xref: /OK3568_Linux_fs/kernel/mm/util.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 #ifndef __GENKSYMS__
31 #include <trace/hooks/syscall_check.h>
32 #endif
33 
34 /**
35  * kfree_const - conditionally free memory
36  * @x: pointer to the memory
37  *
38  * Function calls kfree only if @x is not in .rodata section.
39  */
kfree_const(const void * x)40 void kfree_const(const void *x)
41 {
42 	if (!is_kernel_rodata((unsigned long)x))
43 		kfree(x);
44 }
45 EXPORT_SYMBOL(kfree_const);
46 
47 /**
48  * kstrdup - allocate space for and copy an existing string
49  * @s: the string to duplicate
50  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
51  *
52  * Return: newly allocated copy of @s or %NULL in case of error
53  */
kstrdup(const char * s,gfp_t gfp)54 char *kstrdup(const char *s, gfp_t gfp)
55 {
56 	size_t len;
57 	char *buf;
58 
59 	if (!s)
60 		return NULL;
61 
62 	len = strlen(s) + 1;
63 	buf = kmalloc_track_caller(len, gfp);
64 	if (buf)
65 		memcpy(buf, s, len);
66 	return buf;
67 }
68 EXPORT_SYMBOL(kstrdup);
69 
70 /**
71  * kstrdup_const - conditionally duplicate an existing const string
72  * @s: the string to duplicate
73  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
74  *
75  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
76  * must not be passed to krealloc().
77  *
78  * Return: source string if it is in .rodata section otherwise
79  * fallback to kstrdup.
80  */
kstrdup_const(const char * s,gfp_t gfp)81 const char *kstrdup_const(const char *s, gfp_t gfp)
82 {
83 	if (is_kernel_rodata((unsigned long)s))
84 		return s;
85 
86 	return kstrdup(s, gfp);
87 }
88 EXPORT_SYMBOL(kstrdup_const);
89 
90 /**
91  * kstrndup - allocate space for and copy an existing string
92  * @s: the string to duplicate
93  * @max: read at most @max chars from @s
94  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
95  *
96  * Note: Use kmemdup_nul() instead if the size is known exactly.
97  *
98  * Return: newly allocated copy of @s or %NULL in case of error
99  */
kstrndup(const char * s,size_t max,gfp_t gfp)100 char *kstrndup(const char *s, size_t max, gfp_t gfp)
101 {
102 	size_t len;
103 	char *buf;
104 
105 	if (!s)
106 		return NULL;
107 
108 	len = strnlen(s, max);
109 	buf = kmalloc_track_caller(len+1, gfp);
110 	if (buf) {
111 		memcpy(buf, s, len);
112 		buf[len] = '\0';
113 	}
114 	return buf;
115 }
116 EXPORT_SYMBOL(kstrndup);
117 
118 /**
119  * kmemdup - duplicate region of memory
120  *
121  * @src: memory region to duplicate
122  * @len: memory region length
123  * @gfp: GFP mask to use
124  *
125  * Return: newly allocated copy of @src or %NULL in case of error
126  */
kmemdup(const void * src,size_t len,gfp_t gfp)127 void *kmemdup(const void *src, size_t len, gfp_t gfp)
128 {
129 	void *p;
130 
131 	p = kmalloc_track_caller(len, gfp);
132 	if (p)
133 		memcpy(p, src, len);
134 	return p;
135 }
136 EXPORT_SYMBOL(kmemdup);
137 
138 /**
139  * kmemdup_nul - Create a NUL-terminated string from unterminated data
140  * @s: The data to stringify
141  * @len: The size of the data
142  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
143  *
144  * Return: newly allocated copy of @s with NUL-termination or %NULL in
145  * case of error
146  */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)147 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
148 {
149 	char *buf;
150 
151 	if (!s)
152 		return NULL;
153 
154 	buf = kmalloc_track_caller(len + 1, gfp);
155 	if (buf) {
156 		memcpy(buf, s, len);
157 		buf[len] = '\0';
158 	}
159 	return buf;
160 }
161 EXPORT_SYMBOL(kmemdup_nul);
162 
163 /**
164  * memdup_user - duplicate memory region from user space
165  *
166  * @src: source address in user space
167  * @len: number of bytes to copy
168  *
169  * Return: an ERR_PTR() on failure.  Result is physically
170  * contiguous, to be freed by kfree().
171  */
memdup_user(const void __user * src,size_t len)172 void *memdup_user(const void __user *src, size_t len)
173 {
174 	void *p;
175 
176 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
177 	if (!p)
178 		return ERR_PTR(-ENOMEM);
179 
180 	if (copy_from_user(p, src, len)) {
181 		kfree(p);
182 		return ERR_PTR(-EFAULT);
183 	}
184 
185 	return p;
186 }
187 EXPORT_SYMBOL(memdup_user);
188 
189 /**
190  * vmemdup_user - duplicate memory region from user space
191  *
192  * @src: source address in user space
193  * @len: number of bytes to copy
194  *
195  * Return: an ERR_PTR() on failure.  Result may be not
196  * physically contiguous.  Use kvfree() to free.
197  */
vmemdup_user(const void __user * src,size_t len)198 void *vmemdup_user(const void __user *src, size_t len)
199 {
200 	void *p;
201 
202 	p = kvmalloc(len, GFP_USER);
203 	if (!p)
204 		return ERR_PTR(-ENOMEM);
205 
206 	if (copy_from_user(p, src, len)) {
207 		kvfree(p);
208 		return ERR_PTR(-EFAULT);
209 	}
210 
211 	return p;
212 }
213 EXPORT_SYMBOL(vmemdup_user);
214 
215 /**
216  * strndup_user - duplicate an existing string from user space
217  * @s: The string to duplicate
218  * @n: Maximum number of bytes to copy, including the trailing NUL.
219  *
220  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
221  */
strndup_user(const char __user * s,long n)222 char *strndup_user(const char __user *s, long n)
223 {
224 	char *p;
225 	long length;
226 
227 	length = strnlen_user(s, n);
228 
229 	if (!length)
230 		return ERR_PTR(-EFAULT);
231 
232 	if (length > n)
233 		return ERR_PTR(-EINVAL);
234 
235 	p = memdup_user(s, length);
236 
237 	if (IS_ERR(p))
238 		return p;
239 
240 	p[length - 1] = '\0';
241 
242 	return p;
243 }
244 EXPORT_SYMBOL(strndup_user);
245 
246 /**
247  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
248  *
249  * @src: source address in user space
250  * @len: number of bytes to copy
251  *
252  * Return: an ERR_PTR() on failure.
253  */
memdup_user_nul(const void __user * src,size_t len)254 void *memdup_user_nul(const void __user *src, size_t len)
255 {
256 	char *p;
257 
258 	/*
259 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
260 	 * cause pagefault, which makes it pointless to use GFP_NOFS
261 	 * or GFP_ATOMIC.
262 	 */
263 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
264 	if (!p)
265 		return ERR_PTR(-ENOMEM);
266 
267 	if (copy_from_user(p, src, len)) {
268 		kfree(p);
269 		return ERR_PTR(-EFAULT);
270 	}
271 	p[len] = '\0';
272 
273 	return p;
274 }
275 EXPORT_SYMBOL(memdup_user_nul);
276 
__vma_link_list(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)277 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
278 		struct vm_area_struct *prev)
279 {
280 	struct vm_area_struct *next;
281 
282 	vma->vm_prev = prev;
283 	if (prev) {
284 		next = prev->vm_next;
285 		prev->vm_next = vma;
286 	} else {
287 		next = mm->mmap;
288 		mm->mmap = vma;
289 	}
290 	vma->vm_next = next;
291 	if (next)
292 		next->vm_prev = vma;
293 }
294 
__vma_unlink_list(struct mm_struct * mm,struct vm_area_struct * vma)295 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
296 {
297 	struct vm_area_struct *prev, *next;
298 
299 	next = vma->vm_next;
300 	prev = vma->vm_prev;
301 	if (prev)
302 		prev->vm_next = next;
303 	else
304 		mm->mmap = next;
305 	if (next)
306 		next->vm_prev = prev;
307 }
308 
309 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)310 int vma_is_stack_for_current(struct vm_area_struct *vma)
311 {
312 	struct task_struct * __maybe_unused t = current;
313 
314 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
315 }
316 
317 #ifndef STACK_RND_MASK
318 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
319 #endif
320 
randomize_stack_top(unsigned long stack_top)321 unsigned long randomize_stack_top(unsigned long stack_top)
322 {
323 	unsigned long random_variable = 0;
324 
325 	if (current->flags & PF_RANDOMIZE) {
326 		random_variable = get_random_long();
327 		random_variable &= STACK_RND_MASK;
328 		random_variable <<= PAGE_SHIFT;
329 	}
330 #ifdef CONFIG_STACK_GROWSUP
331 	return PAGE_ALIGN(stack_top) + random_variable;
332 #else
333 	return PAGE_ALIGN(stack_top) - random_variable;
334 #endif
335 }
336 
337 /**
338  * randomize_page - Generate a random, page aligned address
339  * @start:	The smallest acceptable address the caller will take.
340  * @range:	The size of the area, starting at @start, within which the
341  *		random address must fall.
342  *
343  * If @start + @range would overflow, @range is capped.
344  *
345  * NOTE: Historical use of randomize_range, which this replaces, presumed that
346  * @start was already page aligned.  We now align it regardless.
347  *
348  * Return: A page aligned address within [start, start + range).  On error,
349  * @start is returned.
350  */
randomize_page(unsigned long start,unsigned long range)351 unsigned long randomize_page(unsigned long start, unsigned long range)
352 {
353 	if (!PAGE_ALIGNED(start)) {
354 		range -= PAGE_ALIGN(start) - start;
355 		start = PAGE_ALIGN(start);
356 	}
357 
358 	if (start > ULONG_MAX - range)
359 		range = ULONG_MAX - start;
360 
361 	range >>= PAGE_SHIFT;
362 
363 	if (range == 0)
364 		return start;
365 
366 	return start + (get_random_long() % range << PAGE_SHIFT);
367 }
368 
369 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)370 unsigned long arch_randomize_brk(struct mm_struct *mm)
371 {
372 	/* Is the current task 32bit ? */
373 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
374 		return randomize_page(mm->brk, SZ_32M);
375 
376 	return randomize_page(mm->brk, SZ_1G);
377 }
378 
arch_mmap_rnd(void)379 unsigned long arch_mmap_rnd(void)
380 {
381 	unsigned long rnd;
382 
383 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
384 	if (is_compat_task())
385 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
386 	else
387 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
388 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
389 
390 	return rnd << PAGE_SHIFT;
391 }
392 EXPORT_SYMBOL_GPL(arch_mmap_rnd);
393 
mmap_is_legacy(struct rlimit * rlim_stack)394 static int mmap_is_legacy(struct rlimit *rlim_stack)
395 {
396 	if (current->personality & ADDR_COMPAT_LAYOUT)
397 		return 1;
398 
399 	if (rlim_stack->rlim_cur == RLIM_INFINITY)
400 		return 1;
401 
402 	return sysctl_legacy_va_layout;
403 }
404 
405 /*
406  * Leave enough space between the mmap area and the stack to honour ulimit in
407  * the face of randomisation.
408  */
409 #define MIN_GAP		(SZ_128M)
410 #define MAX_GAP		(STACK_TOP / 6 * 5)
411 
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)412 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
413 {
414 	unsigned long gap = rlim_stack->rlim_cur;
415 	unsigned long pad = stack_guard_gap;
416 
417 	/* Account for stack randomization if necessary */
418 	if (current->flags & PF_RANDOMIZE)
419 		pad += (STACK_RND_MASK << PAGE_SHIFT);
420 
421 	/* Values close to RLIM_INFINITY can overflow. */
422 	if (gap + pad > gap)
423 		gap += pad;
424 
425 	if (gap < MIN_GAP)
426 		gap = MIN_GAP;
427 	else if (gap > MAX_GAP)
428 		gap = MAX_GAP;
429 
430 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
431 }
432 
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)433 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
434 {
435 	unsigned long random_factor = 0UL;
436 
437 	if (current->flags & PF_RANDOMIZE)
438 		random_factor = arch_mmap_rnd();
439 
440 	if (mmap_is_legacy(rlim_stack)) {
441 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
442 		mm->get_unmapped_area = arch_get_unmapped_area;
443 	} else {
444 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
445 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
446 	}
447 }
448 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)449 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
450 {
451 	mm->mmap_base = TASK_UNMAPPED_BASE;
452 	mm->get_unmapped_area = arch_get_unmapped_area;
453 }
454 #endif
455 
456 /**
457  * __account_locked_vm - account locked pages to an mm's locked_vm
458  * @mm:          mm to account against
459  * @pages:       number of pages to account
460  * @inc:         %true if @pages should be considered positive, %false if not
461  * @task:        task used to check RLIMIT_MEMLOCK
462  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
463  *
464  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
465  * that mmap_lock is held as writer.
466  *
467  * Return:
468  * * 0       on success
469  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
470  */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)471 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
472 			struct task_struct *task, bool bypass_rlim)
473 {
474 	unsigned long locked_vm, limit;
475 	int ret = 0;
476 
477 	mmap_assert_write_locked(mm);
478 
479 	locked_vm = mm->locked_vm;
480 	if (inc) {
481 		if (!bypass_rlim) {
482 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
483 			if (locked_vm + pages > limit)
484 				ret = -ENOMEM;
485 		}
486 		if (!ret)
487 			mm->locked_vm = locked_vm + pages;
488 	} else {
489 		WARN_ON_ONCE(pages > locked_vm);
490 		mm->locked_vm = locked_vm - pages;
491 	}
492 
493 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
494 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
495 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
496 		 ret ? " - exceeded" : "");
497 
498 	return ret;
499 }
500 EXPORT_SYMBOL_GPL(__account_locked_vm);
501 
502 /**
503  * account_locked_vm - account locked pages to an mm's locked_vm
504  * @mm:          mm to account against, may be NULL
505  * @pages:       number of pages to account
506  * @inc:         %true if @pages should be considered positive, %false if not
507  *
508  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
509  *
510  * Return:
511  * * 0       on success, or if mm is NULL
512  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
513  */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)514 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
515 {
516 	int ret;
517 
518 	if (pages == 0 || !mm)
519 		return 0;
520 
521 	mmap_write_lock(mm);
522 	ret = __account_locked_vm(mm, pages, inc, current,
523 				  capable(CAP_IPC_LOCK));
524 	mmap_write_unlock(mm);
525 
526 	return ret;
527 }
528 EXPORT_SYMBOL_GPL(account_locked_vm);
529 
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)530 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
531 	unsigned long len, unsigned long prot,
532 	unsigned long flag, unsigned long pgoff)
533 {
534 	unsigned long ret;
535 	struct mm_struct *mm = current->mm;
536 	unsigned long populate;
537 	LIST_HEAD(uf);
538 
539 	ret = security_mmap_file(file, prot, flag);
540 	if (!ret) {
541 		if (mmap_write_lock_killable(mm))
542 			return -EINTR;
543 		ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
544 			      &uf);
545 		mmap_write_unlock(mm);
546 		userfaultfd_unmap_complete(mm, &uf);
547 		if (populate)
548 			mm_populate(ret, populate);
549 	}
550 	trace_android_vh_check_mmap_file(file, prot, flag, ret);
551 	return ret;
552 }
553 
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)554 unsigned long vm_mmap(struct file *file, unsigned long addr,
555 	unsigned long len, unsigned long prot,
556 	unsigned long flag, unsigned long offset)
557 {
558 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
559 		return -EINVAL;
560 	if (unlikely(offset_in_page(offset)))
561 		return -EINVAL;
562 
563 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
564 }
565 EXPORT_SYMBOL(vm_mmap);
566 
567 /**
568  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
569  * failure, fall back to non-contiguous (vmalloc) allocation.
570  * @size: size of the request.
571  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
572  * @node: numa node to allocate from
573  *
574  * Uses kmalloc to get the memory but if the allocation fails then falls back
575  * to the vmalloc allocator. Use kvfree for freeing the memory.
576  *
577  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
578  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
579  * preferable to the vmalloc fallback, due to visible performance drawbacks.
580  *
581  * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
582  * fall back to vmalloc.
583  *
584  * Return: pointer to the allocated memory of %NULL in case of failure
585  */
kvmalloc_node(size_t size,gfp_t flags,int node)586 void *kvmalloc_node(size_t size, gfp_t flags, int node)
587 {
588 	gfp_t kmalloc_flags = flags;
589 	void *ret;
590 
591 	/*
592 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
593 	 * so the given set of flags has to be compatible.
594 	 */
595 	if ((flags & GFP_KERNEL) != GFP_KERNEL)
596 		return kmalloc_node(size, flags, node);
597 
598 	/*
599 	 * We want to attempt a large physically contiguous block first because
600 	 * it is less likely to fragment multiple larger blocks and therefore
601 	 * contribute to a long term fragmentation less than vmalloc fallback.
602 	 * However make sure that larger requests are not too disruptive - no
603 	 * OOM killer and no allocation failure warnings as we have a fallback.
604 	 */
605 	if (size > PAGE_SIZE) {
606 		kmalloc_flags |= __GFP_NOWARN;
607 
608 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
609 			kmalloc_flags |= __GFP_NORETRY;
610 	}
611 
612 	ret = kmalloc_node(size, kmalloc_flags, node);
613 
614 	/*
615 	 * It doesn't really make sense to fallback to vmalloc for sub page
616 	 * requests
617 	 */
618 	if (ret || size <= PAGE_SIZE)
619 		return ret;
620 
621 	/* Don't even allow crazy sizes */
622 	if (unlikely(size > INT_MAX)) {
623 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
624 		return NULL;
625 	}
626 
627 	return __vmalloc_node(size, 1, flags, node,
628 			__builtin_return_address(0));
629 }
630 EXPORT_SYMBOL(kvmalloc_node);
631 
632 /**
633  * kvfree() - Free memory.
634  * @addr: Pointer to allocated memory.
635  *
636  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
637  * It is slightly more efficient to use kfree() or vfree() if you are certain
638  * that you know which one to use.
639  *
640  * Context: Either preemptible task context or not-NMI interrupt.
641  */
kvfree(const void * addr)642 void kvfree(const void *addr)
643 {
644 	if (is_vmalloc_addr(addr))
645 		vfree(addr);
646 	else
647 		kfree(addr);
648 }
649 EXPORT_SYMBOL(kvfree);
650 
651 /**
652  * kvfree_sensitive - Free a data object containing sensitive information.
653  * @addr: address of the data object to be freed.
654  * @len: length of the data object.
655  *
656  * Use the special memzero_explicit() function to clear the content of a
657  * kvmalloc'ed object containing sensitive data to make sure that the
658  * compiler won't optimize out the data clearing.
659  */
kvfree_sensitive(const void * addr,size_t len)660 void kvfree_sensitive(const void *addr, size_t len)
661 {
662 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
663 		memzero_explicit((void *)addr, len);
664 		kvfree(addr);
665 	}
666 }
667 EXPORT_SYMBOL(kvfree_sensitive);
668 
kvrealloc(const void * p,size_t oldsize,size_t newsize,gfp_t flags)669 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
670 {
671 	void *newp;
672 
673 	if (oldsize >= newsize)
674 		return (void *)p;
675 	newp = kvmalloc(newsize, flags);
676 	if (!newp)
677 		return NULL;
678 	memcpy(newp, p, oldsize);
679 	kvfree(p);
680 	return newp;
681 }
682 EXPORT_SYMBOL(kvrealloc);
683 
__page_rmapping(struct page * page)684 static inline void *__page_rmapping(struct page *page)
685 {
686 	unsigned long mapping;
687 
688 	mapping = (unsigned long)page->mapping;
689 	mapping &= ~PAGE_MAPPING_FLAGS;
690 
691 	return (void *)mapping;
692 }
693 
694 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)695 void *page_rmapping(struct page *page)
696 {
697 	page = compound_head(page);
698 	return __page_rmapping(page);
699 }
700 
701 /*
702  * Return true if this page is mapped into pagetables.
703  * For compound page it returns true if any subpage of compound page is mapped.
704  */
page_mapped(struct page * page)705 bool page_mapped(struct page *page)
706 {
707 	int i;
708 
709 	if (likely(!PageCompound(page)))
710 		return atomic_read(&page->_mapcount) >= 0;
711 	page = compound_head(page);
712 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
713 		return true;
714 	if (PageHuge(page))
715 		return false;
716 	for (i = 0; i < compound_nr(page); i++) {
717 		if (atomic_read(&page[i]._mapcount) >= 0)
718 			return true;
719 	}
720 	return false;
721 }
722 EXPORT_SYMBOL(page_mapped);
723 
page_anon_vma(struct page * page)724 struct anon_vma *page_anon_vma(struct page *page)
725 {
726 	unsigned long mapping;
727 
728 	page = compound_head(page);
729 	mapping = (unsigned long)page->mapping;
730 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
731 		return NULL;
732 	return __page_rmapping(page);
733 }
734 
page_mapping(struct page * page)735 struct address_space *page_mapping(struct page *page)
736 {
737 	struct address_space *mapping;
738 
739 	page = compound_head(page);
740 
741 	/* This happens if someone calls flush_dcache_page on slab page */
742 	if (unlikely(PageSlab(page)))
743 		return NULL;
744 
745 	if (unlikely(PageSwapCache(page))) {
746 		swp_entry_t entry;
747 
748 		entry.val = page_private(page);
749 		return swap_address_space(entry);
750 	}
751 
752 	mapping = page->mapping;
753 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
754 		return NULL;
755 
756 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
757 }
758 EXPORT_SYMBOL(page_mapping);
759 
760 /*
761  * For file cache pages, return the address_space, otherwise return NULL
762  */
page_mapping_file(struct page * page)763 struct address_space *page_mapping_file(struct page *page)
764 {
765 	if (unlikely(PageSwapCache(page)))
766 		return NULL;
767 	return page_mapping(page);
768 }
769 
770 /* Slow path of page_mapcount() for compound pages */
__page_mapcount(struct page * page)771 int __page_mapcount(struct page *page)
772 {
773 	int ret;
774 
775 	ret = atomic_read(&page->_mapcount) + 1;
776 	/*
777 	 * For file THP page->_mapcount contains total number of mapping
778 	 * of the page: no need to look into compound_mapcount.
779 	 */
780 	if (!PageAnon(page) && !PageHuge(page))
781 		return ret;
782 	page = compound_head(page);
783 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
784 	if (PageDoubleMap(page))
785 		ret--;
786 	return ret;
787 }
788 EXPORT_SYMBOL_GPL(__page_mapcount);
789 
790 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
791 int sysctl_overcommit_ratio __read_mostly = 50;
792 unsigned long sysctl_overcommit_kbytes __read_mostly;
793 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
794 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
795 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
796 
overcommit_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)797 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
798 		size_t *lenp, loff_t *ppos)
799 {
800 	int ret;
801 
802 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
803 	if (ret == 0 && write)
804 		sysctl_overcommit_kbytes = 0;
805 	return ret;
806 }
807 
sync_overcommit_as(struct work_struct * dummy)808 static void sync_overcommit_as(struct work_struct *dummy)
809 {
810 	percpu_counter_sync(&vm_committed_as);
811 }
812 
overcommit_policy_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)813 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
814 		size_t *lenp, loff_t *ppos)
815 {
816 	struct ctl_table t;
817 	int new_policy = -1;
818 	int ret;
819 
820 	/*
821 	 * The deviation of sync_overcommit_as could be big with loose policy
822 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
823 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
824 	 * with the strict "NEVER", and to avoid possible race condtion (even
825 	 * though user usually won't too frequently do the switching to policy
826 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
827 	 *	1. changing the batch
828 	 *	2. sync percpu count on each CPU
829 	 *	3. switch the policy
830 	 */
831 	if (write) {
832 		t = *table;
833 		t.data = &new_policy;
834 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
835 		if (ret || new_policy == -1)
836 			return ret;
837 
838 		mm_compute_batch(new_policy);
839 		if (new_policy == OVERCOMMIT_NEVER)
840 			schedule_on_each_cpu(sync_overcommit_as);
841 		sysctl_overcommit_memory = new_policy;
842 	} else {
843 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
844 	}
845 
846 	return ret;
847 }
848 
overcommit_kbytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)849 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
850 		size_t *lenp, loff_t *ppos)
851 {
852 	int ret;
853 
854 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
855 	if (ret == 0 && write)
856 		sysctl_overcommit_ratio = 0;
857 	return ret;
858 }
859 
860 /*
861  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
862  */
vm_commit_limit(void)863 unsigned long vm_commit_limit(void)
864 {
865 	unsigned long allowed;
866 
867 	if (sysctl_overcommit_kbytes)
868 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
869 	else
870 		allowed = ((totalram_pages() - hugetlb_total_pages())
871 			   * sysctl_overcommit_ratio / 100);
872 	allowed += total_swap_pages;
873 
874 	return allowed;
875 }
876 
877 /*
878  * Make sure vm_committed_as in one cacheline and not cacheline shared with
879  * other variables. It can be updated by several CPUs frequently.
880  */
881 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
882 
883 /*
884  * The global memory commitment made in the system can be a metric
885  * that can be used to drive ballooning decisions when Linux is hosted
886  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
887  * balancing memory across competing virtual machines that are hosted.
888  * Several metrics drive this policy engine including the guest reported
889  * memory commitment.
890  *
891  * The time cost of this is very low for small platforms, and for big
892  * platform like a 2S/36C/72T Skylake server, in worst case where
893  * vm_committed_as's spinlock is under severe contention, the time cost
894  * could be about 30~40 microseconds.
895  */
vm_memory_committed(void)896 unsigned long vm_memory_committed(void)
897 {
898 	return percpu_counter_sum_positive(&vm_committed_as);
899 }
900 EXPORT_SYMBOL_GPL(vm_memory_committed);
901 
902 /*
903  * Check that a process has enough memory to allocate a new virtual
904  * mapping. 0 means there is enough memory for the allocation to
905  * succeed and -ENOMEM implies there is not.
906  *
907  * We currently support three overcommit policies, which are set via the
908  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
909  *
910  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
911  * Additional code 2002 Jul 20 by Robert Love.
912  *
913  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
914  *
915  * Note this is a helper function intended to be used by LSMs which
916  * wish to use this logic.
917  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)918 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
919 {
920 	long allowed;
921 
922 	vm_acct_memory(pages);
923 
924 	/*
925 	 * Sometimes we want to use more memory than we have
926 	 */
927 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
928 		return 0;
929 
930 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
931 		if (pages > totalram_pages() + total_swap_pages)
932 			goto error;
933 		return 0;
934 	}
935 
936 	allowed = vm_commit_limit();
937 	/*
938 	 * Reserve some for root
939 	 */
940 	if (!cap_sys_admin)
941 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
942 
943 	/*
944 	 * Don't let a single process grow so big a user can't recover
945 	 */
946 	if (mm) {
947 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
948 
949 		allowed -= min_t(long, mm->total_vm / 32, reserve);
950 	}
951 
952 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
953 		return 0;
954 error:
955 	vm_unacct_memory(pages);
956 
957 	return -ENOMEM;
958 }
959 
960 /**
961  * get_cmdline() - copy the cmdline value to a buffer.
962  * @task:     the task whose cmdline value to copy.
963  * @buffer:   the buffer to copy to.
964  * @buflen:   the length of the buffer. Larger cmdline values are truncated
965  *            to this length.
966  *
967  * Return: the size of the cmdline field copied. Note that the copy does
968  * not guarantee an ending NULL byte.
969  */
get_cmdline(struct task_struct * task,char * buffer,int buflen)970 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
971 {
972 	int res = 0;
973 	unsigned int len;
974 	struct mm_struct *mm = get_task_mm(task);
975 	unsigned long arg_start, arg_end, env_start, env_end;
976 	if (!mm)
977 		goto out;
978 	if (!mm->arg_end)
979 		goto out_mm;	/* Shh! No looking before we're done */
980 
981 	spin_lock(&mm->arg_lock);
982 	arg_start = mm->arg_start;
983 	arg_end = mm->arg_end;
984 	env_start = mm->env_start;
985 	env_end = mm->env_end;
986 	spin_unlock(&mm->arg_lock);
987 
988 	len = arg_end - arg_start;
989 
990 	if (len > buflen)
991 		len = buflen;
992 
993 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
994 
995 	/*
996 	 * If the nul at the end of args has been overwritten, then
997 	 * assume application is using setproctitle(3).
998 	 */
999 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1000 		len = strnlen(buffer, res);
1001 		if (len < res) {
1002 			res = len;
1003 		} else {
1004 			len = env_end - env_start;
1005 			if (len > buflen - res)
1006 				len = buflen - res;
1007 			res += access_process_vm(task, env_start,
1008 						 buffer+res, len,
1009 						 FOLL_FORCE);
1010 			res = strnlen(buffer, res);
1011 		}
1012 	}
1013 out_mm:
1014 	mmput(mm);
1015 out:
1016 	return res;
1017 }
1018 
memcmp_pages(struct page * page1,struct page * page2)1019 int __weak memcmp_pages(struct page *page1, struct page *page2)
1020 {
1021 	char *addr1, *addr2;
1022 	int ret;
1023 
1024 	addr1 = kmap_atomic(page1);
1025 	addr2 = kmap_atomic(page2);
1026 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1027 	kunmap_atomic(addr2);
1028 	kunmap_atomic(addr1);
1029 	return ret;
1030 }
1031