1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15 #include <trace/hooks/sched.h>
16
17 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
18
19 struct sugov_tunables {
20 struct gov_attr_set attr_set;
21 unsigned int rate_limit_us;
22 #ifdef CONFIG_ARCH_ROCKCHIP
23 unsigned int target_load;
24 #endif
25 };
26
27 struct sugov_policy {
28 struct cpufreq_policy *policy;
29
30 struct sugov_tunables *tunables;
31 struct list_head tunables_hook;
32
33 raw_spinlock_t update_lock; /* For shared policies */
34 u64 last_freq_update_time;
35 s64 freq_update_delay_ns;
36 unsigned int next_freq;
37 unsigned int cached_raw_freq;
38
39 /* The next fields are only needed if fast switch cannot be used: */
40 struct irq_work irq_work;
41 struct kthread_work work;
42 struct mutex work_lock;
43 struct kthread_worker worker;
44 struct task_struct *thread;
45 bool work_in_progress;
46
47 bool limits_changed;
48 bool need_freq_update;
49 };
50
51 struct sugov_cpu {
52 struct update_util_data update_util;
53 struct sugov_policy *sg_policy;
54 unsigned int cpu;
55
56 bool iowait_boost_pending;
57 unsigned int iowait_boost;
58 u64 last_update;
59
60 unsigned long bw_dl;
61 unsigned long max;
62
63 /* The field below is for single-CPU policies only: */
64 #ifdef CONFIG_NO_HZ_COMMON
65 unsigned long saved_idle_calls;
66 #endif
67 };
68
69 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
70
71 /************************ Governor internals ***********************/
72
sugov_should_update_freq(struct sugov_policy * sg_policy,u64 time)73 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
74 {
75 s64 delta_ns;
76
77 /*
78 * Since cpufreq_update_util() is called with rq->lock held for
79 * the @target_cpu, our per-CPU data is fully serialized.
80 *
81 * However, drivers cannot in general deal with cross-CPU
82 * requests, so while get_next_freq() will work, our
83 * sugov_update_commit() call may not for the fast switching platforms.
84 *
85 * Hence stop here for remote requests if they aren't supported
86 * by the hardware, as calculating the frequency is pointless if
87 * we cannot in fact act on it.
88 *
89 * This is needed on the slow switching platforms too to prevent CPUs
90 * going offline from leaving stale IRQ work items behind.
91 */
92 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
93 return false;
94
95 if (unlikely(sg_policy->limits_changed)) {
96 sg_policy->limits_changed = false;
97 sg_policy->need_freq_update = true;
98 return true;
99 }
100
101 delta_ns = time - sg_policy->last_freq_update_time;
102
103 return delta_ns >= sg_policy->freq_update_delay_ns;
104 }
105
sugov_update_next_freq(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)106 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
107 unsigned int next_freq)
108 {
109 if (!sg_policy->need_freq_update) {
110 if (sg_policy->next_freq == next_freq)
111 return false;
112 } else {
113 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
114 }
115
116 sg_policy->next_freq = next_freq;
117 sg_policy->last_freq_update_time = time;
118
119 return true;
120 }
121
sugov_fast_switch(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)122 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
123 unsigned int next_freq)
124 {
125 if (sugov_update_next_freq(sg_policy, time, next_freq))
126 cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
127 }
128
sugov_deferred_update(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)129 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
130 unsigned int next_freq)
131 {
132 if (!sugov_update_next_freq(sg_policy, time, next_freq))
133 return;
134
135 if (!sg_policy->work_in_progress) {
136 sg_policy->work_in_progress = true;
137 irq_work_queue(&sg_policy->irq_work);
138 }
139 }
140
141 /**
142 * get_next_freq - Compute a new frequency for a given cpufreq policy.
143 * @sg_policy: schedutil policy object to compute the new frequency for.
144 * @util: Current CPU utilization.
145 * @max: CPU capacity.
146 *
147 * If the utilization is frequency-invariant, choose the new frequency to be
148 * proportional to it, that is
149 *
150 * next_freq = C * max_freq * util / max
151 *
152 * Otherwise, approximate the would-be frequency-invariant utilization by
153 * util_raw * (curr_freq / max_freq) which leads to
154 *
155 * next_freq = C * curr_freq * util_raw / max
156 *
157 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
158 *
159 * The lowest driver-supported frequency which is equal or greater than the raw
160 * next_freq (as calculated above) is returned, subject to policy min/max and
161 * cpufreq driver limitations.
162 */
get_next_freq(struct sugov_policy * sg_policy,unsigned long util,unsigned long max)163 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
164 unsigned long util, unsigned long max)
165 {
166 struct cpufreq_policy *policy = sg_policy->policy;
167 unsigned int freq = arch_scale_freq_invariant() ?
168 policy->cpuinfo.max_freq : policy->cur;
169 unsigned long next_freq = 0;
170
171 trace_android_vh_map_util_freq(util, freq, max, &next_freq, policy,
172 &sg_policy->need_freq_update);
173 if (next_freq)
174 freq = next_freq;
175 else
176 #ifdef CONFIG_ARCH_ROCKCHIP
177 freq = div64_ul((u64)(100 * freq / sg_policy->tunables->target_load) * util, max);
178 #else
179 freq = map_util_freq(util, freq, max);
180 #endif
181
182 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
183 return sg_policy->next_freq;
184
185 sg_policy->cached_raw_freq = freq;
186 return cpufreq_driver_resolve_freq(policy, freq);
187 }
188
189 /*
190 * This function computes an effective utilization for the given CPU, to be
191 * used for frequency selection given the linear relation: f = u * f_max.
192 *
193 * The scheduler tracks the following metrics:
194 *
195 * cpu_util_{cfs,rt,dl,irq}()
196 * cpu_bw_dl()
197 *
198 * Where the cfs,rt and dl util numbers are tracked with the same metric and
199 * synchronized windows and are thus directly comparable.
200 *
201 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
202 * which excludes things like IRQ and steal-time. These latter are then accrued
203 * in the irq utilization.
204 *
205 * The DL bandwidth number otoh is not a measured metric but a value computed
206 * based on the task model parameters and gives the minimal utilization
207 * required to meet deadlines.
208 */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)209 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
210 unsigned long max, enum schedutil_type type,
211 struct task_struct *p)
212 {
213 unsigned long dl_util, util, irq;
214 struct rq *rq = cpu_rq(cpu);
215
216 if (!uclamp_is_used() &&
217 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
218 return max;
219 }
220
221 /*
222 * Early check to see if IRQ/steal time saturates the CPU, can be
223 * because of inaccuracies in how we track these -- see
224 * update_irq_load_avg().
225 */
226 irq = cpu_util_irq(rq);
227 if (unlikely(irq >= max))
228 return max;
229
230 /*
231 * Because the time spend on RT/DL tasks is visible as 'lost' time to
232 * CFS tasks and we use the same metric to track the effective
233 * utilization (PELT windows are synchronized) we can directly add them
234 * to obtain the CPU's actual utilization.
235 *
236 * CFS and RT utilization can be boosted or capped, depending on
237 * utilization clamp constraints requested by currently RUNNABLE
238 * tasks.
239 * When there are no CFS RUNNABLE tasks, clamps are released and
240 * frequency will be gracefully reduced with the utilization decay.
241 */
242 util = util_cfs + cpu_util_rt(rq);
243 if (type == FREQUENCY_UTIL)
244 util = uclamp_rq_util_with(rq, util, p);
245
246 dl_util = cpu_util_dl(rq);
247
248 /*
249 * For frequency selection we do not make cpu_util_dl() a permanent part
250 * of this sum because we want to use cpu_bw_dl() later on, but we need
251 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
252 * that we select f_max when there is no idle time.
253 *
254 * NOTE: numerical errors or stop class might cause us to not quite hit
255 * saturation when we should -- something for later.
256 */
257 if (util + dl_util >= max)
258 return max;
259
260 /*
261 * OTOH, for energy computation we need the estimated running time, so
262 * include util_dl and ignore dl_bw.
263 */
264 if (type == ENERGY_UTIL)
265 util += dl_util;
266
267 /*
268 * There is still idle time; further improve the number by using the
269 * irq metric. Because IRQ/steal time is hidden from the task clock we
270 * need to scale the task numbers:
271 *
272 * max - irq
273 * U' = irq + --------- * U
274 * max
275 */
276 util = scale_irq_capacity(util, irq, max);
277 util += irq;
278
279 /*
280 * Bandwidth required by DEADLINE must always be granted while, for
281 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
282 * to gracefully reduce the frequency when no tasks show up for longer
283 * periods of time.
284 *
285 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
286 * bw_dl as requested freq. However, cpufreq is not yet ready for such
287 * an interface. So, we only do the latter for now.
288 */
289 if (type == FREQUENCY_UTIL)
290 util += cpu_bw_dl(rq);
291
292 return min(max, util);
293 }
294 EXPORT_SYMBOL_GPL(schedutil_cpu_util);
295
sugov_get_util(struct sugov_cpu * sg_cpu)296 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
297 {
298 struct rq *rq = cpu_rq(sg_cpu->cpu);
299 unsigned long util = cpu_util_cfs(rq);
300 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
301
302 sg_cpu->max = max;
303 sg_cpu->bw_dl = cpu_bw_dl(rq);
304
305 return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
306 }
307
308 /**
309 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
310 * @sg_cpu: the sugov data for the CPU to boost
311 * @time: the update time from the caller
312 * @set_iowait_boost: true if an IO boost has been requested
313 *
314 * The IO wait boost of a task is disabled after a tick since the last update
315 * of a CPU. If a new IO wait boost is requested after more then a tick, then
316 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
317 * efficiency by ignoring sporadic wakeups from IO.
318 */
sugov_iowait_reset(struct sugov_cpu * sg_cpu,u64 time,bool set_iowait_boost)319 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
320 bool set_iowait_boost)
321 {
322 s64 delta_ns = time - sg_cpu->last_update;
323
324 /* Reset boost only if a tick has elapsed since last request */
325 if (delta_ns <= TICK_NSEC)
326 return false;
327
328 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
329 sg_cpu->iowait_boost_pending = set_iowait_boost;
330
331 return true;
332 }
333
334 /**
335 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
336 * @sg_cpu: the sugov data for the CPU to boost
337 * @time: the update time from the caller
338 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
339 *
340 * Each time a task wakes up after an IO operation, the CPU utilization can be
341 * boosted to a certain utilization which doubles at each "frequent and
342 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
343 * of the maximum OPP.
344 *
345 * To keep doubling, an IO boost has to be requested at least once per tick,
346 * otherwise we restart from the utilization of the minimum OPP.
347 */
sugov_iowait_boost(struct sugov_cpu * sg_cpu,u64 time,unsigned int flags)348 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
349 unsigned int flags)
350 {
351 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
352
353 /* Reset boost if the CPU appears to have been idle enough */
354 if (sg_cpu->iowait_boost &&
355 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
356 return;
357
358 /* Boost only tasks waking up after IO */
359 if (!set_iowait_boost)
360 return;
361
362 /* Ensure boost doubles only one time at each request */
363 if (sg_cpu->iowait_boost_pending)
364 return;
365 sg_cpu->iowait_boost_pending = true;
366
367 /* Double the boost at each request */
368 if (sg_cpu->iowait_boost) {
369 sg_cpu->iowait_boost =
370 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
371 return;
372 }
373
374 /* First wakeup after IO: start with minimum boost */
375 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
376 }
377
378 /**
379 * sugov_iowait_apply() - Apply the IO boost to a CPU.
380 * @sg_cpu: the sugov data for the cpu to boost
381 * @time: the update time from the caller
382 * @util: the utilization to (eventually) boost
383 * @max: the maximum value the utilization can be boosted to
384 *
385 * A CPU running a task which woken up after an IO operation can have its
386 * utilization boosted to speed up the completion of those IO operations.
387 * The IO boost value is increased each time a task wakes up from IO, in
388 * sugov_iowait_apply(), and it's instead decreased by this function,
389 * each time an increase has not been requested (!iowait_boost_pending).
390 *
391 * A CPU which also appears to have been idle for at least one tick has also
392 * its IO boost utilization reset.
393 *
394 * This mechanism is designed to boost high frequently IO waiting tasks, while
395 * being more conservative on tasks which does sporadic IO operations.
396 */
sugov_iowait_apply(struct sugov_cpu * sg_cpu,u64 time,unsigned long util,unsigned long max)397 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
398 unsigned long util, unsigned long max)
399 {
400 unsigned long boost;
401
402 /* No boost currently required */
403 if (!sg_cpu->iowait_boost)
404 return util;
405
406 /* Reset boost if the CPU appears to have been idle enough */
407 if (sugov_iowait_reset(sg_cpu, time, false))
408 return util;
409
410 if (!sg_cpu->iowait_boost_pending) {
411 /*
412 * No boost pending; reduce the boost value.
413 */
414 sg_cpu->iowait_boost >>= 1;
415 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
416 sg_cpu->iowait_boost = 0;
417 return util;
418 }
419 }
420
421 sg_cpu->iowait_boost_pending = false;
422
423 /*
424 * @util is already in capacity scale; convert iowait_boost
425 * into the same scale so we can compare.
426 */
427 boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
428 return max(boost, util);
429 }
430
431 #ifdef CONFIG_NO_HZ_COMMON
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)432 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
433 {
434 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
435 bool ret = idle_calls == sg_cpu->saved_idle_calls;
436
437 sg_cpu->saved_idle_calls = idle_calls;
438 return ret;
439 }
440 #else
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)441 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
442 #endif /* CONFIG_NO_HZ_COMMON */
443
444 /*
445 * Make sugov_should_update_freq() ignore the rate limit when DL
446 * has increased the utilization.
447 */
ignore_dl_rate_limit(struct sugov_cpu * sg_cpu,struct sugov_policy * sg_policy)448 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
449 {
450 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
451 sg_policy->limits_changed = true;
452 }
453
sugov_update_single(struct update_util_data * hook,u64 time,unsigned int flags)454 static void sugov_update_single(struct update_util_data *hook, u64 time,
455 unsigned int flags)
456 {
457 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
458 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
459 unsigned long util, max;
460 unsigned int next_f;
461 unsigned int cached_freq = sg_policy->cached_raw_freq;
462
463 sugov_iowait_boost(sg_cpu, time, flags);
464 sg_cpu->last_update = time;
465
466 ignore_dl_rate_limit(sg_cpu, sg_policy);
467
468 if (!sugov_should_update_freq(sg_policy, time))
469 return;
470
471 util = sugov_get_util(sg_cpu);
472 max = sg_cpu->max;
473 util = sugov_iowait_apply(sg_cpu, time, util, max);
474 next_f = get_next_freq(sg_policy, util, max);
475 /*
476 * Do not reduce the frequency if the CPU has not been idle
477 * recently, as the reduction is likely to be premature then.
478 */
479 if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
480 next_f = sg_policy->next_freq;
481
482 /* Restore cached freq as next_freq has changed */
483 sg_policy->cached_raw_freq = cached_freq;
484 }
485
486 /*
487 * This code runs under rq->lock for the target CPU, so it won't run
488 * concurrently on two different CPUs for the same target and it is not
489 * necessary to acquire the lock in the fast switch case.
490 */
491 if (sg_policy->policy->fast_switch_enabled) {
492 sugov_fast_switch(sg_policy, time, next_f);
493 } else {
494 raw_spin_lock(&sg_policy->update_lock);
495 sugov_deferred_update(sg_policy, time, next_f);
496 raw_spin_unlock(&sg_policy->update_lock);
497 }
498 }
499
sugov_next_freq_shared(struct sugov_cpu * sg_cpu,u64 time)500 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
501 {
502 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
503 struct cpufreq_policy *policy = sg_policy->policy;
504 unsigned long util = 0, max = 1;
505 unsigned int j;
506
507 for_each_cpu(j, policy->cpus) {
508 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
509 unsigned long j_util, j_max;
510
511 j_util = sugov_get_util(j_sg_cpu);
512 j_max = j_sg_cpu->max;
513 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
514
515 if (j_util * max > j_max * util) {
516 util = j_util;
517 max = j_max;
518 }
519 }
520
521 return get_next_freq(sg_policy, util, max);
522 }
523
524 static void
sugov_update_shared(struct update_util_data * hook,u64 time,unsigned int flags)525 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
526 {
527 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
528 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
529 unsigned int next_f;
530
531 raw_spin_lock(&sg_policy->update_lock);
532
533 sugov_iowait_boost(sg_cpu, time, flags);
534 sg_cpu->last_update = time;
535
536 ignore_dl_rate_limit(sg_cpu, sg_policy);
537
538 if (sugov_should_update_freq(sg_policy, time)) {
539 next_f = sugov_next_freq_shared(sg_cpu, time);
540
541 if (sg_policy->policy->fast_switch_enabled)
542 sugov_fast_switch(sg_policy, time, next_f);
543 else
544 sugov_deferred_update(sg_policy, time, next_f);
545 }
546
547 raw_spin_unlock(&sg_policy->update_lock);
548 }
549
sugov_work(struct kthread_work * work)550 static void sugov_work(struct kthread_work *work)
551 {
552 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
553 unsigned int freq;
554 unsigned long flags;
555
556 /*
557 * Hold sg_policy->update_lock shortly to handle the case where:
558 * incase sg_policy->next_freq is read here, and then updated by
559 * sugov_deferred_update() just before work_in_progress is set to false
560 * here, we may miss queueing the new update.
561 *
562 * Note: If a work was queued after the update_lock is released,
563 * sugov_work() will just be called again by kthread_work code; and the
564 * request will be proceed before the sugov thread sleeps.
565 */
566 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
567 freq = sg_policy->next_freq;
568 sg_policy->work_in_progress = false;
569 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
570
571 mutex_lock(&sg_policy->work_lock);
572 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
573 mutex_unlock(&sg_policy->work_lock);
574 }
575
sugov_irq_work(struct irq_work * irq_work)576 static void sugov_irq_work(struct irq_work *irq_work)
577 {
578 struct sugov_policy *sg_policy;
579
580 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
581
582 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
583 }
584
585 /************************** sysfs interface ************************/
586
587 static struct sugov_tunables *global_tunables;
588 static DEFINE_MUTEX(global_tunables_lock);
589
to_sugov_tunables(struct gov_attr_set * attr_set)590 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
591 {
592 return container_of(attr_set, struct sugov_tunables, attr_set);
593 }
594
rate_limit_us_show(struct gov_attr_set * attr_set,char * buf)595 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
596 {
597 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
598
599 return sprintf(buf, "%u\n", tunables->rate_limit_us);
600 }
601
602 static ssize_t
rate_limit_us_store(struct gov_attr_set * attr_set,const char * buf,size_t count)603 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
604 {
605 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
606 struct sugov_policy *sg_policy;
607 unsigned int rate_limit_us;
608
609 if (kstrtouint(buf, 10, &rate_limit_us))
610 return -EINVAL;
611
612 tunables->rate_limit_us = rate_limit_us;
613
614 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
615 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
616
617 return count;
618 }
619
620 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
621
622 #ifdef CONFIG_ARCH_ROCKCHIP
target_load_show(struct gov_attr_set * attr_set,char * buf)623 static ssize_t target_load_show(struct gov_attr_set *attr_set, char *buf)
624 {
625 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
626
627 return sprintf(buf, "%u\n", tunables->target_load);
628 }
629
630 static ssize_t
target_load_store(struct gov_attr_set * attr_set,const char * buf,size_t count)631 target_load_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
632 {
633 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
634 unsigned int target_load;
635
636 if (kstrtouint(buf, 10, &target_load))
637 return -EINVAL;
638
639 if (!target_load || (target_load > 100))
640 return -EINVAL;
641
642 tunables->target_load = target_load;
643
644 return count;
645 }
646
647 static struct governor_attr target_load = __ATTR_RW(target_load);
648 #endif
649
650 static struct attribute *sugov_attrs[] = {
651 &rate_limit_us.attr,
652 #ifdef CONFIG_ARCH_ROCKCHIP
653 &target_load.attr,
654 #endif
655 NULL
656 };
657 ATTRIBUTE_GROUPS(sugov);
658
sugov_tunables_free(struct kobject * kobj)659 static void sugov_tunables_free(struct kobject *kobj)
660 {
661 struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
662
663 kfree(to_sugov_tunables(attr_set));
664 }
665
666 static struct kobj_type sugov_tunables_ktype = {
667 .default_groups = sugov_groups,
668 .sysfs_ops = &governor_sysfs_ops,
669 .release = &sugov_tunables_free,
670 };
671
672 /********************** cpufreq governor interface *********************/
673
674 struct cpufreq_governor schedutil_gov;
675
sugov_policy_alloc(struct cpufreq_policy * policy)676 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
677 {
678 struct sugov_policy *sg_policy;
679
680 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
681 if (!sg_policy)
682 return NULL;
683
684 sg_policy->policy = policy;
685 raw_spin_lock_init(&sg_policy->update_lock);
686 return sg_policy;
687 }
688
sugov_policy_free(struct sugov_policy * sg_policy)689 static void sugov_policy_free(struct sugov_policy *sg_policy)
690 {
691 kfree(sg_policy);
692 }
693
sugov_kthread_create(struct sugov_policy * sg_policy)694 static int sugov_kthread_create(struct sugov_policy *sg_policy)
695 {
696 struct task_struct *thread;
697 struct sched_attr attr = {
698 .size = sizeof(struct sched_attr),
699 .sched_policy = SCHED_DEADLINE,
700 .sched_flags = SCHED_FLAG_SUGOV,
701 .sched_nice = 0,
702 .sched_priority = 0,
703 /*
704 * Fake (unused) bandwidth; workaround to "fix"
705 * priority inheritance.
706 */
707 .sched_runtime = 1000000,
708 .sched_deadline = 10000000,
709 .sched_period = 10000000,
710 };
711 struct cpufreq_policy *policy = sg_policy->policy;
712 int ret;
713
714 /* kthread only required for slow path */
715 if (policy->fast_switch_enabled)
716 return 0;
717
718 kthread_init_work(&sg_policy->work, sugov_work);
719 kthread_init_worker(&sg_policy->worker);
720 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
721 "sugov:%d",
722 cpumask_first(policy->related_cpus));
723 if (IS_ERR(thread)) {
724 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
725 return PTR_ERR(thread);
726 }
727
728 ret = sched_setattr_nocheck(thread, &attr);
729 if (ret) {
730 kthread_stop(thread);
731 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
732 return ret;
733 }
734
735 sg_policy->thread = thread;
736 kthread_bind_mask(thread, policy->related_cpus);
737 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
738 mutex_init(&sg_policy->work_lock);
739
740 wake_up_process(thread);
741
742 return 0;
743 }
744
sugov_kthread_stop(struct sugov_policy * sg_policy)745 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
746 {
747 /* kthread only required for slow path */
748 if (sg_policy->policy->fast_switch_enabled)
749 return;
750
751 kthread_flush_worker(&sg_policy->worker);
752 kthread_stop(sg_policy->thread);
753 mutex_destroy(&sg_policy->work_lock);
754 }
755
sugov_tunables_alloc(struct sugov_policy * sg_policy)756 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
757 {
758 struct sugov_tunables *tunables;
759
760 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
761 if (tunables) {
762 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
763 if (!have_governor_per_policy())
764 global_tunables = tunables;
765 }
766 return tunables;
767 }
768
sugov_clear_global_tunables(void)769 static void sugov_clear_global_tunables(void)
770 {
771 if (!have_governor_per_policy())
772 global_tunables = NULL;
773 }
774
sugov_init(struct cpufreq_policy * policy)775 static int sugov_init(struct cpufreq_policy *policy)
776 {
777 struct sugov_policy *sg_policy;
778 struct sugov_tunables *tunables;
779 int ret = 0;
780
781 /* State should be equivalent to EXIT */
782 if (policy->governor_data)
783 return -EBUSY;
784
785 cpufreq_enable_fast_switch(policy);
786
787 sg_policy = sugov_policy_alloc(policy);
788 if (!sg_policy) {
789 ret = -ENOMEM;
790 goto disable_fast_switch;
791 }
792
793 ret = sugov_kthread_create(sg_policy);
794 if (ret)
795 goto free_sg_policy;
796
797 mutex_lock(&global_tunables_lock);
798
799 if (global_tunables) {
800 if (WARN_ON(have_governor_per_policy())) {
801 ret = -EINVAL;
802 goto stop_kthread;
803 }
804 policy->governor_data = sg_policy;
805 sg_policy->tunables = global_tunables;
806
807 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
808 goto out;
809 }
810
811 tunables = sugov_tunables_alloc(sg_policy);
812 if (!tunables) {
813 ret = -ENOMEM;
814 goto stop_kthread;
815 }
816
817 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
818 #ifdef CONFIG_ARCH_ROCKCHIP
819 tunables->target_load = 80;
820 #endif
821
822 policy->governor_data = sg_policy;
823 sg_policy->tunables = tunables;
824
825 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
826 get_governor_parent_kobj(policy), "%s",
827 schedutil_gov.name);
828 if (ret)
829 goto fail;
830
831 out:
832 mutex_unlock(&global_tunables_lock);
833 return 0;
834
835 fail:
836 kobject_put(&tunables->attr_set.kobj);
837 policy->governor_data = NULL;
838 sugov_clear_global_tunables();
839
840 stop_kthread:
841 sugov_kthread_stop(sg_policy);
842 mutex_unlock(&global_tunables_lock);
843
844 free_sg_policy:
845 sugov_policy_free(sg_policy);
846
847 disable_fast_switch:
848 cpufreq_disable_fast_switch(policy);
849
850 pr_err("initialization failed (error %d)\n", ret);
851 return ret;
852 }
853
sugov_exit(struct cpufreq_policy * policy)854 static void sugov_exit(struct cpufreq_policy *policy)
855 {
856 struct sugov_policy *sg_policy = policy->governor_data;
857 struct sugov_tunables *tunables = sg_policy->tunables;
858 unsigned int count;
859
860 mutex_lock(&global_tunables_lock);
861
862 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
863 policy->governor_data = NULL;
864 if (!count)
865 sugov_clear_global_tunables();
866
867 mutex_unlock(&global_tunables_lock);
868
869 sugov_kthread_stop(sg_policy);
870 sugov_policy_free(sg_policy);
871 cpufreq_disable_fast_switch(policy);
872 }
873
sugov_start(struct cpufreq_policy * policy)874 static int sugov_start(struct cpufreq_policy *policy)
875 {
876 struct sugov_policy *sg_policy = policy->governor_data;
877 unsigned int cpu;
878
879 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
880 sg_policy->last_freq_update_time = 0;
881 sg_policy->next_freq = 0;
882 sg_policy->work_in_progress = false;
883 sg_policy->limits_changed = false;
884 sg_policy->cached_raw_freq = 0;
885
886 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
887
888 for_each_cpu(cpu, policy->cpus) {
889 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
890
891 memset(sg_cpu, 0, sizeof(*sg_cpu));
892 sg_cpu->cpu = cpu;
893 sg_cpu->sg_policy = sg_policy;
894 }
895
896 for_each_cpu(cpu, policy->cpus) {
897 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
898
899 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
900 policy_is_shared(policy) ?
901 sugov_update_shared :
902 sugov_update_single);
903 }
904 return 0;
905 }
906
sugov_stop(struct cpufreq_policy * policy)907 static void sugov_stop(struct cpufreq_policy *policy)
908 {
909 struct sugov_policy *sg_policy = policy->governor_data;
910 unsigned int cpu;
911
912 for_each_cpu(cpu, policy->cpus)
913 cpufreq_remove_update_util_hook(cpu);
914
915 synchronize_rcu();
916
917 if (!policy->fast_switch_enabled) {
918 irq_work_sync(&sg_policy->irq_work);
919 kthread_cancel_work_sync(&sg_policy->work);
920 }
921 }
922
sugov_limits(struct cpufreq_policy * policy)923 static void sugov_limits(struct cpufreq_policy *policy)
924 {
925 struct sugov_policy *sg_policy = policy->governor_data;
926
927 if (!policy->fast_switch_enabled) {
928 mutex_lock(&sg_policy->work_lock);
929 cpufreq_policy_apply_limits(policy);
930 mutex_unlock(&sg_policy->work_lock);
931 }
932
933 sg_policy->limits_changed = true;
934 }
935
936 struct cpufreq_governor schedutil_gov = {
937 .name = "schedutil",
938 .owner = THIS_MODULE,
939 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
940 .init = sugov_init,
941 .exit = sugov_exit,
942 .start = sugov_start,
943 .stop = sugov_stop,
944 .limits = sugov_limits,
945 };
946
947 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
cpufreq_default_governor(void)948 struct cpufreq_governor *cpufreq_default_governor(void)
949 {
950 return &schedutil_gov;
951 }
952 #endif
953
954 cpufreq_governor_init(schedutil_gov);
955