xref: /OK3568_Linux_fs/u-boot/net/net.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  *	Copied from Linux Monitor (LiMon) - Networking.
3  *
4  *	Copyright 1994 - 2000 Neil Russell.
5  *	(See License)
6  *	Copyright 2000 Roland Borde
7  *	Copyright 2000 Paolo Scaffardi
8  *	Copyright 2000-2002 Wolfgang Denk, wd@denx.de
9  *	SPDX-License-Identifier:	GPL-2.0
10  */
11 
12 /*
13  * General Desription:
14  *
15  * The user interface supports commands for BOOTP, RARP, and TFTP.
16  * Also, we support ARP internally. Depending on available data,
17  * these interact as follows:
18  *
19  * BOOTP:
20  *
21  *	Prerequisites:	- own ethernet address
22  *	We want:	- own IP address
23  *			- TFTP server IP address
24  *			- name of bootfile
25  *	Next step:	ARP
26  *
27  * LINK_LOCAL:
28  *
29  *	Prerequisites:	- own ethernet address
30  *	We want:	- own IP address
31  *	Next step:	ARP
32  *
33  * RARP:
34  *
35  *	Prerequisites:	- own ethernet address
36  *	We want:	- own IP address
37  *			- TFTP server IP address
38  *	Next step:	ARP
39  *
40  * ARP:
41  *
42  *	Prerequisites:	- own ethernet address
43  *			- own IP address
44  *			- TFTP server IP address
45  *	We want:	- TFTP server ethernet address
46  *	Next step:	TFTP
47  *
48  * DHCP:
49  *
50  *     Prerequisites:	- own ethernet address
51  *     We want:		- IP, Netmask, ServerIP, Gateway IP
52  *			- bootfilename, lease time
53  *     Next step:	- TFTP
54  *
55  * TFTP:
56  *
57  *	Prerequisites:	- own ethernet address
58  *			- own IP address
59  *			- TFTP server IP address
60  *			- TFTP server ethernet address
61  *			- name of bootfile (if unknown, we use a default name
62  *			  derived from our own IP address)
63  *	We want:	- load the boot file
64  *	Next step:	none
65  *
66  * NFS:
67  *
68  *	Prerequisites:	- own ethernet address
69  *			- own IP address
70  *			- name of bootfile (if unknown, we use a default name
71  *			  derived from our own IP address)
72  *	We want:	- load the boot file
73  *	Next step:	none
74  *
75  * SNTP:
76  *
77  *	Prerequisites:	- own ethernet address
78  *			- own IP address
79  *	We want:	- network time
80  *	Next step:	none
81  */
82 
83 
84 #include <common.h>
85 #include <command.h>
86 #include <console.h>
87 #include <environment.h>
88 #include <errno.h>
89 #include <net.h>
90 #if defined(CONFIG_UDP_FUNCTION_FASTBOOT)
91 #include <net/fastboot.h>
92 #endif
93 #include <net/tftp.h>
94 #if defined(CONFIG_LED_STATUS)
95 #include <miiphy.h>
96 #include <status_led.h>
97 #endif
98 #include <watchdog.h>
99 #include <linux/compiler.h>
100 #include "arp.h"
101 #include "bootp.h"
102 #include "cdp.h"
103 #if defined(CONFIG_CMD_DNS)
104 #include "dns.h"
105 #endif
106 #include "link_local.h"
107 #include "nfs.h"
108 #include "ping.h"
109 #include "rarp.h"
110 #if defined(CONFIG_CMD_SNTP)
111 #include "sntp.h"
112 #endif
113 
114 DECLARE_GLOBAL_DATA_PTR;
115 
116 /** BOOTP EXTENTIONS **/
117 
118 /* Our subnet mask (0=unknown) */
119 struct in_addr net_netmask;
120 /* Our gateways IP address */
121 struct in_addr net_gateway;
122 /* Our DNS IP address */
123 struct in_addr net_dns_server;
124 #if defined(CONFIG_BOOTP_DNS2)
125 /* Our 2nd DNS IP address */
126 struct in_addr net_dns_server2;
127 #endif
128 
129 #ifdef CONFIG_MCAST_TFTP	/* Multicast TFTP */
130 struct in_addr net_mcast_addr;
131 #endif
132 
133 /** END OF BOOTP EXTENTIONS **/
134 
135 /* Our ethernet address */
136 u8 net_ethaddr[6];
137 /* Boot server enet address */
138 u8 net_server_ethaddr[6];
139 /* Our IP addr (0 = unknown) */
140 struct in_addr	net_ip;
141 /* Server IP addr (0 = unknown) */
142 struct in_addr	net_server_ip;
143 /* Current receive packet */
144 uchar *net_rx_packet;
145 /* Current rx packet length */
146 int		net_rx_packet_len;
147 /* IP packet ID */
148 static unsigned	net_ip_id;
149 /* Ethernet bcast address */
150 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
151 const u8 net_null_ethaddr[6];
152 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
153 void (*push_packet)(void *, int len) = 0;
154 #endif
155 /* Network loop state */
156 enum net_loop_state net_state;
157 /* Tried all network devices */
158 int		net_restart_wrap;
159 /* Network loop restarted */
160 static int	net_restarted;
161 /* At least one device configured */
162 static int	net_dev_exists;
163 
164 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
165 /* default is without VLAN */
166 ushort		net_our_vlan = 0xFFFF;
167 /* ditto */
168 ushort		net_native_vlan = 0xFFFF;
169 
170 /* Boot File name */
171 char net_boot_file_name[1024];
172 /* The actual transferred size of the bootfile (in bytes) */
173 u32 net_boot_file_size;
174 /* Boot file size in blocks as reported by the DHCP server */
175 u32 net_boot_file_expected_size_in_blocks;
176 
177 #if defined(CONFIG_CMD_SNTP)
178 /* NTP server IP address */
179 struct in_addr	net_ntp_server;
180 /* offset time from UTC */
181 int		net_ntp_time_offset;
182 #endif
183 
184 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
185 /* Receive packets */
186 uchar *net_rx_packets[PKTBUFSRX];
187 /* Current UDP RX packet handler */
188 static rxhand_f *udp_packet_handler;
189 /* Current ARP RX packet handler */
190 static rxhand_f *arp_packet_handler;
191 #ifdef CONFIG_CMD_TFTPPUT
192 /* Current ICMP rx handler */
193 static rxhand_icmp_f *packet_icmp_handler;
194 #endif
195 /* Current timeout handler */
196 static thand_f *time_handler;
197 /* Time base value */
198 static ulong	time_start;
199 /* Current timeout value */
200 static ulong	time_delta;
201 /* THE transmit packet */
202 uchar *net_tx_packet;
203 
204 static int net_check_prereq(enum proto_t protocol);
205 
206 static int net_try_count;
207 
208 int __maybe_unused net_busy_flag;
209 
210 /**********************************************************************/
211 
on_bootfile(const char * name,const char * value,enum env_op op,int flags)212 static int on_bootfile(const char *name, const char *value, enum env_op op,
213 	int flags)
214 {
215 	if (flags & H_PROGRAMMATIC)
216 		return 0;
217 
218 	switch (op) {
219 	case env_op_create:
220 	case env_op_overwrite:
221 		copy_filename(net_boot_file_name, value,
222 			      sizeof(net_boot_file_name));
223 		break;
224 	default:
225 		break;
226 	}
227 
228 	return 0;
229 }
230 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile);
231 
on_ipaddr(const char * name,const char * value,enum env_op op,int flags)232 static int on_ipaddr(const char *name, const char *value, enum env_op op,
233 	int flags)
234 {
235 	if (flags & H_PROGRAMMATIC)
236 		return 0;
237 
238 	net_ip = string_to_ip(value);
239 
240 	return 0;
241 }
242 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
243 
on_gatewayip(const char * name,const char * value,enum env_op op,int flags)244 static int on_gatewayip(const char *name, const char *value, enum env_op op,
245 	int flags)
246 {
247 	if (flags & H_PROGRAMMATIC)
248 		return 0;
249 
250 	net_gateway = string_to_ip(value);
251 
252 	return 0;
253 }
254 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
255 
on_netmask(const char * name,const char * value,enum env_op op,int flags)256 static int on_netmask(const char *name, const char *value, enum env_op op,
257 	int flags)
258 {
259 	if (flags & H_PROGRAMMATIC)
260 		return 0;
261 
262 	net_netmask = string_to_ip(value);
263 
264 	return 0;
265 }
266 U_BOOT_ENV_CALLBACK(netmask, on_netmask);
267 
on_serverip(const char * name,const char * value,enum env_op op,int flags)268 static int on_serverip(const char *name, const char *value, enum env_op op,
269 	int flags)
270 {
271 	if (flags & H_PROGRAMMATIC)
272 		return 0;
273 
274 	net_server_ip = string_to_ip(value);
275 
276 	return 0;
277 }
278 U_BOOT_ENV_CALLBACK(serverip, on_serverip);
279 
on_nvlan(const char * name,const char * value,enum env_op op,int flags)280 static int on_nvlan(const char *name, const char *value, enum env_op op,
281 	int flags)
282 {
283 	if (flags & H_PROGRAMMATIC)
284 		return 0;
285 
286 	net_native_vlan = string_to_vlan(value);
287 
288 	return 0;
289 }
290 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
291 
on_vlan(const char * name,const char * value,enum env_op op,int flags)292 static int on_vlan(const char *name, const char *value, enum env_op op,
293 	int flags)
294 {
295 	if (flags & H_PROGRAMMATIC)
296 		return 0;
297 
298 	net_our_vlan = string_to_vlan(value);
299 
300 	return 0;
301 }
302 U_BOOT_ENV_CALLBACK(vlan, on_vlan);
303 
304 #if defined(CONFIG_CMD_DNS)
on_dnsip(const char * name,const char * value,enum env_op op,int flags)305 static int on_dnsip(const char *name, const char *value, enum env_op op,
306 	int flags)
307 {
308 	if (flags & H_PROGRAMMATIC)
309 		return 0;
310 
311 	net_dns_server = string_to_ip(value);
312 
313 	return 0;
314 }
315 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
316 #endif
317 
318 /*
319  * Check if autoload is enabled. If so, use either NFS or TFTP to download
320  * the boot file.
321  */
net_auto_load(void)322 void net_auto_load(void)
323 {
324 #if defined(CONFIG_CMD_NFS)
325 	const char *s = env_get("autoload");
326 
327 	if (s != NULL && strcmp(s, "NFS") == 0) {
328 		/*
329 		 * Use NFS to load the bootfile.
330 		 */
331 		nfs_start();
332 		return;
333 	}
334 #endif
335 	if (env_get_yesno("autoload") == 0) {
336 		/*
337 		 * Just use BOOTP/RARP to configure system;
338 		 * Do not use TFTP to load the bootfile.
339 		 */
340 		net_set_state(NETLOOP_SUCCESS);
341 		return;
342 	}
343 	tftp_start(TFTPGET);
344 }
345 
net_init_loop(void)346 static void net_init_loop(void)
347 {
348 	if (eth_get_dev())
349 		memcpy(net_ethaddr, eth_get_ethaddr(), 6);
350 
351 	return;
352 }
353 
net_clear_handlers(void)354 static void net_clear_handlers(void)
355 {
356 	net_set_udp_handler(NULL);
357 	net_set_arp_handler(NULL);
358 	net_set_timeout_handler(0, NULL);
359 }
360 
net_cleanup_loop(void)361 static void net_cleanup_loop(void)
362 {
363 	net_clear_handlers();
364 }
365 
net_init(void)366 void net_init(void)
367 {
368 	static int first_call = 1;
369 
370 	if (first_call) {
371 		/*
372 		 *	Setup packet buffers, aligned correctly.
373 		 */
374 		int i;
375 
376 		net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
377 		net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
378 		for (i = 0; i < PKTBUFSRX; i++) {
379 			net_rx_packets[i] = net_tx_packet +
380 				(i + 1) * PKTSIZE_ALIGN;
381 		}
382 		arp_init();
383 		net_clear_handlers();
384 
385 		/* Only need to setup buffer pointers once. */
386 		first_call = 0;
387 	}
388 
389 	net_init_loop();
390 }
391 
392 /**********************************************************************/
393 /*
394  *	Main network processing loop.
395  */
396 
net_loop(enum proto_t protocol)397 int net_loop(enum proto_t protocol)
398 {
399 	int ret = -EINVAL;
400 
401 	net_restarted = 0;
402 	net_dev_exists = 0;
403 	net_try_count = 1;
404 	debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
405 
406 	bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
407 	net_init();
408 	if (eth_is_on_demand_init() || protocol != NETCONS) {
409 		eth_halt();
410 		eth_set_current();
411 		ret = eth_init();
412 		if (ret < 0) {
413 			eth_halt();
414 			return ret;
415 		}
416 	} else {
417 		eth_init_state_only();
418 	}
419 restart:
420 #ifdef CONFIG_USB_KEYBOARD
421 	net_busy_flag = 0;
422 #endif
423 	net_set_state(NETLOOP_CONTINUE);
424 
425 	/*
426 	 *	Start the ball rolling with the given start function.  From
427 	 *	here on, this code is a state machine driven by received
428 	 *	packets and timer events.
429 	 */
430 	debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
431 	net_init_loop();
432 
433 	switch (net_check_prereq(protocol)) {
434 	case 1:
435 		/* network not configured */
436 		eth_halt();
437 		return -ENODEV;
438 
439 	case 2:
440 		/* network device not configured */
441 		break;
442 
443 	case 0:
444 		net_dev_exists = 1;
445 		net_boot_file_size = 0;
446 		switch (protocol) {
447 		case TFTPGET:
448 #ifdef CONFIG_CMD_TFTPPUT
449 		case TFTPPUT:
450 #endif
451 			/* always use ARP to get server ethernet address */
452 			tftp_start(protocol);
453 			break;
454 #ifdef CONFIG_CMD_TFTPSRV
455 		case TFTPSRV:
456 			tftp_start_server();
457 			break;
458 #endif
459 #ifdef CONFIG_UDP_FUNCTION_FASTBOOT
460 		case FASTBOOT:
461 			fastboot_start_server();
462 			break;
463 #endif
464 #if defined(CONFIG_CMD_DHCP)
465 		case DHCP:
466 			bootp_reset();
467 			net_ip.s_addr = 0;
468 			dhcp_request();		/* Basically same as BOOTP */
469 			break;
470 #endif
471 
472 		case BOOTP:
473 			bootp_reset();
474 			net_ip.s_addr = 0;
475 			bootp_request();
476 			break;
477 
478 #if defined(CONFIG_CMD_RARP)
479 		case RARP:
480 			rarp_try = 0;
481 			net_ip.s_addr = 0;
482 			rarp_request();
483 			break;
484 #endif
485 #if defined(CONFIG_CMD_PING)
486 		case PING:
487 			ping_start();
488 			break;
489 #endif
490 #if defined(CONFIG_CMD_NFS)
491 		case NFS:
492 			nfs_start();
493 			break;
494 #endif
495 #if defined(CONFIG_CMD_CDP)
496 		case CDP:
497 			cdp_start();
498 			break;
499 #endif
500 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
501 		case NETCONS:
502 			nc_start();
503 			break;
504 #endif
505 #if defined(CONFIG_CMD_SNTP)
506 		case SNTP:
507 			sntp_start();
508 			break;
509 #endif
510 #if defined(CONFIG_CMD_DNS)
511 		case DNS:
512 			dns_start();
513 			break;
514 #endif
515 #if defined(CONFIG_CMD_LINK_LOCAL)
516 		case LINKLOCAL:
517 			link_local_start();
518 			break;
519 #endif
520 		default:
521 			break;
522 		}
523 
524 		break;
525 	}
526 
527 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
528 #if	defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)	&& \
529 	defined(CONFIG_LED_STATUS)			&& \
530 	defined(CONFIG_LED_STATUS_RED)
531 	/*
532 	 * Echo the inverted link state to the fault LED.
533 	 */
534 	if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
535 		status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF);
536 	else
537 		status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON);
538 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
539 #endif /* CONFIG_MII, ... */
540 #ifdef CONFIG_USB_KEYBOARD
541 	net_busy_flag = 1;
542 #endif
543 
544 	/*
545 	 *	Main packet reception loop.  Loop receiving packets until
546 	 *	someone sets `net_state' to a state that terminates.
547 	 */
548 	for (;;) {
549 		WATCHDOG_RESET();
550 #ifdef CONFIG_SHOW_ACTIVITY
551 		show_activity(1);
552 #endif
553 		if (arp_timeout_check() > 0)
554 			time_start = get_timer(0);
555 
556 		/*
557 		 *	Check the ethernet for a new packet.  The ethernet
558 		 *	receive routine will process it.
559 		 *	Most drivers return the most recent packet size, but not
560 		 *	errors that may have happened.
561 		 */
562 		eth_rx();
563 
564 		/*
565 		 *	Abort if ctrl-c was pressed.
566 		 */
567 		if (ctrlc()) {
568 			/* cancel any ARP that may not have completed */
569 			net_arp_wait_packet_ip.s_addr = 0;
570 
571 			net_cleanup_loop();
572 			eth_halt();
573 			/* Invalidate the last protocol */
574 			eth_set_last_protocol(BOOTP);
575 
576 			puts("\nAbort\n");
577 			/* include a debug print as well incase the debug
578 			   messages are directed to stderr */
579 			debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
580 			ret = -EINTR;
581 			goto done;
582 		}
583 
584 		/*
585 		 *	Check for a timeout, and run the timeout handler
586 		 *	if we have one.
587 		 */
588 		if (time_handler &&
589 		    ((get_timer(0) - time_start) > time_delta)) {
590 			thand_f *x;
591 
592 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
593 #if	defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)	&& \
594 	defined(CONFIG_LED_STATUS)			&& \
595 	defined(CONFIG_LED_STATUS_RED)
596 			/*
597 			 * Echo the inverted link state to the fault LED.
598 			 */
599 			if (miiphy_link(eth_get_dev()->name,
600 					CONFIG_SYS_FAULT_MII_ADDR))
601 				status_led_set(CONFIG_LED_STATUS_RED,
602 					       CONFIG_LED_STATUS_OFF);
603 			else
604 				status_led_set(CONFIG_LED_STATUS_RED,
605 					       CONFIG_LED_STATUS_ON);
606 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
607 #endif /* CONFIG_MII, ... */
608 			debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
609 			x = time_handler;
610 			time_handler = (thand_f *)0;
611 			(*x)();
612 		}
613 
614 		if (net_state == NETLOOP_FAIL)
615 			ret = net_start_again();
616 
617 		switch (net_state) {
618 		case NETLOOP_RESTART:
619 			net_restarted = 1;
620 			goto restart;
621 
622 		case NETLOOP_SUCCESS:
623 			net_cleanup_loop();
624 			if (net_boot_file_size > 0) {
625 				printf("Bytes transferred = %d (%x hex)\n",
626 				       net_boot_file_size, net_boot_file_size);
627 				env_set_hex("filesize", net_boot_file_size);
628 				env_set_hex("fileaddr", load_addr);
629 			}
630 			if (protocol != NETCONS)
631 				eth_halt();
632 			else
633 				eth_halt_state_only();
634 
635 			eth_set_last_protocol(protocol);
636 
637 			ret = net_boot_file_size;
638 			debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
639 			goto done;
640 
641 		case NETLOOP_FAIL:
642 			net_cleanup_loop();
643 			/* Invalidate the last protocol */
644 			eth_set_last_protocol(BOOTP);
645 			debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
646 			goto done;
647 
648 		case NETLOOP_CONTINUE:
649 			continue;
650 		}
651 	}
652 
653 done:
654 #ifdef CONFIG_USB_KEYBOARD
655 	net_busy_flag = 0;
656 #endif
657 #ifdef CONFIG_CMD_TFTPPUT
658 	/* Clear out the handlers */
659 	net_set_udp_handler(NULL);
660 	net_set_icmp_handler(NULL);
661 #endif
662 	return ret;
663 }
664 
665 /**********************************************************************/
666 
start_again_timeout_handler(void)667 static void start_again_timeout_handler(void)
668 {
669 	net_set_state(NETLOOP_RESTART);
670 }
671 
net_start_again(void)672 int net_start_again(void)
673 {
674 	char *nretry;
675 	int retry_forever = 0;
676 	unsigned long retrycnt = 0;
677 	int ret;
678 
679 	nretry = env_get("netretry");
680 	if (nretry) {
681 		if (!strcmp(nretry, "yes"))
682 			retry_forever = 1;
683 		else if (!strcmp(nretry, "no"))
684 			retrycnt = 0;
685 		else if (!strcmp(nretry, "once"))
686 			retrycnt = 1;
687 		else
688 			retrycnt = simple_strtoul(nretry, NULL, 0);
689 	} else {
690 		retrycnt = 0;
691 		retry_forever = 0;
692 	}
693 
694 	if ((!retry_forever) && (net_try_count >= retrycnt)) {
695 		eth_halt();
696 		net_set_state(NETLOOP_FAIL);
697 		/*
698 		 * We don't provide a way for the protocol to return an error,
699 		 * but this is almost always the reason.
700 		 */
701 		return -ETIMEDOUT;
702 	}
703 
704 	net_try_count++;
705 
706 	eth_halt();
707 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
708 	eth_try_another(!net_restarted);
709 #endif
710 	ret = eth_init();
711 	if (net_restart_wrap) {
712 		net_restart_wrap = 0;
713 		if (net_dev_exists) {
714 			net_set_timeout_handler(10000UL,
715 						start_again_timeout_handler);
716 			net_set_udp_handler(NULL);
717 		} else {
718 			net_set_state(NETLOOP_FAIL);
719 		}
720 	} else {
721 		net_set_state(NETLOOP_RESTART);
722 	}
723 	return ret;
724 }
725 
726 /**********************************************************************/
727 /*
728  *	Miscelaneous bits.
729  */
730 
dummy_handler(uchar * pkt,unsigned dport,struct in_addr sip,unsigned sport,unsigned len)731 static void dummy_handler(uchar *pkt, unsigned dport,
732 			struct in_addr sip, unsigned sport,
733 			unsigned len)
734 {
735 }
736 
net_get_udp_handler(void)737 rxhand_f *net_get_udp_handler(void)
738 {
739 	return udp_packet_handler;
740 }
741 
net_set_udp_handler(rxhand_f * f)742 void net_set_udp_handler(rxhand_f *f)
743 {
744 	debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
745 	if (f == NULL)
746 		udp_packet_handler = dummy_handler;
747 	else
748 		udp_packet_handler = f;
749 }
750 
net_get_arp_handler(void)751 rxhand_f *net_get_arp_handler(void)
752 {
753 	return arp_packet_handler;
754 }
755 
net_set_arp_handler(rxhand_f * f)756 void net_set_arp_handler(rxhand_f *f)
757 {
758 	debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
759 	if (f == NULL)
760 		arp_packet_handler = dummy_handler;
761 	else
762 		arp_packet_handler = f;
763 }
764 
765 #ifdef CONFIG_CMD_TFTPPUT
net_set_icmp_handler(rxhand_icmp_f * f)766 void net_set_icmp_handler(rxhand_icmp_f *f)
767 {
768 	packet_icmp_handler = f;
769 }
770 #endif
771 
net_set_timeout_handler(ulong iv,thand_f * f)772 void net_set_timeout_handler(ulong iv, thand_f *f)
773 {
774 	if (iv == 0) {
775 		debug_cond(DEBUG_INT_STATE,
776 			   "--- net_loop timeout handler cancelled\n");
777 		time_handler = (thand_f *)0;
778 	} else {
779 		debug_cond(DEBUG_INT_STATE,
780 			   "--- net_loop timeout handler set (%p)\n", f);
781 		time_handler = f;
782 		time_start = get_timer(0);
783 		time_delta = iv * CONFIG_SYS_HZ / 1000;
784 	}
785 }
786 
net_send_udp_packet(uchar * ether,struct in_addr dest,int dport,int sport,int payload_len)787 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
788 		int payload_len)
789 {
790 	uchar *pkt;
791 	int eth_hdr_size;
792 	int pkt_hdr_size;
793 
794 	/* make sure the net_tx_packet is initialized (net_init() was called) */
795 	assert(net_tx_packet != NULL);
796 	if (net_tx_packet == NULL)
797 		return -1;
798 
799 	/* convert to new style broadcast */
800 	if (dest.s_addr == 0)
801 		dest.s_addr = 0xFFFFFFFF;
802 
803 	/* if broadcast, make the ether address a broadcast and don't do ARP */
804 	if (dest.s_addr == 0xFFFFFFFF)
805 		ether = (uchar *)net_bcast_ethaddr;
806 
807 	pkt = (uchar *)net_tx_packet;
808 
809 	eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
810 	pkt += eth_hdr_size;
811 	net_set_udp_header(pkt, dest, dport, sport, payload_len);
812 	pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
813 
814 	/* if MAC address was not discovered yet, do an ARP request */
815 	if (memcmp(ether, net_null_ethaddr, 6) == 0) {
816 		debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
817 
818 		/* save the ip and eth addr for the packet to send after arp */
819 		net_arp_wait_packet_ip = dest;
820 		arp_wait_packet_ethaddr = ether;
821 
822 		/* size of the waiting packet */
823 		arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
824 
825 		/* and do the ARP request */
826 		arp_wait_try = 1;
827 		arp_wait_timer_start = get_timer(0);
828 		arp_request();
829 		return 1;	/* waiting */
830 	} else {
831 		debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
832 			   &dest, ether);
833 		net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
834 		return 0;	/* transmitted */
835 	}
836 }
837 
838 #ifdef CONFIG_IP_DEFRAG
839 /*
840  * This function collects fragments in a single packet, according
841  * to the algorithm in RFC815. It returns NULL or the pointer to
842  * a complete packet, in static storage
843  */
844 #ifndef CONFIG_NET_MAXDEFRAG
845 #define CONFIG_NET_MAXDEFRAG 16384
846 #endif
847 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG)
848 
849 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
850 
851 /*
852  * this is the packet being assembled, either data or frag control.
853  * Fragments go by 8 bytes, so this union must be 8 bytes long
854  */
855 struct hole {
856 	/* first_byte is address of this structure */
857 	u16 last_byte;	/* last byte in this hole + 1 (begin of next hole) */
858 	u16 next_hole;	/* index of next (in 8-b blocks), 0 == none */
859 	u16 prev_hole;	/* index of prev, 0 == none */
860 	u16 unused;
861 };
862 
__net_defragment(struct ip_udp_hdr * ip,int * lenp)863 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
864 {
865 	static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
866 	static u16 first_hole, total_len;
867 	struct hole *payload, *thisfrag, *h, *newh;
868 	struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
869 	uchar *indata = (uchar *)ip;
870 	int offset8, start, len, done = 0;
871 	u16 ip_off = ntohs(ip->ip_off);
872 
873 	/* payload starts after IP header, this fragment is in there */
874 	payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
875 	offset8 =  (ip_off & IP_OFFS);
876 	thisfrag = payload + offset8;
877 	start = offset8 * 8;
878 	len = ntohs(ip->ip_len) - IP_HDR_SIZE;
879 
880 	if (start + len > IP_MAXUDP) /* fragment extends too far */
881 		return NULL;
882 
883 	if (!total_len || localip->ip_id != ip->ip_id) {
884 		/* new (or different) packet, reset structs */
885 		total_len = 0xffff;
886 		payload[0].last_byte = ~0;
887 		payload[0].next_hole = 0;
888 		payload[0].prev_hole = 0;
889 		first_hole = 0;
890 		/* any IP header will work, copy the first we received */
891 		memcpy(localip, ip, IP_HDR_SIZE);
892 	}
893 
894 	/*
895 	 * What follows is the reassembly algorithm. We use the payload
896 	 * array as a linked list of hole descriptors, as each hole starts
897 	 * at a multiple of 8 bytes. However, last byte can be whatever value,
898 	 * so it is represented as byte count, not as 8-byte blocks.
899 	 */
900 
901 	h = payload + first_hole;
902 	while (h->last_byte < start) {
903 		if (!h->next_hole) {
904 			/* no hole that far away */
905 			return NULL;
906 		}
907 		h = payload + h->next_hole;
908 	}
909 
910 	/* last fragment may be 1..7 bytes, the "+7" forces acceptance */
911 	if (offset8 + ((len + 7) / 8) <= h - payload) {
912 		/* no overlap with holes (dup fragment?) */
913 		return NULL;
914 	}
915 
916 	if (!(ip_off & IP_FLAGS_MFRAG)) {
917 		/* no more fragmentss: truncate this (last) hole */
918 		total_len = start + len;
919 		h->last_byte = start + len;
920 	}
921 
922 	/*
923 	 * There is some overlap: fix the hole list. This code doesn't
924 	 * deal with a fragment that overlaps with two different holes
925 	 * (thus being a superset of a previously-received fragment).
926 	 */
927 
928 	if ((h >= thisfrag) && (h->last_byte <= start + len)) {
929 		/* complete overlap with hole: remove hole */
930 		if (!h->prev_hole && !h->next_hole) {
931 			/* last remaining hole */
932 			done = 1;
933 		} else if (!h->prev_hole) {
934 			/* first hole */
935 			first_hole = h->next_hole;
936 			payload[h->next_hole].prev_hole = 0;
937 		} else if (!h->next_hole) {
938 			/* last hole */
939 			payload[h->prev_hole].next_hole = 0;
940 		} else {
941 			/* in the middle of the list */
942 			payload[h->next_hole].prev_hole = h->prev_hole;
943 			payload[h->prev_hole].next_hole = h->next_hole;
944 		}
945 
946 	} else if (h->last_byte <= start + len) {
947 		/* overlaps with final part of the hole: shorten this hole */
948 		h->last_byte = start;
949 
950 	} else if (h >= thisfrag) {
951 		/* overlaps with initial part of the hole: move this hole */
952 		newh = thisfrag + (len / 8);
953 		*newh = *h;
954 		h = newh;
955 		if (h->next_hole)
956 			payload[h->next_hole].prev_hole = (h - payload);
957 		if (h->prev_hole)
958 			payload[h->prev_hole].next_hole = (h - payload);
959 		else
960 			first_hole = (h - payload);
961 
962 	} else {
963 		/* fragment sits in the middle: split the hole */
964 		newh = thisfrag + (len / 8);
965 		*newh = *h;
966 		h->last_byte = start;
967 		h->next_hole = (newh - payload);
968 		newh->prev_hole = (h - payload);
969 		if (newh->next_hole)
970 			payload[newh->next_hole].prev_hole = (newh - payload);
971 	}
972 
973 	/* finally copy this fragment and possibly return whole packet */
974 	memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
975 	if (!done)
976 		return NULL;
977 
978 	localip->ip_len = htons(total_len);
979 	*lenp = total_len + IP_HDR_SIZE;
980 	return localip;
981 }
982 
net_defragment(struct ip_udp_hdr * ip,int * lenp)983 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
984 	int *lenp)
985 {
986 	u16 ip_off = ntohs(ip->ip_off);
987 	if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
988 		return ip; /* not a fragment */
989 	return __net_defragment(ip, lenp);
990 }
991 
992 #else /* !CONFIG_IP_DEFRAG */
993 
net_defragment(struct ip_udp_hdr * ip,int * lenp)994 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
995 	int *lenp)
996 {
997 	u16 ip_off = ntohs(ip->ip_off);
998 	if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
999 		return ip; /* not a fragment */
1000 	return NULL;
1001 }
1002 #endif
1003 
1004 /**
1005  * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
1006  * drop others.
1007  *
1008  * @parma ip	IP packet containing the ICMP
1009  */
receive_icmp(struct ip_udp_hdr * ip,int len,struct in_addr src_ip,struct ethernet_hdr * et)1010 static void receive_icmp(struct ip_udp_hdr *ip, int len,
1011 			struct in_addr src_ip, struct ethernet_hdr *et)
1012 {
1013 	struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1014 
1015 	switch (icmph->type) {
1016 	case ICMP_REDIRECT:
1017 		if (icmph->code != ICMP_REDIR_HOST)
1018 			return;
1019 		printf(" ICMP Host Redirect to %pI4 ",
1020 		       &icmph->un.gateway);
1021 		break;
1022 	default:
1023 #if defined(CONFIG_CMD_PING)
1024 		ping_receive(et, ip, len);
1025 #endif
1026 #ifdef CONFIG_CMD_TFTPPUT
1027 		if (packet_icmp_handler)
1028 			packet_icmp_handler(icmph->type, icmph->code,
1029 					    ntohs(ip->udp_dst), src_ip,
1030 					    ntohs(ip->udp_src), icmph->un.data,
1031 					    ntohs(ip->udp_len));
1032 #endif
1033 		break;
1034 	}
1035 }
1036 
net_process_received_packet(uchar * in_packet,int len)1037 void net_process_received_packet(uchar *in_packet, int len)
1038 {
1039 	struct ethernet_hdr *et;
1040 	struct ip_udp_hdr *ip;
1041 	struct in_addr dst_ip;
1042 	struct in_addr src_ip;
1043 	int eth_proto;
1044 #if defined(CONFIG_CMD_CDP)
1045 	int iscdp;
1046 #endif
1047 	ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1048 
1049 	debug_cond(DEBUG_NET_PKT, "packet received\n");
1050 
1051 	net_rx_packet = in_packet;
1052 	net_rx_packet_len = len;
1053 	et = (struct ethernet_hdr *)in_packet;
1054 
1055 	/* too small packet? */
1056 	if (len < ETHER_HDR_SIZE)
1057 		return;
1058 
1059 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
1060 	if (push_packet) {
1061 		(*push_packet)(in_packet, len);
1062 		return;
1063 	}
1064 #endif
1065 
1066 #if defined(CONFIG_CMD_CDP)
1067 	/* keep track if packet is CDP */
1068 	iscdp = is_cdp_packet(et->et_dest);
1069 #endif
1070 
1071 	myvlanid = ntohs(net_our_vlan);
1072 	if (myvlanid == (ushort)-1)
1073 		myvlanid = VLAN_NONE;
1074 	mynvlanid = ntohs(net_native_vlan);
1075 	if (mynvlanid == (ushort)-1)
1076 		mynvlanid = VLAN_NONE;
1077 
1078 	eth_proto = ntohs(et->et_protlen);
1079 
1080 	if (eth_proto < 1514) {
1081 		struct e802_hdr *et802 = (struct e802_hdr *)et;
1082 		/*
1083 		 *	Got a 802.2 packet.  Check the other protocol field.
1084 		 *	XXX VLAN over 802.2+SNAP not implemented!
1085 		 */
1086 		eth_proto = ntohs(et802->et_prot);
1087 
1088 		ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1089 		len -= E802_HDR_SIZE;
1090 
1091 	} else if (eth_proto != PROT_VLAN) {	/* normal packet */
1092 		ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1093 		len -= ETHER_HDR_SIZE;
1094 
1095 	} else {			/* VLAN packet */
1096 		struct vlan_ethernet_hdr *vet =
1097 			(struct vlan_ethernet_hdr *)et;
1098 
1099 		debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1100 
1101 		/* too small packet? */
1102 		if (len < VLAN_ETHER_HDR_SIZE)
1103 			return;
1104 
1105 		/* if no VLAN active */
1106 		if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1107 #if defined(CONFIG_CMD_CDP)
1108 				&& iscdp == 0
1109 #endif
1110 				)
1111 			return;
1112 
1113 		cti = ntohs(vet->vet_tag);
1114 		vlanid = cti & VLAN_IDMASK;
1115 		eth_proto = ntohs(vet->vet_type);
1116 
1117 		ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1118 		len -= VLAN_ETHER_HDR_SIZE;
1119 	}
1120 
1121 	debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1122 
1123 #if defined(CONFIG_CMD_CDP)
1124 	if (iscdp) {
1125 		cdp_receive((uchar *)ip, len);
1126 		return;
1127 	}
1128 #endif
1129 
1130 	if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1131 		if (vlanid == VLAN_NONE)
1132 			vlanid = (mynvlanid & VLAN_IDMASK);
1133 		/* not matched? */
1134 		if (vlanid != (myvlanid & VLAN_IDMASK))
1135 			return;
1136 	}
1137 
1138 	switch (eth_proto) {
1139 	case PROT_ARP:
1140 		arp_receive(et, ip, len);
1141 		break;
1142 
1143 #ifdef CONFIG_CMD_RARP
1144 	case PROT_RARP:
1145 		rarp_receive(ip, len);
1146 		break;
1147 #endif
1148 	case PROT_IP:
1149 		debug_cond(DEBUG_NET_PKT, "Got IP\n");
1150 		/* Before we start poking the header, make sure it is there */
1151 		if (len < IP_UDP_HDR_SIZE) {
1152 			debug("len bad %d < %lu\n", len,
1153 			      (ulong)IP_UDP_HDR_SIZE);
1154 			return;
1155 		}
1156 		/* Check the packet length */
1157 		if (len < ntohs(ip->ip_len)) {
1158 			debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1159 			return;
1160 		}
1161 		len = ntohs(ip->ip_len);
1162 		debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1163 			   len, ip->ip_hl_v & 0xff);
1164 
1165 		/* Can't deal with anything except IPv4 */
1166 		if ((ip->ip_hl_v & 0xf0) != 0x40)
1167 			return;
1168 		/* Can't deal with IP options (headers != 20 bytes) */
1169 		if ((ip->ip_hl_v & 0x0f) > 0x05)
1170 			return;
1171 		/* Check the Checksum of the header */
1172 		if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1173 			debug("checksum bad\n");
1174 			return;
1175 		}
1176 		/* If it is not for us, ignore it */
1177 		dst_ip = net_read_ip(&ip->ip_dst);
1178 		if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1179 		    dst_ip.s_addr != 0xFFFFFFFF) {
1180 #ifdef CONFIG_MCAST_TFTP
1181 			if (net_mcast_addr != dst_ip)
1182 #endif
1183 				return;
1184 		}
1185 		/* Read source IP address for later use */
1186 		src_ip = net_read_ip(&ip->ip_src);
1187 		/*
1188 		 * The function returns the unchanged packet if it's not
1189 		 * a fragment, and either the complete packet or NULL if
1190 		 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1191 		 */
1192 		ip = net_defragment(ip, &len);
1193 		if (!ip)
1194 			return;
1195 		/*
1196 		 * watch for ICMP host redirects
1197 		 *
1198 		 * There is no real handler code (yet). We just watch
1199 		 * for ICMP host redirect messages. In case anybody
1200 		 * sees these messages: please contact me
1201 		 * (wd@denx.de), or - even better - send me the
1202 		 * necessary fixes :-)
1203 		 *
1204 		 * Note: in all cases where I have seen this so far
1205 		 * it was a problem with the router configuration,
1206 		 * for instance when a router was configured in the
1207 		 * BOOTP reply, but the TFTP server was on the same
1208 		 * subnet. So this is probably a warning that your
1209 		 * configuration might be wrong. But I'm not really
1210 		 * sure if there aren't any other situations.
1211 		 *
1212 		 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1213 		 * we send a tftp packet to a dead connection, or when
1214 		 * there is no server at the other end.
1215 		 */
1216 		if (ip->ip_p == IPPROTO_ICMP) {
1217 			receive_icmp(ip, len, src_ip, et);
1218 			return;
1219 		} else if (ip->ip_p != IPPROTO_UDP) {	/* Only UDP packets */
1220 			return;
1221 		}
1222 
1223 		debug_cond(DEBUG_DEV_PKT,
1224 			   "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1225 			   &dst_ip, &src_ip, len);
1226 
1227 #ifdef CONFIG_UDP_CHECKSUM
1228 		if (ip->udp_xsum != 0) {
1229 			ulong   xsum;
1230 			ushort *sumptr;
1231 			ushort  sumlen;
1232 
1233 			xsum  = ip->ip_p;
1234 			xsum += (ntohs(ip->udp_len));
1235 			xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1236 			xsum += (ntohl(ip->ip_src.s_addr) >>  0) & 0x0000ffff;
1237 			xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1238 			xsum += (ntohl(ip->ip_dst.s_addr) >>  0) & 0x0000ffff;
1239 
1240 			sumlen = ntohs(ip->udp_len);
1241 			sumptr = (ushort *)&(ip->udp_src);
1242 
1243 			while (sumlen > 1) {
1244 				ushort sumdata;
1245 
1246 				sumdata = *sumptr++;
1247 				xsum += ntohs(sumdata);
1248 				sumlen -= 2;
1249 			}
1250 			if (sumlen > 0) {
1251 				ushort sumdata;
1252 
1253 				sumdata = *(unsigned char *)sumptr;
1254 				sumdata = (sumdata << 8) & 0xff00;
1255 				xsum += sumdata;
1256 			}
1257 			while ((xsum >> 16) != 0) {
1258 				xsum = (xsum & 0x0000ffff) +
1259 				       ((xsum >> 16) & 0x0000ffff);
1260 			}
1261 			if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1262 				printf(" UDP wrong checksum %08lx %08x\n",
1263 				       xsum, ntohs(ip->udp_xsum));
1264 				return;
1265 			}
1266 		}
1267 #endif
1268 
1269 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
1270 		nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1271 				src_ip,
1272 				ntohs(ip->udp_dst),
1273 				ntohs(ip->udp_src),
1274 				ntohs(ip->udp_len) - UDP_HDR_SIZE);
1275 #endif
1276 		/*
1277 		 * IP header OK.  Pass the packet to the current handler.
1278 		 */
1279 		(*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1280 				      ntohs(ip->udp_dst),
1281 				      src_ip,
1282 				      ntohs(ip->udp_src),
1283 				      ntohs(ip->udp_len) - UDP_HDR_SIZE);
1284 		break;
1285 	}
1286 }
1287 
1288 /**********************************************************************/
1289 
net_check_prereq(enum proto_t protocol)1290 static int net_check_prereq(enum proto_t protocol)
1291 {
1292 	switch (protocol) {
1293 		/* Fall through */
1294 #if defined(CONFIG_CMD_PING)
1295 	case PING:
1296 		if (net_ping_ip.s_addr == 0) {
1297 			puts("*** ERROR: ping address not given\n");
1298 			return 1;
1299 		}
1300 		goto common;
1301 #endif
1302 #if defined(CONFIG_CMD_SNTP)
1303 	case SNTP:
1304 		if (net_ntp_server.s_addr == 0) {
1305 			puts("*** ERROR: NTP server address not given\n");
1306 			return 1;
1307 		}
1308 		goto common;
1309 #endif
1310 #if defined(CONFIG_CMD_DNS)
1311 	case DNS:
1312 		if (net_dns_server.s_addr == 0) {
1313 			puts("*** ERROR: DNS server address not given\n");
1314 			return 1;
1315 		}
1316 		goto common;
1317 #endif
1318 #if defined(CONFIG_CMD_NFS)
1319 	case NFS:
1320 #endif
1321 		/* Fall through */
1322 	case TFTPGET:
1323 	case TFTPPUT:
1324 		if (net_server_ip.s_addr == 0) {
1325 			puts("*** ERROR: `serverip' not set\n");
1326 			return 1;
1327 		}
1328 #if	defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1329 	defined(CONFIG_CMD_DNS)
1330 common:
1331 #endif
1332 		/* Fall through */
1333 
1334 	case NETCONS:
1335 	case FASTBOOT:
1336 	case TFTPSRV:
1337 		if (net_ip.s_addr == 0) {
1338 			puts("*** ERROR: `ipaddr' not set\n");
1339 			return 1;
1340 		}
1341 		/* Fall through */
1342 
1343 #ifdef CONFIG_CMD_RARP
1344 	case RARP:
1345 #endif
1346 	case BOOTP:
1347 	case CDP:
1348 	case DHCP:
1349 	case LINKLOCAL:
1350 		if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1351 			int num = eth_get_dev_index();
1352 
1353 			switch (num) {
1354 			case -1:
1355 				puts("*** ERROR: No ethernet found.\n");
1356 				return 1;
1357 			case 0:
1358 				puts("*** ERROR: `ethaddr' not set\n");
1359 				break;
1360 			default:
1361 				printf("*** ERROR: `eth%daddr' not set\n",
1362 				       num);
1363 				break;
1364 			}
1365 
1366 			net_start_again();
1367 			return 2;
1368 		}
1369 		/* Fall through */
1370 	default:
1371 		return 0;
1372 	}
1373 	return 0;		/* OK */
1374 }
1375 /**********************************************************************/
1376 
1377 int
net_eth_hdr_size(void)1378 net_eth_hdr_size(void)
1379 {
1380 	ushort myvlanid;
1381 
1382 	myvlanid = ntohs(net_our_vlan);
1383 	if (myvlanid == (ushort)-1)
1384 		myvlanid = VLAN_NONE;
1385 
1386 	return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1387 		VLAN_ETHER_HDR_SIZE;
1388 }
1389 
net_set_ether(uchar * xet,const uchar * dest_ethaddr,uint prot)1390 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1391 {
1392 	struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1393 	ushort myvlanid;
1394 
1395 	myvlanid = ntohs(net_our_vlan);
1396 	if (myvlanid == (ushort)-1)
1397 		myvlanid = VLAN_NONE;
1398 
1399 	memcpy(et->et_dest, dest_ethaddr, 6);
1400 	memcpy(et->et_src, net_ethaddr, 6);
1401 	if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1402 		et->et_protlen = htons(prot);
1403 		return ETHER_HDR_SIZE;
1404 	} else {
1405 		struct vlan_ethernet_hdr *vet =
1406 			(struct vlan_ethernet_hdr *)xet;
1407 
1408 		vet->vet_vlan_type = htons(PROT_VLAN);
1409 		vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1410 		vet->vet_type = htons(prot);
1411 		return VLAN_ETHER_HDR_SIZE;
1412 	}
1413 }
1414 
net_update_ether(struct ethernet_hdr * et,uchar * addr,uint prot)1415 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1416 {
1417 	ushort protlen;
1418 
1419 	memcpy(et->et_dest, addr, 6);
1420 	memcpy(et->et_src, net_ethaddr, 6);
1421 	protlen = ntohs(et->et_protlen);
1422 	if (protlen == PROT_VLAN) {
1423 		struct vlan_ethernet_hdr *vet =
1424 			(struct vlan_ethernet_hdr *)et;
1425 		vet->vet_type = htons(prot);
1426 		return VLAN_ETHER_HDR_SIZE;
1427 	} else if (protlen > 1514) {
1428 		et->et_protlen = htons(prot);
1429 		return ETHER_HDR_SIZE;
1430 	} else {
1431 		/* 802.2 + SNAP */
1432 		struct e802_hdr *et802 = (struct e802_hdr *)et;
1433 		et802->et_prot = htons(prot);
1434 		return E802_HDR_SIZE;
1435 	}
1436 }
1437 
net_set_ip_header(uchar * pkt,struct in_addr dest,struct in_addr source)1438 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source)
1439 {
1440 	struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1441 
1442 	/*
1443 	 *	Construct an IP header.
1444 	 */
1445 	/* IP_HDR_SIZE / 4 (not including UDP) */
1446 	ip->ip_hl_v  = 0x45;
1447 	ip->ip_tos   = 0;
1448 	ip->ip_len   = htons(IP_HDR_SIZE);
1449 	ip->ip_id    = htons(net_ip_id++);
1450 	ip->ip_off   = htons(IP_FLAGS_DFRAG);	/* Don't fragment */
1451 	ip->ip_ttl   = 255;
1452 	ip->ip_sum   = 0;
1453 	/* already in network byte order */
1454 	net_copy_ip((void *)&ip->ip_src, &source);
1455 	/* already in network byte order */
1456 	net_copy_ip((void *)&ip->ip_dst, &dest);
1457 }
1458 
net_set_udp_header(uchar * pkt,struct in_addr dest,int dport,int sport,int len)1459 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1460 			int len)
1461 {
1462 	struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1463 
1464 	/*
1465 	 *	If the data is an odd number of bytes, zero the
1466 	 *	byte after the last byte so that the checksum
1467 	 *	will work.
1468 	 */
1469 	if (len & 1)
1470 		pkt[IP_UDP_HDR_SIZE + len] = 0;
1471 
1472 	net_set_ip_header(pkt, dest, net_ip);
1473 	ip->ip_len   = htons(IP_UDP_HDR_SIZE + len);
1474 	ip->ip_p     = IPPROTO_UDP;
1475 	ip->ip_sum   = compute_ip_checksum(ip, IP_HDR_SIZE);
1476 
1477 	ip->udp_src  = htons(sport);
1478 	ip->udp_dst  = htons(dport);
1479 	ip->udp_len  = htons(UDP_HDR_SIZE + len);
1480 	ip->udp_xsum = 0;
1481 }
1482 
copy_filename(char * dst,const char * src,int size)1483 void copy_filename(char *dst, const char *src, int size)
1484 {
1485 	if (*src && (*src == '"')) {
1486 		++src;
1487 		--size;
1488 	}
1489 
1490 	while ((--size > 0) && *src && (*src != '"'))
1491 		*dst++ = *src++;
1492 	*dst = '\0';
1493 }
1494 
1495 #if	defined(CONFIG_CMD_NFS)		|| \
1496 	defined(CONFIG_CMD_SNTP)	|| \
1497 	defined(CONFIG_CMD_DNS)
1498 /*
1499  * make port a little random (1024-17407)
1500  * This keeps the math somewhat trivial to compute, and seems to work with
1501  * all supported protocols/clients/servers
1502  */
random_port(void)1503 unsigned int random_port(void)
1504 {
1505 	return 1024 + (get_timer(0) % 0x4000);
1506 }
1507 #endif
1508 
ip_to_string(struct in_addr x,char * s)1509 void ip_to_string(struct in_addr x, char *s)
1510 {
1511 	x.s_addr = ntohl(x.s_addr);
1512 	sprintf(s, "%d.%d.%d.%d",
1513 		(int) ((x.s_addr >> 24) & 0xff),
1514 		(int) ((x.s_addr >> 16) & 0xff),
1515 		(int) ((x.s_addr >> 8) & 0xff),
1516 		(int) ((x.s_addr >> 0) & 0xff)
1517 	);
1518 }
1519 
vlan_to_string(ushort x,char * s)1520 void vlan_to_string(ushort x, char *s)
1521 {
1522 	x = ntohs(x);
1523 
1524 	if (x == (ushort)-1)
1525 		x = VLAN_NONE;
1526 
1527 	if (x == VLAN_NONE)
1528 		strcpy(s, "none");
1529 	else
1530 		sprintf(s, "%d", x & VLAN_IDMASK);
1531 }
1532 
string_to_vlan(const char * s)1533 ushort string_to_vlan(const char *s)
1534 {
1535 	ushort id;
1536 
1537 	if (s == NULL)
1538 		return htons(VLAN_NONE);
1539 
1540 	if (*s < '0' || *s > '9')
1541 		id = VLAN_NONE;
1542 	else
1543 		id = (ushort)simple_strtoul(s, NULL, 10);
1544 
1545 	return htons(id);
1546 }
1547 
env_get_vlan(char * var)1548 ushort env_get_vlan(char *var)
1549 {
1550 	return string_to_vlan(env_get(var));
1551 }
1552