xref: /OK3568_Linux_fs/kernel/net/core/dev.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149 #include <trace/hooks/net.h>
150 
151 #include "net-sysfs.h"
152 
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static int call_netdevice_notifiers_extack(unsigned long val,
168 					   struct net_device *dev,
169 					   struct netlink_ext_ack *extack);
170 static struct napi_struct *napi_by_id(unsigned int napi_id);
171 
172 /*
173  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
174  * semaphore.
175  *
176  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
177  *
178  * Writers must hold the rtnl semaphore while they loop through the
179  * dev_base_head list, and hold dev_base_lock for writing when they do the
180  * actual updates.  This allows pure readers to access the list even
181  * while a writer is preparing to update it.
182  *
183  * To put it another way, dev_base_lock is held for writing only to
184  * protect against pure readers; the rtnl semaphore provides the
185  * protection against other writers.
186  *
187  * See, for example usages, register_netdevice() and
188  * unregister_netdevice(), which must be called with the rtnl
189  * semaphore held.
190  */
191 DEFINE_RWLOCK(dev_base_lock);
192 EXPORT_SYMBOL(dev_base_lock);
193 
194 static DEFINE_MUTEX(ifalias_mutex);
195 
196 /* protects napi_hash addition/deletion and napi_gen_id */
197 static DEFINE_SPINLOCK(napi_hash_lock);
198 
199 static unsigned int napi_gen_id = NR_CPUS;
200 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
201 
202 static DECLARE_RWSEM(devnet_rename_sem);
203 
dev_base_seq_inc(struct net * net)204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0)
207 		;
208 }
209 
dev_name_hash(struct net * net,const char * name)210 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
211 {
212 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
213 
214 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
215 }
216 
dev_index_hash(struct net * net,int ifindex)217 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
218 {
219 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
220 }
221 
rps_lock(struct softnet_data * sd)222 static inline void rps_lock(struct softnet_data *sd)
223 {
224 #ifdef CONFIG_RPS
225 	spin_lock(&sd->input_pkt_queue.lock);
226 #endif
227 }
228 
rps_unlock(struct softnet_data * sd)229 static inline void rps_unlock(struct softnet_data *sd)
230 {
231 #ifdef CONFIG_RPS
232 	spin_unlock(&sd->input_pkt_queue.lock);
233 #endif
234 }
235 
netdev_name_node_alloc(struct net_device * dev,const char * name)236 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
237 						       const char *name)
238 {
239 	struct netdev_name_node *name_node;
240 
241 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
242 	if (!name_node)
243 		return NULL;
244 	INIT_HLIST_NODE(&name_node->hlist);
245 	name_node->dev = dev;
246 	name_node->name = name;
247 	return name_node;
248 }
249 
250 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)251 netdev_name_node_head_alloc(struct net_device *dev)
252 {
253 	struct netdev_name_node *name_node;
254 
255 	name_node = netdev_name_node_alloc(dev, dev->name);
256 	if (!name_node)
257 		return NULL;
258 	INIT_LIST_HEAD(&name_node->list);
259 	return name_node;
260 }
261 
netdev_name_node_free(struct netdev_name_node * name_node)262 static void netdev_name_node_free(struct netdev_name_node *name_node)
263 {
264 	kfree(name_node);
265 }
266 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)267 static void netdev_name_node_add(struct net *net,
268 				 struct netdev_name_node *name_node)
269 {
270 	hlist_add_head_rcu(&name_node->hlist,
271 			   dev_name_hash(net, name_node->name));
272 }
273 
netdev_name_node_del(struct netdev_name_node * name_node)274 static void netdev_name_node_del(struct netdev_name_node *name_node)
275 {
276 	hlist_del_rcu(&name_node->hlist);
277 }
278 
netdev_name_node_lookup(struct net * net,const char * name)279 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
280 							const char *name)
281 {
282 	struct hlist_head *head = dev_name_hash(net, name);
283 	struct netdev_name_node *name_node;
284 
285 	hlist_for_each_entry(name_node, head, hlist)
286 		if (!strcmp(name_node->name, name))
287 			return name_node;
288 	return NULL;
289 }
290 
netdev_name_node_lookup_rcu(struct net * net,const char * name)291 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
292 							    const char *name)
293 {
294 	struct hlist_head *head = dev_name_hash(net, name);
295 	struct netdev_name_node *name_node;
296 
297 	hlist_for_each_entry_rcu(name_node, head, hlist)
298 		if (!strcmp(name_node->name, name))
299 			return name_node;
300 	return NULL;
301 }
302 
netdev_name_node_alt_create(struct net_device * dev,const char * name)303 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
304 {
305 	struct netdev_name_node *name_node;
306 	struct net *net = dev_net(dev);
307 
308 	name_node = netdev_name_node_lookup(net, name);
309 	if (name_node)
310 		return -EEXIST;
311 	name_node = netdev_name_node_alloc(dev, name);
312 	if (!name_node)
313 		return -ENOMEM;
314 	netdev_name_node_add(net, name_node);
315 	/* The node that holds dev->name acts as a head of per-device list. */
316 	list_add_tail(&name_node->list, &dev->name_node->list);
317 
318 	return 0;
319 }
320 EXPORT_SYMBOL(netdev_name_node_alt_create);
321 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)322 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
323 {
324 	list_del(&name_node->list);
325 	netdev_name_node_del(name_node);
326 	kfree(name_node->name);
327 	netdev_name_node_free(name_node);
328 }
329 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)330 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
331 {
332 	struct netdev_name_node *name_node;
333 	struct net *net = dev_net(dev);
334 
335 	name_node = netdev_name_node_lookup(net, name);
336 	if (!name_node)
337 		return -ENOENT;
338 	/* lookup might have found our primary name or a name belonging
339 	 * to another device.
340 	 */
341 	if (name_node == dev->name_node || name_node->dev != dev)
342 		return -EINVAL;
343 
344 	__netdev_name_node_alt_destroy(name_node);
345 
346 	return 0;
347 }
348 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
349 
netdev_name_node_alt_flush(struct net_device * dev)350 static void netdev_name_node_alt_flush(struct net_device *dev)
351 {
352 	struct netdev_name_node *name_node, *tmp;
353 
354 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
355 		__netdev_name_node_alt_destroy(name_node);
356 }
357 
358 /* Device list insertion */
list_netdevice(struct net_device * dev)359 static void list_netdevice(struct net_device *dev)
360 {
361 	struct net *net = dev_net(dev);
362 
363 	ASSERT_RTNL();
364 
365 	write_lock_bh(&dev_base_lock);
366 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
367 	netdev_name_node_add(net, dev->name_node);
368 	hlist_add_head_rcu(&dev->index_hlist,
369 			   dev_index_hash(net, dev->ifindex));
370 	write_unlock_bh(&dev_base_lock);
371 
372 	dev_base_seq_inc(net);
373 }
374 
375 /* Device list removal
376  * caller must respect a RCU grace period before freeing/reusing dev
377  */
unlist_netdevice(struct net_device * dev)378 static void unlist_netdevice(struct net_device *dev)
379 {
380 	ASSERT_RTNL();
381 
382 	/* Unlink dev from the device chain */
383 	write_lock_bh(&dev_base_lock);
384 	list_del_rcu(&dev->dev_list);
385 	netdev_name_node_del(dev->name_node);
386 	hlist_del_rcu(&dev->index_hlist);
387 	write_unlock_bh(&dev_base_lock);
388 
389 	dev_base_seq_inc(dev_net(dev));
390 }
391 
392 /*
393  *	Our notifier list
394  */
395 
396 static RAW_NOTIFIER_HEAD(netdev_chain);
397 
398 /*
399  *	Device drivers call our routines to queue packets here. We empty the
400  *	queue in the local softnet handler.
401  */
402 
403 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
404 EXPORT_PER_CPU_SYMBOL(softnet_data);
405 
406 #ifdef CONFIG_LOCKDEP
407 /*
408  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
409  * according to dev->type
410  */
411 static const unsigned short netdev_lock_type[] = {
412 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
413 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
414 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
415 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
416 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
417 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
418 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
419 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
420 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
421 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
422 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
423 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
424 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
425 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
426 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
427 
428 static const char *const netdev_lock_name[] = {
429 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
430 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
431 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
432 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
433 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
434 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
435 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
436 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
437 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
438 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
439 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
440 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
441 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
442 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
443 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
444 
445 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
446 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 
netdev_lock_pos(unsigned short dev_type)448 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
449 {
450 	int i;
451 
452 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
453 		if (netdev_lock_type[i] == dev_type)
454 			return i;
455 	/* the last key is used by default */
456 	return ARRAY_SIZE(netdev_lock_type) - 1;
457 }
458 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)459 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
460 						 unsigned short dev_type)
461 {
462 	int i;
463 
464 	i = netdev_lock_pos(dev_type);
465 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
466 				   netdev_lock_name[i]);
467 }
468 
netdev_set_addr_lockdep_class(struct net_device * dev)469 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
470 {
471 	int i;
472 
473 	i = netdev_lock_pos(dev->type);
474 	lockdep_set_class_and_name(&dev->addr_list_lock,
475 				   &netdev_addr_lock_key[i],
476 				   netdev_lock_name[i]);
477 }
478 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)479 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
480 						 unsigned short dev_type)
481 {
482 }
483 
netdev_set_addr_lockdep_class(struct net_device * dev)484 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
485 {
486 }
487 #endif
488 
489 /*******************************************************************************
490  *
491  *		Protocol management and registration routines
492  *
493  *******************************************************************************/
494 
495 
496 /*
497  *	Add a protocol ID to the list. Now that the input handler is
498  *	smarter we can dispense with all the messy stuff that used to be
499  *	here.
500  *
501  *	BEWARE!!! Protocol handlers, mangling input packets,
502  *	MUST BE last in hash buckets and checking protocol handlers
503  *	MUST start from promiscuous ptype_all chain in net_bh.
504  *	It is true now, do not change it.
505  *	Explanation follows: if protocol handler, mangling packet, will
506  *	be the first on list, it is not able to sense, that packet
507  *	is cloned and should be copied-on-write, so that it will
508  *	change it and subsequent readers will get broken packet.
509  *							--ANK (980803)
510  */
511 
ptype_head(const struct packet_type * pt)512 static inline struct list_head *ptype_head(const struct packet_type *pt)
513 {
514 	struct list_head vendor_pt = { .next  = NULL, };
515 
516 	trace_android_vh_ptype_head(pt, &vendor_pt);
517 	if (vendor_pt.next)
518 		return vendor_pt.next;
519 
520 	if (pt->type == htons(ETH_P_ALL))
521 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
522 	else
523 		return pt->dev ? &pt->dev->ptype_specific :
524 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
525 }
526 
527 /**
528  *	dev_add_pack - add packet handler
529  *	@pt: packet type declaration
530  *
531  *	Add a protocol handler to the networking stack. The passed &packet_type
532  *	is linked into kernel lists and may not be freed until it has been
533  *	removed from the kernel lists.
534  *
535  *	This call does not sleep therefore it can not
536  *	guarantee all CPU's that are in middle of receiving packets
537  *	will see the new packet type (until the next received packet).
538  */
539 
dev_add_pack(struct packet_type * pt)540 void dev_add_pack(struct packet_type *pt)
541 {
542 	struct list_head *head = ptype_head(pt);
543 
544 	spin_lock(&ptype_lock);
545 	list_add_rcu(&pt->list, head);
546 	spin_unlock(&ptype_lock);
547 }
548 EXPORT_SYMBOL(dev_add_pack);
549 
550 /**
551  *	__dev_remove_pack	 - remove packet handler
552  *	@pt: packet type declaration
553  *
554  *	Remove a protocol handler that was previously added to the kernel
555  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
556  *	from the kernel lists and can be freed or reused once this function
557  *	returns.
558  *
559  *      The packet type might still be in use by receivers
560  *	and must not be freed until after all the CPU's have gone
561  *	through a quiescent state.
562  */
__dev_remove_pack(struct packet_type * pt)563 void __dev_remove_pack(struct packet_type *pt)
564 {
565 	struct list_head *head = ptype_head(pt);
566 	struct packet_type *pt1;
567 
568 	spin_lock(&ptype_lock);
569 
570 	list_for_each_entry(pt1, head, list) {
571 		if (pt == pt1) {
572 			list_del_rcu(&pt->list);
573 			goto out;
574 		}
575 	}
576 
577 	pr_warn("dev_remove_pack: %p not found\n", pt);
578 out:
579 	spin_unlock(&ptype_lock);
580 }
581 EXPORT_SYMBOL(__dev_remove_pack);
582 
583 /**
584  *	dev_remove_pack	 - remove packet handler
585  *	@pt: packet type declaration
586  *
587  *	Remove a protocol handler that was previously added to the kernel
588  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
589  *	from the kernel lists and can be freed or reused once this function
590  *	returns.
591  *
592  *	This call sleeps to guarantee that no CPU is looking at the packet
593  *	type after return.
594  */
dev_remove_pack(struct packet_type * pt)595 void dev_remove_pack(struct packet_type *pt)
596 {
597 	__dev_remove_pack(pt);
598 
599 	synchronize_net();
600 }
601 EXPORT_SYMBOL(dev_remove_pack);
602 
603 
604 /**
605  *	dev_add_offload - register offload handlers
606  *	@po: protocol offload declaration
607  *
608  *	Add protocol offload handlers to the networking stack. The passed
609  *	&proto_offload is linked into kernel lists and may not be freed until
610  *	it has been removed from the kernel lists.
611  *
612  *	This call does not sleep therefore it can not
613  *	guarantee all CPU's that are in middle of receiving packets
614  *	will see the new offload handlers (until the next received packet).
615  */
dev_add_offload(struct packet_offload * po)616 void dev_add_offload(struct packet_offload *po)
617 {
618 	struct packet_offload *elem;
619 
620 	spin_lock(&offload_lock);
621 	list_for_each_entry(elem, &offload_base, list) {
622 		if (po->priority < elem->priority)
623 			break;
624 	}
625 	list_add_rcu(&po->list, elem->list.prev);
626 	spin_unlock(&offload_lock);
627 }
628 EXPORT_SYMBOL(dev_add_offload);
629 
630 /**
631  *	__dev_remove_offload	 - remove offload handler
632  *	@po: packet offload declaration
633  *
634  *	Remove a protocol offload handler that was previously added to the
635  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
636  *	is removed from the kernel lists and can be freed or reused once this
637  *	function returns.
638  *
639  *      The packet type might still be in use by receivers
640  *	and must not be freed until after all the CPU's have gone
641  *	through a quiescent state.
642  */
__dev_remove_offload(struct packet_offload * po)643 static void __dev_remove_offload(struct packet_offload *po)
644 {
645 	struct list_head *head = &offload_base;
646 	struct packet_offload *po1;
647 
648 	spin_lock(&offload_lock);
649 
650 	list_for_each_entry(po1, head, list) {
651 		if (po == po1) {
652 			list_del_rcu(&po->list);
653 			goto out;
654 		}
655 	}
656 
657 	pr_warn("dev_remove_offload: %p not found\n", po);
658 out:
659 	spin_unlock(&offload_lock);
660 }
661 
662 /**
663  *	dev_remove_offload	 - remove packet offload handler
664  *	@po: packet offload declaration
665  *
666  *	Remove a packet offload handler that was previously added to the kernel
667  *	offload handlers by dev_add_offload(). The passed &offload_type is
668  *	removed from the kernel lists and can be freed or reused once this
669  *	function returns.
670  *
671  *	This call sleeps to guarantee that no CPU is looking at the packet
672  *	type after return.
673  */
dev_remove_offload(struct packet_offload * po)674 void dev_remove_offload(struct packet_offload *po)
675 {
676 	__dev_remove_offload(po);
677 
678 	synchronize_net();
679 }
680 EXPORT_SYMBOL(dev_remove_offload);
681 
682 /******************************************************************************
683  *
684  *		      Device Boot-time Settings Routines
685  *
686  ******************************************************************************/
687 
688 /* Boot time configuration table */
689 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
690 
691 /**
692  *	netdev_boot_setup_add	- add new setup entry
693  *	@name: name of the device
694  *	@map: configured settings for the device
695  *
696  *	Adds new setup entry to the dev_boot_setup list.  The function
697  *	returns 0 on error and 1 on success.  This is a generic routine to
698  *	all netdevices.
699  */
netdev_boot_setup_add(char * name,struct ifmap * map)700 static int netdev_boot_setup_add(char *name, struct ifmap *map)
701 {
702 	struct netdev_boot_setup *s;
703 	int i;
704 
705 	s = dev_boot_setup;
706 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
707 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
708 			memset(s[i].name, 0, sizeof(s[i].name));
709 			strlcpy(s[i].name, name, IFNAMSIZ);
710 			memcpy(&s[i].map, map, sizeof(s[i].map));
711 			break;
712 		}
713 	}
714 
715 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
716 }
717 
718 /**
719  * netdev_boot_setup_check	- check boot time settings
720  * @dev: the netdevice
721  *
722  * Check boot time settings for the device.
723  * The found settings are set for the device to be used
724  * later in the device probing.
725  * Returns 0 if no settings found, 1 if they are.
726  */
netdev_boot_setup_check(struct net_device * dev)727 int netdev_boot_setup_check(struct net_device *dev)
728 {
729 	struct netdev_boot_setup *s = dev_boot_setup;
730 	int i;
731 
732 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
733 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
734 		    !strcmp(dev->name, s[i].name)) {
735 			dev->irq = s[i].map.irq;
736 			dev->base_addr = s[i].map.base_addr;
737 			dev->mem_start = s[i].map.mem_start;
738 			dev->mem_end = s[i].map.mem_end;
739 			return 1;
740 		}
741 	}
742 	return 0;
743 }
744 EXPORT_SYMBOL(netdev_boot_setup_check);
745 
746 
747 /**
748  * netdev_boot_base	- get address from boot time settings
749  * @prefix: prefix for network device
750  * @unit: id for network device
751  *
752  * Check boot time settings for the base address of device.
753  * The found settings are set for the device to be used
754  * later in the device probing.
755  * Returns 0 if no settings found.
756  */
netdev_boot_base(const char * prefix,int unit)757 unsigned long netdev_boot_base(const char *prefix, int unit)
758 {
759 	const struct netdev_boot_setup *s = dev_boot_setup;
760 	char name[IFNAMSIZ];
761 	int i;
762 
763 	sprintf(name, "%s%d", prefix, unit);
764 
765 	/*
766 	 * If device already registered then return base of 1
767 	 * to indicate not to probe for this interface
768 	 */
769 	if (__dev_get_by_name(&init_net, name))
770 		return 1;
771 
772 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
773 		if (!strcmp(name, s[i].name))
774 			return s[i].map.base_addr;
775 	return 0;
776 }
777 
778 /*
779  * Saves at boot time configured settings for any netdevice.
780  */
netdev_boot_setup(char * str)781 int __init netdev_boot_setup(char *str)
782 {
783 	int ints[5];
784 	struct ifmap map;
785 
786 	str = get_options(str, ARRAY_SIZE(ints), ints);
787 	if (!str || !*str)
788 		return 0;
789 
790 	/* Save settings */
791 	memset(&map, 0, sizeof(map));
792 	if (ints[0] > 0)
793 		map.irq = ints[1];
794 	if (ints[0] > 1)
795 		map.base_addr = ints[2];
796 	if (ints[0] > 2)
797 		map.mem_start = ints[3];
798 	if (ints[0] > 3)
799 		map.mem_end = ints[4];
800 
801 	/* Add new entry to the list */
802 	return netdev_boot_setup_add(str, &map);
803 }
804 
805 __setup("netdev=", netdev_boot_setup);
806 
807 /*******************************************************************************
808  *
809  *			    Device Interface Subroutines
810  *
811  *******************************************************************************/
812 
813 /**
814  *	dev_get_iflink	- get 'iflink' value of a interface
815  *	@dev: targeted interface
816  *
817  *	Indicates the ifindex the interface is linked to.
818  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
819  */
820 
dev_get_iflink(const struct net_device * dev)821 int dev_get_iflink(const struct net_device *dev)
822 {
823 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
824 		return dev->netdev_ops->ndo_get_iflink(dev);
825 
826 	return dev->ifindex;
827 }
828 EXPORT_SYMBOL(dev_get_iflink);
829 
830 /**
831  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
832  *	@dev: targeted interface
833  *	@skb: The packet.
834  *
835  *	For better visibility of tunnel traffic OVS needs to retrieve
836  *	egress tunnel information for a packet. Following API allows
837  *	user to get this info.
838  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)839 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
840 {
841 	struct ip_tunnel_info *info;
842 
843 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
844 		return -EINVAL;
845 
846 	info = skb_tunnel_info_unclone(skb);
847 	if (!info)
848 		return -ENOMEM;
849 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
850 		return -EINVAL;
851 
852 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
853 }
854 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
855 
856 /**
857  *	__dev_get_by_name	- find a device by its name
858  *	@net: the applicable net namespace
859  *	@name: name to find
860  *
861  *	Find an interface by name. Must be called under RTNL semaphore
862  *	or @dev_base_lock. If the name is found a pointer to the device
863  *	is returned. If the name is not found then %NULL is returned. The
864  *	reference counters are not incremented so the caller must be
865  *	careful with locks.
866  */
867 
__dev_get_by_name(struct net * net,const char * name)868 struct net_device *__dev_get_by_name(struct net *net, const char *name)
869 {
870 	struct netdev_name_node *node_name;
871 
872 	node_name = netdev_name_node_lookup(net, name);
873 	return node_name ? node_name->dev : NULL;
874 }
875 EXPORT_SYMBOL(__dev_get_by_name);
876 
877 /**
878  * dev_get_by_name_rcu	- find a device by its name
879  * @net: the applicable net namespace
880  * @name: name to find
881  *
882  * Find an interface by name.
883  * If the name is found a pointer to the device is returned.
884  * If the name is not found then %NULL is returned.
885  * The reference counters are not incremented so the caller must be
886  * careful with locks. The caller must hold RCU lock.
887  */
888 
dev_get_by_name_rcu(struct net * net,const char * name)889 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
890 {
891 	struct netdev_name_node *node_name;
892 
893 	node_name = netdev_name_node_lookup_rcu(net, name);
894 	return node_name ? node_name->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_name_rcu);
897 
898 /**
899  *	dev_get_by_name		- find a device by its name
900  *	@net: the applicable net namespace
901  *	@name: name to find
902  *
903  *	Find an interface by name. This can be called from any
904  *	context and does its own locking. The returned handle has
905  *	the usage count incremented and the caller must use dev_put() to
906  *	release it when it is no longer needed. %NULL is returned if no
907  *	matching device is found.
908  */
909 
dev_get_by_name(struct net * net,const char * name)910 struct net_device *dev_get_by_name(struct net *net, const char *name)
911 {
912 	struct net_device *dev;
913 
914 	rcu_read_lock();
915 	dev = dev_get_by_name_rcu(net, name);
916 	if (dev)
917 		dev_hold(dev);
918 	rcu_read_unlock();
919 	return dev;
920 }
921 EXPORT_SYMBOL(dev_get_by_name);
922 
923 /**
924  *	__dev_get_by_index - find a device by its ifindex
925  *	@net: the applicable net namespace
926  *	@ifindex: index of device
927  *
928  *	Search for an interface by index. Returns %NULL if the device
929  *	is not found or a pointer to the device. The device has not
930  *	had its reference counter increased so the caller must be careful
931  *	about locking. The caller must hold either the RTNL semaphore
932  *	or @dev_base_lock.
933  */
934 
__dev_get_by_index(struct net * net,int ifindex)935 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
936 {
937 	struct net_device *dev;
938 	struct hlist_head *head = dev_index_hash(net, ifindex);
939 
940 	hlist_for_each_entry(dev, head, index_hlist)
941 		if (dev->ifindex == ifindex)
942 			return dev;
943 
944 	return NULL;
945 }
946 EXPORT_SYMBOL(__dev_get_by_index);
947 
948 /**
949  *	dev_get_by_index_rcu - find a device by its ifindex
950  *	@net: the applicable net namespace
951  *	@ifindex: index of device
952  *
953  *	Search for an interface by index. Returns %NULL if the device
954  *	is not found or a pointer to the device. The device has not
955  *	had its reference counter increased so the caller must be careful
956  *	about locking. The caller must hold RCU lock.
957  */
958 
dev_get_by_index_rcu(struct net * net,int ifindex)959 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
960 {
961 	struct net_device *dev;
962 	struct hlist_head *head = dev_index_hash(net, ifindex);
963 
964 	hlist_for_each_entry_rcu(dev, head, index_hlist)
965 		if (dev->ifindex == ifindex)
966 			return dev;
967 
968 	return NULL;
969 }
970 EXPORT_SYMBOL(dev_get_by_index_rcu);
971 
972 
973 /**
974  *	dev_get_by_index - find a device by its ifindex
975  *	@net: the applicable net namespace
976  *	@ifindex: index of device
977  *
978  *	Search for an interface by index. Returns NULL if the device
979  *	is not found or a pointer to the device. The device returned has
980  *	had a reference added and the pointer is safe until the user calls
981  *	dev_put to indicate they have finished with it.
982  */
983 
dev_get_by_index(struct net * net,int ifindex)984 struct net_device *dev_get_by_index(struct net *net, int ifindex)
985 {
986 	struct net_device *dev;
987 
988 	rcu_read_lock();
989 	dev = dev_get_by_index_rcu(net, ifindex);
990 	if (dev)
991 		dev_hold(dev);
992 	rcu_read_unlock();
993 	return dev;
994 }
995 EXPORT_SYMBOL(dev_get_by_index);
996 
997 /**
998  *	dev_get_by_napi_id - find a device by napi_id
999  *	@napi_id: ID of the NAPI struct
1000  *
1001  *	Search for an interface by NAPI ID. Returns %NULL if the device
1002  *	is not found or a pointer to the device. The device has not had
1003  *	its reference counter increased so the caller must be careful
1004  *	about locking. The caller must hold RCU lock.
1005  */
1006 
dev_get_by_napi_id(unsigned int napi_id)1007 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1008 {
1009 	struct napi_struct *napi;
1010 
1011 	WARN_ON_ONCE(!rcu_read_lock_held());
1012 
1013 	if (napi_id < MIN_NAPI_ID)
1014 		return NULL;
1015 
1016 	napi = napi_by_id(napi_id);
1017 
1018 	return napi ? napi->dev : NULL;
1019 }
1020 EXPORT_SYMBOL(dev_get_by_napi_id);
1021 
1022 /**
1023  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1024  *	@net: network namespace
1025  *	@name: a pointer to the buffer where the name will be stored.
1026  *	@ifindex: the ifindex of the interface to get the name from.
1027  */
netdev_get_name(struct net * net,char * name,int ifindex)1028 int netdev_get_name(struct net *net, char *name, int ifindex)
1029 {
1030 	struct net_device *dev;
1031 	int ret;
1032 
1033 	down_read(&devnet_rename_sem);
1034 	rcu_read_lock();
1035 
1036 	dev = dev_get_by_index_rcu(net, ifindex);
1037 	if (!dev) {
1038 		ret = -ENODEV;
1039 		goto out;
1040 	}
1041 
1042 	strcpy(name, dev->name);
1043 
1044 	ret = 0;
1045 out:
1046 	rcu_read_unlock();
1047 	up_read(&devnet_rename_sem);
1048 	return ret;
1049 }
1050 
1051 /**
1052  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1053  *	@net: the applicable net namespace
1054  *	@type: media type of device
1055  *	@ha: hardware address
1056  *
1057  *	Search for an interface by MAC address. Returns NULL if the device
1058  *	is not found or a pointer to the device.
1059  *	The caller must hold RCU or RTNL.
1060  *	The returned device has not had its ref count increased
1061  *	and the caller must therefore be careful about locking
1062  *
1063  */
1064 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1065 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1066 				       const char *ha)
1067 {
1068 	struct net_device *dev;
1069 
1070 	for_each_netdev_rcu(net, dev)
1071 		if (dev->type == type &&
1072 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1073 			return dev;
1074 
1075 	return NULL;
1076 }
1077 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1078 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)1079 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1080 {
1081 	struct net_device *dev;
1082 
1083 	ASSERT_RTNL();
1084 	for_each_netdev(net, dev)
1085 		if (dev->type == type)
1086 			return dev;
1087 
1088 	return NULL;
1089 }
1090 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1091 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1092 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1093 {
1094 	struct net_device *dev, *ret = NULL;
1095 
1096 	rcu_read_lock();
1097 	for_each_netdev_rcu(net, dev)
1098 		if (dev->type == type) {
1099 			dev_hold(dev);
1100 			ret = dev;
1101 			break;
1102 		}
1103 	rcu_read_unlock();
1104 	return ret;
1105 }
1106 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1107 
1108 /**
1109  *	__dev_get_by_flags - find any device with given flags
1110  *	@net: the applicable net namespace
1111  *	@if_flags: IFF_* values
1112  *	@mask: bitmask of bits in if_flags to check
1113  *
1114  *	Search for any interface with the given flags. Returns NULL if a device
1115  *	is not found or a pointer to the device. Must be called inside
1116  *	rtnl_lock(), and result refcount is unchanged.
1117  */
1118 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1119 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1120 				      unsigned short mask)
1121 {
1122 	struct net_device *dev, *ret;
1123 
1124 	ASSERT_RTNL();
1125 
1126 	ret = NULL;
1127 	for_each_netdev(net, dev) {
1128 		if (((dev->flags ^ if_flags) & mask) == 0) {
1129 			ret = dev;
1130 			break;
1131 		}
1132 	}
1133 	return ret;
1134 }
1135 EXPORT_SYMBOL(__dev_get_by_flags);
1136 
1137 /**
1138  *	dev_valid_name - check if name is okay for network device
1139  *	@name: name string
1140  *
1141  *	Network device names need to be valid file names to
1142  *	allow sysfs to work.  We also disallow any kind of
1143  *	whitespace.
1144  */
dev_valid_name(const char * name)1145 bool dev_valid_name(const char *name)
1146 {
1147 	if (*name == '\0')
1148 		return false;
1149 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1150 		return false;
1151 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1152 		return false;
1153 
1154 	while (*name) {
1155 		if (*name == '/' || *name == ':' || isspace(*name))
1156 			return false;
1157 		name++;
1158 	}
1159 	return true;
1160 }
1161 EXPORT_SYMBOL(dev_valid_name);
1162 
1163 /**
1164  *	__dev_alloc_name - allocate a name for a device
1165  *	@net: network namespace to allocate the device name in
1166  *	@name: name format string
1167  *	@buf:  scratch buffer and result name string
1168  *
1169  *	Passed a format string - eg "lt%d" it will try and find a suitable
1170  *	id. It scans list of devices to build up a free map, then chooses
1171  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1172  *	while allocating the name and adding the device in order to avoid
1173  *	duplicates.
1174  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1175  *	Returns the number of the unit assigned or a negative errno code.
1176  */
1177 
__dev_alloc_name(struct net * net,const char * name,char * buf)1178 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1179 {
1180 	int i = 0;
1181 	const char *p;
1182 	const int max_netdevices = 8*PAGE_SIZE;
1183 	unsigned long *inuse;
1184 	struct net_device *d;
1185 
1186 	if (!dev_valid_name(name))
1187 		return -EINVAL;
1188 
1189 	p = strchr(name, '%');
1190 	if (p) {
1191 		/*
1192 		 * Verify the string as this thing may have come from
1193 		 * the user.  There must be either one "%d" and no other "%"
1194 		 * characters.
1195 		 */
1196 		if (p[1] != 'd' || strchr(p + 2, '%'))
1197 			return -EINVAL;
1198 
1199 		/* Use one page as a bit array of possible slots */
1200 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1201 		if (!inuse)
1202 			return -ENOMEM;
1203 
1204 		for_each_netdev(net, d) {
1205 			struct netdev_name_node *name_node;
1206 			list_for_each_entry(name_node, &d->name_node->list, list) {
1207 				if (!sscanf(name_node->name, name, &i))
1208 					continue;
1209 				if (i < 0 || i >= max_netdevices)
1210 					continue;
1211 
1212 				/*  avoid cases where sscanf is not exact inverse of printf */
1213 				snprintf(buf, IFNAMSIZ, name, i);
1214 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1215 					set_bit(i, inuse);
1216 			}
1217 			if (!sscanf(d->name, name, &i))
1218 				continue;
1219 			if (i < 0 || i >= max_netdevices)
1220 				continue;
1221 
1222 			/*  avoid cases where sscanf is not exact inverse of printf */
1223 			snprintf(buf, IFNAMSIZ, name, i);
1224 			if (!strncmp(buf, d->name, IFNAMSIZ))
1225 				set_bit(i, inuse);
1226 		}
1227 
1228 		i = find_first_zero_bit(inuse, max_netdevices);
1229 		free_page((unsigned long) inuse);
1230 	}
1231 
1232 	snprintf(buf, IFNAMSIZ, name, i);
1233 	if (!__dev_get_by_name(net, buf))
1234 		return i;
1235 
1236 	/* It is possible to run out of possible slots
1237 	 * when the name is long and there isn't enough space left
1238 	 * for the digits, or if all bits are used.
1239 	 */
1240 	return -ENFILE;
1241 }
1242 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1243 static int dev_alloc_name_ns(struct net *net,
1244 			     struct net_device *dev,
1245 			     const char *name)
1246 {
1247 	char buf[IFNAMSIZ];
1248 	int ret;
1249 
1250 	BUG_ON(!net);
1251 	ret = __dev_alloc_name(net, name, buf);
1252 	if (ret >= 0)
1253 		strlcpy(dev->name, buf, IFNAMSIZ);
1254 	return ret;
1255 }
1256 
1257 /**
1258  *	dev_alloc_name - allocate a name for a device
1259  *	@dev: device
1260  *	@name: name format string
1261  *
1262  *	Passed a format string - eg "lt%d" it will try and find a suitable
1263  *	id. It scans list of devices to build up a free map, then chooses
1264  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1265  *	while allocating the name and adding the device in order to avoid
1266  *	duplicates.
1267  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1268  *	Returns the number of the unit assigned or a negative errno code.
1269  */
1270 
dev_alloc_name(struct net_device * dev,const char * name)1271 int dev_alloc_name(struct net_device *dev, const char *name)
1272 {
1273 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1274 }
1275 EXPORT_SYMBOL(dev_alloc_name);
1276 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1277 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1278 			      const char *name)
1279 {
1280 	BUG_ON(!net);
1281 
1282 	if (!dev_valid_name(name))
1283 		return -EINVAL;
1284 
1285 	if (strchr(name, '%'))
1286 		return dev_alloc_name_ns(net, dev, name);
1287 	else if (__dev_get_by_name(net, name))
1288 		return -EEXIST;
1289 	else if (dev->name != name)
1290 		strlcpy(dev->name, name, IFNAMSIZ);
1291 
1292 	return 0;
1293 }
1294 
1295 /**
1296  *	dev_change_name - change name of a device
1297  *	@dev: device
1298  *	@newname: name (or format string) must be at least IFNAMSIZ
1299  *
1300  *	Change name of a device, can pass format strings "eth%d".
1301  *	for wildcarding.
1302  */
dev_change_name(struct net_device * dev,const char * newname)1303 int dev_change_name(struct net_device *dev, const char *newname)
1304 {
1305 	unsigned char old_assign_type;
1306 	char oldname[IFNAMSIZ];
1307 	int err = 0;
1308 	int ret;
1309 	struct net *net;
1310 
1311 	ASSERT_RTNL();
1312 	BUG_ON(!dev_net(dev));
1313 
1314 	net = dev_net(dev);
1315 
1316 	/* Some auto-enslaved devices e.g. failover slaves are
1317 	 * special, as userspace might rename the device after
1318 	 * the interface had been brought up and running since
1319 	 * the point kernel initiated auto-enslavement. Allow
1320 	 * live name change even when these slave devices are
1321 	 * up and running.
1322 	 *
1323 	 * Typically, users of these auto-enslaving devices
1324 	 * don't actually care about slave name change, as
1325 	 * they are supposed to operate on master interface
1326 	 * directly.
1327 	 */
1328 	if (dev->flags & IFF_UP &&
1329 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1330 		return -EBUSY;
1331 
1332 	down_write(&devnet_rename_sem);
1333 
1334 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1335 		up_write(&devnet_rename_sem);
1336 		return 0;
1337 	}
1338 
1339 	memcpy(oldname, dev->name, IFNAMSIZ);
1340 
1341 	err = dev_get_valid_name(net, dev, newname);
1342 	if (err < 0) {
1343 		up_write(&devnet_rename_sem);
1344 		return err;
1345 	}
1346 
1347 	if (oldname[0] && !strchr(oldname, '%'))
1348 		netdev_info(dev, "renamed from %s\n", oldname);
1349 
1350 	old_assign_type = dev->name_assign_type;
1351 	dev->name_assign_type = NET_NAME_RENAMED;
1352 
1353 rollback:
1354 	ret = device_rename(&dev->dev, dev->name);
1355 	if (ret) {
1356 		memcpy(dev->name, oldname, IFNAMSIZ);
1357 		dev->name_assign_type = old_assign_type;
1358 		up_write(&devnet_rename_sem);
1359 		return ret;
1360 	}
1361 
1362 	up_write(&devnet_rename_sem);
1363 
1364 	netdev_adjacent_rename_links(dev, oldname);
1365 
1366 	write_lock_bh(&dev_base_lock);
1367 	netdev_name_node_del(dev->name_node);
1368 	write_unlock_bh(&dev_base_lock);
1369 
1370 	synchronize_rcu();
1371 
1372 	write_lock_bh(&dev_base_lock);
1373 	netdev_name_node_add(net, dev->name_node);
1374 	write_unlock_bh(&dev_base_lock);
1375 
1376 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1377 	ret = notifier_to_errno(ret);
1378 
1379 	if (ret) {
1380 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1381 		if (err >= 0) {
1382 			err = ret;
1383 			down_write(&devnet_rename_sem);
1384 			memcpy(dev->name, oldname, IFNAMSIZ);
1385 			memcpy(oldname, newname, IFNAMSIZ);
1386 			dev->name_assign_type = old_assign_type;
1387 			old_assign_type = NET_NAME_RENAMED;
1388 			goto rollback;
1389 		} else {
1390 			pr_err("%s: name change rollback failed: %d\n",
1391 			       dev->name, ret);
1392 		}
1393 	}
1394 
1395 	return err;
1396 }
1397 
1398 /**
1399  *	dev_set_alias - change ifalias of a device
1400  *	@dev: device
1401  *	@alias: name up to IFALIASZ
1402  *	@len: limit of bytes to copy from info
1403  *
1404  *	Set ifalias for a device,
1405  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1406 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1407 {
1408 	struct dev_ifalias *new_alias = NULL;
1409 
1410 	if (len >= IFALIASZ)
1411 		return -EINVAL;
1412 
1413 	if (len) {
1414 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1415 		if (!new_alias)
1416 			return -ENOMEM;
1417 
1418 		memcpy(new_alias->ifalias, alias, len);
1419 		new_alias->ifalias[len] = 0;
1420 	}
1421 
1422 	mutex_lock(&ifalias_mutex);
1423 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1424 					mutex_is_locked(&ifalias_mutex));
1425 	mutex_unlock(&ifalias_mutex);
1426 
1427 	if (new_alias)
1428 		kfree_rcu(new_alias, rcuhead);
1429 
1430 	return len;
1431 }
1432 EXPORT_SYMBOL(dev_set_alias);
1433 
1434 /**
1435  *	dev_get_alias - get ifalias of a device
1436  *	@dev: device
1437  *	@name: buffer to store name of ifalias
1438  *	@len: size of buffer
1439  *
1440  *	get ifalias for a device.  Caller must make sure dev cannot go
1441  *	away,  e.g. rcu read lock or own a reference count to device.
1442  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1443 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1444 {
1445 	const struct dev_ifalias *alias;
1446 	int ret = 0;
1447 
1448 	rcu_read_lock();
1449 	alias = rcu_dereference(dev->ifalias);
1450 	if (alias)
1451 		ret = snprintf(name, len, "%s", alias->ifalias);
1452 	rcu_read_unlock();
1453 
1454 	return ret;
1455 }
1456 
1457 /**
1458  *	netdev_features_change - device changes features
1459  *	@dev: device to cause notification
1460  *
1461  *	Called to indicate a device has changed features.
1462  */
netdev_features_change(struct net_device * dev)1463 void netdev_features_change(struct net_device *dev)
1464 {
1465 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1466 }
1467 EXPORT_SYMBOL(netdev_features_change);
1468 
1469 /**
1470  *	netdev_state_change - device changes state
1471  *	@dev: device to cause notification
1472  *
1473  *	Called to indicate a device has changed state. This function calls
1474  *	the notifier chains for netdev_chain and sends a NEWLINK message
1475  *	to the routing socket.
1476  */
netdev_state_change(struct net_device * dev)1477 void netdev_state_change(struct net_device *dev)
1478 {
1479 	if (dev->flags & IFF_UP) {
1480 		struct netdev_notifier_change_info change_info = {
1481 			.info.dev = dev,
1482 		};
1483 
1484 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1485 					      &change_info.info);
1486 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1487 	}
1488 }
1489 EXPORT_SYMBOL(netdev_state_change);
1490 
1491 /**
1492  * netdev_notify_peers - notify network peers about existence of @dev
1493  * @dev: network device
1494  *
1495  * Generate traffic such that interested network peers are aware of
1496  * @dev, such as by generating a gratuitous ARP. This may be used when
1497  * a device wants to inform the rest of the network about some sort of
1498  * reconfiguration such as a failover event or virtual machine
1499  * migration.
1500  */
netdev_notify_peers(struct net_device * dev)1501 void netdev_notify_peers(struct net_device *dev)
1502 {
1503 	rtnl_lock();
1504 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1505 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1506 	rtnl_unlock();
1507 }
1508 EXPORT_SYMBOL(netdev_notify_peers);
1509 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1510 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1511 {
1512 	const struct net_device_ops *ops = dev->netdev_ops;
1513 	int ret;
1514 
1515 	ASSERT_RTNL();
1516 
1517 	if (!netif_device_present(dev)) {
1518 		/* may be detached because parent is runtime-suspended */
1519 		if (dev->dev.parent)
1520 			pm_runtime_resume(dev->dev.parent);
1521 		if (!netif_device_present(dev))
1522 			return -ENODEV;
1523 	}
1524 
1525 	/* Block netpoll from trying to do any rx path servicing.
1526 	 * If we don't do this there is a chance ndo_poll_controller
1527 	 * or ndo_poll may be running while we open the device
1528 	 */
1529 	netpoll_poll_disable(dev);
1530 
1531 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1532 	ret = notifier_to_errno(ret);
1533 	if (ret)
1534 		return ret;
1535 
1536 	set_bit(__LINK_STATE_START, &dev->state);
1537 
1538 	if (ops->ndo_validate_addr)
1539 		ret = ops->ndo_validate_addr(dev);
1540 
1541 	if (!ret && ops->ndo_open)
1542 		ret = ops->ndo_open(dev);
1543 
1544 	netpoll_poll_enable(dev);
1545 
1546 	if (ret)
1547 		clear_bit(__LINK_STATE_START, &dev->state);
1548 	else {
1549 		dev->flags |= IFF_UP;
1550 		dev_set_rx_mode(dev);
1551 		dev_activate(dev);
1552 		add_device_randomness(dev->dev_addr, dev->addr_len);
1553 	}
1554 
1555 	return ret;
1556 }
1557 
1558 /**
1559  *	dev_open	- prepare an interface for use.
1560  *	@dev: device to open
1561  *	@extack: netlink extended ack
1562  *
1563  *	Takes a device from down to up state. The device's private open
1564  *	function is invoked and then the multicast lists are loaded. Finally
1565  *	the device is moved into the up state and a %NETDEV_UP message is
1566  *	sent to the netdev notifier chain.
1567  *
1568  *	Calling this function on an active interface is a nop. On a failure
1569  *	a negative errno code is returned.
1570  */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1571 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1572 {
1573 	int ret;
1574 
1575 	if (dev->flags & IFF_UP)
1576 		return 0;
1577 
1578 	ret = __dev_open(dev, extack);
1579 	if (ret < 0)
1580 		return ret;
1581 
1582 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1583 	call_netdevice_notifiers(NETDEV_UP, dev);
1584 
1585 	return ret;
1586 }
1587 EXPORT_SYMBOL(dev_open);
1588 
__dev_close_many(struct list_head * head)1589 static void __dev_close_many(struct list_head *head)
1590 {
1591 	struct net_device *dev;
1592 
1593 	ASSERT_RTNL();
1594 	might_sleep();
1595 
1596 	list_for_each_entry(dev, head, close_list) {
1597 		/* Temporarily disable netpoll until the interface is down */
1598 		netpoll_poll_disable(dev);
1599 
1600 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1601 
1602 		clear_bit(__LINK_STATE_START, &dev->state);
1603 
1604 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1605 		 * can be even on different cpu. So just clear netif_running().
1606 		 *
1607 		 * dev->stop() will invoke napi_disable() on all of it's
1608 		 * napi_struct instances on this device.
1609 		 */
1610 		smp_mb__after_atomic(); /* Commit netif_running(). */
1611 	}
1612 
1613 	dev_deactivate_many(head);
1614 
1615 	list_for_each_entry(dev, head, close_list) {
1616 		const struct net_device_ops *ops = dev->netdev_ops;
1617 
1618 		/*
1619 		 *	Call the device specific close. This cannot fail.
1620 		 *	Only if device is UP
1621 		 *
1622 		 *	We allow it to be called even after a DETACH hot-plug
1623 		 *	event.
1624 		 */
1625 		if (ops->ndo_stop)
1626 			ops->ndo_stop(dev);
1627 
1628 		dev->flags &= ~IFF_UP;
1629 		netpoll_poll_enable(dev);
1630 	}
1631 }
1632 
__dev_close(struct net_device * dev)1633 static void __dev_close(struct net_device *dev)
1634 {
1635 	LIST_HEAD(single);
1636 
1637 	list_add(&dev->close_list, &single);
1638 	__dev_close_many(&single);
1639 	list_del(&single);
1640 }
1641 
dev_close_many(struct list_head * head,bool unlink)1642 void dev_close_many(struct list_head *head, bool unlink)
1643 {
1644 	struct net_device *dev, *tmp;
1645 
1646 	/* Remove the devices that don't need to be closed */
1647 	list_for_each_entry_safe(dev, tmp, head, close_list)
1648 		if (!(dev->flags & IFF_UP))
1649 			list_del_init(&dev->close_list);
1650 
1651 	__dev_close_many(head);
1652 
1653 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1654 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1655 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1656 		if (unlink)
1657 			list_del_init(&dev->close_list);
1658 	}
1659 }
1660 EXPORT_SYMBOL(dev_close_many);
1661 
1662 /**
1663  *	dev_close - shutdown an interface.
1664  *	@dev: device to shutdown
1665  *
1666  *	This function moves an active device into down state. A
1667  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1668  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1669  *	chain.
1670  */
dev_close(struct net_device * dev)1671 void dev_close(struct net_device *dev)
1672 {
1673 	if (dev->flags & IFF_UP) {
1674 		LIST_HEAD(single);
1675 
1676 		list_add(&dev->close_list, &single);
1677 		dev_close_many(&single, true);
1678 		list_del(&single);
1679 	}
1680 }
1681 EXPORT_SYMBOL(dev_close);
1682 
1683 
1684 /**
1685  *	dev_disable_lro - disable Large Receive Offload on a device
1686  *	@dev: device
1687  *
1688  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1689  *	called under RTNL.  This is needed if received packets may be
1690  *	forwarded to another interface.
1691  */
dev_disable_lro(struct net_device * dev)1692 void dev_disable_lro(struct net_device *dev)
1693 {
1694 	struct net_device *lower_dev;
1695 	struct list_head *iter;
1696 
1697 	dev->wanted_features &= ~NETIF_F_LRO;
1698 	netdev_update_features(dev);
1699 
1700 	if (unlikely(dev->features & NETIF_F_LRO))
1701 		netdev_WARN(dev, "failed to disable LRO!\n");
1702 
1703 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1704 		dev_disable_lro(lower_dev);
1705 }
1706 EXPORT_SYMBOL(dev_disable_lro);
1707 
1708 /**
1709  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1710  *	@dev: device
1711  *
1712  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1713  *	called under RTNL.  This is needed if Generic XDP is installed on
1714  *	the device.
1715  */
dev_disable_gro_hw(struct net_device * dev)1716 static void dev_disable_gro_hw(struct net_device *dev)
1717 {
1718 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1719 	netdev_update_features(dev);
1720 
1721 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1722 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1723 }
1724 
netdev_cmd_to_name(enum netdev_cmd cmd)1725 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1726 {
1727 #define N(val) 						\
1728 	case NETDEV_##val:				\
1729 		return "NETDEV_" __stringify(val);
1730 	switch (cmd) {
1731 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1732 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1733 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1734 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1735 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1736 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1737 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1738 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1739 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1740 	N(PRE_CHANGEADDR)
1741 	}
1742 #undef N
1743 	return "UNKNOWN_NETDEV_EVENT";
1744 }
1745 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1746 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1747 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1748 				   struct net_device *dev)
1749 {
1750 	struct netdev_notifier_info info = {
1751 		.dev = dev,
1752 	};
1753 
1754 	return nb->notifier_call(nb, val, &info);
1755 }
1756 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1757 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1758 					     struct net_device *dev)
1759 {
1760 	int err;
1761 
1762 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1763 	err = notifier_to_errno(err);
1764 	if (err)
1765 		return err;
1766 
1767 	if (!(dev->flags & IFF_UP))
1768 		return 0;
1769 
1770 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1771 	return 0;
1772 }
1773 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1774 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1775 						struct net_device *dev)
1776 {
1777 	if (dev->flags & IFF_UP) {
1778 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1779 					dev);
1780 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1781 	}
1782 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1783 }
1784 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1785 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1786 						 struct net *net)
1787 {
1788 	struct net_device *dev;
1789 	int err;
1790 
1791 	for_each_netdev(net, dev) {
1792 		err = call_netdevice_register_notifiers(nb, dev);
1793 		if (err)
1794 			goto rollback;
1795 	}
1796 	return 0;
1797 
1798 rollback:
1799 	for_each_netdev_continue_reverse(net, dev)
1800 		call_netdevice_unregister_notifiers(nb, dev);
1801 	return err;
1802 }
1803 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1804 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1805 						    struct net *net)
1806 {
1807 	struct net_device *dev;
1808 
1809 	for_each_netdev(net, dev)
1810 		call_netdevice_unregister_notifiers(nb, dev);
1811 }
1812 
1813 static int dev_boot_phase = 1;
1814 
1815 /**
1816  * register_netdevice_notifier - register a network notifier block
1817  * @nb: notifier
1818  *
1819  * Register a notifier to be called when network device events occur.
1820  * The notifier passed is linked into the kernel structures and must
1821  * not be reused until it has been unregistered. A negative errno code
1822  * is returned on a failure.
1823  *
1824  * When registered all registration and up events are replayed
1825  * to the new notifier to allow device to have a race free
1826  * view of the network device list.
1827  */
1828 
register_netdevice_notifier(struct notifier_block * nb)1829 int register_netdevice_notifier(struct notifier_block *nb)
1830 {
1831 	struct net *net;
1832 	int err;
1833 
1834 	/* Close race with setup_net() and cleanup_net() */
1835 	down_write(&pernet_ops_rwsem);
1836 	rtnl_lock();
1837 	err = raw_notifier_chain_register(&netdev_chain, nb);
1838 	if (err)
1839 		goto unlock;
1840 	if (dev_boot_phase)
1841 		goto unlock;
1842 	for_each_net(net) {
1843 		err = call_netdevice_register_net_notifiers(nb, net);
1844 		if (err)
1845 			goto rollback;
1846 	}
1847 
1848 unlock:
1849 	rtnl_unlock();
1850 	up_write(&pernet_ops_rwsem);
1851 	return err;
1852 
1853 rollback:
1854 	for_each_net_continue_reverse(net)
1855 		call_netdevice_unregister_net_notifiers(nb, net);
1856 
1857 	raw_notifier_chain_unregister(&netdev_chain, nb);
1858 	goto unlock;
1859 }
1860 EXPORT_SYMBOL(register_netdevice_notifier);
1861 
1862 /**
1863  * unregister_netdevice_notifier - unregister a network notifier block
1864  * @nb: notifier
1865  *
1866  * Unregister a notifier previously registered by
1867  * register_netdevice_notifier(). The notifier is unlinked into the
1868  * kernel structures and may then be reused. A negative errno code
1869  * is returned on a failure.
1870  *
1871  * After unregistering unregister and down device events are synthesized
1872  * for all devices on the device list to the removed notifier to remove
1873  * the need for special case cleanup code.
1874  */
1875 
unregister_netdevice_notifier(struct notifier_block * nb)1876 int unregister_netdevice_notifier(struct notifier_block *nb)
1877 {
1878 	struct net *net;
1879 	int err;
1880 
1881 	/* Close race with setup_net() and cleanup_net() */
1882 	down_write(&pernet_ops_rwsem);
1883 	rtnl_lock();
1884 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1885 	if (err)
1886 		goto unlock;
1887 
1888 	for_each_net(net)
1889 		call_netdevice_unregister_net_notifiers(nb, net);
1890 
1891 unlock:
1892 	rtnl_unlock();
1893 	up_write(&pernet_ops_rwsem);
1894 	return err;
1895 }
1896 EXPORT_SYMBOL(unregister_netdevice_notifier);
1897 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1898 static int __register_netdevice_notifier_net(struct net *net,
1899 					     struct notifier_block *nb,
1900 					     bool ignore_call_fail)
1901 {
1902 	int err;
1903 
1904 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1905 	if (err)
1906 		return err;
1907 	if (dev_boot_phase)
1908 		return 0;
1909 
1910 	err = call_netdevice_register_net_notifiers(nb, net);
1911 	if (err && !ignore_call_fail)
1912 		goto chain_unregister;
1913 
1914 	return 0;
1915 
1916 chain_unregister:
1917 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1918 	return err;
1919 }
1920 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1921 static int __unregister_netdevice_notifier_net(struct net *net,
1922 					       struct notifier_block *nb)
1923 {
1924 	int err;
1925 
1926 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1927 	if (err)
1928 		return err;
1929 
1930 	call_netdevice_unregister_net_notifiers(nb, net);
1931 	return 0;
1932 }
1933 
1934 /**
1935  * register_netdevice_notifier_net - register a per-netns network notifier block
1936  * @net: network namespace
1937  * @nb: notifier
1938  *
1939  * Register a notifier to be called when network device events occur.
1940  * The notifier passed is linked into the kernel structures and must
1941  * not be reused until it has been unregistered. A negative errno code
1942  * is returned on a failure.
1943  *
1944  * When registered all registration and up events are replayed
1945  * to the new notifier to allow device to have a race free
1946  * view of the network device list.
1947  */
1948 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1949 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1950 {
1951 	int err;
1952 
1953 	rtnl_lock();
1954 	err = __register_netdevice_notifier_net(net, nb, false);
1955 	rtnl_unlock();
1956 	return err;
1957 }
1958 EXPORT_SYMBOL(register_netdevice_notifier_net);
1959 
1960 /**
1961  * unregister_netdevice_notifier_net - unregister a per-netns
1962  *                                     network notifier block
1963  * @net: network namespace
1964  * @nb: notifier
1965  *
1966  * Unregister a notifier previously registered by
1967  * register_netdevice_notifier(). The notifier is unlinked into the
1968  * kernel structures and may then be reused. A negative errno code
1969  * is returned on a failure.
1970  *
1971  * After unregistering unregister and down device events are synthesized
1972  * for all devices on the device list to the removed notifier to remove
1973  * the need for special case cleanup code.
1974  */
1975 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1976 int unregister_netdevice_notifier_net(struct net *net,
1977 				      struct notifier_block *nb)
1978 {
1979 	int err;
1980 
1981 	rtnl_lock();
1982 	err = __unregister_netdevice_notifier_net(net, nb);
1983 	rtnl_unlock();
1984 	return err;
1985 }
1986 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1987 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1988 int register_netdevice_notifier_dev_net(struct net_device *dev,
1989 					struct notifier_block *nb,
1990 					struct netdev_net_notifier *nn)
1991 {
1992 	int err;
1993 
1994 	rtnl_lock();
1995 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1996 	if (!err) {
1997 		nn->nb = nb;
1998 		list_add(&nn->list, &dev->net_notifier_list);
1999 	}
2000 	rtnl_unlock();
2001 	return err;
2002 }
2003 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2004 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2005 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2006 					  struct notifier_block *nb,
2007 					  struct netdev_net_notifier *nn)
2008 {
2009 	int err;
2010 
2011 	rtnl_lock();
2012 	list_del(&nn->list);
2013 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2014 	rtnl_unlock();
2015 	return err;
2016 }
2017 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2018 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2019 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2020 					     struct net *net)
2021 {
2022 	struct netdev_net_notifier *nn;
2023 
2024 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2025 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2026 		__register_netdevice_notifier_net(net, nn->nb, true);
2027 	}
2028 }
2029 
2030 /**
2031  *	call_netdevice_notifiers_info - call all network notifier blocks
2032  *	@val: value passed unmodified to notifier function
2033  *	@info: notifier information data
2034  *
2035  *	Call all network notifier blocks.  Parameters and return value
2036  *	are as for raw_notifier_call_chain().
2037  */
2038 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2039 static int call_netdevice_notifiers_info(unsigned long val,
2040 					 struct netdev_notifier_info *info)
2041 {
2042 	struct net *net = dev_net(info->dev);
2043 	int ret;
2044 
2045 	ASSERT_RTNL();
2046 
2047 	/* Run per-netns notifier block chain first, then run the global one.
2048 	 * Hopefully, one day, the global one is going to be removed after
2049 	 * all notifier block registrators get converted to be per-netns.
2050 	 */
2051 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2052 	if (ret & NOTIFY_STOP_MASK)
2053 		return ret;
2054 	return raw_notifier_call_chain(&netdev_chain, val, info);
2055 }
2056 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2057 static int call_netdevice_notifiers_extack(unsigned long val,
2058 					   struct net_device *dev,
2059 					   struct netlink_ext_ack *extack)
2060 {
2061 	struct netdev_notifier_info info = {
2062 		.dev = dev,
2063 		.extack = extack,
2064 	};
2065 
2066 	return call_netdevice_notifiers_info(val, &info);
2067 }
2068 
2069 /**
2070  *	call_netdevice_notifiers - call all network notifier blocks
2071  *      @val: value passed unmodified to notifier function
2072  *      @dev: net_device pointer passed unmodified to notifier function
2073  *
2074  *	Call all network notifier blocks.  Parameters and return value
2075  *	are as for raw_notifier_call_chain().
2076  */
2077 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2078 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2079 {
2080 	return call_netdevice_notifiers_extack(val, dev, NULL);
2081 }
2082 EXPORT_SYMBOL(call_netdevice_notifiers);
2083 
2084 /**
2085  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2086  *	@val: value passed unmodified to notifier function
2087  *	@dev: net_device pointer passed unmodified to notifier function
2088  *	@arg: additional u32 argument passed to the notifier function
2089  *
2090  *	Call all network notifier blocks.  Parameters and return value
2091  *	are as for raw_notifier_call_chain().
2092  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2093 static int call_netdevice_notifiers_mtu(unsigned long val,
2094 					struct net_device *dev, u32 arg)
2095 {
2096 	struct netdev_notifier_info_ext info = {
2097 		.info.dev = dev,
2098 		.ext.mtu = arg,
2099 	};
2100 
2101 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2102 
2103 	return call_netdevice_notifiers_info(val, &info.info);
2104 }
2105 
2106 #ifdef CONFIG_NET_INGRESS
2107 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2108 
net_inc_ingress_queue(void)2109 void net_inc_ingress_queue(void)
2110 {
2111 	static_branch_inc(&ingress_needed_key);
2112 }
2113 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2114 
net_dec_ingress_queue(void)2115 void net_dec_ingress_queue(void)
2116 {
2117 	static_branch_dec(&ingress_needed_key);
2118 }
2119 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2120 #endif
2121 
2122 #ifdef CONFIG_NET_EGRESS
2123 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2124 
net_inc_egress_queue(void)2125 void net_inc_egress_queue(void)
2126 {
2127 	static_branch_inc(&egress_needed_key);
2128 }
2129 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2130 
net_dec_egress_queue(void)2131 void net_dec_egress_queue(void)
2132 {
2133 	static_branch_dec(&egress_needed_key);
2134 }
2135 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2136 #endif
2137 
2138 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2139 #ifdef CONFIG_JUMP_LABEL
2140 static atomic_t netstamp_needed_deferred;
2141 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2142 static void netstamp_clear(struct work_struct *work)
2143 {
2144 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2145 	int wanted;
2146 
2147 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2148 	if (wanted > 0)
2149 		static_branch_enable(&netstamp_needed_key);
2150 	else
2151 		static_branch_disable(&netstamp_needed_key);
2152 }
2153 static DECLARE_WORK(netstamp_work, netstamp_clear);
2154 #endif
2155 
net_enable_timestamp(void)2156 void net_enable_timestamp(void)
2157 {
2158 #ifdef CONFIG_JUMP_LABEL
2159 	int wanted;
2160 
2161 	while (1) {
2162 		wanted = atomic_read(&netstamp_wanted);
2163 		if (wanted <= 0)
2164 			break;
2165 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2166 			return;
2167 	}
2168 	atomic_inc(&netstamp_needed_deferred);
2169 	schedule_work(&netstamp_work);
2170 #else
2171 	static_branch_inc(&netstamp_needed_key);
2172 #endif
2173 }
2174 EXPORT_SYMBOL(net_enable_timestamp);
2175 
net_disable_timestamp(void)2176 void net_disable_timestamp(void)
2177 {
2178 #ifdef CONFIG_JUMP_LABEL
2179 	int wanted;
2180 
2181 	while (1) {
2182 		wanted = atomic_read(&netstamp_wanted);
2183 		if (wanted <= 1)
2184 			break;
2185 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2186 			return;
2187 	}
2188 	atomic_dec(&netstamp_needed_deferred);
2189 	schedule_work(&netstamp_work);
2190 #else
2191 	static_branch_dec(&netstamp_needed_key);
2192 #endif
2193 }
2194 EXPORT_SYMBOL(net_disable_timestamp);
2195 
net_timestamp_set(struct sk_buff * skb)2196 static inline void net_timestamp_set(struct sk_buff *skb)
2197 {
2198 	skb->tstamp = 0;
2199 	if (static_branch_unlikely(&netstamp_needed_key))
2200 		__net_timestamp(skb);
2201 }
2202 
2203 #define net_timestamp_check(COND, SKB)				\
2204 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2205 		if ((COND) && !(SKB)->tstamp)			\
2206 			__net_timestamp(SKB);			\
2207 	}							\
2208 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2209 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2210 {
2211 	unsigned int len;
2212 
2213 	if (!(dev->flags & IFF_UP))
2214 		return false;
2215 
2216 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2217 	if (skb->len <= len)
2218 		return true;
2219 
2220 	/* if TSO is enabled, we don't care about the length as the packet
2221 	 * could be forwarded without being segmented before
2222 	 */
2223 	if (skb_is_gso(skb))
2224 		return true;
2225 
2226 	return false;
2227 }
2228 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2229 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2230 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2231 {
2232 	int ret = ____dev_forward_skb(dev, skb);
2233 
2234 	if (likely(!ret)) {
2235 		skb->protocol = eth_type_trans(skb, dev);
2236 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2237 	}
2238 
2239 	return ret;
2240 }
2241 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2242 
2243 /**
2244  * dev_forward_skb - loopback an skb to another netif
2245  *
2246  * @dev: destination network device
2247  * @skb: buffer to forward
2248  *
2249  * return values:
2250  *	NET_RX_SUCCESS	(no congestion)
2251  *	NET_RX_DROP     (packet was dropped, but freed)
2252  *
2253  * dev_forward_skb can be used for injecting an skb from the
2254  * start_xmit function of one device into the receive queue
2255  * of another device.
2256  *
2257  * The receiving device may be in another namespace, so
2258  * we have to clear all information in the skb that could
2259  * impact namespace isolation.
2260  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2261 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2262 {
2263 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2264 }
2265 EXPORT_SYMBOL_GPL(dev_forward_skb);
2266 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2267 static inline int deliver_skb(struct sk_buff *skb,
2268 			      struct packet_type *pt_prev,
2269 			      struct net_device *orig_dev)
2270 {
2271 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2272 		return -ENOMEM;
2273 	refcount_inc(&skb->users);
2274 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2275 }
2276 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2277 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2278 					  struct packet_type **pt,
2279 					  struct net_device *orig_dev,
2280 					  __be16 type,
2281 					  struct list_head *ptype_list)
2282 {
2283 	struct packet_type *ptype, *pt_prev = *pt;
2284 
2285 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2286 		if (ptype->type != type)
2287 			continue;
2288 		if (pt_prev)
2289 			deliver_skb(skb, pt_prev, orig_dev);
2290 		pt_prev = ptype;
2291 	}
2292 	*pt = pt_prev;
2293 }
2294 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2295 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2296 {
2297 	if (!ptype->af_packet_priv || !skb->sk)
2298 		return false;
2299 
2300 	if (ptype->id_match)
2301 		return ptype->id_match(ptype, skb->sk);
2302 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2303 		return true;
2304 
2305 	return false;
2306 }
2307 
2308 /**
2309  * dev_nit_active - return true if any network interface taps are in use
2310  *
2311  * @dev: network device to check for the presence of taps
2312  */
dev_nit_active(struct net_device * dev)2313 bool dev_nit_active(struct net_device *dev)
2314 {
2315 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2316 }
2317 EXPORT_SYMBOL_GPL(dev_nit_active);
2318 
2319 /*
2320  *	Support routine. Sends outgoing frames to any network
2321  *	taps currently in use.
2322  */
2323 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2324 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2325 {
2326 	struct packet_type *ptype;
2327 	struct sk_buff *skb2 = NULL;
2328 	struct packet_type *pt_prev = NULL;
2329 	struct list_head *ptype_list = &ptype_all;
2330 
2331 	rcu_read_lock();
2332 again:
2333 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2334 		if (ptype->ignore_outgoing)
2335 			continue;
2336 
2337 		/* Never send packets back to the socket
2338 		 * they originated from - MvS (miquels@drinkel.ow.org)
2339 		 */
2340 		if (skb_loop_sk(ptype, skb))
2341 			continue;
2342 
2343 		if (pt_prev) {
2344 			deliver_skb(skb2, pt_prev, skb->dev);
2345 			pt_prev = ptype;
2346 			continue;
2347 		}
2348 
2349 		/* need to clone skb, done only once */
2350 		skb2 = skb_clone(skb, GFP_ATOMIC);
2351 		if (!skb2)
2352 			goto out_unlock;
2353 
2354 		net_timestamp_set(skb2);
2355 
2356 		/* skb->nh should be correctly
2357 		 * set by sender, so that the second statement is
2358 		 * just protection against buggy protocols.
2359 		 */
2360 		skb_reset_mac_header(skb2);
2361 
2362 		if (skb_network_header(skb2) < skb2->data ||
2363 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2364 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2365 					     ntohs(skb2->protocol),
2366 					     dev->name);
2367 			skb_reset_network_header(skb2);
2368 		}
2369 
2370 		skb2->transport_header = skb2->network_header;
2371 		skb2->pkt_type = PACKET_OUTGOING;
2372 		pt_prev = ptype;
2373 	}
2374 
2375 	if (ptype_list == &ptype_all) {
2376 		ptype_list = &dev->ptype_all;
2377 		goto again;
2378 	}
2379 out_unlock:
2380 	if (pt_prev) {
2381 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2382 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2383 		else
2384 			kfree_skb(skb2);
2385 	}
2386 	rcu_read_unlock();
2387 }
2388 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2389 
2390 /**
2391  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2392  * @dev: Network device
2393  * @txq: number of queues available
2394  *
2395  * If real_num_tx_queues is changed the tc mappings may no longer be
2396  * valid. To resolve this verify the tc mapping remains valid and if
2397  * not NULL the mapping. With no priorities mapping to this
2398  * offset/count pair it will no longer be used. In the worst case TC0
2399  * is invalid nothing can be done so disable priority mappings. If is
2400  * expected that drivers will fix this mapping if they can before
2401  * calling netif_set_real_num_tx_queues.
2402  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2403 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2404 {
2405 	int i;
2406 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2407 
2408 	/* If TC0 is invalidated disable TC mapping */
2409 	if (tc->offset + tc->count > txq) {
2410 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2411 		dev->num_tc = 0;
2412 		return;
2413 	}
2414 
2415 	/* Invalidated prio to tc mappings set to TC0 */
2416 	for (i = 1; i < TC_BITMASK + 1; i++) {
2417 		int q = netdev_get_prio_tc_map(dev, i);
2418 
2419 		tc = &dev->tc_to_txq[q];
2420 		if (tc->offset + tc->count > txq) {
2421 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2422 				i, q);
2423 			netdev_set_prio_tc_map(dev, i, 0);
2424 		}
2425 	}
2426 }
2427 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2428 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2429 {
2430 	if (dev->num_tc) {
2431 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2432 		int i;
2433 
2434 		/* walk through the TCs and see if it falls into any of them */
2435 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2436 			if ((txq - tc->offset) < tc->count)
2437 				return i;
2438 		}
2439 
2440 		/* didn't find it, just return -1 to indicate no match */
2441 		return -1;
2442 	}
2443 
2444 	return 0;
2445 }
2446 EXPORT_SYMBOL(netdev_txq_to_tc);
2447 
2448 #ifdef CONFIG_XPS
2449 struct static_key xps_needed __read_mostly;
2450 EXPORT_SYMBOL(xps_needed);
2451 struct static_key xps_rxqs_needed __read_mostly;
2452 EXPORT_SYMBOL(xps_rxqs_needed);
2453 static DEFINE_MUTEX(xps_map_mutex);
2454 #define xmap_dereference(P)		\
2455 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2456 
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2457 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2458 			     int tci, u16 index)
2459 {
2460 	struct xps_map *map = NULL;
2461 	int pos;
2462 
2463 	if (dev_maps)
2464 		map = xmap_dereference(dev_maps->attr_map[tci]);
2465 	if (!map)
2466 		return false;
2467 
2468 	for (pos = map->len; pos--;) {
2469 		if (map->queues[pos] != index)
2470 			continue;
2471 
2472 		if (map->len > 1) {
2473 			map->queues[pos] = map->queues[--map->len];
2474 			break;
2475 		}
2476 
2477 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2478 		kfree_rcu(map, rcu);
2479 		return false;
2480 	}
2481 
2482 	return true;
2483 }
2484 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2485 static bool remove_xps_queue_cpu(struct net_device *dev,
2486 				 struct xps_dev_maps *dev_maps,
2487 				 int cpu, u16 offset, u16 count)
2488 {
2489 	int num_tc = dev->num_tc ? : 1;
2490 	bool active = false;
2491 	int tci;
2492 
2493 	for (tci = cpu * num_tc; num_tc--; tci++) {
2494 		int i, j;
2495 
2496 		for (i = count, j = offset; i--; j++) {
2497 			if (!remove_xps_queue(dev_maps, tci, j))
2498 				break;
2499 		}
2500 
2501 		active |= i < 0;
2502 	}
2503 
2504 	return active;
2505 }
2506 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2507 static void reset_xps_maps(struct net_device *dev,
2508 			   struct xps_dev_maps *dev_maps,
2509 			   bool is_rxqs_map)
2510 {
2511 	if (is_rxqs_map) {
2512 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2513 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2514 	} else {
2515 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2516 	}
2517 	static_key_slow_dec_cpuslocked(&xps_needed);
2518 	kfree_rcu(dev_maps, rcu);
2519 }
2520 
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2521 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2522 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2523 			   u16 offset, u16 count, bool is_rxqs_map)
2524 {
2525 	bool active = false;
2526 	int i, j;
2527 
2528 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2529 	     j < nr_ids;)
2530 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2531 					       count);
2532 	if (!active)
2533 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2534 
2535 	if (!is_rxqs_map) {
2536 		for (i = offset + (count - 1); count--; i--) {
2537 			netdev_queue_numa_node_write(
2538 				netdev_get_tx_queue(dev, i),
2539 				NUMA_NO_NODE);
2540 		}
2541 	}
2542 }
2543 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2544 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2545 				   u16 count)
2546 {
2547 	const unsigned long *possible_mask = NULL;
2548 	struct xps_dev_maps *dev_maps;
2549 	unsigned int nr_ids;
2550 
2551 	if (!static_key_false(&xps_needed))
2552 		return;
2553 
2554 	cpus_read_lock();
2555 	mutex_lock(&xps_map_mutex);
2556 
2557 	if (static_key_false(&xps_rxqs_needed)) {
2558 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2559 		if (dev_maps) {
2560 			nr_ids = dev->num_rx_queues;
2561 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2562 				       offset, count, true);
2563 		}
2564 	}
2565 
2566 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2567 	if (!dev_maps)
2568 		goto out_no_maps;
2569 
2570 	if (num_possible_cpus() > 1)
2571 		possible_mask = cpumask_bits(cpu_possible_mask);
2572 	nr_ids = nr_cpu_ids;
2573 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2574 		       false);
2575 
2576 out_no_maps:
2577 	mutex_unlock(&xps_map_mutex);
2578 	cpus_read_unlock();
2579 }
2580 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2581 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2582 {
2583 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2584 }
2585 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2586 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2587 				      u16 index, bool is_rxqs_map)
2588 {
2589 	struct xps_map *new_map;
2590 	int alloc_len = XPS_MIN_MAP_ALLOC;
2591 	int i, pos;
2592 
2593 	for (pos = 0; map && pos < map->len; pos++) {
2594 		if (map->queues[pos] != index)
2595 			continue;
2596 		return map;
2597 	}
2598 
2599 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2600 	if (map) {
2601 		if (pos < map->alloc_len)
2602 			return map;
2603 
2604 		alloc_len = map->alloc_len * 2;
2605 	}
2606 
2607 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2608 	 *  map
2609 	 */
2610 	if (is_rxqs_map)
2611 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2612 	else
2613 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2614 				       cpu_to_node(attr_index));
2615 	if (!new_map)
2616 		return NULL;
2617 
2618 	for (i = 0; i < pos; i++)
2619 		new_map->queues[i] = map->queues[i];
2620 	new_map->alloc_len = alloc_len;
2621 	new_map->len = pos;
2622 
2623 	return new_map;
2624 }
2625 
2626 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2627 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2628 			  u16 index, bool is_rxqs_map)
2629 {
2630 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2631 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2632 	int i, j, tci, numa_node_id = -2;
2633 	int maps_sz, num_tc = 1, tc = 0;
2634 	struct xps_map *map, *new_map;
2635 	bool active = false;
2636 	unsigned int nr_ids;
2637 
2638 	if (dev->num_tc) {
2639 		/* Do not allow XPS on subordinate device directly */
2640 		num_tc = dev->num_tc;
2641 		if (num_tc < 0)
2642 			return -EINVAL;
2643 
2644 		/* If queue belongs to subordinate dev use its map */
2645 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2646 
2647 		tc = netdev_txq_to_tc(dev, index);
2648 		if (tc < 0)
2649 			return -EINVAL;
2650 	}
2651 
2652 	mutex_lock(&xps_map_mutex);
2653 	if (is_rxqs_map) {
2654 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2655 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2656 		nr_ids = dev->num_rx_queues;
2657 	} else {
2658 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2659 		if (num_possible_cpus() > 1) {
2660 			online_mask = cpumask_bits(cpu_online_mask);
2661 			possible_mask = cpumask_bits(cpu_possible_mask);
2662 		}
2663 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2664 		nr_ids = nr_cpu_ids;
2665 	}
2666 
2667 	if (maps_sz < L1_CACHE_BYTES)
2668 		maps_sz = L1_CACHE_BYTES;
2669 
2670 	/* allocate memory for queue storage */
2671 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2672 	     j < nr_ids;) {
2673 		if (!new_dev_maps)
2674 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2675 		if (!new_dev_maps) {
2676 			mutex_unlock(&xps_map_mutex);
2677 			return -ENOMEM;
2678 		}
2679 
2680 		tci = j * num_tc + tc;
2681 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2682 				 NULL;
2683 
2684 		map = expand_xps_map(map, j, index, is_rxqs_map);
2685 		if (!map)
2686 			goto error;
2687 
2688 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2689 	}
2690 
2691 	if (!new_dev_maps)
2692 		goto out_no_new_maps;
2693 
2694 	if (!dev_maps) {
2695 		/* Increment static keys at most once per type */
2696 		static_key_slow_inc_cpuslocked(&xps_needed);
2697 		if (is_rxqs_map)
2698 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2699 	}
2700 
2701 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2702 	     j < nr_ids;) {
2703 		/* copy maps belonging to foreign traffic classes */
2704 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2705 			/* fill in the new device map from the old device map */
2706 			map = xmap_dereference(dev_maps->attr_map[tci]);
2707 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2708 		}
2709 
2710 		/* We need to explicitly update tci as prevous loop
2711 		 * could break out early if dev_maps is NULL.
2712 		 */
2713 		tci = j * num_tc + tc;
2714 
2715 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2716 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2717 			/* add tx-queue to CPU/rx-queue maps */
2718 			int pos = 0;
2719 
2720 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2721 			while ((pos < map->len) && (map->queues[pos] != index))
2722 				pos++;
2723 
2724 			if (pos == map->len)
2725 				map->queues[map->len++] = index;
2726 #ifdef CONFIG_NUMA
2727 			if (!is_rxqs_map) {
2728 				if (numa_node_id == -2)
2729 					numa_node_id = cpu_to_node(j);
2730 				else if (numa_node_id != cpu_to_node(j))
2731 					numa_node_id = -1;
2732 			}
2733 #endif
2734 		} else if (dev_maps) {
2735 			/* fill in the new device map from the old device map */
2736 			map = xmap_dereference(dev_maps->attr_map[tci]);
2737 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2738 		}
2739 
2740 		/* copy maps belonging to foreign traffic classes */
2741 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2742 			/* fill in the new device map from the old device map */
2743 			map = xmap_dereference(dev_maps->attr_map[tci]);
2744 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2745 		}
2746 	}
2747 
2748 	if (is_rxqs_map)
2749 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2750 	else
2751 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2752 
2753 	/* Cleanup old maps */
2754 	if (!dev_maps)
2755 		goto out_no_old_maps;
2756 
2757 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2758 	     j < nr_ids;) {
2759 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2760 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2761 			map = xmap_dereference(dev_maps->attr_map[tci]);
2762 			if (map && map != new_map)
2763 				kfree_rcu(map, rcu);
2764 		}
2765 	}
2766 
2767 	kfree_rcu(dev_maps, rcu);
2768 
2769 out_no_old_maps:
2770 	dev_maps = new_dev_maps;
2771 	active = true;
2772 
2773 out_no_new_maps:
2774 	if (!is_rxqs_map) {
2775 		/* update Tx queue numa node */
2776 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2777 					     (numa_node_id >= 0) ?
2778 					     numa_node_id : NUMA_NO_NODE);
2779 	}
2780 
2781 	if (!dev_maps)
2782 		goto out_no_maps;
2783 
2784 	/* removes tx-queue from unused CPUs/rx-queues */
2785 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2786 	     j < nr_ids;) {
2787 		for (i = tc, tci = j * num_tc; i--; tci++)
2788 			active |= remove_xps_queue(dev_maps, tci, index);
2789 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2790 		    !netif_attr_test_online(j, online_mask, nr_ids))
2791 			active |= remove_xps_queue(dev_maps, tci, index);
2792 		for (i = num_tc - tc, tci++; --i; tci++)
2793 			active |= remove_xps_queue(dev_maps, tci, index);
2794 	}
2795 
2796 	/* free map if not active */
2797 	if (!active)
2798 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2799 
2800 out_no_maps:
2801 	mutex_unlock(&xps_map_mutex);
2802 
2803 	return 0;
2804 error:
2805 	/* remove any maps that we added */
2806 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2807 	     j < nr_ids;) {
2808 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2809 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2810 			map = dev_maps ?
2811 			      xmap_dereference(dev_maps->attr_map[tci]) :
2812 			      NULL;
2813 			if (new_map && new_map != map)
2814 				kfree(new_map);
2815 		}
2816 	}
2817 
2818 	mutex_unlock(&xps_map_mutex);
2819 
2820 	kfree(new_dev_maps);
2821 	return -ENOMEM;
2822 }
2823 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2824 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2825 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2826 			u16 index)
2827 {
2828 	int ret;
2829 
2830 	cpus_read_lock();
2831 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2832 	cpus_read_unlock();
2833 
2834 	return ret;
2835 }
2836 EXPORT_SYMBOL(netif_set_xps_queue);
2837 
2838 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2839 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2840 {
2841 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2842 
2843 	/* Unbind any subordinate channels */
2844 	while (txq-- != &dev->_tx[0]) {
2845 		if (txq->sb_dev)
2846 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2847 	}
2848 }
2849 
netdev_reset_tc(struct net_device * dev)2850 void netdev_reset_tc(struct net_device *dev)
2851 {
2852 #ifdef CONFIG_XPS
2853 	netif_reset_xps_queues_gt(dev, 0);
2854 #endif
2855 	netdev_unbind_all_sb_channels(dev);
2856 
2857 	/* Reset TC configuration of device */
2858 	dev->num_tc = 0;
2859 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2860 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2861 }
2862 EXPORT_SYMBOL(netdev_reset_tc);
2863 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2864 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2865 {
2866 	if (tc >= dev->num_tc)
2867 		return -EINVAL;
2868 
2869 #ifdef CONFIG_XPS
2870 	netif_reset_xps_queues(dev, offset, count);
2871 #endif
2872 	dev->tc_to_txq[tc].count = count;
2873 	dev->tc_to_txq[tc].offset = offset;
2874 	return 0;
2875 }
2876 EXPORT_SYMBOL(netdev_set_tc_queue);
2877 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2878 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2879 {
2880 	if (num_tc > TC_MAX_QUEUE)
2881 		return -EINVAL;
2882 
2883 #ifdef CONFIG_XPS
2884 	netif_reset_xps_queues_gt(dev, 0);
2885 #endif
2886 	netdev_unbind_all_sb_channels(dev);
2887 
2888 	dev->num_tc = num_tc;
2889 	return 0;
2890 }
2891 EXPORT_SYMBOL(netdev_set_num_tc);
2892 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2893 void netdev_unbind_sb_channel(struct net_device *dev,
2894 			      struct net_device *sb_dev)
2895 {
2896 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2897 
2898 #ifdef CONFIG_XPS
2899 	netif_reset_xps_queues_gt(sb_dev, 0);
2900 #endif
2901 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2902 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2903 
2904 	while (txq-- != &dev->_tx[0]) {
2905 		if (txq->sb_dev == sb_dev)
2906 			txq->sb_dev = NULL;
2907 	}
2908 }
2909 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2910 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2911 int netdev_bind_sb_channel_queue(struct net_device *dev,
2912 				 struct net_device *sb_dev,
2913 				 u8 tc, u16 count, u16 offset)
2914 {
2915 	/* Make certain the sb_dev and dev are already configured */
2916 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2917 		return -EINVAL;
2918 
2919 	/* We cannot hand out queues we don't have */
2920 	if ((offset + count) > dev->real_num_tx_queues)
2921 		return -EINVAL;
2922 
2923 	/* Record the mapping */
2924 	sb_dev->tc_to_txq[tc].count = count;
2925 	sb_dev->tc_to_txq[tc].offset = offset;
2926 
2927 	/* Provide a way for Tx queue to find the tc_to_txq map or
2928 	 * XPS map for itself.
2929 	 */
2930 	while (count--)
2931 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2932 
2933 	return 0;
2934 }
2935 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2936 
netdev_set_sb_channel(struct net_device * dev,u16 channel)2937 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2938 {
2939 	/* Do not use a multiqueue device to represent a subordinate channel */
2940 	if (netif_is_multiqueue(dev))
2941 		return -ENODEV;
2942 
2943 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2944 	 * Channel 0 is meant to be "native" mode and used only to represent
2945 	 * the main root device. We allow writing 0 to reset the device back
2946 	 * to normal mode after being used as a subordinate channel.
2947 	 */
2948 	if (channel > S16_MAX)
2949 		return -EINVAL;
2950 
2951 	dev->num_tc = -channel;
2952 
2953 	return 0;
2954 }
2955 EXPORT_SYMBOL(netdev_set_sb_channel);
2956 
2957 /*
2958  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2959  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2960  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2961 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2962 {
2963 	bool disabling;
2964 	int rc;
2965 
2966 	disabling = txq < dev->real_num_tx_queues;
2967 
2968 	if (txq < 1 || txq > dev->num_tx_queues)
2969 		return -EINVAL;
2970 
2971 	if (dev->reg_state == NETREG_REGISTERED ||
2972 	    dev->reg_state == NETREG_UNREGISTERING) {
2973 		ASSERT_RTNL();
2974 
2975 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2976 						  txq);
2977 		if (rc)
2978 			return rc;
2979 
2980 		if (dev->num_tc)
2981 			netif_setup_tc(dev, txq);
2982 
2983 		dev->real_num_tx_queues = txq;
2984 
2985 		if (disabling) {
2986 			synchronize_net();
2987 			qdisc_reset_all_tx_gt(dev, txq);
2988 #ifdef CONFIG_XPS
2989 			netif_reset_xps_queues_gt(dev, txq);
2990 #endif
2991 		}
2992 	} else {
2993 		dev->real_num_tx_queues = txq;
2994 	}
2995 
2996 	return 0;
2997 }
2998 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2999 
3000 #ifdef CONFIG_SYSFS
3001 /**
3002  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3003  *	@dev: Network device
3004  *	@rxq: Actual number of RX queues
3005  *
3006  *	This must be called either with the rtnl_lock held or before
3007  *	registration of the net device.  Returns 0 on success, or a
3008  *	negative error code.  If called before registration, it always
3009  *	succeeds.
3010  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3011 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3012 {
3013 	int rc;
3014 
3015 	if (rxq < 1 || rxq > dev->num_rx_queues)
3016 		return -EINVAL;
3017 
3018 	if (dev->reg_state == NETREG_REGISTERED) {
3019 		ASSERT_RTNL();
3020 
3021 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3022 						  rxq);
3023 		if (rc)
3024 			return rc;
3025 	}
3026 
3027 	dev->real_num_rx_queues = rxq;
3028 	return 0;
3029 }
3030 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3031 #endif
3032 
3033 /**
3034  * netif_get_num_default_rss_queues - default number of RSS queues
3035  *
3036  * This routine should set an upper limit on the number of RSS queues
3037  * used by default by multiqueue devices.
3038  */
netif_get_num_default_rss_queues(void)3039 int netif_get_num_default_rss_queues(void)
3040 {
3041 	return is_kdump_kernel() ?
3042 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3043 }
3044 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3045 
__netif_reschedule(struct Qdisc * q)3046 static void __netif_reschedule(struct Qdisc *q)
3047 {
3048 	struct softnet_data *sd;
3049 	unsigned long flags;
3050 
3051 	local_irq_save(flags);
3052 	sd = this_cpu_ptr(&softnet_data);
3053 	q->next_sched = NULL;
3054 	*sd->output_queue_tailp = q;
3055 	sd->output_queue_tailp = &q->next_sched;
3056 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3057 	local_irq_restore(flags);
3058 }
3059 
__netif_schedule(struct Qdisc * q)3060 void __netif_schedule(struct Qdisc *q)
3061 {
3062 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3063 		__netif_reschedule(q);
3064 }
3065 EXPORT_SYMBOL(__netif_schedule);
3066 
3067 struct dev_kfree_skb_cb {
3068 	enum skb_free_reason reason;
3069 };
3070 
get_kfree_skb_cb(const struct sk_buff * skb)3071 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3072 {
3073 	return (struct dev_kfree_skb_cb *)skb->cb;
3074 }
3075 
netif_schedule_queue(struct netdev_queue * txq)3076 void netif_schedule_queue(struct netdev_queue *txq)
3077 {
3078 	rcu_read_lock();
3079 	if (!netif_xmit_stopped(txq)) {
3080 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3081 
3082 		__netif_schedule(q);
3083 	}
3084 	rcu_read_unlock();
3085 }
3086 EXPORT_SYMBOL(netif_schedule_queue);
3087 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3088 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3089 {
3090 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3091 		struct Qdisc *q;
3092 
3093 		rcu_read_lock();
3094 		q = rcu_dereference(dev_queue->qdisc);
3095 		__netif_schedule(q);
3096 		rcu_read_unlock();
3097 	}
3098 }
3099 EXPORT_SYMBOL(netif_tx_wake_queue);
3100 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3101 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3102 {
3103 	unsigned long flags;
3104 
3105 	if (unlikely(!skb))
3106 		return;
3107 
3108 	if (likely(refcount_read(&skb->users) == 1)) {
3109 		smp_rmb();
3110 		refcount_set(&skb->users, 0);
3111 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3112 		return;
3113 	}
3114 	get_kfree_skb_cb(skb)->reason = reason;
3115 	local_irq_save(flags);
3116 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3117 	__this_cpu_write(softnet_data.completion_queue, skb);
3118 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3119 	local_irq_restore(flags);
3120 }
3121 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3122 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3123 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3124 {
3125 	if (in_irq() || irqs_disabled())
3126 		__dev_kfree_skb_irq(skb, reason);
3127 	else
3128 		dev_kfree_skb(skb);
3129 }
3130 EXPORT_SYMBOL(__dev_kfree_skb_any);
3131 
3132 
3133 /**
3134  * netif_device_detach - mark device as removed
3135  * @dev: network device
3136  *
3137  * Mark device as removed from system and therefore no longer available.
3138  */
netif_device_detach(struct net_device * dev)3139 void netif_device_detach(struct net_device *dev)
3140 {
3141 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3142 	    netif_running(dev)) {
3143 		netif_tx_stop_all_queues(dev);
3144 	}
3145 }
3146 EXPORT_SYMBOL(netif_device_detach);
3147 
3148 /**
3149  * netif_device_attach - mark device as attached
3150  * @dev: network device
3151  *
3152  * Mark device as attached from system and restart if needed.
3153  */
netif_device_attach(struct net_device * dev)3154 void netif_device_attach(struct net_device *dev)
3155 {
3156 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3157 	    netif_running(dev)) {
3158 		netif_tx_wake_all_queues(dev);
3159 		__netdev_watchdog_up(dev);
3160 	}
3161 }
3162 EXPORT_SYMBOL(netif_device_attach);
3163 
3164 /*
3165  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3166  * to be used as a distribution range.
3167  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3168 static u16 skb_tx_hash(const struct net_device *dev,
3169 		       const struct net_device *sb_dev,
3170 		       struct sk_buff *skb)
3171 {
3172 	u32 hash;
3173 	u16 qoffset = 0;
3174 	u16 qcount = dev->real_num_tx_queues;
3175 
3176 	if (dev->num_tc) {
3177 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3178 
3179 		qoffset = sb_dev->tc_to_txq[tc].offset;
3180 		qcount = sb_dev->tc_to_txq[tc].count;
3181 		if (unlikely(!qcount)) {
3182 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3183 					     sb_dev->name, qoffset, tc);
3184 			qoffset = 0;
3185 			qcount = dev->real_num_tx_queues;
3186 		}
3187 	}
3188 
3189 	if (skb_rx_queue_recorded(skb)) {
3190 		hash = skb_get_rx_queue(skb);
3191 		if (hash >= qoffset)
3192 			hash -= qoffset;
3193 		while (unlikely(hash >= qcount))
3194 			hash -= qcount;
3195 		return hash + qoffset;
3196 	}
3197 
3198 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3199 }
3200 
skb_warn_bad_offload(const struct sk_buff * skb)3201 static void skb_warn_bad_offload(const struct sk_buff *skb)
3202 {
3203 	static const netdev_features_t null_features;
3204 	struct net_device *dev = skb->dev;
3205 	const char *name = "";
3206 
3207 	if (!net_ratelimit())
3208 		return;
3209 
3210 	if (dev) {
3211 		if (dev->dev.parent)
3212 			name = dev_driver_string(dev->dev.parent);
3213 		else
3214 			name = netdev_name(dev);
3215 	}
3216 	skb_dump(KERN_WARNING, skb, false);
3217 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3218 	     name, dev ? &dev->features : &null_features,
3219 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3220 }
3221 
3222 /*
3223  * Invalidate hardware checksum when packet is to be mangled, and
3224  * complete checksum manually on outgoing path.
3225  */
skb_checksum_help(struct sk_buff * skb)3226 int skb_checksum_help(struct sk_buff *skb)
3227 {
3228 	__wsum csum;
3229 	int ret = 0, offset;
3230 
3231 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3232 		goto out_set_summed;
3233 
3234 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3235 		skb_warn_bad_offload(skb);
3236 		return -EINVAL;
3237 	}
3238 
3239 	/* Before computing a checksum, we should make sure no frag could
3240 	 * be modified by an external entity : checksum could be wrong.
3241 	 */
3242 	if (skb_has_shared_frag(skb)) {
3243 		ret = __skb_linearize(skb);
3244 		if (ret)
3245 			goto out;
3246 	}
3247 
3248 	offset = skb_checksum_start_offset(skb);
3249 	ret = -EINVAL;
3250 	if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3251 		goto out;
3252 
3253 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3254 
3255 	offset += skb->csum_offset;
3256 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3257 		goto out;
3258 
3259 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3260 	if (ret)
3261 		goto out;
3262 
3263 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3264 out_set_summed:
3265 	skb->ip_summed = CHECKSUM_NONE;
3266 out:
3267 	return ret;
3268 }
3269 EXPORT_SYMBOL(skb_checksum_help);
3270 
skb_crc32c_csum_help(struct sk_buff * skb)3271 int skb_crc32c_csum_help(struct sk_buff *skb)
3272 {
3273 	__le32 crc32c_csum;
3274 	int ret = 0, offset, start;
3275 
3276 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3277 		goto out;
3278 
3279 	if (unlikely(skb_is_gso(skb)))
3280 		goto out;
3281 
3282 	/* Before computing a checksum, we should make sure no frag could
3283 	 * be modified by an external entity : checksum could be wrong.
3284 	 */
3285 	if (unlikely(skb_has_shared_frag(skb))) {
3286 		ret = __skb_linearize(skb);
3287 		if (ret)
3288 			goto out;
3289 	}
3290 	start = skb_checksum_start_offset(skb);
3291 	offset = start + offsetof(struct sctphdr, checksum);
3292 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3293 		ret = -EINVAL;
3294 		goto out;
3295 	}
3296 
3297 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3298 	if (ret)
3299 		goto out;
3300 
3301 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3302 						  skb->len - start, ~(__u32)0,
3303 						  crc32c_csum_stub));
3304 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3305 	skb->ip_summed = CHECKSUM_NONE;
3306 	skb->csum_not_inet = 0;
3307 out:
3308 	return ret;
3309 }
3310 
skb_network_protocol(struct sk_buff * skb,int * depth)3311 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3312 {
3313 	__be16 type = skb->protocol;
3314 
3315 	/* Tunnel gso handlers can set protocol to ethernet. */
3316 	if (type == htons(ETH_P_TEB)) {
3317 		struct ethhdr *eth;
3318 
3319 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3320 			return 0;
3321 
3322 		eth = (struct ethhdr *)skb->data;
3323 		type = eth->h_proto;
3324 	}
3325 
3326 	return __vlan_get_protocol(skb, type, depth);
3327 }
3328 
3329 /**
3330  *	skb_mac_gso_segment - mac layer segmentation handler.
3331  *	@skb: buffer to segment
3332  *	@features: features for the output path (see dev->features)
3333  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3334 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3335 				    netdev_features_t features)
3336 {
3337 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3338 	struct packet_offload *ptype;
3339 	int vlan_depth = skb->mac_len;
3340 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3341 
3342 	if (unlikely(!type))
3343 		return ERR_PTR(-EINVAL);
3344 
3345 	__skb_pull(skb, vlan_depth);
3346 
3347 	rcu_read_lock();
3348 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3349 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3350 			segs = ptype->callbacks.gso_segment(skb, features);
3351 			break;
3352 		}
3353 	}
3354 	rcu_read_unlock();
3355 
3356 	__skb_push(skb, skb->data - skb_mac_header(skb));
3357 
3358 	return segs;
3359 }
3360 EXPORT_SYMBOL(skb_mac_gso_segment);
3361 
3362 
3363 /* openvswitch calls this on rx path, so we need a different check.
3364  */
skb_needs_check(struct sk_buff * skb,bool tx_path)3365 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3366 {
3367 	if (tx_path)
3368 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3369 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3370 
3371 	return skb->ip_summed == CHECKSUM_NONE;
3372 }
3373 
3374 /**
3375  *	__skb_gso_segment - Perform segmentation on skb.
3376  *	@skb: buffer to segment
3377  *	@features: features for the output path (see dev->features)
3378  *	@tx_path: whether it is called in TX path
3379  *
3380  *	This function segments the given skb and returns a list of segments.
3381  *
3382  *	It may return NULL if the skb requires no segmentation.  This is
3383  *	only possible when GSO is used for verifying header integrity.
3384  *
3385  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3386  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3387 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3388 				  netdev_features_t features, bool tx_path)
3389 {
3390 	struct sk_buff *segs;
3391 
3392 	if (unlikely(skb_needs_check(skb, tx_path))) {
3393 		int err;
3394 
3395 		/* We're going to init ->check field in TCP or UDP header */
3396 		err = skb_cow_head(skb, 0);
3397 		if (err < 0)
3398 			return ERR_PTR(err);
3399 	}
3400 
3401 	/* Only report GSO partial support if it will enable us to
3402 	 * support segmentation on this frame without needing additional
3403 	 * work.
3404 	 */
3405 	if (features & NETIF_F_GSO_PARTIAL) {
3406 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3407 		struct net_device *dev = skb->dev;
3408 
3409 		partial_features |= dev->features & dev->gso_partial_features;
3410 		if (!skb_gso_ok(skb, features | partial_features))
3411 			features &= ~NETIF_F_GSO_PARTIAL;
3412 	}
3413 
3414 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3415 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3416 
3417 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3418 	SKB_GSO_CB(skb)->encap_level = 0;
3419 
3420 	skb_reset_mac_header(skb);
3421 	skb_reset_mac_len(skb);
3422 
3423 	segs = skb_mac_gso_segment(skb, features);
3424 
3425 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3426 		skb_warn_bad_offload(skb);
3427 
3428 	return segs;
3429 }
3430 EXPORT_SYMBOL(__skb_gso_segment);
3431 
3432 /* Take action when hardware reception checksum errors are detected. */
3433 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3434 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3435 {
3436 	if (net_ratelimit()) {
3437 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3438 		skb_dump(KERN_ERR, skb, true);
3439 		dump_stack();
3440 	}
3441 }
3442 EXPORT_SYMBOL(netdev_rx_csum_fault);
3443 #endif
3444 
3445 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3446 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3447 {
3448 #ifdef CONFIG_HIGHMEM
3449 	int i;
3450 
3451 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3452 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3453 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3454 
3455 			if (PageHighMem(skb_frag_page(frag)))
3456 				return 1;
3457 		}
3458 	}
3459 #endif
3460 	return 0;
3461 }
3462 
3463 /* If MPLS offload request, verify we are testing hardware MPLS features
3464  * instead of standard features for the netdev.
3465  */
3466 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3467 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3468 					   netdev_features_t features,
3469 					   __be16 type)
3470 {
3471 	if (eth_p_mpls(type))
3472 		features &= skb->dev->mpls_features;
3473 
3474 	return features;
3475 }
3476 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3477 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3478 					   netdev_features_t features,
3479 					   __be16 type)
3480 {
3481 	return features;
3482 }
3483 #endif
3484 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3485 static netdev_features_t harmonize_features(struct sk_buff *skb,
3486 	netdev_features_t features)
3487 {
3488 	__be16 type;
3489 
3490 	type = skb_network_protocol(skb, NULL);
3491 	features = net_mpls_features(skb, features, type);
3492 
3493 	if (skb->ip_summed != CHECKSUM_NONE &&
3494 	    !can_checksum_protocol(features, type)) {
3495 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3496 	}
3497 	if (illegal_highdma(skb->dev, skb))
3498 		features &= ~NETIF_F_SG;
3499 
3500 	return features;
3501 }
3502 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3503 netdev_features_t passthru_features_check(struct sk_buff *skb,
3504 					  struct net_device *dev,
3505 					  netdev_features_t features)
3506 {
3507 	return features;
3508 }
3509 EXPORT_SYMBOL(passthru_features_check);
3510 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3511 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3512 					     struct net_device *dev,
3513 					     netdev_features_t features)
3514 {
3515 	return vlan_features_check(skb, features);
3516 }
3517 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3518 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3519 					    struct net_device *dev,
3520 					    netdev_features_t features)
3521 {
3522 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3523 
3524 	if (gso_segs > dev->gso_max_segs)
3525 		return features & ~NETIF_F_GSO_MASK;
3526 
3527 	/* Support for GSO partial features requires software
3528 	 * intervention before we can actually process the packets
3529 	 * so we need to strip support for any partial features now
3530 	 * and we can pull them back in after we have partially
3531 	 * segmented the frame.
3532 	 */
3533 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3534 		features &= ~dev->gso_partial_features;
3535 
3536 	/* Make sure to clear the IPv4 ID mangling feature if the
3537 	 * IPv4 header has the potential to be fragmented.
3538 	 */
3539 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3540 		struct iphdr *iph = skb->encapsulation ?
3541 				    inner_ip_hdr(skb) : ip_hdr(skb);
3542 
3543 		if (!(iph->frag_off & htons(IP_DF)))
3544 			features &= ~NETIF_F_TSO_MANGLEID;
3545 	}
3546 
3547 	return features;
3548 }
3549 
netif_skb_features(struct sk_buff * skb)3550 netdev_features_t netif_skb_features(struct sk_buff *skb)
3551 {
3552 	struct net_device *dev = skb->dev;
3553 	netdev_features_t features = dev->features;
3554 
3555 	if (skb_is_gso(skb))
3556 		features = gso_features_check(skb, dev, features);
3557 
3558 	/* If encapsulation offload request, verify we are testing
3559 	 * hardware encapsulation features instead of standard
3560 	 * features for the netdev
3561 	 */
3562 	if (skb->encapsulation)
3563 		features &= dev->hw_enc_features;
3564 
3565 	if (skb_vlan_tagged(skb))
3566 		features = netdev_intersect_features(features,
3567 						     dev->vlan_features |
3568 						     NETIF_F_HW_VLAN_CTAG_TX |
3569 						     NETIF_F_HW_VLAN_STAG_TX);
3570 
3571 	if (dev->netdev_ops->ndo_features_check)
3572 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3573 								features);
3574 	else
3575 		features &= dflt_features_check(skb, dev, features);
3576 
3577 	return harmonize_features(skb, features);
3578 }
3579 EXPORT_SYMBOL(netif_skb_features);
3580 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3581 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3582 		    struct netdev_queue *txq, bool more)
3583 {
3584 	unsigned int len;
3585 	int rc;
3586 
3587 	if (dev_nit_active(dev))
3588 		dev_queue_xmit_nit(skb, dev);
3589 
3590 	len = skb->len;
3591 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3592 	trace_net_dev_start_xmit(skb, dev);
3593 	rc = netdev_start_xmit(skb, dev, txq, more);
3594 	trace_net_dev_xmit(skb, rc, dev, len);
3595 
3596 	return rc;
3597 }
3598 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3599 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3600 				    struct netdev_queue *txq, int *ret)
3601 {
3602 	struct sk_buff *skb = first;
3603 	int rc = NETDEV_TX_OK;
3604 
3605 	while (skb) {
3606 		struct sk_buff *next = skb->next;
3607 
3608 		skb_mark_not_on_list(skb);
3609 		rc = xmit_one(skb, dev, txq, next != NULL);
3610 		if (unlikely(!dev_xmit_complete(rc))) {
3611 			skb->next = next;
3612 			goto out;
3613 		}
3614 
3615 		skb = next;
3616 		if (netif_tx_queue_stopped(txq) && skb) {
3617 			rc = NETDEV_TX_BUSY;
3618 			break;
3619 		}
3620 	}
3621 
3622 out:
3623 	*ret = rc;
3624 	return skb;
3625 }
3626 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3627 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3628 					  netdev_features_t features)
3629 {
3630 	if (skb_vlan_tag_present(skb) &&
3631 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3632 		skb = __vlan_hwaccel_push_inside(skb);
3633 	return skb;
3634 }
3635 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3636 int skb_csum_hwoffload_help(struct sk_buff *skb,
3637 			    const netdev_features_t features)
3638 {
3639 	if (unlikely(skb->csum_not_inet))
3640 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3641 			skb_crc32c_csum_help(skb);
3642 
3643 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3644 }
3645 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3646 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3647 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3648 {
3649 	netdev_features_t features;
3650 
3651 	features = netif_skb_features(skb);
3652 	skb = validate_xmit_vlan(skb, features);
3653 	if (unlikely(!skb))
3654 		goto out_null;
3655 
3656 	skb = sk_validate_xmit_skb(skb, dev);
3657 	if (unlikely(!skb))
3658 		goto out_null;
3659 
3660 	if (netif_needs_gso(skb, features)) {
3661 		struct sk_buff *segs;
3662 
3663 		segs = skb_gso_segment(skb, features);
3664 		if (IS_ERR(segs)) {
3665 			goto out_kfree_skb;
3666 		} else if (segs) {
3667 			consume_skb(skb);
3668 			skb = segs;
3669 		}
3670 	} else {
3671 		if (skb_needs_linearize(skb, features) &&
3672 		    __skb_linearize(skb))
3673 			goto out_kfree_skb;
3674 
3675 		/* If packet is not checksummed and device does not
3676 		 * support checksumming for this protocol, complete
3677 		 * checksumming here.
3678 		 */
3679 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3680 			if (skb->encapsulation)
3681 				skb_set_inner_transport_header(skb,
3682 							       skb_checksum_start_offset(skb));
3683 			else
3684 				skb_set_transport_header(skb,
3685 							 skb_checksum_start_offset(skb));
3686 			if (skb_csum_hwoffload_help(skb, features))
3687 				goto out_kfree_skb;
3688 		}
3689 	}
3690 
3691 	skb = validate_xmit_xfrm(skb, features, again);
3692 
3693 	return skb;
3694 
3695 out_kfree_skb:
3696 	kfree_skb(skb);
3697 out_null:
3698 	atomic_long_inc(&dev->tx_dropped);
3699 	return NULL;
3700 }
3701 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3702 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3703 {
3704 	struct sk_buff *next, *head = NULL, *tail;
3705 
3706 	for (; skb != NULL; skb = next) {
3707 		next = skb->next;
3708 		skb_mark_not_on_list(skb);
3709 
3710 		/* in case skb wont be segmented, point to itself */
3711 		skb->prev = skb;
3712 
3713 		skb = validate_xmit_skb(skb, dev, again);
3714 		if (!skb)
3715 			continue;
3716 
3717 		if (!head)
3718 			head = skb;
3719 		else
3720 			tail->next = skb;
3721 		/* If skb was segmented, skb->prev points to
3722 		 * the last segment. If not, it still contains skb.
3723 		 */
3724 		tail = skb->prev;
3725 	}
3726 	return head;
3727 }
3728 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3729 
qdisc_pkt_len_init(struct sk_buff * skb)3730 static void qdisc_pkt_len_init(struct sk_buff *skb)
3731 {
3732 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3733 
3734 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3735 
3736 	/* To get more precise estimation of bytes sent on wire,
3737 	 * we add to pkt_len the headers size of all segments
3738 	 */
3739 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3740 		unsigned int hdr_len;
3741 		u16 gso_segs = shinfo->gso_segs;
3742 
3743 		/* mac layer + network layer */
3744 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3745 
3746 		/* + transport layer */
3747 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3748 			const struct tcphdr *th;
3749 			struct tcphdr _tcphdr;
3750 
3751 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3752 						sizeof(_tcphdr), &_tcphdr);
3753 			if (likely(th))
3754 				hdr_len += __tcp_hdrlen(th);
3755 		} else {
3756 			struct udphdr _udphdr;
3757 
3758 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3759 					       sizeof(_udphdr), &_udphdr))
3760 				hdr_len += sizeof(struct udphdr);
3761 		}
3762 
3763 		if (shinfo->gso_type & SKB_GSO_DODGY)
3764 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3765 						shinfo->gso_size);
3766 
3767 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3768 	}
3769 }
3770 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3771 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3772 				 struct net_device *dev,
3773 				 struct netdev_queue *txq)
3774 {
3775 	spinlock_t *root_lock = qdisc_lock(q);
3776 	struct sk_buff *to_free = NULL;
3777 	bool contended;
3778 	int rc;
3779 
3780 	qdisc_calculate_pkt_len(skb, q);
3781 
3782 	if (q->flags & TCQ_F_NOLOCK) {
3783 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3784 		if (likely(!netif_xmit_frozen_or_stopped(txq)))
3785 			qdisc_run(q);
3786 
3787 		if (unlikely(to_free))
3788 			kfree_skb_list(to_free);
3789 		return rc;
3790 	}
3791 
3792 	/*
3793 	 * Heuristic to force contended enqueues to serialize on a
3794 	 * separate lock before trying to get qdisc main lock.
3795 	 * This permits qdisc->running owner to get the lock more
3796 	 * often and dequeue packets faster.
3797 	 */
3798 	contended = qdisc_is_running(q);
3799 	if (unlikely(contended))
3800 		spin_lock(&q->busylock);
3801 
3802 	spin_lock(root_lock);
3803 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3804 		__qdisc_drop(skb, &to_free);
3805 		rc = NET_XMIT_DROP;
3806 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3807 		   qdisc_run_begin(q)) {
3808 		/*
3809 		 * This is a work-conserving queue; there are no old skbs
3810 		 * waiting to be sent out; and the qdisc is not running -
3811 		 * xmit the skb directly.
3812 		 */
3813 
3814 		qdisc_bstats_update(q, skb);
3815 
3816 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3817 			if (unlikely(contended)) {
3818 				spin_unlock(&q->busylock);
3819 				contended = false;
3820 			}
3821 			__qdisc_run(q);
3822 		}
3823 
3824 		qdisc_run_end(q);
3825 		rc = NET_XMIT_SUCCESS;
3826 	} else {
3827 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3828 		if (qdisc_run_begin(q)) {
3829 			if (unlikely(contended)) {
3830 				spin_unlock(&q->busylock);
3831 				contended = false;
3832 			}
3833 			__qdisc_run(q);
3834 			qdisc_run_end(q);
3835 		}
3836 	}
3837 	spin_unlock(root_lock);
3838 	if (unlikely(to_free))
3839 		kfree_skb_list(to_free);
3840 	if (unlikely(contended))
3841 		spin_unlock(&q->busylock);
3842 	return rc;
3843 }
3844 
3845 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3846 static void skb_update_prio(struct sk_buff *skb)
3847 {
3848 	const struct netprio_map *map;
3849 	const struct sock *sk;
3850 	unsigned int prioidx;
3851 
3852 	if (skb->priority)
3853 		return;
3854 	map = rcu_dereference_bh(skb->dev->priomap);
3855 	if (!map)
3856 		return;
3857 	sk = skb_to_full_sk(skb);
3858 	if (!sk)
3859 		return;
3860 
3861 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3862 
3863 	if (prioidx < map->priomap_len)
3864 		skb->priority = map->priomap[prioidx];
3865 }
3866 #else
3867 #define skb_update_prio(skb)
3868 #endif
3869 
3870 /**
3871  *	dev_loopback_xmit - loop back @skb
3872  *	@net: network namespace this loopback is happening in
3873  *	@sk:  sk needed to be a netfilter okfn
3874  *	@skb: buffer to transmit
3875  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3876 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3877 {
3878 	skb_reset_mac_header(skb);
3879 	__skb_pull(skb, skb_network_offset(skb));
3880 	skb->pkt_type = PACKET_LOOPBACK;
3881 	if (skb->ip_summed == CHECKSUM_NONE)
3882 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3883 	WARN_ON(!skb_dst(skb));
3884 	skb_dst_force(skb);
3885 	netif_rx_ni(skb);
3886 	return 0;
3887 }
3888 EXPORT_SYMBOL(dev_loopback_xmit);
3889 
3890 #ifdef CONFIG_NET_EGRESS
3891 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3892 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3893 {
3894 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3895 	struct tcf_result cl_res;
3896 
3897 	if (!miniq)
3898 		return skb;
3899 
3900 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3901 	qdisc_skb_cb(skb)->mru = 0;
3902 	mini_qdisc_bstats_cpu_update(miniq, skb);
3903 
3904 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3905 	case TC_ACT_OK:
3906 	case TC_ACT_RECLASSIFY:
3907 		skb->tc_index = TC_H_MIN(cl_res.classid);
3908 		break;
3909 	case TC_ACT_SHOT:
3910 		mini_qdisc_qstats_cpu_drop(miniq);
3911 		*ret = NET_XMIT_DROP;
3912 		kfree_skb(skb);
3913 		return NULL;
3914 	case TC_ACT_STOLEN:
3915 	case TC_ACT_QUEUED:
3916 	case TC_ACT_TRAP:
3917 		*ret = NET_XMIT_SUCCESS;
3918 		consume_skb(skb);
3919 		return NULL;
3920 	case TC_ACT_REDIRECT:
3921 		/* No need to push/pop skb's mac_header here on egress! */
3922 		skb_do_redirect(skb);
3923 		*ret = NET_XMIT_SUCCESS;
3924 		return NULL;
3925 	default:
3926 		break;
3927 	}
3928 
3929 	return skb;
3930 }
3931 #endif /* CONFIG_NET_EGRESS */
3932 
3933 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3934 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3935 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3936 {
3937 	struct xps_map *map;
3938 	int queue_index = -1;
3939 
3940 	if (dev->num_tc) {
3941 		tci *= dev->num_tc;
3942 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3943 	}
3944 
3945 	map = rcu_dereference(dev_maps->attr_map[tci]);
3946 	if (map) {
3947 		if (map->len == 1)
3948 			queue_index = map->queues[0];
3949 		else
3950 			queue_index = map->queues[reciprocal_scale(
3951 						skb_get_hash(skb), map->len)];
3952 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3953 			queue_index = -1;
3954 	}
3955 	return queue_index;
3956 }
3957 #endif
3958 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3959 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3960 			 struct sk_buff *skb)
3961 {
3962 #ifdef CONFIG_XPS
3963 	struct xps_dev_maps *dev_maps;
3964 	struct sock *sk = skb->sk;
3965 	int queue_index = -1;
3966 
3967 	if (!static_key_false(&xps_needed))
3968 		return -1;
3969 
3970 	rcu_read_lock();
3971 	if (!static_key_false(&xps_rxqs_needed))
3972 		goto get_cpus_map;
3973 
3974 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3975 	if (dev_maps) {
3976 		int tci = sk_rx_queue_get(sk);
3977 
3978 		if (tci >= 0 && tci < dev->num_rx_queues)
3979 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3980 							  tci);
3981 	}
3982 
3983 get_cpus_map:
3984 	if (queue_index < 0) {
3985 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3986 		if (dev_maps) {
3987 			unsigned int tci = skb->sender_cpu - 1;
3988 
3989 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3990 							  tci);
3991 		}
3992 	}
3993 	rcu_read_unlock();
3994 
3995 	return queue_index;
3996 #else
3997 	return -1;
3998 #endif
3999 }
4000 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4001 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4002 		     struct net_device *sb_dev)
4003 {
4004 	return 0;
4005 }
4006 EXPORT_SYMBOL(dev_pick_tx_zero);
4007 
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4008 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4009 		       struct net_device *sb_dev)
4010 {
4011 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4012 }
4013 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4014 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4015 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4016 		     struct net_device *sb_dev)
4017 {
4018 	struct sock *sk = skb->sk;
4019 	int queue_index = sk_tx_queue_get(sk);
4020 
4021 	sb_dev = sb_dev ? : dev;
4022 
4023 	if (queue_index < 0 || skb->ooo_okay ||
4024 	    queue_index >= dev->real_num_tx_queues) {
4025 		int new_index = get_xps_queue(dev, sb_dev, skb);
4026 
4027 		if (new_index < 0)
4028 			new_index = skb_tx_hash(dev, sb_dev, skb);
4029 
4030 		if (queue_index != new_index && sk &&
4031 		    sk_fullsock(sk) &&
4032 		    rcu_access_pointer(sk->sk_dst_cache))
4033 			sk_tx_queue_set(sk, new_index);
4034 
4035 		queue_index = new_index;
4036 	}
4037 
4038 	return queue_index;
4039 }
4040 EXPORT_SYMBOL(netdev_pick_tx);
4041 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4042 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4043 					 struct sk_buff *skb,
4044 					 struct net_device *sb_dev)
4045 {
4046 	int queue_index = 0;
4047 
4048 #ifdef CONFIG_XPS
4049 	u32 sender_cpu = skb->sender_cpu - 1;
4050 
4051 	if (sender_cpu >= (u32)NR_CPUS)
4052 		skb->sender_cpu = raw_smp_processor_id() + 1;
4053 #endif
4054 
4055 	if (dev->real_num_tx_queues != 1) {
4056 		const struct net_device_ops *ops = dev->netdev_ops;
4057 
4058 		if (ops->ndo_select_queue)
4059 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4060 		else
4061 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4062 
4063 		queue_index = netdev_cap_txqueue(dev, queue_index);
4064 	}
4065 
4066 	skb_set_queue_mapping(skb, queue_index);
4067 	return netdev_get_tx_queue(dev, queue_index);
4068 }
4069 
4070 /**
4071  *	__dev_queue_xmit - transmit a buffer
4072  *	@skb: buffer to transmit
4073  *	@sb_dev: suboordinate device used for L2 forwarding offload
4074  *
4075  *	Queue a buffer for transmission to a network device. The caller must
4076  *	have set the device and priority and built the buffer before calling
4077  *	this function. The function can be called from an interrupt.
4078  *
4079  *	A negative errno code is returned on a failure. A success does not
4080  *	guarantee the frame will be transmitted as it may be dropped due
4081  *	to congestion or traffic shaping.
4082  *
4083  * -----------------------------------------------------------------------------------
4084  *      I notice this method can also return errors from the queue disciplines,
4085  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4086  *      be positive.
4087  *
4088  *      Regardless of the return value, the skb is consumed, so it is currently
4089  *      difficult to retry a send to this method.  (You can bump the ref count
4090  *      before sending to hold a reference for retry if you are careful.)
4091  *
4092  *      When calling this method, interrupts MUST be enabled.  This is because
4093  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4094  *          --BLG
4095  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4096 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4097 {
4098 	struct net_device *dev = skb->dev;
4099 	struct netdev_queue *txq;
4100 	struct Qdisc *q;
4101 	int rc = -ENOMEM;
4102 	bool again = false;
4103 
4104 	skb_reset_mac_header(skb);
4105 	skb_assert_len(skb);
4106 
4107 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4108 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4109 
4110 	/* Disable soft irqs for various locks below. Also
4111 	 * stops preemption for RCU.
4112 	 */
4113 	rcu_read_lock_bh();
4114 
4115 	skb_update_prio(skb);
4116 
4117 	qdisc_pkt_len_init(skb);
4118 #ifdef CONFIG_NET_CLS_ACT
4119 	skb->tc_at_ingress = 0;
4120 # ifdef CONFIG_NET_EGRESS
4121 	if (static_branch_unlikely(&egress_needed_key)) {
4122 		skb = sch_handle_egress(skb, &rc, dev);
4123 		if (!skb)
4124 			goto out;
4125 	}
4126 # endif
4127 #endif
4128 	/* If device/qdisc don't need skb->dst, release it right now while
4129 	 * its hot in this cpu cache.
4130 	 */
4131 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4132 		skb_dst_drop(skb);
4133 	else
4134 		skb_dst_force(skb);
4135 
4136 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4137 	q = rcu_dereference_bh(txq->qdisc);
4138 
4139 	trace_net_dev_queue(skb);
4140 	if (q->enqueue) {
4141 		rc = __dev_xmit_skb(skb, q, dev, txq);
4142 		goto out;
4143 	}
4144 
4145 	/* The device has no queue. Common case for software devices:
4146 	 * loopback, all the sorts of tunnels...
4147 
4148 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4149 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4150 	 * counters.)
4151 	 * However, it is possible, that they rely on protection
4152 	 * made by us here.
4153 
4154 	 * Check this and shot the lock. It is not prone from deadlocks.
4155 	 *Either shot noqueue qdisc, it is even simpler 8)
4156 	 */
4157 	if (dev->flags & IFF_UP) {
4158 		int cpu = smp_processor_id(); /* ok because BHs are off */
4159 
4160 		/* Other cpus might concurrently change txq->xmit_lock_owner
4161 		 * to -1 or to their cpu id, but not to our id.
4162 		 */
4163 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4164 			if (dev_xmit_recursion())
4165 				goto recursion_alert;
4166 
4167 			skb = validate_xmit_skb(skb, dev, &again);
4168 			if (!skb)
4169 				goto out;
4170 
4171 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4172 			HARD_TX_LOCK(dev, txq, cpu);
4173 
4174 			if (!netif_xmit_stopped(txq)) {
4175 				dev_xmit_recursion_inc();
4176 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4177 				dev_xmit_recursion_dec();
4178 				if (dev_xmit_complete(rc)) {
4179 					HARD_TX_UNLOCK(dev, txq);
4180 					goto out;
4181 				}
4182 			}
4183 			HARD_TX_UNLOCK(dev, txq);
4184 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4185 					     dev->name);
4186 		} else {
4187 			/* Recursion is detected! It is possible,
4188 			 * unfortunately
4189 			 */
4190 recursion_alert:
4191 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4192 					     dev->name);
4193 		}
4194 	}
4195 
4196 	rc = -ENETDOWN;
4197 	rcu_read_unlock_bh();
4198 
4199 	atomic_long_inc(&dev->tx_dropped);
4200 	kfree_skb_list(skb);
4201 	return rc;
4202 out:
4203 	rcu_read_unlock_bh();
4204 	return rc;
4205 }
4206 
dev_queue_xmit(struct sk_buff * skb)4207 int dev_queue_xmit(struct sk_buff *skb)
4208 {
4209 	return __dev_queue_xmit(skb, NULL);
4210 }
4211 EXPORT_SYMBOL(dev_queue_xmit);
4212 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4213 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4214 {
4215 	return __dev_queue_xmit(skb, sb_dev);
4216 }
4217 EXPORT_SYMBOL(dev_queue_xmit_accel);
4218 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4219 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4220 {
4221 	struct net_device *dev = skb->dev;
4222 	struct sk_buff *orig_skb = skb;
4223 	struct netdev_queue *txq;
4224 	int ret = NETDEV_TX_BUSY;
4225 	bool again = false;
4226 
4227 	if (unlikely(!netif_running(dev) ||
4228 		     !netif_carrier_ok(dev)))
4229 		goto drop;
4230 
4231 	skb = validate_xmit_skb_list(skb, dev, &again);
4232 	if (skb != orig_skb)
4233 		goto drop;
4234 
4235 	skb_set_queue_mapping(skb, queue_id);
4236 	txq = skb_get_tx_queue(dev, skb);
4237 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4238 
4239 	local_bh_disable();
4240 
4241 	dev_xmit_recursion_inc();
4242 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4243 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4244 		ret = netdev_start_xmit(skb, dev, txq, false);
4245 	HARD_TX_UNLOCK(dev, txq);
4246 	dev_xmit_recursion_dec();
4247 
4248 	local_bh_enable();
4249 	return ret;
4250 drop:
4251 	atomic_long_inc(&dev->tx_dropped);
4252 	kfree_skb_list(skb);
4253 	return NET_XMIT_DROP;
4254 }
4255 EXPORT_SYMBOL(__dev_direct_xmit);
4256 
4257 /*************************************************************************
4258  *			Receiver routines
4259  *************************************************************************/
4260 
4261 int netdev_max_backlog __read_mostly = 1000;
4262 EXPORT_SYMBOL(netdev_max_backlog);
4263 
4264 int netdev_tstamp_prequeue __read_mostly = 1;
4265 int netdev_budget __read_mostly = 300;
4266 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4267 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4268 int weight_p __read_mostly = 64;           /* old backlog weight */
4269 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4270 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4271 int dev_rx_weight __read_mostly = 64;
4272 int dev_tx_weight __read_mostly = 64;
4273 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4274 int gro_normal_batch __read_mostly = 8;
4275 
4276 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4277 static inline void ____napi_schedule(struct softnet_data *sd,
4278 				     struct napi_struct *napi)
4279 {
4280 	list_add_tail(&napi->poll_list, &sd->poll_list);
4281 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4282 }
4283 
4284 #ifdef CONFIG_RPS
4285 
4286 /* One global table that all flow-based protocols share. */
4287 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4288 EXPORT_SYMBOL(rps_sock_flow_table);
4289 u32 rps_cpu_mask __read_mostly;
4290 EXPORT_SYMBOL(rps_cpu_mask);
4291 
4292 struct static_key_false rps_needed __read_mostly;
4293 EXPORT_SYMBOL(rps_needed);
4294 struct static_key_false rfs_needed __read_mostly;
4295 EXPORT_SYMBOL(rfs_needed);
4296 
4297 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4298 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4299 	    struct rps_dev_flow *rflow, u16 next_cpu)
4300 {
4301 	if (next_cpu < nr_cpu_ids) {
4302 #ifdef CONFIG_RFS_ACCEL
4303 		struct netdev_rx_queue *rxqueue;
4304 		struct rps_dev_flow_table *flow_table;
4305 		struct rps_dev_flow *old_rflow;
4306 		u32 flow_id;
4307 		u16 rxq_index;
4308 		int rc;
4309 
4310 		/* Should we steer this flow to a different hardware queue? */
4311 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4312 		    !(dev->features & NETIF_F_NTUPLE))
4313 			goto out;
4314 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4315 		if (rxq_index == skb_get_rx_queue(skb))
4316 			goto out;
4317 
4318 		rxqueue = dev->_rx + rxq_index;
4319 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4320 		if (!flow_table)
4321 			goto out;
4322 		flow_id = skb_get_hash(skb) & flow_table->mask;
4323 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4324 							rxq_index, flow_id);
4325 		if (rc < 0)
4326 			goto out;
4327 		old_rflow = rflow;
4328 		rflow = &flow_table->flows[flow_id];
4329 		rflow->filter = rc;
4330 		if (old_rflow->filter == rflow->filter)
4331 			old_rflow->filter = RPS_NO_FILTER;
4332 	out:
4333 #endif
4334 		rflow->last_qtail =
4335 			per_cpu(softnet_data, next_cpu).input_queue_head;
4336 	}
4337 
4338 	rflow->cpu = next_cpu;
4339 	return rflow;
4340 }
4341 
4342 /*
4343  * get_rps_cpu is called from netif_receive_skb and returns the target
4344  * CPU from the RPS map of the receiving queue for a given skb.
4345  * rcu_read_lock must be held on entry.
4346  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4347 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4348 		       struct rps_dev_flow **rflowp)
4349 {
4350 	const struct rps_sock_flow_table *sock_flow_table;
4351 	struct netdev_rx_queue *rxqueue = dev->_rx;
4352 	struct rps_dev_flow_table *flow_table;
4353 	struct rps_map *map;
4354 	int cpu = -1;
4355 	u32 tcpu;
4356 	u32 hash;
4357 
4358 	if (skb_rx_queue_recorded(skb)) {
4359 		u16 index = skb_get_rx_queue(skb);
4360 
4361 		if (unlikely(index >= dev->real_num_rx_queues)) {
4362 			WARN_ONCE(dev->real_num_rx_queues > 1,
4363 				  "%s received packet on queue %u, but number "
4364 				  "of RX queues is %u\n",
4365 				  dev->name, index, dev->real_num_rx_queues);
4366 			goto done;
4367 		}
4368 		rxqueue += index;
4369 	}
4370 
4371 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4372 
4373 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4374 	map = rcu_dereference(rxqueue->rps_map);
4375 	if (!flow_table && !map)
4376 		goto done;
4377 
4378 	skb_reset_network_header(skb);
4379 	hash = skb_get_hash(skb);
4380 	if (!hash)
4381 		goto done;
4382 
4383 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4384 	if (flow_table && sock_flow_table) {
4385 		struct rps_dev_flow *rflow;
4386 		u32 next_cpu;
4387 		u32 ident;
4388 
4389 		/* First check into global flow table if there is a match */
4390 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4391 		if ((ident ^ hash) & ~rps_cpu_mask)
4392 			goto try_rps;
4393 
4394 		next_cpu = ident & rps_cpu_mask;
4395 
4396 		/* OK, now we know there is a match,
4397 		 * we can look at the local (per receive queue) flow table
4398 		 */
4399 		rflow = &flow_table->flows[hash & flow_table->mask];
4400 		tcpu = rflow->cpu;
4401 
4402 		/*
4403 		 * If the desired CPU (where last recvmsg was done) is
4404 		 * different from current CPU (one in the rx-queue flow
4405 		 * table entry), switch if one of the following holds:
4406 		 *   - Current CPU is unset (>= nr_cpu_ids).
4407 		 *   - Current CPU is offline.
4408 		 *   - The current CPU's queue tail has advanced beyond the
4409 		 *     last packet that was enqueued using this table entry.
4410 		 *     This guarantees that all previous packets for the flow
4411 		 *     have been dequeued, thus preserving in order delivery.
4412 		 */
4413 		if (unlikely(tcpu != next_cpu) &&
4414 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4415 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4416 		      rflow->last_qtail)) >= 0)) {
4417 			tcpu = next_cpu;
4418 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4419 		}
4420 
4421 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4422 			*rflowp = rflow;
4423 			cpu = tcpu;
4424 			goto done;
4425 		}
4426 	}
4427 
4428 try_rps:
4429 
4430 	if (map) {
4431 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4432 		if (cpu_online(tcpu)) {
4433 			cpu = tcpu;
4434 			goto done;
4435 		}
4436 	}
4437 
4438 done:
4439 	return cpu;
4440 }
4441 
4442 #ifdef CONFIG_RFS_ACCEL
4443 
4444 /**
4445  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4446  * @dev: Device on which the filter was set
4447  * @rxq_index: RX queue index
4448  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4449  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4450  *
4451  * Drivers that implement ndo_rx_flow_steer() should periodically call
4452  * this function for each installed filter and remove the filters for
4453  * which it returns %true.
4454  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4455 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4456 			 u32 flow_id, u16 filter_id)
4457 {
4458 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4459 	struct rps_dev_flow_table *flow_table;
4460 	struct rps_dev_flow *rflow;
4461 	bool expire = true;
4462 	unsigned int cpu;
4463 
4464 	rcu_read_lock();
4465 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466 	if (flow_table && flow_id <= flow_table->mask) {
4467 		rflow = &flow_table->flows[flow_id];
4468 		cpu = READ_ONCE(rflow->cpu);
4469 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4470 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4471 			   rflow->last_qtail) <
4472 		     (int)(10 * flow_table->mask)))
4473 			expire = false;
4474 	}
4475 	rcu_read_unlock();
4476 	return expire;
4477 }
4478 EXPORT_SYMBOL(rps_may_expire_flow);
4479 
4480 #endif /* CONFIG_RFS_ACCEL */
4481 
4482 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4483 static void rps_trigger_softirq(void *data)
4484 {
4485 	struct softnet_data *sd = data;
4486 
4487 	____napi_schedule(sd, &sd->backlog);
4488 	sd->received_rps++;
4489 }
4490 
4491 #endif /* CONFIG_RPS */
4492 
4493 /*
4494  * Check if this softnet_data structure is another cpu one
4495  * If yes, queue it to our IPI list and return 1
4496  * If no, return 0
4497  */
rps_ipi_queued(struct softnet_data * sd)4498 static int rps_ipi_queued(struct softnet_data *sd)
4499 {
4500 #ifdef CONFIG_RPS
4501 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4502 
4503 	if (sd != mysd) {
4504 		sd->rps_ipi_next = mysd->rps_ipi_list;
4505 		mysd->rps_ipi_list = sd;
4506 
4507 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4508 		return 1;
4509 	}
4510 #endif /* CONFIG_RPS */
4511 	return 0;
4512 }
4513 
4514 #ifdef CONFIG_NET_FLOW_LIMIT
4515 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4516 #endif
4517 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4518 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4519 {
4520 #ifdef CONFIG_NET_FLOW_LIMIT
4521 	struct sd_flow_limit *fl;
4522 	struct softnet_data *sd;
4523 	unsigned int old_flow, new_flow;
4524 
4525 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4526 		return false;
4527 
4528 	sd = this_cpu_ptr(&softnet_data);
4529 
4530 	rcu_read_lock();
4531 	fl = rcu_dereference(sd->flow_limit);
4532 	if (fl) {
4533 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4534 		old_flow = fl->history[fl->history_head];
4535 		fl->history[fl->history_head] = new_flow;
4536 
4537 		fl->history_head++;
4538 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4539 
4540 		if (likely(fl->buckets[old_flow]))
4541 			fl->buckets[old_flow]--;
4542 
4543 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4544 			fl->count++;
4545 			rcu_read_unlock();
4546 			return true;
4547 		}
4548 	}
4549 	rcu_read_unlock();
4550 #endif
4551 	return false;
4552 }
4553 
4554 /*
4555  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4556  * queue (may be a remote CPU queue).
4557  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4558 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4559 			      unsigned int *qtail)
4560 {
4561 	struct softnet_data *sd;
4562 	unsigned long flags;
4563 	unsigned int qlen;
4564 
4565 	sd = &per_cpu(softnet_data, cpu);
4566 
4567 	local_irq_save(flags);
4568 
4569 	rps_lock(sd);
4570 	if (!netif_running(skb->dev))
4571 		goto drop;
4572 	qlen = skb_queue_len(&sd->input_pkt_queue);
4573 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4574 		if (qlen) {
4575 enqueue:
4576 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4577 			input_queue_tail_incr_save(sd, qtail);
4578 			rps_unlock(sd);
4579 			local_irq_restore(flags);
4580 			return NET_RX_SUCCESS;
4581 		}
4582 
4583 		/* Schedule NAPI for backlog device
4584 		 * We can use non atomic operation since we own the queue lock
4585 		 */
4586 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4587 			if (!rps_ipi_queued(sd))
4588 				____napi_schedule(sd, &sd->backlog);
4589 		}
4590 		goto enqueue;
4591 	}
4592 
4593 drop:
4594 	sd->dropped++;
4595 	rps_unlock(sd);
4596 
4597 	local_irq_restore(flags);
4598 
4599 	atomic_long_inc(&skb->dev->rx_dropped);
4600 	kfree_skb(skb);
4601 	return NET_RX_DROP;
4602 }
4603 
netif_get_rxqueue(struct sk_buff * skb)4604 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4605 {
4606 	struct net_device *dev = skb->dev;
4607 	struct netdev_rx_queue *rxqueue;
4608 
4609 	rxqueue = dev->_rx;
4610 
4611 	if (skb_rx_queue_recorded(skb)) {
4612 		u16 index = skb_get_rx_queue(skb);
4613 
4614 		if (unlikely(index >= dev->real_num_rx_queues)) {
4615 			WARN_ONCE(dev->real_num_rx_queues > 1,
4616 				  "%s received packet on queue %u, but number "
4617 				  "of RX queues is %u\n",
4618 				  dev->name, index, dev->real_num_rx_queues);
4619 
4620 			return rxqueue; /* Return first rxqueue */
4621 		}
4622 		rxqueue += index;
4623 	}
4624 	return rxqueue;
4625 }
4626 
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4627 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4628 				     struct xdp_buff *xdp,
4629 				     struct bpf_prog *xdp_prog)
4630 {
4631 	struct netdev_rx_queue *rxqueue;
4632 	void *orig_data, *orig_data_end;
4633 	u32 metalen, act = XDP_DROP;
4634 	__be16 orig_eth_type;
4635 	struct ethhdr *eth;
4636 	bool orig_bcast;
4637 	int hlen, off;
4638 	u32 mac_len;
4639 
4640 	/* Reinjected packets coming from act_mirred or similar should
4641 	 * not get XDP generic processing.
4642 	 */
4643 	if (skb_is_redirected(skb))
4644 		return XDP_PASS;
4645 
4646 	/* XDP packets must be linear and must have sufficient headroom
4647 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4648 	 * native XDP provides, thus we need to do it here as well.
4649 	 */
4650 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4651 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4652 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4653 		int troom = skb->tail + skb->data_len - skb->end;
4654 
4655 		/* In case we have to go down the path and also linearize,
4656 		 * then lets do the pskb_expand_head() work just once here.
4657 		 */
4658 		if (pskb_expand_head(skb,
4659 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4660 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4661 			goto do_drop;
4662 		if (skb_linearize(skb))
4663 			goto do_drop;
4664 	}
4665 
4666 	/* The XDP program wants to see the packet starting at the MAC
4667 	 * header.
4668 	 */
4669 	mac_len = skb->data - skb_mac_header(skb);
4670 	hlen = skb_headlen(skb) + mac_len;
4671 	xdp->data = skb->data - mac_len;
4672 	xdp->data_meta = xdp->data;
4673 	xdp->data_end = xdp->data + hlen;
4674 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4675 
4676 	/* SKB "head" area always have tailroom for skb_shared_info */
4677 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4678 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4679 
4680 	orig_data_end = xdp->data_end;
4681 	orig_data = xdp->data;
4682 	eth = (struct ethhdr *)xdp->data;
4683 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4684 	orig_eth_type = eth->h_proto;
4685 
4686 	rxqueue = netif_get_rxqueue(skb);
4687 	xdp->rxq = &rxqueue->xdp_rxq;
4688 
4689 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4690 
4691 	/* check if bpf_xdp_adjust_head was used */
4692 	off = xdp->data - orig_data;
4693 	if (off) {
4694 		if (off > 0)
4695 			__skb_pull(skb, off);
4696 		else if (off < 0)
4697 			__skb_push(skb, -off);
4698 
4699 		skb->mac_header += off;
4700 		skb_reset_network_header(skb);
4701 	}
4702 
4703 	/* check if bpf_xdp_adjust_tail was used */
4704 	off = xdp->data_end - orig_data_end;
4705 	if (off != 0) {
4706 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4707 		skb->len += off; /* positive on grow, negative on shrink */
4708 	}
4709 
4710 	/* check if XDP changed eth hdr such SKB needs update */
4711 	eth = (struct ethhdr *)xdp->data;
4712 	if ((orig_eth_type != eth->h_proto) ||
4713 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4714 		__skb_push(skb, ETH_HLEN);
4715 		skb->protocol = eth_type_trans(skb, skb->dev);
4716 	}
4717 
4718 	switch (act) {
4719 	case XDP_REDIRECT:
4720 	case XDP_TX:
4721 		__skb_push(skb, mac_len);
4722 		break;
4723 	case XDP_PASS:
4724 		metalen = xdp->data - xdp->data_meta;
4725 		if (metalen)
4726 			skb_metadata_set(skb, metalen);
4727 		break;
4728 	default:
4729 		bpf_warn_invalid_xdp_action(act);
4730 		fallthrough;
4731 	case XDP_ABORTED:
4732 		trace_xdp_exception(skb->dev, xdp_prog, act);
4733 		fallthrough;
4734 	case XDP_DROP:
4735 	do_drop:
4736 		kfree_skb(skb);
4737 		break;
4738 	}
4739 
4740 	return act;
4741 }
4742 
4743 /* When doing generic XDP we have to bypass the qdisc layer and the
4744  * network taps in order to match in-driver-XDP behavior.
4745  */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4746 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4747 {
4748 	struct net_device *dev = skb->dev;
4749 	struct netdev_queue *txq;
4750 	bool free_skb = true;
4751 	int cpu, rc;
4752 
4753 	txq = netdev_core_pick_tx(dev, skb, NULL);
4754 	cpu = smp_processor_id();
4755 	HARD_TX_LOCK(dev, txq, cpu);
4756 	if (!netif_xmit_stopped(txq)) {
4757 		rc = netdev_start_xmit(skb, dev, txq, 0);
4758 		if (dev_xmit_complete(rc))
4759 			free_skb = false;
4760 	}
4761 	HARD_TX_UNLOCK(dev, txq);
4762 	if (free_skb) {
4763 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4764 		kfree_skb(skb);
4765 	}
4766 }
4767 
4768 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4769 
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4770 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4771 {
4772 	if (xdp_prog) {
4773 		struct xdp_buff xdp;
4774 		u32 act;
4775 		int err;
4776 
4777 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4778 		if (act != XDP_PASS) {
4779 			switch (act) {
4780 			case XDP_REDIRECT:
4781 				err = xdp_do_generic_redirect(skb->dev, skb,
4782 							      &xdp, xdp_prog);
4783 				if (err)
4784 					goto out_redir;
4785 				break;
4786 			case XDP_TX:
4787 				generic_xdp_tx(skb, xdp_prog);
4788 				break;
4789 			}
4790 			return XDP_DROP;
4791 		}
4792 	}
4793 	return XDP_PASS;
4794 out_redir:
4795 	kfree_skb(skb);
4796 	return XDP_DROP;
4797 }
4798 EXPORT_SYMBOL_GPL(do_xdp_generic);
4799 
netif_rx_internal(struct sk_buff * skb)4800 static int netif_rx_internal(struct sk_buff *skb)
4801 {
4802 	int ret;
4803 
4804 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4805 
4806 	trace_netif_rx(skb);
4807 
4808 #ifdef CONFIG_RPS
4809 	if (static_branch_unlikely(&rps_needed)) {
4810 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4811 		int cpu;
4812 
4813 		preempt_disable();
4814 		rcu_read_lock();
4815 
4816 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4817 		if (cpu < 0)
4818 			cpu = smp_processor_id();
4819 
4820 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4821 
4822 		rcu_read_unlock();
4823 		preempt_enable();
4824 	} else
4825 #endif
4826 	{
4827 		unsigned int qtail;
4828 
4829 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4830 		put_cpu();
4831 	}
4832 	return ret;
4833 }
4834 
4835 /**
4836  *	netif_rx	-	post buffer to the network code
4837  *	@skb: buffer to post
4838  *
4839  *	This function receives a packet from a device driver and queues it for
4840  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4841  *	may be dropped during processing for congestion control or by the
4842  *	protocol layers.
4843  *
4844  *	return values:
4845  *	NET_RX_SUCCESS	(no congestion)
4846  *	NET_RX_DROP     (packet was dropped)
4847  *
4848  */
4849 
netif_rx(struct sk_buff * skb)4850 int netif_rx(struct sk_buff *skb)
4851 {
4852 	int ret;
4853 
4854 	trace_netif_rx_entry(skb);
4855 
4856 	ret = netif_rx_internal(skb);
4857 	trace_netif_rx_exit(ret);
4858 
4859 	return ret;
4860 }
4861 EXPORT_SYMBOL(netif_rx);
4862 
netif_rx_ni(struct sk_buff * skb)4863 int netif_rx_ni(struct sk_buff *skb)
4864 {
4865 	int err;
4866 
4867 	trace_netif_rx_ni_entry(skb);
4868 
4869 	preempt_disable();
4870 	err = netif_rx_internal(skb);
4871 	if (local_softirq_pending())
4872 		do_softirq();
4873 	preempt_enable();
4874 	trace_netif_rx_ni_exit(err);
4875 
4876 	return err;
4877 }
4878 EXPORT_SYMBOL(netif_rx_ni);
4879 
netif_rx_any_context(struct sk_buff * skb)4880 int netif_rx_any_context(struct sk_buff *skb)
4881 {
4882 	/*
4883 	 * If invoked from contexts which do not invoke bottom half
4884 	 * processing either at return from interrupt or when softrqs are
4885 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4886 	 * directly.
4887 	 */
4888 	if (in_interrupt())
4889 		return netif_rx(skb);
4890 	else
4891 		return netif_rx_ni(skb);
4892 }
4893 EXPORT_SYMBOL(netif_rx_any_context);
4894 
net_tx_action(struct softirq_action * h)4895 static __latent_entropy void net_tx_action(struct softirq_action *h)
4896 {
4897 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4898 
4899 	if (sd->completion_queue) {
4900 		struct sk_buff *clist;
4901 
4902 		local_irq_disable();
4903 		clist = sd->completion_queue;
4904 		sd->completion_queue = NULL;
4905 		local_irq_enable();
4906 
4907 		while (clist) {
4908 			struct sk_buff *skb = clist;
4909 
4910 			clist = clist->next;
4911 
4912 			WARN_ON(refcount_read(&skb->users));
4913 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4914 				trace_consume_skb(skb);
4915 			else
4916 				trace_kfree_skb(skb, net_tx_action);
4917 
4918 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4919 				__kfree_skb(skb);
4920 			else
4921 				__kfree_skb_defer(skb);
4922 		}
4923 
4924 		__kfree_skb_flush();
4925 	}
4926 
4927 	if (sd->output_queue) {
4928 		struct Qdisc *head;
4929 
4930 		local_irq_disable();
4931 		head = sd->output_queue;
4932 		sd->output_queue = NULL;
4933 		sd->output_queue_tailp = &sd->output_queue;
4934 		local_irq_enable();
4935 
4936 		rcu_read_lock();
4937 
4938 		while (head) {
4939 			struct Qdisc *q = head;
4940 			spinlock_t *root_lock = NULL;
4941 
4942 			head = head->next_sched;
4943 
4944 			/* We need to make sure head->next_sched is read
4945 			 * before clearing __QDISC_STATE_SCHED
4946 			 */
4947 			smp_mb__before_atomic();
4948 
4949 			if (!(q->flags & TCQ_F_NOLOCK)) {
4950 				root_lock = qdisc_lock(q);
4951 				spin_lock(root_lock);
4952 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4953 						     &q->state))) {
4954 				/* There is a synchronize_net() between
4955 				 * STATE_DEACTIVATED flag being set and
4956 				 * qdisc_reset()/some_qdisc_is_busy() in
4957 				 * dev_deactivate(), so we can safely bail out
4958 				 * early here to avoid data race between
4959 				 * qdisc_deactivate() and some_qdisc_is_busy()
4960 				 * for lockless qdisc.
4961 				 */
4962 				clear_bit(__QDISC_STATE_SCHED, &q->state);
4963 				continue;
4964 			}
4965 
4966 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4967 			qdisc_run(q);
4968 			if (root_lock)
4969 				spin_unlock(root_lock);
4970 		}
4971 
4972 		rcu_read_unlock();
4973 	}
4974 
4975 	xfrm_dev_backlog(sd);
4976 }
4977 
4978 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4979 /* This hook is defined here for ATM LANE */
4980 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4981 			     unsigned char *addr) __read_mostly;
4982 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4983 #endif
4984 
4985 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4986 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4987 		   struct net_device *orig_dev, bool *another)
4988 {
4989 #ifdef CONFIG_NET_CLS_ACT
4990 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4991 	struct tcf_result cl_res;
4992 
4993 	/* If there's at least one ingress present somewhere (so
4994 	 * we get here via enabled static key), remaining devices
4995 	 * that are not configured with an ingress qdisc will bail
4996 	 * out here.
4997 	 */
4998 	if (!miniq)
4999 		return skb;
5000 
5001 	if (*pt_prev) {
5002 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5003 		*pt_prev = NULL;
5004 	}
5005 
5006 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5007 	qdisc_skb_cb(skb)->mru = 0;
5008 	skb->tc_at_ingress = 1;
5009 	mini_qdisc_bstats_cpu_update(miniq, skb);
5010 
5011 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5012 				     &cl_res, false)) {
5013 	case TC_ACT_OK:
5014 	case TC_ACT_RECLASSIFY:
5015 		skb->tc_index = TC_H_MIN(cl_res.classid);
5016 		break;
5017 	case TC_ACT_SHOT:
5018 		mini_qdisc_qstats_cpu_drop(miniq);
5019 		kfree_skb(skb);
5020 		return NULL;
5021 	case TC_ACT_STOLEN:
5022 	case TC_ACT_QUEUED:
5023 	case TC_ACT_TRAP:
5024 		consume_skb(skb);
5025 		return NULL;
5026 	case TC_ACT_REDIRECT:
5027 		/* skb_mac_header check was done by cls/act_bpf, so
5028 		 * we can safely push the L2 header back before
5029 		 * redirecting to another netdev
5030 		 */
5031 		__skb_push(skb, skb->mac_len);
5032 		if (skb_do_redirect(skb) == -EAGAIN) {
5033 			__skb_pull(skb, skb->mac_len);
5034 			*another = true;
5035 			break;
5036 		}
5037 		return NULL;
5038 	case TC_ACT_CONSUMED:
5039 		return NULL;
5040 	default:
5041 		break;
5042 	}
5043 #endif /* CONFIG_NET_CLS_ACT */
5044 	return skb;
5045 }
5046 
5047 /**
5048  *	netdev_is_rx_handler_busy - check if receive handler is registered
5049  *	@dev: device to check
5050  *
5051  *	Check if a receive handler is already registered for a given device.
5052  *	Return true if there one.
5053  *
5054  *	The caller must hold the rtnl_mutex.
5055  */
netdev_is_rx_handler_busy(struct net_device * dev)5056 bool netdev_is_rx_handler_busy(struct net_device *dev)
5057 {
5058 	ASSERT_RTNL();
5059 	return dev && rtnl_dereference(dev->rx_handler);
5060 }
5061 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5062 
5063 /**
5064  *	netdev_rx_handler_register - register receive handler
5065  *	@dev: device to register a handler for
5066  *	@rx_handler: receive handler to register
5067  *	@rx_handler_data: data pointer that is used by rx handler
5068  *
5069  *	Register a receive handler for a device. This handler will then be
5070  *	called from __netif_receive_skb. A negative errno code is returned
5071  *	on a failure.
5072  *
5073  *	The caller must hold the rtnl_mutex.
5074  *
5075  *	For a general description of rx_handler, see enum rx_handler_result.
5076  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5077 int netdev_rx_handler_register(struct net_device *dev,
5078 			       rx_handler_func_t *rx_handler,
5079 			       void *rx_handler_data)
5080 {
5081 	if (netdev_is_rx_handler_busy(dev))
5082 		return -EBUSY;
5083 
5084 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5085 		return -EINVAL;
5086 
5087 	/* Note: rx_handler_data must be set before rx_handler */
5088 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5089 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5090 
5091 	return 0;
5092 }
5093 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5094 
5095 /**
5096  *	netdev_rx_handler_unregister - unregister receive handler
5097  *	@dev: device to unregister a handler from
5098  *
5099  *	Unregister a receive handler from a device.
5100  *
5101  *	The caller must hold the rtnl_mutex.
5102  */
netdev_rx_handler_unregister(struct net_device * dev)5103 void netdev_rx_handler_unregister(struct net_device *dev)
5104 {
5105 
5106 	ASSERT_RTNL();
5107 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5108 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5109 	 * section has a guarantee to see a non NULL rx_handler_data
5110 	 * as well.
5111 	 */
5112 	synchronize_net();
5113 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5114 }
5115 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5116 
5117 /*
5118  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5119  * the special handling of PFMEMALLOC skbs.
5120  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5121 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5122 {
5123 	switch (skb->protocol) {
5124 	case htons(ETH_P_ARP):
5125 	case htons(ETH_P_IP):
5126 	case htons(ETH_P_IPV6):
5127 	case htons(ETH_P_8021Q):
5128 	case htons(ETH_P_8021AD):
5129 		return true;
5130 	default:
5131 		return false;
5132 	}
5133 }
5134 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5135 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5136 			     int *ret, struct net_device *orig_dev)
5137 {
5138 	if (nf_hook_ingress_active(skb)) {
5139 		int ingress_retval;
5140 
5141 		if (*pt_prev) {
5142 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5143 			*pt_prev = NULL;
5144 		}
5145 
5146 		rcu_read_lock();
5147 		ingress_retval = nf_hook_ingress(skb);
5148 		rcu_read_unlock();
5149 		return ingress_retval;
5150 	}
5151 	return 0;
5152 }
5153 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5154 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5155 				    struct packet_type **ppt_prev)
5156 {
5157 	struct packet_type *ptype, *pt_prev;
5158 	rx_handler_func_t *rx_handler;
5159 	struct sk_buff *skb = *pskb;
5160 	struct net_device *orig_dev;
5161 	bool deliver_exact = false;
5162 	int ret = NET_RX_DROP;
5163 	__be16 type;
5164 
5165 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5166 
5167 	trace_netif_receive_skb(skb);
5168 
5169 	orig_dev = skb->dev;
5170 
5171 	skb_reset_network_header(skb);
5172 	if (!skb_transport_header_was_set(skb))
5173 		skb_reset_transport_header(skb);
5174 	skb_reset_mac_len(skb);
5175 
5176 	pt_prev = NULL;
5177 
5178 another_round:
5179 	skb->skb_iif = skb->dev->ifindex;
5180 
5181 	__this_cpu_inc(softnet_data.processed);
5182 
5183 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5184 		int ret2;
5185 
5186 		preempt_disable();
5187 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5188 		preempt_enable();
5189 
5190 		if (ret2 != XDP_PASS) {
5191 			ret = NET_RX_DROP;
5192 			goto out;
5193 		}
5194 		skb_reset_mac_len(skb);
5195 	}
5196 
5197 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5198 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5199 		skb = skb_vlan_untag(skb);
5200 		if (unlikely(!skb))
5201 			goto out;
5202 	}
5203 
5204 	if (skb_skip_tc_classify(skb))
5205 		goto skip_classify;
5206 
5207 	if (pfmemalloc)
5208 		goto skip_taps;
5209 
5210 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5211 		if (pt_prev)
5212 			ret = deliver_skb(skb, pt_prev, orig_dev);
5213 		pt_prev = ptype;
5214 	}
5215 
5216 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5217 		if (pt_prev)
5218 			ret = deliver_skb(skb, pt_prev, orig_dev);
5219 		pt_prev = ptype;
5220 	}
5221 
5222 skip_taps:
5223 #ifdef CONFIG_NET_INGRESS
5224 	if (static_branch_unlikely(&ingress_needed_key)) {
5225 		bool another = false;
5226 
5227 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5228 					 &another);
5229 		if (another)
5230 			goto another_round;
5231 		if (!skb)
5232 			goto out;
5233 
5234 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5235 			goto out;
5236 	}
5237 #endif
5238 	skb_reset_redirect(skb);
5239 skip_classify:
5240 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5241 		goto drop;
5242 
5243 	if (skb_vlan_tag_present(skb)) {
5244 		if (pt_prev) {
5245 			ret = deliver_skb(skb, pt_prev, orig_dev);
5246 			pt_prev = NULL;
5247 		}
5248 		if (vlan_do_receive(&skb))
5249 			goto another_round;
5250 		else if (unlikely(!skb))
5251 			goto out;
5252 	}
5253 
5254 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5255 	if (rx_handler) {
5256 		if (pt_prev) {
5257 			ret = deliver_skb(skb, pt_prev, orig_dev);
5258 			pt_prev = NULL;
5259 		}
5260 		switch (rx_handler(&skb)) {
5261 		case RX_HANDLER_CONSUMED:
5262 			ret = NET_RX_SUCCESS;
5263 			goto out;
5264 		case RX_HANDLER_ANOTHER:
5265 			goto another_round;
5266 		case RX_HANDLER_EXACT:
5267 			deliver_exact = true;
5268 		case RX_HANDLER_PASS:
5269 			break;
5270 		default:
5271 			BUG();
5272 		}
5273 	}
5274 
5275 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5276 check_vlan_id:
5277 		if (skb_vlan_tag_get_id(skb)) {
5278 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5279 			 * find vlan device.
5280 			 */
5281 			skb->pkt_type = PACKET_OTHERHOST;
5282 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5283 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5284 			/* Outer header is 802.1P with vlan 0, inner header is
5285 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5286 			 * not find vlan dev for vlan id 0.
5287 			 */
5288 			__vlan_hwaccel_clear_tag(skb);
5289 			skb = skb_vlan_untag(skb);
5290 			if (unlikely(!skb))
5291 				goto out;
5292 			if (vlan_do_receive(&skb))
5293 				/* After stripping off 802.1P header with vlan 0
5294 				 * vlan dev is found for inner header.
5295 				 */
5296 				goto another_round;
5297 			else if (unlikely(!skb))
5298 				goto out;
5299 			else
5300 				/* We have stripped outer 802.1P vlan 0 header.
5301 				 * But could not find vlan dev.
5302 				 * check again for vlan id to set OTHERHOST.
5303 				 */
5304 				goto check_vlan_id;
5305 		}
5306 		/* Note: we might in the future use prio bits
5307 		 * and set skb->priority like in vlan_do_receive()
5308 		 * For the time being, just ignore Priority Code Point
5309 		 */
5310 		__vlan_hwaccel_clear_tag(skb);
5311 	}
5312 
5313 	type = skb->protocol;
5314 
5315 	/* deliver only exact match when indicated */
5316 	if (likely(!deliver_exact)) {
5317 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5318 				       &ptype_base[ntohs(type) &
5319 						   PTYPE_HASH_MASK]);
5320 	}
5321 
5322 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5323 			       &orig_dev->ptype_specific);
5324 
5325 	if (unlikely(skb->dev != orig_dev)) {
5326 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5327 				       &skb->dev->ptype_specific);
5328 	}
5329 
5330 	if (pt_prev) {
5331 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5332 			goto drop;
5333 		*ppt_prev = pt_prev;
5334 	} else {
5335 drop:
5336 		if (!deliver_exact)
5337 			atomic_long_inc(&skb->dev->rx_dropped);
5338 		else
5339 			atomic_long_inc(&skb->dev->rx_nohandler);
5340 		kfree_skb(skb);
5341 		/* Jamal, now you will not able to escape explaining
5342 		 * me how you were going to use this. :-)
5343 		 */
5344 		ret = NET_RX_DROP;
5345 	}
5346 
5347 out:
5348 	/* The invariant here is that if *ppt_prev is not NULL
5349 	 * then skb should also be non-NULL.
5350 	 *
5351 	 * Apparently *ppt_prev assignment above holds this invariant due to
5352 	 * skb dereferencing near it.
5353 	 */
5354 	*pskb = skb;
5355 	return ret;
5356 }
5357 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5358 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5359 {
5360 	struct net_device *orig_dev = skb->dev;
5361 	struct packet_type *pt_prev = NULL;
5362 	int ret;
5363 
5364 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5365 	if (pt_prev)
5366 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5367 					 skb->dev, pt_prev, orig_dev);
5368 	return ret;
5369 }
5370 
5371 /**
5372  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5373  *	@skb: buffer to process
5374  *
5375  *	More direct receive version of netif_receive_skb().  It should
5376  *	only be used by callers that have a need to skip RPS and Generic XDP.
5377  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5378  *
5379  *	This function may only be called from softirq context and interrupts
5380  *	should be enabled.
5381  *
5382  *	Return values (usually ignored):
5383  *	NET_RX_SUCCESS: no congestion
5384  *	NET_RX_DROP: packet was dropped
5385  */
netif_receive_skb_core(struct sk_buff * skb)5386 int netif_receive_skb_core(struct sk_buff *skb)
5387 {
5388 	int ret;
5389 
5390 	rcu_read_lock();
5391 	ret = __netif_receive_skb_one_core(skb, false);
5392 	rcu_read_unlock();
5393 
5394 	return ret;
5395 }
5396 EXPORT_SYMBOL(netif_receive_skb_core);
5397 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5398 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5399 						  struct packet_type *pt_prev,
5400 						  struct net_device *orig_dev)
5401 {
5402 	struct sk_buff *skb, *next;
5403 
5404 	if (!pt_prev)
5405 		return;
5406 	if (list_empty(head))
5407 		return;
5408 	if (pt_prev->list_func != NULL)
5409 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5410 				   ip_list_rcv, head, pt_prev, orig_dev);
5411 	else
5412 		list_for_each_entry_safe(skb, next, head, list) {
5413 			skb_list_del_init(skb);
5414 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5415 		}
5416 }
5417 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5418 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5419 {
5420 	/* Fast-path assumptions:
5421 	 * - There is no RX handler.
5422 	 * - Only one packet_type matches.
5423 	 * If either of these fails, we will end up doing some per-packet
5424 	 * processing in-line, then handling the 'last ptype' for the whole
5425 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5426 	 * because the 'last ptype' must be constant across the sublist, and all
5427 	 * other ptypes are handled per-packet.
5428 	 */
5429 	/* Current (common) ptype of sublist */
5430 	struct packet_type *pt_curr = NULL;
5431 	/* Current (common) orig_dev of sublist */
5432 	struct net_device *od_curr = NULL;
5433 	struct list_head sublist;
5434 	struct sk_buff *skb, *next;
5435 
5436 	INIT_LIST_HEAD(&sublist);
5437 	list_for_each_entry_safe(skb, next, head, list) {
5438 		struct net_device *orig_dev = skb->dev;
5439 		struct packet_type *pt_prev = NULL;
5440 
5441 		skb_list_del_init(skb);
5442 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5443 		if (!pt_prev)
5444 			continue;
5445 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5446 			/* dispatch old sublist */
5447 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5448 			/* start new sublist */
5449 			INIT_LIST_HEAD(&sublist);
5450 			pt_curr = pt_prev;
5451 			od_curr = orig_dev;
5452 		}
5453 		list_add_tail(&skb->list, &sublist);
5454 	}
5455 
5456 	/* dispatch final sublist */
5457 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5458 }
5459 
__netif_receive_skb(struct sk_buff * skb)5460 static int __netif_receive_skb(struct sk_buff *skb)
5461 {
5462 	int ret;
5463 
5464 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5465 		unsigned int noreclaim_flag;
5466 
5467 		/*
5468 		 * PFMEMALLOC skbs are special, they should
5469 		 * - be delivered to SOCK_MEMALLOC sockets only
5470 		 * - stay away from userspace
5471 		 * - have bounded memory usage
5472 		 *
5473 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5474 		 * context down to all allocation sites.
5475 		 */
5476 		noreclaim_flag = memalloc_noreclaim_save();
5477 		ret = __netif_receive_skb_one_core(skb, true);
5478 		memalloc_noreclaim_restore(noreclaim_flag);
5479 	} else
5480 		ret = __netif_receive_skb_one_core(skb, false);
5481 
5482 	return ret;
5483 }
5484 
__netif_receive_skb_list(struct list_head * head)5485 static void __netif_receive_skb_list(struct list_head *head)
5486 {
5487 	unsigned long noreclaim_flag = 0;
5488 	struct sk_buff *skb, *next;
5489 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5490 
5491 	list_for_each_entry_safe(skb, next, head, list) {
5492 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5493 			struct list_head sublist;
5494 
5495 			/* Handle the previous sublist */
5496 			list_cut_before(&sublist, head, &skb->list);
5497 			if (!list_empty(&sublist))
5498 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5499 			pfmemalloc = !pfmemalloc;
5500 			/* See comments in __netif_receive_skb */
5501 			if (pfmemalloc)
5502 				noreclaim_flag = memalloc_noreclaim_save();
5503 			else
5504 				memalloc_noreclaim_restore(noreclaim_flag);
5505 		}
5506 	}
5507 	/* Handle the remaining sublist */
5508 	if (!list_empty(head))
5509 		__netif_receive_skb_list_core(head, pfmemalloc);
5510 	/* Restore pflags */
5511 	if (pfmemalloc)
5512 		memalloc_noreclaim_restore(noreclaim_flag);
5513 }
5514 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5515 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5516 {
5517 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5518 	struct bpf_prog *new = xdp->prog;
5519 	int ret = 0;
5520 
5521 	if (new) {
5522 		u32 i;
5523 
5524 		mutex_lock(&new->aux->used_maps_mutex);
5525 
5526 		/* generic XDP does not work with DEVMAPs that can
5527 		 * have a bpf_prog installed on an entry
5528 		 */
5529 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5530 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5531 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5532 				mutex_unlock(&new->aux->used_maps_mutex);
5533 				return -EINVAL;
5534 			}
5535 		}
5536 
5537 		mutex_unlock(&new->aux->used_maps_mutex);
5538 	}
5539 
5540 	switch (xdp->command) {
5541 	case XDP_SETUP_PROG:
5542 		rcu_assign_pointer(dev->xdp_prog, new);
5543 		if (old)
5544 			bpf_prog_put(old);
5545 
5546 		if (old && !new) {
5547 			static_branch_dec(&generic_xdp_needed_key);
5548 		} else if (new && !old) {
5549 			static_branch_inc(&generic_xdp_needed_key);
5550 			dev_disable_lro(dev);
5551 			dev_disable_gro_hw(dev);
5552 		}
5553 		break;
5554 
5555 	default:
5556 		ret = -EINVAL;
5557 		break;
5558 	}
5559 
5560 	return ret;
5561 }
5562 
netif_receive_skb_internal(struct sk_buff * skb)5563 static int netif_receive_skb_internal(struct sk_buff *skb)
5564 {
5565 	int ret;
5566 
5567 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5568 
5569 	if (skb_defer_rx_timestamp(skb))
5570 		return NET_RX_SUCCESS;
5571 
5572 	rcu_read_lock();
5573 #ifdef CONFIG_RPS
5574 	if (static_branch_unlikely(&rps_needed)) {
5575 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5576 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5577 
5578 		if (cpu >= 0) {
5579 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5580 			rcu_read_unlock();
5581 			return ret;
5582 		}
5583 	}
5584 #endif
5585 	ret = __netif_receive_skb(skb);
5586 	rcu_read_unlock();
5587 	return ret;
5588 }
5589 
netif_receive_skb_list_internal(struct list_head * head)5590 static void netif_receive_skb_list_internal(struct list_head *head)
5591 {
5592 	struct sk_buff *skb, *next;
5593 	struct list_head sublist;
5594 
5595 	INIT_LIST_HEAD(&sublist);
5596 	list_for_each_entry_safe(skb, next, head, list) {
5597 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5598 		skb_list_del_init(skb);
5599 		if (!skb_defer_rx_timestamp(skb))
5600 			list_add_tail(&skb->list, &sublist);
5601 	}
5602 	list_splice_init(&sublist, head);
5603 
5604 	rcu_read_lock();
5605 #ifdef CONFIG_RPS
5606 	if (static_branch_unlikely(&rps_needed)) {
5607 		list_for_each_entry_safe(skb, next, head, list) {
5608 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5609 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5610 
5611 			if (cpu >= 0) {
5612 				/* Will be handled, remove from list */
5613 				skb_list_del_init(skb);
5614 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5615 			}
5616 		}
5617 	}
5618 #endif
5619 	__netif_receive_skb_list(head);
5620 	rcu_read_unlock();
5621 }
5622 
5623 /**
5624  *	netif_receive_skb - process receive buffer from network
5625  *	@skb: buffer to process
5626  *
5627  *	netif_receive_skb() is the main receive data processing function.
5628  *	It always succeeds. The buffer may be dropped during processing
5629  *	for congestion control or by the protocol layers.
5630  *
5631  *	This function may only be called from softirq context and interrupts
5632  *	should be enabled.
5633  *
5634  *	Return values (usually ignored):
5635  *	NET_RX_SUCCESS: no congestion
5636  *	NET_RX_DROP: packet was dropped
5637  */
netif_receive_skb(struct sk_buff * skb)5638 int netif_receive_skb(struct sk_buff *skb)
5639 {
5640 	int ret;
5641 
5642 	trace_netif_receive_skb_entry(skb);
5643 
5644 	ret = netif_receive_skb_internal(skb);
5645 	trace_netif_receive_skb_exit(ret);
5646 
5647 	return ret;
5648 }
5649 EXPORT_SYMBOL(netif_receive_skb);
5650 
5651 /**
5652  *	netif_receive_skb_list - process many receive buffers from network
5653  *	@head: list of skbs to process.
5654  *
5655  *	Since return value of netif_receive_skb() is normally ignored, and
5656  *	wouldn't be meaningful for a list, this function returns void.
5657  *
5658  *	This function may only be called from softirq context and interrupts
5659  *	should be enabled.
5660  */
netif_receive_skb_list(struct list_head * head)5661 void netif_receive_skb_list(struct list_head *head)
5662 {
5663 	struct sk_buff *skb;
5664 
5665 	if (list_empty(head))
5666 		return;
5667 	if (trace_netif_receive_skb_list_entry_enabled()) {
5668 		list_for_each_entry(skb, head, list)
5669 			trace_netif_receive_skb_list_entry(skb);
5670 	}
5671 	netif_receive_skb_list_internal(head);
5672 	trace_netif_receive_skb_list_exit(0);
5673 }
5674 EXPORT_SYMBOL(netif_receive_skb_list);
5675 
5676 static DEFINE_PER_CPU(struct work_struct, flush_works);
5677 
5678 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5679 static void flush_backlog(struct work_struct *work)
5680 {
5681 	struct sk_buff *skb, *tmp;
5682 	struct softnet_data *sd;
5683 
5684 	local_bh_disable();
5685 	sd = this_cpu_ptr(&softnet_data);
5686 
5687 	local_irq_disable();
5688 	rps_lock(sd);
5689 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5690 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5691 			__skb_unlink(skb, &sd->input_pkt_queue);
5692 			dev_kfree_skb_irq(skb);
5693 			input_queue_head_incr(sd);
5694 		}
5695 	}
5696 	rps_unlock(sd);
5697 	local_irq_enable();
5698 
5699 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5700 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5701 			__skb_unlink(skb, &sd->process_queue);
5702 			kfree_skb(skb);
5703 			input_queue_head_incr(sd);
5704 		}
5705 	}
5706 	local_bh_enable();
5707 }
5708 
flush_required(int cpu)5709 static bool flush_required(int cpu)
5710 {
5711 #if IS_ENABLED(CONFIG_RPS)
5712 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5713 	bool do_flush;
5714 
5715 	local_irq_disable();
5716 	rps_lock(sd);
5717 
5718 	/* as insertion into process_queue happens with the rps lock held,
5719 	 * process_queue access may race only with dequeue
5720 	 */
5721 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5722 		   !skb_queue_empty_lockless(&sd->process_queue);
5723 	rps_unlock(sd);
5724 	local_irq_enable();
5725 
5726 	return do_flush;
5727 #endif
5728 	/* without RPS we can't safely check input_pkt_queue: during a
5729 	 * concurrent remote skb_queue_splice() we can detect as empty both
5730 	 * input_pkt_queue and process_queue even if the latter could end-up
5731 	 * containing a lot of packets.
5732 	 */
5733 	return true;
5734 }
5735 
flush_all_backlogs(void)5736 static void flush_all_backlogs(void)
5737 {
5738 	static cpumask_t flush_cpus;
5739 	unsigned int cpu;
5740 
5741 	/* since we are under rtnl lock protection we can use static data
5742 	 * for the cpumask and avoid allocating on stack the possibly
5743 	 * large mask
5744 	 */
5745 	ASSERT_RTNL();
5746 
5747 	get_online_cpus();
5748 
5749 	cpumask_clear(&flush_cpus);
5750 	for_each_online_cpu(cpu) {
5751 		if (flush_required(cpu)) {
5752 			queue_work_on(cpu, system_highpri_wq,
5753 				      per_cpu_ptr(&flush_works, cpu));
5754 			cpumask_set_cpu(cpu, &flush_cpus);
5755 		}
5756 	}
5757 
5758 	/* we can have in flight packet[s] on the cpus we are not flushing,
5759 	 * synchronize_net() in unregister_netdevice_many() will take care of
5760 	 * them
5761 	 */
5762 	for_each_cpu(cpu, &flush_cpus)
5763 		flush_work(per_cpu_ptr(&flush_works, cpu));
5764 
5765 	put_online_cpus();
5766 }
5767 
5768 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5769 static void gro_normal_list(struct napi_struct *napi)
5770 {
5771 	if (!napi->rx_count)
5772 		return;
5773 	netif_receive_skb_list_internal(&napi->rx_list);
5774 	INIT_LIST_HEAD(&napi->rx_list);
5775 	napi->rx_count = 0;
5776 }
5777 
5778 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5779  * pass the whole batch up to the stack.
5780  */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5781 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5782 {
5783 	list_add_tail(&skb->list, &napi->rx_list);
5784 	napi->rx_count += segs;
5785 	if (napi->rx_count >= gro_normal_batch)
5786 		gro_normal_list(napi);
5787 }
5788 
5789 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5790 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5791 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5792 {
5793 	struct packet_offload *ptype;
5794 	__be16 type = skb->protocol;
5795 	struct list_head *head = &offload_base;
5796 	int err = -ENOENT;
5797 
5798 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5799 
5800 	if (NAPI_GRO_CB(skb)->count == 1) {
5801 		skb_shinfo(skb)->gso_size = 0;
5802 		goto out;
5803 	}
5804 
5805 	rcu_read_lock();
5806 	list_for_each_entry_rcu(ptype, head, list) {
5807 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5808 			continue;
5809 
5810 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5811 					 ipv6_gro_complete, inet_gro_complete,
5812 					 skb, 0);
5813 		break;
5814 	}
5815 	rcu_read_unlock();
5816 
5817 	if (err) {
5818 		WARN_ON(&ptype->list == head);
5819 		kfree_skb(skb);
5820 		return NET_RX_SUCCESS;
5821 	}
5822 
5823 out:
5824 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5825 	return NET_RX_SUCCESS;
5826 }
5827 
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5828 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5829 				   bool flush_old)
5830 {
5831 	struct list_head *head = &napi->gro_hash[index].list;
5832 	struct sk_buff *skb, *p;
5833 
5834 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5835 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5836 			return;
5837 		skb_list_del_init(skb);
5838 		napi_gro_complete(napi, skb);
5839 		napi->gro_hash[index].count--;
5840 	}
5841 
5842 	if (!napi->gro_hash[index].count)
5843 		__clear_bit(index, &napi->gro_bitmask);
5844 }
5845 
5846 /* napi->gro_hash[].list contains packets ordered by age.
5847  * youngest packets at the head of it.
5848  * Complete skbs in reverse order to reduce latencies.
5849  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5850 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5851 {
5852 	unsigned long bitmask = napi->gro_bitmask;
5853 	unsigned int i, base = ~0U;
5854 
5855 	while ((i = ffs(bitmask)) != 0) {
5856 		bitmask >>= i;
5857 		base += i;
5858 		__napi_gro_flush_chain(napi, base, flush_old);
5859 	}
5860 }
5861 EXPORT_SYMBOL(napi_gro_flush);
5862 
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5863 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5864 					  struct sk_buff *skb)
5865 {
5866 	unsigned int maclen = skb->dev->hard_header_len;
5867 	u32 hash = skb_get_hash_raw(skb);
5868 	struct list_head *head;
5869 	struct sk_buff *p;
5870 
5871 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5872 	list_for_each_entry(p, head, list) {
5873 		unsigned long diffs;
5874 
5875 		NAPI_GRO_CB(p)->flush = 0;
5876 
5877 		if (hash != skb_get_hash_raw(p)) {
5878 			NAPI_GRO_CB(p)->same_flow = 0;
5879 			continue;
5880 		}
5881 
5882 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5883 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5884 		if (skb_vlan_tag_present(p))
5885 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5886 		diffs |= skb_metadata_dst_cmp(p, skb);
5887 		diffs |= skb_metadata_differs(p, skb);
5888 		if (maclen == ETH_HLEN)
5889 			diffs |= compare_ether_header(skb_mac_header(p),
5890 						      skb_mac_header(skb));
5891 		else if (!diffs)
5892 			diffs = memcmp(skb_mac_header(p),
5893 				       skb_mac_header(skb),
5894 				       maclen);
5895 
5896 		diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5897 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5898 		if (!diffs) {
5899 			struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5900 			struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
5901 
5902 			diffs |= (!!p_ext) ^ (!!skb_ext);
5903 			if (!diffs && unlikely(skb_ext))
5904 				diffs |= p_ext->chain ^ skb_ext->chain;
5905 		}
5906 #endif
5907 
5908 		NAPI_GRO_CB(p)->same_flow = !diffs;
5909 	}
5910 
5911 	return head;
5912 }
5913 
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)5914 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5915 {
5916 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5917 	const skb_frag_t *frag0 = &pinfo->frags[0];
5918 
5919 	NAPI_GRO_CB(skb)->data_offset = 0;
5920 	NAPI_GRO_CB(skb)->frag0 = NULL;
5921 	NAPI_GRO_CB(skb)->frag0_len = 0;
5922 
5923 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5924 	    !PageHighMem(skb_frag_page(frag0)) &&
5925 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5926 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5927 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5928 						    skb_frag_size(frag0),
5929 						    skb->end - skb->tail);
5930 	}
5931 }
5932 
gro_pull_from_frag0(struct sk_buff * skb,int grow)5933 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5934 {
5935 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5936 
5937 	BUG_ON(skb->end - skb->tail < grow);
5938 
5939 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5940 
5941 	skb->data_len -= grow;
5942 	skb->tail += grow;
5943 
5944 	skb_frag_off_add(&pinfo->frags[0], grow);
5945 	skb_frag_size_sub(&pinfo->frags[0], grow);
5946 
5947 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5948 		skb_frag_unref(skb, 0);
5949 		memmove(pinfo->frags, pinfo->frags + 1,
5950 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5951 	}
5952 }
5953 
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)5954 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5955 {
5956 	struct sk_buff *oldest;
5957 
5958 	oldest = list_last_entry(head, struct sk_buff, list);
5959 
5960 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5961 	 * impossible.
5962 	 */
5963 	if (WARN_ON_ONCE(!oldest))
5964 		return;
5965 
5966 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5967 	 * SKB to the chain.
5968 	 */
5969 	skb_list_del_init(oldest);
5970 	napi_gro_complete(napi, oldest);
5971 }
5972 
5973 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5974 							   struct sk_buff *));
5975 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5976 							   struct sk_buff *));
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5977 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5978 {
5979 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5980 	struct list_head *head = &offload_base;
5981 	struct packet_offload *ptype;
5982 	__be16 type = skb->protocol;
5983 	struct list_head *gro_head;
5984 	struct sk_buff *pp = NULL;
5985 	enum gro_result ret;
5986 	int same_flow;
5987 	int grow;
5988 
5989 	if (netif_elide_gro(skb->dev))
5990 		goto normal;
5991 
5992 	gro_head = gro_list_prepare(napi, skb);
5993 
5994 	rcu_read_lock();
5995 	list_for_each_entry_rcu(ptype, head, list) {
5996 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5997 			continue;
5998 
5999 		skb_set_network_header(skb, skb_gro_offset(skb));
6000 		skb_reset_mac_len(skb);
6001 		NAPI_GRO_CB(skb)->same_flow = 0;
6002 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6003 		NAPI_GRO_CB(skb)->free = 0;
6004 		NAPI_GRO_CB(skb)->encap_mark = 0;
6005 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6006 		NAPI_GRO_CB(skb)->is_fou = 0;
6007 		NAPI_GRO_CB(skb)->is_atomic = 1;
6008 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6009 
6010 		/* Setup for GRO checksum validation */
6011 		switch (skb->ip_summed) {
6012 		case CHECKSUM_COMPLETE:
6013 			NAPI_GRO_CB(skb)->csum = skb->csum;
6014 			NAPI_GRO_CB(skb)->csum_valid = 1;
6015 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6016 			break;
6017 		case CHECKSUM_UNNECESSARY:
6018 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6019 			NAPI_GRO_CB(skb)->csum_valid = 0;
6020 			break;
6021 		default:
6022 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6023 			NAPI_GRO_CB(skb)->csum_valid = 0;
6024 		}
6025 
6026 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6027 					ipv6_gro_receive, inet_gro_receive,
6028 					gro_head, skb);
6029 		break;
6030 	}
6031 	rcu_read_unlock();
6032 
6033 	if (&ptype->list == head)
6034 		goto normal;
6035 
6036 	if (PTR_ERR(pp) == -EINPROGRESS) {
6037 		ret = GRO_CONSUMED;
6038 		goto ok;
6039 	}
6040 
6041 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6042 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6043 
6044 	if (pp) {
6045 		skb_list_del_init(pp);
6046 		napi_gro_complete(napi, pp);
6047 		napi->gro_hash[hash].count--;
6048 	}
6049 
6050 	if (same_flow)
6051 		goto ok;
6052 
6053 	if (NAPI_GRO_CB(skb)->flush)
6054 		goto normal;
6055 
6056 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6057 		gro_flush_oldest(napi, gro_head);
6058 	} else {
6059 		napi->gro_hash[hash].count++;
6060 	}
6061 	NAPI_GRO_CB(skb)->count = 1;
6062 	NAPI_GRO_CB(skb)->age = jiffies;
6063 	NAPI_GRO_CB(skb)->last = skb;
6064 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6065 	list_add(&skb->list, gro_head);
6066 	ret = GRO_HELD;
6067 
6068 pull:
6069 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6070 	if (grow > 0)
6071 		gro_pull_from_frag0(skb, grow);
6072 ok:
6073 	if (napi->gro_hash[hash].count) {
6074 		if (!test_bit(hash, &napi->gro_bitmask))
6075 			__set_bit(hash, &napi->gro_bitmask);
6076 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6077 		__clear_bit(hash, &napi->gro_bitmask);
6078 	}
6079 
6080 	return ret;
6081 
6082 normal:
6083 	ret = GRO_NORMAL;
6084 	goto pull;
6085 }
6086 
gro_find_receive_by_type(__be16 type)6087 struct packet_offload *gro_find_receive_by_type(__be16 type)
6088 {
6089 	struct list_head *offload_head = &offload_base;
6090 	struct packet_offload *ptype;
6091 
6092 	list_for_each_entry_rcu(ptype, offload_head, list) {
6093 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6094 			continue;
6095 		return ptype;
6096 	}
6097 	return NULL;
6098 }
6099 EXPORT_SYMBOL(gro_find_receive_by_type);
6100 
gro_find_complete_by_type(__be16 type)6101 struct packet_offload *gro_find_complete_by_type(__be16 type)
6102 {
6103 	struct list_head *offload_head = &offload_base;
6104 	struct packet_offload *ptype;
6105 
6106 	list_for_each_entry_rcu(ptype, offload_head, list) {
6107 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6108 			continue;
6109 		return ptype;
6110 	}
6111 	return NULL;
6112 }
6113 EXPORT_SYMBOL(gro_find_complete_by_type);
6114 
napi_skb_free_stolen_head(struct sk_buff * skb)6115 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6116 {
6117 	skb_dst_drop(skb);
6118 	skb_ext_put(skb);
6119 	kmem_cache_free(skbuff_head_cache, skb);
6120 }
6121 
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6122 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6123 				    struct sk_buff *skb,
6124 				    gro_result_t ret)
6125 {
6126 	switch (ret) {
6127 	case GRO_NORMAL:
6128 		gro_normal_one(napi, skb, 1);
6129 		break;
6130 
6131 	case GRO_DROP:
6132 		kfree_skb(skb);
6133 		break;
6134 
6135 	case GRO_MERGED_FREE:
6136 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6137 			napi_skb_free_stolen_head(skb);
6138 		else
6139 			__kfree_skb(skb);
6140 		break;
6141 
6142 	case GRO_HELD:
6143 	case GRO_MERGED:
6144 	case GRO_CONSUMED:
6145 		break;
6146 	}
6147 
6148 	return ret;
6149 }
6150 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6151 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6152 {
6153 	gro_result_t ret;
6154 
6155 	skb_mark_napi_id(skb, napi);
6156 	trace_napi_gro_receive_entry(skb);
6157 
6158 	skb_gro_reset_offset(skb, 0);
6159 
6160 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6161 	trace_napi_gro_receive_exit(ret);
6162 
6163 	return ret;
6164 }
6165 EXPORT_SYMBOL(napi_gro_receive);
6166 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6167 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6168 {
6169 	if (unlikely(skb->pfmemalloc)) {
6170 		consume_skb(skb);
6171 		return;
6172 	}
6173 	__skb_pull(skb, skb_headlen(skb));
6174 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6175 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6176 	__vlan_hwaccel_clear_tag(skb);
6177 	skb->dev = napi->dev;
6178 	skb->skb_iif = 0;
6179 
6180 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6181 	skb->pkt_type = PACKET_HOST;
6182 
6183 	skb->encapsulation = 0;
6184 	skb_shinfo(skb)->gso_type = 0;
6185 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6186 	skb_ext_reset(skb);
6187 	nf_reset_ct(skb);
6188 
6189 	napi->skb = skb;
6190 }
6191 
napi_get_frags(struct napi_struct * napi)6192 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6193 {
6194 	struct sk_buff *skb = napi->skb;
6195 
6196 	if (!skb) {
6197 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6198 		if (skb) {
6199 			napi->skb = skb;
6200 			skb_mark_napi_id(skb, napi);
6201 		}
6202 	}
6203 	return skb;
6204 }
6205 EXPORT_SYMBOL(napi_get_frags);
6206 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6207 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6208 				      struct sk_buff *skb,
6209 				      gro_result_t ret)
6210 {
6211 	switch (ret) {
6212 	case GRO_NORMAL:
6213 	case GRO_HELD:
6214 		__skb_push(skb, ETH_HLEN);
6215 		skb->protocol = eth_type_trans(skb, skb->dev);
6216 		if (ret == GRO_NORMAL)
6217 			gro_normal_one(napi, skb, 1);
6218 		break;
6219 
6220 	case GRO_DROP:
6221 		napi_reuse_skb(napi, skb);
6222 		break;
6223 
6224 	case GRO_MERGED_FREE:
6225 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6226 			napi_skb_free_stolen_head(skb);
6227 		else
6228 			napi_reuse_skb(napi, skb);
6229 		break;
6230 
6231 	case GRO_MERGED:
6232 	case GRO_CONSUMED:
6233 		break;
6234 	}
6235 
6236 	return ret;
6237 }
6238 
6239 /* Upper GRO stack assumes network header starts at gro_offset=0
6240  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6241  * We copy ethernet header into skb->data to have a common layout.
6242  */
napi_frags_skb(struct napi_struct * napi)6243 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6244 {
6245 	struct sk_buff *skb = napi->skb;
6246 	const struct ethhdr *eth;
6247 	unsigned int hlen = sizeof(*eth);
6248 
6249 	napi->skb = NULL;
6250 
6251 	skb_reset_mac_header(skb);
6252 	skb_gro_reset_offset(skb, hlen);
6253 
6254 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6255 		eth = skb_gro_header_slow(skb, hlen, 0);
6256 		if (unlikely(!eth)) {
6257 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6258 					     __func__, napi->dev->name);
6259 			napi_reuse_skb(napi, skb);
6260 			return NULL;
6261 		}
6262 	} else {
6263 		eth = (const struct ethhdr *)skb->data;
6264 		gro_pull_from_frag0(skb, hlen);
6265 		NAPI_GRO_CB(skb)->frag0 += hlen;
6266 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6267 	}
6268 	__skb_pull(skb, hlen);
6269 
6270 	/*
6271 	 * This works because the only protocols we care about don't require
6272 	 * special handling.
6273 	 * We'll fix it up properly in napi_frags_finish()
6274 	 */
6275 	skb->protocol = eth->h_proto;
6276 
6277 	return skb;
6278 }
6279 
napi_gro_frags(struct napi_struct * napi)6280 gro_result_t napi_gro_frags(struct napi_struct *napi)
6281 {
6282 	gro_result_t ret;
6283 	struct sk_buff *skb = napi_frags_skb(napi);
6284 
6285 	if (!skb)
6286 		return GRO_DROP;
6287 
6288 	trace_napi_gro_frags_entry(skb);
6289 
6290 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6291 	trace_napi_gro_frags_exit(ret);
6292 
6293 	return ret;
6294 }
6295 EXPORT_SYMBOL(napi_gro_frags);
6296 
6297 /* Compute the checksum from gro_offset and return the folded value
6298  * after adding in any pseudo checksum.
6299  */
__skb_gro_checksum_complete(struct sk_buff * skb)6300 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6301 {
6302 	__wsum wsum;
6303 	__sum16 sum;
6304 
6305 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6306 
6307 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6308 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6309 	/* See comments in __skb_checksum_complete(). */
6310 	if (likely(!sum)) {
6311 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6312 		    !skb->csum_complete_sw)
6313 			netdev_rx_csum_fault(skb->dev, skb);
6314 	}
6315 
6316 	NAPI_GRO_CB(skb)->csum = wsum;
6317 	NAPI_GRO_CB(skb)->csum_valid = 1;
6318 
6319 	return sum;
6320 }
6321 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6322 
net_rps_send_ipi(struct softnet_data * remsd)6323 static void net_rps_send_ipi(struct softnet_data *remsd)
6324 {
6325 #ifdef CONFIG_RPS
6326 	while (remsd) {
6327 		struct softnet_data *next = remsd->rps_ipi_next;
6328 
6329 		if (cpu_online(remsd->cpu))
6330 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6331 		remsd = next;
6332 	}
6333 #endif
6334 }
6335 
6336 /*
6337  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6338  * Note: called with local irq disabled, but exits with local irq enabled.
6339  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6340 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6341 {
6342 #ifdef CONFIG_RPS
6343 	struct softnet_data *remsd = sd->rps_ipi_list;
6344 
6345 	if (remsd) {
6346 		sd->rps_ipi_list = NULL;
6347 
6348 		local_irq_enable();
6349 
6350 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6351 		net_rps_send_ipi(remsd);
6352 	} else
6353 #endif
6354 		local_irq_enable();
6355 }
6356 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6357 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6358 {
6359 #ifdef CONFIG_RPS
6360 	return sd->rps_ipi_list != NULL;
6361 #else
6362 	return false;
6363 #endif
6364 }
6365 
process_backlog(struct napi_struct * napi,int quota)6366 static int process_backlog(struct napi_struct *napi, int quota)
6367 {
6368 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6369 	bool again = true;
6370 	int work = 0;
6371 
6372 	/* Check if we have pending ipi, its better to send them now,
6373 	 * not waiting net_rx_action() end.
6374 	 */
6375 	if (sd_has_rps_ipi_waiting(sd)) {
6376 		local_irq_disable();
6377 		net_rps_action_and_irq_enable(sd);
6378 	}
6379 
6380 	napi->weight = READ_ONCE(dev_rx_weight);
6381 	while (again) {
6382 		struct sk_buff *skb;
6383 
6384 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6385 			rcu_read_lock();
6386 			__netif_receive_skb(skb);
6387 			rcu_read_unlock();
6388 			input_queue_head_incr(sd);
6389 			if (++work >= quota)
6390 				return work;
6391 
6392 		}
6393 
6394 		local_irq_disable();
6395 		rps_lock(sd);
6396 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6397 			/*
6398 			 * Inline a custom version of __napi_complete().
6399 			 * only current cpu owns and manipulates this napi,
6400 			 * and NAPI_STATE_SCHED is the only possible flag set
6401 			 * on backlog.
6402 			 * We can use a plain write instead of clear_bit(),
6403 			 * and we dont need an smp_mb() memory barrier.
6404 			 */
6405 			napi->state = 0;
6406 			again = false;
6407 		} else {
6408 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6409 						   &sd->process_queue);
6410 		}
6411 		rps_unlock(sd);
6412 		local_irq_enable();
6413 	}
6414 
6415 	return work;
6416 }
6417 
6418 /**
6419  * __napi_schedule - schedule for receive
6420  * @n: entry to schedule
6421  *
6422  * The entry's receive function will be scheduled to run.
6423  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6424  */
__napi_schedule(struct napi_struct * n)6425 void __napi_schedule(struct napi_struct *n)
6426 {
6427 	unsigned long flags;
6428 
6429 	local_irq_save(flags);
6430 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6431 	local_irq_restore(flags);
6432 }
6433 EXPORT_SYMBOL(__napi_schedule);
6434 
6435 /**
6436  *	napi_schedule_prep - check if napi can be scheduled
6437  *	@n: napi context
6438  *
6439  * Test if NAPI routine is already running, and if not mark
6440  * it as running.  This is used as a condition variable to
6441  * insure only one NAPI poll instance runs.  We also make
6442  * sure there is no pending NAPI disable.
6443  */
napi_schedule_prep(struct napi_struct * n)6444 bool napi_schedule_prep(struct napi_struct *n)
6445 {
6446 	unsigned long val, new;
6447 
6448 	do {
6449 		val = READ_ONCE(n->state);
6450 		if (unlikely(val & NAPIF_STATE_DISABLE))
6451 			return false;
6452 		new = val | NAPIF_STATE_SCHED;
6453 
6454 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6455 		 * This was suggested by Alexander Duyck, as compiler
6456 		 * emits better code than :
6457 		 * if (val & NAPIF_STATE_SCHED)
6458 		 *     new |= NAPIF_STATE_MISSED;
6459 		 */
6460 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6461 						   NAPIF_STATE_MISSED;
6462 	} while (cmpxchg(&n->state, val, new) != val);
6463 
6464 	return !(val & NAPIF_STATE_SCHED);
6465 }
6466 EXPORT_SYMBOL(napi_schedule_prep);
6467 
6468 /**
6469  * __napi_schedule_irqoff - schedule for receive
6470  * @n: entry to schedule
6471  *
6472  * Variant of __napi_schedule() assuming hard irqs are masked.
6473  *
6474  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6475  * because the interrupt disabled assumption might not be true
6476  * due to force-threaded interrupts and spinlock substitution.
6477  */
__napi_schedule_irqoff(struct napi_struct * n)6478 void __napi_schedule_irqoff(struct napi_struct *n)
6479 {
6480 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6481 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6482 	else
6483 		__napi_schedule(n);
6484 }
6485 EXPORT_SYMBOL(__napi_schedule_irqoff);
6486 
napi_complete_done(struct napi_struct * n,int work_done)6487 bool napi_complete_done(struct napi_struct *n, int work_done)
6488 {
6489 	unsigned long flags, val, new, timeout = 0;
6490 	bool ret = true;
6491 
6492 	/*
6493 	 * 1) Don't let napi dequeue from the cpu poll list
6494 	 *    just in case its running on a different cpu.
6495 	 * 2) If we are busy polling, do nothing here, we have
6496 	 *    the guarantee we will be called later.
6497 	 */
6498 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6499 				 NAPIF_STATE_IN_BUSY_POLL)))
6500 		return false;
6501 
6502 	if (work_done) {
6503 		if (n->gro_bitmask)
6504 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6505 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6506 	}
6507 	if (n->defer_hard_irqs_count > 0) {
6508 		n->defer_hard_irqs_count--;
6509 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6510 		if (timeout)
6511 			ret = false;
6512 	}
6513 	if (n->gro_bitmask) {
6514 		/* When the NAPI instance uses a timeout and keeps postponing
6515 		 * it, we need to bound somehow the time packets are kept in
6516 		 * the GRO layer
6517 		 */
6518 		napi_gro_flush(n, !!timeout);
6519 	}
6520 
6521 	gro_normal_list(n);
6522 
6523 	if (unlikely(!list_empty(&n->poll_list))) {
6524 		/* If n->poll_list is not empty, we need to mask irqs */
6525 		local_irq_save(flags);
6526 		list_del_init(&n->poll_list);
6527 		local_irq_restore(flags);
6528 	}
6529 
6530 	do {
6531 		val = READ_ONCE(n->state);
6532 
6533 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6534 
6535 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6536 
6537 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6538 		 * because we will call napi->poll() one more time.
6539 		 * This C code was suggested by Alexander Duyck to help gcc.
6540 		 */
6541 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6542 						    NAPIF_STATE_SCHED;
6543 	} while (cmpxchg(&n->state, val, new) != val);
6544 
6545 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6546 		__napi_schedule(n);
6547 		return false;
6548 	}
6549 
6550 	if (timeout)
6551 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6552 			      HRTIMER_MODE_REL_PINNED);
6553 	return ret;
6554 }
6555 EXPORT_SYMBOL(napi_complete_done);
6556 
6557 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6558 static struct napi_struct *napi_by_id(unsigned int napi_id)
6559 {
6560 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6561 	struct napi_struct *napi;
6562 
6563 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6564 		if (napi->napi_id == napi_id)
6565 			return napi;
6566 
6567 	return NULL;
6568 }
6569 
6570 #if defined(CONFIG_NET_RX_BUSY_POLL)
6571 
6572 #define BUSY_POLL_BUDGET 8
6573 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6574 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6575 {
6576 	int rc;
6577 
6578 	/* Busy polling means there is a high chance device driver hard irq
6579 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6580 	 * set in napi_schedule_prep().
6581 	 * Since we are about to call napi->poll() once more, we can safely
6582 	 * clear NAPI_STATE_MISSED.
6583 	 *
6584 	 * Note: x86 could use a single "lock and ..." instruction
6585 	 * to perform these two clear_bit()
6586 	 */
6587 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6588 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6589 
6590 	local_bh_disable();
6591 
6592 	/* All we really want here is to re-enable device interrupts.
6593 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6594 	 */
6595 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6596 	/* We can't gro_normal_list() here, because napi->poll() might have
6597 	 * rearmed the napi (napi_complete_done()) in which case it could
6598 	 * already be running on another CPU.
6599 	 */
6600 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6601 	netpoll_poll_unlock(have_poll_lock);
6602 	if (rc == BUSY_POLL_BUDGET) {
6603 		/* As the whole budget was spent, we still own the napi so can
6604 		 * safely handle the rx_list.
6605 		 */
6606 		gro_normal_list(napi);
6607 		__napi_schedule(napi);
6608 	}
6609 	local_bh_enable();
6610 }
6611 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6612 void napi_busy_loop(unsigned int napi_id,
6613 		    bool (*loop_end)(void *, unsigned long),
6614 		    void *loop_end_arg)
6615 {
6616 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6617 	int (*napi_poll)(struct napi_struct *napi, int budget);
6618 	void *have_poll_lock = NULL;
6619 	struct napi_struct *napi;
6620 
6621 restart:
6622 	napi_poll = NULL;
6623 
6624 	rcu_read_lock();
6625 
6626 	napi = napi_by_id(napi_id);
6627 	if (!napi)
6628 		goto out;
6629 
6630 	preempt_disable();
6631 	for (;;) {
6632 		int work = 0;
6633 
6634 		local_bh_disable();
6635 		if (!napi_poll) {
6636 			unsigned long val = READ_ONCE(napi->state);
6637 
6638 			/* If multiple threads are competing for this napi,
6639 			 * we avoid dirtying napi->state as much as we can.
6640 			 */
6641 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6642 				   NAPIF_STATE_IN_BUSY_POLL))
6643 				goto count;
6644 			if (cmpxchg(&napi->state, val,
6645 				    val | NAPIF_STATE_IN_BUSY_POLL |
6646 					  NAPIF_STATE_SCHED) != val)
6647 				goto count;
6648 			have_poll_lock = netpoll_poll_lock(napi);
6649 			napi_poll = napi->poll;
6650 		}
6651 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6652 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6653 		gro_normal_list(napi);
6654 count:
6655 		if (work > 0)
6656 			__NET_ADD_STATS(dev_net(napi->dev),
6657 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6658 		local_bh_enable();
6659 
6660 		if (!loop_end || loop_end(loop_end_arg, start_time))
6661 			break;
6662 
6663 		if (unlikely(need_resched())) {
6664 			if (napi_poll)
6665 				busy_poll_stop(napi, have_poll_lock);
6666 			preempt_enable();
6667 			rcu_read_unlock();
6668 			cond_resched();
6669 			if (loop_end(loop_end_arg, start_time))
6670 				return;
6671 			goto restart;
6672 		}
6673 		cpu_relax();
6674 	}
6675 	if (napi_poll)
6676 		busy_poll_stop(napi, have_poll_lock);
6677 	preempt_enable();
6678 out:
6679 	rcu_read_unlock();
6680 }
6681 EXPORT_SYMBOL(napi_busy_loop);
6682 
6683 #endif /* CONFIG_NET_RX_BUSY_POLL */
6684 
napi_hash_add(struct napi_struct * napi)6685 static void napi_hash_add(struct napi_struct *napi)
6686 {
6687 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6688 		return;
6689 
6690 	spin_lock(&napi_hash_lock);
6691 
6692 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6693 	do {
6694 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6695 			napi_gen_id = MIN_NAPI_ID;
6696 	} while (napi_by_id(napi_gen_id));
6697 	napi->napi_id = napi_gen_id;
6698 
6699 	hlist_add_head_rcu(&napi->napi_hash_node,
6700 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6701 
6702 	spin_unlock(&napi_hash_lock);
6703 }
6704 
6705 /* Warning : caller is responsible to make sure rcu grace period
6706  * is respected before freeing memory containing @napi
6707  */
napi_hash_del(struct napi_struct * napi)6708 static void napi_hash_del(struct napi_struct *napi)
6709 {
6710 	spin_lock(&napi_hash_lock);
6711 
6712 	hlist_del_init_rcu(&napi->napi_hash_node);
6713 
6714 	spin_unlock(&napi_hash_lock);
6715 }
6716 
napi_watchdog(struct hrtimer * timer)6717 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6718 {
6719 	struct napi_struct *napi;
6720 
6721 	napi = container_of(timer, struct napi_struct, timer);
6722 
6723 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6724 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6725 	 */
6726 	if (!napi_disable_pending(napi) &&
6727 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6728 		__napi_schedule_irqoff(napi);
6729 
6730 	return HRTIMER_NORESTART;
6731 }
6732 
init_gro_hash(struct napi_struct * napi)6733 static void init_gro_hash(struct napi_struct *napi)
6734 {
6735 	int i;
6736 
6737 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6738 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6739 		napi->gro_hash[i].count = 0;
6740 	}
6741 	napi->gro_bitmask = 0;
6742 }
6743 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6744 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6745 		    int (*poll)(struct napi_struct *, int), int weight)
6746 {
6747 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6748 		return;
6749 
6750 	INIT_LIST_HEAD(&napi->poll_list);
6751 	INIT_HLIST_NODE(&napi->napi_hash_node);
6752 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6753 	napi->timer.function = napi_watchdog;
6754 	init_gro_hash(napi);
6755 	napi->skb = NULL;
6756 	INIT_LIST_HEAD(&napi->rx_list);
6757 	napi->rx_count = 0;
6758 	napi->poll = poll;
6759 	if (weight > NAPI_POLL_WEIGHT)
6760 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6761 				weight);
6762 	napi->weight = weight;
6763 	napi->dev = dev;
6764 #ifdef CONFIG_NETPOLL
6765 	napi->poll_owner = -1;
6766 #endif
6767 	set_bit(NAPI_STATE_SCHED, &napi->state);
6768 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6769 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6770 	napi_hash_add(napi);
6771 }
6772 EXPORT_SYMBOL(netif_napi_add);
6773 
napi_disable(struct napi_struct * n)6774 void napi_disable(struct napi_struct *n)
6775 {
6776 	might_sleep();
6777 	set_bit(NAPI_STATE_DISABLE, &n->state);
6778 
6779 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6780 		msleep(1);
6781 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6782 		msleep(1);
6783 
6784 	hrtimer_cancel(&n->timer);
6785 
6786 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6787 }
6788 EXPORT_SYMBOL(napi_disable);
6789 
flush_gro_hash(struct napi_struct * napi)6790 static void flush_gro_hash(struct napi_struct *napi)
6791 {
6792 	int i;
6793 
6794 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6795 		struct sk_buff *skb, *n;
6796 
6797 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6798 			kfree_skb(skb);
6799 		napi->gro_hash[i].count = 0;
6800 	}
6801 }
6802 
6803 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6804 void __netif_napi_del(struct napi_struct *napi)
6805 {
6806 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6807 		return;
6808 
6809 	napi_hash_del(napi);
6810 	list_del_rcu(&napi->dev_list);
6811 	napi_free_frags(napi);
6812 
6813 	flush_gro_hash(napi);
6814 	napi->gro_bitmask = 0;
6815 }
6816 EXPORT_SYMBOL(__netif_napi_del);
6817 
napi_poll(struct napi_struct * n,struct list_head * repoll)6818 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6819 {
6820 	void *have;
6821 	int work, weight;
6822 
6823 	list_del_init(&n->poll_list);
6824 
6825 	have = netpoll_poll_lock(n);
6826 
6827 	weight = n->weight;
6828 
6829 	/* This NAPI_STATE_SCHED test is for avoiding a race
6830 	 * with netpoll's poll_napi().  Only the entity which
6831 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6832 	 * actually make the ->poll() call.  Therefore we avoid
6833 	 * accidentally calling ->poll() when NAPI is not scheduled.
6834 	 */
6835 	work = 0;
6836 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6837 		work = n->poll(n, weight);
6838 		trace_napi_poll(n, work, weight);
6839 	}
6840 
6841 	if (unlikely(work > weight))
6842 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6843 			    n->poll, work, weight);
6844 
6845 	if (likely(work < weight))
6846 		goto out_unlock;
6847 
6848 	/* Drivers must not modify the NAPI state if they
6849 	 * consume the entire weight.  In such cases this code
6850 	 * still "owns" the NAPI instance and therefore can
6851 	 * move the instance around on the list at-will.
6852 	 */
6853 	if (unlikely(napi_disable_pending(n))) {
6854 		napi_complete(n);
6855 		goto out_unlock;
6856 	}
6857 
6858 	if (n->gro_bitmask) {
6859 		/* flush too old packets
6860 		 * If HZ < 1000, flush all packets.
6861 		 */
6862 		napi_gro_flush(n, HZ >= 1000);
6863 	}
6864 
6865 	gro_normal_list(n);
6866 
6867 	/* Some drivers may have called napi_schedule
6868 	 * prior to exhausting their budget.
6869 	 */
6870 	if (unlikely(!list_empty(&n->poll_list))) {
6871 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6872 			     n->dev ? n->dev->name : "backlog");
6873 		goto out_unlock;
6874 	}
6875 
6876 	list_add_tail(&n->poll_list, repoll);
6877 
6878 out_unlock:
6879 	netpoll_poll_unlock(have);
6880 
6881 	return work;
6882 }
6883 
net_rx_action(struct softirq_action * h)6884 static __latent_entropy void net_rx_action(struct softirq_action *h)
6885 {
6886 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6887 	unsigned long time_limit = jiffies +
6888 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6889 	int budget = READ_ONCE(netdev_budget);
6890 	LIST_HEAD(list);
6891 	LIST_HEAD(repoll);
6892 
6893 	local_irq_disable();
6894 	list_splice_init(&sd->poll_list, &list);
6895 	local_irq_enable();
6896 
6897 	for (;;) {
6898 		struct napi_struct *n;
6899 
6900 		if (list_empty(&list)) {
6901 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6902 				goto out;
6903 			break;
6904 		}
6905 
6906 		n = list_first_entry(&list, struct napi_struct, poll_list);
6907 		budget -= napi_poll(n, &repoll);
6908 
6909 		/* If softirq window is exhausted then punt.
6910 		 * Allow this to run for 2 jiffies since which will allow
6911 		 * an average latency of 1.5/HZ.
6912 		 */
6913 		if (unlikely(budget <= 0 ||
6914 			     time_after_eq(jiffies, time_limit))) {
6915 			sd->time_squeeze++;
6916 			break;
6917 		}
6918 	}
6919 
6920 	local_irq_disable();
6921 
6922 	list_splice_tail_init(&sd->poll_list, &list);
6923 	list_splice_tail(&repoll, &list);
6924 	list_splice(&list, &sd->poll_list);
6925 	if (!list_empty(&sd->poll_list))
6926 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6927 
6928 	net_rps_action_and_irq_enable(sd);
6929 out:
6930 	__kfree_skb_flush();
6931 }
6932 
6933 struct netdev_adjacent {
6934 	struct net_device *dev;
6935 
6936 	/* upper master flag, there can only be one master device per list */
6937 	bool master;
6938 
6939 	/* lookup ignore flag */
6940 	bool ignore;
6941 
6942 	/* counter for the number of times this device was added to us */
6943 	u16 ref_nr;
6944 
6945 	/* private field for the users */
6946 	void *private;
6947 
6948 	struct list_head list;
6949 	struct rcu_head rcu;
6950 };
6951 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6952 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6953 						 struct list_head *adj_list)
6954 {
6955 	struct netdev_adjacent *adj;
6956 
6957 	list_for_each_entry(adj, adj_list, list) {
6958 		if (adj->dev == adj_dev)
6959 			return adj;
6960 	}
6961 	return NULL;
6962 }
6963 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6964 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6965 				    struct netdev_nested_priv *priv)
6966 {
6967 	struct net_device *dev = (struct net_device *)priv->data;
6968 
6969 	return upper_dev == dev;
6970 }
6971 
6972 /**
6973  * netdev_has_upper_dev - Check if device is linked to an upper device
6974  * @dev: device
6975  * @upper_dev: upper device to check
6976  *
6977  * Find out if a device is linked to specified upper device and return true
6978  * in case it is. Note that this checks only immediate upper device,
6979  * not through a complete stack of devices. The caller must hold the RTNL lock.
6980  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6981 bool netdev_has_upper_dev(struct net_device *dev,
6982 			  struct net_device *upper_dev)
6983 {
6984 	struct netdev_nested_priv priv = {
6985 		.data = (void *)upper_dev,
6986 	};
6987 
6988 	ASSERT_RTNL();
6989 
6990 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6991 					     &priv);
6992 }
6993 EXPORT_SYMBOL(netdev_has_upper_dev);
6994 
6995 /**
6996  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6997  * @dev: device
6998  * @upper_dev: upper device to check
6999  *
7000  * Find out if a device is linked to specified upper device and return true
7001  * in case it is. Note that this checks the entire upper device chain.
7002  * The caller must hold rcu lock.
7003  */
7004 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7005 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7006 				  struct net_device *upper_dev)
7007 {
7008 	struct netdev_nested_priv priv = {
7009 		.data = (void *)upper_dev,
7010 	};
7011 
7012 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7013 					       &priv);
7014 }
7015 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7016 
7017 /**
7018  * netdev_has_any_upper_dev - Check if device is linked to some device
7019  * @dev: device
7020  *
7021  * Find out if a device is linked to an upper device and return true in case
7022  * it is. The caller must hold the RTNL lock.
7023  */
netdev_has_any_upper_dev(struct net_device * dev)7024 bool netdev_has_any_upper_dev(struct net_device *dev)
7025 {
7026 	ASSERT_RTNL();
7027 
7028 	return !list_empty(&dev->adj_list.upper);
7029 }
7030 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7031 
7032 /**
7033  * netdev_master_upper_dev_get - Get master upper device
7034  * @dev: device
7035  *
7036  * Find a master upper device and return pointer to it or NULL in case
7037  * it's not there. The caller must hold the RTNL lock.
7038  */
netdev_master_upper_dev_get(struct net_device * dev)7039 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7040 {
7041 	struct netdev_adjacent *upper;
7042 
7043 	ASSERT_RTNL();
7044 
7045 	if (list_empty(&dev->adj_list.upper))
7046 		return NULL;
7047 
7048 	upper = list_first_entry(&dev->adj_list.upper,
7049 				 struct netdev_adjacent, list);
7050 	if (likely(upper->master))
7051 		return upper->dev;
7052 	return NULL;
7053 }
7054 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7055 
__netdev_master_upper_dev_get(struct net_device * dev)7056 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7057 {
7058 	struct netdev_adjacent *upper;
7059 
7060 	ASSERT_RTNL();
7061 
7062 	if (list_empty(&dev->adj_list.upper))
7063 		return NULL;
7064 
7065 	upper = list_first_entry(&dev->adj_list.upper,
7066 				 struct netdev_adjacent, list);
7067 	if (likely(upper->master) && !upper->ignore)
7068 		return upper->dev;
7069 	return NULL;
7070 }
7071 
7072 /**
7073  * netdev_has_any_lower_dev - Check if device is linked to some device
7074  * @dev: device
7075  *
7076  * Find out if a device is linked to a lower device and return true in case
7077  * it is. The caller must hold the RTNL lock.
7078  */
netdev_has_any_lower_dev(struct net_device * dev)7079 static bool netdev_has_any_lower_dev(struct net_device *dev)
7080 {
7081 	ASSERT_RTNL();
7082 
7083 	return !list_empty(&dev->adj_list.lower);
7084 }
7085 
netdev_adjacent_get_private(struct list_head * adj_list)7086 void *netdev_adjacent_get_private(struct list_head *adj_list)
7087 {
7088 	struct netdev_adjacent *adj;
7089 
7090 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7091 
7092 	return adj->private;
7093 }
7094 EXPORT_SYMBOL(netdev_adjacent_get_private);
7095 
7096 /**
7097  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7098  * @dev: device
7099  * @iter: list_head ** of the current position
7100  *
7101  * Gets the next device from the dev's upper list, starting from iter
7102  * position. The caller must hold RCU read lock.
7103  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7104 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7105 						 struct list_head **iter)
7106 {
7107 	struct netdev_adjacent *upper;
7108 
7109 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7110 
7111 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7112 
7113 	if (&upper->list == &dev->adj_list.upper)
7114 		return NULL;
7115 
7116 	*iter = &upper->list;
7117 
7118 	return upper->dev;
7119 }
7120 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7121 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7122 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7123 						  struct list_head **iter,
7124 						  bool *ignore)
7125 {
7126 	struct netdev_adjacent *upper;
7127 
7128 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7129 
7130 	if (&upper->list == &dev->adj_list.upper)
7131 		return NULL;
7132 
7133 	*iter = &upper->list;
7134 	*ignore = upper->ignore;
7135 
7136 	return upper->dev;
7137 }
7138 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7139 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7140 						    struct list_head **iter)
7141 {
7142 	struct netdev_adjacent *upper;
7143 
7144 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7145 
7146 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7147 
7148 	if (&upper->list == &dev->adj_list.upper)
7149 		return NULL;
7150 
7151 	*iter = &upper->list;
7152 
7153 	return upper->dev;
7154 }
7155 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7156 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7157 				       int (*fn)(struct net_device *dev,
7158 					 struct netdev_nested_priv *priv),
7159 				       struct netdev_nested_priv *priv)
7160 {
7161 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7162 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7163 	int ret, cur = 0;
7164 	bool ignore;
7165 
7166 	now = dev;
7167 	iter = &dev->adj_list.upper;
7168 
7169 	while (1) {
7170 		if (now != dev) {
7171 			ret = fn(now, priv);
7172 			if (ret)
7173 				return ret;
7174 		}
7175 
7176 		next = NULL;
7177 		while (1) {
7178 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7179 			if (!udev)
7180 				break;
7181 			if (ignore)
7182 				continue;
7183 
7184 			next = udev;
7185 			niter = &udev->adj_list.upper;
7186 			dev_stack[cur] = now;
7187 			iter_stack[cur++] = iter;
7188 			break;
7189 		}
7190 
7191 		if (!next) {
7192 			if (!cur)
7193 				return 0;
7194 			next = dev_stack[--cur];
7195 			niter = iter_stack[cur];
7196 		}
7197 
7198 		now = next;
7199 		iter = niter;
7200 	}
7201 
7202 	return 0;
7203 }
7204 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7205 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7206 				  int (*fn)(struct net_device *dev,
7207 					    struct netdev_nested_priv *priv),
7208 				  struct netdev_nested_priv *priv)
7209 {
7210 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7211 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7212 	int ret, cur = 0;
7213 
7214 	now = dev;
7215 	iter = &dev->adj_list.upper;
7216 
7217 	while (1) {
7218 		if (now != dev) {
7219 			ret = fn(now, priv);
7220 			if (ret)
7221 				return ret;
7222 		}
7223 
7224 		next = NULL;
7225 		while (1) {
7226 			udev = netdev_next_upper_dev_rcu(now, &iter);
7227 			if (!udev)
7228 				break;
7229 
7230 			next = udev;
7231 			niter = &udev->adj_list.upper;
7232 			dev_stack[cur] = now;
7233 			iter_stack[cur++] = iter;
7234 			break;
7235 		}
7236 
7237 		if (!next) {
7238 			if (!cur)
7239 				return 0;
7240 			next = dev_stack[--cur];
7241 			niter = iter_stack[cur];
7242 		}
7243 
7244 		now = next;
7245 		iter = niter;
7246 	}
7247 
7248 	return 0;
7249 }
7250 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7251 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7252 static bool __netdev_has_upper_dev(struct net_device *dev,
7253 				   struct net_device *upper_dev)
7254 {
7255 	struct netdev_nested_priv priv = {
7256 		.flags = 0,
7257 		.data = (void *)upper_dev,
7258 	};
7259 
7260 	ASSERT_RTNL();
7261 
7262 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7263 					   &priv);
7264 }
7265 
7266 /**
7267  * netdev_lower_get_next_private - Get the next ->private from the
7268  *				   lower neighbour list
7269  * @dev: device
7270  * @iter: list_head ** of the current position
7271  *
7272  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7273  * list, starting from iter position. The caller must hold either hold the
7274  * RTNL lock or its own locking that guarantees that the neighbour lower
7275  * list will remain unchanged.
7276  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7277 void *netdev_lower_get_next_private(struct net_device *dev,
7278 				    struct list_head **iter)
7279 {
7280 	struct netdev_adjacent *lower;
7281 
7282 	lower = list_entry(*iter, struct netdev_adjacent, list);
7283 
7284 	if (&lower->list == &dev->adj_list.lower)
7285 		return NULL;
7286 
7287 	*iter = lower->list.next;
7288 
7289 	return lower->private;
7290 }
7291 EXPORT_SYMBOL(netdev_lower_get_next_private);
7292 
7293 /**
7294  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7295  *				       lower neighbour list, RCU
7296  *				       variant
7297  * @dev: device
7298  * @iter: list_head ** of the current position
7299  *
7300  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7301  * list, starting from iter position. The caller must hold RCU read lock.
7302  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7303 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7304 					struct list_head **iter)
7305 {
7306 	struct netdev_adjacent *lower;
7307 
7308 	WARN_ON_ONCE(!rcu_read_lock_held());
7309 
7310 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7311 
7312 	if (&lower->list == &dev->adj_list.lower)
7313 		return NULL;
7314 
7315 	*iter = &lower->list;
7316 
7317 	return lower->private;
7318 }
7319 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7320 
7321 /**
7322  * netdev_lower_get_next - Get the next device from the lower neighbour
7323  *                         list
7324  * @dev: device
7325  * @iter: list_head ** of the current position
7326  *
7327  * Gets the next netdev_adjacent from the dev's lower neighbour
7328  * list, starting from iter position. The caller must hold RTNL lock or
7329  * its own locking that guarantees that the neighbour lower
7330  * list will remain unchanged.
7331  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7332 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7333 {
7334 	struct netdev_adjacent *lower;
7335 
7336 	lower = list_entry(*iter, struct netdev_adjacent, list);
7337 
7338 	if (&lower->list == &dev->adj_list.lower)
7339 		return NULL;
7340 
7341 	*iter = lower->list.next;
7342 
7343 	return lower->dev;
7344 }
7345 EXPORT_SYMBOL(netdev_lower_get_next);
7346 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7347 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7348 						struct list_head **iter)
7349 {
7350 	struct netdev_adjacent *lower;
7351 
7352 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7353 
7354 	if (&lower->list == &dev->adj_list.lower)
7355 		return NULL;
7356 
7357 	*iter = &lower->list;
7358 
7359 	return lower->dev;
7360 }
7361 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7362 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7363 						  struct list_head **iter,
7364 						  bool *ignore)
7365 {
7366 	struct netdev_adjacent *lower;
7367 
7368 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7369 
7370 	if (&lower->list == &dev->adj_list.lower)
7371 		return NULL;
7372 
7373 	*iter = &lower->list;
7374 	*ignore = lower->ignore;
7375 
7376 	return lower->dev;
7377 }
7378 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7379 int netdev_walk_all_lower_dev(struct net_device *dev,
7380 			      int (*fn)(struct net_device *dev,
7381 					struct netdev_nested_priv *priv),
7382 			      struct netdev_nested_priv *priv)
7383 {
7384 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7385 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7386 	int ret, cur = 0;
7387 
7388 	now = dev;
7389 	iter = &dev->adj_list.lower;
7390 
7391 	while (1) {
7392 		if (now != dev) {
7393 			ret = fn(now, priv);
7394 			if (ret)
7395 				return ret;
7396 		}
7397 
7398 		next = NULL;
7399 		while (1) {
7400 			ldev = netdev_next_lower_dev(now, &iter);
7401 			if (!ldev)
7402 				break;
7403 
7404 			next = ldev;
7405 			niter = &ldev->adj_list.lower;
7406 			dev_stack[cur] = now;
7407 			iter_stack[cur++] = iter;
7408 			break;
7409 		}
7410 
7411 		if (!next) {
7412 			if (!cur)
7413 				return 0;
7414 			next = dev_stack[--cur];
7415 			niter = iter_stack[cur];
7416 		}
7417 
7418 		now = next;
7419 		iter = niter;
7420 	}
7421 
7422 	return 0;
7423 }
7424 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7425 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7426 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7427 				       int (*fn)(struct net_device *dev,
7428 					 struct netdev_nested_priv *priv),
7429 				       struct netdev_nested_priv *priv)
7430 {
7431 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7432 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7433 	int ret, cur = 0;
7434 	bool ignore;
7435 
7436 	now = dev;
7437 	iter = &dev->adj_list.lower;
7438 
7439 	while (1) {
7440 		if (now != dev) {
7441 			ret = fn(now, priv);
7442 			if (ret)
7443 				return ret;
7444 		}
7445 
7446 		next = NULL;
7447 		while (1) {
7448 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7449 			if (!ldev)
7450 				break;
7451 			if (ignore)
7452 				continue;
7453 
7454 			next = ldev;
7455 			niter = &ldev->adj_list.lower;
7456 			dev_stack[cur] = now;
7457 			iter_stack[cur++] = iter;
7458 			break;
7459 		}
7460 
7461 		if (!next) {
7462 			if (!cur)
7463 				return 0;
7464 			next = dev_stack[--cur];
7465 			niter = iter_stack[cur];
7466 		}
7467 
7468 		now = next;
7469 		iter = niter;
7470 	}
7471 
7472 	return 0;
7473 }
7474 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7475 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7476 					     struct list_head **iter)
7477 {
7478 	struct netdev_adjacent *lower;
7479 
7480 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7481 	if (&lower->list == &dev->adj_list.lower)
7482 		return NULL;
7483 
7484 	*iter = &lower->list;
7485 
7486 	return lower->dev;
7487 }
7488 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7489 
__netdev_upper_depth(struct net_device * dev)7490 static u8 __netdev_upper_depth(struct net_device *dev)
7491 {
7492 	struct net_device *udev;
7493 	struct list_head *iter;
7494 	u8 max_depth = 0;
7495 	bool ignore;
7496 
7497 	for (iter = &dev->adj_list.upper,
7498 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7499 	     udev;
7500 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7501 		if (ignore)
7502 			continue;
7503 		if (max_depth < udev->upper_level)
7504 			max_depth = udev->upper_level;
7505 	}
7506 
7507 	return max_depth;
7508 }
7509 
__netdev_lower_depth(struct net_device * dev)7510 static u8 __netdev_lower_depth(struct net_device *dev)
7511 {
7512 	struct net_device *ldev;
7513 	struct list_head *iter;
7514 	u8 max_depth = 0;
7515 	bool ignore;
7516 
7517 	for (iter = &dev->adj_list.lower,
7518 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7519 	     ldev;
7520 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7521 		if (ignore)
7522 			continue;
7523 		if (max_depth < ldev->lower_level)
7524 			max_depth = ldev->lower_level;
7525 	}
7526 
7527 	return max_depth;
7528 }
7529 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7530 static int __netdev_update_upper_level(struct net_device *dev,
7531 				       struct netdev_nested_priv *__unused)
7532 {
7533 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7534 	return 0;
7535 }
7536 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7537 static int __netdev_update_lower_level(struct net_device *dev,
7538 				       struct netdev_nested_priv *priv)
7539 {
7540 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7541 
7542 #ifdef CONFIG_LOCKDEP
7543 	if (!priv)
7544 		return 0;
7545 
7546 	if (priv->flags & NESTED_SYNC_IMM)
7547 		dev->nested_level = dev->lower_level - 1;
7548 	if (priv->flags & NESTED_SYNC_TODO)
7549 		net_unlink_todo(dev);
7550 #endif
7551 	return 0;
7552 }
7553 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7554 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7555 				  int (*fn)(struct net_device *dev,
7556 					    struct netdev_nested_priv *priv),
7557 				  struct netdev_nested_priv *priv)
7558 {
7559 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7560 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7561 	int ret, cur = 0;
7562 
7563 	now = dev;
7564 	iter = &dev->adj_list.lower;
7565 
7566 	while (1) {
7567 		if (now != dev) {
7568 			ret = fn(now, priv);
7569 			if (ret)
7570 				return ret;
7571 		}
7572 
7573 		next = NULL;
7574 		while (1) {
7575 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7576 			if (!ldev)
7577 				break;
7578 
7579 			next = ldev;
7580 			niter = &ldev->adj_list.lower;
7581 			dev_stack[cur] = now;
7582 			iter_stack[cur++] = iter;
7583 			break;
7584 		}
7585 
7586 		if (!next) {
7587 			if (!cur)
7588 				return 0;
7589 			next = dev_stack[--cur];
7590 			niter = iter_stack[cur];
7591 		}
7592 
7593 		now = next;
7594 		iter = niter;
7595 	}
7596 
7597 	return 0;
7598 }
7599 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7600 
7601 /**
7602  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7603  *				       lower neighbour list, RCU
7604  *				       variant
7605  * @dev: device
7606  *
7607  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7608  * list. The caller must hold RCU read lock.
7609  */
netdev_lower_get_first_private_rcu(struct net_device * dev)7610 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7611 {
7612 	struct netdev_adjacent *lower;
7613 
7614 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7615 			struct netdev_adjacent, list);
7616 	if (lower)
7617 		return lower->private;
7618 	return NULL;
7619 }
7620 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7621 
7622 /**
7623  * netdev_master_upper_dev_get_rcu - Get master upper device
7624  * @dev: device
7625  *
7626  * Find a master upper device and return pointer to it or NULL in case
7627  * it's not there. The caller must hold the RCU read lock.
7628  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7629 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7630 {
7631 	struct netdev_adjacent *upper;
7632 
7633 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7634 				       struct netdev_adjacent, list);
7635 	if (upper && likely(upper->master))
7636 		return upper->dev;
7637 	return NULL;
7638 }
7639 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7640 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7641 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7642 			      struct net_device *adj_dev,
7643 			      struct list_head *dev_list)
7644 {
7645 	char linkname[IFNAMSIZ+7];
7646 
7647 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7648 		"upper_%s" : "lower_%s", adj_dev->name);
7649 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7650 				 linkname);
7651 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7652 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7653 			       char *name,
7654 			       struct list_head *dev_list)
7655 {
7656 	char linkname[IFNAMSIZ+7];
7657 
7658 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7659 		"upper_%s" : "lower_%s", name);
7660 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7661 }
7662 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7663 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7664 						 struct net_device *adj_dev,
7665 						 struct list_head *dev_list)
7666 {
7667 	return (dev_list == &dev->adj_list.upper ||
7668 		dev_list == &dev->adj_list.lower) &&
7669 		net_eq(dev_net(dev), dev_net(adj_dev));
7670 }
7671 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7672 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7673 					struct net_device *adj_dev,
7674 					struct list_head *dev_list,
7675 					void *private, bool master)
7676 {
7677 	struct netdev_adjacent *adj;
7678 	int ret;
7679 
7680 	adj = __netdev_find_adj(adj_dev, dev_list);
7681 
7682 	if (adj) {
7683 		adj->ref_nr += 1;
7684 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7685 			 dev->name, adj_dev->name, adj->ref_nr);
7686 
7687 		return 0;
7688 	}
7689 
7690 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7691 	if (!adj)
7692 		return -ENOMEM;
7693 
7694 	adj->dev = adj_dev;
7695 	adj->master = master;
7696 	adj->ref_nr = 1;
7697 	adj->private = private;
7698 	adj->ignore = false;
7699 	dev_hold(adj_dev);
7700 
7701 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7702 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7703 
7704 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7705 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7706 		if (ret)
7707 			goto free_adj;
7708 	}
7709 
7710 	/* Ensure that master link is always the first item in list. */
7711 	if (master) {
7712 		ret = sysfs_create_link(&(dev->dev.kobj),
7713 					&(adj_dev->dev.kobj), "master");
7714 		if (ret)
7715 			goto remove_symlinks;
7716 
7717 		list_add_rcu(&adj->list, dev_list);
7718 	} else {
7719 		list_add_tail_rcu(&adj->list, dev_list);
7720 	}
7721 
7722 	return 0;
7723 
7724 remove_symlinks:
7725 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7726 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7727 free_adj:
7728 	kfree(adj);
7729 	dev_put(adj_dev);
7730 
7731 	return ret;
7732 }
7733 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7734 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7735 					 struct net_device *adj_dev,
7736 					 u16 ref_nr,
7737 					 struct list_head *dev_list)
7738 {
7739 	struct netdev_adjacent *adj;
7740 
7741 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7742 		 dev->name, adj_dev->name, ref_nr);
7743 
7744 	adj = __netdev_find_adj(adj_dev, dev_list);
7745 
7746 	if (!adj) {
7747 		pr_err("Adjacency does not exist for device %s from %s\n",
7748 		       dev->name, adj_dev->name);
7749 		WARN_ON(1);
7750 		return;
7751 	}
7752 
7753 	if (adj->ref_nr > ref_nr) {
7754 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7755 			 dev->name, adj_dev->name, ref_nr,
7756 			 adj->ref_nr - ref_nr);
7757 		adj->ref_nr -= ref_nr;
7758 		return;
7759 	}
7760 
7761 	if (adj->master)
7762 		sysfs_remove_link(&(dev->dev.kobj), "master");
7763 
7764 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7765 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7766 
7767 	list_del_rcu(&adj->list);
7768 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7769 		 adj_dev->name, dev->name, adj_dev->name);
7770 	dev_put(adj_dev);
7771 	kfree_rcu(adj, rcu);
7772 }
7773 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7774 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7775 					    struct net_device *upper_dev,
7776 					    struct list_head *up_list,
7777 					    struct list_head *down_list,
7778 					    void *private, bool master)
7779 {
7780 	int ret;
7781 
7782 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7783 					   private, master);
7784 	if (ret)
7785 		return ret;
7786 
7787 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7788 					   private, false);
7789 	if (ret) {
7790 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7791 		return ret;
7792 	}
7793 
7794 	return 0;
7795 }
7796 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7797 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7798 					       struct net_device *upper_dev,
7799 					       u16 ref_nr,
7800 					       struct list_head *up_list,
7801 					       struct list_head *down_list)
7802 {
7803 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7804 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7805 }
7806 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7807 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7808 						struct net_device *upper_dev,
7809 						void *private, bool master)
7810 {
7811 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7812 						&dev->adj_list.upper,
7813 						&upper_dev->adj_list.lower,
7814 						private, master);
7815 }
7816 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7817 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7818 						   struct net_device *upper_dev)
7819 {
7820 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7821 					   &dev->adj_list.upper,
7822 					   &upper_dev->adj_list.lower);
7823 }
7824 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7825 static int __netdev_upper_dev_link(struct net_device *dev,
7826 				   struct net_device *upper_dev, bool master,
7827 				   void *upper_priv, void *upper_info,
7828 				   struct netdev_nested_priv *priv,
7829 				   struct netlink_ext_ack *extack)
7830 {
7831 	struct netdev_notifier_changeupper_info changeupper_info = {
7832 		.info = {
7833 			.dev = dev,
7834 			.extack = extack,
7835 		},
7836 		.upper_dev = upper_dev,
7837 		.master = master,
7838 		.linking = true,
7839 		.upper_info = upper_info,
7840 	};
7841 	struct net_device *master_dev;
7842 	int ret = 0;
7843 
7844 	ASSERT_RTNL();
7845 
7846 	if (dev == upper_dev)
7847 		return -EBUSY;
7848 
7849 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7850 	if (__netdev_has_upper_dev(upper_dev, dev))
7851 		return -EBUSY;
7852 
7853 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7854 		return -EMLINK;
7855 
7856 	if (!master) {
7857 		if (__netdev_has_upper_dev(dev, upper_dev))
7858 			return -EEXIST;
7859 	} else {
7860 		master_dev = __netdev_master_upper_dev_get(dev);
7861 		if (master_dev)
7862 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7863 	}
7864 
7865 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7866 					    &changeupper_info.info);
7867 	ret = notifier_to_errno(ret);
7868 	if (ret)
7869 		return ret;
7870 
7871 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7872 						   master);
7873 	if (ret)
7874 		return ret;
7875 
7876 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7877 					    &changeupper_info.info);
7878 	ret = notifier_to_errno(ret);
7879 	if (ret)
7880 		goto rollback;
7881 
7882 	__netdev_update_upper_level(dev, NULL);
7883 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7884 
7885 	__netdev_update_lower_level(upper_dev, priv);
7886 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7887 				    priv);
7888 
7889 	return 0;
7890 
7891 rollback:
7892 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7893 
7894 	return ret;
7895 }
7896 
7897 /**
7898  * netdev_upper_dev_link - Add a link to the upper device
7899  * @dev: device
7900  * @upper_dev: new upper device
7901  * @extack: netlink extended ack
7902  *
7903  * Adds a link to device which is upper to this one. The caller must hold
7904  * the RTNL lock. On a failure a negative errno code is returned.
7905  * On success the reference counts are adjusted and the function
7906  * returns zero.
7907  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7908 int netdev_upper_dev_link(struct net_device *dev,
7909 			  struct net_device *upper_dev,
7910 			  struct netlink_ext_ack *extack)
7911 {
7912 	struct netdev_nested_priv priv = {
7913 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7914 		.data = NULL,
7915 	};
7916 
7917 	return __netdev_upper_dev_link(dev, upper_dev, false,
7918 				       NULL, NULL, &priv, extack);
7919 }
7920 EXPORT_SYMBOL(netdev_upper_dev_link);
7921 
7922 /**
7923  * netdev_master_upper_dev_link - Add a master link to the upper device
7924  * @dev: device
7925  * @upper_dev: new upper device
7926  * @upper_priv: upper device private
7927  * @upper_info: upper info to be passed down via notifier
7928  * @extack: netlink extended ack
7929  *
7930  * Adds a link to device which is upper to this one. In this case, only
7931  * one master upper device can be linked, although other non-master devices
7932  * might be linked as well. The caller must hold the RTNL lock.
7933  * On a failure a negative errno code is returned. On success the reference
7934  * counts are adjusted and the function returns zero.
7935  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7936 int netdev_master_upper_dev_link(struct net_device *dev,
7937 				 struct net_device *upper_dev,
7938 				 void *upper_priv, void *upper_info,
7939 				 struct netlink_ext_ack *extack)
7940 {
7941 	struct netdev_nested_priv priv = {
7942 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7943 		.data = NULL,
7944 	};
7945 
7946 	return __netdev_upper_dev_link(dev, upper_dev, true,
7947 				       upper_priv, upper_info, &priv, extack);
7948 }
7949 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7950 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7951 static void __netdev_upper_dev_unlink(struct net_device *dev,
7952 				      struct net_device *upper_dev,
7953 				      struct netdev_nested_priv *priv)
7954 {
7955 	struct netdev_notifier_changeupper_info changeupper_info = {
7956 		.info = {
7957 			.dev = dev,
7958 		},
7959 		.upper_dev = upper_dev,
7960 		.linking = false,
7961 	};
7962 
7963 	ASSERT_RTNL();
7964 
7965 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7966 
7967 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7968 				      &changeupper_info.info);
7969 
7970 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7971 
7972 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7973 				      &changeupper_info.info);
7974 
7975 	__netdev_update_upper_level(dev, NULL);
7976 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7977 
7978 	__netdev_update_lower_level(upper_dev, priv);
7979 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7980 				    priv);
7981 }
7982 
7983 /**
7984  * netdev_upper_dev_unlink - Removes a link to upper device
7985  * @dev: device
7986  * @upper_dev: new upper device
7987  *
7988  * Removes a link to device which is upper to this one. The caller must hold
7989  * the RTNL lock.
7990  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7991 void netdev_upper_dev_unlink(struct net_device *dev,
7992 			     struct net_device *upper_dev)
7993 {
7994 	struct netdev_nested_priv priv = {
7995 		.flags = NESTED_SYNC_TODO,
7996 		.data = NULL,
7997 	};
7998 
7999 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8000 }
8001 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8002 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8003 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8004 				      struct net_device *lower_dev,
8005 				      bool val)
8006 {
8007 	struct netdev_adjacent *adj;
8008 
8009 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8010 	if (adj)
8011 		adj->ignore = val;
8012 
8013 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8014 	if (adj)
8015 		adj->ignore = val;
8016 }
8017 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8018 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8019 					struct net_device *lower_dev)
8020 {
8021 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8022 }
8023 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8024 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8025 				       struct net_device *lower_dev)
8026 {
8027 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8028 }
8029 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8030 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8031 				   struct net_device *new_dev,
8032 				   struct net_device *dev,
8033 				   struct netlink_ext_ack *extack)
8034 {
8035 	struct netdev_nested_priv priv = {
8036 		.flags = 0,
8037 		.data = NULL,
8038 	};
8039 	int err;
8040 
8041 	if (!new_dev)
8042 		return 0;
8043 
8044 	if (old_dev && new_dev != old_dev)
8045 		netdev_adjacent_dev_disable(dev, old_dev);
8046 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8047 				      extack);
8048 	if (err) {
8049 		if (old_dev && new_dev != old_dev)
8050 			netdev_adjacent_dev_enable(dev, old_dev);
8051 		return err;
8052 	}
8053 
8054 	return 0;
8055 }
8056 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8057 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8058 void netdev_adjacent_change_commit(struct net_device *old_dev,
8059 				   struct net_device *new_dev,
8060 				   struct net_device *dev)
8061 {
8062 	struct netdev_nested_priv priv = {
8063 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8064 		.data = NULL,
8065 	};
8066 
8067 	if (!new_dev || !old_dev)
8068 		return;
8069 
8070 	if (new_dev == old_dev)
8071 		return;
8072 
8073 	netdev_adjacent_dev_enable(dev, old_dev);
8074 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8075 }
8076 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8077 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8078 void netdev_adjacent_change_abort(struct net_device *old_dev,
8079 				  struct net_device *new_dev,
8080 				  struct net_device *dev)
8081 {
8082 	struct netdev_nested_priv priv = {
8083 		.flags = 0,
8084 		.data = NULL,
8085 	};
8086 
8087 	if (!new_dev)
8088 		return;
8089 
8090 	if (old_dev && new_dev != old_dev)
8091 		netdev_adjacent_dev_enable(dev, old_dev);
8092 
8093 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8094 }
8095 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8096 
8097 /**
8098  * netdev_bonding_info_change - Dispatch event about slave change
8099  * @dev: device
8100  * @bonding_info: info to dispatch
8101  *
8102  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8103  * The caller must hold the RTNL lock.
8104  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8105 void netdev_bonding_info_change(struct net_device *dev,
8106 				struct netdev_bonding_info *bonding_info)
8107 {
8108 	struct netdev_notifier_bonding_info info = {
8109 		.info.dev = dev,
8110 	};
8111 
8112 	memcpy(&info.bonding_info, bonding_info,
8113 	       sizeof(struct netdev_bonding_info));
8114 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8115 				      &info.info);
8116 }
8117 EXPORT_SYMBOL(netdev_bonding_info_change);
8118 
8119 /**
8120  * netdev_get_xmit_slave - Get the xmit slave of master device
8121  * @dev: device
8122  * @skb: The packet
8123  * @all_slaves: assume all the slaves are active
8124  *
8125  * The reference counters are not incremented so the caller must be
8126  * careful with locks. The caller must hold RCU lock.
8127  * %NULL is returned if no slave is found.
8128  */
8129 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8130 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8131 					 struct sk_buff *skb,
8132 					 bool all_slaves)
8133 {
8134 	const struct net_device_ops *ops = dev->netdev_ops;
8135 
8136 	if (!ops->ndo_get_xmit_slave)
8137 		return NULL;
8138 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8139 }
8140 EXPORT_SYMBOL(netdev_get_xmit_slave);
8141 
netdev_adjacent_add_links(struct net_device * dev)8142 static void netdev_adjacent_add_links(struct net_device *dev)
8143 {
8144 	struct netdev_adjacent *iter;
8145 
8146 	struct net *net = dev_net(dev);
8147 
8148 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8149 		if (!net_eq(net, dev_net(iter->dev)))
8150 			continue;
8151 		netdev_adjacent_sysfs_add(iter->dev, dev,
8152 					  &iter->dev->adj_list.lower);
8153 		netdev_adjacent_sysfs_add(dev, iter->dev,
8154 					  &dev->adj_list.upper);
8155 	}
8156 
8157 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8158 		if (!net_eq(net, dev_net(iter->dev)))
8159 			continue;
8160 		netdev_adjacent_sysfs_add(iter->dev, dev,
8161 					  &iter->dev->adj_list.upper);
8162 		netdev_adjacent_sysfs_add(dev, iter->dev,
8163 					  &dev->adj_list.lower);
8164 	}
8165 }
8166 
netdev_adjacent_del_links(struct net_device * dev)8167 static void netdev_adjacent_del_links(struct net_device *dev)
8168 {
8169 	struct netdev_adjacent *iter;
8170 
8171 	struct net *net = dev_net(dev);
8172 
8173 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8174 		if (!net_eq(net, dev_net(iter->dev)))
8175 			continue;
8176 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8177 					  &iter->dev->adj_list.lower);
8178 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8179 					  &dev->adj_list.upper);
8180 	}
8181 
8182 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8183 		if (!net_eq(net, dev_net(iter->dev)))
8184 			continue;
8185 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8186 					  &iter->dev->adj_list.upper);
8187 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8188 					  &dev->adj_list.lower);
8189 	}
8190 }
8191 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8192 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8193 {
8194 	struct netdev_adjacent *iter;
8195 
8196 	struct net *net = dev_net(dev);
8197 
8198 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8199 		if (!net_eq(net, dev_net(iter->dev)))
8200 			continue;
8201 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8202 					  &iter->dev->adj_list.lower);
8203 		netdev_adjacent_sysfs_add(iter->dev, dev,
8204 					  &iter->dev->adj_list.lower);
8205 	}
8206 
8207 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8208 		if (!net_eq(net, dev_net(iter->dev)))
8209 			continue;
8210 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8211 					  &iter->dev->adj_list.upper);
8212 		netdev_adjacent_sysfs_add(iter->dev, dev,
8213 					  &iter->dev->adj_list.upper);
8214 	}
8215 }
8216 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8217 void *netdev_lower_dev_get_private(struct net_device *dev,
8218 				   struct net_device *lower_dev)
8219 {
8220 	struct netdev_adjacent *lower;
8221 
8222 	if (!lower_dev)
8223 		return NULL;
8224 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8225 	if (!lower)
8226 		return NULL;
8227 
8228 	return lower->private;
8229 }
8230 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8231 
8232 
8233 /**
8234  * netdev_lower_change - Dispatch event about lower device state change
8235  * @lower_dev: device
8236  * @lower_state_info: state to dispatch
8237  *
8238  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8239  * The caller must hold the RTNL lock.
8240  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8241 void netdev_lower_state_changed(struct net_device *lower_dev,
8242 				void *lower_state_info)
8243 {
8244 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8245 		.info.dev = lower_dev,
8246 	};
8247 
8248 	ASSERT_RTNL();
8249 	changelowerstate_info.lower_state_info = lower_state_info;
8250 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8251 				      &changelowerstate_info.info);
8252 }
8253 EXPORT_SYMBOL(netdev_lower_state_changed);
8254 
dev_change_rx_flags(struct net_device * dev,int flags)8255 static void dev_change_rx_flags(struct net_device *dev, int flags)
8256 {
8257 	const struct net_device_ops *ops = dev->netdev_ops;
8258 
8259 	if (ops->ndo_change_rx_flags)
8260 		ops->ndo_change_rx_flags(dev, flags);
8261 }
8262 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8263 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8264 {
8265 	unsigned int old_flags = dev->flags;
8266 	kuid_t uid;
8267 	kgid_t gid;
8268 
8269 	ASSERT_RTNL();
8270 
8271 	dev->flags |= IFF_PROMISC;
8272 	dev->promiscuity += inc;
8273 	if (dev->promiscuity == 0) {
8274 		/*
8275 		 * Avoid overflow.
8276 		 * If inc causes overflow, untouch promisc and return error.
8277 		 */
8278 		if (inc < 0)
8279 			dev->flags &= ~IFF_PROMISC;
8280 		else {
8281 			dev->promiscuity -= inc;
8282 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8283 				dev->name);
8284 			return -EOVERFLOW;
8285 		}
8286 	}
8287 	if (dev->flags != old_flags) {
8288 		pr_info("device %s %s promiscuous mode\n",
8289 			dev->name,
8290 			dev->flags & IFF_PROMISC ? "entered" : "left");
8291 		if (audit_enabled) {
8292 			current_uid_gid(&uid, &gid);
8293 			audit_log(audit_context(), GFP_ATOMIC,
8294 				  AUDIT_ANOM_PROMISCUOUS,
8295 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8296 				  dev->name, (dev->flags & IFF_PROMISC),
8297 				  (old_flags & IFF_PROMISC),
8298 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8299 				  from_kuid(&init_user_ns, uid),
8300 				  from_kgid(&init_user_ns, gid),
8301 				  audit_get_sessionid(current));
8302 		}
8303 
8304 		dev_change_rx_flags(dev, IFF_PROMISC);
8305 	}
8306 	if (notify)
8307 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8308 	return 0;
8309 }
8310 
8311 /**
8312  *	dev_set_promiscuity	- update promiscuity count on a device
8313  *	@dev: device
8314  *	@inc: modifier
8315  *
8316  *	Add or remove promiscuity from a device. While the count in the device
8317  *	remains above zero the interface remains promiscuous. Once it hits zero
8318  *	the device reverts back to normal filtering operation. A negative inc
8319  *	value is used to drop promiscuity on the device.
8320  *	Return 0 if successful or a negative errno code on error.
8321  */
dev_set_promiscuity(struct net_device * dev,int inc)8322 int dev_set_promiscuity(struct net_device *dev, int inc)
8323 {
8324 	unsigned int old_flags = dev->flags;
8325 	int err;
8326 
8327 	err = __dev_set_promiscuity(dev, inc, true);
8328 	if (err < 0)
8329 		return err;
8330 	if (dev->flags != old_flags)
8331 		dev_set_rx_mode(dev);
8332 	return err;
8333 }
8334 EXPORT_SYMBOL(dev_set_promiscuity);
8335 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8336 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8337 {
8338 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8339 
8340 	ASSERT_RTNL();
8341 
8342 	dev->flags |= IFF_ALLMULTI;
8343 	dev->allmulti += inc;
8344 	if (dev->allmulti == 0) {
8345 		/*
8346 		 * Avoid overflow.
8347 		 * If inc causes overflow, untouch allmulti and return error.
8348 		 */
8349 		if (inc < 0)
8350 			dev->flags &= ~IFF_ALLMULTI;
8351 		else {
8352 			dev->allmulti -= inc;
8353 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8354 				dev->name);
8355 			return -EOVERFLOW;
8356 		}
8357 	}
8358 	if (dev->flags ^ old_flags) {
8359 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8360 		dev_set_rx_mode(dev);
8361 		if (notify)
8362 			__dev_notify_flags(dev, old_flags,
8363 					   dev->gflags ^ old_gflags);
8364 	}
8365 	return 0;
8366 }
8367 
8368 /**
8369  *	dev_set_allmulti	- update allmulti count on a device
8370  *	@dev: device
8371  *	@inc: modifier
8372  *
8373  *	Add or remove reception of all multicast frames to a device. While the
8374  *	count in the device remains above zero the interface remains listening
8375  *	to all interfaces. Once it hits zero the device reverts back to normal
8376  *	filtering operation. A negative @inc value is used to drop the counter
8377  *	when releasing a resource needing all multicasts.
8378  *	Return 0 if successful or a negative errno code on error.
8379  */
8380 
dev_set_allmulti(struct net_device * dev,int inc)8381 int dev_set_allmulti(struct net_device *dev, int inc)
8382 {
8383 	return __dev_set_allmulti(dev, inc, true);
8384 }
8385 EXPORT_SYMBOL(dev_set_allmulti);
8386 
8387 /*
8388  *	Upload unicast and multicast address lists to device and
8389  *	configure RX filtering. When the device doesn't support unicast
8390  *	filtering it is put in promiscuous mode while unicast addresses
8391  *	are present.
8392  */
__dev_set_rx_mode(struct net_device * dev)8393 void __dev_set_rx_mode(struct net_device *dev)
8394 {
8395 	const struct net_device_ops *ops = dev->netdev_ops;
8396 
8397 	/* dev_open will call this function so the list will stay sane. */
8398 	if (!(dev->flags&IFF_UP))
8399 		return;
8400 
8401 	if (!netif_device_present(dev))
8402 		return;
8403 
8404 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8405 		/* Unicast addresses changes may only happen under the rtnl,
8406 		 * therefore calling __dev_set_promiscuity here is safe.
8407 		 */
8408 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8409 			__dev_set_promiscuity(dev, 1, false);
8410 			dev->uc_promisc = true;
8411 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8412 			__dev_set_promiscuity(dev, -1, false);
8413 			dev->uc_promisc = false;
8414 		}
8415 	}
8416 
8417 	if (ops->ndo_set_rx_mode)
8418 		ops->ndo_set_rx_mode(dev);
8419 }
8420 
dev_set_rx_mode(struct net_device * dev)8421 void dev_set_rx_mode(struct net_device *dev)
8422 {
8423 	netif_addr_lock_bh(dev);
8424 	__dev_set_rx_mode(dev);
8425 	netif_addr_unlock_bh(dev);
8426 }
8427 
8428 /**
8429  *	dev_get_flags - get flags reported to userspace
8430  *	@dev: device
8431  *
8432  *	Get the combination of flag bits exported through APIs to userspace.
8433  */
dev_get_flags(const struct net_device * dev)8434 unsigned int dev_get_flags(const struct net_device *dev)
8435 {
8436 	unsigned int flags;
8437 
8438 	flags = (dev->flags & ~(IFF_PROMISC |
8439 				IFF_ALLMULTI |
8440 				IFF_RUNNING |
8441 				IFF_LOWER_UP |
8442 				IFF_DORMANT)) |
8443 		(dev->gflags & (IFF_PROMISC |
8444 				IFF_ALLMULTI));
8445 
8446 	if (netif_running(dev)) {
8447 		if (netif_oper_up(dev))
8448 			flags |= IFF_RUNNING;
8449 		if (netif_carrier_ok(dev))
8450 			flags |= IFF_LOWER_UP;
8451 		if (netif_dormant(dev))
8452 			flags |= IFF_DORMANT;
8453 	}
8454 
8455 	return flags;
8456 }
8457 EXPORT_SYMBOL(dev_get_flags);
8458 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8459 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8460 		       struct netlink_ext_ack *extack)
8461 {
8462 	unsigned int old_flags = dev->flags;
8463 	int ret;
8464 
8465 	ASSERT_RTNL();
8466 
8467 	/*
8468 	 *	Set the flags on our device.
8469 	 */
8470 
8471 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8472 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8473 			       IFF_AUTOMEDIA)) |
8474 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8475 				    IFF_ALLMULTI));
8476 
8477 	/*
8478 	 *	Load in the correct multicast list now the flags have changed.
8479 	 */
8480 
8481 	if ((old_flags ^ flags) & IFF_MULTICAST)
8482 		dev_change_rx_flags(dev, IFF_MULTICAST);
8483 
8484 	dev_set_rx_mode(dev);
8485 
8486 	/*
8487 	 *	Have we downed the interface. We handle IFF_UP ourselves
8488 	 *	according to user attempts to set it, rather than blindly
8489 	 *	setting it.
8490 	 */
8491 
8492 	ret = 0;
8493 	if ((old_flags ^ flags) & IFF_UP) {
8494 		if (old_flags & IFF_UP)
8495 			__dev_close(dev);
8496 		else
8497 			ret = __dev_open(dev, extack);
8498 	}
8499 
8500 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8501 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8502 		unsigned int old_flags = dev->flags;
8503 
8504 		dev->gflags ^= IFF_PROMISC;
8505 
8506 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8507 			if (dev->flags != old_flags)
8508 				dev_set_rx_mode(dev);
8509 	}
8510 
8511 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8512 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8513 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8514 	 */
8515 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8516 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8517 
8518 		dev->gflags ^= IFF_ALLMULTI;
8519 		__dev_set_allmulti(dev, inc, false);
8520 	}
8521 
8522 	return ret;
8523 }
8524 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8525 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8526 			unsigned int gchanges)
8527 {
8528 	unsigned int changes = dev->flags ^ old_flags;
8529 
8530 	if (gchanges)
8531 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8532 
8533 	if (changes & IFF_UP) {
8534 		if (dev->flags & IFF_UP)
8535 			call_netdevice_notifiers(NETDEV_UP, dev);
8536 		else
8537 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8538 	}
8539 
8540 	if (dev->flags & IFF_UP &&
8541 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8542 		struct netdev_notifier_change_info change_info = {
8543 			.info = {
8544 				.dev = dev,
8545 			},
8546 			.flags_changed = changes,
8547 		};
8548 
8549 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8550 	}
8551 }
8552 
8553 /**
8554  *	dev_change_flags - change device settings
8555  *	@dev: device
8556  *	@flags: device state flags
8557  *	@extack: netlink extended ack
8558  *
8559  *	Change settings on device based state flags. The flags are
8560  *	in the userspace exported format.
8561  */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8562 int dev_change_flags(struct net_device *dev, unsigned int flags,
8563 		     struct netlink_ext_ack *extack)
8564 {
8565 	int ret;
8566 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8567 
8568 	ret = __dev_change_flags(dev, flags, extack);
8569 	if (ret < 0)
8570 		return ret;
8571 
8572 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8573 	__dev_notify_flags(dev, old_flags, changes);
8574 	return ret;
8575 }
8576 EXPORT_SYMBOL(dev_change_flags);
8577 
__dev_set_mtu(struct net_device * dev,int new_mtu)8578 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8579 {
8580 	const struct net_device_ops *ops = dev->netdev_ops;
8581 
8582 	if (ops->ndo_change_mtu)
8583 		return ops->ndo_change_mtu(dev, new_mtu);
8584 
8585 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8586 	WRITE_ONCE(dev->mtu, new_mtu);
8587 	return 0;
8588 }
8589 EXPORT_SYMBOL(__dev_set_mtu);
8590 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8591 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8592 		     struct netlink_ext_ack *extack)
8593 {
8594 	/* MTU must be positive, and in range */
8595 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8596 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8597 		return -EINVAL;
8598 	}
8599 
8600 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8601 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8602 		return -EINVAL;
8603 	}
8604 	return 0;
8605 }
8606 
8607 /**
8608  *	dev_set_mtu_ext - Change maximum transfer unit
8609  *	@dev: device
8610  *	@new_mtu: new transfer unit
8611  *	@extack: netlink extended ack
8612  *
8613  *	Change the maximum transfer size of the network device.
8614  */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8615 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8616 		    struct netlink_ext_ack *extack)
8617 {
8618 	int err, orig_mtu;
8619 
8620 	if (new_mtu == dev->mtu)
8621 		return 0;
8622 
8623 	err = dev_validate_mtu(dev, new_mtu, extack);
8624 	if (err)
8625 		return err;
8626 
8627 	if (!netif_device_present(dev))
8628 		return -ENODEV;
8629 
8630 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8631 	err = notifier_to_errno(err);
8632 	if (err)
8633 		return err;
8634 
8635 	orig_mtu = dev->mtu;
8636 	err = __dev_set_mtu(dev, new_mtu);
8637 
8638 	if (!err) {
8639 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8640 						   orig_mtu);
8641 		err = notifier_to_errno(err);
8642 		if (err) {
8643 			/* setting mtu back and notifying everyone again,
8644 			 * so that they have a chance to revert changes.
8645 			 */
8646 			__dev_set_mtu(dev, orig_mtu);
8647 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8648 						     new_mtu);
8649 		}
8650 	}
8651 	return err;
8652 }
8653 
dev_set_mtu(struct net_device * dev,int new_mtu)8654 int dev_set_mtu(struct net_device *dev, int new_mtu)
8655 {
8656 	struct netlink_ext_ack extack;
8657 	int err;
8658 
8659 	memset(&extack, 0, sizeof(extack));
8660 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8661 	if (err && extack._msg)
8662 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8663 	return err;
8664 }
8665 EXPORT_SYMBOL(dev_set_mtu);
8666 
8667 /**
8668  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8669  *	@dev: device
8670  *	@new_len: new tx queue length
8671  */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8672 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8673 {
8674 	unsigned int orig_len = dev->tx_queue_len;
8675 	int res;
8676 
8677 	if (new_len != (unsigned int)new_len)
8678 		return -ERANGE;
8679 
8680 	if (new_len != orig_len) {
8681 		dev->tx_queue_len = new_len;
8682 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8683 		res = notifier_to_errno(res);
8684 		if (res)
8685 			goto err_rollback;
8686 		res = dev_qdisc_change_tx_queue_len(dev);
8687 		if (res)
8688 			goto err_rollback;
8689 	}
8690 
8691 	return 0;
8692 
8693 err_rollback:
8694 	netdev_err(dev, "refused to change device tx_queue_len\n");
8695 	dev->tx_queue_len = orig_len;
8696 	return res;
8697 }
8698 
8699 /**
8700  *	dev_set_group - Change group this device belongs to
8701  *	@dev: device
8702  *	@new_group: group this device should belong to
8703  */
dev_set_group(struct net_device * dev,int new_group)8704 void dev_set_group(struct net_device *dev, int new_group)
8705 {
8706 	dev->group = new_group;
8707 }
8708 EXPORT_SYMBOL(dev_set_group);
8709 
8710 /**
8711  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8712  *	@dev: device
8713  *	@addr: new address
8714  *	@extack: netlink extended ack
8715  */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8716 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8717 			      struct netlink_ext_ack *extack)
8718 {
8719 	struct netdev_notifier_pre_changeaddr_info info = {
8720 		.info.dev = dev,
8721 		.info.extack = extack,
8722 		.dev_addr = addr,
8723 	};
8724 	int rc;
8725 
8726 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8727 	return notifier_to_errno(rc);
8728 }
8729 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8730 
8731 /**
8732  *	dev_set_mac_address - Change Media Access Control Address
8733  *	@dev: device
8734  *	@sa: new address
8735  *	@extack: netlink extended ack
8736  *
8737  *	Change the hardware (MAC) address of the device
8738  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8739 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8740 			struct netlink_ext_ack *extack)
8741 {
8742 	const struct net_device_ops *ops = dev->netdev_ops;
8743 	int err;
8744 
8745 	if (!ops->ndo_set_mac_address)
8746 		return -EOPNOTSUPP;
8747 	if (sa->sa_family != dev->type)
8748 		return -EINVAL;
8749 	if (!netif_device_present(dev))
8750 		return -ENODEV;
8751 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8752 	if (err)
8753 		return err;
8754 	err = ops->ndo_set_mac_address(dev, sa);
8755 	if (err)
8756 		return err;
8757 	dev->addr_assign_type = NET_ADDR_SET;
8758 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8759 	add_device_randomness(dev->dev_addr, dev->addr_len);
8760 	return 0;
8761 }
8762 EXPORT_SYMBOL(dev_set_mac_address);
8763 
8764 static DECLARE_RWSEM(dev_addr_sem);
8765 
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8766 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8767 			     struct netlink_ext_ack *extack)
8768 {
8769 	int ret;
8770 
8771 	down_write(&dev_addr_sem);
8772 	ret = dev_set_mac_address(dev, sa, extack);
8773 	up_write(&dev_addr_sem);
8774 	return ret;
8775 }
8776 EXPORT_SYMBOL(dev_set_mac_address_user);
8777 
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8778 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8779 {
8780 	size_t size = sizeof(sa->sa_data);
8781 	struct net_device *dev;
8782 	int ret = 0;
8783 
8784 	down_read(&dev_addr_sem);
8785 	rcu_read_lock();
8786 
8787 	dev = dev_get_by_name_rcu(net, dev_name);
8788 	if (!dev) {
8789 		ret = -ENODEV;
8790 		goto unlock;
8791 	}
8792 	if (!dev->addr_len)
8793 		memset(sa->sa_data, 0, size);
8794 	else
8795 		memcpy(sa->sa_data, dev->dev_addr,
8796 		       min_t(size_t, size, dev->addr_len));
8797 	sa->sa_family = dev->type;
8798 
8799 unlock:
8800 	rcu_read_unlock();
8801 	up_read(&dev_addr_sem);
8802 	return ret;
8803 }
8804 EXPORT_SYMBOL(dev_get_mac_address);
8805 
8806 /**
8807  *	dev_change_carrier - Change device carrier
8808  *	@dev: device
8809  *	@new_carrier: new value
8810  *
8811  *	Change device carrier
8812  */
dev_change_carrier(struct net_device * dev,bool new_carrier)8813 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8814 {
8815 	const struct net_device_ops *ops = dev->netdev_ops;
8816 
8817 	if (!ops->ndo_change_carrier)
8818 		return -EOPNOTSUPP;
8819 	if (!netif_device_present(dev))
8820 		return -ENODEV;
8821 	return ops->ndo_change_carrier(dev, new_carrier);
8822 }
8823 EXPORT_SYMBOL(dev_change_carrier);
8824 
8825 /**
8826  *	dev_get_phys_port_id - Get device physical port ID
8827  *	@dev: device
8828  *	@ppid: port ID
8829  *
8830  *	Get device physical port ID
8831  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8832 int dev_get_phys_port_id(struct net_device *dev,
8833 			 struct netdev_phys_item_id *ppid)
8834 {
8835 	const struct net_device_ops *ops = dev->netdev_ops;
8836 
8837 	if (!ops->ndo_get_phys_port_id)
8838 		return -EOPNOTSUPP;
8839 	return ops->ndo_get_phys_port_id(dev, ppid);
8840 }
8841 EXPORT_SYMBOL(dev_get_phys_port_id);
8842 
8843 /**
8844  *	dev_get_phys_port_name - Get device physical port name
8845  *	@dev: device
8846  *	@name: port name
8847  *	@len: limit of bytes to copy to name
8848  *
8849  *	Get device physical port name
8850  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8851 int dev_get_phys_port_name(struct net_device *dev,
8852 			   char *name, size_t len)
8853 {
8854 	const struct net_device_ops *ops = dev->netdev_ops;
8855 	int err;
8856 
8857 	if (ops->ndo_get_phys_port_name) {
8858 		err = ops->ndo_get_phys_port_name(dev, name, len);
8859 		if (err != -EOPNOTSUPP)
8860 			return err;
8861 	}
8862 	return devlink_compat_phys_port_name_get(dev, name, len);
8863 }
8864 EXPORT_SYMBOL(dev_get_phys_port_name);
8865 
8866 /**
8867  *	dev_get_port_parent_id - Get the device's port parent identifier
8868  *	@dev: network device
8869  *	@ppid: pointer to a storage for the port's parent identifier
8870  *	@recurse: allow/disallow recursion to lower devices
8871  *
8872  *	Get the devices's port parent identifier
8873  */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)8874 int dev_get_port_parent_id(struct net_device *dev,
8875 			   struct netdev_phys_item_id *ppid,
8876 			   bool recurse)
8877 {
8878 	const struct net_device_ops *ops = dev->netdev_ops;
8879 	struct netdev_phys_item_id first = { };
8880 	struct net_device *lower_dev;
8881 	struct list_head *iter;
8882 	int err;
8883 
8884 	if (ops->ndo_get_port_parent_id) {
8885 		err = ops->ndo_get_port_parent_id(dev, ppid);
8886 		if (err != -EOPNOTSUPP)
8887 			return err;
8888 	}
8889 
8890 	err = devlink_compat_switch_id_get(dev, ppid);
8891 	if (!err || err != -EOPNOTSUPP)
8892 		return err;
8893 
8894 	if (!recurse)
8895 		return -EOPNOTSUPP;
8896 
8897 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8898 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8899 		if (err)
8900 			break;
8901 		if (!first.id_len)
8902 			first = *ppid;
8903 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8904 			return -EOPNOTSUPP;
8905 	}
8906 
8907 	return err;
8908 }
8909 EXPORT_SYMBOL(dev_get_port_parent_id);
8910 
8911 /**
8912  *	netdev_port_same_parent_id - Indicate if two network devices have
8913  *	the same port parent identifier
8914  *	@a: first network device
8915  *	@b: second network device
8916  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)8917 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8918 {
8919 	struct netdev_phys_item_id a_id = { };
8920 	struct netdev_phys_item_id b_id = { };
8921 
8922 	if (dev_get_port_parent_id(a, &a_id, true) ||
8923 	    dev_get_port_parent_id(b, &b_id, true))
8924 		return false;
8925 
8926 	return netdev_phys_item_id_same(&a_id, &b_id);
8927 }
8928 EXPORT_SYMBOL(netdev_port_same_parent_id);
8929 
8930 /**
8931  *	dev_change_proto_down - update protocol port state information
8932  *	@dev: device
8933  *	@proto_down: new value
8934  *
8935  *	This info can be used by switch drivers to set the phys state of the
8936  *	port.
8937  */
dev_change_proto_down(struct net_device * dev,bool proto_down)8938 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8939 {
8940 	const struct net_device_ops *ops = dev->netdev_ops;
8941 
8942 	if (!ops->ndo_change_proto_down)
8943 		return -EOPNOTSUPP;
8944 	if (!netif_device_present(dev))
8945 		return -ENODEV;
8946 	return ops->ndo_change_proto_down(dev, proto_down);
8947 }
8948 EXPORT_SYMBOL(dev_change_proto_down);
8949 
8950 /**
8951  *	dev_change_proto_down_generic - generic implementation for
8952  * 	ndo_change_proto_down that sets carrier according to
8953  * 	proto_down.
8954  *
8955  *	@dev: device
8956  *	@proto_down: new value
8957  */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)8958 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8959 {
8960 	if (proto_down)
8961 		netif_carrier_off(dev);
8962 	else
8963 		netif_carrier_on(dev);
8964 	dev->proto_down = proto_down;
8965 	return 0;
8966 }
8967 EXPORT_SYMBOL(dev_change_proto_down_generic);
8968 
8969 /**
8970  *	dev_change_proto_down_reason - proto down reason
8971  *
8972  *	@dev: device
8973  *	@mask: proto down mask
8974  *	@value: proto down value
8975  */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)8976 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8977 				  u32 value)
8978 {
8979 	int b;
8980 
8981 	if (!mask) {
8982 		dev->proto_down_reason = value;
8983 	} else {
8984 		for_each_set_bit(b, &mask, 32) {
8985 			if (value & (1 << b))
8986 				dev->proto_down_reason |= BIT(b);
8987 			else
8988 				dev->proto_down_reason &= ~BIT(b);
8989 		}
8990 	}
8991 }
8992 EXPORT_SYMBOL(dev_change_proto_down_reason);
8993 
8994 struct bpf_xdp_link {
8995 	struct bpf_link link;
8996 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8997 	int flags;
8998 };
8999 
dev_xdp_mode(struct net_device * dev,u32 flags)9000 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9001 {
9002 	if (flags & XDP_FLAGS_HW_MODE)
9003 		return XDP_MODE_HW;
9004 	if (flags & XDP_FLAGS_DRV_MODE)
9005 		return XDP_MODE_DRV;
9006 	if (flags & XDP_FLAGS_SKB_MODE)
9007 		return XDP_MODE_SKB;
9008 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9009 }
9010 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9011 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9012 {
9013 	switch (mode) {
9014 	case XDP_MODE_SKB:
9015 		return generic_xdp_install;
9016 	case XDP_MODE_DRV:
9017 	case XDP_MODE_HW:
9018 		return dev->netdev_ops->ndo_bpf;
9019 	default:
9020 		return NULL;
9021 	};
9022 }
9023 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9024 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9025 					 enum bpf_xdp_mode mode)
9026 {
9027 	return dev->xdp_state[mode].link;
9028 }
9029 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9030 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9031 				     enum bpf_xdp_mode mode)
9032 {
9033 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9034 
9035 	if (link)
9036 		return link->link.prog;
9037 	return dev->xdp_state[mode].prog;
9038 }
9039 
dev_xdp_prog_count(struct net_device * dev)9040 static u8 dev_xdp_prog_count(struct net_device *dev)
9041 {
9042 	u8 count = 0;
9043 	int i;
9044 
9045 	for (i = 0; i < __MAX_XDP_MODE; i++)
9046 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9047 			count++;
9048 	return count;
9049 }
9050 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9051 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9052 {
9053 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9054 
9055 	return prog ? prog->aux->id : 0;
9056 }
9057 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9058 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9059 			     struct bpf_xdp_link *link)
9060 {
9061 	dev->xdp_state[mode].link = link;
9062 	dev->xdp_state[mode].prog = NULL;
9063 }
9064 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9065 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9066 			     struct bpf_prog *prog)
9067 {
9068 	dev->xdp_state[mode].link = NULL;
9069 	dev->xdp_state[mode].prog = prog;
9070 }
9071 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9072 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9073 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9074 			   u32 flags, struct bpf_prog *prog)
9075 {
9076 	struct netdev_bpf xdp;
9077 	int err;
9078 
9079 	memset(&xdp, 0, sizeof(xdp));
9080 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9081 	xdp.extack = extack;
9082 	xdp.flags = flags;
9083 	xdp.prog = prog;
9084 
9085 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9086 	 * "moved" into driver), so they don't increment it on their own, but
9087 	 * they do decrement refcnt when program is detached or replaced.
9088 	 * Given net_device also owns link/prog, we need to bump refcnt here
9089 	 * to prevent drivers from underflowing it.
9090 	 */
9091 	if (prog)
9092 		bpf_prog_inc(prog);
9093 	err = bpf_op(dev, &xdp);
9094 	if (err) {
9095 		if (prog)
9096 			bpf_prog_put(prog);
9097 		return err;
9098 	}
9099 
9100 	if (mode != XDP_MODE_HW)
9101 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9102 
9103 	return 0;
9104 }
9105 
dev_xdp_uninstall(struct net_device * dev)9106 static void dev_xdp_uninstall(struct net_device *dev)
9107 {
9108 	struct bpf_xdp_link *link;
9109 	struct bpf_prog *prog;
9110 	enum bpf_xdp_mode mode;
9111 	bpf_op_t bpf_op;
9112 
9113 	ASSERT_RTNL();
9114 
9115 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9116 		prog = dev_xdp_prog(dev, mode);
9117 		if (!prog)
9118 			continue;
9119 
9120 		bpf_op = dev_xdp_bpf_op(dev, mode);
9121 		if (!bpf_op)
9122 			continue;
9123 
9124 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9125 
9126 		/* auto-detach link from net device */
9127 		link = dev_xdp_link(dev, mode);
9128 		if (link)
9129 			link->dev = NULL;
9130 		else
9131 			bpf_prog_put(prog);
9132 
9133 		dev_xdp_set_link(dev, mode, NULL);
9134 	}
9135 }
9136 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9137 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9138 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9139 			  struct bpf_prog *old_prog, u32 flags)
9140 {
9141 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9142 	struct bpf_prog *cur_prog;
9143 	enum bpf_xdp_mode mode;
9144 	bpf_op_t bpf_op;
9145 	int err;
9146 
9147 	ASSERT_RTNL();
9148 
9149 	/* either link or prog attachment, never both */
9150 	if (link && (new_prog || old_prog))
9151 		return -EINVAL;
9152 	/* link supports only XDP mode flags */
9153 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9154 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9155 		return -EINVAL;
9156 	}
9157 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9158 	if (num_modes > 1) {
9159 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9160 		return -EINVAL;
9161 	}
9162 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9163 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9164 		NL_SET_ERR_MSG(extack,
9165 			       "More than one program loaded, unset mode is ambiguous");
9166 		return -EINVAL;
9167 	}
9168 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9169 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9170 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9171 		return -EINVAL;
9172 	}
9173 
9174 	mode = dev_xdp_mode(dev, flags);
9175 	/* can't replace attached link */
9176 	if (dev_xdp_link(dev, mode)) {
9177 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9178 		return -EBUSY;
9179 	}
9180 
9181 	cur_prog = dev_xdp_prog(dev, mode);
9182 	/* can't replace attached prog with link */
9183 	if (link && cur_prog) {
9184 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9185 		return -EBUSY;
9186 	}
9187 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9188 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9189 		return -EEXIST;
9190 	}
9191 
9192 	/* put effective new program into new_prog */
9193 	if (link)
9194 		new_prog = link->link.prog;
9195 
9196 	if (new_prog) {
9197 		bool offload = mode == XDP_MODE_HW;
9198 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9199 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9200 
9201 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9202 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9203 			return -EBUSY;
9204 		}
9205 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9206 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9207 			return -EEXIST;
9208 		}
9209 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9210 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9211 			return -EINVAL;
9212 		}
9213 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9214 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9215 			return -EINVAL;
9216 		}
9217 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9218 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9219 			return -EINVAL;
9220 		}
9221 	}
9222 
9223 	/* don't call drivers if the effective program didn't change */
9224 	if (new_prog != cur_prog) {
9225 		bpf_op = dev_xdp_bpf_op(dev, mode);
9226 		if (!bpf_op) {
9227 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9228 			return -EOPNOTSUPP;
9229 		}
9230 
9231 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9232 		if (err)
9233 			return err;
9234 	}
9235 
9236 	if (link)
9237 		dev_xdp_set_link(dev, mode, link);
9238 	else
9239 		dev_xdp_set_prog(dev, mode, new_prog);
9240 	if (cur_prog)
9241 		bpf_prog_put(cur_prog);
9242 
9243 	return 0;
9244 }
9245 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9246 static int dev_xdp_attach_link(struct net_device *dev,
9247 			       struct netlink_ext_ack *extack,
9248 			       struct bpf_xdp_link *link)
9249 {
9250 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9251 }
9252 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9253 static int dev_xdp_detach_link(struct net_device *dev,
9254 			       struct netlink_ext_ack *extack,
9255 			       struct bpf_xdp_link *link)
9256 {
9257 	enum bpf_xdp_mode mode;
9258 	bpf_op_t bpf_op;
9259 
9260 	ASSERT_RTNL();
9261 
9262 	mode = dev_xdp_mode(dev, link->flags);
9263 	if (dev_xdp_link(dev, mode) != link)
9264 		return -EINVAL;
9265 
9266 	bpf_op = dev_xdp_bpf_op(dev, mode);
9267 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9268 	dev_xdp_set_link(dev, mode, NULL);
9269 	return 0;
9270 }
9271 
bpf_xdp_link_release(struct bpf_link * link)9272 static void bpf_xdp_link_release(struct bpf_link *link)
9273 {
9274 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9275 
9276 	rtnl_lock();
9277 
9278 	/* if racing with net_device's tear down, xdp_link->dev might be
9279 	 * already NULL, in which case link was already auto-detached
9280 	 */
9281 	if (xdp_link->dev) {
9282 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9283 		xdp_link->dev = NULL;
9284 	}
9285 
9286 	rtnl_unlock();
9287 }
9288 
bpf_xdp_link_detach(struct bpf_link * link)9289 static int bpf_xdp_link_detach(struct bpf_link *link)
9290 {
9291 	bpf_xdp_link_release(link);
9292 	return 0;
9293 }
9294 
bpf_xdp_link_dealloc(struct bpf_link * link)9295 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9296 {
9297 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9298 
9299 	kfree(xdp_link);
9300 }
9301 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9302 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9303 				     struct seq_file *seq)
9304 {
9305 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9306 	u32 ifindex = 0;
9307 
9308 	rtnl_lock();
9309 	if (xdp_link->dev)
9310 		ifindex = xdp_link->dev->ifindex;
9311 	rtnl_unlock();
9312 
9313 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9314 }
9315 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9316 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9317 				       struct bpf_link_info *info)
9318 {
9319 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9320 	u32 ifindex = 0;
9321 
9322 	rtnl_lock();
9323 	if (xdp_link->dev)
9324 		ifindex = xdp_link->dev->ifindex;
9325 	rtnl_unlock();
9326 
9327 	info->xdp.ifindex = ifindex;
9328 	return 0;
9329 }
9330 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9331 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9332 			       struct bpf_prog *old_prog)
9333 {
9334 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9335 	enum bpf_xdp_mode mode;
9336 	bpf_op_t bpf_op;
9337 	int err = 0;
9338 
9339 	rtnl_lock();
9340 
9341 	/* link might have been auto-released already, so fail */
9342 	if (!xdp_link->dev) {
9343 		err = -ENOLINK;
9344 		goto out_unlock;
9345 	}
9346 
9347 	if (old_prog && link->prog != old_prog) {
9348 		err = -EPERM;
9349 		goto out_unlock;
9350 	}
9351 	old_prog = link->prog;
9352 	if (old_prog->type != new_prog->type ||
9353 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9354 		err = -EINVAL;
9355 		goto out_unlock;
9356 	}
9357 
9358 	if (old_prog == new_prog) {
9359 		/* no-op, don't disturb drivers */
9360 		bpf_prog_put(new_prog);
9361 		goto out_unlock;
9362 	}
9363 
9364 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9365 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9366 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9367 			      xdp_link->flags, new_prog);
9368 	if (err)
9369 		goto out_unlock;
9370 
9371 	old_prog = xchg(&link->prog, new_prog);
9372 	bpf_prog_put(old_prog);
9373 
9374 out_unlock:
9375 	rtnl_unlock();
9376 	return err;
9377 }
9378 
9379 static const struct bpf_link_ops bpf_xdp_link_lops = {
9380 	.release = bpf_xdp_link_release,
9381 	.dealloc = bpf_xdp_link_dealloc,
9382 	.detach = bpf_xdp_link_detach,
9383 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9384 	.fill_link_info = bpf_xdp_link_fill_link_info,
9385 	.update_prog = bpf_xdp_link_update,
9386 };
9387 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9388 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9389 {
9390 	struct net *net = current->nsproxy->net_ns;
9391 	struct bpf_link_primer link_primer;
9392 	struct bpf_xdp_link *link;
9393 	struct net_device *dev;
9394 	int err, fd;
9395 
9396 	rtnl_lock();
9397 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9398 	if (!dev) {
9399 		rtnl_unlock();
9400 		return -EINVAL;
9401 	}
9402 
9403 	link = kzalloc(sizeof(*link), GFP_USER);
9404 	if (!link) {
9405 		err = -ENOMEM;
9406 		goto unlock;
9407 	}
9408 
9409 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9410 	link->dev = dev;
9411 	link->flags = attr->link_create.flags;
9412 
9413 	err = bpf_link_prime(&link->link, &link_primer);
9414 	if (err) {
9415 		kfree(link);
9416 		goto unlock;
9417 	}
9418 
9419 	err = dev_xdp_attach_link(dev, NULL, link);
9420 	rtnl_unlock();
9421 
9422 	if (err) {
9423 		link->dev = NULL;
9424 		bpf_link_cleanup(&link_primer);
9425 		goto out_put_dev;
9426 	}
9427 
9428 	fd = bpf_link_settle(&link_primer);
9429 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9430 	dev_put(dev);
9431 	return fd;
9432 
9433 unlock:
9434 	rtnl_unlock();
9435 
9436 out_put_dev:
9437 	dev_put(dev);
9438 	return err;
9439 }
9440 
9441 /**
9442  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9443  *	@dev: device
9444  *	@extack: netlink extended ack
9445  *	@fd: new program fd or negative value to clear
9446  *	@expected_fd: old program fd that userspace expects to replace or clear
9447  *	@flags: xdp-related flags
9448  *
9449  *	Set or clear a bpf program for a device
9450  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9451 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9452 		      int fd, int expected_fd, u32 flags)
9453 {
9454 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9455 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9456 	int err;
9457 
9458 	ASSERT_RTNL();
9459 
9460 	if (fd >= 0) {
9461 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9462 						 mode != XDP_MODE_SKB);
9463 		if (IS_ERR(new_prog))
9464 			return PTR_ERR(new_prog);
9465 	}
9466 
9467 	if (expected_fd >= 0) {
9468 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9469 						 mode != XDP_MODE_SKB);
9470 		if (IS_ERR(old_prog)) {
9471 			err = PTR_ERR(old_prog);
9472 			old_prog = NULL;
9473 			goto err_out;
9474 		}
9475 	}
9476 
9477 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9478 
9479 err_out:
9480 	if (err && new_prog)
9481 		bpf_prog_put(new_prog);
9482 	if (old_prog)
9483 		bpf_prog_put(old_prog);
9484 	return err;
9485 }
9486 
9487 /**
9488  *	dev_new_index	-	allocate an ifindex
9489  *	@net: the applicable net namespace
9490  *
9491  *	Returns a suitable unique value for a new device interface
9492  *	number.  The caller must hold the rtnl semaphore or the
9493  *	dev_base_lock to be sure it remains unique.
9494  */
dev_new_index(struct net * net)9495 static int dev_new_index(struct net *net)
9496 {
9497 	int ifindex = net->ifindex;
9498 
9499 	for (;;) {
9500 		if (++ifindex <= 0)
9501 			ifindex = 1;
9502 		if (!__dev_get_by_index(net, ifindex))
9503 			return net->ifindex = ifindex;
9504 	}
9505 }
9506 
9507 /* Delayed registration/unregisteration */
9508 static LIST_HEAD(net_todo_list);
9509 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9510 
net_set_todo(struct net_device * dev)9511 static void net_set_todo(struct net_device *dev)
9512 {
9513 	list_add_tail(&dev->todo_list, &net_todo_list);
9514 	dev_net(dev)->dev_unreg_count++;
9515 }
9516 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9517 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9518 	struct net_device *upper, netdev_features_t features)
9519 {
9520 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9521 	netdev_features_t feature;
9522 	int feature_bit;
9523 
9524 	for_each_netdev_feature(upper_disables, feature_bit) {
9525 		feature = __NETIF_F_BIT(feature_bit);
9526 		if (!(upper->wanted_features & feature)
9527 		    && (features & feature)) {
9528 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9529 				   &feature, upper->name);
9530 			features &= ~feature;
9531 		}
9532 	}
9533 
9534 	return features;
9535 }
9536 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9537 static void netdev_sync_lower_features(struct net_device *upper,
9538 	struct net_device *lower, netdev_features_t features)
9539 {
9540 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9541 	netdev_features_t feature;
9542 	int feature_bit;
9543 
9544 	for_each_netdev_feature(upper_disables, feature_bit) {
9545 		feature = __NETIF_F_BIT(feature_bit);
9546 		if (!(features & feature) && (lower->features & feature)) {
9547 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9548 				   &feature, lower->name);
9549 			lower->wanted_features &= ~feature;
9550 			__netdev_update_features(lower);
9551 
9552 			if (unlikely(lower->features & feature))
9553 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9554 					    &feature, lower->name);
9555 			else
9556 				netdev_features_change(lower);
9557 		}
9558 	}
9559 }
9560 
netdev_fix_features(struct net_device * dev,netdev_features_t features)9561 static netdev_features_t netdev_fix_features(struct net_device *dev,
9562 	netdev_features_t features)
9563 {
9564 	/* Fix illegal checksum combinations */
9565 	if ((features & NETIF_F_HW_CSUM) &&
9566 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9567 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9568 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9569 	}
9570 
9571 	/* TSO requires that SG is present as well. */
9572 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9573 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9574 		features &= ~NETIF_F_ALL_TSO;
9575 	}
9576 
9577 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9578 					!(features & NETIF_F_IP_CSUM)) {
9579 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9580 		features &= ~NETIF_F_TSO;
9581 		features &= ~NETIF_F_TSO_ECN;
9582 	}
9583 
9584 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9585 					 !(features & NETIF_F_IPV6_CSUM)) {
9586 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9587 		features &= ~NETIF_F_TSO6;
9588 	}
9589 
9590 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9591 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9592 		features &= ~NETIF_F_TSO_MANGLEID;
9593 
9594 	/* TSO ECN requires that TSO is present as well. */
9595 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9596 		features &= ~NETIF_F_TSO_ECN;
9597 
9598 	/* Software GSO depends on SG. */
9599 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9600 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9601 		features &= ~NETIF_F_GSO;
9602 	}
9603 
9604 	/* GSO partial features require GSO partial be set */
9605 	if ((features & dev->gso_partial_features) &&
9606 	    !(features & NETIF_F_GSO_PARTIAL)) {
9607 		netdev_dbg(dev,
9608 			   "Dropping partially supported GSO features since no GSO partial.\n");
9609 		features &= ~dev->gso_partial_features;
9610 	}
9611 
9612 	if (!(features & NETIF_F_RXCSUM)) {
9613 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9614 		 * successfully merged by hardware must also have the
9615 		 * checksum verified by hardware.  If the user does not
9616 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9617 		 */
9618 		if (features & NETIF_F_GRO_HW) {
9619 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9620 			features &= ~NETIF_F_GRO_HW;
9621 		}
9622 	}
9623 
9624 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9625 	if (features & NETIF_F_RXFCS) {
9626 		if (features & NETIF_F_LRO) {
9627 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9628 			features &= ~NETIF_F_LRO;
9629 		}
9630 
9631 		if (features & NETIF_F_GRO_HW) {
9632 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9633 			features &= ~NETIF_F_GRO_HW;
9634 		}
9635 	}
9636 
9637 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9638 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9639 		features &= ~NETIF_F_HW_TLS_RX;
9640 	}
9641 
9642 	return features;
9643 }
9644 
__netdev_update_features(struct net_device * dev)9645 int __netdev_update_features(struct net_device *dev)
9646 {
9647 	struct net_device *upper, *lower;
9648 	netdev_features_t features;
9649 	struct list_head *iter;
9650 	int err = -1;
9651 
9652 	ASSERT_RTNL();
9653 
9654 	features = netdev_get_wanted_features(dev);
9655 
9656 	if (dev->netdev_ops->ndo_fix_features)
9657 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9658 
9659 	/* driver might be less strict about feature dependencies */
9660 	features = netdev_fix_features(dev, features);
9661 
9662 	/* some features can't be enabled if they're off on an upper device */
9663 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9664 		features = netdev_sync_upper_features(dev, upper, features);
9665 
9666 	if (dev->features == features)
9667 		goto sync_lower;
9668 
9669 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9670 		&dev->features, &features);
9671 
9672 	if (dev->netdev_ops->ndo_set_features)
9673 		err = dev->netdev_ops->ndo_set_features(dev, features);
9674 	else
9675 		err = 0;
9676 
9677 	if (unlikely(err < 0)) {
9678 		netdev_err(dev,
9679 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9680 			err, &features, &dev->features);
9681 		/* return non-0 since some features might have changed and
9682 		 * it's better to fire a spurious notification than miss it
9683 		 */
9684 		return -1;
9685 	}
9686 
9687 sync_lower:
9688 	/* some features must be disabled on lower devices when disabled
9689 	 * on an upper device (think: bonding master or bridge)
9690 	 */
9691 	netdev_for_each_lower_dev(dev, lower, iter)
9692 		netdev_sync_lower_features(dev, lower, features);
9693 
9694 	if (!err) {
9695 		netdev_features_t diff = features ^ dev->features;
9696 
9697 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9698 			/* udp_tunnel_{get,drop}_rx_info both need
9699 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9700 			 * device, or they won't do anything.
9701 			 * Thus we need to update dev->features
9702 			 * *before* calling udp_tunnel_get_rx_info,
9703 			 * but *after* calling udp_tunnel_drop_rx_info.
9704 			 */
9705 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9706 				dev->features = features;
9707 				udp_tunnel_get_rx_info(dev);
9708 			} else {
9709 				udp_tunnel_drop_rx_info(dev);
9710 			}
9711 		}
9712 
9713 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9714 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9715 				dev->features = features;
9716 				err |= vlan_get_rx_ctag_filter_info(dev);
9717 			} else {
9718 				vlan_drop_rx_ctag_filter_info(dev);
9719 			}
9720 		}
9721 
9722 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9723 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9724 				dev->features = features;
9725 				err |= vlan_get_rx_stag_filter_info(dev);
9726 			} else {
9727 				vlan_drop_rx_stag_filter_info(dev);
9728 			}
9729 		}
9730 
9731 		dev->features = features;
9732 	}
9733 
9734 	return err < 0 ? 0 : 1;
9735 }
9736 
9737 /**
9738  *	netdev_update_features - recalculate device features
9739  *	@dev: the device to check
9740  *
9741  *	Recalculate dev->features set and send notifications if it
9742  *	has changed. Should be called after driver or hardware dependent
9743  *	conditions might have changed that influence the features.
9744  */
netdev_update_features(struct net_device * dev)9745 void netdev_update_features(struct net_device *dev)
9746 {
9747 	if (__netdev_update_features(dev))
9748 		netdev_features_change(dev);
9749 }
9750 EXPORT_SYMBOL(netdev_update_features);
9751 
9752 /**
9753  *	netdev_change_features - recalculate device features
9754  *	@dev: the device to check
9755  *
9756  *	Recalculate dev->features set and send notifications even
9757  *	if they have not changed. Should be called instead of
9758  *	netdev_update_features() if also dev->vlan_features might
9759  *	have changed to allow the changes to be propagated to stacked
9760  *	VLAN devices.
9761  */
netdev_change_features(struct net_device * dev)9762 void netdev_change_features(struct net_device *dev)
9763 {
9764 	__netdev_update_features(dev);
9765 	netdev_features_change(dev);
9766 }
9767 EXPORT_SYMBOL(netdev_change_features);
9768 
9769 /**
9770  *	netif_stacked_transfer_operstate -	transfer operstate
9771  *	@rootdev: the root or lower level device to transfer state from
9772  *	@dev: the device to transfer operstate to
9773  *
9774  *	Transfer operational state from root to device. This is normally
9775  *	called when a stacking relationship exists between the root
9776  *	device and the device(a leaf device).
9777  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9778 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9779 					struct net_device *dev)
9780 {
9781 	if (rootdev->operstate == IF_OPER_DORMANT)
9782 		netif_dormant_on(dev);
9783 	else
9784 		netif_dormant_off(dev);
9785 
9786 	if (rootdev->operstate == IF_OPER_TESTING)
9787 		netif_testing_on(dev);
9788 	else
9789 		netif_testing_off(dev);
9790 
9791 	if (netif_carrier_ok(rootdev))
9792 		netif_carrier_on(dev);
9793 	else
9794 		netif_carrier_off(dev);
9795 }
9796 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9797 
netif_alloc_rx_queues(struct net_device * dev)9798 static int netif_alloc_rx_queues(struct net_device *dev)
9799 {
9800 	unsigned int i, count = dev->num_rx_queues;
9801 	struct netdev_rx_queue *rx;
9802 	size_t sz = count * sizeof(*rx);
9803 	int err = 0;
9804 
9805 	BUG_ON(count < 1);
9806 
9807 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9808 	if (!rx)
9809 		return -ENOMEM;
9810 
9811 	dev->_rx = rx;
9812 
9813 	for (i = 0; i < count; i++) {
9814 		rx[i].dev = dev;
9815 
9816 		/* XDP RX-queue setup */
9817 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9818 		if (err < 0)
9819 			goto err_rxq_info;
9820 	}
9821 	return 0;
9822 
9823 err_rxq_info:
9824 	/* Rollback successful reg's and free other resources */
9825 	while (i--)
9826 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9827 	kvfree(dev->_rx);
9828 	dev->_rx = NULL;
9829 	return err;
9830 }
9831 
netif_free_rx_queues(struct net_device * dev)9832 static void netif_free_rx_queues(struct net_device *dev)
9833 {
9834 	unsigned int i, count = dev->num_rx_queues;
9835 
9836 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9837 	if (!dev->_rx)
9838 		return;
9839 
9840 	for (i = 0; i < count; i++)
9841 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9842 
9843 	kvfree(dev->_rx);
9844 }
9845 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)9846 static void netdev_init_one_queue(struct net_device *dev,
9847 				  struct netdev_queue *queue, void *_unused)
9848 {
9849 	/* Initialize queue lock */
9850 	spin_lock_init(&queue->_xmit_lock);
9851 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9852 	queue->xmit_lock_owner = -1;
9853 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9854 	queue->dev = dev;
9855 #ifdef CONFIG_BQL
9856 	dql_init(&queue->dql, HZ);
9857 #endif
9858 }
9859 
netif_free_tx_queues(struct net_device * dev)9860 static void netif_free_tx_queues(struct net_device *dev)
9861 {
9862 	kvfree(dev->_tx);
9863 }
9864 
netif_alloc_netdev_queues(struct net_device * dev)9865 static int netif_alloc_netdev_queues(struct net_device *dev)
9866 {
9867 	unsigned int count = dev->num_tx_queues;
9868 	struct netdev_queue *tx;
9869 	size_t sz = count * sizeof(*tx);
9870 
9871 	if (count < 1 || count > 0xffff)
9872 		return -EINVAL;
9873 
9874 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9875 	if (!tx)
9876 		return -ENOMEM;
9877 
9878 	dev->_tx = tx;
9879 
9880 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9881 	spin_lock_init(&dev->tx_global_lock);
9882 
9883 	return 0;
9884 }
9885 
netif_tx_stop_all_queues(struct net_device * dev)9886 void netif_tx_stop_all_queues(struct net_device *dev)
9887 {
9888 	unsigned int i;
9889 
9890 	for (i = 0; i < dev->num_tx_queues; i++) {
9891 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9892 
9893 		netif_tx_stop_queue(txq);
9894 	}
9895 }
9896 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9897 
9898 /**
9899  *	register_netdevice	- register a network device
9900  *	@dev: device to register
9901  *
9902  *	Take a completed network device structure and add it to the kernel
9903  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9904  *	chain. 0 is returned on success. A negative errno code is returned
9905  *	on a failure to set up the device, or if the name is a duplicate.
9906  *
9907  *	Callers must hold the rtnl semaphore. You may want
9908  *	register_netdev() instead of this.
9909  *
9910  *	BUGS:
9911  *	The locking appears insufficient to guarantee two parallel registers
9912  *	will not get the same name.
9913  */
9914 
register_netdevice(struct net_device * dev)9915 int register_netdevice(struct net_device *dev)
9916 {
9917 	int ret;
9918 	struct net *net = dev_net(dev);
9919 
9920 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9921 		     NETDEV_FEATURE_COUNT);
9922 	BUG_ON(dev_boot_phase);
9923 	ASSERT_RTNL();
9924 
9925 	might_sleep();
9926 
9927 	/* When net_device's are persistent, this will be fatal. */
9928 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9929 	BUG_ON(!net);
9930 
9931 	ret = ethtool_check_ops(dev->ethtool_ops);
9932 	if (ret)
9933 		return ret;
9934 
9935 	spin_lock_init(&dev->addr_list_lock);
9936 	netdev_set_addr_lockdep_class(dev);
9937 
9938 	ret = dev_get_valid_name(net, dev, dev->name);
9939 	if (ret < 0)
9940 		goto out;
9941 
9942 	ret = -ENOMEM;
9943 	dev->name_node = netdev_name_node_head_alloc(dev);
9944 	if (!dev->name_node)
9945 		goto out;
9946 
9947 	/* Init, if this function is available */
9948 	if (dev->netdev_ops->ndo_init) {
9949 		ret = dev->netdev_ops->ndo_init(dev);
9950 		if (ret) {
9951 			if (ret > 0)
9952 				ret = -EIO;
9953 			goto err_free_name;
9954 		}
9955 	}
9956 
9957 	if (((dev->hw_features | dev->features) &
9958 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9959 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9960 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9961 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9962 		ret = -EINVAL;
9963 		goto err_uninit;
9964 	}
9965 
9966 	ret = -EBUSY;
9967 	if (!dev->ifindex)
9968 		dev->ifindex = dev_new_index(net);
9969 	else if (__dev_get_by_index(net, dev->ifindex))
9970 		goto err_uninit;
9971 
9972 	/* Transfer changeable features to wanted_features and enable
9973 	 * software offloads (GSO and GRO).
9974 	 */
9975 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9976 	dev->features |= NETIF_F_SOFT_FEATURES;
9977 
9978 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9979 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9980 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9981 	}
9982 
9983 	dev->wanted_features = dev->features & dev->hw_features;
9984 
9985 	if (!(dev->flags & IFF_LOOPBACK))
9986 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9987 
9988 	/* If IPv4 TCP segmentation offload is supported we should also
9989 	 * allow the device to enable segmenting the frame with the option
9990 	 * of ignoring a static IP ID value.  This doesn't enable the
9991 	 * feature itself but allows the user to enable it later.
9992 	 */
9993 	if (dev->hw_features & NETIF_F_TSO)
9994 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9995 	if (dev->vlan_features & NETIF_F_TSO)
9996 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9997 	if (dev->mpls_features & NETIF_F_TSO)
9998 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9999 	if (dev->hw_enc_features & NETIF_F_TSO)
10000 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10001 
10002 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10003 	 */
10004 	dev->vlan_features |= NETIF_F_HIGHDMA;
10005 
10006 	/* Make NETIF_F_SG inheritable to tunnel devices.
10007 	 */
10008 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10009 
10010 	/* Make NETIF_F_SG inheritable to MPLS.
10011 	 */
10012 	dev->mpls_features |= NETIF_F_SG;
10013 
10014 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10015 	ret = notifier_to_errno(ret);
10016 	if (ret)
10017 		goto err_uninit;
10018 
10019 	ret = netdev_register_kobject(dev);
10020 	if (ret) {
10021 		dev->reg_state = NETREG_UNREGISTERED;
10022 		goto err_uninit;
10023 	}
10024 	dev->reg_state = NETREG_REGISTERED;
10025 
10026 	__netdev_update_features(dev);
10027 
10028 	/*
10029 	 *	Default initial state at registry is that the
10030 	 *	device is present.
10031 	 */
10032 
10033 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10034 
10035 	linkwatch_init_dev(dev);
10036 
10037 	dev_init_scheduler(dev);
10038 	dev_hold(dev);
10039 	list_netdevice(dev);
10040 	add_device_randomness(dev->dev_addr, dev->addr_len);
10041 
10042 	/* If the device has permanent device address, driver should
10043 	 * set dev_addr and also addr_assign_type should be set to
10044 	 * NET_ADDR_PERM (default value).
10045 	 */
10046 	if (dev->addr_assign_type == NET_ADDR_PERM)
10047 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10048 
10049 	/* Notify protocols, that a new device appeared. */
10050 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10051 	ret = notifier_to_errno(ret);
10052 	if (ret) {
10053 		/* Expect explicit free_netdev() on failure */
10054 		dev->needs_free_netdev = false;
10055 		unregister_netdevice_queue(dev, NULL);
10056 		goto out;
10057 	}
10058 	/*
10059 	 *	Prevent userspace races by waiting until the network
10060 	 *	device is fully setup before sending notifications.
10061 	 */
10062 	if (!dev->rtnl_link_ops ||
10063 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10064 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10065 
10066 out:
10067 	return ret;
10068 
10069 err_uninit:
10070 	if (dev->netdev_ops->ndo_uninit)
10071 		dev->netdev_ops->ndo_uninit(dev);
10072 	if (dev->priv_destructor)
10073 		dev->priv_destructor(dev);
10074 err_free_name:
10075 	netdev_name_node_free(dev->name_node);
10076 	goto out;
10077 }
10078 EXPORT_SYMBOL(register_netdevice);
10079 
10080 /**
10081  *	init_dummy_netdev	- init a dummy network device for NAPI
10082  *	@dev: device to init
10083  *
10084  *	This takes a network device structure and initialize the minimum
10085  *	amount of fields so it can be used to schedule NAPI polls without
10086  *	registering a full blown interface. This is to be used by drivers
10087  *	that need to tie several hardware interfaces to a single NAPI
10088  *	poll scheduler due to HW limitations.
10089  */
init_dummy_netdev(struct net_device * dev)10090 int init_dummy_netdev(struct net_device *dev)
10091 {
10092 	/* Clear everything. Note we don't initialize spinlocks
10093 	 * are they aren't supposed to be taken by any of the
10094 	 * NAPI code and this dummy netdev is supposed to be
10095 	 * only ever used for NAPI polls
10096 	 */
10097 	memset(dev, 0, sizeof(struct net_device));
10098 
10099 	/* make sure we BUG if trying to hit standard
10100 	 * register/unregister code path
10101 	 */
10102 	dev->reg_state = NETREG_DUMMY;
10103 
10104 	/* NAPI wants this */
10105 	INIT_LIST_HEAD(&dev->napi_list);
10106 
10107 	/* a dummy interface is started by default */
10108 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10109 	set_bit(__LINK_STATE_START, &dev->state);
10110 
10111 	/* napi_busy_loop stats accounting wants this */
10112 	dev_net_set(dev, &init_net);
10113 
10114 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10115 	 * because users of this 'device' dont need to change
10116 	 * its refcount.
10117 	 */
10118 
10119 	return 0;
10120 }
10121 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10122 
10123 
10124 /**
10125  *	register_netdev	- register a network device
10126  *	@dev: device to register
10127  *
10128  *	Take a completed network device structure and add it to the kernel
10129  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10130  *	chain. 0 is returned on success. A negative errno code is returned
10131  *	on a failure to set up the device, or if the name is a duplicate.
10132  *
10133  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10134  *	and expands the device name if you passed a format string to
10135  *	alloc_netdev.
10136  */
register_netdev(struct net_device * dev)10137 int register_netdev(struct net_device *dev)
10138 {
10139 	int err;
10140 
10141 	if (rtnl_lock_killable())
10142 		return -EINTR;
10143 	err = register_netdevice(dev);
10144 	rtnl_unlock();
10145 	return err;
10146 }
10147 EXPORT_SYMBOL(register_netdev);
10148 
netdev_refcnt_read(const struct net_device * dev)10149 int netdev_refcnt_read(const struct net_device *dev)
10150 {
10151 	int i, refcnt = 0;
10152 
10153 	for_each_possible_cpu(i)
10154 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10155 	return refcnt;
10156 }
10157 EXPORT_SYMBOL(netdev_refcnt_read);
10158 
10159 #define WAIT_REFS_MIN_MSECS 1
10160 #define WAIT_REFS_MAX_MSECS 250
10161 /**
10162  * netdev_wait_allrefs - wait until all references are gone.
10163  * @dev: target net_device
10164  *
10165  * This is called when unregistering network devices.
10166  *
10167  * Any protocol or device that holds a reference should register
10168  * for netdevice notification, and cleanup and put back the
10169  * reference if they receive an UNREGISTER event.
10170  * We can get stuck here if buggy protocols don't correctly
10171  * call dev_put.
10172  */
netdev_wait_allrefs(struct net_device * dev)10173 static void netdev_wait_allrefs(struct net_device *dev)
10174 {
10175 	unsigned long rebroadcast_time, warning_time;
10176 	int wait = 0, refcnt;
10177 
10178 	linkwatch_forget_dev(dev);
10179 
10180 	rebroadcast_time = warning_time = jiffies;
10181 	refcnt = netdev_refcnt_read(dev);
10182 
10183 	while (refcnt != 0) {
10184 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10185 			rtnl_lock();
10186 
10187 			/* Rebroadcast unregister notification */
10188 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10189 
10190 			__rtnl_unlock();
10191 			rcu_barrier();
10192 			rtnl_lock();
10193 
10194 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10195 				     &dev->state)) {
10196 				/* We must not have linkwatch events
10197 				 * pending on unregister. If this
10198 				 * happens, we simply run the queue
10199 				 * unscheduled, resulting in a noop
10200 				 * for this device.
10201 				 */
10202 				linkwatch_run_queue();
10203 			}
10204 
10205 			__rtnl_unlock();
10206 
10207 			rebroadcast_time = jiffies;
10208 		}
10209 
10210 		if (!wait) {
10211 			rcu_barrier();
10212 			wait = WAIT_REFS_MIN_MSECS;
10213 		} else {
10214 			msleep(wait);
10215 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10216 		}
10217 
10218 		refcnt = netdev_refcnt_read(dev);
10219 
10220 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10221 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10222 				 dev->name, refcnt);
10223 			warning_time = jiffies;
10224 		}
10225 	}
10226 }
10227 
10228 /* The sequence is:
10229  *
10230  *	rtnl_lock();
10231  *	...
10232  *	register_netdevice(x1);
10233  *	register_netdevice(x2);
10234  *	...
10235  *	unregister_netdevice(y1);
10236  *	unregister_netdevice(y2);
10237  *      ...
10238  *	rtnl_unlock();
10239  *	free_netdev(y1);
10240  *	free_netdev(y2);
10241  *
10242  * We are invoked by rtnl_unlock().
10243  * This allows us to deal with problems:
10244  * 1) We can delete sysfs objects which invoke hotplug
10245  *    without deadlocking with linkwatch via keventd.
10246  * 2) Since we run with the RTNL semaphore not held, we can sleep
10247  *    safely in order to wait for the netdev refcnt to drop to zero.
10248  *
10249  * We must not return until all unregister events added during
10250  * the interval the lock was held have been completed.
10251  */
netdev_run_todo(void)10252 void netdev_run_todo(void)
10253 {
10254 	struct list_head list;
10255 #ifdef CONFIG_LOCKDEP
10256 	struct list_head unlink_list;
10257 
10258 	list_replace_init(&net_unlink_list, &unlink_list);
10259 
10260 	while (!list_empty(&unlink_list)) {
10261 		struct net_device *dev = list_first_entry(&unlink_list,
10262 							  struct net_device,
10263 							  unlink_list);
10264 		list_del_init(&dev->unlink_list);
10265 		dev->nested_level = dev->lower_level - 1;
10266 	}
10267 #endif
10268 
10269 	/* Snapshot list, allow later requests */
10270 	list_replace_init(&net_todo_list, &list);
10271 
10272 	__rtnl_unlock();
10273 
10274 
10275 	/* Wait for rcu callbacks to finish before next phase */
10276 	if (!list_empty(&list))
10277 		rcu_barrier();
10278 
10279 	while (!list_empty(&list)) {
10280 		struct net_device *dev
10281 			= list_first_entry(&list, struct net_device, todo_list);
10282 		list_del(&dev->todo_list);
10283 
10284 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10285 			pr_err("network todo '%s' but state %d\n",
10286 			       dev->name, dev->reg_state);
10287 			dump_stack();
10288 			continue;
10289 		}
10290 
10291 		dev->reg_state = NETREG_UNREGISTERED;
10292 
10293 		netdev_wait_allrefs(dev);
10294 
10295 		/* paranoia */
10296 		BUG_ON(netdev_refcnt_read(dev));
10297 		BUG_ON(!list_empty(&dev->ptype_all));
10298 		BUG_ON(!list_empty(&dev->ptype_specific));
10299 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10300 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10301 #if IS_ENABLED(CONFIG_DECNET)
10302 		WARN_ON(dev->dn_ptr);
10303 #endif
10304 		if (dev->priv_destructor)
10305 			dev->priv_destructor(dev);
10306 		if (dev->needs_free_netdev)
10307 			free_netdev(dev);
10308 
10309 		/* Report a network device has been unregistered */
10310 		rtnl_lock();
10311 		dev_net(dev)->dev_unreg_count--;
10312 		__rtnl_unlock();
10313 		wake_up(&netdev_unregistering_wq);
10314 
10315 		/* Free network device */
10316 		kobject_put(&dev->dev.kobj);
10317 	}
10318 }
10319 
10320 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10321  * all the same fields in the same order as net_device_stats, with only
10322  * the type differing, but rtnl_link_stats64 may have additional fields
10323  * at the end for newer counters.
10324  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10325 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10326 			     const struct net_device_stats *netdev_stats)
10327 {
10328 #if BITS_PER_LONG == 64
10329 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10330 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10331 	/* zero out counters that only exist in rtnl_link_stats64 */
10332 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10333 	       sizeof(*stats64) - sizeof(*netdev_stats));
10334 #else
10335 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10336 	const unsigned long *src = (const unsigned long *)netdev_stats;
10337 	u64 *dst = (u64 *)stats64;
10338 
10339 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10340 	for (i = 0; i < n; i++)
10341 		dst[i] = src[i];
10342 	/* zero out counters that only exist in rtnl_link_stats64 */
10343 	memset((char *)stats64 + n * sizeof(u64), 0,
10344 	       sizeof(*stats64) - n * sizeof(u64));
10345 #endif
10346 }
10347 EXPORT_SYMBOL(netdev_stats_to_stats64);
10348 
10349 /**
10350  *	dev_get_stats	- get network device statistics
10351  *	@dev: device to get statistics from
10352  *	@storage: place to store stats
10353  *
10354  *	Get network statistics from device. Return @storage.
10355  *	The device driver may provide its own method by setting
10356  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10357  *	otherwise the internal statistics structure is used.
10358  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10359 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10360 					struct rtnl_link_stats64 *storage)
10361 {
10362 	const struct net_device_ops *ops = dev->netdev_ops;
10363 
10364 	if (ops->ndo_get_stats64) {
10365 		memset(storage, 0, sizeof(*storage));
10366 		ops->ndo_get_stats64(dev, storage);
10367 	} else if (ops->ndo_get_stats) {
10368 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10369 	} else {
10370 		netdev_stats_to_stats64(storage, &dev->stats);
10371 	}
10372 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10373 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10374 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10375 	return storage;
10376 }
10377 EXPORT_SYMBOL(dev_get_stats);
10378 
10379 /**
10380  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10381  *	@s: place to store stats
10382  *	@netstats: per-cpu network stats to read from
10383  *
10384  *	Read per-cpu network statistics and populate the related fields in @s.
10385  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10386 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10387 			   const struct pcpu_sw_netstats __percpu *netstats)
10388 {
10389 	int cpu;
10390 
10391 	for_each_possible_cpu(cpu) {
10392 		const struct pcpu_sw_netstats *stats;
10393 		struct pcpu_sw_netstats tmp;
10394 		unsigned int start;
10395 
10396 		stats = per_cpu_ptr(netstats, cpu);
10397 		do {
10398 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10399 			tmp.rx_packets = stats->rx_packets;
10400 			tmp.rx_bytes   = stats->rx_bytes;
10401 			tmp.tx_packets = stats->tx_packets;
10402 			tmp.tx_bytes   = stats->tx_bytes;
10403 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10404 
10405 		s->rx_packets += tmp.rx_packets;
10406 		s->rx_bytes   += tmp.rx_bytes;
10407 		s->tx_packets += tmp.tx_packets;
10408 		s->tx_bytes   += tmp.tx_bytes;
10409 	}
10410 }
10411 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10412 
dev_ingress_queue_create(struct net_device * dev)10413 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10414 {
10415 	struct netdev_queue *queue = dev_ingress_queue(dev);
10416 
10417 #ifdef CONFIG_NET_CLS_ACT
10418 	if (queue)
10419 		return queue;
10420 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10421 	if (!queue)
10422 		return NULL;
10423 	netdev_init_one_queue(dev, queue, NULL);
10424 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10425 	queue->qdisc_sleeping = &noop_qdisc;
10426 	rcu_assign_pointer(dev->ingress_queue, queue);
10427 #endif
10428 	return queue;
10429 }
10430 
10431 static const struct ethtool_ops default_ethtool_ops;
10432 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10433 void netdev_set_default_ethtool_ops(struct net_device *dev,
10434 				    const struct ethtool_ops *ops)
10435 {
10436 	if (dev->ethtool_ops == &default_ethtool_ops)
10437 		dev->ethtool_ops = ops;
10438 }
10439 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10440 
netdev_freemem(struct net_device * dev)10441 void netdev_freemem(struct net_device *dev)
10442 {
10443 	char *addr = (char *)dev - dev->padded;
10444 
10445 	kvfree(addr);
10446 }
10447 
10448 /**
10449  * alloc_netdev_mqs - allocate network device
10450  * @sizeof_priv: size of private data to allocate space for
10451  * @name: device name format string
10452  * @name_assign_type: origin of device name
10453  * @setup: callback to initialize device
10454  * @txqs: the number of TX subqueues to allocate
10455  * @rxqs: the number of RX subqueues to allocate
10456  *
10457  * Allocates a struct net_device with private data area for driver use
10458  * and performs basic initialization.  Also allocates subqueue structs
10459  * for each queue on the device.
10460  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10461 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10462 		unsigned char name_assign_type,
10463 		void (*setup)(struct net_device *),
10464 		unsigned int txqs, unsigned int rxqs)
10465 {
10466 	struct net_device *dev;
10467 	unsigned int alloc_size;
10468 	struct net_device *p;
10469 
10470 	BUG_ON(strlen(name) >= sizeof(dev->name));
10471 
10472 	if (txqs < 1) {
10473 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10474 		return NULL;
10475 	}
10476 
10477 	if (rxqs < 1) {
10478 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10479 		return NULL;
10480 	}
10481 
10482 	alloc_size = sizeof(struct net_device);
10483 	if (sizeof_priv) {
10484 		/* ensure 32-byte alignment of private area */
10485 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10486 		alloc_size += sizeof_priv;
10487 	}
10488 	/* ensure 32-byte alignment of whole construct */
10489 	alloc_size += NETDEV_ALIGN - 1;
10490 
10491 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10492 	if (!p)
10493 		return NULL;
10494 
10495 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10496 	dev->padded = (char *)dev - (char *)p;
10497 
10498 	dev->pcpu_refcnt = alloc_percpu(int);
10499 	if (!dev->pcpu_refcnt)
10500 		goto free_dev;
10501 
10502 	if (dev_addr_init(dev))
10503 		goto free_pcpu;
10504 
10505 	dev_mc_init(dev);
10506 	dev_uc_init(dev);
10507 
10508 	dev_net_set(dev, &init_net);
10509 
10510 	dev->gso_max_size = GSO_MAX_SIZE;
10511 	dev->gso_max_segs = GSO_MAX_SEGS;
10512 	dev->upper_level = 1;
10513 	dev->lower_level = 1;
10514 #ifdef CONFIG_LOCKDEP
10515 	dev->nested_level = 0;
10516 	INIT_LIST_HEAD(&dev->unlink_list);
10517 #endif
10518 
10519 	INIT_LIST_HEAD(&dev->napi_list);
10520 	INIT_LIST_HEAD(&dev->unreg_list);
10521 	INIT_LIST_HEAD(&dev->close_list);
10522 	INIT_LIST_HEAD(&dev->link_watch_list);
10523 	INIT_LIST_HEAD(&dev->adj_list.upper);
10524 	INIT_LIST_HEAD(&dev->adj_list.lower);
10525 	INIT_LIST_HEAD(&dev->ptype_all);
10526 	INIT_LIST_HEAD(&dev->ptype_specific);
10527 	INIT_LIST_HEAD(&dev->net_notifier_list);
10528 #ifdef CONFIG_NET_SCHED
10529 	hash_init(dev->qdisc_hash);
10530 #endif
10531 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10532 	setup(dev);
10533 
10534 	if (!dev->tx_queue_len) {
10535 		dev->priv_flags |= IFF_NO_QUEUE;
10536 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10537 	}
10538 
10539 	dev->num_tx_queues = txqs;
10540 	dev->real_num_tx_queues = txqs;
10541 	if (netif_alloc_netdev_queues(dev))
10542 		goto free_all;
10543 
10544 	dev->num_rx_queues = rxqs;
10545 	dev->real_num_rx_queues = rxqs;
10546 	if (netif_alloc_rx_queues(dev))
10547 		goto free_all;
10548 
10549 	strcpy(dev->name, name);
10550 	dev->name_assign_type = name_assign_type;
10551 	dev->group = INIT_NETDEV_GROUP;
10552 	if (!dev->ethtool_ops)
10553 		dev->ethtool_ops = &default_ethtool_ops;
10554 
10555 	nf_hook_ingress_init(dev);
10556 
10557 	return dev;
10558 
10559 free_all:
10560 	free_netdev(dev);
10561 	return NULL;
10562 
10563 free_pcpu:
10564 	free_percpu(dev->pcpu_refcnt);
10565 free_dev:
10566 	netdev_freemem(dev);
10567 	return NULL;
10568 }
10569 EXPORT_SYMBOL(alloc_netdev_mqs);
10570 
10571 /**
10572  * free_netdev - free network device
10573  * @dev: device
10574  *
10575  * This function does the last stage of destroying an allocated device
10576  * interface. The reference to the device object is released. If this
10577  * is the last reference then it will be freed.Must be called in process
10578  * context.
10579  */
free_netdev(struct net_device * dev)10580 void free_netdev(struct net_device *dev)
10581 {
10582 	struct napi_struct *p, *n;
10583 
10584 	might_sleep();
10585 
10586 	/* When called immediately after register_netdevice() failed the unwind
10587 	 * handling may still be dismantling the device. Handle that case by
10588 	 * deferring the free.
10589 	 */
10590 	if (dev->reg_state == NETREG_UNREGISTERING) {
10591 		ASSERT_RTNL();
10592 		dev->needs_free_netdev = true;
10593 		return;
10594 	}
10595 
10596 	netif_free_tx_queues(dev);
10597 	netif_free_rx_queues(dev);
10598 
10599 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10600 
10601 	/* Flush device addresses */
10602 	dev_addr_flush(dev);
10603 
10604 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10605 		netif_napi_del(p);
10606 
10607 	free_percpu(dev->pcpu_refcnt);
10608 	dev->pcpu_refcnt = NULL;
10609 	free_percpu(dev->xdp_bulkq);
10610 	dev->xdp_bulkq = NULL;
10611 
10612 	/*  Compatibility with error handling in drivers */
10613 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10614 		netdev_freemem(dev);
10615 		return;
10616 	}
10617 
10618 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10619 	dev->reg_state = NETREG_RELEASED;
10620 
10621 	/* will free via device release */
10622 	put_device(&dev->dev);
10623 }
10624 EXPORT_SYMBOL(free_netdev);
10625 
10626 /**
10627  *	synchronize_net -  Synchronize with packet receive processing
10628  *
10629  *	Wait for packets currently being received to be done.
10630  *	Does not block later packets from starting.
10631  */
synchronize_net(void)10632 void synchronize_net(void)
10633 {
10634 	might_sleep();
10635 	if (rtnl_is_locked())
10636 		synchronize_rcu_expedited();
10637 	else
10638 		synchronize_rcu();
10639 }
10640 EXPORT_SYMBOL(synchronize_net);
10641 
10642 /**
10643  *	unregister_netdevice_queue - remove device from the kernel
10644  *	@dev: device
10645  *	@head: list
10646  *
10647  *	This function shuts down a device interface and removes it
10648  *	from the kernel tables.
10649  *	If head not NULL, device is queued to be unregistered later.
10650  *
10651  *	Callers must hold the rtnl semaphore.  You may want
10652  *	unregister_netdev() instead of this.
10653  */
10654 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10655 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10656 {
10657 	ASSERT_RTNL();
10658 
10659 	if (head) {
10660 		list_move_tail(&dev->unreg_list, head);
10661 	} else {
10662 		LIST_HEAD(single);
10663 
10664 		list_add(&dev->unreg_list, &single);
10665 		unregister_netdevice_many(&single);
10666 	}
10667 }
10668 EXPORT_SYMBOL(unregister_netdevice_queue);
10669 
10670 /**
10671  *	unregister_netdevice_many - unregister many devices
10672  *	@head: list of devices
10673  *
10674  *  Note: As most callers use a stack allocated list_head,
10675  *  we force a list_del() to make sure stack wont be corrupted later.
10676  */
unregister_netdevice_many(struct list_head * head)10677 void unregister_netdevice_many(struct list_head *head)
10678 {
10679 	struct net_device *dev, *tmp;
10680 	LIST_HEAD(close_head);
10681 
10682 	BUG_ON(dev_boot_phase);
10683 	ASSERT_RTNL();
10684 
10685 	if (list_empty(head))
10686 		return;
10687 
10688 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10689 		/* Some devices call without registering
10690 		 * for initialization unwind. Remove those
10691 		 * devices and proceed with the remaining.
10692 		 */
10693 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10694 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10695 				 dev->name, dev);
10696 
10697 			WARN_ON(1);
10698 			list_del(&dev->unreg_list);
10699 			continue;
10700 		}
10701 		dev->dismantle = true;
10702 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10703 	}
10704 
10705 	/* If device is running, close it first. */
10706 	list_for_each_entry(dev, head, unreg_list)
10707 		list_add_tail(&dev->close_list, &close_head);
10708 	dev_close_many(&close_head, true);
10709 
10710 	list_for_each_entry(dev, head, unreg_list) {
10711 		/* And unlink it from device chain. */
10712 		unlist_netdevice(dev);
10713 
10714 		dev->reg_state = NETREG_UNREGISTERING;
10715 	}
10716 	flush_all_backlogs();
10717 
10718 	synchronize_net();
10719 
10720 	list_for_each_entry(dev, head, unreg_list) {
10721 		struct sk_buff *skb = NULL;
10722 
10723 		/* Shutdown queueing discipline. */
10724 		dev_shutdown(dev);
10725 
10726 		dev_xdp_uninstall(dev);
10727 
10728 		/* Notify protocols, that we are about to destroy
10729 		 * this device. They should clean all the things.
10730 		 */
10731 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10732 
10733 		if (!dev->rtnl_link_ops ||
10734 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10735 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10736 						     GFP_KERNEL, NULL, 0);
10737 
10738 		/*
10739 		 *	Flush the unicast and multicast chains
10740 		 */
10741 		dev_uc_flush(dev);
10742 		dev_mc_flush(dev);
10743 
10744 		netdev_name_node_alt_flush(dev);
10745 		netdev_name_node_free(dev->name_node);
10746 
10747 		if (dev->netdev_ops->ndo_uninit)
10748 			dev->netdev_ops->ndo_uninit(dev);
10749 
10750 		if (skb)
10751 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10752 
10753 		/* Notifier chain MUST detach us all upper devices. */
10754 		WARN_ON(netdev_has_any_upper_dev(dev));
10755 		WARN_ON(netdev_has_any_lower_dev(dev));
10756 
10757 		/* Remove entries from kobject tree */
10758 		netdev_unregister_kobject(dev);
10759 #ifdef CONFIG_XPS
10760 		/* Remove XPS queueing entries */
10761 		netif_reset_xps_queues_gt(dev, 0);
10762 #endif
10763 	}
10764 
10765 	synchronize_net();
10766 
10767 	list_for_each_entry(dev, head, unreg_list) {
10768 		dev_put(dev);
10769 		net_set_todo(dev);
10770 	}
10771 
10772 	list_del(head);
10773 }
10774 EXPORT_SYMBOL(unregister_netdevice_many);
10775 
10776 /**
10777  *	unregister_netdev - remove device from the kernel
10778  *	@dev: device
10779  *
10780  *	This function shuts down a device interface and removes it
10781  *	from the kernel tables.
10782  *
10783  *	This is just a wrapper for unregister_netdevice that takes
10784  *	the rtnl semaphore.  In general you want to use this and not
10785  *	unregister_netdevice.
10786  */
unregister_netdev(struct net_device * dev)10787 void unregister_netdev(struct net_device *dev)
10788 {
10789 	rtnl_lock();
10790 	unregister_netdevice(dev);
10791 	rtnl_unlock();
10792 }
10793 EXPORT_SYMBOL(unregister_netdev);
10794 
10795 /**
10796  *	dev_change_net_namespace - move device to different nethost namespace
10797  *	@dev: device
10798  *	@net: network namespace
10799  *	@pat: If not NULL name pattern to try if the current device name
10800  *	      is already taken in the destination network namespace.
10801  *
10802  *	This function shuts down a device interface and moves it
10803  *	to a new network namespace. On success 0 is returned, on
10804  *	a failure a netagive errno code is returned.
10805  *
10806  *	Callers must hold the rtnl semaphore.
10807  */
10808 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)10809 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10810 {
10811 	struct net *net_old = dev_net(dev);
10812 	int err, new_nsid, new_ifindex;
10813 
10814 	ASSERT_RTNL();
10815 
10816 	/* Don't allow namespace local devices to be moved. */
10817 	err = -EINVAL;
10818 	if (dev->features & NETIF_F_NETNS_LOCAL)
10819 		goto out;
10820 
10821 	/* Ensure the device has been registrered */
10822 	if (dev->reg_state != NETREG_REGISTERED)
10823 		goto out;
10824 
10825 	/* Get out if there is nothing todo */
10826 	err = 0;
10827 	if (net_eq(net_old, net))
10828 		goto out;
10829 
10830 	/* Pick the destination device name, and ensure
10831 	 * we can use it in the destination network namespace.
10832 	 */
10833 	err = -EEXIST;
10834 	if (__dev_get_by_name(net, dev->name)) {
10835 		/* We get here if we can't use the current device name */
10836 		if (!pat)
10837 			goto out;
10838 		err = dev_get_valid_name(net, dev, pat);
10839 		if (err < 0)
10840 			goto out;
10841 	}
10842 
10843 	/*
10844 	 * And now a mini version of register_netdevice unregister_netdevice.
10845 	 */
10846 
10847 	/* If device is running close it first. */
10848 	dev_close(dev);
10849 
10850 	/* And unlink it from device chain */
10851 	unlist_netdevice(dev);
10852 
10853 	synchronize_net();
10854 
10855 	/* Shutdown queueing discipline. */
10856 	dev_shutdown(dev);
10857 
10858 	/* Notify protocols, that we are about to destroy
10859 	 * this device. They should clean all the things.
10860 	 *
10861 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10862 	 * This is wanted because this way 8021q and macvlan know
10863 	 * the device is just moving and can keep their slaves up.
10864 	 */
10865 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10866 	rcu_barrier();
10867 
10868 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10869 	/* If there is an ifindex conflict assign a new one */
10870 	if (__dev_get_by_index(net, dev->ifindex))
10871 		new_ifindex = dev_new_index(net);
10872 	else
10873 		new_ifindex = dev->ifindex;
10874 
10875 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10876 			    new_ifindex);
10877 
10878 	/*
10879 	 *	Flush the unicast and multicast chains
10880 	 */
10881 	dev_uc_flush(dev);
10882 	dev_mc_flush(dev);
10883 
10884 	/* Send a netdev-removed uevent to the old namespace */
10885 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10886 	netdev_adjacent_del_links(dev);
10887 
10888 	/* Move per-net netdevice notifiers that are following the netdevice */
10889 	move_netdevice_notifiers_dev_net(dev, net);
10890 
10891 	/* Actually switch the network namespace */
10892 	dev_net_set(dev, net);
10893 	dev->ifindex = new_ifindex;
10894 
10895 	/* Send a netdev-add uevent to the new namespace */
10896 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10897 	netdev_adjacent_add_links(dev);
10898 
10899 	/* Fixup kobjects */
10900 	err = device_rename(&dev->dev, dev->name);
10901 	WARN_ON(err);
10902 
10903 	/* Adapt owner in case owning user namespace of target network
10904 	 * namespace is different from the original one.
10905 	 */
10906 	err = netdev_change_owner(dev, net_old, net);
10907 	WARN_ON(err);
10908 
10909 	/* Add the device back in the hashes */
10910 	list_netdevice(dev);
10911 
10912 	/* Notify protocols, that a new device appeared. */
10913 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10914 
10915 	/*
10916 	 *	Prevent userspace races by waiting until the network
10917 	 *	device is fully setup before sending notifications.
10918 	 */
10919 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10920 
10921 	synchronize_net();
10922 	err = 0;
10923 out:
10924 	return err;
10925 }
10926 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10927 
dev_cpu_dead(unsigned int oldcpu)10928 static int dev_cpu_dead(unsigned int oldcpu)
10929 {
10930 	struct sk_buff **list_skb;
10931 	struct sk_buff *skb;
10932 	unsigned int cpu;
10933 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10934 
10935 	local_irq_disable();
10936 	cpu = smp_processor_id();
10937 	sd = &per_cpu(softnet_data, cpu);
10938 	oldsd = &per_cpu(softnet_data, oldcpu);
10939 
10940 	/* Find end of our completion_queue. */
10941 	list_skb = &sd->completion_queue;
10942 	while (*list_skb)
10943 		list_skb = &(*list_skb)->next;
10944 	/* Append completion queue from offline CPU. */
10945 	*list_skb = oldsd->completion_queue;
10946 	oldsd->completion_queue = NULL;
10947 
10948 	/* Append output queue from offline CPU. */
10949 	if (oldsd->output_queue) {
10950 		*sd->output_queue_tailp = oldsd->output_queue;
10951 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10952 		oldsd->output_queue = NULL;
10953 		oldsd->output_queue_tailp = &oldsd->output_queue;
10954 	}
10955 	/* Append NAPI poll list from offline CPU, with one exception :
10956 	 * process_backlog() must be called by cpu owning percpu backlog.
10957 	 * We properly handle process_queue & input_pkt_queue later.
10958 	 */
10959 	while (!list_empty(&oldsd->poll_list)) {
10960 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10961 							    struct napi_struct,
10962 							    poll_list);
10963 
10964 		list_del_init(&napi->poll_list);
10965 		if (napi->poll == process_backlog)
10966 			napi->state = 0;
10967 		else
10968 			____napi_schedule(sd, napi);
10969 	}
10970 
10971 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10972 	local_irq_enable();
10973 
10974 #ifdef CONFIG_RPS
10975 	remsd = oldsd->rps_ipi_list;
10976 	oldsd->rps_ipi_list = NULL;
10977 #endif
10978 	/* send out pending IPI's on offline CPU */
10979 	net_rps_send_ipi(remsd);
10980 
10981 	/* Process offline CPU's input_pkt_queue */
10982 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10983 		netif_rx_ni(skb);
10984 		input_queue_head_incr(oldsd);
10985 	}
10986 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10987 		netif_rx_ni(skb);
10988 		input_queue_head_incr(oldsd);
10989 	}
10990 
10991 	return 0;
10992 }
10993 
10994 /**
10995  *	netdev_increment_features - increment feature set by one
10996  *	@all: current feature set
10997  *	@one: new feature set
10998  *	@mask: mask feature set
10999  *
11000  *	Computes a new feature set after adding a device with feature set
11001  *	@one to the master device with current feature set @all.  Will not
11002  *	enable anything that is off in @mask. Returns the new feature set.
11003  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11004 netdev_features_t netdev_increment_features(netdev_features_t all,
11005 	netdev_features_t one, netdev_features_t mask)
11006 {
11007 	if (mask & NETIF_F_HW_CSUM)
11008 		mask |= NETIF_F_CSUM_MASK;
11009 	mask |= NETIF_F_VLAN_CHALLENGED;
11010 
11011 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11012 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11013 
11014 	/* If one device supports hw checksumming, set for all. */
11015 	if (all & NETIF_F_HW_CSUM)
11016 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11017 
11018 	return all;
11019 }
11020 EXPORT_SYMBOL(netdev_increment_features);
11021 
netdev_create_hash(void)11022 static struct hlist_head * __net_init netdev_create_hash(void)
11023 {
11024 	int i;
11025 	struct hlist_head *hash;
11026 
11027 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11028 	if (hash != NULL)
11029 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11030 			INIT_HLIST_HEAD(&hash[i]);
11031 
11032 	return hash;
11033 }
11034 
11035 /* Initialize per network namespace state */
netdev_init(struct net * net)11036 static int __net_init netdev_init(struct net *net)
11037 {
11038 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11039 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11040 
11041 	if (net != &init_net)
11042 		INIT_LIST_HEAD(&net->dev_base_head);
11043 
11044 	net->dev_name_head = netdev_create_hash();
11045 	if (net->dev_name_head == NULL)
11046 		goto err_name;
11047 
11048 	net->dev_index_head = netdev_create_hash();
11049 	if (net->dev_index_head == NULL)
11050 		goto err_idx;
11051 
11052 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11053 
11054 	return 0;
11055 
11056 err_idx:
11057 	kfree(net->dev_name_head);
11058 err_name:
11059 	return -ENOMEM;
11060 }
11061 
11062 /**
11063  *	netdev_drivername - network driver for the device
11064  *	@dev: network device
11065  *
11066  *	Determine network driver for device.
11067  */
netdev_drivername(const struct net_device * dev)11068 const char *netdev_drivername(const struct net_device *dev)
11069 {
11070 	const struct device_driver *driver;
11071 	const struct device *parent;
11072 	const char *empty = "";
11073 
11074 	parent = dev->dev.parent;
11075 	if (!parent)
11076 		return empty;
11077 
11078 	driver = parent->driver;
11079 	if (driver && driver->name)
11080 		return driver->name;
11081 	return empty;
11082 }
11083 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11084 static void __netdev_printk(const char *level, const struct net_device *dev,
11085 			    struct va_format *vaf)
11086 {
11087 	if (dev && dev->dev.parent) {
11088 		dev_printk_emit(level[1] - '0',
11089 				dev->dev.parent,
11090 				"%s %s %s%s: %pV",
11091 				dev_driver_string(dev->dev.parent),
11092 				dev_name(dev->dev.parent),
11093 				netdev_name(dev), netdev_reg_state(dev),
11094 				vaf);
11095 	} else if (dev) {
11096 		printk("%s%s%s: %pV",
11097 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11098 	} else {
11099 		printk("%s(NULL net_device): %pV", level, vaf);
11100 	}
11101 }
11102 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11103 void netdev_printk(const char *level, const struct net_device *dev,
11104 		   const char *format, ...)
11105 {
11106 	struct va_format vaf;
11107 	va_list args;
11108 
11109 	va_start(args, format);
11110 
11111 	vaf.fmt = format;
11112 	vaf.va = &args;
11113 
11114 	__netdev_printk(level, dev, &vaf);
11115 
11116 	va_end(args);
11117 }
11118 EXPORT_SYMBOL(netdev_printk);
11119 
11120 #define define_netdev_printk_level(func, level)			\
11121 void func(const struct net_device *dev, const char *fmt, ...)	\
11122 {								\
11123 	struct va_format vaf;					\
11124 	va_list args;						\
11125 								\
11126 	va_start(args, fmt);					\
11127 								\
11128 	vaf.fmt = fmt;						\
11129 	vaf.va = &args;						\
11130 								\
11131 	__netdev_printk(level, dev, &vaf);			\
11132 								\
11133 	va_end(args);						\
11134 }								\
11135 EXPORT_SYMBOL(func);
11136 
11137 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11138 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11139 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11140 define_netdev_printk_level(netdev_err, KERN_ERR);
11141 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11142 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11143 define_netdev_printk_level(netdev_info, KERN_INFO);
11144 
netdev_exit(struct net * net)11145 static void __net_exit netdev_exit(struct net *net)
11146 {
11147 	kfree(net->dev_name_head);
11148 	kfree(net->dev_index_head);
11149 	if (net != &init_net)
11150 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11151 }
11152 
11153 static struct pernet_operations __net_initdata netdev_net_ops = {
11154 	.init = netdev_init,
11155 	.exit = netdev_exit,
11156 };
11157 
default_device_exit(struct net * net)11158 static void __net_exit default_device_exit(struct net *net)
11159 {
11160 	struct net_device *dev, *aux;
11161 	/*
11162 	 * Push all migratable network devices back to the
11163 	 * initial network namespace
11164 	 */
11165 	rtnl_lock();
11166 	for_each_netdev_safe(net, dev, aux) {
11167 		int err;
11168 		char fb_name[IFNAMSIZ];
11169 
11170 		/* Ignore unmoveable devices (i.e. loopback) */
11171 		if (dev->features & NETIF_F_NETNS_LOCAL)
11172 			continue;
11173 
11174 		/* Leave virtual devices for the generic cleanup */
11175 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11176 			continue;
11177 
11178 		/* Push remaining network devices to init_net */
11179 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11180 		if (__dev_get_by_name(&init_net, fb_name))
11181 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11182 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11183 		if (err) {
11184 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11185 				 __func__, dev->name, err);
11186 			BUG();
11187 		}
11188 	}
11189 	rtnl_unlock();
11190 }
11191 
rtnl_lock_unregistering(struct list_head * net_list)11192 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11193 {
11194 	/* Return with the rtnl_lock held when there are no network
11195 	 * devices unregistering in any network namespace in net_list.
11196 	 */
11197 	struct net *net;
11198 	bool unregistering;
11199 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11200 
11201 	add_wait_queue(&netdev_unregistering_wq, &wait);
11202 	for (;;) {
11203 		unregistering = false;
11204 		rtnl_lock();
11205 		list_for_each_entry(net, net_list, exit_list) {
11206 			if (net->dev_unreg_count > 0) {
11207 				unregistering = true;
11208 				break;
11209 			}
11210 		}
11211 		if (!unregistering)
11212 			break;
11213 		__rtnl_unlock();
11214 
11215 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11216 	}
11217 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11218 }
11219 
default_device_exit_batch(struct list_head * net_list)11220 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11221 {
11222 	/* At exit all network devices most be removed from a network
11223 	 * namespace.  Do this in the reverse order of registration.
11224 	 * Do this across as many network namespaces as possible to
11225 	 * improve batching efficiency.
11226 	 */
11227 	struct net_device *dev;
11228 	struct net *net;
11229 	LIST_HEAD(dev_kill_list);
11230 
11231 	/* To prevent network device cleanup code from dereferencing
11232 	 * loopback devices or network devices that have been freed
11233 	 * wait here for all pending unregistrations to complete,
11234 	 * before unregistring the loopback device and allowing the
11235 	 * network namespace be freed.
11236 	 *
11237 	 * The netdev todo list containing all network devices
11238 	 * unregistrations that happen in default_device_exit_batch
11239 	 * will run in the rtnl_unlock() at the end of
11240 	 * default_device_exit_batch.
11241 	 */
11242 	rtnl_lock_unregistering(net_list);
11243 	list_for_each_entry(net, net_list, exit_list) {
11244 		for_each_netdev_reverse(net, dev) {
11245 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11246 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11247 			else
11248 				unregister_netdevice_queue(dev, &dev_kill_list);
11249 		}
11250 	}
11251 	unregister_netdevice_many(&dev_kill_list);
11252 	rtnl_unlock();
11253 }
11254 
11255 static struct pernet_operations __net_initdata default_device_ops = {
11256 	.exit = default_device_exit,
11257 	.exit_batch = default_device_exit_batch,
11258 };
11259 
11260 /*
11261  *	Initialize the DEV module. At boot time this walks the device list and
11262  *	unhooks any devices that fail to initialise (normally hardware not
11263  *	present) and leaves us with a valid list of present and active devices.
11264  *
11265  */
11266 
11267 /*
11268  *       This is called single threaded during boot, so no need
11269  *       to take the rtnl semaphore.
11270  */
net_dev_init(void)11271 static int __init net_dev_init(void)
11272 {
11273 	int i, rc = -ENOMEM;
11274 
11275 	BUG_ON(!dev_boot_phase);
11276 
11277 	if (dev_proc_init())
11278 		goto out;
11279 
11280 	if (netdev_kobject_init())
11281 		goto out;
11282 
11283 	INIT_LIST_HEAD(&ptype_all);
11284 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11285 		INIT_LIST_HEAD(&ptype_base[i]);
11286 
11287 	INIT_LIST_HEAD(&offload_base);
11288 
11289 	if (register_pernet_subsys(&netdev_net_ops))
11290 		goto out;
11291 
11292 	/*
11293 	 *	Initialise the packet receive queues.
11294 	 */
11295 
11296 	for_each_possible_cpu(i) {
11297 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11298 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11299 
11300 		INIT_WORK(flush, flush_backlog);
11301 
11302 		skb_queue_head_init(&sd->input_pkt_queue);
11303 		skb_queue_head_init(&sd->process_queue);
11304 #ifdef CONFIG_XFRM_OFFLOAD
11305 		skb_queue_head_init(&sd->xfrm_backlog);
11306 #endif
11307 		INIT_LIST_HEAD(&sd->poll_list);
11308 		sd->output_queue_tailp = &sd->output_queue;
11309 #ifdef CONFIG_RPS
11310 		sd->csd.func = rps_trigger_softirq;
11311 		sd->csd.info = sd;
11312 		sd->cpu = i;
11313 #endif
11314 
11315 		init_gro_hash(&sd->backlog);
11316 		sd->backlog.poll = process_backlog;
11317 		sd->backlog.weight = weight_p;
11318 	}
11319 
11320 	dev_boot_phase = 0;
11321 
11322 	/* The loopback device is special if any other network devices
11323 	 * is present in a network namespace the loopback device must
11324 	 * be present. Since we now dynamically allocate and free the
11325 	 * loopback device ensure this invariant is maintained by
11326 	 * keeping the loopback device as the first device on the
11327 	 * list of network devices.  Ensuring the loopback devices
11328 	 * is the first device that appears and the last network device
11329 	 * that disappears.
11330 	 */
11331 	if (register_pernet_device(&loopback_net_ops))
11332 		goto out;
11333 
11334 	if (register_pernet_device(&default_device_ops))
11335 		goto out;
11336 
11337 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11338 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11339 
11340 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11341 				       NULL, dev_cpu_dead);
11342 	WARN_ON(rc < 0);
11343 	rc = 0;
11344 out:
11345 	return rc;
11346 }
11347 
11348 subsys_initcall(net_dev_init);
11349