xref: /OK3568_Linux_fs/kernel/fs/nilfs2/super.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * super.c - NILFS module and super block management.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  */
9 /*
10  *  linux/fs/ext2/super.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Big-endian to little-endian byte-swapping/bitmaps by
24  *        David S. Miller (davem@caip.rutgers.edu), 1995
25  */
26 
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include "nilfs.h"
39 #include "export.h"
40 #include "mdt.h"
41 #include "alloc.h"
42 #include "btree.h"
43 #include "btnode.h"
44 #include "page.h"
45 #include "cpfile.h"
46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
47 #include "ifile.h"
48 #include "dat.h"
49 #include "segment.h"
50 #include "segbuf.h"
51 
52 MODULE_AUTHOR("NTT Corp.");
53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
54 		   "(NILFS)");
55 MODULE_LICENSE("GPL");
56 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
57 
58 static struct kmem_cache *nilfs_inode_cachep;
59 struct kmem_cache *nilfs_transaction_cachep;
60 struct kmem_cache *nilfs_segbuf_cachep;
61 struct kmem_cache *nilfs_btree_path_cache;
62 
63 static int nilfs_setup_super(struct super_block *sb, int is_mount);
64 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
65 
__nilfs_msg(struct super_block * sb,const char * fmt,...)66 void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
67 {
68 	struct va_format vaf;
69 	va_list args;
70 	int level;
71 
72 	va_start(args, fmt);
73 
74 	level = printk_get_level(fmt);
75 	vaf.fmt = printk_skip_level(fmt);
76 	vaf.va = &args;
77 
78 	if (sb)
79 		printk("%c%cNILFS (%s): %pV\n",
80 		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
81 	else
82 		printk("%c%cNILFS: %pV\n",
83 		       KERN_SOH_ASCII, level, &vaf);
84 
85 	va_end(args);
86 }
87 
nilfs_set_error(struct super_block * sb)88 static void nilfs_set_error(struct super_block *sb)
89 {
90 	struct the_nilfs *nilfs = sb->s_fs_info;
91 	struct nilfs_super_block **sbp;
92 
93 	down_write(&nilfs->ns_sem);
94 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
95 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
96 		sbp = nilfs_prepare_super(sb, 0);
97 		if (likely(sbp)) {
98 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
99 			if (sbp[1])
100 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
101 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
102 		}
103 	}
104 	up_write(&nilfs->ns_sem);
105 }
106 
107 /**
108  * __nilfs_error() - report failure condition on a filesystem
109  *
110  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
111  * reporting an error message.  This function should be called when
112  * NILFS detects incoherences or defects of meta data on disk.
113  *
114  * This implements the body of nilfs_error() macro.  Normally,
115  * nilfs_error() should be used.  As for sustainable errors such as a
116  * single-shot I/O error, nilfs_err() should be used instead.
117  *
118  * Callers should not add a trailing newline since this will do it.
119  */
__nilfs_error(struct super_block * sb,const char * function,const char * fmt,...)120 void __nilfs_error(struct super_block *sb, const char *function,
121 		   const char *fmt, ...)
122 {
123 	struct the_nilfs *nilfs = sb->s_fs_info;
124 	struct va_format vaf;
125 	va_list args;
126 
127 	va_start(args, fmt);
128 
129 	vaf.fmt = fmt;
130 	vaf.va = &args;
131 
132 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
133 	       sb->s_id, function, &vaf);
134 
135 	va_end(args);
136 
137 	if (!sb_rdonly(sb)) {
138 		nilfs_set_error(sb);
139 
140 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
141 			printk(KERN_CRIT "Remounting filesystem read-only\n");
142 			sb->s_flags |= SB_RDONLY;
143 		}
144 	}
145 
146 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
147 		panic("NILFS (device %s): panic forced after error\n",
148 		      sb->s_id);
149 }
150 
nilfs_alloc_inode(struct super_block * sb)151 struct inode *nilfs_alloc_inode(struct super_block *sb)
152 {
153 	struct nilfs_inode_info *ii;
154 
155 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
156 	if (!ii)
157 		return NULL;
158 	ii->i_bh = NULL;
159 	ii->i_state = 0;
160 	ii->i_cno = 0;
161 	ii->i_assoc_inode = NULL;
162 	ii->i_bmap = &ii->i_bmap_data;
163 	return &ii->vfs_inode;
164 }
165 
nilfs_free_inode(struct inode * inode)166 static void nilfs_free_inode(struct inode *inode)
167 {
168 	if (nilfs_is_metadata_file_inode(inode))
169 		nilfs_mdt_destroy(inode);
170 
171 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
172 }
173 
nilfs_sync_super(struct super_block * sb,int flag)174 static int nilfs_sync_super(struct super_block *sb, int flag)
175 {
176 	struct the_nilfs *nilfs = sb->s_fs_info;
177 	int err;
178 
179  retry:
180 	set_buffer_dirty(nilfs->ns_sbh[0]);
181 	if (nilfs_test_opt(nilfs, BARRIER)) {
182 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
183 					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
184 	} else {
185 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
186 	}
187 
188 	if (unlikely(err)) {
189 		nilfs_err(sb, "unable to write superblock: err=%d", err);
190 		if (err == -EIO && nilfs->ns_sbh[1]) {
191 			/*
192 			 * sbp[0] points to newer log than sbp[1],
193 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
194 			 */
195 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
196 			       nilfs->ns_sbsize);
197 			nilfs_fall_back_super_block(nilfs);
198 			goto retry;
199 		}
200 	} else {
201 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
202 
203 		nilfs->ns_sbwcount++;
204 
205 		/*
206 		 * The latest segment becomes trailable from the position
207 		 * written in superblock.
208 		 */
209 		clear_nilfs_discontinued(nilfs);
210 
211 		/* update GC protection for recent segments */
212 		if (nilfs->ns_sbh[1]) {
213 			if (flag == NILFS_SB_COMMIT_ALL) {
214 				set_buffer_dirty(nilfs->ns_sbh[1]);
215 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
216 					goto out;
217 			}
218 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
219 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
220 				sbp = nilfs->ns_sbp[1];
221 		}
222 
223 		spin_lock(&nilfs->ns_last_segment_lock);
224 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
225 		spin_unlock(&nilfs->ns_last_segment_lock);
226 	}
227  out:
228 	return err;
229 }
230 
nilfs_set_log_cursor(struct nilfs_super_block * sbp,struct the_nilfs * nilfs)231 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
232 			  struct the_nilfs *nilfs)
233 {
234 	sector_t nfreeblocks;
235 
236 	/* nilfs->ns_sem must be locked by the caller. */
237 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
238 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
239 
240 	spin_lock(&nilfs->ns_last_segment_lock);
241 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
242 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
243 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
244 	spin_unlock(&nilfs->ns_last_segment_lock);
245 }
246 
nilfs_prepare_super(struct super_block * sb,int flip)247 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
248 					       int flip)
249 {
250 	struct the_nilfs *nilfs = sb->s_fs_info;
251 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
252 
253 	/* nilfs->ns_sem must be locked by the caller. */
254 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
255 		if (sbp[1] &&
256 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
257 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
258 		} else {
259 			nilfs_crit(sb, "superblock broke");
260 			return NULL;
261 		}
262 	} else if (sbp[1] &&
263 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
265 	}
266 
267 	if (flip && sbp[1])
268 		nilfs_swap_super_block(nilfs);
269 
270 	return sbp;
271 }
272 
nilfs_commit_super(struct super_block * sb,int flag)273 int nilfs_commit_super(struct super_block *sb, int flag)
274 {
275 	struct the_nilfs *nilfs = sb->s_fs_info;
276 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
277 	time64_t t;
278 
279 	/* nilfs->ns_sem must be locked by the caller. */
280 	t = ktime_get_real_seconds();
281 	nilfs->ns_sbwtime = t;
282 	sbp[0]->s_wtime = cpu_to_le64(t);
283 	sbp[0]->s_sum = 0;
284 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
285 					     (unsigned char *)sbp[0],
286 					     nilfs->ns_sbsize));
287 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
288 		sbp[1]->s_wtime = sbp[0]->s_wtime;
289 		sbp[1]->s_sum = 0;
290 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
291 					    (unsigned char *)sbp[1],
292 					    nilfs->ns_sbsize));
293 	}
294 	clear_nilfs_sb_dirty(nilfs);
295 	nilfs->ns_flushed_device = 1;
296 	/* make sure store to ns_flushed_device cannot be reordered */
297 	smp_wmb();
298 	return nilfs_sync_super(sb, flag);
299 }
300 
301 /**
302  * nilfs_cleanup_super() - write filesystem state for cleanup
303  * @sb: super block instance to be unmounted or degraded to read-only
304  *
305  * This function restores state flags in the on-disk super block.
306  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
307  * filesystem was not clean previously.
308  */
nilfs_cleanup_super(struct super_block * sb)309 int nilfs_cleanup_super(struct super_block *sb)
310 {
311 	struct the_nilfs *nilfs = sb->s_fs_info;
312 	struct nilfs_super_block **sbp;
313 	int flag = NILFS_SB_COMMIT;
314 	int ret = -EIO;
315 
316 	sbp = nilfs_prepare_super(sb, 0);
317 	if (sbp) {
318 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
319 		nilfs_set_log_cursor(sbp[0], nilfs);
320 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
321 			/*
322 			 * make the "clean" flag also to the opposite
323 			 * super block if both super blocks point to
324 			 * the same checkpoint.
325 			 */
326 			sbp[1]->s_state = sbp[0]->s_state;
327 			flag = NILFS_SB_COMMIT_ALL;
328 		}
329 		ret = nilfs_commit_super(sb, flag);
330 	}
331 	return ret;
332 }
333 
334 /**
335  * nilfs_move_2nd_super - relocate secondary super block
336  * @sb: super block instance
337  * @sb2off: new offset of the secondary super block (in bytes)
338  */
nilfs_move_2nd_super(struct super_block * sb,loff_t sb2off)339 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
340 {
341 	struct the_nilfs *nilfs = sb->s_fs_info;
342 	struct buffer_head *nsbh;
343 	struct nilfs_super_block *nsbp;
344 	sector_t blocknr, newblocknr;
345 	unsigned long offset;
346 	int sb2i;  /* array index of the secondary superblock */
347 	int ret = 0;
348 
349 	/* nilfs->ns_sem must be locked by the caller. */
350 	if (nilfs->ns_sbh[1] &&
351 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
352 		sb2i = 1;
353 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
354 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
355 		sb2i = 0;
356 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
357 	} else {
358 		sb2i = -1;
359 		blocknr = 0;
360 	}
361 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
362 		goto out;  /* super block location is unchanged */
363 
364 	/* Get new super block buffer */
365 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
366 	offset = sb2off & (nilfs->ns_blocksize - 1);
367 	nsbh = sb_getblk(sb, newblocknr);
368 	if (!nsbh) {
369 		nilfs_warn(sb,
370 			   "unable to move secondary superblock to block %llu",
371 			   (unsigned long long)newblocknr);
372 		ret = -EIO;
373 		goto out;
374 	}
375 	nsbp = (void *)nsbh->b_data + offset;
376 	memset(nsbp, 0, nilfs->ns_blocksize);
377 
378 	if (sb2i >= 0) {
379 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
380 		brelse(nilfs->ns_sbh[sb2i]);
381 		nilfs->ns_sbh[sb2i] = nsbh;
382 		nilfs->ns_sbp[sb2i] = nsbp;
383 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
384 		/* secondary super block will be restored to index 1 */
385 		nilfs->ns_sbh[1] = nsbh;
386 		nilfs->ns_sbp[1] = nsbp;
387 	} else {
388 		brelse(nsbh);
389 	}
390 out:
391 	return ret;
392 }
393 
394 /**
395  * nilfs_resize_fs - resize the filesystem
396  * @sb: super block instance
397  * @newsize: new size of the filesystem (in bytes)
398  */
nilfs_resize_fs(struct super_block * sb,__u64 newsize)399 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
400 {
401 	struct the_nilfs *nilfs = sb->s_fs_info;
402 	struct nilfs_super_block **sbp;
403 	__u64 devsize, newnsegs;
404 	loff_t sb2off;
405 	int ret;
406 
407 	ret = -ERANGE;
408 	devsize = i_size_read(sb->s_bdev->bd_inode);
409 	if (newsize > devsize)
410 		goto out;
411 
412 	/*
413 	 * Write lock is required to protect some functions depending
414 	 * on the number of segments, the number of reserved segments,
415 	 * and so forth.
416 	 */
417 	down_write(&nilfs->ns_segctor_sem);
418 
419 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
420 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
421 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
422 
423 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
424 	up_write(&nilfs->ns_segctor_sem);
425 	if (ret < 0)
426 		goto out;
427 
428 	ret = nilfs_construct_segment(sb);
429 	if (ret < 0)
430 		goto out;
431 
432 	down_write(&nilfs->ns_sem);
433 	nilfs_move_2nd_super(sb, sb2off);
434 	ret = -EIO;
435 	sbp = nilfs_prepare_super(sb, 0);
436 	if (likely(sbp)) {
437 		nilfs_set_log_cursor(sbp[0], nilfs);
438 		/*
439 		 * Drop NILFS_RESIZE_FS flag for compatibility with
440 		 * mount-time resize which may be implemented in a
441 		 * future release.
442 		 */
443 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
444 					      ~NILFS_RESIZE_FS);
445 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
446 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
447 		if (sbp[1])
448 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
449 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
450 	}
451 	up_write(&nilfs->ns_sem);
452 
453 	/*
454 	 * Reset the range of allocatable segments last.  This order
455 	 * is important in the case of expansion because the secondary
456 	 * superblock must be protected from log write until migration
457 	 * completes.
458 	 */
459 	if (!ret)
460 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
461 out:
462 	return ret;
463 }
464 
nilfs_put_super(struct super_block * sb)465 static void nilfs_put_super(struct super_block *sb)
466 {
467 	struct the_nilfs *nilfs = sb->s_fs_info;
468 
469 	nilfs_detach_log_writer(sb);
470 
471 	if (!sb_rdonly(sb)) {
472 		down_write(&nilfs->ns_sem);
473 		nilfs_cleanup_super(sb);
474 		up_write(&nilfs->ns_sem);
475 	}
476 
477 	iput(nilfs->ns_sufile);
478 	iput(nilfs->ns_cpfile);
479 	iput(nilfs->ns_dat);
480 
481 	destroy_nilfs(nilfs);
482 	sb->s_fs_info = NULL;
483 }
484 
nilfs_sync_fs(struct super_block * sb,int wait)485 static int nilfs_sync_fs(struct super_block *sb, int wait)
486 {
487 	struct the_nilfs *nilfs = sb->s_fs_info;
488 	struct nilfs_super_block **sbp;
489 	int err = 0;
490 
491 	/* This function is called when super block should be written back */
492 	if (wait)
493 		err = nilfs_construct_segment(sb);
494 
495 	down_write(&nilfs->ns_sem);
496 	if (nilfs_sb_dirty(nilfs)) {
497 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
498 		if (likely(sbp)) {
499 			nilfs_set_log_cursor(sbp[0], nilfs);
500 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
501 		}
502 	}
503 	up_write(&nilfs->ns_sem);
504 
505 	if (!err)
506 		err = nilfs_flush_device(nilfs);
507 
508 	return err;
509 }
510 
nilfs_attach_checkpoint(struct super_block * sb,__u64 cno,int curr_mnt,struct nilfs_root ** rootp)511 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
512 			    struct nilfs_root **rootp)
513 {
514 	struct the_nilfs *nilfs = sb->s_fs_info;
515 	struct nilfs_root *root;
516 	struct nilfs_checkpoint *raw_cp;
517 	struct buffer_head *bh_cp;
518 	int err = -ENOMEM;
519 
520 	root = nilfs_find_or_create_root(
521 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
522 	if (!root)
523 		return err;
524 
525 	if (root->ifile)
526 		goto reuse; /* already attached checkpoint */
527 
528 	down_read(&nilfs->ns_segctor_sem);
529 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
530 					  &bh_cp);
531 	up_read(&nilfs->ns_segctor_sem);
532 	if (unlikely(err)) {
533 		if (err == -ENOENT || err == -EINVAL) {
534 			nilfs_err(sb,
535 				  "Invalid checkpoint (checkpoint number=%llu)",
536 				  (unsigned long long)cno);
537 			err = -EINVAL;
538 		}
539 		goto failed;
540 	}
541 
542 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
543 			       &raw_cp->cp_ifile_inode, &root->ifile);
544 	if (err)
545 		goto failed_bh;
546 
547 	atomic64_set(&root->inodes_count,
548 			le64_to_cpu(raw_cp->cp_inodes_count));
549 	atomic64_set(&root->blocks_count,
550 			le64_to_cpu(raw_cp->cp_blocks_count));
551 
552 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
553 
554  reuse:
555 	*rootp = root;
556 	return 0;
557 
558  failed_bh:
559 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
560  failed:
561 	nilfs_put_root(root);
562 
563 	return err;
564 }
565 
nilfs_freeze(struct super_block * sb)566 static int nilfs_freeze(struct super_block *sb)
567 {
568 	struct the_nilfs *nilfs = sb->s_fs_info;
569 	int err;
570 
571 	if (sb_rdonly(sb))
572 		return 0;
573 
574 	/* Mark super block clean */
575 	down_write(&nilfs->ns_sem);
576 	err = nilfs_cleanup_super(sb);
577 	up_write(&nilfs->ns_sem);
578 	return err;
579 }
580 
nilfs_unfreeze(struct super_block * sb)581 static int nilfs_unfreeze(struct super_block *sb)
582 {
583 	struct the_nilfs *nilfs = sb->s_fs_info;
584 
585 	if (sb_rdonly(sb))
586 		return 0;
587 
588 	down_write(&nilfs->ns_sem);
589 	nilfs_setup_super(sb, false);
590 	up_write(&nilfs->ns_sem);
591 	return 0;
592 }
593 
nilfs_statfs(struct dentry * dentry,struct kstatfs * buf)594 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
595 {
596 	struct super_block *sb = dentry->d_sb;
597 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
598 	struct the_nilfs *nilfs = root->nilfs;
599 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
600 	unsigned long long blocks;
601 	unsigned long overhead;
602 	unsigned long nrsvblocks;
603 	sector_t nfreeblocks;
604 	u64 nmaxinodes, nfreeinodes;
605 	int err;
606 
607 	/*
608 	 * Compute all of the segment blocks
609 	 *
610 	 * The blocks before first segment and after last segment
611 	 * are excluded.
612 	 */
613 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
614 		- nilfs->ns_first_data_block;
615 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
616 
617 	/*
618 	 * Compute the overhead
619 	 *
620 	 * When distributing meta data blocks outside segment structure,
621 	 * We must count them as the overhead.
622 	 */
623 	overhead = 0;
624 
625 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
626 	if (unlikely(err))
627 		return err;
628 
629 	err = nilfs_ifile_count_free_inodes(root->ifile,
630 					    &nmaxinodes, &nfreeinodes);
631 	if (unlikely(err)) {
632 		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
633 		if (err == -ERANGE) {
634 			/*
635 			 * If nilfs_palloc_count_max_entries() returns
636 			 * -ERANGE error code then we simply treat
637 			 * curent inodes count as maximum possible and
638 			 * zero as free inodes value.
639 			 */
640 			nmaxinodes = atomic64_read(&root->inodes_count);
641 			nfreeinodes = 0;
642 			err = 0;
643 		} else
644 			return err;
645 	}
646 
647 	buf->f_type = NILFS_SUPER_MAGIC;
648 	buf->f_bsize = sb->s_blocksize;
649 	buf->f_blocks = blocks - overhead;
650 	buf->f_bfree = nfreeblocks;
651 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
652 		(buf->f_bfree - nrsvblocks) : 0;
653 	buf->f_files = nmaxinodes;
654 	buf->f_ffree = nfreeinodes;
655 	buf->f_namelen = NILFS_NAME_LEN;
656 	buf->f_fsid = u64_to_fsid(id);
657 
658 	return 0;
659 }
660 
nilfs_show_options(struct seq_file * seq,struct dentry * dentry)661 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
662 {
663 	struct super_block *sb = dentry->d_sb;
664 	struct the_nilfs *nilfs = sb->s_fs_info;
665 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
666 
667 	if (!nilfs_test_opt(nilfs, BARRIER))
668 		seq_puts(seq, ",nobarrier");
669 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
670 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
671 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
672 		seq_puts(seq, ",errors=panic");
673 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
674 		seq_puts(seq, ",errors=continue");
675 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
676 		seq_puts(seq, ",order=strict");
677 	if (nilfs_test_opt(nilfs, NORECOVERY))
678 		seq_puts(seq, ",norecovery");
679 	if (nilfs_test_opt(nilfs, DISCARD))
680 		seq_puts(seq, ",discard");
681 
682 	return 0;
683 }
684 
685 static const struct super_operations nilfs_sops = {
686 	.alloc_inode    = nilfs_alloc_inode,
687 	.free_inode     = nilfs_free_inode,
688 	.dirty_inode    = nilfs_dirty_inode,
689 	.evict_inode    = nilfs_evict_inode,
690 	.put_super      = nilfs_put_super,
691 	.sync_fs        = nilfs_sync_fs,
692 	.freeze_fs	= nilfs_freeze,
693 	.unfreeze_fs	= nilfs_unfreeze,
694 	.statfs         = nilfs_statfs,
695 	.remount_fs     = nilfs_remount,
696 	.show_options = nilfs_show_options
697 };
698 
699 enum {
700 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
701 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
702 	Opt_discard, Opt_nodiscard, Opt_err,
703 };
704 
705 static match_table_t tokens = {
706 	{Opt_err_cont, "errors=continue"},
707 	{Opt_err_panic, "errors=panic"},
708 	{Opt_err_ro, "errors=remount-ro"},
709 	{Opt_barrier, "barrier"},
710 	{Opt_nobarrier, "nobarrier"},
711 	{Opt_snapshot, "cp=%u"},
712 	{Opt_order, "order=%s"},
713 	{Opt_norecovery, "norecovery"},
714 	{Opt_discard, "discard"},
715 	{Opt_nodiscard, "nodiscard"},
716 	{Opt_err, NULL}
717 };
718 
parse_options(char * options,struct super_block * sb,int is_remount)719 static int parse_options(char *options, struct super_block *sb, int is_remount)
720 {
721 	struct the_nilfs *nilfs = sb->s_fs_info;
722 	char *p;
723 	substring_t args[MAX_OPT_ARGS];
724 
725 	if (!options)
726 		return 1;
727 
728 	while ((p = strsep(&options, ",")) != NULL) {
729 		int token;
730 
731 		if (!*p)
732 			continue;
733 
734 		token = match_token(p, tokens, args);
735 		switch (token) {
736 		case Opt_barrier:
737 			nilfs_set_opt(nilfs, BARRIER);
738 			break;
739 		case Opt_nobarrier:
740 			nilfs_clear_opt(nilfs, BARRIER);
741 			break;
742 		case Opt_order:
743 			if (strcmp(args[0].from, "relaxed") == 0)
744 				/* Ordered data semantics */
745 				nilfs_clear_opt(nilfs, STRICT_ORDER);
746 			else if (strcmp(args[0].from, "strict") == 0)
747 				/* Strict in-order semantics */
748 				nilfs_set_opt(nilfs, STRICT_ORDER);
749 			else
750 				return 0;
751 			break;
752 		case Opt_err_panic:
753 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
754 			break;
755 		case Opt_err_ro:
756 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
757 			break;
758 		case Opt_err_cont:
759 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
760 			break;
761 		case Opt_snapshot:
762 			if (is_remount) {
763 				nilfs_err(sb,
764 					  "\"%s\" option is invalid for remount",
765 					  p);
766 				return 0;
767 			}
768 			break;
769 		case Opt_norecovery:
770 			nilfs_set_opt(nilfs, NORECOVERY);
771 			break;
772 		case Opt_discard:
773 			nilfs_set_opt(nilfs, DISCARD);
774 			break;
775 		case Opt_nodiscard:
776 			nilfs_clear_opt(nilfs, DISCARD);
777 			break;
778 		default:
779 			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
780 			return 0;
781 		}
782 	}
783 	return 1;
784 }
785 
786 static inline void
nilfs_set_default_options(struct super_block * sb,struct nilfs_super_block * sbp)787 nilfs_set_default_options(struct super_block *sb,
788 			  struct nilfs_super_block *sbp)
789 {
790 	struct the_nilfs *nilfs = sb->s_fs_info;
791 
792 	nilfs->ns_mount_opt =
793 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
794 }
795 
nilfs_setup_super(struct super_block * sb,int is_mount)796 static int nilfs_setup_super(struct super_block *sb, int is_mount)
797 {
798 	struct the_nilfs *nilfs = sb->s_fs_info;
799 	struct nilfs_super_block **sbp;
800 	int max_mnt_count;
801 	int mnt_count;
802 
803 	/* nilfs->ns_sem must be locked by the caller. */
804 	sbp = nilfs_prepare_super(sb, 0);
805 	if (!sbp)
806 		return -EIO;
807 
808 	if (!is_mount)
809 		goto skip_mount_setup;
810 
811 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
812 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
813 
814 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
815 		nilfs_warn(sb, "mounting fs with errors");
816 #if 0
817 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
818 		nilfs_warn(sb, "maximal mount count reached");
819 #endif
820 	}
821 	if (!max_mnt_count)
822 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
823 
824 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
825 	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
826 
827 skip_mount_setup:
828 	sbp[0]->s_state =
829 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
830 	/* synchronize sbp[1] with sbp[0] */
831 	if (sbp[1])
832 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
833 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
834 }
835 
nilfs_read_super_block(struct super_block * sb,u64 pos,int blocksize,struct buffer_head ** pbh)836 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
837 						 u64 pos, int blocksize,
838 						 struct buffer_head **pbh)
839 {
840 	unsigned long long sb_index = pos;
841 	unsigned long offset;
842 
843 	offset = do_div(sb_index, blocksize);
844 	*pbh = sb_bread(sb, sb_index);
845 	if (!*pbh)
846 		return NULL;
847 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
848 }
849 
nilfs_store_magic_and_option(struct super_block * sb,struct nilfs_super_block * sbp,char * data)850 int nilfs_store_magic_and_option(struct super_block *sb,
851 				 struct nilfs_super_block *sbp,
852 				 char *data)
853 {
854 	struct the_nilfs *nilfs = sb->s_fs_info;
855 
856 	sb->s_magic = le16_to_cpu(sbp->s_magic);
857 
858 	/* FS independent flags */
859 #ifdef NILFS_ATIME_DISABLE
860 	sb->s_flags |= SB_NOATIME;
861 #endif
862 
863 	nilfs_set_default_options(sb, sbp);
864 
865 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
866 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
867 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
868 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
869 
870 	return !parse_options(data, sb, 0) ? -EINVAL : 0;
871 }
872 
nilfs_check_feature_compatibility(struct super_block * sb,struct nilfs_super_block * sbp)873 int nilfs_check_feature_compatibility(struct super_block *sb,
874 				      struct nilfs_super_block *sbp)
875 {
876 	__u64 features;
877 
878 	features = le64_to_cpu(sbp->s_feature_incompat) &
879 		~NILFS_FEATURE_INCOMPAT_SUPP;
880 	if (features) {
881 		nilfs_err(sb,
882 			  "couldn't mount because of unsupported optional features (%llx)",
883 			  (unsigned long long)features);
884 		return -EINVAL;
885 	}
886 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
887 		~NILFS_FEATURE_COMPAT_RO_SUPP;
888 	if (!sb_rdonly(sb) && features) {
889 		nilfs_err(sb,
890 			  "couldn't mount RDWR because of unsupported optional features (%llx)",
891 			  (unsigned long long)features);
892 		return -EINVAL;
893 	}
894 	return 0;
895 }
896 
nilfs_get_root_dentry(struct super_block * sb,struct nilfs_root * root,struct dentry ** root_dentry)897 static int nilfs_get_root_dentry(struct super_block *sb,
898 				 struct nilfs_root *root,
899 				 struct dentry **root_dentry)
900 {
901 	struct inode *inode;
902 	struct dentry *dentry;
903 	int ret = 0;
904 
905 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
906 	if (IS_ERR(inode)) {
907 		ret = PTR_ERR(inode);
908 		nilfs_err(sb, "error %d getting root inode", ret);
909 		goto out;
910 	}
911 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
912 		iput(inode);
913 		nilfs_err(sb, "corrupt root inode");
914 		ret = -EINVAL;
915 		goto out;
916 	}
917 
918 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
919 		dentry = d_find_alias(inode);
920 		if (!dentry) {
921 			dentry = d_make_root(inode);
922 			if (!dentry) {
923 				ret = -ENOMEM;
924 				goto failed_dentry;
925 			}
926 		} else {
927 			iput(inode);
928 		}
929 	} else {
930 		dentry = d_obtain_root(inode);
931 		if (IS_ERR(dentry)) {
932 			ret = PTR_ERR(dentry);
933 			goto failed_dentry;
934 		}
935 	}
936 	*root_dentry = dentry;
937  out:
938 	return ret;
939 
940  failed_dentry:
941 	nilfs_err(sb, "error %d getting root dentry", ret);
942 	goto out;
943 }
944 
nilfs_attach_snapshot(struct super_block * s,__u64 cno,struct dentry ** root_dentry)945 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
946 				 struct dentry **root_dentry)
947 {
948 	struct the_nilfs *nilfs = s->s_fs_info;
949 	struct nilfs_root *root;
950 	int ret;
951 
952 	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
953 
954 	down_read(&nilfs->ns_segctor_sem);
955 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
956 	up_read(&nilfs->ns_segctor_sem);
957 	if (ret < 0) {
958 		ret = (ret == -ENOENT) ? -EINVAL : ret;
959 		goto out;
960 	} else if (!ret) {
961 		nilfs_err(s,
962 			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
963 			  (unsigned long long)cno);
964 		ret = -EINVAL;
965 		goto out;
966 	}
967 
968 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
969 	if (ret) {
970 		nilfs_err(s,
971 			  "error %d while loading snapshot (checkpoint number=%llu)",
972 			  ret, (unsigned long long)cno);
973 		goto out;
974 	}
975 	ret = nilfs_get_root_dentry(s, root, root_dentry);
976 	nilfs_put_root(root);
977  out:
978 	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
979 	return ret;
980 }
981 
982 /**
983  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
984  * @root_dentry: root dentry of the tree to be shrunk
985  *
986  * This function returns true if the tree was in-use.
987  */
nilfs_tree_is_busy(struct dentry * root_dentry)988 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
989 {
990 	shrink_dcache_parent(root_dentry);
991 	return d_count(root_dentry) > 1;
992 }
993 
nilfs_checkpoint_is_mounted(struct super_block * sb,__u64 cno)994 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
995 {
996 	struct the_nilfs *nilfs = sb->s_fs_info;
997 	struct nilfs_root *root;
998 	struct inode *inode;
999 	struct dentry *dentry;
1000 	int ret;
1001 
1002 	if (cno > nilfs->ns_cno)
1003 		return false;
1004 
1005 	if (cno >= nilfs_last_cno(nilfs))
1006 		return true;	/* protect recent checkpoints */
1007 
1008 	ret = false;
1009 	root = nilfs_lookup_root(nilfs, cno);
1010 	if (root) {
1011 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1012 		if (inode) {
1013 			dentry = d_find_alias(inode);
1014 			if (dentry) {
1015 				ret = nilfs_tree_is_busy(dentry);
1016 				dput(dentry);
1017 			}
1018 			iput(inode);
1019 		}
1020 		nilfs_put_root(root);
1021 	}
1022 	return ret;
1023 }
1024 
1025 /**
1026  * nilfs_fill_super() - initialize a super block instance
1027  * @sb: super_block
1028  * @data: mount options
1029  * @silent: silent mode flag
1030  *
1031  * This function is called exclusively by nilfs->ns_mount_mutex.
1032  * So, the recovery process is protected from other simultaneous mounts.
1033  */
1034 static int
nilfs_fill_super(struct super_block * sb,void * data,int silent)1035 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1036 {
1037 	struct the_nilfs *nilfs;
1038 	struct nilfs_root *fsroot;
1039 	__u64 cno;
1040 	int err;
1041 
1042 	nilfs = alloc_nilfs(sb);
1043 	if (!nilfs)
1044 		return -ENOMEM;
1045 
1046 	sb->s_fs_info = nilfs;
1047 
1048 	err = init_nilfs(nilfs, sb, (char *)data);
1049 	if (err)
1050 		goto failed_nilfs;
1051 
1052 	sb->s_op = &nilfs_sops;
1053 	sb->s_export_op = &nilfs_export_ops;
1054 	sb->s_root = NULL;
1055 	sb->s_time_gran = 1;
1056 	sb->s_max_links = NILFS_LINK_MAX;
1057 
1058 	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1059 
1060 	err = load_nilfs(nilfs, sb);
1061 	if (err)
1062 		goto failed_nilfs;
1063 
1064 	cno = nilfs_last_cno(nilfs);
1065 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1066 	if (err) {
1067 		nilfs_err(sb,
1068 			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1069 			  err, (unsigned long long)cno);
1070 		goto failed_unload;
1071 	}
1072 
1073 	if (!sb_rdonly(sb)) {
1074 		err = nilfs_attach_log_writer(sb, fsroot);
1075 		if (err)
1076 			goto failed_checkpoint;
1077 	}
1078 
1079 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1080 	if (err)
1081 		goto failed_segctor;
1082 
1083 	nilfs_put_root(fsroot);
1084 
1085 	if (!sb_rdonly(sb)) {
1086 		down_write(&nilfs->ns_sem);
1087 		nilfs_setup_super(sb, true);
1088 		up_write(&nilfs->ns_sem);
1089 	}
1090 
1091 	return 0;
1092 
1093  failed_segctor:
1094 	nilfs_detach_log_writer(sb);
1095 
1096  failed_checkpoint:
1097 	nilfs_put_root(fsroot);
1098 
1099  failed_unload:
1100 	iput(nilfs->ns_sufile);
1101 	iput(nilfs->ns_cpfile);
1102 	iput(nilfs->ns_dat);
1103 
1104  failed_nilfs:
1105 	destroy_nilfs(nilfs);
1106 	return err;
1107 }
1108 
nilfs_remount(struct super_block * sb,int * flags,char * data)1109 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1110 {
1111 	struct the_nilfs *nilfs = sb->s_fs_info;
1112 	unsigned long old_sb_flags;
1113 	unsigned long old_mount_opt;
1114 	int err;
1115 
1116 	sync_filesystem(sb);
1117 	old_sb_flags = sb->s_flags;
1118 	old_mount_opt = nilfs->ns_mount_opt;
1119 
1120 	if (!parse_options(data, sb, 1)) {
1121 		err = -EINVAL;
1122 		goto restore_opts;
1123 	}
1124 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1125 
1126 	err = -EINVAL;
1127 
1128 	if (!nilfs_valid_fs(nilfs)) {
1129 		nilfs_warn(sb,
1130 			   "couldn't remount because the filesystem is in an incomplete recovery state");
1131 		goto restore_opts;
1132 	}
1133 
1134 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1135 		goto out;
1136 	if (*flags & SB_RDONLY) {
1137 		sb->s_flags |= SB_RDONLY;
1138 
1139 		/*
1140 		 * Remounting a valid RW partition RDONLY, so set
1141 		 * the RDONLY flag and then mark the partition as valid again.
1142 		 */
1143 		down_write(&nilfs->ns_sem);
1144 		nilfs_cleanup_super(sb);
1145 		up_write(&nilfs->ns_sem);
1146 	} else {
1147 		__u64 features;
1148 		struct nilfs_root *root;
1149 
1150 		/*
1151 		 * Mounting a RDONLY partition read-write, so reread and
1152 		 * store the current valid flag.  (It may have been changed
1153 		 * by fsck since we originally mounted the partition.)
1154 		 */
1155 		down_read(&nilfs->ns_sem);
1156 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1157 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1158 		up_read(&nilfs->ns_sem);
1159 		if (features) {
1160 			nilfs_warn(sb,
1161 				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1162 				   (unsigned long long)features);
1163 			err = -EROFS;
1164 			goto restore_opts;
1165 		}
1166 
1167 		sb->s_flags &= ~SB_RDONLY;
1168 
1169 		root = NILFS_I(d_inode(sb->s_root))->i_root;
1170 		err = nilfs_attach_log_writer(sb, root);
1171 		if (err)
1172 			goto restore_opts;
1173 
1174 		down_write(&nilfs->ns_sem);
1175 		nilfs_setup_super(sb, true);
1176 		up_write(&nilfs->ns_sem);
1177 	}
1178  out:
1179 	return 0;
1180 
1181  restore_opts:
1182 	sb->s_flags = old_sb_flags;
1183 	nilfs->ns_mount_opt = old_mount_opt;
1184 	return err;
1185 }
1186 
1187 struct nilfs_super_data {
1188 	struct block_device *bdev;
1189 	__u64 cno;
1190 	int flags;
1191 };
1192 
nilfs_parse_snapshot_option(const char * option,const substring_t * arg,struct nilfs_super_data * sd)1193 static int nilfs_parse_snapshot_option(const char *option,
1194 				       const substring_t *arg,
1195 				       struct nilfs_super_data *sd)
1196 {
1197 	unsigned long long val;
1198 	const char *msg = NULL;
1199 	int err;
1200 
1201 	if (!(sd->flags & SB_RDONLY)) {
1202 		msg = "read-only option is not specified";
1203 		goto parse_error;
1204 	}
1205 
1206 	err = kstrtoull(arg->from, 0, &val);
1207 	if (err) {
1208 		if (err == -ERANGE)
1209 			msg = "too large checkpoint number";
1210 		else
1211 			msg = "malformed argument";
1212 		goto parse_error;
1213 	} else if (val == 0) {
1214 		msg = "invalid checkpoint number 0";
1215 		goto parse_error;
1216 	}
1217 	sd->cno = val;
1218 	return 0;
1219 
1220 parse_error:
1221 	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1222 	return 1;
1223 }
1224 
1225 /**
1226  * nilfs_identify - pre-read mount options needed to identify mount instance
1227  * @data: mount options
1228  * @sd: nilfs_super_data
1229  */
nilfs_identify(char * data,struct nilfs_super_data * sd)1230 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1231 {
1232 	char *p, *options = data;
1233 	substring_t args[MAX_OPT_ARGS];
1234 	int token;
1235 	int ret = 0;
1236 
1237 	do {
1238 		p = strsep(&options, ",");
1239 		if (p != NULL && *p) {
1240 			token = match_token(p, tokens, args);
1241 			if (token == Opt_snapshot)
1242 				ret = nilfs_parse_snapshot_option(p, &args[0],
1243 								  sd);
1244 		}
1245 		if (!options)
1246 			break;
1247 		BUG_ON(options == data);
1248 		*(options - 1) = ',';
1249 	} while (!ret);
1250 	return ret;
1251 }
1252 
nilfs_set_bdev_super(struct super_block * s,void * data)1253 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1254 {
1255 	s->s_bdev = data;
1256 	s->s_dev = s->s_bdev->bd_dev;
1257 	return 0;
1258 }
1259 
nilfs_test_bdev_super(struct super_block * s,void * data)1260 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1261 {
1262 	return (void *)s->s_bdev == data;
1263 }
1264 
1265 static struct dentry *
nilfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1266 nilfs_mount(struct file_system_type *fs_type, int flags,
1267 	     const char *dev_name, void *data)
1268 {
1269 	struct nilfs_super_data sd;
1270 	struct super_block *s;
1271 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1272 	struct dentry *root_dentry;
1273 	int err, s_new = false;
1274 
1275 	if (!(flags & SB_RDONLY))
1276 		mode |= FMODE_WRITE;
1277 
1278 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1279 	if (IS_ERR(sd.bdev))
1280 		return ERR_CAST(sd.bdev);
1281 
1282 	sd.cno = 0;
1283 	sd.flags = flags;
1284 	if (nilfs_identify((char *)data, &sd)) {
1285 		err = -EINVAL;
1286 		goto failed;
1287 	}
1288 
1289 	/*
1290 	 * once the super is inserted into the list by sget, s_umount
1291 	 * will protect the lockfs code from trying to start a snapshot
1292 	 * while we are mounting
1293 	 */
1294 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1295 	if (sd.bdev->bd_fsfreeze_count > 0) {
1296 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1297 		err = -EBUSY;
1298 		goto failed;
1299 	}
1300 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1301 		 sd.bdev);
1302 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1303 	if (IS_ERR(s)) {
1304 		err = PTR_ERR(s);
1305 		goto failed;
1306 	}
1307 
1308 	if (!s->s_root) {
1309 		s_new = true;
1310 
1311 		/* New superblock instance created */
1312 		s->s_mode = mode;
1313 		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1314 		sb_set_blocksize(s, block_size(sd.bdev));
1315 
1316 		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1317 		if (err)
1318 			goto failed_super;
1319 
1320 		s->s_flags |= SB_ACTIVE;
1321 	} else if (!sd.cno) {
1322 		if (nilfs_tree_is_busy(s->s_root)) {
1323 			if ((flags ^ s->s_flags) & SB_RDONLY) {
1324 				nilfs_err(s,
1325 					  "the device already has a %s mount.",
1326 					  sb_rdonly(s) ? "read-only" : "read/write");
1327 				err = -EBUSY;
1328 				goto failed_super;
1329 			}
1330 		} else {
1331 			/*
1332 			 * Try remount to setup mount states if the current
1333 			 * tree is not mounted and only snapshots use this sb.
1334 			 */
1335 			err = nilfs_remount(s, &flags, data);
1336 			if (err)
1337 				goto failed_super;
1338 		}
1339 	}
1340 
1341 	if (sd.cno) {
1342 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1343 		if (err)
1344 			goto failed_super;
1345 	} else {
1346 		root_dentry = dget(s->s_root);
1347 	}
1348 
1349 	if (!s_new)
1350 		blkdev_put(sd.bdev, mode);
1351 
1352 	return root_dentry;
1353 
1354  failed_super:
1355 	deactivate_locked_super(s);
1356 
1357  failed:
1358 	if (!s_new)
1359 		blkdev_put(sd.bdev, mode);
1360 	return ERR_PTR(err);
1361 }
1362 
1363 struct file_system_type nilfs_fs_type = {
1364 	.owner    = THIS_MODULE,
1365 	.name     = "nilfs2",
1366 	.mount    = nilfs_mount,
1367 	.kill_sb  = kill_block_super,
1368 	.fs_flags = FS_REQUIRES_DEV,
1369 };
1370 MODULE_ALIAS_FS("nilfs2");
1371 
nilfs_inode_init_once(void * obj)1372 static void nilfs_inode_init_once(void *obj)
1373 {
1374 	struct nilfs_inode_info *ii = obj;
1375 
1376 	INIT_LIST_HEAD(&ii->i_dirty);
1377 #ifdef CONFIG_NILFS_XATTR
1378 	init_rwsem(&ii->xattr_sem);
1379 #endif
1380 	inode_init_once(&ii->vfs_inode);
1381 }
1382 
nilfs_segbuf_init_once(void * obj)1383 static void nilfs_segbuf_init_once(void *obj)
1384 {
1385 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1386 }
1387 
nilfs_destroy_cachep(void)1388 static void nilfs_destroy_cachep(void)
1389 {
1390 	/*
1391 	 * Make sure all delayed rcu free inodes are flushed before we
1392 	 * destroy cache.
1393 	 */
1394 	rcu_barrier();
1395 
1396 	kmem_cache_destroy(nilfs_inode_cachep);
1397 	kmem_cache_destroy(nilfs_transaction_cachep);
1398 	kmem_cache_destroy(nilfs_segbuf_cachep);
1399 	kmem_cache_destroy(nilfs_btree_path_cache);
1400 }
1401 
nilfs_init_cachep(void)1402 static int __init nilfs_init_cachep(void)
1403 {
1404 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1405 			sizeof(struct nilfs_inode_info), 0,
1406 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1407 			nilfs_inode_init_once);
1408 	if (!nilfs_inode_cachep)
1409 		goto fail;
1410 
1411 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1412 			sizeof(struct nilfs_transaction_info), 0,
1413 			SLAB_RECLAIM_ACCOUNT, NULL);
1414 	if (!nilfs_transaction_cachep)
1415 		goto fail;
1416 
1417 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1418 			sizeof(struct nilfs_segment_buffer), 0,
1419 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1420 	if (!nilfs_segbuf_cachep)
1421 		goto fail;
1422 
1423 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1424 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1425 			0, 0, NULL);
1426 	if (!nilfs_btree_path_cache)
1427 		goto fail;
1428 
1429 	return 0;
1430 
1431 fail:
1432 	nilfs_destroy_cachep();
1433 	return -ENOMEM;
1434 }
1435 
init_nilfs_fs(void)1436 static int __init init_nilfs_fs(void)
1437 {
1438 	int err;
1439 
1440 	err = nilfs_init_cachep();
1441 	if (err)
1442 		goto fail;
1443 
1444 	err = nilfs_sysfs_init();
1445 	if (err)
1446 		goto free_cachep;
1447 
1448 	err = register_filesystem(&nilfs_fs_type);
1449 	if (err)
1450 		goto deinit_sysfs_entry;
1451 
1452 	printk(KERN_INFO "NILFS version 2 loaded\n");
1453 	return 0;
1454 
1455 deinit_sysfs_entry:
1456 	nilfs_sysfs_exit();
1457 free_cachep:
1458 	nilfs_destroy_cachep();
1459 fail:
1460 	return err;
1461 }
1462 
exit_nilfs_fs(void)1463 static void __exit exit_nilfs_fs(void)
1464 {
1465 	nilfs_destroy_cachep();
1466 	nilfs_sysfs_exit();
1467 	unregister_filesystem(&nilfs_fs_type);
1468 }
1469 
1470 module_init(init_nilfs_fs)
1471 module_exit(exit_nilfs_fs)
1472