xref: /OK3568_Linux_fs/kernel/arch/x86/kvm/vmx/nested.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "vmx.h"
16 #include "x86.h"
17 
18 static bool __read_mostly enable_shadow_vmcs = 1;
19 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
20 
21 static bool __read_mostly nested_early_check = 0;
22 module_param(nested_early_check, bool, S_IRUGO);
23 
24 #define CC(consistency_check)						\
25 ({									\
26 	bool failed = (consistency_check);				\
27 	if (failed)							\
28 		trace_kvm_nested_vmenter_failed(#consistency_check, 0);	\
29 	failed;								\
30 })
31 
32 /*
33  * Hyper-V requires all of these, so mark them as supported even though
34  * they are just treated the same as all-context.
35  */
36 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
37 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
38 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
39 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
40 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
41 
42 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
43 
44 enum {
45 	VMX_VMREAD_BITMAP,
46 	VMX_VMWRITE_BITMAP,
47 	VMX_BITMAP_NR
48 };
49 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
50 
51 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
52 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
53 
54 struct shadow_vmcs_field {
55 	u16	encoding;
56 	u16	offset;
57 };
58 static struct shadow_vmcs_field shadow_read_only_fields[] = {
59 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
60 #include "vmcs_shadow_fields.h"
61 };
62 static int max_shadow_read_only_fields =
63 	ARRAY_SIZE(shadow_read_only_fields);
64 
65 static struct shadow_vmcs_field shadow_read_write_fields[] = {
66 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
67 #include "vmcs_shadow_fields.h"
68 };
69 static int max_shadow_read_write_fields =
70 	ARRAY_SIZE(shadow_read_write_fields);
71 
init_vmcs_shadow_fields(void)72 static void init_vmcs_shadow_fields(void)
73 {
74 	int i, j;
75 
76 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
77 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
78 
79 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
80 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
81 		u16 field = entry.encoding;
82 
83 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
84 		    (i + 1 == max_shadow_read_only_fields ||
85 		     shadow_read_only_fields[i + 1].encoding != field + 1))
86 			pr_err("Missing field from shadow_read_only_field %x\n",
87 			       field + 1);
88 
89 		clear_bit(field, vmx_vmread_bitmap);
90 		if (field & 1)
91 #ifdef CONFIG_X86_64
92 			continue;
93 #else
94 			entry.offset += sizeof(u32);
95 #endif
96 		shadow_read_only_fields[j++] = entry;
97 	}
98 	max_shadow_read_only_fields = j;
99 
100 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
101 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
102 		u16 field = entry.encoding;
103 
104 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
105 		    (i + 1 == max_shadow_read_write_fields ||
106 		     shadow_read_write_fields[i + 1].encoding != field + 1))
107 			pr_err("Missing field from shadow_read_write_field %x\n",
108 			       field + 1);
109 
110 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
111 			  field <= GUEST_TR_AR_BYTES,
112 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
113 
114 		/*
115 		 * PML and the preemption timer can be emulated, but the
116 		 * processor cannot vmwrite to fields that don't exist
117 		 * on bare metal.
118 		 */
119 		switch (field) {
120 		case GUEST_PML_INDEX:
121 			if (!cpu_has_vmx_pml())
122 				continue;
123 			break;
124 		case VMX_PREEMPTION_TIMER_VALUE:
125 			if (!cpu_has_vmx_preemption_timer())
126 				continue;
127 			break;
128 		case GUEST_INTR_STATUS:
129 			if (!cpu_has_vmx_apicv())
130 				continue;
131 			break;
132 		default:
133 			break;
134 		}
135 
136 		clear_bit(field, vmx_vmwrite_bitmap);
137 		clear_bit(field, vmx_vmread_bitmap);
138 		if (field & 1)
139 #ifdef CONFIG_X86_64
140 			continue;
141 #else
142 			entry.offset += sizeof(u32);
143 #endif
144 		shadow_read_write_fields[j++] = entry;
145 	}
146 	max_shadow_read_write_fields = j;
147 }
148 
149 /*
150  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
151  * set the success or error code of an emulated VMX instruction (as specified
152  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
153  * instruction.
154  */
nested_vmx_succeed(struct kvm_vcpu * vcpu)155 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
156 {
157 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
158 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
159 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
160 	return kvm_skip_emulated_instruction(vcpu);
161 }
162 
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)163 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
164 {
165 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
166 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
167 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
168 			| X86_EFLAGS_CF);
169 	return kvm_skip_emulated_instruction(vcpu);
170 }
171 
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)172 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
173 				u32 vm_instruction_error)
174 {
175 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
176 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
177 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
178 			| X86_EFLAGS_ZF);
179 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
180 	/*
181 	 * We don't need to force a shadow sync because
182 	 * VM_INSTRUCTION_ERROR is not shadowed
183 	 */
184 	return kvm_skip_emulated_instruction(vcpu);
185 }
186 
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)187 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 {
189 	struct vcpu_vmx *vmx = to_vmx(vcpu);
190 
191 	/*
192 	 * failValid writes the error number to the current VMCS, which
193 	 * can't be done if there isn't a current VMCS.
194 	 */
195 	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
196 		return nested_vmx_failInvalid(vcpu);
197 
198 	return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200 
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203 	/* TODO: not to reset guest simply here. */
204 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207 
vmx_control_verify(u32 control,u32 low,u32 high)208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210 	return fixed_bits_valid(control, low, high);
211 }
212 
vmx_control_msr(u32 low,u32 high)213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215 	return low | ((u64)high << 32);
216 }
217 
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
222 	vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224 
nested_release_evmcs(struct kvm_vcpu * vcpu)225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227 	struct vcpu_vmx *vmx = to_vmx(vcpu);
228 
229 	if (!vmx->nested.hv_evmcs)
230 		return;
231 
232 	kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
233 	vmx->nested.hv_evmcs_vmptr = 0;
234 	vmx->nested.hv_evmcs = NULL;
235 }
236 
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238 				     struct loaded_vmcs *prev)
239 {
240 	struct vmcs_host_state *dest, *src;
241 
242 	if (unlikely(!vmx->guest_state_loaded))
243 		return;
244 
245 	src = &prev->host_state;
246 	dest = &vmx->loaded_vmcs->host_state;
247 
248 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249 	dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251 	dest->ds_sel = src->ds_sel;
252 	dest->es_sel = src->es_sel;
253 #endif
254 }
255 
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258 	struct vcpu_vmx *vmx = to_vmx(vcpu);
259 	struct loaded_vmcs *prev;
260 	int cpu;
261 
262 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263 		return;
264 
265 	cpu = get_cpu();
266 	prev = vmx->loaded_vmcs;
267 	vmx->loaded_vmcs = vmcs;
268 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269 	vmx_sync_vmcs_host_state(vmx, prev);
270 	put_cpu();
271 
272 	vmx_register_cache_reset(vcpu);
273 }
274 
275 /*
276  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277  * just stops using VMX.
278  */
free_nested(struct kvm_vcpu * vcpu)279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281 	struct vcpu_vmx *vmx = to_vmx(vcpu);
282 
283 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285 
286 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287 		return;
288 
289 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290 
291 	vmx->nested.vmxon = false;
292 	vmx->nested.smm.vmxon = false;
293 	free_vpid(vmx->nested.vpid02);
294 	vmx->nested.posted_intr_nv = -1;
295 	vmx->nested.current_vmptr = -1ull;
296 	if (enable_shadow_vmcs) {
297 		vmx_disable_shadow_vmcs(vmx);
298 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
299 		free_vmcs(vmx->vmcs01.shadow_vmcs);
300 		vmx->vmcs01.shadow_vmcs = NULL;
301 	}
302 	kfree(vmx->nested.cached_vmcs12);
303 	vmx->nested.cached_vmcs12 = NULL;
304 	kfree(vmx->nested.cached_shadow_vmcs12);
305 	vmx->nested.cached_shadow_vmcs12 = NULL;
306 	/* Unpin physical memory we referred to in the vmcs02 */
307 	if (vmx->nested.apic_access_page) {
308 		kvm_release_page_clean(vmx->nested.apic_access_page);
309 		vmx->nested.apic_access_page = NULL;
310 	}
311 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313 	vmx->nested.pi_desc = NULL;
314 
315 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
316 
317 	nested_release_evmcs(vcpu);
318 
319 	free_loaded_vmcs(&vmx->nested.vmcs02);
320 }
321 
322 /*
323  * Ensure that the current vmcs of the logical processor is the
324  * vmcs01 of the vcpu before calling free_nested().
325  */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
327 {
328 	vcpu_load(vcpu);
329 	vmx_leave_nested(vcpu);
330 	vcpu_put(vcpu);
331 }
332 
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)333 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
334 		struct x86_exception *fault)
335 {
336 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
337 	struct vcpu_vmx *vmx = to_vmx(vcpu);
338 	u32 vm_exit_reason;
339 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
340 
341 	if (vmx->nested.pml_full) {
342 		vm_exit_reason = EXIT_REASON_PML_FULL;
343 		vmx->nested.pml_full = false;
344 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
345 	} else if (fault->error_code & PFERR_RSVD_MASK)
346 		vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
347 	else
348 		vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
349 
350 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
351 	vmcs12->guest_physical_address = fault->address;
352 }
353 
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)354 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
355 {
356 	WARN_ON(mmu_is_nested(vcpu));
357 
358 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
359 	kvm_init_shadow_ept_mmu(vcpu,
360 			to_vmx(vcpu)->nested.msrs.ept_caps &
361 			VMX_EPT_EXECUTE_ONLY_BIT,
362 			nested_ept_ad_enabled(vcpu),
363 			nested_ept_get_eptp(vcpu));
364 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
365 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
366 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
367 
368 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
369 }
370 
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)371 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
372 {
373 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
374 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
375 }
376 
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)377 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
378 					    u16 error_code)
379 {
380 	bool inequality, bit;
381 
382 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
383 	inequality =
384 		(error_code & vmcs12->page_fault_error_code_mask) !=
385 		 vmcs12->page_fault_error_code_match;
386 	return inequality ^ bit;
387 }
388 
389 
390 /*
391  * KVM wants to inject page-faults which it got to the guest. This function
392  * checks whether in a nested guest, we need to inject them to L1 or L2.
393  */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned long * exit_qual)394 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
395 {
396 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
397 	unsigned int nr = vcpu->arch.exception.nr;
398 	bool has_payload = vcpu->arch.exception.has_payload;
399 	unsigned long payload = vcpu->arch.exception.payload;
400 
401 	if (nr == PF_VECTOR) {
402 		if (vcpu->arch.exception.nested_apf) {
403 			*exit_qual = vcpu->arch.apf.nested_apf_token;
404 			return 1;
405 		}
406 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
407 						    vcpu->arch.exception.error_code)) {
408 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
409 			return 1;
410 		}
411 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
412 		if (nr == DB_VECTOR) {
413 			if (!has_payload) {
414 				payload = vcpu->arch.dr6;
415 				payload &= ~(DR6_FIXED_1 | DR6_BT);
416 				payload ^= DR6_RTM;
417 			}
418 			*exit_qual = payload;
419 		} else
420 			*exit_qual = 0;
421 		return 1;
422 	}
423 
424 	return 0;
425 }
426 
427 
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)428 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
429 		struct x86_exception *fault)
430 {
431 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
432 
433 	WARN_ON(!is_guest_mode(vcpu));
434 
435 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
436 		!to_vmx(vcpu)->nested.nested_run_pending) {
437 		vmcs12->vm_exit_intr_error_code = fault->error_code;
438 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
439 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
440 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
441 				  fault->address);
442 	} else {
443 		kvm_inject_page_fault(vcpu, fault);
444 	}
445 }
446 
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)447 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
448 					       struct vmcs12 *vmcs12)
449 {
450 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
451 		return 0;
452 
453 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
454 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
455 		return -EINVAL;
456 
457 	return 0;
458 }
459 
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)460 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
461 						struct vmcs12 *vmcs12)
462 {
463 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
464 		return 0;
465 
466 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
467 		return -EINVAL;
468 
469 	return 0;
470 }
471 
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)472 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
473 						struct vmcs12 *vmcs12)
474 {
475 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
476 		return 0;
477 
478 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
479 		return -EINVAL;
480 
481 	return 0;
482 }
483 
484 /*
485  * Check if MSR is intercepted for L01 MSR bitmap.
486  */
msr_write_intercepted_l01(struct kvm_vcpu * vcpu,u32 msr)487 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
488 {
489 	unsigned long *msr_bitmap;
490 	int f = sizeof(unsigned long);
491 
492 	if (!cpu_has_vmx_msr_bitmap())
493 		return true;
494 
495 	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
496 
497 	if (msr <= 0x1fff) {
498 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
499 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
500 		msr &= 0x1fff;
501 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
502 	}
503 
504 	return true;
505 }
506 
507 /*
508  * If a msr is allowed by L0, we should check whether it is allowed by L1.
509  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
510  */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)511 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
512 					       unsigned long *msr_bitmap_nested,
513 					       u32 msr, int type)
514 {
515 	int f = sizeof(unsigned long);
516 
517 	/*
518 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
519 	 * have the write-low and read-high bitmap offsets the wrong way round.
520 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
521 	 */
522 	if (msr <= 0x1fff) {
523 		if (type & MSR_TYPE_R &&
524 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
525 			/* read-low */
526 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
527 
528 		if (type & MSR_TYPE_W &&
529 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
530 			/* write-low */
531 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
532 
533 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
534 		msr &= 0x1fff;
535 		if (type & MSR_TYPE_R &&
536 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
537 			/* read-high */
538 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
539 
540 		if (type & MSR_TYPE_W &&
541 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
542 			/* write-high */
543 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
544 
545 	}
546 }
547 
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)548 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
549 {
550 	int msr;
551 
552 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
553 		unsigned word = msr / BITS_PER_LONG;
554 
555 		msr_bitmap[word] = ~0;
556 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
557 	}
558 }
559 
560 /*
561  * Merge L0's and L1's MSR bitmap, return false to indicate that
562  * we do not use the hardware.
563  */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)564 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
565 						 struct vmcs12 *vmcs12)
566 {
567 	int msr;
568 	unsigned long *msr_bitmap_l1;
569 	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
570 	struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
571 
572 	/* Nothing to do if the MSR bitmap is not in use.  */
573 	if (!cpu_has_vmx_msr_bitmap() ||
574 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
575 		return false;
576 
577 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
578 		return false;
579 
580 	msr_bitmap_l1 = (unsigned long *)map->hva;
581 
582 	/*
583 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
584 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
585 	 * the x2APIC MSR range and selectively disable them below.
586 	 */
587 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
588 
589 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
590 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
591 			/*
592 			 * L0 need not intercept reads for MSRs between 0x800
593 			 * and 0x8ff, it just lets the processor take the value
594 			 * from the virtual-APIC page; take those 256 bits
595 			 * directly from the L1 bitmap.
596 			 */
597 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
598 				unsigned word = msr / BITS_PER_LONG;
599 
600 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
601 			}
602 		}
603 
604 		nested_vmx_disable_intercept_for_msr(
605 			msr_bitmap_l1, msr_bitmap_l0,
606 			X2APIC_MSR(APIC_TASKPRI),
607 			MSR_TYPE_R | MSR_TYPE_W);
608 
609 		if (nested_cpu_has_vid(vmcs12)) {
610 			nested_vmx_disable_intercept_for_msr(
611 				msr_bitmap_l1, msr_bitmap_l0,
612 				X2APIC_MSR(APIC_EOI),
613 				MSR_TYPE_W);
614 			nested_vmx_disable_intercept_for_msr(
615 				msr_bitmap_l1, msr_bitmap_l0,
616 				X2APIC_MSR(APIC_SELF_IPI),
617 				MSR_TYPE_W);
618 		}
619 	}
620 
621 	/* KVM unconditionally exposes the FS/GS base MSRs to L1. */
622 #ifdef CONFIG_X86_64
623 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
624 					     MSR_FS_BASE, MSR_TYPE_RW);
625 
626 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
627 					     MSR_GS_BASE, MSR_TYPE_RW);
628 
629 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
630 					     MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
631 #endif
632 
633 	/*
634 	 * Checking the L0->L1 bitmap is trying to verify two things:
635 	 *
636 	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
637 	 *    ensures that we do not accidentally generate an L02 MSR bitmap
638 	 *    from the L12 MSR bitmap that is too permissive.
639 	 * 2. That L1 or L2s have actually used the MSR. This avoids
640 	 *    unnecessarily merging of the bitmap if the MSR is unused. This
641 	 *    works properly because we only update the L01 MSR bitmap lazily.
642 	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
643 	 *    updated to reflect this when L1 (or its L2s) actually write to
644 	 *    the MSR.
645 	 */
646 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
647 		nested_vmx_disable_intercept_for_msr(
648 					msr_bitmap_l1, msr_bitmap_l0,
649 					MSR_IA32_SPEC_CTRL,
650 					MSR_TYPE_R | MSR_TYPE_W);
651 
652 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
653 		nested_vmx_disable_intercept_for_msr(
654 					msr_bitmap_l1, msr_bitmap_l0,
655 					MSR_IA32_PRED_CMD,
656 					MSR_TYPE_W);
657 
658 	kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
659 
660 	return true;
661 }
662 
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)663 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
664 				       struct vmcs12 *vmcs12)
665 {
666 	struct kvm_host_map map;
667 	struct vmcs12 *shadow;
668 
669 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
670 	    vmcs12->vmcs_link_pointer == -1ull)
671 		return;
672 
673 	shadow = get_shadow_vmcs12(vcpu);
674 
675 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
676 		return;
677 
678 	memcpy(shadow, map.hva, VMCS12_SIZE);
679 	kvm_vcpu_unmap(vcpu, &map, false);
680 }
681 
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)682 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
683 					      struct vmcs12 *vmcs12)
684 {
685 	struct vcpu_vmx *vmx = to_vmx(vcpu);
686 
687 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
688 	    vmcs12->vmcs_link_pointer == -1ull)
689 		return;
690 
691 	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
692 			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
693 }
694 
695 /*
696  * In nested virtualization, check if L1 has set
697  * VM_EXIT_ACK_INTR_ON_EXIT
698  */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)699 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
700 {
701 	return get_vmcs12(vcpu)->vm_exit_controls &
702 		VM_EXIT_ACK_INTR_ON_EXIT;
703 }
704 
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)705 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
706 					  struct vmcs12 *vmcs12)
707 {
708 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
709 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
710 		return -EINVAL;
711 	else
712 		return 0;
713 }
714 
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)715 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
716 					   struct vmcs12 *vmcs12)
717 {
718 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
719 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
720 	    !nested_cpu_has_vid(vmcs12) &&
721 	    !nested_cpu_has_posted_intr(vmcs12))
722 		return 0;
723 
724 	/*
725 	 * If virtualize x2apic mode is enabled,
726 	 * virtualize apic access must be disabled.
727 	 */
728 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
729 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
730 		return -EINVAL;
731 
732 	/*
733 	 * If virtual interrupt delivery is enabled,
734 	 * we must exit on external interrupts.
735 	 */
736 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
737 		return -EINVAL;
738 
739 	/*
740 	 * bits 15:8 should be zero in posted_intr_nv,
741 	 * the descriptor address has been already checked
742 	 * in nested_get_vmcs12_pages.
743 	 *
744 	 * bits 5:0 of posted_intr_desc_addr should be zero.
745 	 */
746 	if (nested_cpu_has_posted_intr(vmcs12) &&
747 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
748 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
749 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
750 	    CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
751 	    CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
752 		return -EINVAL;
753 
754 	/* tpr shadow is needed by all apicv features. */
755 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
756 		return -EINVAL;
757 
758 	return 0;
759 }
760 
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)761 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
762 				       u32 count, u64 addr)
763 {
764 	int maxphyaddr;
765 
766 	if (count == 0)
767 		return 0;
768 	maxphyaddr = cpuid_maxphyaddr(vcpu);
769 	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
770 	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
771 		return -EINVAL;
772 
773 	return 0;
774 }
775 
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)776 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
777 						     struct vmcs12 *vmcs12)
778 {
779 	if (CC(nested_vmx_check_msr_switch(vcpu,
780 					   vmcs12->vm_exit_msr_load_count,
781 					   vmcs12->vm_exit_msr_load_addr)) ||
782 	    CC(nested_vmx_check_msr_switch(vcpu,
783 					   vmcs12->vm_exit_msr_store_count,
784 					   vmcs12->vm_exit_msr_store_addr)))
785 		return -EINVAL;
786 
787 	return 0;
788 }
789 
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)790 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
791                                                       struct vmcs12 *vmcs12)
792 {
793 	if (CC(nested_vmx_check_msr_switch(vcpu,
794 					   vmcs12->vm_entry_msr_load_count,
795 					   vmcs12->vm_entry_msr_load_addr)))
796                 return -EINVAL;
797 
798 	return 0;
799 }
800 
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)801 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
802 					 struct vmcs12 *vmcs12)
803 {
804 	if (!nested_cpu_has_pml(vmcs12))
805 		return 0;
806 
807 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
808 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
809 		return -EINVAL;
810 
811 	return 0;
812 }
813 
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)814 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
815 							struct vmcs12 *vmcs12)
816 {
817 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
818 	       !nested_cpu_has_ept(vmcs12)))
819 		return -EINVAL;
820 	return 0;
821 }
822 
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)823 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
824 							 struct vmcs12 *vmcs12)
825 {
826 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
827 	       !nested_cpu_has_ept(vmcs12)))
828 		return -EINVAL;
829 	return 0;
830 }
831 
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)832 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
833 						 struct vmcs12 *vmcs12)
834 {
835 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
836 		return 0;
837 
838 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
839 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
840 		return -EINVAL;
841 
842 	return 0;
843 }
844 
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)845 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
846 				       struct vmx_msr_entry *e)
847 {
848 	/* x2APIC MSR accesses are not allowed */
849 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
850 		return -EINVAL;
851 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
852 	    CC(e->index == MSR_IA32_UCODE_REV))
853 		return -EINVAL;
854 	if (CC(e->reserved != 0))
855 		return -EINVAL;
856 	return 0;
857 }
858 
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)859 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
860 				     struct vmx_msr_entry *e)
861 {
862 	if (CC(e->index == MSR_FS_BASE) ||
863 	    CC(e->index == MSR_GS_BASE) ||
864 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
865 	    nested_vmx_msr_check_common(vcpu, e))
866 		return -EINVAL;
867 	return 0;
868 }
869 
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)870 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
871 				      struct vmx_msr_entry *e)
872 {
873 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
874 	    nested_vmx_msr_check_common(vcpu, e))
875 		return -EINVAL;
876 	return 0;
877 }
878 
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)879 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
880 {
881 	struct vcpu_vmx *vmx = to_vmx(vcpu);
882 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
883 				       vmx->nested.msrs.misc_high);
884 
885 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
886 }
887 
888 /*
889  * Load guest's/host's msr at nested entry/exit.
890  * return 0 for success, entry index for failure.
891  *
892  * One of the failure modes for MSR load/store is when a list exceeds the
893  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
894  * as possible, process all valid entries before failing rather than precheck
895  * for a capacity violation.
896  */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)897 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
898 {
899 	u32 i;
900 	struct vmx_msr_entry e;
901 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
902 
903 	for (i = 0; i < count; i++) {
904 		if (unlikely(i >= max_msr_list_size))
905 			goto fail;
906 
907 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
908 					&e, sizeof(e))) {
909 			pr_debug_ratelimited(
910 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
911 				__func__, i, gpa + i * sizeof(e));
912 			goto fail;
913 		}
914 		if (nested_vmx_load_msr_check(vcpu, &e)) {
915 			pr_debug_ratelimited(
916 				"%s check failed (%u, 0x%x, 0x%x)\n",
917 				__func__, i, e.index, e.reserved);
918 			goto fail;
919 		}
920 		if (kvm_set_msr(vcpu, e.index, e.value)) {
921 			pr_debug_ratelimited(
922 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
923 				__func__, i, e.index, e.value);
924 			goto fail;
925 		}
926 	}
927 	return 0;
928 fail:
929 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
930 	return i + 1;
931 }
932 
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)933 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
934 					    u32 msr_index,
935 					    u64 *data)
936 {
937 	struct vcpu_vmx *vmx = to_vmx(vcpu);
938 
939 	/*
940 	 * If the L0 hypervisor stored a more accurate value for the TSC that
941 	 * does not include the time taken for emulation of the L2->L1
942 	 * VM-exit in L0, use the more accurate value.
943 	 */
944 	if (msr_index == MSR_IA32_TSC) {
945 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
946 						    MSR_IA32_TSC);
947 
948 		if (i >= 0) {
949 			u64 val = vmx->msr_autostore.guest.val[i].value;
950 
951 			*data = kvm_read_l1_tsc(vcpu, val);
952 			return true;
953 		}
954 	}
955 
956 	if (kvm_get_msr(vcpu, msr_index, data)) {
957 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
958 			msr_index);
959 		return false;
960 	}
961 	return true;
962 }
963 
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)964 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
965 				     struct vmx_msr_entry *e)
966 {
967 	if (kvm_vcpu_read_guest(vcpu,
968 				gpa + i * sizeof(*e),
969 				e, 2 * sizeof(u32))) {
970 		pr_debug_ratelimited(
971 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
972 			__func__, i, gpa + i * sizeof(*e));
973 		return false;
974 	}
975 	if (nested_vmx_store_msr_check(vcpu, e)) {
976 		pr_debug_ratelimited(
977 			"%s check failed (%u, 0x%x, 0x%x)\n",
978 			__func__, i, e->index, e->reserved);
979 		return false;
980 	}
981 	return true;
982 }
983 
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)984 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
985 {
986 	u64 data;
987 	u32 i;
988 	struct vmx_msr_entry e;
989 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
990 
991 	for (i = 0; i < count; i++) {
992 		if (unlikely(i >= max_msr_list_size))
993 			return -EINVAL;
994 
995 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
996 			return -EINVAL;
997 
998 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
999 			return -EINVAL;
1000 
1001 		if (kvm_vcpu_write_guest(vcpu,
1002 					 gpa + i * sizeof(e) +
1003 					     offsetof(struct vmx_msr_entry, value),
1004 					 &data, sizeof(data))) {
1005 			pr_debug_ratelimited(
1006 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1007 				__func__, i, e.index, data);
1008 			return -EINVAL;
1009 		}
1010 	}
1011 	return 0;
1012 }
1013 
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1014 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1015 {
1016 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1017 	u32 count = vmcs12->vm_exit_msr_store_count;
1018 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1019 	struct vmx_msr_entry e;
1020 	u32 i;
1021 
1022 	for (i = 0; i < count; i++) {
1023 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1024 			return false;
1025 
1026 		if (e.index == msr_index)
1027 			return true;
1028 	}
1029 	return false;
1030 }
1031 
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1032 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1033 					   u32 msr_index)
1034 {
1035 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1036 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1037 	bool in_vmcs12_store_list;
1038 	int msr_autostore_slot;
1039 	bool in_autostore_list;
1040 	int last;
1041 
1042 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1043 	in_autostore_list = msr_autostore_slot >= 0;
1044 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1045 
1046 	if (in_vmcs12_store_list && !in_autostore_list) {
1047 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1048 			/*
1049 			 * Emulated VMEntry does not fail here.  Instead a less
1050 			 * accurate value will be returned by
1051 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1052 			 * instead of reading the value from the vmcs02 VMExit
1053 			 * MSR-store area.
1054 			 */
1055 			pr_warn_ratelimited(
1056 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1057 				msr_index);
1058 			return;
1059 		}
1060 		last = autostore->nr++;
1061 		autostore->val[last].index = msr_index;
1062 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1063 		last = --autostore->nr;
1064 		autostore->val[msr_autostore_slot] = autostore->val[last];
1065 	}
1066 }
1067 
nested_cr3_valid(struct kvm_vcpu * vcpu,unsigned long val)1068 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1069 {
1070 	unsigned long invalid_mask;
1071 
1072 	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1073 	return (val & invalid_mask) == 0;
1074 }
1075 
1076 /*
1077  * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1078  * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1079  * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1080  * Here's why.
1081  *
1082  * If EPT is enabled by L0 a sync is never needed:
1083  * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1084  *   cannot be unsync'd SPTEs for either L1 or L2.
1085  *
1086  * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1087  *   VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1088  *   (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1089  *   stale guest-physical mappings for L2 from the TLB.  And as above, L0 isn't
1090  *   shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1091  *
1092  * If EPT is disabled by L0:
1093  * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1094  *   enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1095  *   required to invalidate linear mappings (EPT is disabled so there are
1096  *   no combined or guest-physical mappings), i.e. L1 can't rely on the
1097  *   (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1098  *
1099  * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1100  *   linear mappings (EPT is disabled so there are no combined or guest-physical
1101  *   mappings) to be invalidated on both VM-Enter and VM-Exit.
1102  *
1103  * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1104  * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1105  * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1106  * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1107  * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1108  * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1109  * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1110  * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1111  * stale TLB entries, at which point L0 will sync L2's MMU.
1112  */
nested_vmx_transition_mmu_sync(struct kvm_vcpu * vcpu)1113 static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1114 {
1115 	return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1116 }
1117 
1118 /*
1119  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1120  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1121  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1122  * @entry_failure_code.
1123  */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,enum vm_entry_failure_code * entry_failure_code)1124 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1125 			       enum vm_entry_failure_code *entry_failure_code)
1126 {
1127 	if (CC(!nested_cr3_valid(vcpu, cr3))) {
1128 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1129 		return -EINVAL;
1130 	}
1131 
1132 	/*
1133 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1134 	 * must not be dereferenced.
1135 	 */
1136 	if (!nested_ept && is_pae_paging(vcpu) &&
1137 	    (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1138 		if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1139 			*entry_failure_code = ENTRY_FAIL_PDPTE;
1140 			return -EINVAL;
1141 		}
1142 	}
1143 
1144 	/*
1145 	 * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1146 	 * flushes are handled by nested_vmx_transition_tlb_flush().
1147 	 */
1148 	if (!nested_ept) {
1149 		kvm_mmu_new_pgd(vcpu, cr3, true, true);
1150 
1151 		/*
1152 		 * A TLB flush on VM-Enter/VM-Exit flushes all linear mappings
1153 		 * across all PCIDs, i.e. all PGDs need to be synchronized.
1154 		 * See nested_vmx_transition_mmu_sync() for more details.
1155 		 */
1156 		if (nested_vmx_transition_mmu_sync(vcpu))
1157 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1158 	}
1159 
1160 	vcpu->arch.cr3 = cr3;
1161 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1162 
1163 	kvm_init_mmu(vcpu, false);
1164 
1165 	return 0;
1166 }
1167 
1168 /*
1169  * Returns if KVM is able to config CPU to tag TLB entries
1170  * populated by L2 differently than TLB entries populated
1171  * by L1.
1172  *
1173  * If L0 uses EPT, L1 and L2 run with different EPTP because
1174  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1175  * are tagged with different EPTP.
1176  *
1177  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1178  * with different VPID (L1 entries are tagged with vmx->vpid
1179  * while L2 entries are tagged with vmx->nested.vpid02).
1180  */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1181 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1182 {
1183 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1184 
1185 	return enable_ept ||
1186 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1187 }
1188 
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1189 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1190 					    struct vmcs12 *vmcs12,
1191 					    bool is_vmenter)
1192 {
1193 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1194 
1195 	/*
1196 	 * If VPID is disabled, linear and combined mappings are flushed on
1197 	 * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1198 	 * their associated EPTP.
1199 	 */
1200 	if (!enable_vpid)
1201 		return;
1202 
1203 	/*
1204 	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1205 	 * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1206 	 *
1207 	 * If VPID is enabled and used by vmc12, but L2 does not have a unique
1208 	 * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1209 	 * a VPID for L2, flush the current context as the effective ASID is
1210 	 * common to both L1 and L2.
1211 	 *
1212 	 * Defer the flush so that it runs after vmcs02.EPTP has been set by
1213 	 * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1214 	 * redundant flushes further down the nested pipeline.
1215 	 *
1216 	 * If a TLB flush isn't required due to any of the above, and vpid12 is
1217 	 * changing then the new "virtual" VPID (vpid12) will reuse the same
1218 	 * "real" VPID (vpid02), and so needs to be sync'd.  There is no direct
1219 	 * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1220 	 * all nested vCPUs.
1221 	 */
1222 	if (!nested_cpu_has_vpid(vmcs12)) {
1223 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1224 	} else if (!nested_has_guest_tlb_tag(vcpu)) {
1225 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1226 	} else if (is_vmenter &&
1227 		   vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1228 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1229 		vpid_sync_context(nested_get_vpid02(vcpu));
1230 	}
1231 }
1232 
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1233 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1234 {
1235 	superset &= mask;
1236 	subset &= mask;
1237 
1238 	return (superset | subset) == superset;
1239 }
1240 
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1241 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1242 {
1243 	const u64 feature_and_reserved =
1244 		/* feature (except bit 48; see below) */
1245 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1246 		/* reserved */
1247 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1248 	u64 vmx_basic = vmcs_config.nested.basic;
1249 
1250 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1251 		return -EINVAL;
1252 
1253 	/*
1254 	 * KVM does not emulate a version of VMX that constrains physical
1255 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1256 	 */
1257 	if (data & BIT_ULL(48))
1258 		return -EINVAL;
1259 
1260 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1261 	    vmx_basic_vmcs_revision_id(data))
1262 		return -EINVAL;
1263 
1264 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1265 		return -EINVAL;
1266 
1267 	vmx->nested.msrs.basic = data;
1268 	return 0;
1269 }
1270 
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1271 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1272 				u32 **low, u32 **high)
1273 {
1274 	switch (msr_index) {
1275 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1276 		*low = &msrs->pinbased_ctls_low;
1277 		*high = &msrs->pinbased_ctls_high;
1278 		break;
1279 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1280 		*low = &msrs->procbased_ctls_low;
1281 		*high = &msrs->procbased_ctls_high;
1282 		break;
1283 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1284 		*low = &msrs->exit_ctls_low;
1285 		*high = &msrs->exit_ctls_high;
1286 		break;
1287 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1288 		*low = &msrs->entry_ctls_low;
1289 		*high = &msrs->entry_ctls_high;
1290 		break;
1291 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1292 		*low = &msrs->secondary_ctls_low;
1293 		*high = &msrs->secondary_ctls_high;
1294 		break;
1295 	default:
1296 		BUG();
1297 	}
1298 }
1299 
1300 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1301 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1302 {
1303 	u32 *lowp, *highp;
1304 	u64 supported;
1305 
1306 	vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1307 
1308 	supported = vmx_control_msr(*lowp, *highp);
1309 
1310 	/* Check must-be-1 bits are still 1. */
1311 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1312 		return -EINVAL;
1313 
1314 	/* Check must-be-0 bits are still 0. */
1315 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1316 		return -EINVAL;
1317 
1318 	vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1319 	*lowp = data;
1320 	*highp = data >> 32;
1321 	return 0;
1322 }
1323 
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1324 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1325 {
1326 	const u64 feature_and_reserved_bits =
1327 		/* feature */
1328 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1329 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1330 		/* reserved */
1331 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1332 	u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1333 				       vmcs_config.nested.misc_high);
1334 
1335 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1336 		return -EINVAL;
1337 
1338 	if ((vmx->nested.msrs.pinbased_ctls_high &
1339 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1340 	    vmx_misc_preemption_timer_rate(data) !=
1341 	    vmx_misc_preemption_timer_rate(vmx_misc))
1342 		return -EINVAL;
1343 
1344 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1345 		return -EINVAL;
1346 
1347 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1348 		return -EINVAL;
1349 
1350 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1351 		return -EINVAL;
1352 
1353 	vmx->nested.msrs.misc_low = data;
1354 	vmx->nested.msrs.misc_high = data >> 32;
1355 
1356 	return 0;
1357 }
1358 
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1359 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1360 {
1361 	u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1362 					       vmcs_config.nested.vpid_caps);
1363 
1364 	/* Every bit is either reserved or a feature bit. */
1365 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1366 		return -EINVAL;
1367 
1368 	vmx->nested.msrs.ept_caps = data;
1369 	vmx->nested.msrs.vpid_caps = data >> 32;
1370 	return 0;
1371 }
1372 
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1373 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1374 {
1375 	switch (msr_index) {
1376 	case MSR_IA32_VMX_CR0_FIXED0:
1377 		return &msrs->cr0_fixed0;
1378 	case MSR_IA32_VMX_CR4_FIXED0:
1379 		return &msrs->cr4_fixed0;
1380 	default:
1381 		BUG();
1382 	}
1383 }
1384 
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1385 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1386 {
1387 	const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1388 
1389 	/*
1390 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1391 	 * must be 1 in the restored value.
1392 	 */
1393 	if (!is_bitwise_subset(data, *msr, -1ULL))
1394 		return -EINVAL;
1395 
1396 	*vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1397 	return 0;
1398 }
1399 
1400 /*
1401  * Called when userspace is restoring VMX MSRs.
1402  *
1403  * Returns 0 on success, non-0 otherwise.
1404  */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1405 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1406 {
1407 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1408 
1409 	/*
1410 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1411 	 * is in VMX operation.
1412 	 */
1413 	if (vmx->nested.vmxon)
1414 		return -EBUSY;
1415 
1416 	switch (msr_index) {
1417 	case MSR_IA32_VMX_BASIC:
1418 		return vmx_restore_vmx_basic(vmx, data);
1419 	case MSR_IA32_VMX_PINBASED_CTLS:
1420 	case MSR_IA32_VMX_PROCBASED_CTLS:
1421 	case MSR_IA32_VMX_EXIT_CTLS:
1422 	case MSR_IA32_VMX_ENTRY_CTLS:
1423 		/*
1424 		 * The "non-true" VMX capability MSRs are generated from the
1425 		 * "true" MSRs, so we do not support restoring them directly.
1426 		 *
1427 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1428 		 * should restore the "true" MSRs with the must-be-1 bits
1429 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1430 		 * DEFAULT SETTINGS".
1431 		 */
1432 		return -EINVAL;
1433 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1434 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1435 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1436 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1437 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1438 		return vmx_restore_control_msr(vmx, msr_index, data);
1439 	case MSR_IA32_VMX_MISC:
1440 		return vmx_restore_vmx_misc(vmx, data);
1441 	case MSR_IA32_VMX_CR0_FIXED0:
1442 	case MSR_IA32_VMX_CR4_FIXED0:
1443 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1444 	case MSR_IA32_VMX_CR0_FIXED1:
1445 	case MSR_IA32_VMX_CR4_FIXED1:
1446 		/*
1447 		 * These MSRs are generated based on the vCPU's CPUID, so we
1448 		 * do not support restoring them directly.
1449 		 */
1450 		return -EINVAL;
1451 	case MSR_IA32_VMX_EPT_VPID_CAP:
1452 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1453 	case MSR_IA32_VMX_VMCS_ENUM:
1454 		vmx->nested.msrs.vmcs_enum = data;
1455 		return 0;
1456 	case MSR_IA32_VMX_VMFUNC:
1457 		if (data & ~vmcs_config.nested.vmfunc_controls)
1458 			return -EINVAL;
1459 		vmx->nested.msrs.vmfunc_controls = data;
1460 		return 0;
1461 	default:
1462 		/*
1463 		 * The rest of the VMX capability MSRs do not support restore.
1464 		 */
1465 		return -EINVAL;
1466 	}
1467 }
1468 
1469 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1470 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1471 {
1472 	switch (msr_index) {
1473 	case MSR_IA32_VMX_BASIC:
1474 		*pdata = msrs->basic;
1475 		break;
1476 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1477 	case MSR_IA32_VMX_PINBASED_CTLS:
1478 		*pdata = vmx_control_msr(
1479 			msrs->pinbased_ctls_low,
1480 			msrs->pinbased_ctls_high);
1481 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1482 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1483 		break;
1484 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1485 	case MSR_IA32_VMX_PROCBASED_CTLS:
1486 		*pdata = vmx_control_msr(
1487 			msrs->procbased_ctls_low,
1488 			msrs->procbased_ctls_high);
1489 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1490 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1491 		break;
1492 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1493 	case MSR_IA32_VMX_EXIT_CTLS:
1494 		*pdata = vmx_control_msr(
1495 			msrs->exit_ctls_low,
1496 			msrs->exit_ctls_high);
1497 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1498 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1499 		break;
1500 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1501 	case MSR_IA32_VMX_ENTRY_CTLS:
1502 		*pdata = vmx_control_msr(
1503 			msrs->entry_ctls_low,
1504 			msrs->entry_ctls_high);
1505 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1506 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1507 		break;
1508 	case MSR_IA32_VMX_MISC:
1509 		*pdata = vmx_control_msr(
1510 			msrs->misc_low,
1511 			msrs->misc_high);
1512 		break;
1513 	case MSR_IA32_VMX_CR0_FIXED0:
1514 		*pdata = msrs->cr0_fixed0;
1515 		break;
1516 	case MSR_IA32_VMX_CR0_FIXED1:
1517 		*pdata = msrs->cr0_fixed1;
1518 		break;
1519 	case MSR_IA32_VMX_CR4_FIXED0:
1520 		*pdata = msrs->cr4_fixed0;
1521 		break;
1522 	case MSR_IA32_VMX_CR4_FIXED1:
1523 		*pdata = msrs->cr4_fixed1;
1524 		break;
1525 	case MSR_IA32_VMX_VMCS_ENUM:
1526 		*pdata = msrs->vmcs_enum;
1527 		break;
1528 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1529 		*pdata = vmx_control_msr(
1530 			msrs->secondary_ctls_low,
1531 			msrs->secondary_ctls_high);
1532 		break;
1533 	case MSR_IA32_VMX_EPT_VPID_CAP:
1534 		*pdata = msrs->ept_caps |
1535 			((u64)msrs->vpid_caps << 32);
1536 		break;
1537 	case MSR_IA32_VMX_VMFUNC:
1538 		*pdata = msrs->vmfunc_controls;
1539 		break;
1540 	default:
1541 		return 1;
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 /*
1548  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1549  * been modified by the L1 guest.  Note, "writable" in this context means
1550  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1551  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1552  * VM-exit information fields (which are actually writable if the vCPU is
1553  * configured to support "VMWRITE to any supported field in the VMCS").
1554  */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1555 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1556 {
1557 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1558 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1559 	struct shadow_vmcs_field field;
1560 	unsigned long val;
1561 	int i;
1562 
1563 	if (WARN_ON(!shadow_vmcs))
1564 		return;
1565 
1566 	preempt_disable();
1567 
1568 	vmcs_load(shadow_vmcs);
1569 
1570 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1571 		field = shadow_read_write_fields[i];
1572 		val = __vmcs_readl(field.encoding);
1573 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1574 	}
1575 
1576 	vmcs_clear(shadow_vmcs);
1577 	vmcs_load(vmx->loaded_vmcs->vmcs);
1578 
1579 	preempt_enable();
1580 }
1581 
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1582 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1583 {
1584 	const struct shadow_vmcs_field *fields[] = {
1585 		shadow_read_write_fields,
1586 		shadow_read_only_fields
1587 	};
1588 	const int max_fields[] = {
1589 		max_shadow_read_write_fields,
1590 		max_shadow_read_only_fields
1591 	};
1592 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1593 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1594 	struct shadow_vmcs_field field;
1595 	unsigned long val;
1596 	int i, q;
1597 
1598 	if (WARN_ON(!shadow_vmcs))
1599 		return;
1600 
1601 	vmcs_load(shadow_vmcs);
1602 
1603 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1604 		for (i = 0; i < max_fields[q]; i++) {
1605 			field = fields[q][i];
1606 			val = vmcs12_read_any(vmcs12, field.encoding,
1607 					      field.offset);
1608 			__vmcs_writel(field.encoding, val);
1609 		}
1610 	}
1611 
1612 	vmcs_clear(shadow_vmcs);
1613 	vmcs_load(vmx->loaded_vmcs->vmcs);
1614 }
1615 
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx)1616 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1617 {
1618 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1619 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1620 
1621 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1622 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1623 	vmcs12->guest_rip = evmcs->guest_rip;
1624 
1625 	if (unlikely(!(evmcs->hv_clean_fields &
1626 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1627 		vmcs12->guest_rsp = evmcs->guest_rsp;
1628 		vmcs12->guest_rflags = evmcs->guest_rflags;
1629 		vmcs12->guest_interruptibility_info =
1630 			evmcs->guest_interruptibility_info;
1631 	}
1632 
1633 	if (unlikely(!(evmcs->hv_clean_fields &
1634 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1635 		vmcs12->cpu_based_vm_exec_control =
1636 			evmcs->cpu_based_vm_exec_control;
1637 	}
1638 
1639 	if (unlikely(!(evmcs->hv_clean_fields &
1640 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1641 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1642 	}
1643 
1644 	if (unlikely(!(evmcs->hv_clean_fields &
1645 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1646 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1647 	}
1648 
1649 	if (unlikely(!(evmcs->hv_clean_fields &
1650 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1651 		vmcs12->vm_entry_intr_info_field =
1652 			evmcs->vm_entry_intr_info_field;
1653 		vmcs12->vm_entry_exception_error_code =
1654 			evmcs->vm_entry_exception_error_code;
1655 		vmcs12->vm_entry_instruction_len =
1656 			evmcs->vm_entry_instruction_len;
1657 	}
1658 
1659 	if (unlikely(!(evmcs->hv_clean_fields &
1660 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1661 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1662 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1663 		vmcs12->host_cr0 = evmcs->host_cr0;
1664 		vmcs12->host_cr3 = evmcs->host_cr3;
1665 		vmcs12->host_cr4 = evmcs->host_cr4;
1666 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1667 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1668 		vmcs12->host_rip = evmcs->host_rip;
1669 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1670 		vmcs12->host_es_selector = evmcs->host_es_selector;
1671 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1672 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1673 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1674 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1675 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1676 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1677 	}
1678 
1679 	if (unlikely(!(evmcs->hv_clean_fields &
1680 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1681 		vmcs12->pin_based_vm_exec_control =
1682 			evmcs->pin_based_vm_exec_control;
1683 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1684 		vmcs12->secondary_vm_exec_control =
1685 			evmcs->secondary_vm_exec_control;
1686 	}
1687 
1688 	if (unlikely(!(evmcs->hv_clean_fields &
1689 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1690 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1691 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1692 	}
1693 
1694 	if (unlikely(!(evmcs->hv_clean_fields &
1695 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1696 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1697 	}
1698 
1699 	if (unlikely(!(evmcs->hv_clean_fields &
1700 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1701 		vmcs12->guest_es_base = evmcs->guest_es_base;
1702 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1703 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1704 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1705 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1706 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1707 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1708 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1709 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1710 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1711 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1712 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1713 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1714 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1715 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1716 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1717 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1718 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1719 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1720 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1721 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1722 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1723 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1724 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1725 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1726 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1727 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1728 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1729 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1730 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1731 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1732 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1733 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1734 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1735 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1736 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1737 	}
1738 
1739 	if (unlikely(!(evmcs->hv_clean_fields &
1740 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1741 		vmcs12->tsc_offset = evmcs->tsc_offset;
1742 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1743 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1744 	}
1745 
1746 	if (unlikely(!(evmcs->hv_clean_fields &
1747 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1748 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1749 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1750 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1751 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1752 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1753 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1754 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1755 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1756 	}
1757 
1758 	if (unlikely(!(evmcs->hv_clean_fields &
1759 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1760 		vmcs12->host_fs_base = evmcs->host_fs_base;
1761 		vmcs12->host_gs_base = evmcs->host_gs_base;
1762 		vmcs12->host_tr_base = evmcs->host_tr_base;
1763 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1764 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1765 		vmcs12->host_rsp = evmcs->host_rsp;
1766 	}
1767 
1768 	if (unlikely(!(evmcs->hv_clean_fields &
1769 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1770 		vmcs12->ept_pointer = evmcs->ept_pointer;
1771 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1772 	}
1773 
1774 	if (unlikely(!(evmcs->hv_clean_fields &
1775 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1776 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1777 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1778 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1779 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1780 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1781 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1782 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1783 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1784 		vmcs12->guest_pending_dbg_exceptions =
1785 			evmcs->guest_pending_dbg_exceptions;
1786 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1787 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1788 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1789 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1790 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1791 	}
1792 
1793 	/*
1794 	 * Not used?
1795 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1796 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1797 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1798 	 * vmcs12->page_fault_error_code_mask =
1799 	 *		evmcs->page_fault_error_code_mask;
1800 	 * vmcs12->page_fault_error_code_match =
1801 	 *		evmcs->page_fault_error_code_match;
1802 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1803 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1804 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1805 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1806 	 */
1807 
1808 	/*
1809 	 * Read only fields:
1810 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1811 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1812 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1813 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1814 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1815 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1816 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1817 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1818 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1819 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1820 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1821 	 *
1822 	 * Not present in struct vmcs12:
1823 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1824 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1825 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1826 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1827 	 */
1828 
1829 	return 0;
1830 }
1831 
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1832 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1833 {
1834 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1835 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1836 
1837 	/*
1838 	 * Should not be changed by KVM:
1839 	 *
1840 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1841 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1842 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1843 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1844 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1845 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1846 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1847 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1848 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1849 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1850 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1851 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1852 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1853 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1854 	 * evmcs->host_rip = vmcs12->host_rip;
1855 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1856 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1857 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1858 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1859 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1860 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1861 	 * evmcs->host_rsp = vmcs12->host_rsp;
1862 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1863 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1864 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1865 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1866 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1867 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1868 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1869 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1870 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1871 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1872 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1873 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1874 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1875 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1876 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1877 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1878 	 * evmcs->page_fault_error_code_mask =
1879 	 *		vmcs12->page_fault_error_code_mask;
1880 	 * evmcs->page_fault_error_code_match =
1881 	 *		vmcs12->page_fault_error_code_match;
1882 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1883 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1884 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1885 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1886 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1887 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1888 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1889 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1890 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1891 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1892 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1893 	 *
1894 	 * Not present in struct vmcs12:
1895 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1896 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1897 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1898 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1899 	 */
1900 
1901 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1902 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1903 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1904 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1905 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1906 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1907 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1908 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1909 
1910 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1911 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1912 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1913 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1914 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1915 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1916 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1917 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1918 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1919 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1920 
1921 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1922 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1923 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1924 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1925 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1926 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1927 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1928 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1929 
1930 	evmcs->guest_es_base = vmcs12->guest_es_base;
1931 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1932 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1933 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1934 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1935 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1936 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1937 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1938 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1939 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1940 
1941 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1942 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1943 
1944 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1945 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1946 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1947 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1948 
1949 	evmcs->guest_pending_dbg_exceptions =
1950 		vmcs12->guest_pending_dbg_exceptions;
1951 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1952 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1953 
1954 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1955 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1956 
1957 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1958 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1959 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1960 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1961 
1962 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1963 
1964 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1965 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1966 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1967 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1968 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1969 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1970 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1971 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1972 
1973 	evmcs->exit_qualification = vmcs12->exit_qualification;
1974 
1975 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1976 	evmcs->guest_rsp = vmcs12->guest_rsp;
1977 	evmcs->guest_rflags = vmcs12->guest_rflags;
1978 
1979 	evmcs->guest_interruptibility_info =
1980 		vmcs12->guest_interruptibility_info;
1981 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1982 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1983 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1984 	evmcs->vm_entry_exception_error_code =
1985 		vmcs12->vm_entry_exception_error_code;
1986 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1987 
1988 	evmcs->guest_rip = vmcs12->guest_rip;
1989 
1990 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1991 
1992 	return 0;
1993 }
1994 
1995 /*
1996  * This is an equivalent of the nested hypervisor executing the vmptrld
1997  * instruction.
1998  */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)1999 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2000 	struct kvm_vcpu *vcpu, bool from_launch)
2001 {
2002 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2003 	bool evmcs_gpa_changed = false;
2004 	u64 evmcs_gpa;
2005 
2006 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
2007 		return EVMPTRLD_DISABLED;
2008 
2009 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
2010 		return EVMPTRLD_DISABLED;
2011 
2012 	if (unlikely(!vmx->nested.hv_evmcs ||
2013 		     evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2014 		if (!vmx->nested.hv_evmcs)
2015 			vmx->nested.current_vmptr = -1ull;
2016 
2017 		nested_release_evmcs(vcpu);
2018 
2019 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2020 				 &vmx->nested.hv_evmcs_map))
2021 			return EVMPTRLD_ERROR;
2022 
2023 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2024 
2025 		/*
2026 		 * Currently, KVM only supports eVMCS version 1
2027 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2028 		 * value to first u32 field of eVMCS which should specify eVMCS
2029 		 * VersionNumber.
2030 		 *
2031 		 * Guest should be aware of supported eVMCS versions by host by
2032 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2033 		 * expected to set this CPUID leaf according to the value
2034 		 * returned in vmcs_version from nested_enable_evmcs().
2035 		 *
2036 		 * However, it turns out that Microsoft Hyper-V fails to comply
2037 		 * to their own invented interface: When Hyper-V use eVMCS, it
2038 		 * just sets first u32 field of eVMCS to revision_id specified
2039 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2040 		 * which is one of the supported versions specified in
2041 		 * CPUID.0x4000000A.EAX[0:15].
2042 		 *
2043 		 * To overcome Hyper-V bug, we accept here either a supported
2044 		 * eVMCS version or VMCS12 revision_id as valid values for first
2045 		 * u32 field of eVMCS.
2046 		 */
2047 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2048 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2049 			nested_release_evmcs(vcpu);
2050 			return EVMPTRLD_VMFAIL;
2051 		}
2052 
2053 		vmx->nested.dirty_vmcs12 = true;
2054 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2055 
2056 		evmcs_gpa_changed = true;
2057 		/*
2058 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2059 		 * reloaded from guest's memory (read only fields, fields not
2060 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2061 		 * are no leftovers.
2062 		 */
2063 		if (from_launch) {
2064 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2065 			memset(vmcs12, 0, sizeof(*vmcs12));
2066 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2067 		}
2068 
2069 	}
2070 
2071 	/*
2072 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2073 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2074 	 */
2075 	if (from_launch || evmcs_gpa_changed)
2076 		vmx->nested.hv_evmcs->hv_clean_fields &=
2077 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2078 
2079 	return EVMPTRLD_SUCCEEDED;
2080 }
2081 
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2082 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2083 {
2084 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2085 
2086 	if (vmx->nested.hv_evmcs) {
2087 		copy_vmcs12_to_enlightened(vmx);
2088 		/* All fields are clean */
2089 		vmx->nested.hv_evmcs->hv_clean_fields |=
2090 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2091 	} else {
2092 		copy_vmcs12_to_shadow(vmx);
2093 	}
2094 
2095 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2096 }
2097 
vmx_preemption_timer_fn(struct hrtimer * timer)2098 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2099 {
2100 	struct vcpu_vmx *vmx =
2101 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2102 
2103 	vmx->nested.preemption_timer_expired = true;
2104 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2105 	kvm_vcpu_kick(&vmx->vcpu);
2106 
2107 	return HRTIMER_NORESTART;
2108 }
2109 
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2110 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2111 {
2112 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2113 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2114 
2115 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2116 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2117 
2118 	if (!vmx->nested.has_preemption_timer_deadline) {
2119 		vmx->nested.preemption_timer_deadline =
2120 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2121 		vmx->nested.has_preemption_timer_deadline = true;
2122 	}
2123 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2124 }
2125 
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2126 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2127 					u64 preemption_timeout)
2128 {
2129 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2130 
2131 	/*
2132 	 * A timer value of zero is architecturally guaranteed to cause
2133 	 * a VMExit prior to executing any instructions in the guest.
2134 	 */
2135 	if (preemption_timeout == 0) {
2136 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2137 		return;
2138 	}
2139 
2140 	if (vcpu->arch.virtual_tsc_khz == 0)
2141 		return;
2142 
2143 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2144 	preemption_timeout *= 1000000;
2145 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2146 	hrtimer_start(&vmx->nested.preemption_timer,
2147 		      ktime_add_ns(ktime_get(), preemption_timeout),
2148 		      HRTIMER_MODE_ABS_PINNED);
2149 }
2150 
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2151 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2152 {
2153 	if (vmx->nested.nested_run_pending &&
2154 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2155 		return vmcs12->guest_ia32_efer;
2156 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2157 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2158 	else
2159 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2160 }
2161 
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2162 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2163 {
2164 	/*
2165 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2166 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2167 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2168 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2169 	 */
2170 	if (vmx->nested.vmcs02_initialized)
2171 		return;
2172 	vmx->nested.vmcs02_initialized = true;
2173 
2174 	/*
2175 	 * We don't care what the EPTP value is we just need to guarantee
2176 	 * it's valid so we don't get a false positive when doing early
2177 	 * consistency checks.
2178 	 */
2179 	if (enable_ept && nested_early_check)
2180 		vmcs_write64(EPT_POINTER,
2181 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2182 
2183 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2184 	if (cpu_has_vmx_vmfunc())
2185 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2186 
2187 	if (cpu_has_vmx_posted_intr())
2188 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2189 
2190 	if (cpu_has_vmx_msr_bitmap())
2191 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2192 
2193 	/*
2194 	 * The PML address never changes, so it is constant in vmcs02.
2195 	 * Conceptually we want to copy the PML index from vmcs01 here,
2196 	 * and then back to vmcs01 on nested vmexit.  But since we flush
2197 	 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2198 	 * index is also effectively constant in vmcs02.
2199 	 */
2200 	if (enable_pml) {
2201 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2202 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2203 	}
2204 
2205 	if (cpu_has_vmx_encls_vmexit())
2206 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2207 
2208 	/*
2209 	 * Set the MSR load/store lists to match L0's settings.  Only the
2210 	 * addresses are constant (for vmcs02), the counts can change based
2211 	 * on L2's behavior, e.g. switching to/from long mode.
2212 	 */
2213 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2214 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2215 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2216 
2217 	vmx_set_constant_host_state(vmx);
2218 }
2219 
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2220 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2221 				      struct vmcs12 *vmcs12)
2222 {
2223 	prepare_vmcs02_constant_state(vmx);
2224 
2225 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
2226 
2227 	if (enable_vpid) {
2228 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2229 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2230 		else
2231 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2232 	}
2233 }
2234 
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2235 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2236 				 struct vmcs12 *vmcs12)
2237 {
2238 	u32 exec_control, vmcs12_exec_ctrl;
2239 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2240 
2241 	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2242 		prepare_vmcs02_early_rare(vmx, vmcs12);
2243 
2244 	/*
2245 	 * PIN CONTROLS
2246 	 */
2247 	exec_control = __pin_controls_get(vmcs01);
2248 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2249 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2250 
2251 	/* Posted interrupts setting is only taken from vmcs12.  */
2252 	vmx->nested.pi_pending = false;
2253 	if (nested_cpu_has_posted_intr(vmcs12))
2254 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2255 	else
2256 		exec_control &= ~PIN_BASED_POSTED_INTR;
2257 	pin_controls_set(vmx, exec_control);
2258 
2259 	/*
2260 	 * EXEC CONTROLS
2261 	 */
2262 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2263 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2264 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2265 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2266 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2267 
2268 	vmx->nested.l1_tpr_threshold = -1;
2269 	if (exec_control & CPU_BASED_TPR_SHADOW)
2270 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2271 #ifdef CONFIG_X86_64
2272 	else
2273 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2274 				CPU_BASED_CR8_STORE_EXITING;
2275 #endif
2276 
2277 	/*
2278 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2279 	 * for I/O port accesses.
2280 	 */
2281 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2282 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2283 
2284 	/*
2285 	 * This bit will be computed in nested_get_vmcs12_pages, because
2286 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2287 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2288 	 * only set/clear this bit.
2289 	 */
2290 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2291 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2292 
2293 	exec_controls_set(vmx, exec_control);
2294 
2295 	/*
2296 	 * SECONDARY EXEC CONTROLS
2297 	 */
2298 	if (cpu_has_secondary_exec_ctrls()) {
2299 		exec_control = __secondary_exec_controls_get(vmcs01);
2300 
2301 		/* Take the following fields only from vmcs12 */
2302 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2303 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2304 				  SECONDARY_EXEC_ENABLE_INVPCID |
2305 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2306 				  SECONDARY_EXEC_XSAVES |
2307 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2308 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2309 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2310 				  SECONDARY_EXEC_ENABLE_VMFUNC |
2311 				  SECONDARY_EXEC_DESC);
2312 
2313 		if (nested_cpu_has(vmcs12,
2314 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2315 			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2316 				~SECONDARY_EXEC_ENABLE_PML;
2317 			exec_control |= vmcs12_exec_ctrl;
2318 		}
2319 
2320 		/* VMCS shadowing for L2 is emulated for now */
2321 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2322 
2323 		/*
2324 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2325 		 * will not have to rewrite the controls just for this bit.
2326 		 */
2327 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2328 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2329 			exec_control |= SECONDARY_EXEC_DESC;
2330 
2331 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2332 			vmcs_write16(GUEST_INTR_STATUS,
2333 				vmcs12->guest_intr_status);
2334 
2335 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2336 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2337 
2338 		secondary_exec_controls_set(vmx, exec_control);
2339 	}
2340 
2341 	/*
2342 	 * ENTRY CONTROLS
2343 	 *
2344 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2345 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2346 	 * on the related bits (if supported by the CPU) in the hope that
2347 	 * we can avoid VMWrites during vmx_set_efer().
2348 	 *
2349 	 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2350 	 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2351 	 * do the same for L2.
2352 	 */
2353 	exec_control = __vm_entry_controls_get(vmcs01);
2354 	exec_control |= (vmcs12->vm_entry_controls &
2355 			 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2356 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2357 	if (cpu_has_load_ia32_efer()) {
2358 		if (guest_efer & EFER_LMA)
2359 			exec_control |= VM_ENTRY_IA32E_MODE;
2360 		if (guest_efer != host_efer)
2361 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2362 	}
2363 	vm_entry_controls_set(vmx, exec_control);
2364 
2365 	/*
2366 	 * EXIT CONTROLS
2367 	 *
2368 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2369 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2370 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2371 	 */
2372 	exec_control = __vm_exit_controls_get(vmcs01);
2373 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2374 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2375 	else
2376 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2377 	vm_exit_controls_set(vmx, exec_control);
2378 
2379 	/*
2380 	 * Interrupt/Exception Fields
2381 	 */
2382 	if (vmx->nested.nested_run_pending) {
2383 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2384 			     vmcs12->vm_entry_intr_info_field);
2385 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2386 			     vmcs12->vm_entry_exception_error_code);
2387 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2388 			     vmcs12->vm_entry_instruction_len);
2389 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2390 			     vmcs12->guest_interruptibility_info);
2391 		vmx->loaded_vmcs->nmi_known_unmasked =
2392 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2393 	} else {
2394 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2395 	}
2396 }
2397 
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2398 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2399 {
2400 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2401 
2402 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2403 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2404 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2405 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2406 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2407 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2408 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2409 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2410 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2411 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2412 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2413 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2414 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2415 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2416 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2417 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2418 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2419 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2420 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2421 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2422 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2423 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2424 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2425 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2426 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2427 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2428 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2429 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2430 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2431 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2432 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2433 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2434 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2435 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2436 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2437 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2438 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2439 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2440 
2441 		vmx->segment_cache.bitmask = 0;
2442 	}
2443 
2444 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2445 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2446 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2447 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2448 			    vmcs12->guest_pending_dbg_exceptions);
2449 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2450 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2451 
2452 		/*
2453 		 * L1 may access the L2's PDPTR, so save them to construct
2454 		 * vmcs12
2455 		 */
2456 		if (enable_ept) {
2457 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2458 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2459 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2460 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2461 		}
2462 
2463 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2464 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2465 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2466 	}
2467 
2468 	if (nested_cpu_has_xsaves(vmcs12))
2469 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2470 
2471 	/*
2472 	 * Whether page-faults are trapped is determined by a combination of
2473 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2474 	 * doesn't care about page faults then we should set all of these to
2475 	 * L1's desires. However, if L0 does care about (some) page faults, it
2476 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2477 	 * simply ask to exit on each and every L2 page fault. This is done by
2478 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2479 	 * Note that below we don't need special code to set EB.PF beyond the
2480 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2481 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2482 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2483 	 */
2484 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2485 		/*
2486 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2487 		 * go ahead and use it?
2488 		 */
2489 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2490 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2491 	} else {
2492 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2493 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2494 	}
2495 
2496 	if (cpu_has_vmx_apicv()) {
2497 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2498 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2499 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2500 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2501 	}
2502 
2503 	/*
2504 	 * Make sure the msr_autostore list is up to date before we set the
2505 	 * count in the vmcs02.
2506 	 */
2507 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2508 
2509 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2510 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2511 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2512 
2513 	set_cr4_guest_host_mask(vmx);
2514 }
2515 
2516 /*
2517  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2518  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2519  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2520  * guest in a way that will both be appropriate to L1's requests, and our
2521  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2522  * function also has additional necessary side-effects, like setting various
2523  * vcpu->arch fields.
2524  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2525  * is assigned to entry_failure_code on failure.
2526  */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)2527 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2528 			  enum vm_entry_failure_code *entry_failure_code)
2529 {
2530 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2531 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2532 	bool load_guest_pdptrs_vmcs12 = false;
2533 
2534 	if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2535 		prepare_vmcs02_rare(vmx, vmcs12);
2536 		vmx->nested.dirty_vmcs12 = false;
2537 
2538 		load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2539 			!(hv_evmcs->hv_clean_fields &
2540 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2541 	}
2542 
2543 	if (vmx->nested.nested_run_pending &&
2544 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2545 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2546 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2547 	} else {
2548 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2549 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2550 	}
2551 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2552 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2553 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2554 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2555 
2556 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2557 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2558 	 * trap. Note that CR0.TS also needs updating - we do this later.
2559 	 */
2560 	update_exception_bitmap(vcpu);
2561 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2562 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2563 
2564 	if (vmx->nested.nested_run_pending &&
2565 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2566 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2567 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2568 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2569 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2570 	}
2571 
2572 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2573 
2574 	if (kvm_has_tsc_control)
2575 		decache_tsc_multiplier(vmx);
2576 
2577 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2578 
2579 	if (nested_cpu_has_ept(vmcs12))
2580 		nested_ept_init_mmu_context(vcpu);
2581 
2582 	/*
2583 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2584 	 * bits which we consider mandatory enabled.
2585 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2586 	 * the specifications by L1; It's not enough to take
2587 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2588 	 * have more bits than L1 expected.
2589 	 */
2590 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2591 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2592 
2593 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2594 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2595 
2596 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2597 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2598 	vmx_set_efer(vcpu, vcpu->arch.efer);
2599 
2600 	/*
2601 	 * Guest state is invalid and unrestricted guest is disabled,
2602 	 * which means L1 attempted VMEntry to L2 with invalid state.
2603 	 * Fail the VMEntry.
2604 	 */
2605 	if (CC(!vmx_guest_state_valid(vcpu))) {
2606 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2607 		return -EINVAL;
2608 	}
2609 
2610 	/* Shadow page tables on either EPT or shadow page tables. */
2611 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2612 				entry_failure_code))
2613 		return -EINVAL;
2614 
2615 	/*
2616 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2617 	 * on nested VM-Exit, which can occur without actually running L2 and
2618 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2619 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2620 	 * transition to HLT instead of running L2.
2621 	 */
2622 	if (enable_ept)
2623 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2624 
2625 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2626 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2627 	    is_pae_paging(vcpu)) {
2628 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2629 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2630 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2631 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2632 	}
2633 
2634 	if (!enable_ept)
2635 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2636 
2637 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2638 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2639 				     vmcs12->guest_ia32_perf_global_ctrl))) {
2640 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2641 		return -EINVAL;
2642 	}
2643 
2644 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2645 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2646 	return 0;
2647 }
2648 
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2649 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2650 {
2651 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2652 	       nested_cpu_has_virtual_nmis(vmcs12)))
2653 		return -EINVAL;
2654 
2655 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2656 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2657 		return -EINVAL;
2658 
2659 	return 0;
2660 }
2661 
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2662 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2663 {
2664 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2665 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
2666 
2667 	/* Check for memory type validity */
2668 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2669 	case VMX_EPTP_MT_UC:
2670 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2671 			return false;
2672 		break;
2673 	case VMX_EPTP_MT_WB:
2674 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2675 			return false;
2676 		break;
2677 	default:
2678 		return false;
2679 	}
2680 
2681 	/* Page-walk levels validity. */
2682 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2683 	case VMX_EPTP_PWL_5:
2684 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2685 			return false;
2686 		break;
2687 	case VMX_EPTP_PWL_4:
2688 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2689 			return false;
2690 		break;
2691 	default:
2692 		return false;
2693 	}
2694 
2695 	/* Reserved bits should not be set */
2696 	if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2697 		return false;
2698 
2699 	/* AD, if set, should be supported */
2700 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2701 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2702 			return false;
2703 	}
2704 
2705 	return true;
2706 }
2707 
2708 /*
2709  * Checks related to VM-Execution Control Fields
2710  */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2711 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2712                                               struct vmcs12 *vmcs12)
2713 {
2714 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2715 
2716 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2717 				   vmx->nested.msrs.pinbased_ctls_low,
2718 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2719 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2720 				   vmx->nested.msrs.procbased_ctls_low,
2721 				   vmx->nested.msrs.procbased_ctls_high)))
2722 		return -EINVAL;
2723 
2724 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2725 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2726 				   vmx->nested.msrs.secondary_ctls_low,
2727 				   vmx->nested.msrs.secondary_ctls_high)))
2728 		return -EINVAL;
2729 
2730 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2731 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2732 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2733 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2734 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2735 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2736 	    nested_vmx_check_nmi_controls(vmcs12) ||
2737 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2738 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2739 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2740 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2741 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2742 		return -EINVAL;
2743 
2744 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2745 	    nested_cpu_has_save_preemption_timer(vmcs12))
2746 		return -EINVAL;
2747 
2748 	if (nested_cpu_has_ept(vmcs12) &&
2749 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2750 		return -EINVAL;
2751 
2752 	if (nested_cpu_has_vmfunc(vmcs12)) {
2753 		if (CC(vmcs12->vm_function_control &
2754 		       ~vmx->nested.msrs.vmfunc_controls))
2755 			return -EINVAL;
2756 
2757 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2758 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2759 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2760 				return -EINVAL;
2761 		}
2762 	}
2763 
2764 	return 0;
2765 }
2766 
2767 /*
2768  * Checks related to VM-Exit Control Fields
2769  */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2770 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2771                                          struct vmcs12 *vmcs12)
2772 {
2773 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2774 
2775 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2776 				    vmx->nested.msrs.exit_ctls_low,
2777 				    vmx->nested.msrs.exit_ctls_high)) ||
2778 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2779 		return -EINVAL;
2780 
2781 	return 0;
2782 }
2783 
2784 /*
2785  * Checks related to VM-Entry Control Fields
2786  */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2787 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2788 					  struct vmcs12 *vmcs12)
2789 {
2790 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2791 
2792 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2793 				    vmx->nested.msrs.entry_ctls_low,
2794 				    vmx->nested.msrs.entry_ctls_high)))
2795 		return -EINVAL;
2796 
2797 	/*
2798 	 * From the Intel SDM, volume 3:
2799 	 * Fields relevant to VM-entry event injection must be set properly.
2800 	 * These fields are the VM-entry interruption-information field, the
2801 	 * VM-entry exception error code, and the VM-entry instruction length.
2802 	 */
2803 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2804 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2805 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2806 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2807 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2808 		bool should_have_error_code;
2809 		bool urg = nested_cpu_has2(vmcs12,
2810 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2811 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2812 
2813 		/* VM-entry interruption-info field: interruption type */
2814 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2815 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2816 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2817 			return -EINVAL;
2818 
2819 		/* VM-entry interruption-info field: vector */
2820 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2821 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2822 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2823 			return -EINVAL;
2824 
2825 		/* VM-entry interruption-info field: deliver error code */
2826 		should_have_error_code =
2827 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2828 			x86_exception_has_error_code(vector);
2829 		if (CC(has_error_code != should_have_error_code))
2830 			return -EINVAL;
2831 
2832 		/* VM-entry exception error code */
2833 		if (CC(has_error_code &&
2834 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2835 			return -EINVAL;
2836 
2837 		/* VM-entry interruption-info field: reserved bits */
2838 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2839 			return -EINVAL;
2840 
2841 		/* VM-entry instruction length */
2842 		switch (intr_type) {
2843 		case INTR_TYPE_SOFT_EXCEPTION:
2844 		case INTR_TYPE_SOFT_INTR:
2845 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2846 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2847 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2848 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2849 				return -EINVAL;
2850 		}
2851 	}
2852 
2853 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2854 		return -EINVAL;
2855 
2856 	return 0;
2857 }
2858 
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2859 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2860 				     struct vmcs12 *vmcs12)
2861 {
2862 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2863 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2864 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2865 		return -EINVAL;
2866 
2867 	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2868 		return nested_evmcs_check_controls(vmcs12);
2869 
2870 	return 0;
2871 }
2872 
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2873 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2874 				       struct vmcs12 *vmcs12)
2875 {
2876 #ifdef CONFIG_X86_64
2877 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2878 		!!(vcpu->arch.efer & EFER_LMA)))
2879 		return -EINVAL;
2880 #endif
2881 	return 0;
2882 }
2883 
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2884 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2885 				       struct vmcs12 *vmcs12)
2886 {
2887 	bool ia32e;
2888 
2889 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2890 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2891 	    CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2892 		return -EINVAL;
2893 
2894 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2895 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2896 		return -EINVAL;
2897 
2898 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2899 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2900 		return -EINVAL;
2901 
2902 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2903 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2904 					   vmcs12->host_ia32_perf_global_ctrl)))
2905 		return -EINVAL;
2906 
2907 #ifdef CONFIG_X86_64
2908 	ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2909 #else
2910 	ia32e = false;
2911 #endif
2912 
2913 	if (ia32e) {
2914 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2915 			return -EINVAL;
2916 	} else {
2917 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2918 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2919 		    CC((vmcs12->host_rip) >> 32))
2920 			return -EINVAL;
2921 	}
2922 
2923 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2924 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2925 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2926 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2927 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2928 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2929 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2930 	    CC(vmcs12->host_cs_selector == 0) ||
2931 	    CC(vmcs12->host_tr_selector == 0) ||
2932 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2933 		return -EINVAL;
2934 
2935 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2936 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2937 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2938 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2939 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2940 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2941 		return -EINVAL;
2942 
2943 	/*
2944 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2945 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2946 	 * the values of the LMA and LME bits in the field must each be that of
2947 	 * the host address-space size VM-exit control.
2948 	 */
2949 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2950 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2951 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2952 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2953 			return -EINVAL;
2954 	}
2955 
2956 	return 0;
2957 }
2958 
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2959 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2960 					  struct vmcs12 *vmcs12)
2961 {
2962 	int r = 0;
2963 	struct vmcs12 *shadow;
2964 	struct kvm_host_map map;
2965 
2966 	if (vmcs12->vmcs_link_pointer == -1ull)
2967 		return 0;
2968 
2969 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2970 		return -EINVAL;
2971 
2972 	if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2973 		return -EINVAL;
2974 
2975 	shadow = map.hva;
2976 
2977 	if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2978 	    CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2979 		r = -EINVAL;
2980 
2981 	kvm_vcpu_unmap(vcpu, &map, false);
2982 	return r;
2983 }
2984 
2985 /*
2986  * Checks related to Guest Non-register State
2987  */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)2988 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2989 {
2990 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2991 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2992 		return -EINVAL;
2993 
2994 	return 0;
2995 }
2996 
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)2997 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2998 					struct vmcs12 *vmcs12,
2999 					enum vm_entry_failure_code *entry_failure_code)
3000 {
3001 	bool ia32e;
3002 
3003 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
3004 
3005 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3006 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3007 		return -EINVAL;
3008 
3009 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3010 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3011 		return -EINVAL;
3012 
3013 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3014 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3015 		return -EINVAL;
3016 
3017 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3018 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3019 		return -EINVAL;
3020 	}
3021 
3022 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3023 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3024 					   vmcs12->guest_ia32_perf_global_ctrl)))
3025 		return -EINVAL;
3026 
3027 	/*
3028 	 * If the load IA32_EFER VM-entry control is 1, the following checks
3029 	 * are performed on the field for the IA32_EFER MSR:
3030 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3031 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3032 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3033 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3034 	 *   CR0.PG) is 1.
3035 	 */
3036 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3037 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3038 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3039 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3040 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3041 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3042 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3043 			return -EINVAL;
3044 	}
3045 
3046 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3047 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3048 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3049 		return -EINVAL;
3050 
3051 	if (nested_check_guest_non_reg_state(vmcs12))
3052 		return -EINVAL;
3053 
3054 	return 0;
3055 }
3056 
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3057 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3058 {
3059 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3060 	unsigned long cr3, cr4;
3061 	bool vm_fail;
3062 
3063 	if (!nested_early_check)
3064 		return 0;
3065 
3066 	if (vmx->msr_autoload.host.nr)
3067 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3068 	if (vmx->msr_autoload.guest.nr)
3069 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3070 
3071 	preempt_disable();
3072 
3073 	vmx_prepare_switch_to_guest(vcpu);
3074 
3075 	/*
3076 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3077 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3078 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3079 	 * there is no need to preserve other bits or save/restore the field.
3080 	 */
3081 	vmcs_writel(GUEST_RFLAGS, 0);
3082 
3083 	cr3 = __get_current_cr3_fast();
3084 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3085 		vmcs_writel(HOST_CR3, cr3);
3086 		vmx->loaded_vmcs->host_state.cr3 = cr3;
3087 	}
3088 
3089 	cr4 = cr4_read_shadow();
3090 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3091 		vmcs_writel(HOST_CR4, cr4);
3092 		vmx->loaded_vmcs->host_state.cr4 = cr4;
3093 	}
3094 
3095 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3096 				 __vmx_vcpu_run_flags(vmx));
3097 
3098 	if (vmx->msr_autoload.host.nr)
3099 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3100 	if (vmx->msr_autoload.guest.nr)
3101 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3102 
3103 	if (vm_fail) {
3104 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3105 
3106 		preempt_enable();
3107 
3108 		trace_kvm_nested_vmenter_failed(
3109 			"early hardware check VM-instruction error: ", error);
3110 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3111 		return 1;
3112 	}
3113 
3114 	/*
3115 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3116 	 */
3117 	if (hw_breakpoint_active())
3118 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3119 	local_irq_enable();
3120 	preempt_enable();
3121 
3122 	/*
3123 	 * A non-failing VMEntry means we somehow entered guest mode with
3124 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3125 	 * is no telling what memory has been modified or what state has
3126 	 * been exposed to unknown code.  Hitting this all but guarantees
3127 	 * a (very critical) hardware issue.
3128 	 */
3129 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3130 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3131 
3132 	return 0;
3133 }
3134 
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3135 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3136 {
3137 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3138 
3139 	/*
3140 	 * hv_evmcs may end up being not mapped after migration (when
3141 	 * L2 was running), map it here to make sure vmcs12 changes are
3142 	 * properly reflected.
3143 	 */
3144 	if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3145 		enum nested_evmptrld_status evmptrld_status =
3146 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3147 
3148 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3149 		    evmptrld_status == EVMPTRLD_ERROR)
3150 			return false;
3151 	}
3152 
3153 	return true;
3154 }
3155 
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3156 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3157 {
3158 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3159 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3160 	struct kvm_host_map *map;
3161 	struct page *page;
3162 	u64 hpa;
3163 
3164 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3165 		/*
3166 		 * Translate L1 physical address to host physical
3167 		 * address for vmcs02. Keep the page pinned, so this
3168 		 * physical address remains valid. We keep a reference
3169 		 * to it so we can release it later.
3170 		 */
3171 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3172 			kvm_release_page_clean(vmx->nested.apic_access_page);
3173 			vmx->nested.apic_access_page = NULL;
3174 		}
3175 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3176 		if (!is_error_page(page)) {
3177 			vmx->nested.apic_access_page = page;
3178 			hpa = page_to_phys(vmx->nested.apic_access_page);
3179 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
3180 		} else {
3181 			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3182 					     __func__);
3183 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3184 			vcpu->run->internal.suberror =
3185 				KVM_INTERNAL_ERROR_EMULATION;
3186 			vcpu->run->internal.ndata = 0;
3187 			return false;
3188 		}
3189 	}
3190 
3191 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3192 		map = &vmx->nested.virtual_apic_map;
3193 
3194 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3195 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3196 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3197 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3198 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3199 			/*
3200 			 * The processor will never use the TPR shadow, simply
3201 			 * clear the bit from the execution control.  Such a
3202 			 * configuration is useless, but it happens in tests.
3203 			 * For any other configuration, failing the vm entry is
3204 			 * _not_ what the processor does but it's basically the
3205 			 * only possibility we have.
3206 			 */
3207 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3208 		} else {
3209 			/*
3210 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3211 			 * force VM-Entry to fail.
3212 			 */
3213 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3214 		}
3215 	}
3216 
3217 	if (nested_cpu_has_posted_intr(vmcs12)) {
3218 		map = &vmx->nested.pi_desc_map;
3219 
3220 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3221 			vmx->nested.pi_desc =
3222 				(struct pi_desc *)(((void *)map->hva) +
3223 				offset_in_page(vmcs12->posted_intr_desc_addr));
3224 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3225 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3226 		}
3227 	}
3228 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3229 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3230 	else
3231 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3232 
3233 	return true;
3234 }
3235 
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3236 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3237 {
3238 	if (!nested_get_evmcs_page(vcpu)) {
3239 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3240 				     __func__);
3241 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3242 		vcpu->run->internal.suberror =
3243 			KVM_INTERNAL_ERROR_EMULATION;
3244 		vcpu->run->internal.ndata = 0;
3245 
3246 		return false;
3247 	}
3248 
3249 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3250 		return false;
3251 
3252 	return true;
3253 }
3254 
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3255 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3256 {
3257 	struct vmcs12 *vmcs12;
3258 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3259 	gpa_t dst;
3260 
3261 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3262 		return 0;
3263 
3264 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3265 		return 1;
3266 
3267 	/*
3268 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3269 	 * set is already checked as part of A/D emulation.
3270 	 */
3271 	vmcs12 = get_vmcs12(vcpu);
3272 	if (!nested_cpu_has_pml(vmcs12))
3273 		return 0;
3274 
3275 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3276 		vmx->nested.pml_full = true;
3277 		return 1;
3278 	}
3279 
3280 	gpa &= ~0xFFFull;
3281 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3282 
3283 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3284 				 offset_in_page(dst), sizeof(gpa)))
3285 		return 0;
3286 
3287 	vmcs12->guest_pml_index--;
3288 
3289 	return 0;
3290 }
3291 
3292 /*
3293  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3294  * for running VMX instructions (except VMXON, whose prerequisites are
3295  * slightly different). It also specifies what exception to inject otherwise.
3296  * Note that many of these exceptions have priority over VM exits, so they
3297  * don't have to be checked again here.
3298  */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3299 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3300 {
3301 	if (!to_vmx(vcpu)->nested.vmxon) {
3302 		kvm_queue_exception(vcpu, UD_VECTOR);
3303 		return 0;
3304 	}
3305 
3306 	if (vmx_get_cpl(vcpu)) {
3307 		kvm_inject_gp(vcpu, 0);
3308 		return 0;
3309 	}
3310 
3311 	return 1;
3312 }
3313 
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3314 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3315 {
3316 	u8 rvi = vmx_get_rvi();
3317 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3318 
3319 	return ((rvi & 0xf0) > (vppr & 0xf0));
3320 }
3321 
3322 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3323 				   struct vmcs12 *vmcs12);
3324 
3325 /*
3326  * If from_vmentry is false, this is being called from state restore (either RSM
3327  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3328  *
3329  * Returns:
3330  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3331  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3332  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3333  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3334  */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3335 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3336 							bool from_vmentry)
3337 {
3338 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3339 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3340 	enum vm_entry_failure_code entry_failure_code;
3341 	bool evaluate_pending_interrupts;
3342 	union vmx_exit_reason exit_reason = {
3343 		.basic = EXIT_REASON_INVALID_STATE,
3344 		.failed_vmentry = 1,
3345 	};
3346 	u32 failed_index;
3347 
3348 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3349 		kvm_vcpu_flush_tlb_current(vcpu);
3350 
3351 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3352 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3353 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3354 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3355 
3356 	if (!vmx->nested.nested_run_pending ||
3357 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3358 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3359 	if (kvm_mpx_supported() &&
3360 	    (!vmx->nested.nested_run_pending ||
3361 	     !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3362 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3363 
3364 	/*
3365 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3366 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3367 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3368 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3369 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3370 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3371 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3372 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3373 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3374 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3375 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3376 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3377 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3378 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3379 	 */
3380 	if (!enable_ept && !nested_early_check)
3381 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3382 
3383 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3384 
3385 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3386 
3387 	if (from_vmentry) {
3388 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3389 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3390 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3391 		}
3392 
3393 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3394 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3395 			return NVMX_VMENTRY_VMFAIL;
3396 		}
3397 
3398 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3399 						 &entry_failure_code)) {
3400 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3401 			vmcs12->exit_qualification = entry_failure_code;
3402 			goto vmentry_fail_vmexit;
3403 		}
3404 	}
3405 
3406 	enter_guest_mode(vcpu);
3407 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3408 		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3409 
3410 	if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3411 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3412 		vmcs12->exit_qualification = entry_failure_code;
3413 		goto vmentry_fail_vmexit_guest_mode;
3414 	}
3415 
3416 	if (from_vmentry) {
3417 		failed_index = nested_vmx_load_msr(vcpu,
3418 						   vmcs12->vm_entry_msr_load_addr,
3419 						   vmcs12->vm_entry_msr_load_count);
3420 		if (failed_index) {
3421 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3422 			vmcs12->exit_qualification = failed_index;
3423 			goto vmentry_fail_vmexit_guest_mode;
3424 		}
3425 	} else {
3426 		/*
3427 		 * The MMU is not initialized to point at the right entities yet and
3428 		 * "get pages" would need to read data from the guest (i.e. we will
3429 		 * need to perform gpa to hpa translation). Request a call
3430 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3431 		 * have already been set at vmentry time and should not be reset.
3432 		 */
3433 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3434 	}
3435 
3436 	/*
3437 	 * If L1 had a pending IRQ/NMI until it executed
3438 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3439 	 * disallowed (e.g. interrupts disabled), L0 needs to
3440 	 * evaluate if this pending event should cause an exit from L2
3441 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3442 	 * intercept EXTERNAL_INTERRUPT).
3443 	 *
3444 	 * Usually this would be handled by the processor noticing an
3445 	 * IRQ/NMI window request, or checking RVI during evaluation of
3446 	 * pending virtual interrupts.  However, this setting was done
3447 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3448 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3449 	 */
3450 	if (unlikely(evaluate_pending_interrupts))
3451 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3452 
3453 	/*
3454 	 * Do not start the preemption timer hrtimer until after we know
3455 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3456 	 * the timer.
3457 	 */
3458 	vmx->nested.preemption_timer_expired = false;
3459 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3460 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3461 		vmx_start_preemption_timer(vcpu, timer_value);
3462 	}
3463 
3464 	/*
3465 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3466 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3467 	 * returned as far as L1 is concerned. It will only return (and set
3468 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3469 	 */
3470 	return NVMX_VMENTRY_SUCCESS;
3471 
3472 	/*
3473 	 * A failed consistency check that leads to a VMExit during L1's
3474 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3475 	 * 26.7 "VM-entry failures during or after loading guest state".
3476 	 */
3477 vmentry_fail_vmexit_guest_mode:
3478 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3479 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3480 	leave_guest_mode(vcpu);
3481 
3482 vmentry_fail_vmexit:
3483 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3484 
3485 	if (!from_vmentry)
3486 		return NVMX_VMENTRY_VMEXIT;
3487 
3488 	load_vmcs12_host_state(vcpu, vmcs12);
3489 	vmcs12->vm_exit_reason = exit_reason.full;
3490 	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3491 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3492 	return NVMX_VMENTRY_VMEXIT;
3493 }
3494 
3495 /*
3496  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3497  * for running an L2 nested guest.
3498  */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3499 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3500 {
3501 	struct vmcs12 *vmcs12;
3502 	enum nvmx_vmentry_status status;
3503 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3504 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3505 	enum nested_evmptrld_status evmptrld_status;
3506 
3507 	if (!nested_vmx_check_permission(vcpu))
3508 		return 1;
3509 
3510 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3511 	if (evmptrld_status == EVMPTRLD_ERROR) {
3512 		kvm_queue_exception(vcpu, UD_VECTOR);
3513 		return 1;
3514 	} else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3515 		return nested_vmx_failInvalid(vcpu);
3516 	}
3517 
3518 	if (CC(!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull))
3519 		return nested_vmx_failInvalid(vcpu);
3520 
3521 	vmcs12 = get_vmcs12(vcpu);
3522 
3523 	/*
3524 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3525 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3526 	 * rather than RFLAGS.ZF, and no error number is stored to the
3527 	 * VM-instruction error field.
3528 	 */
3529 	if (CC(vmcs12->hdr.shadow_vmcs))
3530 		return nested_vmx_failInvalid(vcpu);
3531 
3532 	if (vmx->nested.hv_evmcs) {
3533 		copy_enlightened_to_vmcs12(vmx);
3534 		/* Enlightened VMCS doesn't have launch state */
3535 		vmcs12->launch_state = !launch;
3536 	} else if (enable_shadow_vmcs) {
3537 		copy_shadow_to_vmcs12(vmx);
3538 	}
3539 
3540 	/*
3541 	 * The nested entry process starts with enforcing various prerequisites
3542 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3543 	 * they fail: As the SDM explains, some conditions should cause the
3544 	 * instruction to fail, while others will cause the instruction to seem
3545 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3546 	 * To speed up the normal (success) code path, we should avoid checking
3547 	 * for misconfigurations which will anyway be caught by the processor
3548 	 * when using the merged vmcs02.
3549 	 */
3550 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3551 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3552 
3553 	if (CC(vmcs12->launch_state == launch))
3554 		return nested_vmx_fail(vcpu,
3555 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3556 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3557 
3558 	if (nested_vmx_check_controls(vcpu, vmcs12))
3559 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3560 
3561 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3562 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3563 
3564 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3565 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3566 
3567 	/*
3568 	 * We're finally done with prerequisite checking, and can start with
3569 	 * the nested entry.
3570 	 */
3571 	vmx->nested.nested_run_pending = 1;
3572 	vmx->nested.has_preemption_timer_deadline = false;
3573 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3574 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3575 		goto vmentry_failed;
3576 
3577 	/* Emulate processing of posted interrupts on VM-Enter. */
3578 	if (nested_cpu_has_posted_intr(vmcs12) &&
3579 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3580 		vmx->nested.pi_pending = true;
3581 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3582 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3583 	}
3584 
3585 	/* Hide L1D cache contents from the nested guest.  */
3586 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3587 
3588 	/*
3589 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3590 	 * also be used as part of restoring nVMX state for
3591 	 * snapshot restore (migration).
3592 	 *
3593 	 * In this flow, it is assumed that vmcs12 cache was
3594 	 * trasferred as part of captured nVMX state and should
3595 	 * therefore not be read from guest memory (which may not
3596 	 * exist on destination host yet).
3597 	 */
3598 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3599 
3600 	/*
3601 	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3602 	 * awakened by event injection or by an NMI-window VM-exit or
3603 	 * by an interrupt-window VM-exit, halt the vcpu.
3604 	 */
3605 	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3606 	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3607 	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3608 	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3609 	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3610 		vmx->nested.nested_run_pending = 0;
3611 		return kvm_vcpu_halt(vcpu);
3612 	}
3613 	return 1;
3614 
3615 vmentry_failed:
3616 	vmx->nested.nested_run_pending = 0;
3617 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3618 		return 0;
3619 	if (status == NVMX_VMENTRY_VMEXIT)
3620 		return 1;
3621 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3622 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3623 }
3624 
3625 /*
3626  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3627  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3628  * This function returns the new value we should put in vmcs12.guest_cr0.
3629  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3630  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3631  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3632  *     didn't trap the bit, because if L1 did, so would L0).
3633  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3634  *     been modified by L2, and L1 knows it. So just leave the old value of
3635  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3636  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3637  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3638  *     changed these bits, and therefore they need to be updated, but L0
3639  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3640  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3641  */
3642 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3643 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3644 {
3645 	return
3646 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3647 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3648 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3649 			vcpu->arch.cr0_guest_owned_bits));
3650 }
3651 
3652 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3653 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3654 {
3655 	return
3656 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3657 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3658 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3659 			vcpu->arch.cr4_guest_owned_bits));
3660 }
3661 
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3662 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3663 				      struct vmcs12 *vmcs12,
3664 				      u32 vm_exit_reason, u32 exit_intr_info)
3665 {
3666 	u32 idt_vectoring;
3667 	unsigned int nr;
3668 
3669 	/*
3670 	 * Per the SDM, VM-Exits due to double and triple faults are never
3671 	 * considered to occur during event delivery, even if the double/triple
3672 	 * fault is the result of an escalating vectoring issue.
3673 	 *
3674 	 * Note, the SDM qualifies the double fault behavior with "The original
3675 	 * event results in a double-fault exception".  It's unclear why the
3676 	 * qualification exists since exits due to double fault can occur only
3677 	 * while vectoring a different exception (injected events are never
3678 	 * subject to interception), i.e. there's _always_ an original event.
3679 	 *
3680 	 * The SDM also uses NMI as a confusing example for the "original event
3681 	 * causes the VM exit directly" clause.  NMI isn't special in any way,
3682 	 * the same rule applies to all events that cause an exit directly.
3683 	 * NMI is an odd choice for the example because NMIs can only occur on
3684 	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3685 	 */
3686 	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3687 	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3688 	     is_double_fault(exit_intr_info))) {
3689 		vmcs12->idt_vectoring_info_field = 0;
3690 	} else if (vcpu->arch.exception.injected) {
3691 		nr = vcpu->arch.exception.nr;
3692 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3693 
3694 		if (kvm_exception_is_soft(nr)) {
3695 			vmcs12->vm_exit_instruction_len =
3696 				vcpu->arch.event_exit_inst_len;
3697 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3698 		} else
3699 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3700 
3701 		if (vcpu->arch.exception.has_error_code) {
3702 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3703 			vmcs12->idt_vectoring_error_code =
3704 				vcpu->arch.exception.error_code;
3705 		}
3706 
3707 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3708 	} else if (vcpu->arch.nmi_injected) {
3709 		vmcs12->idt_vectoring_info_field =
3710 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3711 	} else if (vcpu->arch.interrupt.injected) {
3712 		nr = vcpu->arch.interrupt.nr;
3713 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3714 
3715 		if (vcpu->arch.interrupt.soft) {
3716 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3717 			vmcs12->vm_entry_instruction_len =
3718 				vcpu->arch.event_exit_inst_len;
3719 		} else
3720 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3721 
3722 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3723 	} else {
3724 		vmcs12->idt_vectoring_info_field = 0;
3725 	}
3726 }
3727 
3728 
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3729 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3730 {
3731 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3732 	gfn_t gfn;
3733 
3734 	/*
3735 	 * Don't need to mark the APIC access page dirty; it is never
3736 	 * written to by the CPU during APIC virtualization.
3737 	 */
3738 
3739 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3740 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3741 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3742 	}
3743 
3744 	if (nested_cpu_has_posted_intr(vmcs12)) {
3745 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3746 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3747 	}
3748 }
3749 
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3750 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3751 {
3752 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3753 	int max_irr;
3754 	void *vapic_page;
3755 	u16 status;
3756 
3757 	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3758 		return;
3759 
3760 	vmx->nested.pi_pending = false;
3761 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3762 		return;
3763 
3764 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3765 	if (max_irr != 256) {
3766 		vapic_page = vmx->nested.virtual_apic_map.hva;
3767 		if (!vapic_page)
3768 			return;
3769 
3770 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3771 			vapic_page, &max_irr);
3772 		status = vmcs_read16(GUEST_INTR_STATUS);
3773 		if ((u8)max_irr > ((u8)status & 0xff)) {
3774 			status &= ~0xff;
3775 			status |= (u8)max_irr;
3776 			vmcs_write16(GUEST_INTR_STATUS, status);
3777 		}
3778 	}
3779 
3780 	nested_mark_vmcs12_pages_dirty(vcpu);
3781 }
3782 
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu,unsigned long exit_qual)3783 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3784 					       unsigned long exit_qual)
3785 {
3786 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3787 	unsigned int nr = vcpu->arch.exception.nr;
3788 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3789 
3790 	if (vcpu->arch.exception.has_error_code) {
3791 		/*
3792 		 * Intel CPUs do not generate error codes with bits 31:16 set,
3793 		 * and more importantly VMX disallows setting bits 31:16 in the
3794 		 * injected error code for VM-Entry.  Drop the bits to mimic
3795 		 * hardware and avoid inducing failure on nested VM-Entry if L1
3796 		 * chooses to inject the exception back to L2.  AMD CPUs _do_
3797 		 * generate "full" 32-bit error codes, so KVM allows userspace
3798 		 * to inject exception error codes with bits 31:16 set.
3799 		 */
3800 		vmcs12->vm_exit_intr_error_code = (u16)vcpu->arch.exception.error_code;
3801 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3802 	}
3803 
3804 	if (kvm_exception_is_soft(nr))
3805 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3806 	else
3807 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3808 
3809 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3810 	    vmx_get_nmi_mask(vcpu))
3811 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3812 
3813 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3814 }
3815 
3816 /*
3817  * Returns true if a debug trap is pending delivery.
3818  *
3819  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3820  * exception may be inferred from the presence of an exception payload.
3821  */
vmx_pending_dbg_trap(struct kvm_vcpu * vcpu)3822 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3823 {
3824 	return vcpu->arch.exception.pending &&
3825 			vcpu->arch.exception.nr == DB_VECTOR &&
3826 			vcpu->arch.exception.payload;
3827 }
3828 
3829 /*
3830  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3831  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3832  * represents these debug traps with a payload that is said to be compatible
3833  * with the 'pending debug exceptions' field, write the payload to the VMCS
3834  * field if a VM-exit is delivered before the debug trap.
3835  */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)3836 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3837 {
3838 	if (vmx_pending_dbg_trap(vcpu))
3839 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3840 			    vcpu->arch.exception.payload);
3841 }
3842 
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)3843 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3844 {
3845 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3846 	       to_vmx(vcpu)->nested.preemption_timer_expired;
3847 }
3848 
vmx_check_nested_events(struct kvm_vcpu * vcpu)3849 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3850 {
3851 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3852 	unsigned long exit_qual;
3853 	bool block_nested_events =
3854 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3855 	bool mtf_pending = vmx->nested.mtf_pending;
3856 	struct kvm_lapic *apic = vcpu->arch.apic;
3857 
3858 	/*
3859 	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3860 	 * this state is discarded.
3861 	 */
3862 	if (!block_nested_events)
3863 		vmx->nested.mtf_pending = false;
3864 
3865 	if (lapic_in_kernel(vcpu) &&
3866 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3867 		if (block_nested_events)
3868 			return -EBUSY;
3869 		nested_vmx_update_pending_dbg(vcpu);
3870 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3871 		nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3872 		return 0;
3873 	}
3874 
3875 	/*
3876 	 * Process any exceptions that are not debug traps before MTF.
3877 	 */
3878 	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3879 		if (block_nested_events)
3880 			return -EBUSY;
3881 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3882 			goto no_vmexit;
3883 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3884 		return 0;
3885 	}
3886 
3887 	if (mtf_pending) {
3888 		if (block_nested_events)
3889 			return -EBUSY;
3890 		nested_vmx_update_pending_dbg(vcpu);
3891 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3892 		return 0;
3893 	}
3894 
3895 	if (vcpu->arch.exception.pending) {
3896 		if (block_nested_events)
3897 			return -EBUSY;
3898 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3899 			goto no_vmexit;
3900 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3901 		return 0;
3902 	}
3903 
3904 	if (nested_vmx_preemption_timer_pending(vcpu)) {
3905 		if (block_nested_events)
3906 			return -EBUSY;
3907 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3908 		return 0;
3909 	}
3910 
3911 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3912 		if (block_nested_events)
3913 			return -EBUSY;
3914 		goto no_vmexit;
3915 	}
3916 
3917 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3918 		if (block_nested_events)
3919 			return -EBUSY;
3920 		if (!nested_exit_on_nmi(vcpu))
3921 			goto no_vmexit;
3922 
3923 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3924 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3925 				  INTR_INFO_VALID_MASK, 0);
3926 		/*
3927 		 * The NMI-triggered VM exit counts as injection:
3928 		 * clear this one and block further NMIs.
3929 		 */
3930 		vcpu->arch.nmi_pending = 0;
3931 		vmx_set_nmi_mask(vcpu, true);
3932 		return 0;
3933 	}
3934 
3935 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3936 		if (block_nested_events)
3937 			return -EBUSY;
3938 		if (!nested_exit_on_intr(vcpu))
3939 			goto no_vmexit;
3940 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3941 		return 0;
3942 	}
3943 
3944 no_vmexit:
3945 	vmx_complete_nested_posted_interrupt(vcpu);
3946 	return 0;
3947 }
3948 
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)3949 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3950 {
3951 	ktime_t remaining =
3952 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3953 	u64 value;
3954 
3955 	if (ktime_to_ns(remaining) <= 0)
3956 		return 0;
3957 
3958 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3959 	do_div(value, 1000000);
3960 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3961 }
3962 
is_vmcs12_ext_field(unsigned long field)3963 static bool is_vmcs12_ext_field(unsigned long field)
3964 {
3965 	switch (field) {
3966 	case GUEST_ES_SELECTOR:
3967 	case GUEST_CS_SELECTOR:
3968 	case GUEST_SS_SELECTOR:
3969 	case GUEST_DS_SELECTOR:
3970 	case GUEST_FS_SELECTOR:
3971 	case GUEST_GS_SELECTOR:
3972 	case GUEST_LDTR_SELECTOR:
3973 	case GUEST_TR_SELECTOR:
3974 	case GUEST_ES_LIMIT:
3975 	case GUEST_CS_LIMIT:
3976 	case GUEST_SS_LIMIT:
3977 	case GUEST_DS_LIMIT:
3978 	case GUEST_FS_LIMIT:
3979 	case GUEST_GS_LIMIT:
3980 	case GUEST_LDTR_LIMIT:
3981 	case GUEST_TR_LIMIT:
3982 	case GUEST_GDTR_LIMIT:
3983 	case GUEST_IDTR_LIMIT:
3984 	case GUEST_ES_AR_BYTES:
3985 	case GUEST_DS_AR_BYTES:
3986 	case GUEST_FS_AR_BYTES:
3987 	case GUEST_GS_AR_BYTES:
3988 	case GUEST_LDTR_AR_BYTES:
3989 	case GUEST_TR_AR_BYTES:
3990 	case GUEST_ES_BASE:
3991 	case GUEST_CS_BASE:
3992 	case GUEST_SS_BASE:
3993 	case GUEST_DS_BASE:
3994 	case GUEST_FS_BASE:
3995 	case GUEST_GS_BASE:
3996 	case GUEST_LDTR_BASE:
3997 	case GUEST_TR_BASE:
3998 	case GUEST_GDTR_BASE:
3999 	case GUEST_IDTR_BASE:
4000 	case GUEST_PENDING_DBG_EXCEPTIONS:
4001 	case GUEST_BNDCFGS:
4002 		return true;
4003 	default:
4004 		break;
4005 	}
4006 
4007 	return false;
4008 }
4009 
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4010 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4011 				       struct vmcs12 *vmcs12)
4012 {
4013 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4014 
4015 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4016 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4017 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4018 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4019 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4020 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4021 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4022 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4023 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4024 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4025 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4026 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4027 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4028 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4029 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4030 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4031 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4032 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4033 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4034 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4035 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4036 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4037 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4038 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4039 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4040 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4041 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4042 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4043 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4044 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4045 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4046 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4047 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4048 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4049 	vmcs12->guest_pending_dbg_exceptions =
4050 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4051 	if (kvm_mpx_supported())
4052 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4053 
4054 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4055 }
4056 
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4057 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4058 				       struct vmcs12 *vmcs12)
4059 {
4060 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4061 	int cpu;
4062 
4063 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4064 		return;
4065 
4066 
4067 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4068 
4069 	cpu = get_cpu();
4070 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4071 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4072 
4073 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4074 
4075 	vmx->loaded_vmcs = &vmx->vmcs01;
4076 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4077 	put_cpu();
4078 }
4079 
4080 /*
4081  * Update the guest state fields of vmcs12 to reflect changes that
4082  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4083  * VM-entry controls is also updated, since this is really a guest
4084  * state bit.)
4085  */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4086 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4087 {
4088 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4089 
4090 	if (vmx->nested.hv_evmcs)
4091 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4092 
4093 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
4094 
4095 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4096 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4097 
4098 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4099 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4100 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4101 
4102 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4103 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4104 
4105 	vmcs12->guest_interruptibility_info =
4106 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4107 
4108 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4109 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4110 	else
4111 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4112 
4113 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4114 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4115 	    !vmx->nested.nested_run_pending)
4116 		vmcs12->vmx_preemption_timer_value =
4117 			vmx_get_preemption_timer_value(vcpu);
4118 
4119 	/*
4120 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4121 	 * own CR3 without exiting. If it has changed it, we must keep it.
4122 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4123 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4124 	 *
4125 	 * Additionally, restore L2's PDPTR to vmcs12.
4126 	 */
4127 	if (enable_ept) {
4128 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4129 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4130 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4131 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4132 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4133 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4134 		}
4135 	}
4136 
4137 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4138 
4139 	if (nested_cpu_has_vid(vmcs12))
4140 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4141 
4142 	vmcs12->vm_entry_controls =
4143 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4144 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4145 
4146 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4147 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4148 
4149 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4150 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4151 }
4152 
4153 /*
4154  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4155  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4156  * and this function updates it to reflect the changes to the guest state while
4157  * L2 was running (and perhaps made some exits which were handled directly by L0
4158  * without going back to L1), and to reflect the exit reason.
4159  * Note that we do not have to copy here all VMCS fields, just those that
4160  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4161  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4162  * which already writes to vmcs12 directly.
4163  */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4164 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4165 			   u32 vm_exit_reason, u32 exit_intr_info,
4166 			   unsigned long exit_qualification)
4167 {
4168 	/* update exit information fields: */
4169 	vmcs12->vm_exit_reason = vm_exit_reason;
4170 	vmcs12->exit_qualification = exit_qualification;
4171 
4172 	/*
4173 	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4174 	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4175 	 * exit info fields are unmodified.
4176 	 */
4177 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4178 		vmcs12->launch_state = 1;
4179 
4180 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4181 		 * instead of reading the real value. */
4182 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4183 
4184 		/*
4185 		 * Transfer the event that L0 or L1 may wanted to inject into
4186 		 * L2 to IDT_VECTORING_INFO_FIELD.
4187 		 */
4188 		vmcs12_save_pending_event(vcpu, vmcs12,
4189 					  vm_exit_reason, exit_intr_info);
4190 
4191 		vmcs12->vm_exit_intr_info = exit_intr_info;
4192 		vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4193 		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4194 
4195 		/*
4196 		 * According to spec, there's no need to store the guest's
4197 		 * MSRs if the exit is due to a VM-entry failure that occurs
4198 		 * during or after loading the guest state. Since this exit
4199 		 * does not fall in that category, we need to save the MSRs.
4200 		 */
4201 		if (nested_vmx_store_msr(vcpu,
4202 					 vmcs12->vm_exit_msr_store_addr,
4203 					 vmcs12->vm_exit_msr_store_count))
4204 			nested_vmx_abort(vcpu,
4205 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4206 	}
4207 }
4208 
4209 /*
4210  * A part of what we need to when the nested L2 guest exits and we want to
4211  * run its L1 parent, is to reset L1's guest state to the host state specified
4212  * in vmcs12.
4213  * This function is to be called not only on normal nested exit, but also on
4214  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4215  * Failures During or After Loading Guest State").
4216  * This function should be called when the active VMCS is L1's (vmcs01).
4217  */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4218 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4219 				   struct vmcs12 *vmcs12)
4220 {
4221 	enum vm_entry_failure_code ignored;
4222 	struct kvm_segment seg;
4223 
4224 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4225 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4226 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4227 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4228 	else
4229 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4230 	vmx_set_efer(vcpu, vcpu->arch.efer);
4231 
4232 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4233 	kvm_rip_write(vcpu, vmcs12->host_rip);
4234 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4235 	vmx_set_interrupt_shadow(vcpu, 0);
4236 
4237 	/*
4238 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4239 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4240 	 *
4241 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4242 	 * (KVM doesn't change it);
4243 	 */
4244 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4245 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4246 
4247 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4248 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4249 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4250 
4251 	nested_ept_uninit_mmu_context(vcpu);
4252 
4253 	/*
4254 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4255 	 * couldn't have changed.
4256 	 */
4257 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4258 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4259 
4260 	if (!enable_ept)
4261 		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4262 
4263 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4264 
4265 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4266 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4267 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4268 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4269 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4270 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4271 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4272 
4273 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4274 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4275 		vmcs_write64(GUEST_BNDCFGS, 0);
4276 
4277 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4278 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4279 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4280 	}
4281 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4282 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4283 					 vmcs12->host_ia32_perf_global_ctrl));
4284 
4285 	/* Set L1 segment info according to Intel SDM
4286 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4287 	seg = (struct kvm_segment) {
4288 		.base = 0,
4289 		.limit = 0xFFFFFFFF,
4290 		.selector = vmcs12->host_cs_selector,
4291 		.type = 11,
4292 		.present = 1,
4293 		.s = 1,
4294 		.g = 1
4295 	};
4296 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4297 		seg.l = 1;
4298 	else
4299 		seg.db = 1;
4300 	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4301 	seg = (struct kvm_segment) {
4302 		.base = 0,
4303 		.limit = 0xFFFFFFFF,
4304 		.type = 3,
4305 		.present = 1,
4306 		.s = 1,
4307 		.db = 1,
4308 		.g = 1
4309 	};
4310 	seg.selector = vmcs12->host_ds_selector;
4311 	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4312 	seg.selector = vmcs12->host_es_selector;
4313 	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4314 	seg.selector = vmcs12->host_ss_selector;
4315 	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4316 	seg.selector = vmcs12->host_fs_selector;
4317 	seg.base = vmcs12->host_fs_base;
4318 	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4319 	seg.selector = vmcs12->host_gs_selector;
4320 	seg.base = vmcs12->host_gs_base;
4321 	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4322 	seg = (struct kvm_segment) {
4323 		.base = vmcs12->host_tr_base,
4324 		.limit = 0x67,
4325 		.selector = vmcs12->host_tr_selector,
4326 		.type = 11,
4327 		.present = 1
4328 	};
4329 	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4330 
4331 	kvm_set_dr(vcpu, 7, 0x400);
4332 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4333 
4334 	if (cpu_has_vmx_msr_bitmap())
4335 		vmx_update_msr_bitmap(vcpu);
4336 
4337 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4338 				vmcs12->vm_exit_msr_load_count))
4339 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4340 }
4341 
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4342 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4343 {
4344 	struct vmx_uret_msr *efer_msr;
4345 	unsigned int i;
4346 
4347 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4348 		return vmcs_read64(GUEST_IA32_EFER);
4349 
4350 	if (cpu_has_load_ia32_efer())
4351 		return host_efer;
4352 
4353 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4354 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4355 			return vmx->msr_autoload.guest.val[i].value;
4356 	}
4357 
4358 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4359 	if (efer_msr)
4360 		return efer_msr->data;
4361 
4362 	return host_efer;
4363 }
4364 
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4365 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4366 {
4367 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4368 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4369 	struct vmx_msr_entry g, h;
4370 	gpa_t gpa;
4371 	u32 i, j;
4372 
4373 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4374 
4375 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4376 		/*
4377 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4378 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4379 		 * and vcpu->arch.dr7 is not squirreled away before the
4380 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4381 		 */
4382 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4383 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4384 		else
4385 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4386 	}
4387 
4388 	/*
4389 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4390 	 * handle a variety of side effects to KVM's software model.
4391 	 */
4392 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4393 
4394 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4395 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4396 
4397 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4398 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4399 
4400 	nested_ept_uninit_mmu_context(vcpu);
4401 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4402 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4403 
4404 	/*
4405 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4406 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4407 	 * VMFail, like everything else we just need to ensure our
4408 	 * software model is up-to-date.
4409 	 */
4410 	if (enable_ept && is_pae_paging(vcpu))
4411 		ept_save_pdptrs(vcpu);
4412 
4413 	kvm_mmu_reset_context(vcpu);
4414 
4415 	if (cpu_has_vmx_msr_bitmap())
4416 		vmx_update_msr_bitmap(vcpu);
4417 
4418 	/*
4419 	 * This nasty bit of open coding is a compromise between blindly
4420 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4421 	 * of VMFail), leaving the nested VM's MSRs in the software model
4422 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4423 	 * expensive since the lists are unbound by hardware).  For each
4424 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4425 	 * list, reload it from the exit load list if it exists and differs
4426 	 * from the guest value.  The intent is to stuff host state as
4427 	 * silently as possible, not to fully process the exit load list.
4428 	 */
4429 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4430 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4431 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4432 			pr_debug_ratelimited(
4433 				"%s read MSR index failed (%u, 0x%08llx)\n",
4434 				__func__, i, gpa);
4435 			goto vmabort;
4436 		}
4437 
4438 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4439 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4440 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4441 				pr_debug_ratelimited(
4442 					"%s read MSR failed (%u, 0x%08llx)\n",
4443 					__func__, j, gpa);
4444 				goto vmabort;
4445 			}
4446 			if (h.index != g.index)
4447 				continue;
4448 			if (h.value == g.value)
4449 				break;
4450 
4451 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4452 				pr_debug_ratelimited(
4453 					"%s check failed (%u, 0x%x, 0x%x)\n",
4454 					__func__, j, h.index, h.reserved);
4455 				goto vmabort;
4456 			}
4457 
4458 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4459 				pr_debug_ratelimited(
4460 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4461 					__func__, j, h.index, h.value);
4462 				goto vmabort;
4463 			}
4464 		}
4465 	}
4466 
4467 	return;
4468 
4469 vmabort:
4470 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4471 }
4472 
4473 /*
4474  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4475  * and modify vmcs12 to make it see what it would expect to see there if
4476  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4477  */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4478 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4479 		       u32 exit_intr_info, unsigned long exit_qualification)
4480 {
4481 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4482 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4483 
4484 	/* trying to cancel vmlaunch/vmresume is a bug */
4485 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4486 
4487 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4488 		/*
4489 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4490 		 * Enlightened VMCS after migration and we still need to
4491 		 * do that when something is forcing L2->L1 exit prior to
4492 		 * the first L2 run.
4493 		 */
4494 		(void)nested_get_evmcs_page(vcpu);
4495 	}
4496 
4497 	/* Service the TLB flush request for L2 before switching to L1. */
4498 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4499 		kvm_vcpu_flush_tlb_current(vcpu);
4500 
4501 	/*
4502 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4503 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4504 	 * up-to-date before switching to L1.
4505 	 */
4506 	if (enable_ept && is_pae_paging(vcpu))
4507 		vmx_ept_load_pdptrs(vcpu);
4508 
4509 	leave_guest_mode(vcpu);
4510 
4511 	if (nested_cpu_has_preemption_timer(vmcs12))
4512 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4513 
4514 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4515 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4516 
4517 	if (likely(!vmx->fail)) {
4518 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4519 
4520 		if (vm_exit_reason != -1)
4521 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4522 				       exit_intr_info, exit_qualification);
4523 
4524 		/*
4525 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4526 		 * also be used to capture vmcs12 cache as part of
4527 		 * capturing nVMX state for snapshot (migration).
4528 		 *
4529 		 * Otherwise, this flush will dirty guest memory at a
4530 		 * point it is already assumed by user-space to be
4531 		 * immutable.
4532 		 */
4533 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4534 	} else {
4535 		/*
4536 		 * The only expected VM-instruction error is "VM entry with
4537 		 * invalid control field(s)." Anything else indicates a
4538 		 * problem with L0.  And we should never get here with a
4539 		 * VMFail of any type if early consistency checks are enabled.
4540 		 */
4541 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4542 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4543 		WARN_ON_ONCE(nested_early_check);
4544 	}
4545 
4546 	/*
4547 	 * Drop events/exceptions that were queued for re-injection to L2
4548 	 * (picked up via vmx_complete_interrupts()), as well as exceptions
4549 	 * that were pending for L2.  Note, this must NOT be hoisted above
4550 	 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4551 	 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4552 	 */
4553 	vcpu->arch.nmi_injected = false;
4554 	kvm_clear_exception_queue(vcpu);
4555 	kvm_clear_interrupt_queue(vcpu);
4556 
4557 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4558 
4559 	/* Update any VMCS fields that might have changed while L2 ran */
4560 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4561 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4562 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4563 	if (vmx->nested.l1_tpr_threshold != -1)
4564 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4565 
4566 	if (kvm_has_tsc_control)
4567 		decache_tsc_multiplier(vmx);
4568 
4569 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4570 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4571 		vmx_set_virtual_apic_mode(vcpu);
4572 	}
4573 
4574 	/* Unpin physical memory we referred to in vmcs02 */
4575 	if (vmx->nested.apic_access_page) {
4576 		kvm_release_page_clean(vmx->nested.apic_access_page);
4577 		vmx->nested.apic_access_page = NULL;
4578 	}
4579 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4580 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4581 	vmx->nested.pi_desc = NULL;
4582 
4583 	if (vmx->nested.reload_vmcs01_apic_access_page) {
4584 		vmx->nested.reload_vmcs01_apic_access_page = false;
4585 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4586 	}
4587 
4588 	if ((vm_exit_reason != -1) &&
4589 	    (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4590 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4591 
4592 	/* in case we halted in L2 */
4593 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4594 
4595 	if (likely(!vmx->fail)) {
4596 		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4597 		    nested_exit_intr_ack_set(vcpu)) {
4598 			int irq = kvm_cpu_get_interrupt(vcpu);
4599 			WARN_ON(irq < 0);
4600 			vmcs12->vm_exit_intr_info = irq |
4601 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4602 		}
4603 
4604 		if (vm_exit_reason != -1)
4605 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4606 						       vmcs12->exit_qualification,
4607 						       vmcs12->idt_vectoring_info_field,
4608 						       vmcs12->vm_exit_intr_info,
4609 						       vmcs12->vm_exit_intr_error_code,
4610 						       KVM_ISA_VMX);
4611 
4612 		load_vmcs12_host_state(vcpu, vmcs12);
4613 
4614 		return;
4615 	}
4616 
4617 	/*
4618 	 * After an early L2 VM-entry failure, we're now back
4619 	 * in L1 which thinks it just finished a VMLAUNCH or
4620 	 * VMRESUME instruction, so we need to set the failure
4621 	 * flag and the VM-instruction error field of the VMCS
4622 	 * accordingly, and skip the emulated instruction.
4623 	 */
4624 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4625 
4626 	/*
4627 	 * Restore L1's host state to KVM's software model.  We're here
4628 	 * because a consistency check was caught by hardware, which
4629 	 * means some amount of guest state has been propagated to KVM's
4630 	 * model and needs to be unwound to the host's state.
4631 	 */
4632 	nested_vmx_restore_host_state(vcpu);
4633 
4634 	vmx->fail = 0;
4635 }
4636 
4637 /*
4638  * Decode the memory-address operand of a vmx instruction, as recorded on an
4639  * exit caused by such an instruction (run by a guest hypervisor).
4640  * On success, returns 0. When the operand is invalid, returns 1 and throws
4641  * #UD, #GP, or #SS.
4642  */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)4643 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4644 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4645 {
4646 	gva_t off;
4647 	bool exn;
4648 	struct kvm_segment s;
4649 
4650 	/*
4651 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4652 	 * Execution", on an exit, vmx_instruction_info holds most of the
4653 	 * addressing components of the operand. Only the displacement part
4654 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4655 	 * For how an actual address is calculated from all these components,
4656 	 * refer to Vol. 1, "Operand Addressing".
4657 	 */
4658 	int  scaling = vmx_instruction_info & 3;
4659 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4660 	bool is_reg = vmx_instruction_info & (1u << 10);
4661 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4662 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4663 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4664 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4665 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4666 
4667 	if (is_reg) {
4668 		kvm_queue_exception(vcpu, UD_VECTOR);
4669 		return 1;
4670 	}
4671 
4672 	/* Addr = segment_base + offset */
4673 	/* offset = base + [index * scale] + displacement */
4674 	off = exit_qualification; /* holds the displacement */
4675 	if (addr_size == 1)
4676 		off = (gva_t)sign_extend64(off, 31);
4677 	else if (addr_size == 0)
4678 		off = (gva_t)sign_extend64(off, 15);
4679 	if (base_is_valid)
4680 		off += kvm_register_readl(vcpu, base_reg);
4681 	if (index_is_valid)
4682 		off += kvm_register_readl(vcpu, index_reg) << scaling;
4683 	vmx_get_segment(vcpu, &s, seg_reg);
4684 
4685 	/*
4686 	 * The effective address, i.e. @off, of a memory operand is truncated
4687 	 * based on the address size of the instruction.  Note that this is
4688 	 * the *effective address*, i.e. the address prior to accounting for
4689 	 * the segment's base.
4690 	 */
4691 	if (addr_size == 1) /* 32 bit */
4692 		off &= 0xffffffff;
4693 	else if (addr_size == 0) /* 16 bit */
4694 		off &= 0xffff;
4695 
4696 	/* Checks for #GP/#SS exceptions. */
4697 	exn = false;
4698 	if (is_long_mode(vcpu)) {
4699 		/*
4700 		 * The virtual/linear address is never truncated in 64-bit
4701 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4702 		 * address when using FS/GS with a non-zero base.
4703 		 */
4704 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4705 			*ret = s.base + off;
4706 		else
4707 			*ret = off;
4708 
4709 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4710 		 * non-canonical form. This is the only check on the memory
4711 		 * destination for long mode!
4712 		 */
4713 		exn = is_noncanonical_address(*ret, vcpu);
4714 	} else {
4715 		/*
4716 		 * When not in long mode, the virtual/linear address is
4717 		 * unconditionally truncated to 32 bits regardless of the
4718 		 * address size.
4719 		 */
4720 		*ret = (s.base + off) & 0xffffffff;
4721 
4722 		/* Protected mode: apply checks for segment validity in the
4723 		 * following order:
4724 		 * - segment type check (#GP(0) may be thrown)
4725 		 * - usability check (#GP(0)/#SS(0))
4726 		 * - limit check (#GP(0)/#SS(0))
4727 		 */
4728 		if (wr)
4729 			/* #GP(0) if the destination operand is located in a
4730 			 * read-only data segment or any code segment.
4731 			 */
4732 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4733 		else
4734 			/* #GP(0) if the source operand is located in an
4735 			 * execute-only code segment
4736 			 */
4737 			exn = ((s.type & 0xa) == 8);
4738 		if (exn) {
4739 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4740 			return 1;
4741 		}
4742 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4743 		 */
4744 		exn = (s.unusable != 0);
4745 
4746 		/*
4747 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4748 		 * outside the segment limit.  All CPUs that support VMX ignore
4749 		 * limit checks for flat segments, i.e. segments with base==0,
4750 		 * limit==0xffffffff and of type expand-up data or code.
4751 		 */
4752 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4753 		     ((s.type & 8) || !(s.type & 4))))
4754 			exn = exn || ((u64)off + len - 1 > s.limit);
4755 	}
4756 	if (exn) {
4757 		kvm_queue_exception_e(vcpu,
4758 				      seg_reg == VCPU_SREG_SS ?
4759 						SS_VECTOR : GP_VECTOR,
4760 				      0);
4761 		return 1;
4762 	}
4763 
4764 	return 0;
4765 }
4766 
nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu * vcpu)4767 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4768 {
4769 	struct vcpu_vmx *vmx;
4770 
4771 	if (!nested_vmx_allowed(vcpu))
4772 		return;
4773 
4774 	vmx = to_vmx(vcpu);
4775 	if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4776 		vmx->nested.msrs.entry_ctls_high |=
4777 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4778 		vmx->nested.msrs.exit_ctls_high |=
4779 				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4780 	} else {
4781 		vmx->nested.msrs.entry_ctls_high &=
4782 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4783 		vmx->nested.msrs.exit_ctls_high &=
4784 				~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4785 	}
4786 }
4787 
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)4788 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4789 				int *ret)
4790 {
4791 	gva_t gva;
4792 	struct x86_exception e;
4793 	int r;
4794 
4795 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4796 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4797 				sizeof(*vmpointer), &gva)) {
4798 		*ret = 1;
4799 		return -EINVAL;
4800 	}
4801 
4802 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4803 	if (r != X86EMUL_CONTINUE) {
4804 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
4805 		return -EINVAL;
4806 	}
4807 
4808 	return 0;
4809 }
4810 
4811 /*
4812  * Allocate a shadow VMCS and associate it with the currently loaded
4813  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4814  * VMCS is also VMCLEARed, so that it is ready for use.
4815  */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)4816 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4817 {
4818 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4819 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4820 
4821 	/*
4822 	 * We should allocate a shadow vmcs for vmcs01 only when L1
4823 	 * executes VMXON and free it when L1 executes VMXOFF.
4824 	 * As it is invalid to execute VMXON twice, we shouldn't reach
4825 	 * here when vmcs01 already have an allocated shadow vmcs.
4826 	 */
4827 	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4828 
4829 	if (!loaded_vmcs->shadow_vmcs) {
4830 		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4831 		if (loaded_vmcs->shadow_vmcs)
4832 			vmcs_clear(loaded_vmcs->shadow_vmcs);
4833 	}
4834 	return loaded_vmcs->shadow_vmcs;
4835 }
4836 
enter_vmx_operation(struct kvm_vcpu * vcpu)4837 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4838 {
4839 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4840 	int r;
4841 
4842 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4843 	if (r < 0)
4844 		goto out_vmcs02;
4845 
4846 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4847 	if (!vmx->nested.cached_vmcs12)
4848 		goto out_cached_vmcs12;
4849 
4850 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4851 	if (!vmx->nested.cached_shadow_vmcs12)
4852 		goto out_cached_shadow_vmcs12;
4853 
4854 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4855 		goto out_shadow_vmcs;
4856 
4857 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4858 		     HRTIMER_MODE_ABS_PINNED);
4859 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4860 
4861 	vmx->nested.vpid02 = allocate_vpid();
4862 
4863 	vmx->nested.vmcs02_initialized = false;
4864 	vmx->nested.vmxon = true;
4865 
4866 	if (vmx_pt_mode_is_host_guest()) {
4867 		vmx->pt_desc.guest.ctl = 0;
4868 		pt_update_intercept_for_msr(vcpu);
4869 	}
4870 
4871 	return 0;
4872 
4873 out_shadow_vmcs:
4874 	kfree(vmx->nested.cached_shadow_vmcs12);
4875 
4876 out_cached_shadow_vmcs12:
4877 	kfree(vmx->nested.cached_vmcs12);
4878 
4879 out_cached_vmcs12:
4880 	free_loaded_vmcs(&vmx->nested.vmcs02);
4881 
4882 out_vmcs02:
4883 	return -ENOMEM;
4884 }
4885 
4886 /*
4887  * Emulate the VMXON instruction.
4888  * Currently, we just remember that VMX is active, and do not save or even
4889  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4890  * do not currently need to store anything in that guest-allocated memory
4891  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4892  * argument is different from the VMXON pointer (which the spec says they do).
4893  */
handle_vmon(struct kvm_vcpu * vcpu)4894 static int handle_vmon(struct kvm_vcpu *vcpu)
4895 {
4896 	int ret;
4897 	gpa_t vmptr;
4898 	uint32_t revision;
4899 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4900 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4901 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4902 
4903 	/*
4904 	 * Note, KVM cannot rely on hardware to perform the CR0/CR4 #UD checks
4905 	 * that have higher priority than VM-Exit (see Intel SDM's pseudocode
4906 	 * for VMXON), as KVM must load valid CR0/CR4 values into hardware while
4907 	 * running the guest, i.e. KVM needs to check the _guest_ values.
4908 	 *
4909 	 * Rely on hardware for the other two pre-VM-Exit checks, !VM86 and
4910 	 * !COMPATIBILITY modes.  KVM may run the guest in VM86 to emulate Real
4911 	 * Mode, but KVM will never take the guest out of those modes.
4912 	 */
4913 	if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
4914 	    !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
4915 		kvm_queue_exception(vcpu, UD_VECTOR);
4916 		return 1;
4917 	}
4918 
4919 	/*
4920 	 * CPL=0 and all other checks that are lower priority than VM-Exit must
4921 	 * be checked manually.
4922 	 */
4923 	if (vmx_get_cpl(vcpu)) {
4924 		kvm_inject_gp(vcpu, 0);
4925 		return 1;
4926 	}
4927 
4928 	if (vmx->nested.vmxon)
4929 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4930 
4931 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4932 			!= VMXON_NEEDED_FEATURES) {
4933 		kvm_inject_gp(vcpu, 0);
4934 		return 1;
4935 	}
4936 
4937 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4938 		return ret;
4939 
4940 	/*
4941 	 * SDM 3: 24.11.5
4942 	 * The first 4 bytes of VMXON region contain the supported
4943 	 * VMCS revision identifier
4944 	 *
4945 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4946 	 * which replaces physical address width with 32
4947 	 */
4948 	if (!page_address_valid(vcpu, vmptr))
4949 		return nested_vmx_failInvalid(vcpu);
4950 
4951 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4952 	    revision != VMCS12_REVISION)
4953 		return nested_vmx_failInvalid(vcpu);
4954 
4955 	vmx->nested.vmxon_ptr = vmptr;
4956 	ret = enter_vmx_operation(vcpu);
4957 	if (ret)
4958 		return ret;
4959 
4960 	return nested_vmx_succeed(vcpu);
4961 }
4962 
nested_release_vmcs12(struct kvm_vcpu * vcpu)4963 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4964 {
4965 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4966 
4967 	if (vmx->nested.current_vmptr == -1ull)
4968 		return;
4969 
4970 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4971 
4972 	if (enable_shadow_vmcs) {
4973 		/* copy to memory all shadowed fields in case
4974 		   they were modified */
4975 		copy_shadow_to_vmcs12(vmx);
4976 		vmx_disable_shadow_vmcs(vmx);
4977 	}
4978 	vmx->nested.posted_intr_nv = -1;
4979 
4980 	/* Flush VMCS12 to guest memory */
4981 	kvm_vcpu_write_guest_page(vcpu,
4982 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
4983 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4984 
4985 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4986 
4987 	vmx->nested.current_vmptr = -1ull;
4988 }
4989 
4990 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)4991 static int handle_vmoff(struct kvm_vcpu *vcpu)
4992 {
4993 	if (!nested_vmx_check_permission(vcpu))
4994 		return 1;
4995 
4996 	free_nested(vcpu);
4997 
4998 	/* Process a latched INIT during time CPU was in VMX operation */
4999 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5000 
5001 	return nested_vmx_succeed(vcpu);
5002 }
5003 
5004 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5005 static int handle_vmclear(struct kvm_vcpu *vcpu)
5006 {
5007 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5008 	u32 zero = 0;
5009 	gpa_t vmptr;
5010 	u64 evmcs_gpa;
5011 	int r;
5012 
5013 	if (!nested_vmx_check_permission(vcpu))
5014 		return 1;
5015 
5016 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5017 		return r;
5018 
5019 	if (!page_address_valid(vcpu, vmptr))
5020 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5021 
5022 	if (vmptr == vmx->nested.vmxon_ptr)
5023 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5024 
5025 	/*
5026 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
5027 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5028 	 * way to distinguish it from VMCS12) and we must not corrupt it by
5029 	 * writing to the non-existent 'launch_state' field. The area doesn't
5030 	 * have to be the currently active EVMCS on the calling CPU and there's
5031 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
5032 	 * state. It is possible that the area will stay mapped as
5033 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5034 	 */
5035 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5036 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5037 		if (vmptr == vmx->nested.current_vmptr)
5038 			nested_release_vmcs12(vcpu);
5039 
5040 		kvm_vcpu_write_guest(vcpu,
5041 				     vmptr + offsetof(struct vmcs12,
5042 						      launch_state),
5043 				     &zero, sizeof(zero));
5044 	}
5045 
5046 	return nested_vmx_succeed(vcpu);
5047 }
5048 
5049 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5050 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5051 {
5052 	return nested_vmx_run(vcpu, true);
5053 }
5054 
5055 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5056 static int handle_vmresume(struct kvm_vcpu *vcpu)
5057 {
5058 
5059 	return nested_vmx_run(vcpu, false);
5060 }
5061 
handle_vmread(struct kvm_vcpu * vcpu)5062 static int handle_vmread(struct kvm_vcpu *vcpu)
5063 {
5064 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5065 						    : get_vmcs12(vcpu);
5066 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5067 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5068 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5069 	struct x86_exception e;
5070 	unsigned long field;
5071 	u64 value;
5072 	gva_t gva = 0;
5073 	short offset;
5074 	int len, r;
5075 
5076 	if (!nested_vmx_check_permission(vcpu))
5077 		return 1;
5078 
5079 	/*
5080 	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5081 	 * any VMREAD sets the ALU flags for VMfailInvalid.
5082 	 */
5083 	if (vmx->nested.current_vmptr == -1ull ||
5084 	    (is_guest_mode(vcpu) &&
5085 	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5086 		return nested_vmx_failInvalid(vcpu);
5087 
5088 	/* Decode instruction info and find the field to read */
5089 	field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5090 
5091 	offset = vmcs_field_to_offset(field);
5092 	if (offset < 0)
5093 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5094 
5095 	if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5096 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5097 
5098 	/* Read the field, zero-extended to a u64 value */
5099 	value = vmcs12_read_any(vmcs12, field, offset);
5100 
5101 	/*
5102 	 * Now copy part of this value to register or memory, as requested.
5103 	 * Note that the number of bits actually copied is 32 or 64 depending
5104 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5105 	 */
5106 	if (instr_info & BIT(10)) {
5107 		kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
5108 	} else {
5109 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5110 		if (get_vmx_mem_address(vcpu, exit_qualification,
5111 					instr_info, true, len, &gva))
5112 			return 1;
5113 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5114 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5115 		if (r != X86EMUL_CONTINUE)
5116 			return kvm_handle_memory_failure(vcpu, r, &e);
5117 	}
5118 
5119 	return nested_vmx_succeed(vcpu);
5120 }
5121 
is_shadow_field_rw(unsigned long field)5122 static bool is_shadow_field_rw(unsigned long field)
5123 {
5124 	switch (field) {
5125 #define SHADOW_FIELD_RW(x, y) case x:
5126 #include "vmcs_shadow_fields.h"
5127 		return true;
5128 	default:
5129 		break;
5130 	}
5131 	return false;
5132 }
5133 
is_shadow_field_ro(unsigned long field)5134 static bool is_shadow_field_ro(unsigned long field)
5135 {
5136 	switch (field) {
5137 #define SHADOW_FIELD_RO(x, y) case x:
5138 #include "vmcs_shadow_fields.h"
5139 		return true;
5140 	default:
5141 		break;
5142 	}
5143 	return false;
5144 }
5145 
handle_vmwrite(struct kvm_vcpu * vcpu)5146 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5147 {
5148 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5149 						    : get_vmcs12(vcpu);
5150 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5151 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5152 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5153 	struct x86_exception e;
5154 	unsigned long field;
5155 	short offset;
5156 	gva_t gva;
5157 	int len, r;
5158 
5159 	/*
5160 	 * The value to write might be 32 or 64 bits, depending on L1's long
5161 	 * mode, and eventually we need to write that into a field of several
5162 	 * possible lengths. The code below first zero-extends the value to 64
5163 	 * bit (value), and then copies only the appropriate number of
5164 	 * bits into the vmcs12 field.
5165 	 */
5166 	u64 value = 0;
5167 
5168 	if (!nested_vmx_check_permission(vcpu))
5169 		return 1;
5170 
5171 	/*
5172 	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5173 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5174 	 */
5175 	if (vmx->nested.current_vmptr == -1ull ||
5176 	    (is_guest_mode(vcpu) &&
5177 	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5178 		return nested_vmx_failInvalid(vcpu);
5179 
5180 	if (instr_info & BIT(10))
5181 		value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
5182 	else {
5183 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5184 		if (get_vmx_mem_address(vcpu, exit_qualification,
5185 					instr_info, false, len, &gva))
5186 			return 1;
5187 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5188 		if (r != X86EMUL_CONTINUE)
5189 			return kvm_handle_memory_failure(vcpu, r, &e);
5190 	}
5191 
5192 	field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5193 
5194 	offset = vmcs_field_to_offset(field);
5195 	if (offset < 0)
5196 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5197 
5198 	/*
5199 	 * If the vCPU supports "VMWRITE to any supported field in the
5200 	 * VMCS," then the "read-only" fields are actually read/write.
5201 	 */
5202 	if (vmcs_field_readonly(field) &&
5203 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5204 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5205 
5206 	/*
5207 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5208 	 * vmcs12, else we may crush a field or consume a stale value.
5209 	 */
5210 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5211 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5212 
5213 	/*
5214 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5215 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5216 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5217 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5218 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5219 	 * the stripped down value, L2 sees the full value as stored by KVM).
5220 	 */
5221 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5222 		value &= 0x1f0ff;
5223 
5224 	vmcs12_write_any(vmcs12, field, offset, value);
5225 
5226 	/*
5227 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5228 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5229 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5230 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5231 	 */
5232 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5233 		/*
5234 		 * L1 can read these fields without exiting, ensure the
5235 		 * shadow VMCS is up-to-date.
5236 		 */
5237 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5238 			preempt_disable();
5239 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5240 
5241 			__vmcs_writel(field, value);
5242 
5243 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5244 			vmcs_load(vmx->loaded_vmcs->vmcs);
5245 			preempt_enable();
5246 		}
5247 		vmx->nested.dirty_vmcs12 = true;
5248 	}
5249 
5250 	return nested_vmx_succeed(vcpu);
5251 }
5252 
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5253 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5254 {
5255 	vmx->nested.current_vmptr = vmptr;
5256 	if (enable_shadow_vmcs) {
5257 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5258 		vmcs_write64(VMCS_LINK_POINTER,
5259 			     __pa(vmx->vmcs01.shadow_vmcs));
5260 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5261 	}
5262 	vmx->nested.dirty_vmcs12 = true;
5263 }
5264 
5265 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5266 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5267 {
5268 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5269 	gpa_t vmptr;
5270 	int r;
5271 
5272 	if (!nested_vmx_check_permission(vcpu))
5273 		return 1;
5274 
5275 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5276 		return r;
5277 
5278 	if (!page_address_valid(vcpu, vmptr))
5279 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5280 
5281 	if (vmptr == vmx->nested.vmxon_ptr)
5282 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5283 
5284 	/* Forbid normal VMPTRLD if Enlightened version was used */
5285 	if (vmx->nested.hv_evmcs)
5286 		return 1;
5287 
5288 	if (vmx->nested.current_vmptr != vmptr) {
5289 		struct kvm_host_map map;
5290 		struct vmcs12 *new_vmcs12;
5291 
5292 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5293 			/*
5294 			 * Reads from an unbacked page return all 1s,
5295 			 * which means that the 32 bits located at the
5296 			 * given physical address won't match the required
5297 			 * VMCS12_REVISION identifier.
5298 			 */
5299 			return nested_vmx_fail(vcpu,
5300 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5301 		}
5302 
5303 		new_vmcs12 = map.hva;
5304 
5305 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5306 		    (new_vmcs12->hdr.shadow_vmcs &&
5307 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5308 			kvm_vcpu_unmap(vcpu, &map, false);
5309 			return nested_vmx_fail(vcpu,
5310 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5311 		}
5312 
5313 		nested_release_vmcs12(vcpu);
5314 
5315 		/*
5316 		 * Load VMCS12 from guest memory since it is not already
5317 		 * cached.
5318 		 */
5319 		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5320 		kvm_vcpu_unmap(vcpu, &map, false);
5321 
5322 		set_current_vmptr(vmx, vmptr);
5323 	}
5324 
5325 	return nested_vmx_succeed(vcpu);
5326 }
5327 
5328 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5329 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5330 {
5331 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5332 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5333 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5334 	struct x86_exception e;
5335 	gva_t gva;
5336 	int r;
5337 
5338 	if (!nested_vmx_check_permission(vcpu))
5339 		return 1;
5340 
5341 	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5342 		return 1;
5343 
5344 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5345 				true, sizeof(gpa_t), &gva))
5346 		return 1;
5347 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5348 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5349 					sizeof(gpa_t), &e);
5350 	if (r != X86EMUL_CONTINUE)
5351 		return kvm_handle_memory_failure(vcpu, r, &e);
5352 
5353 	return nested_vmx_succeed(vcpu);
5354 }
5355 
5356 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
5357 
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)5358 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5359 {
5360 	return VALID_PAGE(root_hpa) &&
5361 		((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5362 }
5363 
5364 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5365 static int handle_invept(struct kvm_vcpu *vcpu)
5366 {
5367 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5368 	u32 vmx_instruction_info, types;
5369 	unsigned long type, roots_to_free;
5370 	struct kvm_mmu *mmu;
5371 	gva_t gva;
5372 	struct x86_exception e;
5373 	struct {
5374 		u64 eptp, gpa;
5375 	} operand;
5376 	int i, r;
5377 
5378 	if (!(vmx->nested.msrs.secondary_ctls_high &
5379 	      SECONDARY_EXEC_ENABLE_EPT) ||
5380 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5381 		kvm_queue_exception(vcpu, UD_VECTOR);
5382 		return 1;
5383 	}
5384 
5385 	if (!nested_vmx_check_permission(vcpu))
5386 		return 1;
5387 
5388 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5389 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5390 
5391 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5392 
5393 	if (type >= 32 || !(types & (1 << type)))
5394 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5395 
5396 	/* According to the Intel VMX instruction reference, the memory
5397 	 * operand is read even if it isn't needed (e.g., for type==global)
5398 	 */
5399 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5400 			vmx_instruction_info, false, sizeof(operand), &gva))
5401 		return 1;
5402 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5403 	if (r != X86EMUL_CONTINUE)
5404 		return kvm_handle_memory_failure(vcpu, r, &e);
5405 
5406 	/*
5407 	 * Nested EPT roots are always held through guest_mmu,
5408 	 * not root_mmu.
5409 	 */
5410 	mmu = &vcpu->arch.guest_mmu;
5411 
5412 	switch (type) {
5413 	case VMX_EPT_EXTENT_CONTEXT:
5414 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5415 			return nested_vmx_fail(vcpu,
5416 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5417 
5418 		roots_to_free = 0;
5419 		if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5420 					    operand.eptp))
5421 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5422 
5423 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5424 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5425 						    mmu->prev_roots[i].pgd,
5426 						    operand.eptp))
5427 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5428 		}
5429 		break;
5430 	case VMX_EPT_EXTENT_GLOBAL:
5431 		roots_to_free = KVM_MMU_ROOTS_ALL;
5432 		break;
5433 	default:
5434 		BUG();
5435 		break;
5436 	}
5437 
5438 	if (roots_to_free)
5439 		kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5440 
5441 	return nested_vmx_succeed(vcpu);
5442 }
5443 
handle_invvpid(struct kvm_vcpu * vcpu)5444 static int handle_invvpid(struct kvm_vcpu *vcpu)
5445 {
5446 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5447 	u32 vmx_instruction_info;
5448 	unsigned long type, types;
5449 	gva_t gva;
5450 	struct x86_exception e;
5451 	struct {
5452 		u64 vpid;
5453 		u64 gla;
5454 	} operand;
5455 	u16 vpid02;
5456 	int r;
5457 
5458 	if (!(vmx->nested.msrs.secondary_ctls_high &
5459 	      SECONDARY_EXEC_ENABLE_VPID) ||
5460 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5461 		kvm_queue_exception(vcpu, UD_VECTOR);
5462 		return 1;
5463 	}
5464 
5465 	if (!nested_vmx_check_permission(vcpu))
5466 		return 1;
5467 
5468 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5469 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5470 
5471 	types = (vmx->nested.msrs.vpid_caps &
5472 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5473 
5474 	if (type >= 32 || !(types & (1 << type)))
5475 		return nested_vmx_fail(vcpu,
5476 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5477 
5478 	/* according to the intel vmx instruction reference, the memory
5479 	 * operand is read even if it isn't needed (e.g., for type==global)
5480 	 */
5481 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5482 			vmx_instruction_info, false, sizeof(operand), &gva))
5483 		return 1;
5484 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5485 	if (r != X86EMUL_CONTINUE)
5486 		return kvm_handle_memory_failure(vcpu, r, &e);
5487 
5488 	if (operand.vpid >> 16)
5489 		return nested_vmx_fail(vcpu,
5490 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5491 
5492 	vpid02 = nested_get_vpid02(vcpu);
5493 	switch (type) {
5494 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5495 		if (!operand.vpid ||
5496 		    is_noncanonical_address(operand.gla, vcpu))
5497 			return nested_vmx_fail(vcpu,
5498 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5499 		vpid_sync_vcpu_addr(vpid02, operand.gla);
5500 		break;
5501 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5502 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5503 		if (!operand.vpid)
5504 			return nested_vmx_fail(vcpu,
5505 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5506 		vpid_sync_context(vpid02);
5507 		break;
5508 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5509 		vpid_sync_context(vpid02);
5510 		break;
5511 	default:
5512 		WARN_ON_ONCE(1);
5513 		return kvm_skip_emulated_instruction(vcpu);
5514 	}
5515 
5516 	/*
5517 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5518 	 * linear mappings for L2 (tagged with L2's VPID).  Free all roots as
5519 	 * VPIDs are not tracked in the MMU role.
5520 	 *
5521 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5522 	 * an MMU when EPT is disabled.
5523 	 *
5524 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5525 	 */
5526 	if (!enable_ept)
5527 		kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5528 				   KVM_MMU_ROOTS_ALL);
5529 
5530 	return nested_vmx_succeed(vcpu);
5531 }
5532 
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5533 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5534 				     struct vmcs12 *vmcs12)
5535 {
5536 	u32 index = kvm_rcx_read(vcpu);
5537 	u64 new_eptp;
5538 
5539 	if (!nested_cpu_has_eptp_switching(vmcs12) ||
5540 	    !nested_cpu_has_ept(vmcs12))
5541 		return 1;
5542 
5543 	if (index >= VMFUNC_EPTP_ENTRIES)
5544 		return 1;
5545 
5546 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5547 				     &new_eptp, index * 8, 8))
5548 		return 1;
5549 
5550 	/*
5551 	 * If the (L2) guest does a vmfunc to the currently
5552 	 * active ept pointer, we don't have to do anything else
5553 	 */
5554 	if (vmcs12->ept_pointer != new_eptp) {
5555 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5556 			return 1;
5557 
5558 		vmcs12->ept_pointer = new_eptp;
5559 
5560 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
5561 	}
5562 
5563 	return 0;
5564 }
5565 
handle_vmfunc(struct kvm_vcpu * vcpu)5566 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5567 {
5568 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5569 	struct vmcs12 *vmcs12;
5570 	u32 function = kvm_rax_read(vcpu);
5571 
5572 	/*
5573 	 * VMFUNC is only supported for nested guests, but we always enable the
5574 	 * secondary control for simplicity; for non-nested mode, fake that we
5575 	 * didn't by injecting #UD.
5576 	 */
5577 	if (!is_guest_mode(vcpu)) {
5578 		kvm_queue_exception(vcpu, UD_VECTOR);
5579 		return 1;
5580 	}
5581 
5582 	vmcs12 = get_vmcs12(vcpu);
5583 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5584 		goto fail;
5585 
5586 	switch (function) {
5587 	case 0:
5588 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5589 			goto fail;
5590 		break;
5591 	default:
5592 		goto fail;
5593 	}
5594 	return kvm_skip_emulated_instruction(vcpu);
5595 
5596 fail:
5597 	/*
5598 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5599 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5600 	 * EXIT_REASON_VMFUNC as the exit reason.
5601 	 */
5602 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5603 			  vmx_get_intr_info(vcpu),
5604 			  vmx_get_exit_qual(vcpu));
5605 	return 1;
5606 }
5607 
5608 /*
5609  * Return true if an IO instruction with the specified port and size should cause
5610  * a VM-exit into L1.
5611  */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)5612 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5613 				 int size)
5614 {
5615 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5616 	gpa_t bitmap, last_bitmap;
5617 	u8 b;
5618 
5619 	last_bitmap = (gpa_t)-1;
5620 	b = -1;
5621 
5622 	while (size > 0) {
5623 		if (port < 0x8000)
5624 			bitmap = vmcs12->io_bitmap_a;
5625 		else if (port < 0x10000)
5626 			bitmap = vmcs12->io_bitmap_b;
5627 		else
5628 			return true;
5629 		bitmap += (port & 0x7fff) / 8;
5630 
5631 		if (last_bitmap != bitmap)
5632 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5633 				return true;
5634 		if (b & (1 << (port & 7)))
5635 			return true;
5636 
5637 		port++;
5638 		size--;
5639 		last_bitmap = bitmap;
5640 	}
5641 
5642 	return false;
5643 }
5644 
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5645 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5646 				       struct vmcs12 *vmcs12)
5647 {
5648 	unsigned long exit_qualification;
5649 	unsigned short port;
5650 	int size;
5651 
5652 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5653 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5654 
5655 	exit_qualification = vmx_get_exit_qual(vcpu);
5656 
5657 	port = exit_qualification >> 16;
5658 	size = (exit_qualification & 7) + 1;
5659 
5660 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
5661 }
5662 
5663 /*
5664  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5665  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5666  * disinterest in the current event (read or write a specific MSR) by using an
5667  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5668  */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)5669 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5670 					struct vmcs12 *vmcs12,
5671 					union vmx_exit_reason exit_reason)
5672 {
5673 	u32 msr_index = kvm_rcx_read(vcpu);
5674 	gpa_t bitmap;
5675 
5676 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5677 		return true;
5678 
5679 	/*
5680 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5681 	 * for the four combinations of read/write and low/high MSR numbers.
5682 	 * First we need to figure out which of the four to use:
5683 	 */
5684 	bitmap = vmcs12->msr_bitmap;
5685 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5686 		bitmap += 2048;
5687 	if (msr_index >= 0xc0000000) {
5688 		msr_index -= 0xc0000000;
5689 		bitmap += 1024;
5690 	}
5691 
5692 	/* Then read the msr_index'th bit from this bitmap: */
5693 	if (msr_index < 1024*8) {
5694 		unsigned char b;
5695 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5696 			return true;
5697 		return 1 & (b >> (msr_index & 7));
5698 	} else
5699 		return true; /* let L1 handle the wrong parameter */
5700 }
5701 
5702 /*
5703  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5704  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5705  * intercept (via guest_host_mask etc.) the current event.
5706  */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5707 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5708 	struct vmcs12 *vmcs12)
5709 {
5710 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5711 	int cr = exit_qualification & 15;
5712 	int reg;
5713 	unsigned long val;
5714 
5715 	switch ((exit_qualification >> 4) & 3) {
5716 	case 0: /* mov to cr */
5717 		reg = (exit_qualification >> 8) & 15;
5718 		val = kvm_register_readl(vcpu, reg);
5719 		switch (cr) {
5720 		case 0:
5721 			if (vmcs12->cr0_guest_host_mask &
5722 			    (val ^ vmcs12->cr0_read_shadow))
5723 				return true;
5724 			break;
5725 		case 3:
5726 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5727 				return true;
5728 			break;
5729 		case 4:
5730 			if (vmcs12->cr4_guest_host_mask &
5731 			    (vmcs12->cr4_read_shadow ^ val))
5732 				return true;
5733 			break;
5734 		case 8:
5735 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5736 				return true;
5737 			break;
5738 		}
5739 		break;
5740 	case 2: /* clts */
5741 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5742 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5743 			return true;
5744 		break;
5745 	case 1: /* mov from cr */
5746 		switch (cr) {
5747 		case 3:
5748 			if (vmcs12->cpu_based_vm_exec_control &
5749 			    CPU_BASED_CR3_STORE_EXITING)
5750 				return true;
5751 			break;
5752 		case 8:
5753 			if (vmcs12->cpu_based_vm_exec_control &
5754 			    CPU_BASED_CR8_STORE_EXITING)
5755 				return true;
5756 			break;
5757 		}
5758 		break;
5759 	case 3: /* lmsw */
5760 		/*
5761 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5762 		 * cr0. Other attempted changes are ignored, with no exit.
5763 		 */
5764 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5765 		if (vmcs12->cr0_guest_host_mask & 0xe &
5766 		    (val ^ vmcs12->cr0_read_shadow))
5767 			return true;
5768 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5769 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5770 		    (val & 0x1))
5771 			return true;
5772 		break;
5773 	}
5774 	return false;
5775 }
5776 
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)5777 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5778 	struct vmcs12 *vmcs12, gpa_t bitmap)
5779 {
5780 	u32 vmx_instruction_info;
5781 	unsigned long field;
5782 	u8 b;
5783 
5784 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5785 		return true;
5786 
5787 	/* Decode instruction info and find the field to access */
5788 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5789 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5790 
5791 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5792 	if (field >> 15)
5793 		return true;
5794 
5795 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5796 		return true;
5797 
5798 	return 1 & (b >> (field & 7));
5799 }
5800 
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)5801 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5802 {
5803 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5804 
5805 	if (nested_cpu_has_mtf(vmcs12))
5806 		return true;
5807 
5808 	/*
5809 	 * An MTF VM-exit may be injected into the guest by setting the
5810 	 * interruption-type to 7 (other event) and the vector field to 0. Such
5811 	 * is the case regardless of the 'monitor trap flag' VM-execution
5812 	 * control.
5813 	 */
5814 	return entry_intr_info == (INTR_INFO_VALID_MASK
5815 				   | INTR_TYPE_OTHER_EVENT);
5816 }
5817 
5818 /*
5819  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5820  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5821  */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)5822 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5823 				     union vmx_exit_reason exit_reason)
5824 {
5825 	u32 intr_info;
5826 
5827 	switch ((u16)exit_reason.basic) {
5828 	case EXIT_REASON_EXCEPTION_NMI:
5829 		intr_info = vmx_get_intr_info(vcpu);
5830 		if (is_nmi(intr_info))
5831 			return true;
5832 		else if (is_page_fault(intr_info))
5833 			return vcpu->arch.apf.host_apf_flags ||
5834 			       vmx_need_pf_intercept(vcpu);
5835 		else if (is_debug(intr_info) &&
5836 			 vcpu->guest_debug &
5837 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5838 			return true;
5839 		else if (is_breakpoint(intr_info) &&
5840 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5841 			return true;
5842 		else if (is_alignment_check(intr_info) &&
5843 			 !vmx_guest_inject_ac(vcpu))
5844 			return true;
5845 		return false;
5846 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5847 		return true;
5848 	case EXIT_REASON_MCE_DURING_VMENTRY:
5849 		return true;
5850 	case EXIT_REASON_EPT_VIOLATION:
5851 		/*
5852 		 * L0 always deals with the EPT violation. If nested EPT is
5853 		 * used, and the nested mmu code discovers that the address is
5854 		 * missing in the guest EPT table (EPT12), the EPT violation
5855 		 * will be injected with nested_ept_inject_page_fault()
5856 		 */
5857 		return true;
5858 	case EXIT_REASON_EPT_MISCONFIG:
5859 		/*
5860 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5861 		 * table (shadow on EPT) or a merged EPT table that L0 built
5862 		 * (EPT on EPT). So any problems with the structure of the
5863 		 * table is L0's fault.
5864 		 */
5865 		return true;
5866 	case EXIT_REASON_PREEMPTION_TIMER:
5867 		return true;
5868 	case EXIT_REASON_PML_FULL:
5869 		/* We emulate PML support to L1. */
5870 		return true;
5871 	case EXIT_REASON_VMFUNC:
5872 		/* VM functions are emulated through L2->L0 vmexits. */
5873 		return true;
5874 	case EXIT_REASON_ENCLS:
5875 		/* SGX is never exposed to L1 */
5876 		return true;
5877 	default:
5878 		break;
5879 	}
5880 	return false;
5881 }
5882 
5883 /*
5884  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5885  * is_guest_mode (L2).
5886  */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)5887 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5888 				     union vmx_exit_reason exit_reason)
5889 {
5890 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5891 	u32 intr_info;
5892 
5893 	switch ((u16)exit_reason.basic) {
5894 	case EXIT_REASON_EXCEPTION_NMI:
5895 		intr_info = vmx_get_intr_info(vcpu);
5896 		if (is_nmi(intr_info))
5897 			return true;
5898 		else if (is_page_fault(intr_info))
5899 			return true;
5900 		return vmcs12->exception_bitmap &
5901 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
5902 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5903 		return nested_exit_on_intr(vcpu);
5904 	case EXIT_REASON_TRIPLE_FAULT:
5905 		return true;
5906 	case EXIT_REASON_INTERRUPT_WINDOW:
5907 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5908 	case EXIT_REASON_NMI_WINDOW:
5909 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5910 	case EXIT_REASON_TASK_SWITCH:
5911 		return true;
5912 	case EXIT_REASON_CPUID:
5913 		return true;
5914 	case EXIT_REASON_HLT:
5915 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5916 	case EXIT_REASON_INVD:
5917 		return true;
5918 	case EXIT_REASON_INVLPG:
5919 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5920 	case EXIT_REASON_RDPMC:
5921 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5922 	case EXIT_REASON_RDRAND:
5923 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5924 	case EXIT_REASON_RDSEED:
5925 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5926 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5927 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5928 	case EXIT_REASON_VMREAD:
5929 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5930 			vmcs12->vmread_bitmap);
5931 	case EXIT_REASON_VMWRITE:
5932 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5933 			vmcs12->vmwrite_bitmap);
5934 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5935 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5936 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5937 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5938 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5939 		/*
5940 		 * VMX instructions trap unconditionally. This allows L1 to
5941 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5942 		 */
5943 		return true;
5944 	case EXIT_REASON_CR_ACCESS:
5945 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5946 	case EXIT_REASON_DR_ACCESS:
5947 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5948 	case EXIT_REASON_IO_INSTRUCTION:
5949 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
5950 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5951 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5952 	case EXIT_REASON_MSR_READ:
5953 	case EXIT_REASON_MSR_WRITE:
5954 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5955 	case EXIT_REASON_INVALID_STATE:
5956 		return true;
5957 	case EXIT_REASON_MWAIT_INSTRUCTION:
5958 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5959 	case EXIT_REASON_MONITOR_TRAP_FLAG:
5960 		return nested_vmx_exit_handled_mtf(vmcs12);
5961 	case EXIT_REASON_MONITOR_INSTRUCTION:
5962 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5963 	case EXIT_REASON_PAUSE_INSTRUCTION:
5964 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5965 			nested_cpu_has2(vmcs12,
5966 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5967 	case EXIT_REASON_MCE_DURING_VMENTRY:
5968 		return true;
5969 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
5970 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5971 	case EXIT_REASON_APIC_ACCESS:
5972 	case EXIT_REASON_APIC_WRITE:
5973 	case EXIT_REASON_EOI_INDUCED:
5974 		/*
5975 		 * The controls for "virtualize APIC accesses," "APIC-
5976 		 * register virtualization," and "virtual-interrupt
5977 		 * delivery" only come from vmcs12.
5978 		 */
5979 		return true;
5980 	case EXIT_REASON_INVPCID:
5981 		return
5982 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5983 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5984 	case EXIT_REASON_WBINVD:
5985 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5986 	case EXIT_REASON_XSETBV:
5987 		return true;
5988 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5989 		/*
5990 		 * This should never happen, since it is not possible to
5991 		 * set XSS to a non-zero value---neither in L1 nor in L2.
5992 		 * If if it were, XSS would have to be checked against
5993 		 * the XSS exit bitmap in vmcs12.
5994 		 */
5995 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5996 	case EXIT_REASON_UMWAIT:
5997 	case EXIT_REASON_TPAUSE:
5998 		return nested_cpu_has2(vmcs12,
5999 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6000 	default:
6001 		return true;
6002 	}
6003 }
6004 
6005 /*
6006  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6007  * reflected into L1.
6008  */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6009 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6010 {
6011 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6012 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6013 	unsigned long exit_qual;
6014 	u32 exit_intr_info;
6015 
6016 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6017 
6018 	/*
6019 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6020 	 * has already loaded L2's state.
6021 	 */
6022 	if (unlikely(vmx->fail)) {
6023 		trace_kvm_nested_vmenter_failed(
6024 			"hardware VM-instruction error: ",
6025 			vmcs_read32(VM_INSTRUCTION_ERROR));
6026 		exit_intr_info = 0;
6027 		exit_qual = 0;
6028 		goto reflect_vmexit;
6029 	}
6030 
6031 	trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
6032 
6033 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6034 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6035 		return false;
6036 
6037 	/* If L1 doesn't want the exit, handle it in L0. */
6038 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6039 		return false;
6040 
6041 	/*
6042 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6043 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6044 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6045 	 * interrupts are never reflected to L1 so it's a non-issue.
6046 	 */
6047 	exit_intr_info = vmx_get_intr_info(vcpu);
6048 	if (is_exception_with_error_code(exit_intr_info)) {
6049 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6050 
6051 		vmcs12->vm_exit_intr_error_code =
6052 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6053 	}
6054 	exit_qual = vmx_get_exit_qual(vcpu);
6055 
6056 reflect_vmexit:
6057 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6058 	return true;
6059 }
6060 
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6061 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6062 				struct kvm_nested_state __user *user_kvm_nested_state,
6063 				u32 user_data_size)
6064 {
6065 	struct vcpu_vmx *vmx;
6066 	struct vmcs12 *vmcs12;
6067 	struct kvm_nested_state kvm_state = {
6068 		.flags = 0,
6069 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6070 		.size = sizeof(kvm_state),
6071 		.hdr.vmx.flags = 0,
6072 		.hdr.vmx.vmxon_pa = -1ull,
6073 		.hdr.vmx.vmcs12_pa = -1ull,
6074 		.hdr.vmx.preemption_timer_deadline = 0,
6075 	};
6076 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6077 		&user_kvm_nested_state->data.vmx[0];
6078 
6079 	if (!vcpu)
6080 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6081 
6082 	vmx = to_vmx(vcpu);
6083 	vmcs12 = get_vmcs12(vcpu);
6084 
6085 	if (nested_vmx_allowed(vcpu) &&
6086 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6087 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6088 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6089 
6090 		if (vmx_has_valid_vmcs12(vcpu)) {
6091 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6092 
6093 			if (vmx->nested.hv_evmcs)
6094 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6095 
6096 			if (is_guest_mode(vcpu) &&
6097 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6098 			    vmcs12->vmcs_link_pointer != -1ull)
6099 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6100 		}
6101 
6102 		if (vmx->nested.smm.vmxon)
6103 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6104 
6105 		if (vmx->nested.smm.guest_mode)
6106 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6107 
6108 		if (is_guest_mode(vcpu)) {
6109 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6110 
6111 			if (vmx->nested.nested_run_pending)
6112 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6113 
6114 			if (vmx->nested.mtf_pending)
6115 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6116 
6117 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6118 			    vmx->nested.has_preemption_timer_deadline) {
6119 				kvm_state.hdr.vmx.flags |=
6120 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6121 				kvm_state.hdr.vmx.preemption_timer_deadline =
6122 					vmx->nested.preemption_timer_deadline;
6123 			}
6124 		}
6125 	}
6126 
6127 	if (user_data_size < kvm_state.size)
6128 		goto out;
6129 
6130 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6131 		return -EFAULT;
6132 
6133 	if (!vmx_has_valid_vmcs12(vcpu))
6134 		goto out;
6135 
6136 	/*
6137 	 * When running L2, the authoritative vmcs12 state is in the
6138 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6139 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6140 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6141 	 * vmcs12 state is in the vmcs12 already.
6142 	 */
6143 	if (is_guest_mode(vcpu)) {
6144 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6145 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6146 	} else  {
6147 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6148 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6149 			if (vmx->nested.hv_evmcs)
6150 				copy_enlightened_to_vmcs12(vmx);
6151 			else if (enable_shadow_vmcs)
6152 				copy_shadow_to_vmcs12(vmx);
6153 		}
6154 	}
6155 
6156 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6157 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6158 
6159 	/*
6160 	 * Copy over the full allocated size of vmcs12 rather than just the size
6161 	 * of the struct.
6162 	 */
6163 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6164 		return -EFAULT;
6165 
6166 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6167 	    vmcs12->vmcs_link_pointer != -1ull) {
6168 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6169 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6170 			return -EFAULT;
6171 	}
6172 out:
6173 	return kvm_state.size;
6174 }
6175 
6176 /*
6177  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6178  */
vmx_leave_nested(struct kvm_vcpu * vcpu)6179 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6180 {
6181 	if (is_guest_mode(vcpu)) {
6182 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6183 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6184 	}
6185 	free_nested(vcpu);
6186 }
6187 
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6188 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6189 				struct kvm_nested_state __user *user_kvm_nested_state,
6190 				struct kvm_nested_state *kvm_state)
6191 {
6192 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6193 	struct vmcs12 *vmcs12;
6194 	enum vm_entry_failure_code ignored;
6195 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6196 		&user_kvm_nested_state->data.vmx[0];
6197 	int ret;
6198 
6199 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6200 		return -EINVAL;
6201 
6202 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6203 		if (kvm_state->hdr.vmx.smm.flags)
6204 			return -EINVAL;
6205 
6206 		if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6207 			return -EINVAL;
6208 
6209 		/*
6210 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6211 		 * enable eVMCS capability on vCPU. However, since then
6212 		 * code was changed such that flag signals vmcs12 should
6213 		 * be copied into eVMCS in guest memory.
6214 		 *
6215 		 * To preserve backwards compatability, allow user
6216 		 * to set this flag even when there is no VMXON region.
6217 		 */
6218 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6219 			return -EINVAL;
6220 	} else {
6221 		if (!nested_vmx_allowed(vcpu))
6222 			return -EINVAL;
6223 
6224 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6225 			return -EINVAL;
6226 	}
6227 
6228 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6229 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6230 		return -EINVAL;
6231 
6232 	if (kvm_state->hdr.vmx.smm.flags &
6233 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6234 		return -EINVAL;
6235 
6236 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6237 		return -EINVAL;
6238 
6239 	/*
6240 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6241 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6242 	 * must be zero.
6243 	 */
6244 	if (is_smm(vcpu) ?
6245 		(kvm_state->flags &
6246 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6247 		: kvm_state->hdr.vmx.smm.flags)
6248 		return -EINVAL;
6249 
6250 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6251 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6252 		return -EINVAL;
6253 
6254 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6255 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6256 			return -EINVAL;
6257 
6258 	vmx_leave_nested(vcpu);
6259 
6260 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6261 		return 0;
6262 
6263 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6264 	ret = enter_vmx_operation(vcpu);
6265 	if (ret)
6266 		return ret;
6267 
6268 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6269 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6270 		/* See vmx_has_valid_vmcs12.  */
6271 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6272 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6273 		    (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6274 			return -EINVAL;
6275 		else
6276 			return 0;
6277 	}
6278 
6279 	if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6280 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6281 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6282 			return -EINVAL;
6283 
6284 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6285 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6286 		/*
6287 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6288 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6289 		 * restored yet. EVMCS will be mapped from
6290 		 * nested_get_vmcs12_pages().
6291 		 */
6292 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6293 	} else {
6294 		return -EINVAL;
6295 	}
6296 
6297 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6298 		vmx->nested.smm.vmxon = true;
6299 		vmx->nested.vmxon = false;
6300 
6301 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6302 			vmx->nested.smm.guest_mode = true;
6303 	}
6304 
6305 	vmcs12 = get_vmcs12(vcpu);
6306 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6307 		return -EFAULT;
6308 
6309 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6310 		return -EINVAL;
6311 
6312 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6313 		return 0;
6314 
6315 	vmx->nested.nested_run_pending =
6316 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6317 
6318 	vmx->nested.mtf_pending =
6319 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6320 
6321 	ret = -EINVAL;
6322 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6323 	    vmcs12->vmcs_link_pointer != -1ull) {
6324 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6325 
6326 		if (kvm_state->size <
6327 		    sizeof(*kvm_state) +
6328 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6329 			goto error_guest_mode;
6330 
6331 		if (copy_from_user(shadow_vmcs12,
6332 				   user_vmx_nested_state->shadow_vmcs12,
6333 				   sizeof(*shadow_vmcs12))) {
6334 			ret = -EFAULT;
6335 			goto error_guest_mode;
6336 		}
6337 
6338 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6339 		    !shadow_vmcs12->hdr.shadow_vmcs)
6340 			goto error_guest_mode;
6341 	}
6342 
6343 	vmx->nested.has_preemption_timer_deadline = false;
6344 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6345 		vmx->nested.has_preemption_timer_deadline = true;
6346 		vmx->nested.preemption_timer_deadline =
6347 			kvm_state->hdr.vmx.preemption_timer_deadline;
6348 	}
6349 
6350 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6351 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6352 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6353 		goto error_guest_mode;
6354 
6355 	vmx->nested.dirty_vmcs12 = true;
6356 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6357 	if (ret)
6358 		goto error_guest_mode;
6359 
6360 	return 0;
6361 
6362 error_guest_mode:
6363 	vmx->nested.nested_run_pending = 0;
6364 	return ret;
6365 }
6366 
nested_vmx_set_vmcs_shadowing_bitmap(void)6367 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6368 {
6369 	if (enable_shadow_vmcs) {
6370 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6371 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6372 	}
6373 }
6374 
6375 /*
6376  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6377  * returned for the various VMX controls MSRs when nested VMX is enabled.
6378  * The same values should also be used to verify that vmcs12 control fields are
6379  * valid during nested entry from L1 to L2.
6380  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6381  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6382  * bit in the high half is on if the corresponding bit in the control field
6383  * may be on. See also vmx_control_verify().
6384  */
nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs * msrs,u32 ept_caps)6385 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6386 {
6387 	/*
6388 	 * Note that as a general rule, the high half of the MSRs (bits in
6389 	 * the control fields which may be 1) should be initialized by the
6390 	 * intersection of the underlying hardware's MSR (i.e., features which
6391 	 * can be supported) and the list of features we want to expose -
6392 	 * because they are known to be properly supported in our code.
6393 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
6394 	 * be set to 0, meaning that L1 may turn off any of these bits. The
6395 	 * reason is that if one of these bits is necessary, it will appear
6396 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6397 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
6398 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6399 	 * These rules have exceptions below.
6400 	 */
6401 
6402 	/* pin-based controls */
6403 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6404 		msrs->pinbased_ctls_low,
6405 		msrs->pinbased_ctls_high);
6406 	msrs->pinbased_ctls_low |=
6407 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6408 	msrs->pinbased_ctls_high &=
6409 		PIN_BASED_EXT_INTR_MASK |
6410 		PIN_BASED_NMI_EXITING |
6411 		PIN_BASED_VIRTUAL_NMIS |
6412 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6413 	msrs->pinbased_ctls_high |=
6414 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6415 		PIN_BASED_VMX_PREEMPTION_TIMER;
6416 
6417 	/* exit controls */
6418 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6419 		msrs->exit_ctls_low,
6420 		msrs->exit_ctls_high);
6421 	msrs->exit_ctls_low =
6422 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6423 
6424 	msrs->exit_ctls_high &=
6425 #ifdef CONFIG_X86_64
6426 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6427 #endif
6428 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6429 		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6430 	msrs->exit_ctls_high |=
6431 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6432 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6433 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6434 
6435 	/* We support free control of debug control saving. */
6436 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6437 
6438 	/* entry controls */
6439 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6440 		msrs->entry_ctls_low,
6441 		msrs->entry_ctls_high);
6442 	msrs->entry_ctls_low =
6443 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6444 	msrs->entry_ctls_high &=
6445 #ifdef CONFIG_X86_64
6446 		VM_ENTRY_IA32E_MODE |
6447 #endif
6448 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6449 		VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6450 	msrs->entry_ctls_high |=
6451 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6452 
6453 	/* We support free control of debug control loading. */
6454 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6455 
6456 	/* cpu-based controls */
6457 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6458 		msrs->procbased_ctls_low,
6459 		msrs->procbased_ctls_high);
6460 	msrs->procbased_ctls_low =
6461 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6462 	msrs->procbased_ctls_high &=
6463 		CPU_BASED_INTR_WINDOW_EXITING |
6464 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6465 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6466 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6467 		CPU_BASED_CR3_STORE_EXITING |
6468 #ifdef CONFIG_X86_64
6469 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6470 #endif
6471 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6472 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6473 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6474 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6475 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6476 	/*
6477 	 * We can allow some features even when not supported by the
6478 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6479 	 * can use it to avoid exits to L1 - even when L0 runs L2
6480 	 * without MSR bitmaps.
6481 	 */
6482 	msrs->procbased_ctls_high |=
6483 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6484 		CPU_BASED_USE_MSR_BITMAPS;
6485 
6486 	/* We support free control of CR3 access interception. */
6487 	msrs->procbased_ctls_low &=
6488 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6489 
6490 	/*
6491 	 * secondary cpu-based controls.  Do not include those that
6492 	 * depend on CPUID bits, they are added later by
6493 	 * vmx_vcpu_after_set_cpuid.
6494 	 */
6495 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6496 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6497 		      msrs->secondary_ctls_low,
6498 		      msrs->secondary_ctls_high);
6499 
6500 	msrs->secondary_ctls_low = 0;
6501 	msrs->secondary_ctls_high &=
6502 		SECONDARY_EXEC_DESC |
6503 		SECONDARY_EXEC_ENABLE_RDTSCP |
6504 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6505 		SECONDARY_EXEC_WBINVD_EXITING |
6506 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6507 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6508 		SECONDARY_EXEC_RDRAND_EXITING |
6509 		SECONDARY_EXEC_ENABLE_INVPCID |
6510 		SECONDARY_EXEC_RDSEED_EXITING |
6511 		SECONDARY_EXEC_XSAVES;
6512 
6513 	/*
6514 	 * We can emulate "VMCS shadowing," even if the hardware
6515 	 * doesn't support it.
6516 	 */
6517 	msrs->secondary_ctls_high |=
6518 		SECONDARY_EXEC_SHADOW_VMCS;
6519 
6520 	if (enable_ept) {
6521 		/* nested EPT: emulate EPT also to L1 */
6522 		msrs->secondary_ctls_high |=
6523 			SECONDARY_EXEC_ENABLE_EPT;
6524 		msrs->ept_caps =
6525 			VMX_EPT_PAGE_WALK_4_BIT |
6526 			VMX_EPT_PAGE_WALK_5_BIT |
6527 			VMX_EPTP_WB_BIT |
6528 			VMX_EPT_INVEPT_BIT |
6529 			VMX_EPT_EXECUTE_ONLY_BIT;
6530 
6531 		msrs->ept_caps &= ept_caps;
6532 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6533 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6534 			VMX_EPT_1GB_PAGE_BIT;
6535 		if (enable_ept_ad_bits) {
6536 			msrs->secondary_ctls_high |=
6537 				SECONDARY_EXEC_ENABLE_PML;
6538 			msrs->ept_caps |= VMX_EPT_AD_BIT;
6539 		}
6540 	}
6541 
6542 	if (cpu_has_vmx_vmfunc()) {
6543 		msrs->secondary_ctls_high |=
6544 			SECONDARY_EXEC_ENABLE_VMFUNC;
6545 		/*
6546 		 * Advertise EPTP switching unconditionally
6547 		 * since we emulate it
6548 		 */
6549 		if (enable_ept)
6550 			msrs->vmfunc_controls =
6551 				VMX_VMFUNC_EPTP_SWITCHING;
6552 	}
6553 
6554 	/*
6555 	 * Old versions of KVM use the single-context version without
6556 	 * checking for support, so declare that it is supported even
6557 	 * though it is treated as global context.  The alternative is
6558 	 * not failing the single-context invvpid, and it is worse.
6559 	 */
6560 	if (enable_vpid) {
6561 		msrs->secondary_ctls_high |=
6562 			SECONDARY_EXEC_ENABLE_VPID;
6563 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6564 			VMX_VPID_EXTENT_SUPPORTED_MASK;
6565 	}
6566 
6567 	if (enable_unrestricted_guest)
6568 		msrs->secondary_ctls_high |=
6569 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6570 
6571 	if (flexpriority_enabled)
6572 		msrs->secondary_ctls_high |=
6573 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6574 
6575 	/* miscellaneous data */
6576 	rdmsr(MSR_IA32_VMX_MISC,
6577 		msrs->misc_low,
6578 		msrs->misc_high);
6579 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6580 	msrs->misc_low |=
6581 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6582 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6583 		VMX_MISC_ACTIVITY_HLT;
6584 	msrs->misc_high = 0;
6585 
6586 	/*
6587 	 * This MSR reports some information about VMX support. We
6588 	 * should return information about the VMX we emulate for the
6589 	 * guest, and the VMCS structure we give it - not about the
6590 	 * VMX support of the underlying hardware.
6591 	 */
6592 	msrs->basic =
6593 		VMCS12_REVISION |
6594 		VMX_BASIC_TRUE_CTLS |
6595 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6596 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6597 
6598 	if (cpu_has_vmx_basic_inout())
6599 		msrs->basic |= VMX_BASIC_INOUT;
6600 
6601 	/*
6602 	 * These MSRs specify bits which the guest must keep fixed on
6603 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6604 	 * We picked the standard core2 setting.
6605 	 */
6606 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6607 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6608 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6609 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6610 
6611 	/* These MSRs specify bits which the guest must keep fixed off. */
6612 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6613 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6614 
6615 	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
6616 	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6617 }
6618 
nested_vmx_hardware_unsetup(void)6619 void nested_vmx_hardware_unsetup(void)
6620 {
6621 	int i;
6622 
6623 	if (enable_shadow_vmcs) {
6624 		for (i = 0; i < VMX_BITMAP_NR; i++)
6625 			free_page((unsigned long)vmx_bitmap[i]);
6626 	}
6627 }
6628 
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))6629 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6630 {
6631 	int i;
6632 
6633 	if (!cpu_has_vmx_shadow_vmcs())
6634 		enable_shadow_vmcs = 0;
6635 	if (enable_shadow_vmcs) {
6636 		for (i = 0; i < VMX_BITMAP_NR; i++) {
6637 			/*
6638 			 * The vmx_bitmap is not tied to a VM and so should
6639 			 * not be charged to a memcg.
6640 			 */
6641 			vmx_bitmap[i] = (unsigned long *)
6642 				__get_free_page(GFP_KERNEL);
6643 			if (!vmx_bitmap[i]) {
6644 				nested_vmx_hardware_unsetup();
6645 				return -ENOMEM;
6646 			}
6647 		}
6648 
6649 		init_vmcs_shadow_fields();
6650 	}
6651 
6652 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
6653 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
6654 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
6655 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
6656 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
6657 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
6658 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
6659 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
6660 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
6661 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
6662 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
6663 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6664 
6665 	return 0;
6666 }
6667 
6668 struct kvm_x86_nested_ops vmx_nested_ops = {
6669 	.leave_nested = vmx_leave_nested,
6670 	.check_events = vmx_check_nested_events,
6671 	.hv_timer_pending = nested_vmx_preemption_timer_pending,
6672 	.get_state = vmx_get_nested_state,
6673 	.set_state = vmx_set_nested_state,
6674 	.get_nested_state_pages = vmx_get_nested_state_pages,
6675 	.write_log_dirty = nested_vmx_write_pml_buffer,
6676 	.enable_evmcs = nested_enable_evmcs,
6677 	.get_evmcs_version = nested_get_evmcs_version,
6678 };
6679