1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
33 */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42
43 #include <asm/futex.h>
44
45 #include "locking/rtmutex_common.h"
46 #include <trace/hooks/futex.h>
47
48 /*
49 * READ this before attempting to hack on futexes!
50 *
51 * Basic futex operation and ordering guarantees
52 * =============================================
53 *
54 * The waiter reads the futex value in user space and calls
55 * futex_wait(). This function computes the hash bucket and acquires
56 * the hash bucket lock. After that it reads the futex user space value
57 * again and verifies that the data has not changed. If it has not changed
58 * it enqueues itself into the hash bucket, releases the hash bucket lock
59 * and schedules.
60 *
61 * The waker side modifies the user space value of the futex and calls
62 * futex_wake(). This function computes the hash bucket and acquires the
63 * hash bucket lock. Then it looks for waiters on that futex in the hash
64 * bucket and wakes them.
65 *
66 * In futex wake up scenarios where no tasks are blocked on a futex, taking
67 * the hb spinlock can be avoided and simply return. In order for this
68 * optimization to work, ordering guarantees must exist so that the waiter
69 * being added to the list is acknowledged when the list is concurrently being
70 * checked by the waker, avoiding scenarios like the following:
71 *
72 * CPU 0 CPU 1
73 * val = *futex;
74 * sys_futex(WAIT, futex, val);
75 * futex_wait(futex, val);
76 * uval = *futex;
77 * *futex = newval;
78 * sys_futex(WAKE, futex);
79 * futex_wake(futex);
80 * if (queue_empty())
81 * return;
82 * if (uval == val)
83 * lock(hash_bucket(futex));
84 * queue();
85 * unlock(hash_bucket(futex));
86 * schedule();
87 *
88 * This would cause the waiter on CPU 0 to wait forever because it
89 * missed the transition of the user space value from val to newval
90 * and the waker did not find the waiter in the hash bucket queue.
91 *
92 * The correct serialization ensures that a waiter either observes
93 * the changed user space value before blocking or is woken by a
94 * concurrent waker:
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 *
101 * waiters++; (a)
102 * smp_mb(); (A) <-- paired with -.
103 * |
104 * lock(hash_bucket(futex)); |
105 * |
106 * uval = *futex; |
107 * | *futex = newval;
108 * | sys_futex(WAKE, futex);
109 * | futex_wake(futex);
110 * |
111 * `--------> smp_mb(); (B)
112 * if (uval == val)
113 * queue();
114 * unlock(hash_bucket(futex));
115 * schedule(); if (waiters)
116 * lock(hash_bucket(futex));
117 * else wake_waiters(futex);
118 * waiters--; (b) unlock(hash_bucket(futex));
119 *
120 * Where (A) orders the waiters increment and the futex value read through
121 * atomic operations (see hb_waiters_inc) and where (B) orders the write
122 * to futex and the waiters read (see hb_waiters_pending()).
123 *
124 * This yields the following case (where X:=waiters, Y:=futex):
125 *
126 * X = Y = 0
127 *
128 * w[X]=1 w[Y]=1
129 * MB MB
130 * r[Y]=y r[X]=x
131 *
132 * Which guarantees that x==0 && y==0 is impossible; which translates back into
133 * the guarantee that we cannot both miss the futex variable change and the
134 * enqueue.
135 *
136 * Note that a new waiter is accounted for in (a) even when it is possible that
137 * the wait call can return error, in which case we backtrack from it in (b).
138 * Refer to the comment in queue_lock().
139 *
140 * Similarly, in order to account for waiters being requeued on another
141 * address we always increment the waiters for the destination bucket before
142 * acquiring the lock. It then decrements them again after releasing it -
143 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
144 * will do the additional required waiter count housekeeping. This is done for
145 * double_lock_hb() and double_unlock_hb(), respectively.
146 */
147
148 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
149 #define futex_cmpxchg_enabled 1
150 #else
151 static int __read_mostly futex_cmpxchg_enabled;
152 #endif
153
154 /*
155 * Futex flags used to encode options to functions and preserve them across
156 * restarts.
157 */
158 #ifdef CONFIG_MMU
159 # define FLAGS_SHARED 0x01
160 #else
161 /*
162 * NOMMU does not have per process address space. Let the compiler optimize
163 * code away.
164 */
165 # define FLAGS_SHARED 0x00
166 #endif
167 #define FLAGS_CLOCKRT 0x02
168 #define FLAGS_HAS_TIMEOUT 0x04
169
170 /*
171 * Priority Inheritance state:
172 */
173 struct futex_pi_state {
174 /*
175 * list of 'owned' pi_state instances - these have to be
176 * cleaned up in do_exit() if the task exits prematurely:
177 */
178 struct list_head list;
179
180 /*
181 * The PI object:
182 */
183 struct rt_mutex pi_mutex;
184
185 struct task_struct *owner;
186 refcount_t refcount;
187
188 union futex_key key;
189 } __randomize_layout;
190
191 /**
192 * struct futex_q - The hashed futex queue entry, one per waiting task
193 * @list: priority-sorted list of tasks waiting on this futex
194 * @task: the task waiting on the futex
195 * @lock_ptr: the hash bucket lock
196 * @key: the key the futex is hashed on
197 * @pi_state: optional priority inheritance state
198 * @rt_waiter: rt_waiter storage for use with requeue_pi
199 * @requeue_pi_key: the requeue_pi target futex key
200 * @bitset: bitset for the optional bitmasked wakeup
201 *
202 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
203 * we can wake only the relevant ones (hashed queues may be shared).
204 *
205 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
206 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
207 * The order of wakeup is always to make the first condition true, then
208 * the second.
209 *
210 * PI futexes are typically woken before they are removed from the hash list via
211 * the rt_mutex code. See unqueue_me_pi().
212 */
213 struct futex_q {
214 struct plist_node list;
215
216 struct task_struct *task;
217 spinlock_t *lock_ptr;
218 union futex_key key;
219 struct futex_pi_state *pi_state;
220 struct rt_mutex_waiter *rt_waiter;
221 union futex_key *requeue_pi_key;
222 u32 bitset;
223 } __randomize_layout;
224
225 static const struct futex_q futex_q_init = {
226 /* list gets initialized in queue_me()*/
227 .key = FUTEX_KEY_INIT,
228 .bitset = FUTEX_BITSET_MATCH_ANY
229 };
230
231 /*
232 * Hash buckets are shared by all the futex_keys that hash to the same
233 * location. Each key may have multiple futex_q structures, one for each task
234 * waiting on a futex.
235 */
236 struct futex_hash_bucket {
237 atomic_t waiters;
238 spinlock_t lock;
239 struct plist_head chain;
240 } ____cacheline_aligned_in_smp;
241
242 /*
243 * The base of the bucket array and its size are always used together
244 * (after initialization only in hash_futex()), so ensure that they
245 * reside in the same cacheline.
246 */
247 static struct {
248 struct futex_hash_bucket *queues;
249 unsigned long hashsize;
250 } __futex_data __read_mostly __aligned(2*sizeof(long));
251 #define futex_queues (__futex_data.queues)
252 #define futex_hashsize (__futex_data.hashsize)
253
254
255 /*
256 * Fault injections for futexes.
257 */
258 #ifdef CONFIG_FAIL_FUTEX
259
260 static struct {
261 struct fault_attr attr;
262
263 bool ignore_private;
264 } fail_futex = {
265 .attr = FAULT_ATTR_INITIALIZER,
266 .ignore_private = false,
267 };
268
setup_fail_futex(char * str)269 static int __init setup_fail_futex(char *str)
270 {
271 return setup_fault_attr(&fail_futex.attr, str);
272 }
273 __setup("fail_futex=", setup_fail_futex);
274
should_fail_futex(bool fshared)275 static bool should_fail_futex(bool fshared)
276 {
277 if (fail_futex.ignore_private && !fshared)
278 return false;
279
280 return should_fail(&fail_futex.attr, 1);
281 }
282
283 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
284
fail_futex_debugfs(void)285 static int __init fail_futex_debugfs(void)
286 {
287 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
288 struct dentry *dir;
289
290 dir = fault_create_debugfs_attr("fail_futex", NULL,
291 &fail_futex.attr);
292 if (IS_ERR(dir))
293 return PTR_ERR(dir);
294
295 debugfs_create_bool("ignore-private", mode, dir,
296 &fail_futex.ignore_private);
297 return 0;
298 }
299
300 late_initcall(fail_futex_debugfs);
301
302 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
303
304 #else
should_fail_futex(bool fshared)305 static inline bool should_fail_futex(bool fshared)
306 {
307 return false;
308 }
309 #endif /* CONFIG_FAIL_FUTEX */
310
311 #ifdef CONFIG_COMPAT
312 static void compat_exit_robust_list(struct task_struct *curr);
313 #else
compat_exit_robust_list(struct task_struct * curr)314 static inline void compat_exit_robust_list(struct task_struct *curr) { }
315 #endif
316
317 /*
318 * Reflects a new waiter being added to the waitqueue.
319 */
hb_waiters_inc(struct futex_hash_bucket * hb)320 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
321 {
322 #ifdef CONFIG_SMP
323 atomic_inc(&hb->waiters);
324 /*
325 * Full barrier (A), see the ordering comment above.
326 */
327 smp_mb__after_atomic();
328 #endif
329 }
330
331 /*
332 * Reflects a waiter being removed from the waitqueue by wakeup
333 * paths.
334 */
hb_waiters_dec(struct futex_hash_bucket * hb)335 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
336 {
337 #ifdef CONFIG_SMP
338 atomic_dec(&hb->waiters);
339 #endif
340 }
341
hb_waiters_pending(struct futex_hash_bucket * hb)342 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
343 {
344 #ifdef CONFIG_SMP
345 /*
346 * Full barrier (B), see the ordering comment above.
347 */
348 smp_mb();
349 return atomic_read(&hb->waiters);
350 #else
351 return 1;
352 #endif
353 }
354
355 /**
356 * hash_futex - Return the hash bucket in the global hash
357 * @key: Pointer to the futex key for which the hash is calculated
358 *
359 * We hash on the keys returned from get_futex_key (see below) and return the
360 * corresponding hash bucket in the global hash.
361 */
hash_futex(union futex_key * key)362 static struct futex_hash_bucket *hash_futex(union futex_key *key)
363 {
364 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
365 key->both.offset);
366
367 return &futex_queues[hash & (futex_hashsize - 1)];
368 }
369
370
371 /**
372 * match_futex - Check whether two futex keys are equal
373 * @key1: Pointer to key1
374 * @key2: Pointer to key2
375 *
376 * Return 1 if two futex_keys are equal, 0 otherwise.
377 */
match_futex(union futex_key * key1,union futex_key * key2)378 static inline int match_futex(union futex_key *key1, union futex_key *key2)
379 {
380 return (key1 && key2
381 && key1->both.word == key2->both.word
382 && key1->both.ptr == key2->both.ptr
383 && key1->both.offset == key2->both.offset);
384 }
385
386 enum futex_access {
387 FUTEX_READ,
388 FUTEX_WRITE
389 };
390
391 /**
392 * futex_setup_timer - set up the sleeping hrtimer.
393 * @time: ptr to the given timeout value
394 * @timeout: the hrtimer_sleeper structure to be set up
395 * @flags: futex flags
396 * @range_ns: optional range in ns
397 *
398 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
399 * value given
400 */
401 static inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t * time,struct hrtimer_sleeper * timeout,int flags,u64 range_ns)402 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
403 int flags, u64 range_ns)
404 {
405 if (!time)
406 return NULL;
407
408 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
409 CLOCK_REALTIME : CLOCK_MONOTONIC,
410 HRTIMER_MODE_ABS);
411 /*
412 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
413 * effectively the same as calling hrtimer_set_expires().
414 */
415 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
416
417 return timeout;
418 }
419
420 /*
421 * Generate a machine wide unique identifier for this inode.
422 *
423 * This relies on u64 not wrapping in the life-time of the machine; which with
424 * 1ns resolution means almost 585 years.
425 *
426 * This further relies on the fact that a well formed program will not unmap
427 * the file while it has a (shared) futex waiting on it. This mapping will have
428 * a file reference which pins the mount and inode.
429 *
430 * If for some reason an inode gets evicted and read back in again, it will get
431 * a new sequence number and will _NOT_ match, even though it is the exact same
432 * file.
433 *
434 * It is important that match_futex() will never have a false-positive, esp.
435 * for PI futexes that can mess up the state. The above argues that false-negatives
436 * are only possible for malformed programs.
437 */
get_inode_sequence_number(struct inode * inode)438 static u64 get_inode_sequence_number(struct inode *inode)
439 {
440 static atomic64_t i_seq;
441 u64 old;
442
443 /* Does the inode already have a sequence number? */
444 old = atomic64_read(&inode->i_sequence);
445 if (likely(old))
446 return old;
447
448 for (;;) {
449 u64 new = atomic64_add_return(1, &i_seq);
450 if (WARN_ON_ONCE(!new))
451 continue;
452
453 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
454 if (old)
455 return old;
456 return new;
457 }
458 }
459
460 /**
461 * get_futex_key() - Get parameters which are the keys for a futex
462 * @uaddr: virtual address of the futex
463 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
464 * @key: address where result is stored.
465 * @rw: mapping needs to be read/write (values: FUTEX_READ,
466 * FUTEX_WRITE)
467 *
468 * Return: a negative error code or 0
469 *
470 * The key words are stored in @key on success.
471 *
472 * For shared mappings (when @fshared), the key is:
473 *
474 * ( inode->i_sequence, page->index, offset_within_page )
475 *
476 * [ also see get_inode_sequence_number() ]
477 *
478 * For private mappings (or when !@fshared), the key is:
479 *
480 * ( current->mm, address, 0 )
481 *
482 * This allows (cross process, where applicable) identification of the futex
483 * without keeping the page pinned for the duration of the FUTEX_WAIT.
484 *
485 * lock_page() might sleep, the caller should not hold a spinlock.
486 */
get_futex_key(u32 __user * uaddr,bool fshared,union futex_key * key,enum futex_access rw)487 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
488 enum futex_access rw)
489 {
490 unsigned long address = (unsigned long)uaddr;
491 struct mm_struct *mm = current->mm;
492 struct page *page, *tail;
493 struct address_space *mapping;
494 int err, ro = 0;
495
496 /*
497 * The futex address must be "naturally" aligned.
498 */
499 key->both.offset = address % PAGE_SIZE;
500 if (unlikely((address % sizeof(u32)) != 0))
501 return -EINVAL;
502 address -= key->both.offset;
503
504 if (unlikely(!access_ok(uaddr, sizeof(u32))))
505 return -EFAULT;
506
507 if (unlikely(should_fail_futex(fshared)))
508 return -EFAULT;
509
510 /*
511 * PROCESS_PRIVATE futexes are fast.
512 * As the mm cannot disappear under us and the 'key' only needs
513 * virtual address, we dont even have to find the underlying vma.
514 * Note : We do have to check 'uaddr' is a valid user address,
515 * but access_ok() should be faster than find_vma()
516 */
517 if (!fshared) {
518 key->private.mm = mm;
519 key->private.address = address;
520 return 0;
521 }
522
523 again:
524 /* Ignore any VERIFY_READ mapping (futex common case) */
525 if (unlikely(should_fail_futex(true)))
526 return -EFAULT;
527
528 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
529 /*
530 * If write access is not required (eg. FUTEX_WAIT), try
531 * and get read-only access.
532 */
533 if (err == -EFAULT && rw == FUTEX_READ) {
534 err = get_user_pages_fast(address, 1, 0, &page);
535 ro = 1;
536 }
537 if (err < 0)
538 return err;
539 else
540 err = 0;
541
542 /*
543 * The treatment of mapping from this point on is critical. The page
544 * lock protects many things but in this context the page lock
545 * stabilizes mapping, prevents inode freeing in the shared
546 * file-backed region case and guards against movement to swap cache.
547 *
548 * Strictly speaking the page lock is not needed in all cases being
549 * considered here and page lock forces unnecessarily serialization
550 * From this point on, mapping will be re-verified if necessary and
551 * page lock will be acquired only if it is unavoidable
552 *
553 * Mapping checks require the head page for any compound page so the
554 * head page and mapping is looked up now. For anonymous pages, it
555 * does not matter if the page splits in the future as the key is
556 * based on the address. For filesystem-backed pages, the tail is
557 * required as the index of the page determines the key. For
558 * base pages, there is no tail page and tail == page.
559 */
560 tail = page;
561 page = compound_head(page);
562 mapping = READ_ONCE(page->mapping);
563
564 /*
565 * If page->mapping is NULL, then it cannot be a PageAnon
566 * page; but it might be the ZERO_PAGE or in the gate area or
567 * in a special mapping (all cases which we are happy to fail);
568 * or it may have been a good file page when get_user_pages_fast
569 * found it, but truncated or holepunched or subjected to
570 * invalidate_complete_page2 before we got the page lock (also
571 * cases which we are happy to fail). And we hold a reference,
572 * so refcount care in invalidate_complete_page's remove_mapping
573 * prevents drop_caches from setting mapping to NULL beneath us.
574 *
575 * The case we do have to guard against is when memory pressure made
576 * shmem_writepage move it from filecache to swapcache beneath us:
577 * an unlikely race, but we do need to retry for page->mapping.
578 */
579 if (unlikely(!mapping)) {
580 int shmem_swizzled;
581
582 /*
583 * Page lock is required to identify which special case above
584 * applies. If this is really a shmem page then the page lock
585 * will prevent unexpected transitions.
586 */
587 lock_page(page);
588 shmem_swizzled = PageSwapCache(page) || page->mapping;
589 unlock_page(page);
590 put_user_page(page);
591
592 if (shmem_swizzled)
593 goto again;
594
595 return -EFAULT;
596 }
597
598 /*
599 * Private mappings are handled in a simple way.
600 *
601 * If the futex key is stored on an anonymous page, then the associated
602 * object is the mm which is implicitly pinned by the calling process.
603 *
604 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
605 * it's a read-only handle, it's expected that futexes attach to
606 * the object not the particular process.
607 */
608 if (PageAnon(page)) {
609 /*
610 * A RO anonymous page will never change and thus doesn't make
611 * sense for futex operations.
612 */
613 if (unlikely(should_fail_futex(true)) || ro) {
614 err = -EFAULT;
615 goto out;
616 }
617
618 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
619 key->private.mm = mm;
620 key->private.address = address;
621
622 } else {
623 struct inode *inode;
624
625 /*
626 * The associated futex object in this case is the inode and
627 * the page->mapping must be traversed. Ordinarily this should
628 * be stabilised under page lock but it's not strictly
629 * necessary in this case as we just want to pin the inode, not
630 * update the radix tree or anything like that.
631 *
632 * The RCU read lock is taken as the inode is finally freed
633 * under RCU. If the mapping still matches expectations then the
634 * mapping->host can be safely accessed as being a valid inode.
635 */
636 rcu_read_lock();
637
638 if (READ_ONCE(page->mapping) != mapping) {
639 rcu_read_unlock();
640 put_user_page(page);
641
642 goto again;
643 }
644
645 inode = READ_ONCE(mapping->host);
646 if (!inode) {
647 rcu_read_unlock();
648 put_user_page(page);
649
650 goto again;
651 }
652
653 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
654 key->shared.i_seq = get_inode_sequence_number(inode);
655 key->shared.pgoff = page_to_pgoff(tail);
656 rcu_read_unlock();
657 }
658
659 out:
660 put_user_page(page);
661 return err;
662 }
663
664 /**
665 * fault_in_user_writeable() - Fault in user address and verify RW access
666 * @uaddr: pointer to faulting user space address
667 *
668 * Slow path to fixup the fault we just took in the atomic write
669 * access to @uaddr.
670 *
671 * We have no generic implementation of a non-destructive write to the
672 * user address. We know that we faulted in the atomic pagefault
673 * disabled section so we can as well avoid the #PF overhead by
674 * calling get_user_pages() right away.
675 */
fault_in_user_writeable(u32 __user * uaddr)676 static int fault_in_user_writeable(u32 __user *uaddr)
677 {
678 struct mm_struct *mm = current->mm;
679 int ret;
680
681 mmap_read_lock(mm);
682 ret = fixup_user_fault(mm, (unsigned long)uaddr,
683 FAULT_FLAG_WRITE, NULL);
684 mmap_read_unlock(mm);
685
686 return ret < 0 ? ret : 0;
687 }
688
689 /**
690 * futex_top_waiter() - Return the highest priority waiter on a futex
691 * @hb: the hash bucket the futex_q's reside in
692 * @key: the futex key (to distinguish it from other futex futex_q's)
693 *
694 * Must be called with the hb lock held.
695 */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)696 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
697 union futex_key *key)
698 {
699 struct futex_q *this;
700
701 plist_for_each_entry(this, &hb->chain, list) {
702 if (match_futex(&this->key, key))
703 return this;
704 }
705 return NULL;
706 }
707
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)708 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
709 u32 uval, u32 newval)
710 {
711 int ret;
712
713 pagefault_disable();
714 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
715 pagefault_enable();
716
717 return ret;
718 }
719
get_futex_value_locked(u32 * dest,u32 __user * from)720 static int get_futex_value_locked(u32 *dest, u32 __user *from)
721 {
722 int ret;
723
724 pagefault_disable();
725 ret = __get_user(*dest, from);
726 pagefault_enable();
727
728 return ret ? -EFAULT : 0;
729 }
730
731
732 /*
733 * PI code:
734 */
refill_pi_state_cache(void)735 static int refill_pi_state_cache(void)
736 {
737 struct futex_pi_state *pi_state;
738
739 if (likely(current->pi_state_cache))
740 return 0;
741
742 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
743
744 if (!pi_state)
745 return -ENOMEM;
746
747 INIT_LIST_HEAD(&pi_state->list);
748 /* pi_mutex gets initialized later */
749 pi_state->owner = NULL;
750 refcount_set(&pi_state->refcount, 1);
751 pi_state->key = FUTEX_KEY_INIT;
752
753 current->pi_state_cache = pi_state;
754
755 return 0;
756 }
757
alloc_pi_state(void)758 static struct futex_pi_state *alloc_pi_state(void)
759 {
760 struct futex_pi_state *pi_state = current->pi_state_cache;
761
762 WARN_ON(!pi_state);
763 current->pi_state_cache = NULL;
764
765 return pi_state;
766 }
767
pi_state_update_owner(struct futex_pi_state * pi_state,struct task_struct * new_owner)768 static void pi_state_update_owner(struct futex_pi_state *pi_state,
769 struct task_struct *new_owner)
770 {
771 struct task_struct *old_owner = pi_state->owner;
772
773 lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
774
775 if (old_owner) {
776 raw_spin_lock(&old_owner->pi_lock);
777 WARN_ON(list_empty(&pi_state->list));
778 list_del_init(&pi_state->list);
779 raw_spin_unlock(&old_owner->pi_lock);
780 }
781
782 if (new_owner) {
783 raw_spin_lock(&new_owner->pi_lock);
784 WARN_ON(!list_empty(&pi_state->list));
785 list_add(&pi_state->list, &new_owner->pi_state_list);
786 pi_state->owner = new_owner;
787 raw_spin_unlock(&new_owner->pi_lock);
788 }
789 }
790
get_pi_state(struct futex_pi_state * pi_state)791 static void get_pi_state(struct futex_pi_state *pi_state)
792 {
793 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
794 }
795
796 /*
797 * Drops a reference to the pi_state object and frees or caches it
798 * when the last reference is gone.
799 */
put_pi_state(struct futex_pi_state * pi_state)800 static void put_pi_state(struct futex_pi_state *pi_state)
801 {
802 if (!pi_state)
803 return;
804
805 if (!refcount_dec_and_test(&pi_state->refcount))
806 return;
807
808 /*
809 * If pi_state->owner is NULL, the owner is most probably dying
810 * and has cleaned up the pi_state already
811 */
812 if (pi_state->owner) {
813 unsigned long flags;
814
815 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
816 pi_state_update_owner(pi_state, NULL);
817 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
818 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
819 }
820
821 if (current->pi_state_cache) {
822 kfree(pi_state);
823 } else {
824 /*
825 * pi_state->list is already empty.
826 * clear pi_state->owner.
827 * refcount is at 0 - put it back to 1.
828 */
829 pi_state->owner = NULL;
830 refcount_set(&pi_state->refcount, 1);
831 current->pi_state_cache = pi_state;
832 }
833 }
834
835 #ifdef CONFIG_FUTEX_PI
836
837 /*
838 * This task is holding PI mutexes at exit time => bad.
839 * Kernel cleans up PI-state, but userspace is likely hosed.
840 * (Robust-futex cleanup is separate and might save the day for userspace.)
841 */
exit_pi_state_list(struct task_struct * curr)842 static void exit_pi_state_list(struct task_struct *curr)
843 {
844 struct list_head *next, *head = &curr->pi_state_list;
845 struct futex_pi_state *pi_state;
846 struct futex_hash_bucket *hb;
847 union futex_key key = FUTEX_KEY_INIT;
848
849 if (!futex_cmpxchg_enabled)
850 return;
851 /*
852 * We are a ZOMBIE and nobody can enqueue itself on
853 * pi_state_list anymore, but we have to be careful
854 * versus waiters unqueueing themselves:
855 */
856 raw_spin_lock_irq(&curr->pi_lock);
857 while (!list_empty(head)) {
858 next = head->next;
859 pi_state = list_entry(next, struct futex_pi_state, list);
860 key = pi_state->key;
861 hb = hash_futex(&key);
862
863 /*
864 * We can race against put_pi_state() removing itself from the
865 * list (a waiter going away). put_pi_state() will first
866 * decrement the reference count and then modify the list, so
867 * its possible to see the list entry but fail this reference
868 * acquire.
869 *
870 * In that case; drop the locks to let put_pi_state() make
871 * progress and retry the loop.
872 */
873 if (!refcount_inc_not_zero(&pi_state->refcount)) {
874 raw_spin_unlock_irq(&curr->pi_lock);
875 cpu_relax();
876 raw_spin_lock_irq(&curr->pi_lock);
877 continue;
878 }
879 raw_spin_unlock_irq(&curr->pi_lock);
880
881 spin_lock(&hb->lock);
882 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
883 raw_spin_lock(&curr->pi_lock);
884 /*
885 * We dropped the pi-lock, so re-check whether this
886 * task still owns the PI-state:
887 */
888 if (head->next != next) {
889 /* retain curr->pi_lock for the loop invariant */
890 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
891 spin_unlock(&hb->lock);
892 put_pi_state(pi_state);
893 continue;
894 }
895
896 WARN_ON(pi_state->owner != curr);
897 WARN_ON(list_empty(&pi_state->list));
898 list_del_init(&pi_state->list);
899 pi_state->owner = NULL;
900
901 raw_spin_unlock(&curr->pi_lock);
902 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
903 spin_unlock(&hb->lock);
904
905 rt_mutex_futex_unlock(&pi_state->pi_mutex);
906 put_pi_state(pi_state);
907
908 raw_spin_lock_irq(&curr->pi_lock);
909 }
910 raw_spin_unlock_irq(&curr->pi_lock);
911 }
912 #else
exit_pi_state_list(struct task_struct * curr)913 static inline void exit_pi_state_list(struct task_struct *curr) { }
914 #endif
915
916 /*
917 * We need to check the following states:
918 *
919 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
920 *
921 * [1] NULL | --- | --- | 0 | 0/1 | Valid
922 * [2] NULL | --- | --- | >0 | 0/1 | Valid
923 *
924 * [3] Found | NULL | -- | Any | 0/1 | Invalid
925 *
926 * [4] Found | Found | NULL | 0 | 1 | Valid
927 * [5] Found | Found | NULL | >0 | 1 | Invalid
928 *
929 * [6] Found | Found | task | 0 | 1 | Valid
930 *
931 * [7] Found | Found | NULL | Any | 0 | Invalid
932 *
933 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
934 * [9] Found | Found | task | 0 | 0 | Invalid
935 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
936 *
937 * [1] Indicates that the kernel can acquire the futex atomically. We
938 * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
939 *
940 * [2] Valid, if TID does not belong to a kernel thread. If no matching
941 * thread is found then it indicates that the owner TID has died.
942 *
943 * [3] Invalid. The waiter is queued on a non PI futex
944 *
945 * [4] Valid state after exit_robust_list(), which sets the user space
946 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
947 *
948 * [5] The user space value got manipulated between exit_robust_list()
949 * and exit_pi_state_list()
950 *
951 * [6] Valid state after exit_pi_state_list() which sets the new owner in
952 * the pi_state but cannot access the user space value.
953 *
954 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
955 *
956 * [8] Owner and user space value match
957 *
958 * [9] There is no transient state which sets the user space TID to 0
959 * except exit_robust_list(), but this is indicated by the
960 * FUTEX_OWNER_DIED bit. See [4]
961 *
962 * [10] There is no transient state which leaves owner and user space
963 * TID out of sync. Except one error case where the kernel is denied
964 * write access to the user address, see fixup_pi_state_owner().
965 *
966 *
967 * Serialization and lifetime rules:
968 *
969 * hb->lock:
970 *
971 * hb -> futex_q, relation
972 * futex_q -> pi_state, relation
973 *
974 * (cannot be raw because hb can contain arbitrary amount
975 * of futex_q's)
976 *
977 * pi_mutex->wait_lock:
978 *
979 * {uval, pi_state}
980 *
981 * (and pi_mutex 'obviously')
982 *
983 * p->pi_lock:
984 *
985 * p->pi_state_list -> pi_state->list, relation
986 *
987 * pi_state->refcount:
988 *
989 * pi_state lifetime
990 *
991 *
992 * Lock order:
993 *
994 * hb->lock
995 * pi_mutex->wait_lock
996 * p->pi_lock
997 *
998 */
999
1000 /*
1001 * Validate that the existing waiter has a pi_state and sanity check
1002 * the pi_state against the user space value. If correct, attach to
1003 * it.
1004 */
attach_to_pi_state(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state,struct futex_pi_state ** ps)1005 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1006 struct futex_pi_state *pi_state,
1007 struct futex_pi_state **ps)
1008 {
1009 pid_t pid = uval & FUTEX_TID_MASK;
1010 u32 uval2;
1011 int ret;
1012
1013 /*
1014 * Userspace might have messed up non-PI and PI futexes [3]
1015 */
1016 if (unlikely(!pi_state))
1017 return -EINVAL;
1018
1019 /*
1020 * We get here with hb->lock held, and having found a
1021 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1022 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1023 * which in turn means that futex_lock_pi() still has a reference on
1024 * our pi_state.
1025 *
1026 * The waiter holding a reference on @pi_state also protects against
1027 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1028 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1029 * free pi_state before we can take a reference ourselves.
1030 */
1031 WARN_ON(!refcount_read(&pi_state->refcount));
1032
1033 /*
1034 * Now that we have a pi_state, we can acquire wait_lock
1035 * and do the state validation.
1036 */
1037 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1038
1039 /*
1040 * Since {uval, pi_state} is serialized by wait_lock, and our current
1041 * uval was read without holding it, it can have changed. Verify it
1042 * still is what we expect it to be, otherwise retry the entire
1043 * operation.
1044 */
1045 if (get_futex_value_locked(&uval2, uaddr))
1046 goto out_efault;
1047
1048 if (uval != uval2)
1049 goto out_eagain;
1050
1051 /*
1052 * Handle the owner died case:
1053 */
1054 if (uval & FUTEX_OWNER_DIED) {
1055 /*
1056 * exit_pi_state_list sets owner to NULL and wakes the
1057 * topmost waiter. The task which acquires the
1058 * pi_state->rt_mutex will fixup owner.
1059 */
1060 if (!pi_state->owner) {
1061 /*
1062 * No pi state owner, but the user space TID
1063 * is not 0. Inconsistent state. [5]
1064 */
1065 if (pid)
1066 goto out_einval;
1067 /*
1068 * Take a ref on the state and return success. [4]
1069 */
1070 goto out_attach;
1071 }
1072
1073 /*
1074 * If TID is 0, then either the dying owner has not
1075 * yet executed exit_pi_state_list() or some waiter
1076 * acquired the rtmutex in the pi state, but did not
1077 * yet fixup the TID in user space.
1078 *
1079 * Take a ref on the state and return success. [6]
1080 */
1081 if (!pid)
1082 goto out_attach;
1083 } else {
1084 /*
1085 * If the owner died bit is not set, then the pi_state
1086 * must have an owner. [7]
1087 */
1088 if (!pi_state->owner)
1089 goto out_einval;
1090 }
1091
1092 /*
1093 * Bail out if user space manipulated the futex value. If pi
1094 * state exists then the owner TID must be the same as the
1095 * user space TID. [9/10]
1096 */
1097 if (pid != task_pid_vnr(pi_state->owner))
1098 goto out_einval;
1099
1100 out_attach:
1101 get_pi_state(pi_state);
1102 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1103 *ps = pi_state;
1104 return 0;
1105
1106 out_einval:
1107 ret = -EINVAL;
1108 goto out_error;
1109
1110 out_eagain:
1111 ret = -EAGAIN;
1112 goto out_error;
1113
1114 out_efault:
1115 ret = -EFAULT;
1116 goto out_error;
1117
1118 out_error:
1119 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1120 return ret;
1121 }
1122
1123 /**
1124 * wait_for_owner_exiting - Block until the owner has exited
1125 * @ret: owner's current futex lock status
1126 * @exiting: Pointer to the exiting task
1127 *
1128 * Caller must hold a refcount on @exiting.
1129 */
wait_for_owner_exiting(int ret,struct task_struct * exiting)1130 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1131 {
1132 if (ret != -EBUSY) {
1133 WARN_ON_ONCE(exiting);
1134 return;
1135 }
1136
1137 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1138 return;
1139
1140 mutex_lock(&exiting->futex_exit_mutex);
1141 /*
1142 * No point in doing state checking here. If the waiter got here
1143 * while the task was in exec()->exec_futex_release() then it can
1144 * have any FUTEX_STATE_* value when the waiter has acquired the
1145 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1146 * already. Highly unlikely and not a problem. Just one more round
1147 * through the futex maze.
1148 */
1149 mutex_unlock(&exiting->futex_exit_mutex);
1150
1151 put_task_struct(exiting);
1152 }
1153
handle_exit_race(u32 __user * uaddr,u32 uval,struct task_struct * tsk)1154 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1155 struct task_struct *tsk)
1156 {
1157 u32 uval2;
1158
1159 /*
1160 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1161 * caller that the alleged owner is busy.
1162 */
1163 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1164 return -EBUSY;
1165
1166 /*
1167 * Reread the user space value to handle the following situation:
1168 *
1169 * CPU0 CPU1
1170 *
1171 * sys_exit() sys_futex()
1172 * do_exit() futex_lock_pi()
1173 * futex_lock_pi_atomic()
1174 * exit_signals(tsk) No waiters:
1175 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1176 * mm_release(tsk) Set waiter bit
1177 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1178 * Set owner died attach_to_pi_owner() {
1179 * *uaddr = 0xC0000000; tsk = get_task(PID);
1180 * } if (!tsk->flags & PF_EXITING) {
1181 * ... attach();
1182 * tsk->futex_state = } else {
1183 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1184 * FUTEX_STATE_DEAD)
1185 * return -EAGAIN;
1186 * return -ESRCH; <--- FAIL
1187 * }
1188 *
1189 * Returning ESRCH unconditionally is wrong here because the
1190 * user space value has been changed by the exiting task.
1191 *
1192 * The same logic applies to the case where the exiting task is
1193 * already gone.
1194 */
1195 if (get_futex_value_locked(&uval2, uaddr))
1196 return -EFAULT;
1197
1198 /* If the user space value has changed, try again. */
1199 if (uval2 != uval)
1200 return -EAGAIN;
1201
1202 /*
1203 * The exiting task did not have a robust list, the robust list was
1204 * corrupted or the user space value in *uaddr is simply bogus.
1205 * Give up and tell user space.
1206 */
1207 return -ESRCH;
1208 }
1209
1210 /*
1211 * Lookup the task for the TID provided from user space and attach to
1212 * it after doing proper sanity checks.
1213 */
attach_to_pi_owner(u32 __user * uaddr,u32 uval,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1214 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1215 struct futex_pi_state **ps,
1216 struct task_struct **exiting)
1217 {
1218 pid_t pid = uval & FUTEX_TID_MASK;
1219 struct futex_pi_state *pi_state;
1220 struct task_struct *p;
1221
1222 /*
1223 * We are the first waiter - try to look up the real owner and attach
1224 * the new pi_state to it, but bail out when TID = 0 [1]
1225 *
1226 * The !pid check is paranoid. None of the call sites should end up
1227 * with pid == 0, but better safe than sorry. Let the caller retry
1228 */
1229 if (!pid)
1230 return -EAGAIN;
1231 p = find_get_task_by_vpid(pid);
1232 if (!p)
1233 return handle_exit_race(uaddr, uval, NULL);
1234
1235 if (unlikely(p->flags & PF_KTHREAD)) {
1236 put_task_struct(p);
1237 return -EPERM;
1238 }
1239
1240 /*
1241 * We need to look at the task state to figure out, whether the
1242 * task is exiting. To protect against the change of the task state
1243 * in futex_exit_release(), we do this protected by p->pi_lock:
1244 */
1245 raw_spin_lock_irq(&p->pi_lock);
1246 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1247 /*
1248 * The task is on the way out. When the futex state is
1249 * FUTEX_STATE_DEAD, we know that the task has finished
1250 * the cleanup:
1251 */
1252 int ret = handle_exit_race(uaddr, uval, p);
1253
1254 raw_spin_unlock_irq(&p->pi_lock);
1255 /*
1256 * If the owner task is between FUTEX_STATE_EXITING and
1257 * FUTEX_STATE_DEAD then store the task pointer and keep
1258 * the reference on the task struct. The calling code will
1259 * drop all locks, wait for the task to reach
1260 * FUTEX_STATE_DEAD and then drop the refcount. This is
1261 * required to prevent a live lock when the current task
1262 * preempted the exiting task between the two states.
1263 */
1264 if (ret == -EBUSY)
1265 *exiting = p;
1266 else
1267 put_task_struct(p);
1268 return ret;
1269 }
1270
1271 /*
1272 * No existing pi state. First waiter. [2]
1273 *
1274 * This creates pi_state, we have hb->lock held, this means nothing can
1275 * observe this state, wait_lock is irrelevant.
1276 */
1277 pi_state = alloc_pi_state();
1278
1279 /*
1280 * Initialize the pi_mutex in locked state and make @p
1281 * the owner of it:
1282 */
1283 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1284
1285 /* Store the key for possible exit cleanups: */
1286 pi_state->key = *key;
1287
1288 WARN_ON(!list_empty(&pi_state->list));
1289 list_add(&pi_state->list, &p->pi_state_list);
1290 /*
1291 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1292 * because there is no concurrency as the object is not published yet.
1293 */
1294 pi_state->owner = p;
1295 raw_spin_unlock_irq(&p->pi_lock);
1296
1297 put_task_struct(p);
1298
1299 *ps = pi_state;
1300
1301 return 0;
1302 }
1303
lookup_pi_state(u32 __user * uaddr,u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1304 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1305 struct futex_hash_bucket *hb,
1306 union futex_key *key, struct futex_pi_state **ps,
1307 struct task_struct **exiting)
1308 {
1309 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1310
1311 /*
1312 * If there is a waiter on that futex, validate it and
1313 * attach to the pi_state when the validation succeeds.
1314 */
1315 if (top_waiter)
1316 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1317
1318 /*
1319 * We are the first waiter - try to look up the owner based on
1320 * @uval and attach to it.
1321 */
1322 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1323 }
1324
lock_pi_update_atomic(u32 __user * uaddr,u32 uval,u32 newval)1325 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1326 {
1327 int err;
1328 u32 curval;
1329
1330 if (unlikely(should_fail_futex(true)))
1331 return -EFAULT;
1332
1333 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1334 if (unlikely(err))
1335 return err;
1336
1337 /* If user space value changed, let the caller retry */
1338 return curval != uval ? -EAGAIN : 0;
1339 }
1340
1341 /**
1342 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1343 * @uaddr: the pi futex user address
1344 * @hb: the pi futex hash bucket
1345 * @key: the futex key associated with uaddr and hb
1346 * @ps: the pi_state pointer where we store the result of the
1347 * lookup
1348 * @task: the task to perform the atomic lock work for. This will
1349 * be "current" except in the case of requeue pi.
1350 * @exiting: Pointer to store the task pointer of the owner task
1351 * which is in the middle of exiting
1352 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1353 *
1354 * Return:
1355 * - 0 - ready to wait;
1356 * - 1 - acquired the lock;
1357 * - <0 - error
1358 *
1359 * The hb->lock and futex_key refs shall be held by the caller.
1360 *
1361 * @exiting is only set when the return value is -EBUSY. If so, this holds
1362 * a refcount on the exiting task on return and the caller needs to drop it
1363 * after waiting for the exit to complete.
1364 */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,struct task_struct ** exiting,int set_waiters)1365 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1366 union futex_key *key,
1367 struct futex_pi_state **ps,
1368 struct task_struct *task,
1369 struct task_struct **exiting,
1370 int set_waiters)
1371 {
1372 u32 uval, newval, vpid = task_pid_vnr(task);
1373 struct futex_q *top_waiter;
1374 int ret;
1375
1376 /*
1377 * Read the user space value first so we can validate a few
1378 * things before proceeding further.
1379 */
1380 if (get_futex_value_locked(&uval, uaddr))
1381 return -EFAULT;
1382
1383 if (unlikely(should_fail_futex(true)))
1384 return -EFAULT;
1385
1386 /*
1387 * Detect deadlocks.
1388 */
1389 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1390 return -EDEADLK;
1391
1392 if ((unlikely(should_fail_futex(true))))
1393 return -EDEADLK;
1394
1395 /*
1396 * Lookup existing state first. If it exists, try to attach to
1397 * its pi_state.
1398 */
1399 top_waiter = futex_top_waiter(hb, key);
1400 if (top_waiter)
1401 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1402
1403 /*
1404 * No waiter and user TID is 0. We are here because the
1405 * waiters or the owner died bit is set or called from
1406 * requeue_cmp_pi or for whatever reason something took the
1407 * syscall.
1408 */
1409 if (!(uval & FUTEX_TID_MASK)) {
1410 /*
1411 * We take over the futex. No other waiters and the user space
1412 * TID is 0. We preserve the owner died bit.
1413 */
1414 newval = uval & FUTEX_OWNER_DIED;
1415 newval |= vpid;
1416
1417 /* The futex requeue_pi code can enforce the waiters bit */
1418 if (set_waiters)
1419 newval |= FUTEX_WAITERS;
1420
1421 ret = lock_pi_update_atomic(uaddr, uval, newval);
1422 /* If the take over worked, return 1 */
1423 return ret < 0 ? ret : 1;
1424 }
1425
1426 /*
1427 * First waiter. Set the waiters bit before attaching ourself to
1428 * the owner. If owner tries to unlock, it will be forced into
1429 * the kernel and blocked on hb->lock.
1430 */
1431 newval = uval | FUTEX_WAITERS;
1432 ret = lock_pi_update_atomic(uaddr, uval, newval);
1433 if (ret)
1434 return ret;
1435 /*
1436 * If the update of the user space value succeeded, we try to
1437 * attach to the owner. If that fails, no harm done, we only
1438 * set the FUTEX_WAITERS bit in the user space variable.
1439 */
1440 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1441 }
1442
1443 /**
1444 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1445 * @q: The futex_q to unqueue
1446 *
1447 * The q->lock_ptr must not be NULL and must be held by the caller.
1448 */
__unqueue_futex(struct futex_q * q)1449 static void __unqueue_futex(struct futex_q *q)
1450 {
1451 struct futex_hash_bucket *hb;
1452
1453 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1454 return;
1455 lockdep_assert_held(q->lock_ptr);
1456
1457 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1458 plist_del(&q->list, &hb->chain);
1459 hb_waiters_dec(hb);
1460 }
1461
1462 /*
1463 * The hash bucket lock must be held when this is called.
1464 * Afterwards, the futex_q must not be accessed. Callers
1465 * must ensure to later call wake_up_q() for the actual
1466 * wakeups to occur.
1467 */
mark_wake_futex(struct wake_q_head * wake_q,struct futex_q * q)1468 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1469 {
1470 struct task_struct *p = q->task;
1471
1472 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1473 return;
1474
1475 get_task_struct(p);
1476 __unqueue_futex(q);
1477 /*
1478 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1479 * is written, without taking any locks. This is possible in the event
1480 * of a spurious wakeup, for example. A memory barrier is required here
1481 * to prevent the following store to lock_ptr from getting ahead of the
1482 * plist_del in __unqueue_futex().
1483 */
1484 smp_store_release(&q->lock_ptr, NULL);
1485
1486 /*
1487 * Queue the task for later wakeup for after we've released
1488 * the hb->lock.
1489 */
1490 wake_q_add_safe(wake_q, p);
1491 }
1492
1493 /*
1494 * Caller must hold a reference on @pi_state.
1495 */
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state)1496 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1497 {
1498 u32 curval, newval;
1499 struct task_struct *new_owner;
1500 bool postunlock = false;
1501 DEFINE_WAKE_Q(wake_q);
1502 int ret = 0;
1503
1504 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1505 if (WARN_ON_ONCE(!new_owner)) {
1506 /*
1507 * As per the comment in futex_unlock_pi() this should not happen.
1508 *
1509 * When this happens, give up our locks and try again, giving
1510 * the futex_lock_pi() instance time to complete, either by
1511 * waiting on the rtmutex or removing itself from the futex
1512 * queue.
1513 */
1514 ret = -EAGAIN;
1515 goto out_unlock;
1516 }
1517
1518 /*
1519 * We pass it to the next owner. The WAITERS bit is always kept
1520 * enabled while there is PI state around. We cleanup the owner
1521 * died bit, because we are the owner.
1522 */
1523 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1524
1525 if (unlikely(should_fail_futex(true))) {
1526 ret = -EFAULT;
1527 goto out_unlock;
1528 }
1529
1530 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1531 if (!ret && (curval != uval)) {
1532 /*
1533 * If a unconditional UNLOCK_PI operation (user space did not
1534 * try the TID->0 transition) raced with a waiter setting the
1535 * FUTEX_WAITERS flag between get_user() and locking the hash
1536 * bucket lock, retry the operation.
1537 */
1538 if ((FUTEX_TID_MASK & curval) == uval)
1539 ret = -EAGAIN;
1540 else
1541 ret = -EINVAL;
1542 }
1543
1544 if (!ret) {
1545 /*
1546 * This is a point of no return; once we modified the uval
1547 * there is no going back and subsequent operations must
1548 * not fail.
1549 */
1550 pi_state_update_owner(pi_state, new_owner);
1551 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1552 }
1553
1554 out_unlock:
1555 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1556
1557 if (postunlock)
1558 rt_mutex_postunlock(&wake_q);
1559
1560 return ret;
1561 }
1562
1563 /*
1564 * Express the locking dependencies for lockdep:
1565 */
1566 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1567 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1568 {
1569 if (hb1 <= hb2) {
1570 spin_lock(&hb1->lock);
1571 if (hb1 < hb2)
1572 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1573 } else { /* hb1 > hb2 */
1574 spin_lock(&hb2->lock);
1575 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1576 }
1577 }
1578
1579 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1580 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1581 {
1582 spin_unlock(&hb1->lock);
1583 if (hb1 != hb2)
1584 spin_unlock(&hb2->lock);
1585 }
1586
1587 /*
1588 * Wake up waiters matching bitset queued on this futex (uaddr).
1589 */
1590 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1591 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1592 {
1593 struct futex_hash_bucket *hb;
1594 struct futex_q *this, *next;
1595 union futex_key key = FUTEX_KEY_INIT;
1596 int ret;
1597 int target_nr;
1598 DEFINE_WAKE_Q(wake_q);
1599
1600 if (!bitset)
1601 return -EINVAL;
1602
1603 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1604 if (unlikely(ret != 0))
1605 return ret;
1606
1607 hb = hash_futex(&key);
1608
1609 /* Make sure we really have tasks to wakeup */
1610 if (!hb_waiters_pending(hb))
1611 return ret;
1612
1613 spin_lock(&hb->lock);
1614
1615 trace_android_vh_futex_wake_traverse_plist(&hb->chain, &target_nr, key, bitset);
1616 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1617 if (match_futex (&this->key, &key)) {
1618 if (this->pi_state || this->rt_waiter) {
1619 ret = -EINVAL;
1620 break;
1621 }
1622
1623 /* Check if one of the bits is set in both bitsets */
1624 if (!(this->bitset & bitset))
1625 continue;
1626
1627 trace_android_vh_futex_wake_this(ret, nr_wake, target_nr, this->task);
1628 mark_wake_futex(&wake_q, this);
1629 if (++ret >= nr_wake)
1630 break;
1631 }
1632 }
1633
1634 spin_unlock(&hb->lock);
1635 wake_up_q(&wake_q);
1636 trace_android_vh_futex_wake_up_q_finish(nr_wake, target_nr);
1637 return ret;
1638 }
1639
futex_atomic_op_inuser(unsigned int encoded_op,u32 __user * uaddr)1640 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1641 {
1642 unsigned int op = (encoded_op & 0x70000000) >> 28;
1643 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1644 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1645 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1646 int oldval, ret;
1647
1648 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1649 if (oparg < 0 || oparg > 31) {
1650 char comm[sizeof(current->comm)];
1651 /*
1652 * kill this print and return -EINVAL when userspace
1653 * is sane again
1654 */
1655 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1656 get_task_comm(comm, current), oparg);
1657 oparg &= 31;
1658 }
1659 oparg = 1 << oparg;
1660 }
1661
1662 pagefault_disable();
1663 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1664 pagefault_enable();
1665 if (ret)
1666 return ret;
1667
1668 switch (cmp) {
1669 case FUTEX_OP_CMP_EQ:
1670 return oldval == cmparg;
1671 case FUTEX_OP_CMP_NE:
1672 return oldval != cmparg;
1673 case FUTEX_OP_CMP_LT:
1674 return oldval < cmparg;
1675 case FUTEX_OP_CMP_GE:
1676 return oldval >= cmparg;
1677 case FUTEX_OP_CMP_LE:
1678 return oldval <= cmparg;
1679 case FUTEX_OP_CMP_GT:
1680 return oldval > cmparg;
1681 default:
1682 return -ENOSYS;
1683 }
1684 }
1685
1686 /*
1687 * Wake up all waiters hashed on the physical page that is mapped
1688 * to this virtual address:
1689 */
1690 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1691 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1692 int nr_wake, int nr_wake2, int op)
1693 {
1694 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1695 struct futex_hash_bucket *hb1, *hb2;
1696 struct futex_q *this, *next;
1697 int ret, op_ret;
1698 DEFINE_WAKE_Q(wake_q);
1699
1700 retry:
1701 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1702 if (unlikely(ret != 0))
1703 return ret;
1704 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1705 if (unlikely(ret != 0))
1706 return ret;
1707
1708 hb1 = hash_futex(&key1);
1709 hb2 = hash_futex(&key2);
1710
1711 retry_private:
1712 double_lock_hb(hb1, hb2);
1713 op_ret = futex_atomic_op_inuser(op, uaddr2);
1714 if (unlikely(op_ret < 0)) {
1715 double_unlock_hb(hb1, hb2);
1716
1717 if (!IS_ENABLED(CONFIG_MMU) ||
1718 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1719 /*
1720 * we don't get EFAULT from MMU faults if we don't have
1721 * an MMU, but we might get them from range checking
1722 */
1723 ret = op_ret;
1724 return ret;
1725 }
1726
1727 if (op_ret == -EFAULT) {
1728 ret = fault_in_user_writeable(uaddr2);
1729 if (ret)
1730 return ret;
1731 }
1732
1733 if (!(flags & FLAGS_SHARED)) {
1734 cond_resched();
1735 goto retry_private;
1736 }
1737
1738 cond_resched();
1739 goto retry;
1740 }
1741
1742 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1743 if (match_futex (&this->key, &key1)) {
1744 if (this->pi_state || this->rt_waiter) {
1745 ret = -EINVAL;
1746 goto out_unlock;
1747 }
1748 mark_wake_futex(&wake_q, this);
1749 if (++ret >= nr_wake)
1750 break;
1751 }
1752 }
1753
1754 if (op_ret > 0) {
1755 op_ret = 0;
1756 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1757 if (match_futex (&this->key, &key2)) {
1758 if (this->pi_state || this->rt_waiter) {
1759 ret = -EINVAL;
1760 goto out_unlock;
1761 }
1762 mark_wake_futex(&wake_q, this);
1763 if (++op_ret >= nr_wake2)
1764 break;
1765 }
1766 }
1767 ret += op_ret;
1768 }
1769
1770 out_unlock:
1771 double_unlock_hb(hb1, hb2);
1772 wake_up_q(&wake_q);
1773 return ret;
1774 }
1775
1776 /**
1777 * requeue_futex() - Requeue a futex_q from one hb to another
1778 * @q: the futex_q to requeue
1779 * @hb1: the source hash_bucket
1780 * @hb2: the target hash_bucket
1781 * @key2: the new key for the requeued futex_q
1782 */
1783 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1784 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1785 struct futex_hash_bucket *hb2, union futex_key *key2)
1786 {
1787
1788 /*
1789 * If key1 and key2 hash to the same bucket, no need to
1790 * requeue.
1791 */
1792 if (likely(&hb1->chain != &hb2->chain)) {
1793 plist_del(&q->list, &hb1->chain);
1794 hb_waiters_dec(hb1);
1795 hb_waiters_inc(hb2);
1796 plist_add(&q->list, &hb2->chain);
1797 q->lock_ptr = &hb2->lock;
1798 }
1799 q->key = *key2;
1800 }
1801
1802 /**
1803 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1804 * @q: the futex_q
1805 * @key: the key of the requeue target futex
1806 * @hb: the hash_bucket of the requeue target futex
1807 *
1808 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1809 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1810 * to the requeue target futex so the waiter can detect the wakeup on the right
1811 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1812 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1813 * to protect access to the pi_state to fixup the owner later. Must be called
1814 * with both q->lock_ptr and hb->lock held.
1815 */
1816 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1817 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1818 struct futex_hash_bucket *hb)
1819 {
1820 q->key = *key;
1821
1822 __unqueue_futex(q);
1823
1824 WARN_ON(!q->rt_waiter);
1825 q->rt_waiter = NULL;
1826
1827 q->lock_ptr = &hb->lock;
1828
1829 wake_up_state(q->task, TASK_NORMAL);
1830 }
1831
1832 /**
1833 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1834 * @pifutex: the user address of the to futex
1835 * @hb1: the from futex hash bucket, must be locked by the caller
1836 * @hb2: the to futex hash bucket, must be locked by the caller
1837 * @key1: the from futex key
1838 * @key2: the to futex key
1839 * @ps: address to store the pi_state pointer
1840 * @exiting: Pointer to store the task pointer of the owner task
1841 * which is in the middle of exiting
1842 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1843 *
1844 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1845 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1846 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1847 * hb1 and hb2 must be held by the caller.
1848 *
1849 * @exiting is only set when the return value is -EBUSY. If so, this holds
1850 * a refcount on the exiting task on return and the caller needs to drop it
1851 * after waiting for the exit to complete.
1852 *
1853 * Return:
1854 * - 0 - failed to acquire the lock atomically;
1855 * - >0 - acquired the lock, return value is vpid of the top_waiter
1856 * - <0 - error
1857 */
1858 static int
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,struct task_struct ** exiting,int set_waiters)1859 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1860 struct futex_hash_bucket *hb2, union futex_key *key1,
1861 union futex_key *key2, struct futex_pi_state **ps,
1862 struct task_struct **exiting, int set_waiters)
1863 {
1864 struct futex_q *top_waiter = NULL;
1865 u32 curval;
1866 int ret, vpid;
1867
1868 if (get_futex_value_locked(&curval, pifutex))
1869 return -EFAULT;
1870
1871 if (unlikely(should_fail_futex(true)))
1872 return -EFAULT;
1873
1874 /*
1875 * Find the top_waiter and determine if there are additional waiters.
1876 * If the caller intends to requeue more than 1 waiter to pifutex,
1877 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1878 * as we have means to handle the possible fault. If not, don't set
1879 * the bit unecessarily as it will force the subsequent unlock to enter
1880 * the kernel.
1881 */
1882 top_waiter = futex_top_waiter(hb1, key1);
1883
1884 /* There are no waiters, nothing for us to do. */
1885 if (!top_waiter)
1886 return 0;
1887
1888 /* Ensure we requeue to the expected futex. */
1889 if (!match_futex(top_waiter->requeue_pi_key, key2))
1890 return -EINVAL;
1891
1892 /*
1893 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1894 * the contended case or if set_waiters is 1. The pi_state is returned
1895 * in ps in contended cases.
1896 */
1897 vpid = task_pid_vnr(top_waiter->task);
1898 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1899 exiting, set_waiters);
1900 if (ret == 1) {
1901 requeue_pi_wake_futex(top_waiter, key2, hb2);
1902 return vpid;
1903 }
1904 return ret;
1905 }
1906
1907 /**
1908 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1909 * @uaddr1: source futex user address
1910 * @flags: futex flags (FLAGS_SHARED, etc.)
1911 * @uaddr2: target futex user address
1912 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1913 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1914 * @cmpval: @uaddr1 expected value (or %NULL)
1915 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1916 * pi futex (pi to pi requeue is not supported)
1917 *
1918 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1919 * uaddr2 atomically on behalf of the top waiter.
1920 *
1921 * Return:
1922 * - >=0 - on success, the number of tasks requeued or woken;
1923 * - <0 - on error
1924 */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1925 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1926 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1927 u32 *cmpval, int requeue_pi)
1928 {
1929 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1930 int task_count = 0, ret;
1931 struct futex_pi_state *pi_state = NULL;
1932 struct futex_hash_bucket *hb1, *hb2;
1933 struct futex_q *this, *next;
1934 DEFINE_WAKE_Q(wake_q);
1935
1936 if (nr_wake < 0 || nr_requeue < 0)
1937 return -EINVAL;
1938
1939 /*
1940 * When PI not supported: return -ENOSYS if requeue_pi is true,
1941 * consequently the compiler knows requeue_pi is always false past
1942 * this point which will optimize away all the conditional code
1943 * further down.
1944 */
1945 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1946 return -ENOSYS;
1947
1948 if (requeue_pi) {
1949 /*
1950 * Requeue PI only works on two distinct uaddrs. This
1951 * check is only valid for private futexes. See below.
1952 */
1953 if (uaddr1 == uaddr2)
1954 return -EINVAL;
1955
1956 /*
1957 * requeue_pi requires a pi_state, try to allocate it now
1958 * without any locks in case it fails.
1959 */
1960 if (refill_pi_state_cache())
1961 return -ENOMEM;
1962 /*
1963 * requeue_pi must wake as many tasks as it can, up to nr_wake
1964 * + nr_requeue, since it acquires the rt_mutex prior to
1965 * returning to userspace, so as to not leave the rt_mutex with
1966 * waiters and no owner. However, second and third wake-ups
1967 * cannot be predicted as they involve race conditions with the
1968 * first wake and a fault while looking up the pi_state. Both
1969 * pthread_cond_signal() and pthread_cond_broadcast() should
1970 * use nr_wake=1.
1971 */
1972 if (nr_wake != 1)
1973 return -EINVAL;
1974 }
1975
1976 retry:
1977 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1978 if (unlikely(ret != 0))
1979 return ret;
1980 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1981 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1982 if (unlikely(ret != 0))
1983 return ret;
1984
1985 /*
1986 * The check above which compares uaddrs is not sufficient for
1987 * shared futexes. We need to compare the keys:
1988 */
1989 if (requeue_pi && match_futex(&key1, &key2))
1990 return -EINVAL;
1991
1992 hb1 = hash_futex(&key1);
1993 hb2 = hash_futex(&key2);
1994
1995 retry_private:
1996 hb_waiters_inc(hb2);
1997 double_lock_hb(hb1, hb2);
1998
1999 if (likely(cmpval != NULL)) {
2000 u32 curval;
2001
2002 ret = get_futex_value_locked(&curval, uaddr1);
2003
2004 if (unlikely(ret)) {
2005 double_unlock_hb(hb1, hb2);
2006 hb_waiters_dec(hb2);
2007
2008 ret = get_user(curval, uaddr1);
2009 if (ret)
2010 return ret;
2011
2012 if (!(flags & FLAGS_SHARED))
2013 goto retry_private;
2014
2015 goto retry;
2016 }
2017 if (curval != *cmpval) {
2018 ret = -EAGAIN;
2019 goto out_unlock;
2020 }
2021 }
2022
2023 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2024 struct task_struct *exiting = NULL;
2025
2026 /*
2027 * Attempt to acquire uaddr2 and wake the top waiter. If we
2028 * intend to requeue waiters, force setting the FUTEX_WAITERS
2029 * bit. We force this here where we are able to easily handle
2030 * faults rather in the requeue loop below.
2031 */
2032 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2033 &key2, &pi_state,
2034 &exiting, nr_requeue);
2035
2036 /*
2037 * At this point the top_waiter has either taken uaddr2 or is
2038 * waiting on it. If the former, then the pi_state will not
2039 * exist yet, look it up one more time to ensure we have a
2040 * reference to it. If the lock was taken, ret contains the
2041 * vpid of the top waiter task.
2042 * If the lock was not taken, we have pi_state and an initial
2043 * refcount on it. In case of an error we have nothing.
2044 */
2045 if (ret > 0) {
2046 WARN_ON(pi_state);
2047 task_count++;
2048 /*
2049 * If we acquired the lock, then the user space value
2050 * of uaddr2 should be vpid. It cannot be changed by
2051 * the top waiter as it is blocked on hb2 lock if it
2052 * tries to do so. If something fiddled with it behind
2053 * our back the pi state lookup might unearth it. So
2054 * we rather use the known value than rereading and
2055 * handing potential crap to lookup_pi_state.
2056 *
2057 * If that call succeeds then we have pi_state and an
2058 * initial refcount on it.
2059 */
2060 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2061 &pi_state, &exiting);
2062 }
2063
2064 switch (ret) {
2065 case 0:
2066 /* We hold a reference on the pi state. */
2067 break;
2068
2069 /* If the above failed, then pi_state is NULL */
2070 case -EFAULT:
2071 double_unlock_hb(hb1, hb2);
2072 hb_waiters_dec(hb2);
2073 ret = fault_in_user_writeable(uaddr2);
2074 if (!ret)
2075 goto retry;
2076 return ret;
2077 case -EBUSY:
2078 case -EAGAIN:
2079 /*
2080 * Two reasons for this:
2081 * - EBUSY: Owner is exiting and we just wait for the
2082 * exit to complete.
2083 * - EAGAIN: The user space value changed.
2084 */
2085 double_unlock_hb(hb1, hb2);
2086 hb_waiters_dec(hb2);
2087 /*
2088 * Handle the case where the owner is in the middle of
2089 * exiting. Wait for the exit to complete otherwise
2090 * this task might loop forever, aka. live lock.
2091 */
2092 wait_for_owner_exiting(ret, exiting);
2093 cond_resched();
2094 goto retry;
2095 default:
2096 goto out_unlock;
2097 }
2098 }
2099
2100 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2101 if (task_count - nr_wake >= nr_requeue)
2102 break;
2103
2104 if (!match_futex(&this->key, &key1))
2105 continue;
2106
2107 /*
2108 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2109 * be paired with each other and no other futex ops.
2110 *
2111 * We should never be requeueing a futex_q with a pi_state,
2112 * which is awaiting a futex_unlock_pi().
2113 */
2114 if ((requeue_pi && !this->rt_waiter) ||
2115 (!requeue_pi && this->rt_waiter) ||
2116 this->pi_state) {
2117 ret = -EINVAL;
2118 break;
2119 }
2120
2121 /*
2122 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2123 * lock, we already woke the top_waiter. If not, it will be
2124 * woken by futex_unlock_pi().
2125 */
2126 if (++task_count <= nr_wake && !requeue_pi) {
2127 mark_wake_futex(&wake_q, this);
2128 continue;
2129 }
2130
2131 /* Ensure we requeue to the expected futex for requeue_pi. */
2132 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2133 ret = -EINVAL;
2134 break;
2135 }
2136
2137 /*
2138 * Requeue nr_requeue waiters and possibly one more in the case
2139 * of requeue_pi if we couldn't acquire the lock atomically.
2140 */
2141 if (requeue_pi) {
2142 /*
2143 * Prepare the waiter to take the rt_mutex. Take a
2144 * refcount on the pi_state and store the pointer in
2145 * the futex_q object of the waiter.
2146 */
2147 get_pi_state(pi_state);
2148 this->pi_state = pi_state;
2149 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2150 this->rt_waiter,
2151 this->task);
2152 if (ret == 1) {
2153 /*
2154 * We got the lock. We do neither drop the
2155 * refcount on pi_state nor clear
2156 * this->pi_state because the waiter needs the
2157 * pi_state for cleaning up the user space
2158 * value. It will drop the refcount after
2159 * doing so.
2160 */
2161 requeue_pi_wake_futex(this, &key2, hb2);
2162 continue;
2163 } else if (ret) {
2164 /*
2165 * rt_mutex_start_proxy_lock() detected a
2166 * potential deadlock when we tried to queue
2167 * that waiter. Drop the pi_state reference
2168 * which we took above and remove the pointer
2169 * to the state from the waiters futex_q
2170 * object.
2171 */
2172 this->pi_state = NULL;
2173 put_pi_state(pi_state);
2174 /*
2175 * We stop queueing more waiters and let user
2176 * space deal with the mess.
2177 */
2178 break;
2179 }
2180 }
2181 requeue_futex(this, hb1, hb2, &key2);
2182 }
2183
2184 /*
2185 * We took an extra initial reference to the pi_state either
2186 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2187 * need to drop it here again.
2188 */
2189 put_pi_state(pi_state);
2190
2191 out_unlock:
2192 double_unlock_hb(hb1, hb2);
2193 wake_up_q(&wake_q);
2194 hb_waiters_dec(hb2);
2195 return ret ? ret : task_count;
2196 }
2197
2198 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)2199 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2200 __acquires(&hb->lock)
2201 {
2202 struct futex_hash_bucket *hb;
2203
2204 hb = hash_futex(&q->key);
2205
2206 /*
2207 * Increment the counter before taking the lock so that
2208 * a potential waker won't miss a to-be-slept task that is
2209 * waiting for the spinlock. This is safe as all queue_lock()
2210 * users end up calling queue_me(). Similarly, for housekeeping,
2211 * decrement the counter at queue_unlock() when some error has
2212 * occurred and we don't end up adding the task to the list.
2213 */
2214 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2215
2216 q->lock_ptr = &hb->lock;
2217
2218 spin_lock(&hb->lock);
2219 return hb;
2220 }
2221
2222 static inline void
queue_unlock(struct futex_hash_bucket * hb)2223 queue_unlock(struct futex_hash_bucket *hb)
2224 __releases(&hb->lock)
2225 {
2226 spin_unlock(&hb->lock);
2227 hb_waiters_dec(hb);
2228 }
2229
__queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2230 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2231 {
2232 int prio;
2233 bool already_on_hb = false;
2234
2235 /*
2236 * The priority used to register this element is
2237 * - either the real thread-priority for the real-time threads
2238 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2239 * - or MAX_RT_PRIO for non-RT threads.
2240 * Thus, all RT-threads are woken first in priority order, and
2241 * the others are woken last, in FIFO order.
2242 */
2243 prio = min(current->normal_prio, MAX_RT_PRIO);
2244
2245 plist_node_init(&q->list, prio);
2246 trace_android_vh_alter_futex_plist_add(&q->list, &hb->chain, &already_on_hb);
2247 if (!already_on_hb)
2248 plist_add(&q->list, &hb->chain);
2249 q->task = current;
2250 }
2251
2252 /**
2253 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2254 * @q: The futex_q to enqueue
2255 * @hb: The destination hash bucket
2256 *
2257 * The hb->lock must be held by the caller, and is released here. A call to
2258 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2259 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2260 * or nothing if the unqueue is done as part of the wake process and the unqueue
2261 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2262 * an example).
2263 */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2264 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2265 __releases(&hb->lock)
2266 {
2267 __queue_me(q, hb);
2268 spin_unlock(&hb->lock);
2269 }
2270
2271 /**
2272 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2273 * @q: The futex_q to unqueue
2274 *
2275 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2276 * be paired with exactly one earlier call to queue_me().
2277 *
2278 * Return:
2279 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2280 * - 0 - if the futex_q was already removed by the waking thread
2281 */
unqueue_me(struct futex_q * q)2282 static int unqueue_me(struct futex_q *q)
2283 {
2284 spinlock_t *lock_ptr;
2285 int ret = 0;
2286
2287 /* In the common case we don't take the spinlock, which is nice. */
2288 retry:
2289 /*
2290 * q->lock_ptr can change between this read and the following spin_lock.
2291 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2292 * optimizing lock_ptr out of the logic below.
2293 */
2294 lock_ptr = READ_ONCE(q->lock_ptr);
2295 if (lock_ptr != NULL) {
2296 spin_lock(lock_ptr);
2297 /*
2298 * q->lock_ptr can change between reading it and
2299 * spin_lock(), causing us to take the wrong lock. This
2300 * corrects the race condition.
2301 *
2302 * Reasoning goes like this: if we have the wrong lock,
2303 * q->lock_ptr must have changed (maybe several times)
2304 * between reading it and the spin_lock(). It can
2305 * change again after the spin_lock() but only if it was
2306 * already changed before the spin_lock(). It cannot,
2307 * however, change back to the original value. Therefore
2308 * we can detect whether we acquired the correct lock.
2309 */
2310 if (unlikely(lock_ptr != q->lock_ptr)) {
2311 spin_unlock(lock_ptr);
2312 goto retry;
2313 }
2314 __unqueue_futex(q);
2315
2316 BUG_ON(q->pi_state);
2317
2318 spin_unlock(lock_ptr);
2319 ret = 1;
2320 }
2321
2322 return ret;
2323 }
2324
2325 /*
2326 * PI futexes can not be requeued and must remove themself from the
2327 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2328 * and dropped here.
2329 */
unqueue_me_pi(struct futex_q * q)2330 static void unqueue_me_pi(struct futex_q *q)
2331 __releases(q->lock_ptr)
2332 {
2333 __unqueue_futex(q);
2334
2335 BUG_ON(!q->pi_state);
2336 put_pi_state(q->pi_state);
2337 q->pi_state = NULL;
2338
2339 spin_unlock(q->lock_ptr);
2340 }
2341
__fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2342 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2343 struct task_struct *argowner)
2344 {
2345 struct futex_pi_state *pi_state = q->pi_state;
2346 struct task_struct *oldowner, *newowner;
2347 u32 uval, curval, newval, newtid;
2348 int err = 0;
2349
2350 oldowner = pi_state->owner;
2351
2352 /*
2353 * We are here because either:
2354 *
2355 * - we stole the lock and pi_state->owner needs updating to reflect
2356 * that (@argowner == current),
2357 *
2358 * or:
2359 *
2360 * - someone stole our lock and we need to fix things to point to the
2361 * new owner (@argowner == NULL).
2362 *
2363 * Either way, we have to replace the TID in the user space variable.
2364 * This must be atomic as we have to preserve the owner died bit here.
2365 *
2366 * Note: We write the user space value _before_ changing the pi_state
2367 * because we can fault here. Imagine swapped out pages or a fork
2368 * that marked all the anonymous memory readonly for cow.
2369 *
2370 * Modifying pi_state _before_ the user space value would leave the
2371 * pi_state in an inconsistent state when we fault here, because we
2372 * need to drop the locks to handle the fault. This might be observed
2373 * in the PID check in lookup_pi_state.
2374 */
2375 retry:
2376 if (!argowner) {
2377 if (oldowner != current) {
2378 /*
2379 * We raced against a concurrent self; things are
2380 * already fixed up. Nothing to do.
2381 */
2382 return 0;
2383 }
2384
2385 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2386 /* We got the lock. pi_state is correct. Tell caller. */
2387 return 1;
2388 }
2389
2390 /*
2391 * The trylock just failed, so either there is an owner or
2392 * there is a higher priority waiter than this one.
2393 */
2394 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2395 /*
2396 * If the higher priority waiter has not yet taken over the
2397 * rtmutex then newowner is NULL. We can't return here with
2398 * that state because it's inconsistent vs. the user space
2399 * state. So drop the locks and try again. It's a valid
2400 * situation and not any different from the other retry
2401 * conditions.
2402 */
2403 if (unlikely(!newowner)) {
2404 err = -EAGAIN;
2405 goto handle_err;
2406 }
2407 } else {
2408 WARN_ON_ONCE(argowner != current);
2409 if (oldowner == current) {
2410 /*
2411 * We raced against a concurrent self; things are
2412 * already fixed up. Nothing to do.
2413 */
2414 return 1;
2415 }
2416 newowner = argowner;
2417 }
2418
2419 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2420 /* Owner died? */
2421 if (!pi_state->owner)
2422 newtid |= FUTEX_OWNER_DIED;
2423
2424 err = get_futex_value_locked(&uval, uaddr);
2425 if (err)
2426 goto handle_err;
2427
2428 for (;;) {
2429 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2430
2431 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2432 if (err)
2433 goto handle_err;
2434
2435 if (curval == uval)
2436 break;
2437 uval = curval;
2438 }
2439
2440 /*
2441 * We fixed up user space. Now we need to fix the pi_state
2442 * itself.
2443 */
2444 pi_state_update_owner(pi_state, newowner);
2445
2446 return argowner == current;
2447
2448 /*
2449 * In order to reschedule or handle a page fault, we need to drop the
2450 * locks here. In the case of a fault, this gives the other task
2451 * (either the highest priority waiter itself or the task which stole
2452 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2453 * are back from handling the fault we need to check the pi_state after
2454 * reacquiring the locks and before trying to do another fixup. When
2455 * the fixup has been done already we simply return.
2456 *
2457 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2458 * drop hb->lock since the caller owns the hb -> futex_q relation.
2459 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2460 */
2461 handle_err:
2462 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2463 spin_unlock(q->lock_ptr);
2464
2465 switch (err) {
2466 case -EFAULT:
2467 err = fault_in_user_writeable(uaddr);
2468 break;
2469
2470 case -EAGAIN:
2471 cond_resched();
2472 err = 0;
2473 break;
2474
2475 default:
2476 WARN_ON_ONCE(1);
2477 break;
2478 }
2479
2480 spin_lock(q->lock_ptr);
2481 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2482
2483 /*
2484 * Check if someone else fixed it for us:
2485 */
2486 if (pi_state->owner != oldowner)
2487 return argowner == current;
2488
2489 /* Retry if err was -EAGAIN or the fault in succeeded */
2490 if (!err)
2491 goto retry;
2492
2493 /*
2494 * fault_in_user_writeable() failed so user state is immutable. At
2495 * best we can make the kernel state consistent but user state will
2496 * be most likely hosed and any subsequent unlock operation will be
2497 * rejected due to PI futex rule [10].
2498 *
2499 * Ensure that the rtmutex owner is also the pi_state owner despite
2500 * the user space value claiming something different. There is no
2501 * point in unlocking the rtmutex if current is the owner as it
2502 * would need to wait until the next waiter has taken the rtmutex
2503 * to guarantee consistent state. Keep it simple. Userspace asked
2504 * for this wreckaged state.
2505 *
2506 * The rtmutex has an owner - either current or some other
2507 * task. See the EAGAIN loop above.
2508 */
2509 pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2510
2511 return err;
2512 }
2513
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2514 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2515 struct task_struct *argowner)
2516 {
2517 struct futex_pi_state *pi_state = q->pi_state;
2518 int ret;
2519
2520 lockdep_assert_held(q->lock_ptr);
2521
2522 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2523 ret = __fixup_pi_state_owner(uaddr, q, argowner);
2524 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2525 return ret;
2526 }
2527
2528 static long futex_wait_restart(struct restart_block *restart);
2529
2530 /**
2531 * fixup_owner() - Post lock pi_state and corner case management
2532 * @uaddr: user address of the futex
2533 * @q: futex_q (contains pi_state and access to the rt_mutex)
2534 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2535 *
2536 * After attempting to lock an rt_mutex, this function is called to cleanup
2537 * the pi_state owner as well as handle race conditions that may allow us to
2538 * acquire the lock. Must be called with the hb lock held.
2539 *
2540 * Return:
2541 * - 1 - success, lock taken;
2542 * - 0 - success, lock not taken;
2543 * - <0 - on error (-EFAULT)
2544 */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)2545 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2546 {
2547 if (locked) {
2548 /*
2549 * Got the lock. We might not be the anticipated owner if we
2550 * did a lock-steal - fix up the PI-state in that case:
2551 *
2552 * Speculative pi_state->owner read (we don't hold wait_lock);
2553 * since we own the lock pi_state->owner == current is the
2554 * stable state, anything else needs more attention.
2555 */
2556 if (q->pi_state->owner != current)
2557 return fixup_pi_state_owner(uaddr, q, current);
2558 return 1;
2559 }
2560
2561 /*
2562 * If we didn't get the lock; check if anybody stole it from us. In
2563 * that case, we need to fix up the uval to point to them instead of
2564 * us, otherwise bad things happen. [10]
2565 *
2566 * Another speculative read; pi_state->owner == current is unstable
2567 * but needs our attention.
2568 */
2569 if (q->pi_state->owner == current)
2570 return fixup_pi_state_owner(uaddr, q, NULL);
2571
2572 /*
2573 * Paranoia check. If we did not take the lock, then we should not be
2574 * the owner of the rt_mutex. Warn and establish consistent state.
2575 */
2576 if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2577 return fixup_pi_state_owner(uaddr, q, current);
2578
2579 return 0;
2580 }
2581
2582 /**
2583 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2584 * @hb: the futex hash bucket, must be locked by the caller
2585 * @q: the futex_q to queue up on
2586 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2587 */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)2588 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2589 struct hrtimer_sleeper *timeout)
2590 {
2591 /*
2592 * The task state is guaranteed to be set before another task can
2593 * wake it. set_current_state() is implemented using smp_store_mb() and
2594 * queue_me() calls spin_unlock() upon completion, both serializing
2595 * access to the hash list and forcing another memory barrier.
2596 */
2597 set_current_state(TASK_INTERRUPTIBLE);
2598 queue_me(q, hb);
2599
2600 /* Arm the timer */
2601 if (timeout)
2602 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2603
2604 /*
2605 * If we have been removed from the hash list, then another task
2606 * has tried to wake us, and we can skip the call to schedule().
2607 */
2608 if (likely(!plist_node_empty(&q->list))) {
2609 /*
2610 * If the timer has already expired, current will already be
2611 * flagged for rescheduling. Only call schedule if there
2612 * is no timeout, or if it has yet to expire.
2613 */
2614 if (!timeout || timeout->task) {
2615 trace_android_vh_futex_sleep_start(current);
2616 freezable_schedule();
2617 }
2618 }
2619 __set_current_state(TASK_RUNNING);
2620 }
2621
2622 /**
2623 * futex_wait_setup() - Prepare to wait on a futex
2624 * @uaddr: the futex userspace address
2625 * @val: the expected value
2626 * @flags: futex flags (FLAGS_SHARED, etc.)
2627 * @q: the associated futex_q
2628 * @hb: storage for hash_bucket pointer to be returned to caller
2629 *
2630 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2631 * compare it with the expected value. Handle atomic faults internally.
2632 * Return with the hb lock held and a q.key reference on success, and unlocked
2633 * with no q.key reference on failure.
2634 *
2635 * Return:
2636 * - 0 - uaddr contains val and hb has been locked;
2637 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2638 */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)2639 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2640 struct futex_q *q, struct futex_hash_bucket **hb)
2641 {
2642 u32 uval;
2643 int ret;
2644
2645 /*
2646 * Access the page AFTER the hash-bucket is locked.
2647 * Order is important:
2648 *
2649 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2650 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2651 *
2652 * The basic logical guarantee of a futex is that it blocks ONLY
2653 * if cond(var) is known to be true at the time of blocking, for
2654 * any cond. If we locked the hash-bucket after testing *uaddr, that
2655 * would open a race condition where we could block indefinitely with
2656 * cond(var) false, which would violate the guarantee.
2657 *
2658 * On the other hand, we insert q and release the hash-bucket only
2659 * after testing *uaddr. This guarantees that futex_wait() will NOT
2660 * absorb a wakeup if *uaddr does not match the desired values
2661 * while the syscall executes.
2662 */
2663 retry:
2664 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2665 if (unlikely(ret != 0))
2666 return ret;
2667
2668 retry_private:
2669 *hb = queue_lock(q);
2670
2671 ret = get_futex_value_locked(&uval, uaddr);
2672
2673 if (ret) {
2674 queue_unlock(*hb);
2675
2676 ret = get_user(uval, uaddr);
2677 if (ret)
2678 return ret;
2679
2680 if (!(flags & FLAGS_SHARED))
2681 goto retry_private;
2682
2683 goto retry;
2684 }
2685
2686 if (uval != val) {
2687 queue_unlock(*hb);
2688 ret = -EWOULDBLOCK;
2689 }
2690
2691 return ret;
2692 }
2693
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2694 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2695 ktime_t *abs_time, u32 bitset)
2696 {
2697 struct hrtimer_sleeper timeout, *to;
2698 struct restart_block *restart;
2699 struct futex_hash_bucket *hb;
2700 struct futex_q q = futex_q_init;
2701 int ret;
2702
2703 if (!bitset)
2704 return -EINVAL;
2705 q.bitset = bitset;
2706 trace_android_vh_futex_wait_start(flags, bitset);
2707
2708 to = futex_setup_timer(abs_time, &timeout, flags,
2709 current->timer_slack_ns);
2710 retry:
2711 /*
2712 * Prepare to wait on uaddr. On success, holds hb lock and increments
2713 * q.key refs.
2714 */
2715 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2716 if (ret)
2717 goto out;
2718
2719 /* queue_me and wait for wakeup, timeout, or a signal. */
2720 futex_wait_queue_me(hb, &q, to);
2721
2722 /* If we were woken (and unqueued), we succeeded, whatever. */
2723 ret = 0;
2724 /* unqueue_me() drops q.key ref */
2725 if (!unqueue_me(&q))
2726 goto out;
2727 ret = -ETIMEDOUT;
2728 if (to && !to->task)
2729 goto out;
2730
2731 /*
2732 * We expect signal_pending(current), but we might be the
2733 * victim of a spurious wakeup as well.
2734 */
2735 if (!signal_pending(current))
2736 goto retry;
2737
2738 ret = -ERESTARTSYS;
2739 if (!abs_time)
2740 goto out;
2741
2742 restart = ¤t->restart_block;
2743 restart->futex.uaddr = uaddr;
2744 restart->futex.val = val;
2745 restart->futex.time = *abs_time;
2746 restart->futex.bitset = bitset;
2747 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2748
2749 ret = set_restart_fn(restart, futex_wait_restart);
2750
2751 out:
2752 if (to) {
2753 hrtimer_cancel(&to->timer);
2754 destroy_hrtimer_on_stack(&to->timer);
2755 }
2756 trace_android_vh_futex_wait_end(flags, bitset);
2757 return ret;
2758 }
2759
2760
futex_wait_restart(struct restart_block * restart)2761 static long futex_wait_restart(struct restart_block *restart)
2762 {
2763 u32 __user *uaddr = restart->futex.uaddr;
2764 ktime_t t, *tp = NULL;
2765
2766 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2767 t = restart->futex.time;
2768 tp = &t;
2769 }
2770 restart->fn = do_no_restart_syscall;
2771
2772 return (long)futex_wait(uaddr, restart->futex.flags,
2773 restart->futex.val, tp, restart->futex.bitset);
2774 }
2775
2776
2777 /*
2778 * Userspace tried a 0 -> TID atomic transition of the futex value
2779 * and failed. The kernel side here does the whole locking operation:
2780 * if there are waiters then it will block as a consequence of relying
2781 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2782 * a 0 value of the futex too.).
2783 *
2784 * Also serves as futex trylock_pi()'ing, and due semantics.
2785 */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,ktime_t * time,int trylock)2786 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2787 ktime_t *time, int trylock)
2788 {
2789 struct hrtimer_sleeper timeout, *to;
2790 struct task_struct *exiting = NULL;
2791 struct rt_mutex_waiter rt_waiter;
2792 struct futex_hash_bucket *hb;
2793 struct futex_q q = futex_q_init;
2794 int res, ret;
2795
2796 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2797 return -ENOSYS;
2798
2799 if (refill_pi_state_cache())
2800 return -ENOMEM;
2801
2802 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2803
2804 retry:
2805 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2806 if (unlikely(ret != 0))
2807 goto out;
2808
2809 retry_private:
2810 hb = queue_lock(&q);
2811
2812 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2813 &exiting, 0);
2814 if (unlikely(ret)) {
2815 /*
2816 * Atomic work succeeded and we got the lock,
2817 * or failed. Either way, we do _not_ block.
2818 */
2819 switch (ret) {
2820 case 1:
2821 /* We got the lock. */
2822 ret = 0;
2823 goto out_unlock_put_key;
2824 case -EFAULT:
2825 goto uaddr_faulted;
2826 case -EBUSY:
2827 case -EAGAIN:
2828 /*
2829 * Two reasons for this:
2830 * - EBUSY: Task is exiting and we just wait for the
2831 * exit to complete.
2832 * - EAGAIN: The user space value changed.
2833 */
2834 queue_unlock(hb);
2835 /*
2836 * Handle the case where the owner is in the middle of
2837 * exiting. Wait for the exit to complete otherwise
2838 * this task might loop forever, aka. live lock.
2839 */
2840 wait_for_owner_exiting(ret, exiting);
2841 cond_resched();
2842 goto retry;
2843 default:
2844 goto out_unlock_put_key;
2845 }
2846 }
2847
2848 WARN_ON(!q.pi_state);
2849
2850 /*
2851 * Only actually queue now that the atomic ops are done:
2852 */
2853 __queue_me(&q, hb);
2854
2855 if (trylock) {
2856 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2857 /* Fixup the trylock return value: */
2858 ret = ret ? 0 : -EWOULDBLOCK;
2859 goto no_block;
2860 }
2861
2862 rt_mutex_init_waiter(&rt_waiter);
2863
2864 /*
2865 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2866 * hold it while doing rt_mutex_start_proxy(), because then it will
2867 * include hb->lock in the blocking chain, even through we'll not in
2868 * fact hold it while blocking. This will lead it to report -EDEADLK
2869 * and BUG when futex_unlock_pi() interleaves with this.
2870 *
2871 * Therefore acquire wait_lock while holding hb->lock, but drop the
2872 * latter before calling __rt_mutex_start_proxy_lock(). This
2873 * interleaves with futex_unlock_pi() -- which does a similar lock
2874 * handoff -- such that the latter can observe the futex_q::pi_state
2875 * before __rt_mutex_start_proxy_lock() is done.
2876 */
2877 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2878 spin_unlock(q.lock_ptr);
2879 /*
2880 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2881 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2882 * it sees the futex_q::pi_state.
2883 */
2884 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2885 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2886
2887 if (ret) {
2888 if (ret == 1)
2889 ret = 0;
2890 goto cleanup;
2891 }
2892
2893 if (unlikely(to))
2894 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2895
2896 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2897
2898 cleanup:
2899 spin_lock(q.lock_ptr);
2900 /*
2901 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2902 * first acquire the hb->lock before removing the lock from the
2903 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2904 * lists consistent.
2905 *
2906 * In particular; it is important that futex_unlock_pi() can not
2907 * observe this inconsistency.
2908 */
2909 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2910 ret = 0;
2911
2912 no_block:
2913 /*
2914 * Fixup the pi_state owner and possibly acquire the lock if we
2915 * haven't already.
2916 */
2917 res = fixup_owner(uaddr, &q, !ret);
2918 /*
2919 * If fixup_owner() returned an error, proprogate that. If it acquired
2920 * the lock, clear our -ETIMEDOUT or -EINTR.
2921 */
2922 if (res)
2923 ret = (res < 0) ? res : 0;
2924
2925 /* Unqueue and drop the lock */
2926 unqueue_me_pi(&q);
2927 goto out;
2928
2929 out_unlock_put_key:
2930 queue_unlock(hb);
2931
2932 out:
2933 if (to) {
2934 hrtimer_cancel(&to->timer);
2935 destroy_hrtimer_on_stack(&to->timer);
2936 }
2937 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2938
2939 uaddr_faulted:
2940 queue_unlock(hb);
2941
2942 ret = fault_in_user_writeable(uaddr);
2943 if (ret)
2944 goto out;
2945
2946 if (!(flags & FLAGS_SHARED))
2947 goto retry_private;
2948
2949 goto retry;
2950 }
2951
2952 /*
2953 * Userspace attempted a TID -> 0 atomic transition, and failed.
2954 * This is the in-kernel slowpath: we look up the PI state (if any),
2955 * and do the rt-mutex unlock.
2956 */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)2957 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2958 {
2959 u32 curval, uval, vpid = task_pid_vnr(current);
2960 union futex_key key = FUTEX_KEY_INIT;
2961 struct futex_hash_bucket *hb;
2962 struct futex_q *top_waiter;
2963 int ret;
2964
2965 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2966 return -ENOSYS;
2967
2968 retry:
2969 if (get_user(uval, uaddr))
2970 return -EFAULT;
2971 /*
2972 * We release only a lock we actually own:
2973 */
2974 if ((uval & FUTEX_TID_MASK) != vpid)
2975 return -EPERM;
2976
2977 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2978 if (ret)
2979 return ret;
2980
2981 hb = hash_futex(&key);
2982 spin_lock(&hb->lock);
2983
2984 /*
2985 * Check waiters first. We do not trust user space values at
2986 * all and we at least want to know if user space fiddled
2987 * with the futex value instead of blindly unlocking.
2988 */
2989 top_waiter = futex_top_waiter(hb, &key);
2990 if (top_waiter) {
2991 struct futex_pi_state *pi_state = top_waiter->pi_state;
2992
2993 ret = -EINVAL;
2994 if (!pi_state)
2995 goto out_unlock;
2996
2997 /*
2998 * If current does not own the pi_state then the futex is
2999 * inconsistent and user space fiddled with the futex value.
3000 */
3001 if (pi_state->owner != current)
3002 goto out_unlock;
3003
3004 get_pi_state(pi_state);
3005 /*
3006 * By taking wait_lock while still holding hb->lock, we ensure
3007 * there is no point where we hold neither; and therefore
3008 * wake_futex_pi() must observe a state consistent with what we
3009 * observed.
3010 *
3011 * In particular; this forces __rt_mutex_start_proxy() to
3012 * complete such that we're guaranteed to observe the
3013 * rt_waiter. Also see the WARN in wake_futex_pi().
3014 */
3015 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3016 spin_unlock(&hb->lock);
3017
3018 /* drops pi_state->pi_mutex.wait_lock */
3019 ret = wake_futex_pi(uaddr, uval, pi_state);
3020
3021 put_pi_state(pi_state);
3022
3023 /*
3024 * Success, we're done! No tricky corner cases.
3025 */
3026 if (!ret)
3027 goto out_putkey;
3028 /*
3029 * The atomic access to the futex value generated a
3030 * pagefault, so retry the user-access and the wakeup:
3031 */
3032 if (ret == -EFAULT)
3033 goto pi_faulted;
3034 /*
3035 * A unconditional UNLOCK_PI op raced against a waiter
3036 * setting the FUTEX_WAITERS bit. Try again.
3037 */
3038 if (ret == -EAGAIN)
3039 goto pi_retry;
3040 /*
3041 * wake_futex_pi has detected invalid state. Tell user
3042 * space.
3043 */
3044 goto out_putkey;
3045 }
3046
3047 /*
3048 * We have no kernel internal state, i.e. no waiters in the
3049 * kernel. Waiters which are about to queue themselves are stuck
3050 * on hb->lock. So we can safely ignore them. We do neither
3051 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3052 * owner.
3053 */
3054 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3055 spin_unlock(&hb->lock);
3056 switch (ret) {
3057 case -EFAULT:
3058 goto pi_faulted;
3059
3060 case -EAGAIN:
3061 goto pi_retry;
3062
3063 default:
3064 WARN_ON_ONCE(1);
3065 goto out_putkey;
3066 }
3067 }
3068
3069 /*
3070 * If uval has changed, let user space handle it.
3071 */
3072 ret = (curval == uval) ? 0 : -EAGAIN;
3073
3074 out_unlock:
3075 spin_unlock(&hb->lock);
3076 out_putkey:
3077 return ret;
3078
3079 pi_retry:
3080 cond_resched();
3081 goto retry;
3082
3083 pi_faulted:
3084
3085 ret = fault_in_user_writeable(uaddr);
3086 if (!ret)
3087 goto retry;
3088
3089 return ret;
3090 }
3091
3092 /**
3093 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3094 * @hb: the hash_bucket futex_q was original enqueued on
3095 * @q: the futex_q woken while waiting to be requeued
3096 * @key2: the futex_key of the requeue target futex
3097 * @timeout: the timeout associated with the wait (NULL if none)
3098 *
3099 * Detect if the task was woken on the initial futex as opposed to the requeue
3100 * target futex. If so, determine if it was a timeout or a signal that caused
3101 * the wakeup and return the appropriate error code to the caller. Must be
3102 * called with the hb lock held.
3103 *
3104 * Return:
3105 * - 0 = no early wakeup detected;
3106 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3107 */
3108 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)3109 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3110 struct futex_q *q, union futex_key *key2,
3111 struct hrtimer_sleeper *timeout)
3112 {
3113 int ret = 0;
3114
3115 /*
3116 * With the hb lock held, we avoid races while we process the wakeup.
3117 * We only need to hold hb (and not hb2) to ensure atomicity as the
3118 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3119 * It can't be requeued from uaddr2 to something else since we don't
3120 * support a PI aware source futex for requeue.
3121 */
3122 if (!match_futex(&q->key, key2)) {
3123 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3124 /*
3125 * We were woken prior to requeue by a timeout or a signal.
3126 * Unqueue the futex_q and determine which it was.
3127 */
3128 plist_del(&q->list, &hb->chain);
3129 hb_waiters_dec(hb);
3130
3131 /* Handle spurious wakeups gracefully */
3132 ret = -EWOULDBLOCK;
3133 if (timeout && !timeout->task)
3134 ret = -ETIMEDOUT;
3135 else if (signal_pending(current))
3136 ret = -ERESTARTNOINTR;
3137 }
3138 return ret;
3139 }
3140
3141 /**
3142 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3143 * @uaddr: the futex we initially wait on (non-pi)
3144 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3145 * the same type, no requeueing from private to shared, etc.
3146 * @val: the expected value of uaddr
3147 * @abs_time: absolute timeout
3148 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3149 * @uaddr2: the pi futex we will take prior to returning to user-space
3150 *
3151 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3152 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3153 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3154 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3155 * without one, the pi logic would not know which task to boost/deboost, if
3156 * there was a need to.
3157 *
3158 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3159 * via the following--
3160 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3161 * 2) wakeup on uaddr2 after a requeue
3162 * 3) signal
3163 * 4) timeout
3164 *
3165 * If 3, cleanup and return -ERESTARTNOINTR.
3166 *
3167 * If 2, we may then block on trying to take the rt_mutex and return via:
3168 * 5) successful lock
3169 * 6) signal
3170 * 7) timeout
3171 * 8) other lock acquisition failure
3172 *
3173 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3174 *
3175 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3176 *
3177 * Return:
3178 * - 0 - On success;
3179 * - <0 - On error
3180 */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)3181 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3182 u32 val, ktime_t *abs_time, u32 bitset,
3183 u32 __user *uaddr2)
3184 {
3185 struct hrtimer_sleeper timeout, *to;
3186 struct rt_mutex_waiter rt_waiter;
3187 struct futex_hash_bucket *hb;
3188 union futex_key key2 = FUTEX_KEY_INIT;
3189 struct futex_q q = futex_q_init;
3190 int res, ret;
3191
3192 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3193 return -ENOSYS;
3194
3195 if (uaddr == uaddr2)
3196 return -EINVAL;
3197
3198 if (!bitset)
3199 return -EINVAL;
3200
3201 to = futex_setup_timer(abs_time, &timeout, flags,
3202 current->timer_slack_ns);
3203
3204 /*
3205 * The waiter is allocated on our stack, manipulated by the requeue
3206 * code while we sleep on uaddr.
3207 */
3208 rt_mutex_init_waiter(&rt_waiter);
3209
3210 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3211 if (unlikely(ret != 0))
3212 goto out;
3213
3214 q.bitset = bitset;
3215 q.rt_waiter = &rt_waiter;
3216 q.requeue_pi_key = &key2;
3217
3218 /*
3219 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3220 * count.
3221 */
3222 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3223 if (ret)
3224 goto out;
3225
3226 /*
3227 * The check above which compares uaddrs is not sufficient for
3228 * shared futexes. We need to compare the keys:
3229 */
3230 if (match_futex(&q.key, &key2)) {
3231 queue_unlock(hb);
3232 ret = -EINVAL;
3233 goto out;
3234 }
3235
3236 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3237 futex_wait_queue_me(hb, &q, to);
3238
3239 spin_lock(&hb->lock);
3240 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3241 spin_unlock(&hb->lock);
3242 if (ret)
3243 goto out;
3244
3245 /*
3246 * In order for us to be here, we know our q.key == key2, and since
3247 * we took the hb->lock above, we also know that futex_requeue() has
3248 * completed and we no longer have to concern ourselves with a wakeup
3249 * race with the atomic proxy lock acquisition by the requeue code. The
3250 * futex_requeue dropped our key1 reference and incremented our key2
3251 * reference count.
3252 */
3253
3254 /* Check if the requeue code acquired the second futex for us. */
3255 if (!q.rt_waiter) {
3256 /*
3257 * Got the lock. We might not be the anticipated owner if we
3258 * did a lock-steal - fix up the PI-state in that case.
3259 */
3260 if (q.pi_state && (q.pi_state->owner != current)) {
3261 spin_lock(q.lock_ptr);
3262 ret = fixup_pi_state_owner(uaddr2, &q, current);
3263 /*
3264 * Drop the reference to the pi state which
3265 * the requeue_pi() code acquired for us.
3266 */
3267 put_pi_state(q.pi_state);
3268 spin_unlock(q.lock_ptr);
3269 /*
3270 * Adjust the return value. It's either -EFAULT or
3271 * success (1) but the caller expects 0 for success.
3272 */
3273 ret = ret < 0 ? ret : 0;
3274 }
3275 } else {
3276 struct rt_mutex *pi_mutex;
3277
3278 /*
3279 * We have been woken up by futex_unlock_pi(), a timeout, or a
3280 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3281 * the pi_state.
3282 */
3283 WARN_ON(!q.pi_state);
3284 pi_mutex = &q.pi_state->pi_mutex;
3285 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3286
3287 spin_lock(q.lock_ptr);
3288 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3289 ret = 0;
3290
3291 debug_rt_mutex_free_waiter(&rt_waiter);
3292 /*
3293 * Fixup the pi_state owner and possibly acquire the lock if we
3294 * haven't already.
3295 */
3296 res = fixup_owner(uaddr2, &q, !ret);
3297 /*
3298 * If fixup_owner() returned an error, proprogate that. If it
3299 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3300 */
3301 if (res)
3302 ret = (res < 0) ? res : 0;
3303
3304 /* Unqueue and drop the lock. */
3305 unqueue_me_pi(&q);
3306 }
3307
3308 if (ret == -EINTR) {
3309 /*
3310 * We've already been requeued, but cannot restart by calling
3311 * futex_lock_pi() directly. We could restart this syscall, but
3312 * it would detect that the user space "val" changed and return
3313 * -EWOULDBLOCK. Save the overhead of the restart and return
3314 * -EWOULDBLOCK directly.
3315 */
3316 ret = -EWOULDBLOCK;
3317 }
3318
3319 out:
3320 if (to) {
3321 hrtimer_cancel(&to->timer);
3322 destroy_hrtimer_on_stack(&to->timer);
3323 }
3324 return ret;
3325 }
3326
3327 /*
3328 * Support for robust futexes: the kernel cleans up held futexes at
3329 * thread exit time.
3330 *
3331 * Implementation: user-space maintains a per-thread list of locks it
3332 * is holding. Upon do_exit(), the kernel carefully walks this list,
3333 * and marks all locks that are owned by this thread with the
3334 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3335 * always manipulated with the lock held, so the list is private and
3336 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3337 * field, to allow the kernel to clean up if the thread dies after
3338 * acquiring the lock, but just before it could have added itself to
3339 * the list. There can only be one such pending lock.
3340 */
3341
3342 /**
3343 * sys_set_robust_list() - Set the robust-futex list head of a task
3344 * @head: pointer to the list-head
3345 * @len: length of the list-head, as userspace expects
3346 */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)3347 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3348 size_t, len)
3349 {
3350 if (!futex_cmpxchg_enabled)
3351 return -ENOSYS;
3352 /*
3353 * The kernel knows only one size for now:
3354 */
3355 if (unlikely(len != sizeof(*head)))
3356 return -EINVAL;
3357
3358 current->robust_list = head;
3359
3360 return 0;
3361 }
3362
3363 /**
3364 * sys_get_robust_list() - Get the robust-futex list head of a task
3365 * @pid: pid of the process [zero for current task]
3366 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3367 * @len_ptr: pointer to a length field, the kernel fills in the header size
3368 */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)3369 SYSCALL_DEFINE3(get_robust_list, int, pid,
3370 struct robust_list_head __user * __user *, head_ptr,
3371 size_t __user *, len_ptr)
3372 {
3373 struct robust_list_head __user *head;
3374 unsigned long ret;
3375 struct task_struct *p;
3376
3377 if (!futex_cmpxchg_enabled)
3378 return -ENOSYS;
3379
3380 rcu_read_lock();
3381
3382 ret = -ESRCH;
3383 if (!pid)
3384 p = current;
3385 else {
3386 p = find_task_by_vpid(pid);
3387 if (!p)
3388 goto err_unlock;
3389 }
3390
3391 ret = -EPERM;
3392 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3393 goto err_unlock;
3394
3395 head = p->robust_list;
3396 rcu_read_unlock();
3397
3398 if (put_user(sizeof(*head), len_ptr))
3399 return -EFAULT;
3400 return put_user(head, head_ptr);
3401
3402 err_unlock:
3403 rcu_read_unlock();
3404
3405 return ret;
3406 }
3407
3408 /* Constants for the pending_op argument of handle_futex_death */
3409 #define HANDLE_DEATH_PENDING true
3410 #define HANDLE_DEATH_LIST false
3411
3412 /*
3413 * Process a futex-list entry, check whether it's owned by the
3414 * dying task, and do notification if so:
3415 */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,bool pi,bool pending_op)3416 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3417 bool pi, bool pending_op)
3418 {
3419 u32 uval, nval, mval;
3420 int err;
3421
3422 /* Futex address must be 32bit aligned */
3423 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3424 return -1;
3425
3426 retry:
3427 if (get_user(uval, uaddr))
3428 return -1;
3429
3430 /*
3431 * Special case for regular (non PI) futexes. The unlock path in
3432 * user space has two race scenarios:
3433 *
3434 * 1. The unlock path releases the user space futex value and
3435 * before it can execute the futex() syscall to wake up
3436 * waiters it is killed.
3437 *
3438 * 2. A woken up waiter is killed before it can acquire the
3439 * futex in user space.
3440 *
3441 * In both cases the TID validation below prevents a wakeup of
3442 * potential waiters which can cause these waiters to block
3443 * forever.
3444 *
3445 * In both cases the following conditions are met:
3446 *
3447 * 1) task->robust_list->list_op_pending != NULL
3448 * @pending_op == true
3449 * 2) User space futex value == 0
3450 * 3) Regular futex: @pi == false
3451 *
3452 * If these conditions are met, it is safe to attempt waking up a
3453 * potential waiter without touching the user space futex value and
3454 * trying to set the OWNER_DIED bit. The user space futex value is
3455 * uncontended and the rest of the user space mutex state is
3456 * consistent, so a woken waiter will just take over the
3457 * uncontended futex. Setting the OWNER_DIED bit would create
3458 * inconsistent state and malfunction of the user space owner died
3459 * handling.
3460 */
3461 if (pending_op && !pi && !uval) {
3462 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3463 return 0;
3464 }
3465
3466 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3467 return 0;
3468
3469 /*
3470 * Ok, this dying thread is truly holding a futex
3471 * of interest. Set the OWNER_DIED bit atomically
3472 * via cmpxchg, and if the value had FUTEX_WAITERS
3473 * set, wake up a waiter (if any). (We have to do a
3474 * futex_wake() even if OWNER_DIED is already set -
3475 * to handle the rare but possible case of recursive
3476 * thread-death.) The rest of the cleanup is done in
3477 * userspace.
3478 */
3479 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3480
3481 /*
3482 * We are not holding a lock here, but we want to have
3483 * the pagefault_disable/enable() protection because
3484 * we want to handle the fault gracefully. If the
3485 * access fails we try to fault in the futex with R/W
3486 * verification via get_user_pages. get_user() above
3487 * does not guarantee R/W access. If that fails we
3488 * give up and leave the futex locked.
3489 */
3490 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3491 switch (err) {
3492 case -EFAULT:
3493 if (fault_in_user_writeable(uaddr))
3494 return -1;
3495 goto retry;
3496
3497 case -EAGAIN:
3498 cond_resched();
3499 goto retry;
3500
3501 default:
3502 WARN_ON_ONCE(1);
3503 return err;
3504 }
3505 }
3506
3507 if (nval != uval)
3508 goto retry;
3509
3510 /*
3511 * Wake robust non-PI futexes here. The wakeup of
3512 * PI futexes happens in exit_pi_state():
3513 */
3514 if (!pi && (uval & FUTEX_WAITERS))
3515 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3516
3517 return 0;
3518 }
3519
3520 /*
3521 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3522 */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)3523 static inline int fetch_robust_entry(struct robust_list __user **entry,
3524 struct robust_list __user * __user *head,
3525 unsigned int *pi)
3526 {
3527 unsigned long uentry;
3528
3529 if (get_user(uentry, (unsigned long __user *)head))
3530 return -EFAULT;
3531
3532 *entry = (void __user *)(uentry & ~1UL);
3533 *pi = uentry & 1;
3534
3535 return 0;
3536 }
3537
3538 /*
3539 * Walk curr->robust_list (very carefully, it's a userspace list!)
3540 * and mark any locks found there dead, and notify any waiters.
3541 *
3542 * We silently return on any sign of list-walking problem.
3543 */
exit_robust_list(struct task_struct * curr)3544 static void exit_robust_list(struct task_struct *curr)
3545 {
3546 struct robust_list_head __user *head = curr->robust_list;
3547 struct robust_list __user *entry, *next_entry, *pending;
3548 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3549 unsigned int next_pi;
3550 unsigned long futex_offset;
3551 int rc;
3552
3553 if (!futex_cmpxchg_enabled)
3554 return;
3555
3556 /*
3557 * Fetch the list head (which was registered earlier, via
3558 * sys_set_robust_list()):
3559 */
3560 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3561 return;
3562 /*
3563 * Fetch the relative futex offset:
3564 */
3565 if (get_user(futex_offset, &head->futex_offset))
3566 return;
3567 /*
3568 * Fetch any possibly pending lock-add first, and handle it
3569 * if it exists:
3570 */
3571 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3572 return;
3573
3574 next_entry = NULL; /* avoid warning with gcc */
3575 while (entry != &head->list) {
3576 /*
3577 * Fetch the next entry in the list before calling
3578 * handle_futex_death:
3579 */
3580 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3581 /*
3582 * A pending lock might already be on the list, so
3583 * don't process it twice:
3584 */
3585 if (entry != pending) {
3586 if (handle_futex_death((void __user *)entry + futex_offset,
3587 curr, pi, HANDLE_DEATH_LIST))
3588 return;
3589 }
3590 if (rc)
3591 return;
3592 entry = next_entry;
3593 pi = next_pi;
3594 /*
3595 * Avoid excessively long or circular lists:
3596 */
3597 if (!--limit)
3598 break;
3599
3600 cond_resched();
3601 }
3602
3603 if (pending) {
3604 handle_futex_death((void __user *)pending + futex_offset,
3605 curr, pip, HANDLE_DEATH_PENDING);
3606 }
3607 }
3608
futex_cleanup(struct task_struct * tsk)3609 static void futex_cleanup(struct task_struct *tsk)
3610 {
3611 if (unlikely(tsk->robust_list)) {
3612 exit_robust_list(tsk);
3613 tsk->robust_list = NULL;
3614 }
3615
3616 #ifdef CONFIG_COMPAT
3617 if (unlikely(tsk->compat_robust_list)) {
3618 compat_exit_robust_list(tsk);
3619 tsk->compat_robust_list = NULL;
3620 }
3621 #endif
3622
3623 if (unlikely(!list_empty(&tsk->pi_state_list)))
3624 exit_pi_state_list(tsk);
3625 }
3626
3627 /**
3628 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3629 * @tsk: task to set the state on
3630 *
3631 * Set the futex exit state of the task lockless. The futex waiter code
3632 * observes that state when a task is exiting and loops until the task has
3633 * actually finished the futex cleanup. The worst case for this is that the
3634 * waiter runs through the wait loop until the state becomes visible.
3635 *
3636 * This is called from the recursive fault handling path in do_exit().
3637 *
3638 * This is best effort. Either the futex exit code has run already or
3639 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3640 * take it over. If not, the problem is pushed back to user space. If the
3641 * futex exit code did not run yet, then an already queued waiter might
3642 * block forever, but there is nothing which can be done about that.
3643 */
futex_exit_recursive(struct task_struct * tsk)3644 void futex_exit_recursive(struct task_struct *tsk)
3645 {
3646 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3647 if (tsk->futex_state == FUTEX_STATE_EXITING)
3648 mutex_unlock(&tsk->futex_exit_mutex);
3649 tsk->futex_state = FUTEX_STATE_DEAD;
3650 }
3651
futex_cleanup_begin(struct task_struct * tsk)3652 static void futex_cleanup_begin(struct task_struct *tsk)
3653 {
3654 /*
3655 * Prevent various race issues against a concurrent incoming waiter
3656 * including live locks by forcing the waiter to block on
3657 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3658 * attach_to_pi_owner().
3659 */
3660 mutex_lock(&tsk->futex_exit_mutex);
3661
3662 /*
3663 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3664 *
3665 * This ensures that all subsequent checks of tsk->futex_state in
3666 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3667 * tsk->pi_lock held.
3668 *
3669 * It guarantees also that a pi_state which was queued right before
3670 * the state change under tsk->pi_lock by a concurrent waiter must
3671 * be observed in exit_pi_state_list().
3672 */
3673 raw_spin_lock_irq(&tsk->pi_lock);
3674 tsk->futex_state = FUTEX_STATE_EXITING;
3675 raw_spin_unlock_irq(&tsk->pi_lock);
3676 }
3677
futex_cleanup_end(struct task_struct * tsk,int state)3678 static void futex_cleanup_end(struct task_struct *tsk, int state)
3679 {
3680 /*
3681 * Lockless store. The only side effect is that an observer might
3682 * take another loop until it becomes visible.
3683 */
3684 tsk->futex_state = state;
3685 /*
3686 * Drop the exit protection. This unblocks waiters which observed
3687 * FUTEX_STATE_EXITING to reevaluate the state.
3688 */
3689 mutex_unlock(&tsk->futex_exit_mutex);
3690 }
3691
futex_exec_release(struct task_struct * tsk)3692 void futex_exec_release(struct task_struct *tsk)
3693 {
3694 /*
3695 * The state handling is done for consistency, but in the case of
3696 * exec() there is no way to prevent futher damage as the PID stays
3697 * the same. But for the unlikely and arguably buggy case that a
3698 * futex is held on exec(), this provides at least as much state
3699 * consistency protection which is possible.
3700 */
3701 futex_cleanup_begin(tsk);
3702 futex_cleanup(tsk);
3703 /*
3704 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3705 * exec a new binary.
3706 */
3707 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3708 }
3709
futex_exit_release(struct task_struct * tsk)3710 void futex_exit_release(struct task_struct *tsk)
3711 {
3712 futex_cleanup_begin(tsk);
3713 futex_cleanup(tsk);
3714 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3715 }
3716
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)3717 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3718 u32 __user *uaddr2, u32 val2, u32 val3)
3719 {
3720 int cmd = op & FUTEX_CMD_MASK;
3721 unsigned int flags = 0;
3722
3723 if (!(op & FUTEX_PRIVATE_FLAG))
3724 flags |= FLAGS_SHARED;
3725
3726 if (op & FUTEX_CLOCK_REALTIME) {
3727 flags |= FLAGS_CLOCKRT;
3728 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3729 return -ENOSYS;
3730 }
3731
3732 switch (cmd) {
3733 case FUTEX_LOCK_PI:
3734 case FUTEX_UNLOCK_PI:
3735 case FUTEX_TRYLOCK_PI:
3736 case FUTEX_WAIT_REQUEUE_PI:
3737 case FUTEX_CMP_REQUEUE_PI:
3738 if (!futex_cmpxchg_enabled)
3739 return -ENOSYS;
3740 }
3741
3742 trace_android_vh_do_futex(cmd, &flags, uaddr2);
3743 switch (cmd) {
3744 case FUTEX_WAIT:
3745 val3 = FUTEX_BITSET_MATCH_ANY;
3746 fallthrough;
3747 case FUTEX_WAIT_BITSET:
3748 return futex_wait(uaddr, flags, val, timeout, val3);
3749 case FUTEX_WAKE:
3750 val3 = FUTEX_BITSET_MATCH_ANY;
3751 fallthrough;
3752 case FUTEX_WAKE_BITSET:
3753 return futex_wake(uaddr, flags, val, val3);
3754 case FUTEX_REQUEUE:
3755 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3756 case FUTEX_CMP_REQUEUE:
3757 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3758 case FUTEX_WAKE_OP:
3759 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3760 case FUTEX_LOCK_PI:
3761 return futex_lock_pi(uaddr, flags, timeout, 0);
3762 case FUTEX_UNLOCK_PI:
3763 return futex_unlock_pi(uaddr, flags);
3764 case FUTEX_TRYLOCK_PI:
3765 return futex_lock_pi(uaddr, flags, NULL, 1);
3766 case FUTEX_WAIT_REQUEUE_PI:
3767 val3 = FUTEX_BITSET_MATCH_ANY;
3768 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3769 uaddr2);
3770 case FUTEX_CMP_REQUEUE_PI:
3771 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3772 }
3773 return -ENOSYS;
3774 }
3775
3776
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct __kernel_timespec __user *,utime,u32 __user *,uaddr2,u32,val3)3777 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3778 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3779 u32, val3)
3780 {
3781 struct timespec64 ts;
3782 ktime_t t, *tp = NULL;
3783 u32 val2 = 0;
3784 int cmd = op & FUTEX_CMD_MASK;
3785
3786 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3787 cmd == FUTEX_WAIT_BITSET ||
3788 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3789 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3790 return -EFAULT;
3791 if (get_timespec64(&ts, utime))
3792 return -EFAULT;
3793 if (!timespec64_valid(&ts))
3794 return -EINVAL;
3795
3796 t = timespec64_to_ktime(ts);
3797 if (cmd == FUTEX_WAIT)
3798 t = ktime_add_safe(ktime_get(), t);
3799 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3800 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3801 tp = &t;
3802 }
3803 /*
3804 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3805 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3806 */
3807 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3808 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3809 val2 = (u32) (unsigned long) utime;
3810
3811 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3812 }
3813
3814 #ifdef CONFIG_COMPAT
3815 /*
3816 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3817 */
3818 static inline int
compat_fetch_robust_entry(compat_uptr_t * uentry,struct robust_list __user ** entry,compat_uptr_t __user * head,unsigned int * pi)3819 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3820 compat_uptr_t __user *head, unsigned int *pi)
3821 {
3822 if (get_user(*uentry, head))
3823 return -EFAULT;
3824
3825 *entry = compat_ptr((*uentry) & ~1);
3826 *pi = (unsigned int)(*uentry) & 1;
3827
3828 return 0;
3829 }
3830
futex_uaddr(struct robust_list __user * entry,compat_long_t futex_offset)3831 static void __user *futex_uaddr(struct robust_list __user *entry,
3832 compat_long_t futex_offset)
3833 {
3834 compat_uptr_t base = ptr_to_compat(entry);
3835 void __user *uaddr = compat_ptr(base + futex_offset);
3836
3837 return uaddr;
3838 }
3839
3840 /*
3841 * Walk curr->robust_list (very carefully, it's a userspace list!)
3842 * and mark any locks found there dead, and notify any waiters.
3843 *
3844 * We silently return on any sign of list-walking problem.
3845 */
compat_exit_robust_list(struct task_struct * curr)3846 static void compat_exit_robust_list(struct task_struct *curr)
3847 {
3848 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3849 struct robust_list __user *entry, *next_entry, *pending;
3850 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3851 unsigned int next_pi;
3852 compat_uptr_t uentry, next_uentry, upending;
3853 compat_long_t futex_offset;
3854 int rc;
3855
3856 if (!futex_cmpxchg_enabled)
3857 return;
3858
3859 /*
3860 * Fetch the list head (which was registered earlier, via
3861 * sys_set_robust_list()):
3862 */
3863 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3864 return;
3865 /*
3866 * Fetch the relative futex offset:
3867 */
3868 if (get_user(futex_offset, &head->futex_offset))
3869 return;
3870 /*
3871 * Fetch any possibly pending lock-add first, and handle it
3872 * if it exists:
3873 */
3874 if (compat_fetch_robust_entry(&upending, &pending,
3875 &head->list_op_pending, &pip))
3876 return;
3877
3878 next_entry = NULL; /* avoid warning with gcc */
3879 while (entry != (struct robust_list __user *) &head->list) {
3880 /*
3881 * Fetch the next entry in the list before calling
3882 * handle_futex_death:
3883 */
3884 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3885 (compat_uptr_t __user *)&entry->next, &next_pi);
3886 /*
3887 * A pending lock might already be on the list, so
3888 * dont process it twice:
3889 */
3890 if (entry != pending) {
3891 void __user *uaddr = futex_uaddr(entry, futex_offset);
3892
3893 if (handle_futex_death(uaddr, curr, pi,
3894 HANDLE_DEATH_LIST))
3895 return;
3896 }
3897 if (rc)
3898 return;
3899 uentry = next_uentry;
3900 entry = next_entry;
3901 pi = next_pi;
3902 /*
3903 * Avoid excessively long or circular lists:
3904 */
3905 if (!--limit)
3906 break;
3907
3908 cond_resched();
3909 }
3910 if (pending) {
3911 void __user *uaddr = futex_uaddr(pending, futex_offset);
3912
3913 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3914 }
3915 }
3916
COMPAT_SYSCALL_DEFINE2(set_robust_list,struct compat_robust_list_head __user *,head,compat_size_t,len)3917 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3918 struct compat_robust_list_head __user *, head,
3919 compat_size_t, len)
3920 {
3921 if (!futex_cmpxchg_enabled)
3922 return -ENOSYS;
3923
3924 if (unlikely(len != sizeof(*head)))
3925 return -EINVAL;
3926
3927 current->compat_robust_list = head;
3928
3929 return 0;
3930 }
3931
COMPAT_SYSCALL_DEFINE3(get_robust_list,int,pid,compat_uptr_t __user *,head_ptr,compat_size_t __user *,len_ptr)3932 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3933 compat_uptr_t __user *, head_ptr,
3934 compat_size_t __user *, len_ptr)
3935 {
3936 struct compat_robust_list_head __user *head;
3937 unsigned long ret;
3938 struct task_struct *p;
3939
3940 if (!futex_cmpxchg_enabled)
3941 return -ENOSYS;
3942
3943 rcu_read_lock();
3944
3945 ret = -ESRCH;
3946 if (!pid)
3947 p = current;
3948 else {
3949 p = find_task_by_vpid(pid);
3950 if (!p)
3951 goto err_unlock;
3952 }
3953
3954 ret = -EPERM;
3955 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3956 goto err_unlock;
3957
3958 head = p->compat_robust_list;
3959 rcu_read_unlock();
3960
3961 if (put_user(sizeof(*head), len_ptr))
3962 return -EFAULT;
3963 return put_user(ptr_to_compat(head), head_ptr);
3964
3965 err_unlock:
3966 rcu_read_unlock();
3967
3968 return ret;
3969 }
3970 #endif /* CONFIG_COMPAT */
3971
3972 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE6(futex_time32,u32 __user *,uaddr,int,op,u32,val,struct old_timespec32 __user *,utime,u32 __user *,uaddr2,u32,val3)3973 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3974 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3975 u32, val3)
3976 {
3977 struct timespec64 ts;
3978 ktime_t t, *tp = NULL;
3979 int val2 = 0;
3980 int cmd = op & FUTEX_CMD_MASK;
3981
3982 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3983 cmd == FUTEX_WAIT_BITSET ||
3984 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3985 if (get_old_timespec32(&ts, utime))
3986 return -EFAULT;
3987 if (!timespec64_valid(&ts))
3988 return -EINVAL;
3989
3990 t = timespec64_to_ktime(ts);
3991 if (cmd == FUTEX_WAIT)
3992 t = ktime_add_safe(ktime_get(), t);
3993 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3994 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3995 tp = &t;
3996 }
3997 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3998 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3999 val2 = (int) (unsigned long) utime;
4000
4001 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4002 }
4003 #endif /* CONFIG_COMPAT_32BIT_TIME */
4004
futex_detect_cmpxchg(void)4005 static void __init futex_detect_cmpxchg(void)
4006 {
4007 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4008 u32 curval;
4009
4010 /*
4011 * This will fail and we want it. Some arch implementations do
4012 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4013 * functionality. We want to know that before we call in any
4014 * of the complex code paths. Also we want to prevent
4015 * registration of robust lists in that case. NULL is
4016 * guaranteed to fault and we get -EFAULT on functional
4017 * implementation, the non-functional ones will return
4018 * -ENOSYS.
4019 */
4020 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4021 futex_cmpxchg_enabled = 1;
4022 #endif
4023 }
4024
futex_init(void)4025 static int __init futex_init(void)
4026 {
4027 unsigned int futex_shift;
4028 unsigned long i;
4029
4030 #if CONFIG_BASE_SMALL
4031 futex_hashsize = 16;
4032 #else
4033 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4034 #endif
4035
4036 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4037 futex_hashsize, 0,
4038 futex_hashsize < 256 ? HASH_SMALL : 0,
4039 &futex_shift, NULL,
4040 futex_hashsize, futex_hashsize);
4041 futex_hashsize = 1UL << futex_shift;
4042
4043 futex_detect_cmpxchg();
4044
4045 for (i = 0; i < futex_hashsize; i++) {
4046 atomic_set(&futex_queues[i].waiters, 0);
4047 plist_head_init(&futex_queues[i].chain);
4048 spin_lock_init(&futex_queues[i].lock);
4049 }
4050
4051 return 0;
4052 }
4053 core_initcall(futex_init);
4054