143 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1144 #endif
1145
1146 /*
1147 * When generating a perf sample in-line, instead of from an interrupt /
1148 * exception, we lack a pt_regs. This is typically used from software events
1149 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1150 *
1151 * We typically don't need a full set, but (for x86) do require:
1152 * - ip for PERF_SAMPLE_IP
1153 * - cs for user_mode() tests
1154 * - sp for PERF_SAMPLE_CALLCHAIN
1155 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1156 *
1157 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1158 * things like PERF_SAMPLE_REGS_INTR.
1159 */
perf_fetch_caller_regs(struct pt_regs * regs)1160 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1161 {
1162 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1163 }
1164
1165 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1166 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1167 {
1168 if (static_key_false(&perf_swevent_enabled[event_id]))
1169 __perf_sw_event(event_id, nr, regs, addr);
1170 }
1171
1172 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1173
1174 /*
1175 * 'Special' version for the scheduler, it hard assumes no recursion,
1176 * which is guaranteed by us not actually scheduling inside other swevents
1177 * because those disable preemption.
1178 */
1179 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1180 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1181 {
1182 if (static_key_false(&perf_swevent_enabled[event_id])) {
1183 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1184
1185 perf_fetch_caller_regs(regs);
1186 ___perf_sw_event(event_id, nr, regs, addr);
1187 }
1188 }
1189
1190 extern struct static_key_false perf_sched_events;
1191
1192 static __always_inline bool
perf_sw_migrate_enabled(void)1193 perf_sw_migrate_enabled(void)
1194 {
1195 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1196 return true;
1197 return false;
1198 }
1199
perf_event_task_migrate(struct task_struct * task)1200 static inline void perf_event_task_migrate(struct task_struct *task)
1201 {
1202 if (perf_sw_migrate_enabled())
1203 task->sched_migrated = 1;
1204 }
1205
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1206 static inline void perf_event_task_sched_in(struct task_struct *prev,
1207 struct task_struct *task)
1208 {
1209 if (static_branch_unlikely(&perf_sched_events))
1210 __perf_event_task_sched_in(prev, task);
1211
1212 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1213 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1214
1215 perf_fetch_caller_regs(regs);
1216 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1217 task->sched_migrated = 0;
1218 }
1219 }
1220
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1221 static inline void perf_event_task_sched_out(struct task_struct *prev,
1222 struct task_struct *next)
1223 {
1224 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1225
1226 if (static_branch_unlikely(&perf_sched_events))
1227 __perf_event_task_sched_out(prev, next);
1228 }
1229
1230 extern void perf_event_mmap(struct vm_area_struct *vma);
1231
1232 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1233 bool unregister, const char *sym);
1234 extern void perf_event_bpf_event(struct bpf_prog *prog,
1235 enum perf_bpf_event_type type,
1236 u16 flags);
1237
1238 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
perf_get_guest_cbs(void)1239 static inline struct perf_guest_info_callbacks *perf_get_guest_cbs(void)
1240 {
1241 /*
1242 * Callbacks are RCU-protected and must be READ_ONCE to avoid reloading
1243 * the callbacks between a !NULL check and dereferences, to ensure
1244 * pending stores/changes to the callback pointers are visible before a
1245 * non-NULL perf_guest_cbs is visible to readers, and to prevent a
1246 * module from unloading callbacks while readers are active.
1247 */
1248 return rcu_dereference(perf_guest_cbs);
1249 }
1250 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1251 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1252
1253 extern void perf_event_exec(void);
1254 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1255 extern void perf_event_namespaces(struct task_struct *tsk);
1256 extern void perf_event_fork(struct task_struct *tsk);
1257 extern void perf_event_text_poke(const void *addr,
1258 const void *old_bytes, size_t old_len,
1259 const void *new_bytes, size_t new_len);
1260
1261 /* Callchains */
1262 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1263
1264 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1265 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1266 extern struct perf_callchain_entry *
1267 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1268 u32 max_stack, bool crosstask, bool add_mark);
1269 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1270 extern int get_callchain_buffers(int max_stack);
1271 extern void put_callchain_buffers(void);
1272 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1273 extern void put_callchain_entry(int rctx);
1274
1275 extern int sysctl_perf_event_max_stack;
1276 extern int sysctl_perf_event_max_contexts_per_stack;
1277
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1278 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1279 {
1280 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1281 struct perf_callchain_entry *entry = ctx->entry;
1282 entry->ip[entry->nr++] = ip;
1283 ++ctx->contexts;
1284 return 0;
1285 } else {
1286 ctx->contexts_maxed = true;
1287 return -1; /* no more room, stop walking the stack */
1288 }
1289 }
1290
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1291 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1292 {
1293 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1294 struct perf_callchain_entry *entry = ctx->entry;
1295 entry->ip[entry->nr++] = ip;
1296 ++ctx->nr;
1297 return 0;
1298 } else {
1299 return -1; /* no more room, stop walking the stack */
1300 }
1301 }
1302
1303 extern int sysctl_perf_event_paranoid;
1304 extern int sysctl_perf_event_mlock;
1305 extern int sysctl_perf_event_sample_rate;
1306 extern int sysctl_perf_cpu_time_max_percent;
1307
1308 extern void perf_sample_event_took(u64 sample_len_ns);
1309
1310 int perf_proc_update_handler(struct ctl_table *table, int write,
1311 void *buffer, size_t *lenp, loff_t *ppos);
1312 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1313 void *buffer, size_t *lenp, loff_t *ppos);
1314 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1315 void *buffer, size_t *lenp, loff_t *ppos);
1316
1317 /* Access to perf_event_open(2) syscall. */
1318 #define PERF_SECURITY_OPEN 0
1319
1320 /* Finer grained perf_event_open(2) access control. */
1321 #define PERF_SECURITY_CPU 1
1322 #define PERF_SECURITY_KERNEL 2
1323 #define PERF_SECURITY_TRACEPOINT 3
1324
perf_is_paranoid(void)1325 static inline int perf_is_paranoid(void)
1326 {
1327 return sysctl_perf_event_paranoid > -1;
1328 }
1329
perf_allow_kernel(struct perf_event_attr * attr)1330 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1331 {
1332 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1333 return -EACCES;
1334
1335 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1336 }
1337
perf_allow_cpu(struct perf_event_attr * attr)1338 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1339 {
1340 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1341 return -EACCES;
1342
1343 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1344 }
1345
perf_allow_tracepoint(struct perf_event_attr * attr)1346 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1347 {
1348 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1349 return -EPERM;
1350
1351 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1352 }
1353
1354 extern void perf_event_init(void);
1355 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1356 int entry_size, struct pt_regs *regs,
1357 struct hlist_head *head, int rctx,
1358 struct task_struct *task);
1359 extern void perf_bp_event(struct perf_event *event, void *data);
1360
1361 #ifndef perf_misc_flags
1362 # define perf_misc_flags(regs) \
1363 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1364 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1365 #endif
1366 #ifndef perf_arch_bpf_user_pt_regs
1367 # define perf_arch_bpf_user_pt_regs(regs) regs
1368 #endif
1369
has_branch_stack(struct perf_event * event)1370 static inline bool has_branch_stack(struct perf_event *event)
1371 {
1372 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1373 }
1374
needs_branch_stack(struct perf_event * event)1375 static inline bool needs_branch_stack(struct perf_event *event)
1376 {
1377 return event->attr.branch_sample_type != 0;
1378 }
1379
has_aux(struct perf_event * event)1380 static inline bool has_aux(struct perf_event *event)
1381 {
1382 return event->pmu->setup_aux;
1383 }
1384
is_write_backward(struct perf_event * event)1385 static inline bool is_write_backward(struct perf_event *event)
1386 {
1387 return !!event->attr.write_backward;
1388 }
1389
has_addr_filter(struct perf_event * event)1390 static inline bool has_addr_filter(struct perf_event *event)
1391 {
1392 return event->pmu->nr_addr_filters;
1393 }
1394
1395 /*
1396 * An inherited event uses parent's filters
1397 */
1398 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1399 perf_event_addr_filters(struct perf_event *event)
1400 {
1401 struct perf_addr_filters_head *ifh = &event->addr_filters;
1402
1403 if (event->parent)
1404 ifh = &event->parent->addr_filters;
1405
1406 return ifh;
1407 }
1408
1409 extern void perf_event_addr_filters_sync(struct perf_event *event);
1410
1411 extern int perf_output_begin(struct perf_output_handle *handle,
1412 struct perf_sample_data *data,
1413 struct perf_event *event, unsigned int size);
1414 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1415 struct perf_sample_data *data,
1416 struct perf_event *event,
1417 unsigned int size);
1418 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1419 struct perf_sample_data *data,
1420 struct perf_event *event,
1421 unsigned int size);
1422
1423 extern void perf_output_end(struct perf_output_handle *handle);
1424 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1425 const void *buf, unsigned int len);
1426 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1427 unsigned int len);
1428 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1429 struct perf_output_handle *handle,
1430 unsigned long from, unsigned long to);
1431 extern int perf_swevent_get_recursion_context(void);
1432 extern void perf_swevent_put_recursion_context(int rctx);
1433 extern u64 perf_swevent_set_period(struct perf_event *event);
1434 extern void perf_event_enable(struct perf_event *event);
1435 extern void perf_event_disable(struct perf_event *event);
1436 extern void perf_event_disable_local(struct perf_event *event);
1437 extern void perf_event_disable_inatomic(struct perf_event *event);
1438 extern void perf_event_task_tick(void);
1439 extern int perf_event_account_interrupt(struct perf_event *event);
1440 extern int perf_event_period(struct perf_event *event, u64 value);
1441 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1442 #else /* !CONFIG_PERF_EVENTS: */
1443 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1444 perf_aux_output_begin(struct perf_output_handle *handle,
1445 struct perf_event *event) { return NULL; }
1446 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1447 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1448 { }
1449 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1450 perf_aux_output_skip(struct perf_output_handle *handle,
1451 unsigned long size) { return -EINVAL; }
1452 static inline void *
perf_get_aux(struct perf_output_handle * handle)1453 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1454 static inline void
perf_event_task_migrate(struct task_struct * task)1455 perf_event_task_migrate(struct task_struct *task) { }
1456 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1457 perf_event_task_sched_in(struct task_struct *prev,
1458 struct task_struct *task) { }
1459 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1460 perf_event_task_sched_out(struct task_struct *prev,
1461 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child)1462 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
perf_event_exit_task(struct task_struct * child)1463 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1464 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1465 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1466 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1467 static inline const struct perf_event *perf_get_event(struct file *file)
1468 {
1469 return ERR_PTR(-EINVAL);
1470 }
perf_event_attrs(struct perf_event * event)1471 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1472 {
1473 return ERR_PTR(-EINVAL);
1474 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1475 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1476 u64 *enabled, u64 *running)
1477 {
1478 return -EINVAL;
1479 }
perf_event_print_debug(void)1480 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1481 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1482 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1483 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1484 {
1485 return -EINVAL;
1486 }
1487
1488 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1489 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1490 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1491 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1492 static inline void
perf_bp_event(struct perf_event * event,void * data)1493 perf_bp_event(struct perf_event *event, void *data) { }
1494
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1495 static inline int perf_register_guest_info_callbacks
1496 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1497 static inline int perf_unregister_guest_info_callbacks
1498 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1499
perf_event_mmap(struct vm_area_struct * vma)1500 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1501
1502 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1503 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1504 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1505 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1506 enum perf_bpf_event_type type,
1507 u16 flags) { }
perf_event_exec(void)1508 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1509 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1510 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1511 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1512 static inline void perf_event_text_poke(const void *addr,
1513 const void *old_bytes,
1514 size_t old_len,
1515 const void *new_bytes,
1516 size_t new_len) { }
perf_event_init(void)1517 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1518 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1519 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1520 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1521 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1522 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1523 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1524 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1525 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
perf_event_period(struct perf_event * event,u64 value)1526 static inline int perf_event_period(struct perf_event *event, u64 value)
1527 {
1528 return -EINVAL;
1529 }
perf_event_pause(struct perf_event * event,bool reset)1530 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1531 {
1532 return 0;
1533 }
1534 #endif
1535
1536 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1537 extern void perf_restore_debug_store(void);
1538 #else
perf_restore_debug_store(void)1539 static inline void perf_restore_debug_store(void) { }
1540 #endif
1541
perf_raw_frag_last(const struct perf_raw_frag * frag)1542 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1543 {
1544 return frag->pad < sizeof(u64);
1545 }
1546
1547 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1548
1549 struct perf_pmu_events_attr {
1550 struct device_attribute attr;
1551 u64 id;
1552 const char *event_str;
1553 };
1554
1555 struct perf_pmu_events_ht_attr {
1556 struct device_attribute attr;
1557 u64 id;
1558 const char *event_str_ht;
1559 const char *event_str_noht;
1560 };
1561
1562 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1563 char *page);
1564
1565 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1566 static struct perf_pmu_events_attr _var = { \
1567 .attr = __ATTR(_name, 0444, _show, NULL), \
1568 .id = _id, \
1569 };
1570
1571 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1572 static struct perf_pmu_events_attr _var = { \
1573 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1574 .id = 0, \
1575 .event_str = _str, \
1576 };
1577
1578 #define PMU_FORMAT_ATTR(_name, _format) \
1579 static ssize_t \
1580 _name##_show(struct device *dev, \
1581 struct device_attribute *attr, \
1582 char *page) \
1583 { \
1584 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1585 return sprintf(page, _format "\n"); \
1586 } \
1587 \
1588 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1589
1590 /* Performance counter hotplug functions */
1591 #ifdef CONFIG_PERF_EVENTS
1592 int perf_event_init_cpu(unsigned int cpu);
1593 int perf_event_exit_cpu(unsigned int cpu);
1594 #else
1595 #define perf_event_init_cpu NULL
1596 #define perf_event_exit_cpu NULL
1597 #endif
1598
1599 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1600 struct perf_event_mmap_page *userpg,
1601 u64 now);
1602
1603 #endif /* _LINUX_PERF_EVENT_H */
1604