xref: /OK3568_Linux_fs/kernel/include/linux/mtd/nand.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  Copyright 2017 - Free Electrons
4  *
5  *  Authors:
6  *	Boris Brezillon <boris.brezillon@free-electrons.com>
7  *	Peter Pan <peterpandong@micron.com>
8  */
9 
10 #ifndef __LINUX_MTD_NAND_H
11 #define __LINUX_MTD_NAND_H
12 
13 #include <linux/mtd/mtd.h>
14 
15 struct nand_device;
16 
17 /**
18  * struct nand_memory_organization - Memory organization structure
19  * @bits_per_cell: number of bits per NAND cell
20  * @pagesize: page size
21  * @oobsize: OOB area size
22  * @pages_per_eraseblock: number of pages per eraseblock
23  * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
24  * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
25  * @planes_per_lun: number of planes per LUN
26  * @luns_per_target: number of LUN per target (target is a synonym for die)
27  * @ntargets: total number of targets exposed by the NAND device
28  */
29 struct nand_memory_organization {
30 	unsigned int bits_per_cell;
31 	unsigned int pagesize;
32 	unsigned int oobsize;
33 	unsigned int pages_per_eraseblock;
34 	unsigned int eraseblocks_per_lun;
35 	unsigned int max_bad_eraseblocks_per_lun;
36 	unsigned int planes_per_lun;
37 	unsigned int luns_per_target;
38 	unsigned int ntargets;
39 };
40 
41 #define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt)	\
42 	{							\
43 		.bits_per_cell = (bpc),				\
44 		.pagesize = (ps),				\
45 		.oobsize = (os),				\
46 		.pages_per_eraseblock = (ppe),			\
47 		.eraseblocks_per_lun = (epl),			\
48 		.max_bad_eraseblocks_per_lun = (mbb),		\
49 		.planes_per_lun = (ppl),			\
50 		.luns_per_target = (lpt),			\
51 		.ntargets = (nt),				\
52 	}
53 
54 /**
55  * struct nand_row_converter - Information needed to convert an absolute offset
56  *			       into a row address
57  * @lun_addr_shift: position of the LUN identifier in the row address
58  * @eraseblock_addr_shift: position of the eraseblock identifier in the row
59  *			   address
60  */
61 struct nand_row_converter {
62 	unsigned int lun_addr_shift;
63 	unsigned int eraseblock_addr_shift;
64 };
65 
66 /**
67  * struct nand_pos - NAND position object
68  * @target: the NAND target/die
69  * @lun: the LUN identifier
70  * @plane: the plane within the LUN
71  * @eraseblock: the eraseblock within the LUN
72  * @page: the page within the LUN
73  *
74  * These information are usually used by specific sub-layers to select the
75  * appropriate target/die and generate a row address to pass to the device.
76  */
77 struct nand_pos {
78 	unsigned int target;
79 	unsigned int lun;
80 	unsigned int plane;
81 	unsigned int eraseblock;
82 	unsigned int page;
83 };
84 
85 /**
86  * enum nand_page_io_req_type - Direction of an I/O request
87  * @NAND_PAGE_READ: from the chip, to the controller
88  * @NAND_PAGE_WRITE: from the controller, to the chip
89  */
90 enum nand_page_io_req_type {
91 	NAND_PAGE_READ = 0,
92 	NAND_PAGE_WRITE,
93 };
94 
95 /**
96  * struct nand_page_io_req - NAND I/O request object
97  * @type: the type of page I/O: read or write
98  * @pos: the position this I/O request is targeting
99  * @dataoffs: the offset within the page
100  * @datalen: number of data bytes to read from/write to this page
101  * @databuf: buffer to store data in or get data from
102  * @ooboffs: the OOB offset within the page
103  * @ooblen: the number of OOB bytes to read from/write to this page
104  * @oobbuf: buffer to store OOB data in or get OOB data from
105  * @mode: one of the %MTD_OPS_XXX mode
106  *
107  * This object is used to pass per-page I/O requests to NAND sub-layers. This
108  * way all useful information are already formatted in a useful way and
109  * specific NAND layers can focus on translating these information into
110  * specific commands/operations.
111  */
112 struct nand_page_io_req {
113 	enum nand_page_io_req_type type;
114 	struct nand_pos pos;
115 	unsigned int dataoffs;
116 	unsigned int datalen;
117 	union {
118 		const void *out;
119 		void *in;
120 	} databuf;
121 	unsigned int ooboffs;
122 	unsigned int ooblen;
123 	union {
124 		const void *out;
125 		void *in;
126 	} oobbuf;
127 	int mode;
128 };
129 
130 const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void);
131 const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void);
132 const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void);
133 
134 /**
135  * enum nand_ecc_engine_type - NAND ECC engine type
136  * @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value
137  * @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction
138  * @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction
139  * @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction
140  * @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction
141  */
142 enum nand_ecc_engine_type {
143 	NAND_ECC_ENGINE_TYPE_INVALID,
144 	NAND_ECC_ENGINE_TYPE_NONE,
145 	NAND_ECC_ENGINE_TYPE_SOFT,
146 	NAND_ECC_ENGINE_TYPE_ON_HOST,
147 	NAND_ECC_ENGINE_TYPE_ON_DIE,
148 };
149 
150 /**
151  * enum nand_ecc_placement - NAND ECC bytes placement
152  * @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown
153  * @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area
154  * @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes
155  *                                  interleaved with regular data in the main
156  *                                  area
157  */
158 enum nand_ecc_placement {
159 	NAND_ECC_PLACEMENT_UNKNOWN,
160 	NAND_ECC_PLACEMENT_OOB,
161 	NAND_ECC_PLACEMENT_INTERLEAVED,
162 };
163 
164 /**
165  * enum nand_ecc_algo - NAND ECC algorithm
166  * @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm
167  * @NAND_ECC_ALGO_HAMMING: Hamming algorithm
168  * @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm
169  * @NAND_ECC_ALGO_RS: Reed-Solomon algorithm
170  */
171 enum nand_ecc_algo {
172 	NAND_ECC_ALGO_UNKNOWN,
173 	NAND_ECC_ALGO_HAMMING,
174 	NAND_ECC_ALGO_BCH,
175 	NAND_ECC_ALGO_RS,
176 };
177 
178 /**
179  * struct nand_ecc_props - NAND ECC properties
180  * @engine_type: ECC engine type
181  * @placement: OOB placement (if relevant)
182  * @algo: ECC algorithm (if relevant)
183  * @strength: ECC strength
184  * @step_size: Number of bytes per step
185  * @flags: Misc properties
186  */
187 struct nand_ecc_props {
188 	enum nand_ecc_engine_type engine_type;
189 	enum nand_ecc_placement placement;
190 	enum nand_ecc_algo algo;
191 	unsigned int strength;
192 	unsigned int step_size;
193 	unsigned int flags;
194 };
195 
196 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
197 
198 /* NAND ECC misc flags */
199 #define NAND_ECC_MAXIMIZE_STRENGTH BIT(0)
200 
201 /* nand_bbt option */
202 #define NANDDEV_BBT_SCANNED		BIT(0)
203 
204 /* The maximum number of blocks to scan for a bbt */
205 #define NANDDEV_BBT_SCAN_MAXBLOCKS	4
206 
207 /**
208  * struct nand_bbt - bad block table object
209  * @cache: in memory BBT cache
210  * @option: the option of BBT
211  * @version: current memory BBT cache version
212  */
213 struct nand_bbt {
214 	unsigned long *cache;
215 #ifdef CONFIG_MTD_NAND_BBT_USING_FLASH
216 	unsigned int option;
217 	unsigned int version;
218 #endif
219 };
220 
221 /**
222  * struct nand_ops - NAND operations
223  * @erase: erase a specific block. No need to check if the block is bad before
224  *	   erasing, this has been taken care of by the generic NAND layer
225  * @markbad: mark a specific block bad. No need to check if the block is
226  *	     already marked bad, this has been taken care of by the generic
227  *	     NAND layer. This method should just write the BBM (Bad Block
228  *	     Marker) so that future call to struct_nand_ops->isbad() return
229  *	     true
230  * @isbad: check whether a block is bad or not. This method should just read
231  *	   the BBM and return whether the block is bad or not based on what it
232  *	   reads
233  *
234  * These are all low level operations that should be implemented by specialized
235  * NAND layers (SPI NAND, raw NAND, ...).
236  */
237 struct nand_ops {
238 	int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
239 	int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
240 	bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
241 };
242 
243 /**
244  * struct nand_ecc_context - Context for the ECC engine
245  * @conf: basic ECC engine parameters
246  * @total: total number of bytes used for storing ECC codes, this is used by
247  *         generic OOB layouts
248  * @priv: ECC engine driver private data
249  */
250 struct nand_ecc_context {
251 	struct nand_ecc_props conf;
252 	unsigned int total;
253 	void *priv;
254 };
255 
256 /**
257  * struct nand_ecc_engine_ops - ECC engine operations
258  * @init_ctx: given a desired user configuration for the pointed NAND device,
259  *            requests the ECC engine driver to setup a configuration with
260  *            values it supports.
261  * @cleanup_ctx: clean the context initialized by @init_ctx.
262  * @prepare_io_req: is called before reading/writing a page to prepare the I/O
263  *                  request to be performed with ECC correction.
264  * @finish_io_req: is called after reading/writing a page to terminate the I/O
265  *                 request and ensure proper ECC correction.
266  */
267 struct nand_ecc_engine_ops {
268 	int (*init_ctx)(struct nand_device *nand);
269 	void (*cleanup_ctx)(struct nand_device *nand);
270 	int (*prepare_io_req)(struct nand_device *nand,
271 			      struct nand_page_io_req *req);
272 	int (*finish_io_req)(struct nand_device *nand,
273 			     struct nand_page_io_req *req);
274 };
275 
276 /**
277  * struct nand_ecc_engine - ECC engine abstraction for NAND devices
278  * @ops: ECC engine operations
279  */
280 struct nand_ecc_engine {
281 	struct nand_ecc_engine_ops *ops;
282 };
283 
284 void of_get_nand_ecc_user_config(struct nand_device *nand);
285 int nand_ecc_init_ctx(struct nand_device *nand);
286 void nand_ecc_cleanup_ctx(struct nand_device *nand);
287 int nand_ecc_prepare_io_req(struct nand_device *nand,
288 			    struct nand_page_io_req *req);
289 int nand_ecc_finish_io_req(struct nand_device *nand,
290 			   struct nand_page_io_req *req);
291 bool nand_ecc_is_strong_enough(struct nand_device *nand);
292 
293 /**
294  * struct nand_ecc - Information relative to the ECC
295  * @defaults: Default values, depend on the underlying subsystem
296  * @requirements: ECC requirements from the NAND chip perspective
297  * @user_conf: User desires in terms of ECC parameters
298  * @ctx: ECC context for the ECC engine, derived from the device @requirements
299  *       the @user_conf and the @defaults
300  * @ondie_engine: On-die ECC engine reference, if any
301  * @engine: ECC engine actually bound
302  */
303 struct nand_ecc {
304 	struct nand_ecc_props defaults;
305 	struct nand_ecc_props requirements;
306 	struct nand_ecc_props user_conf;
307 	struct nand_ecc_context ctx;
308 	struct nand_ecc_engine *ondie_engine;
309 	struct nand_ecc_engine *engine;
310 };
311 
312 /**
313  * struct nand_device - NAND device
314  * @mtd: MTD instance attached to the NAND device
315  * @memorg: memory layout
316  * @ecc: NAND ECC object attached to the NAND device
317  * @rowconv: position to row address converter
318  * @bbt: bad block table info
319  * @ops: NAND operations attached to the NAND device
320  *
321  * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
322  * should declare their own NAND object embedding a nand_device struct (that's
323  * how inheritance is done).
324  * struct_nand_device->memorg and struct_nand_device->ecc.requirements should
325  * be filled at device detection time to reflect the NAND device
326  * capabilities/requirements. Once this is done nanddev_init() can be called.
327  * It will take care of converting NAND information into MTD ones, which means
328  * the specialized NAND layers should never manually tweak
329  * struct_nand_device->mtd except for the ->_read/write() hooks.
330  */
331 struct nand_device {
332 	struct mtd_info mtd;
333 	struct nand_memory_organization memorg;
334 	struct nand_ecc ecc;
335 	struct nand_row_converter rowconv;
336 	struct nand_bbt bbt;
337 	const struct nand_ops *ops;
338 };
339 
340 /**
341  * struct nand_io_iter - NAND I/O iterator
342  * @req: current I/O request
343  * @oobbytes_per_page: maximum number of OOB bytes per page
344  * @dataleft: remaining number of data bytes to read/write
345  * @oobleft: remaining number of OOB bytes to read/write
346  *
347  * Can be used by specialized NAND layers to iterate over all pages covered
348  * by an MTD I/O request, which should greatly simplifies the boiler-plate
349  * code needed to read/write data from/to a NAND device.
350  */
351 struct nand_io_iter {
352 	struct nand_page_io_req req;
353 	unsigned int oobbytes_per_page;
354 	unsigned int dataleft;
355 	unsigned int oobleft;
356 };
357 
358 /**
359  * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
360  * @mtd: MTD instance
361  *
362  * Return: the NAND device embedding @mtd.
363  */
mtd_to_nanddev(struct mtd_info * mtd)364 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
365 {
366 	return container_of(mtd, struct nand_device, mtd);
367 }
368 
369 /**
370  * nanddev_to_mtd() - Get the MTD device attached to a NAND device
371  * @nand: NAND device
372  *
373  * Return: the MTD device embedded in @nand.
374  */
nanddev_to_mtd(struct nand_device * nand)375 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
376 {
377 	return &nand->mtd;
378 }
379 
380 /*
381  * nanddev_bits_per_cell() - Get the number of bits per cell
382  * @nand: NAND device
383  *
384  * Return: the number of bits per cell.
385  */
nanddev_bits_per_cell(const struct nand_device * nand)386 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
387 {
388 	return nand->memorg.bits_per_cell;
389 }
390 
391 /**
392  * nanddev_page_size() - Get NAND page size
393  * @nand: NAND device
394  *
395  * Return: the page size.
396  */
nanddev_page_size(const struct nand_device * nand)397 static inline size_t nanddev_page_size(const struct nand_device *nand)
398 {
399 	return nand->memorg.pagesize;
400 }
401 
402 /**
403  * nanddev_per_page_oobsize() - Get NAND OOB size
404  * @nand: NAND device
405  *
406  * Return: the OOB size.
407  */
408 static inline unsigned int
nanddev_per_page_oobsize(const struct nand_device * nand)409 nanddev_per_page_oobsize(const struct nand_device *nand)
410 {
411 	return nand->memorg.oobsize;
412 }
413 
414 /**
415  * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
416  * @nand: NAND device
417  *
418  * Return: the number of pages per eraseblock.
419  */
420 static inline unsigned int
nanddev_pages_per_eraseblock(const struct nand_device * nand)421 nanddev_pages_per_eraseblock(const struct nand_device *nand)
422 {
423 	return nand->memorg.pages_per_eraseblock;
424 }
425 
426 /**
427  * nanddev_pages_per_target() - Get the number of pages per target
428  * @nand: NAND device
429  *
430  * Return: the number of pages per target.
431  */
432 static inline unsigned int
nanddev_pages_per_target(const struct nand_device * nand)433 nanddev_pages_per_target(const struct nand_device *nand)
434 {
435 	return nand->memorg.pages_per_eraseblock *
436 	       nand->memorg.eraseblocks_per_lun *
437 	       nand->memorg.luns_per_target;
438 }
439 
440 /**
441  * nanddev_per_page_oobsize() - Get NAND erase block size
442  * @nand: NAND device
443  *
444  * Return: the eraseblock size.
445  */
nanddev_eraseblock_size(const struct nand_device * nand)446 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
447 {
448 	return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
449 }
450 
451 /**
452  * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
453  * @nand: NAND device
454  *
455  * Return: the number of eraseblocks per LUN.
456  */
457 static inline unsigned int
nanddev_eraseblocks_per_lun(const struct nand_device * nand)458 nanddev_eraseblocks_per_lun(const struct nand_device *nand)
459 {
460 	return nand->memorg.eraseblocks_per_lun;
461 }
462 
463 /**
464  * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target
465  * @nand: NAND device
466  *
467  * Return: the number of eraseblocks per target.
468  */
469 static inline unsigned int
nanddev_eraseblocks_per_target(const struct nand_device * nand)470 nanddev_eraseblocks_per_target(const struct nand_device *nand)
471 {
472 	return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target;
473 }
474 
475 /**
476  * nanddev_target_size() - Get the total size provided by a single target/die
477  * @nand: NAND device
478  *
479  * Return: the total size exposed by a single target/die in bytes.
480  */
nanddev_target_size(const struct nand_device * nand)481 static inline u64 nanddev_target_size(const struct nand_device *nand)
482 {
483 	return (u64)nand->memorg.luns_per_target *
484 	       nand->memorg.eraseblocks_per_lun *
485 	       nand->memorg.pages_per_eraseblock *
486 	       nand->memorg.pagesize;
487 }
488 
489 /**
490  * nanddev_ntarget() - Get the total of targets
491  * @nand: NAND device
492  *
493  * Return: the number of targets/dies exposed by @nand.
494  */
nanddev_ntargets(const struct nand_device * nand)495 static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
496 {
497 	return nand->memorg.ntargets;
498 }
499 
500 /**
501  * nanddev_neraseblocks() - Get the total number of eraseblocks
502  * @nand: NAND device
503  *
504  * Return: the total number of eraseblocks exposed by @nand.
505  */
nanddev_neraseblocks(const struct nand_device * nand)506 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
507 {
508 	return nand->memorg.ntargets * nand->memorg.luns_per_target *
509 	       nand->memorg.eraseblocks_per_lun;
510 }
511 
512 /**
513  * nanddev_size() - Get NAND size
514  * @nand: NAND device
515  *
516  * Return: the total size (in bytes) exposed by @nand.
517  */
nanddev_size(const struct nand_device * nand)518 static inline u64 nanddev_size(const struct nand_device *nand)
519 {
520 	return nanddev_target_size(nand) * nanddev_ntargets(nand);
521 }
522 
523 /**
524  * nanddev_get_memorg() - Extract memory organization info from a NAND device
525  * @nand: NAND device
526  *
527  * This can be used by the upper layer to fill the memorg info before calling
528  * nanddev_init().
529  *
530  * Return: the memorg object embedded in the NAND device.
531  */
532 static inline struct nand_memory_organization *
nanddev_get_memorg(struct nand_device * nand)533 nanddev_get_memorg(struct nand_device *nand)
534 {
535 	return &nand->memorg;
536 }
537 
538 /**
539  * nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device
540  * @nand: NAND device
541  */
542 static inline const struct nand_ecc_props *
nanddev_get_ecc_conf(struct nand_device * nand)543 nanddev_get_ecc_conf(struct nand_device *nand)
544 {
545 	return &nand->ecc.ctx.conf;
546 }
547 
548 /**
549  * nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND
550  *                                  device
551  * @nand: NAND device
552  */
553 static inline const struct nand_ecc_props *
nanddev_get_ecc_requirements(struct nand_device * nand)554 nanddev_get_ecc_requirements(struct nand_device *nand)
555 {
556 	return &nand->ecc.requirements;
557 }
558 
559 /**
560  * nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND
561  *                                  device
562  * @nand: NAND device
563  * @reqs: Requirements
564  */
565 static inline void
nanddev_set_ecc_requirements(struct nand_device * nand,const struct nand_ecc_props * reqs)566 nanddev_set_ecc_requirements(struct nand_device *nand,
567 			     const struct nand_ecc_props *reqs)
568 {
569 	nand->ecc.requirements = *reqs;
570 }
571 
572 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
573 		 struct module *owner);
574 void nanddev_cleanup(struct nand_device *nand);
575 
576 /**
577  * nanddev_register() - Register a NAND device
578  * @nand: NAND device
579  *
580  * Register a NAND device.
581  * This function is just a wrapper around mtd_device_register()
582  * registering the MTD device embedded in @nand.
583  *
584  * Return: 0 in case of success, a negative error code otherwise.
585  */
nanddev_register(struct nand_device * nand)586 static inline int nanddev_register(struct nand_device *nand)
587 {
588 	return mtd_device_register(&nand->mtd, NULL, 0);
589 }
590 
591 /**
592  * nanddev_unregister() - Unregister a NAND device
593  * @nand: NAND device
594  *
595  * Unregister a NAND device.
596  * This function is just a wrapper around mtd_device_unregister()
597  * unregistering the MTD device embedded in @nand.
598  *
599  * Return: 0 in case of success, a negative error code otherwise.
600  */
nanddev_unregister(struct nand_device * nand)601 static inline int nanddev_unregister(struct nand_device *nand)
602 {
603 	return mtd_device_unregister(&nand->mtd);
604 }
605 
606 /**
607  * nanddev_set_of_node() - Attach a DT node to a NAND device
608  * @nand: NAND device
609  * @np: DT node
610  *
611  * Attach a DT node to a NAND device.
612  */
nanddev_set_of_node(struct nand_device * nand,struct device_node * np)613 static inline void nanddev_set_of_node(struct nand_device *nand,
614 				       struct device_node *np)
615 {
616 	mtd_set_of_node(&nand->mtd, np);
617 }
618 
619 /**
620  * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
621  * @nand: NAND device
622  *
623  * Return: the DT node attached to @nand.
624  */
nanddev_get_of_node(struct nand_device * nand)625 static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
626 {
627 	return mtd_get_of_node(&nand->mtd);
628 }
629 
630 /**
631  * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
632  * @nand: NAND device
633  * @offs: absolute NAND offset (usually passed by the MTD layer)
634  * @pos: a NAND position object to fill in
635  *
636  * Converts @offs into a nand_pos representation.
637  *
638  * Return: the offset within the NAND page pointed by @pos.
639  */
nanddev_offs_to_pos(struct nand_device * nand,loff_t offs,struct nand_pos * pos)640 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
641 					       loff_t offs,
642 					       struct nand_pos *pos)
643 {
644 	unsigned int pageoffs;
645 	u64 tmp = offs;
646 
647 	pageoffs = do_div(tmp, nand->memorg.pagesize);
648 	pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
649 	pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
650 	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
651 	pos->lun = do_div(tmp, nand->memorg.luns_per_target);
652 	pos->target = tmp;
653 
654 	return pageoffs;
655 }
656 
657 /**
658  * nanddev_pos_cmp() - Compare two NAND positions
659  * @a: First NAND position
660  * @b: Second NAND position
661  *
662  * Compares two NAND positions.
663  *
664  * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
665  */
nanddev_pos_cmp(const struct nand_pos * a,const struct nand_pos * b)666 static inline int nanddev_pos_cmp(const struct nand_pos *a,
667 				  const struct nand_pos *b)
668 {
669 	if (a->target != b->target)
670 		return a->target < b->target ? -1 : 1;
671 
672 	if (a->lun != b->lun)
673 		return a->lun < b->lun ? -1 : 1;
674 
675 	if (a->eraseblock != b->eraseblock)
676 		return a->eraseblock < b->eraseblock ? -1 : 1;
677 
678 	if (a->page != b->page)
679 		return a->page < b->page ? -1 : 1;
680 
681 	return 0;
682 }
683 
684 /**
685  * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
686  * @nand: NAND device
687  * @pos: the NAND position to convert
688  *
689  * Converts @pos NAND position into an absolute offset.
690  *
691  * Return: the absolute offset. Note that @pos points to the beginning of a
692  *	   page, if one wants to point to a specific offset within this page
693  *	   the returned offset has to be adjusted manually.
694  */
nanddev_pos_to_offs(struct nand_device * nand,const struct nand_pos * pos)695 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
696 					 const struct nand_pos *pos)
697 {
698 	unsigned int npages;
699 
700 	npages = pos->page +
701 		 ((pos->eraseblock +
702 		   (pos->lun +
703 		    (pos->target * nand->memorg.luns_per_target)) *
704 		   nand->memorg.eraseblocks_per_lun) *
705 		  nand->memorg.pages_per_eraseblock);
706 
707 	return (loff_t)npages * nand->memorg.pagesize;
708 }
709 
710 /**
711  * nanddev_pos_to_row() - Extract a row address from a NAND position
712  * @nand: NAND device
713  * @pos: the position to convert
714  *
715  * Converts a NAND position into a row address that can then be passed to the
716  * device.
717  *
718  * Return: the row address extracted from @pos.
719  */
nanddev_pos_to_row(struct nand_device * nand,const struct nand_pos * pos)720 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
721 					      const struct nand_pos *pos)
722 {
723 	return (pos->lun << nand->rowconv.lun_addr_shift) |
724 	       (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
725 	       pos->page;
726 }
727 
728 /**
729  * nanddev_pos_next_target() - Move a position to the next target/die
730  * @nand: NAND device
731  * @pos: the position to update
732  *
733  * Updates @pos to point to the start of the next target/die. Useful when you
734  * want to iterate over all targets/dies of a NAND device.
735  */
nanddev_pos_next_target(struct nand_device * nand,struct nand_pos * pos)736 static inline void nanddev_pos_next_target(struct nand_device *nand,
737 					   struct nand_pos *pos)
738 {
739 	pos->page = 0;
740 	pos->plane = 0;
741 	pos->eraseblock = 0;
742 	pos->lun = 0;
743 	pos->target++;
744 }
745 
746 /**
747  * nanddev_pos_next_lun() - Move a position to the next LUN
748  * @nand: NAND device
749  * @pos: the position to update
750  *
751  * Updates @pos to point to the start of the next LUN. Useful when you want to
752  * iterate over all LUNs of a NAND device.
753  */
nanddev_pos_next_lun(struct nand_device * nand,struct nand_pos * pos)754 static inline void nanddev_pos_next_lun(struct nand_device *nand,
755 					struct nand_pos *pos)
756 {
757 	if (pos->lun >= nand->memorg.luns_per_target - 1)
758 		return nanddev_pos_next_target(nand, pos);
759 
760 	pos->lun++;
761 	pos->page = 0;
762 	pos->plane = 0;
763 	pos->eraseblock = 0;
764 }
765 
766 /**
767  * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
768  * @nand: NAND device
769  * @pos: the position to update
770  *
771  * Updates @pos to point to the start of the next eraseblock. Useful when you
772  * want to iterate over all eraseblocks of a NAND device.
773  */
nanddev_pos_next_eraseblock(struct nand_device * nand,struct nand_pos * pos)774 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
775 					       struct nand_pos *pos)
776 {
777 	if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
778 		return nanddev_pos_next_lun(nand, pos);
779 
780 	pos->eraseblock++;
781 	pos->page = 0;
782 	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
783 }
784 
785 /**
786  * nanddev_pos_next_page() - Move a position to the next page
787  * @nand: NAND device
788  * @pos: the position to update
789  *
790  * Updates @pos to point to the start of the next page. Useful when you want to
791  * iterate over all pages of a NAND device.
792  */
nanddev_pos_next_page(struct nand_device * nand,struct nand_pos * pos)793 static inline void nanddev_pos_next_page(struct nand_device *nand,
794 					 struct nand_pos *pos)
795 {
796 	if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
797 		return nanddev_pos_next_eraseblock(nand, pos);
798 
799 	pos->page++;
800 }
801 
802 /**
803  * nand_io_iter_init - Initialize a NAND I/O iterator
804  * @nand: NAND device
805  * @offs: absolute offset
806  * @req: MTD request
807  * @iter: NAND I/O iterator
808  *
809  * Initializes a NAND iterator based on the information passed by the MTD
810  * layer.
811  */
nanddev_io_iter_init(struct nand_device * nand,enum nand_page_io_req_type reqtype,loff_t offs,struct mtd_oob_ops * req,struct nand_io_iter * iter)812 static inline void nanddev_io_iter_init(struct nand_device *nand,
813 					enum nand_page_io_req_type reqtype,
814 					loff_t offs, struct mtd_oob_ops *req,
815 					struct nand_io_iter *iter)
816 {
817 	struct mtd_info *mtd = nanddev_to_mtd(nand);
818 
819 	iter->req.type = reqtype;
820 	iter->req.mode = req->mode;
821 	iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
822 	iter->req.ooboffs = req->ooboffs;
823 	iter->oobbytes_per_page = mtd_oobavail(mtd, req);
824 	iter->dataleft = req->len;
825 	iter->oobleft = req->ooblen;
826 	iter->req.databuf.in = req->datbuf;
827 	iter->req.datalen = min_t(unsigned int,
828 				  nand->memorg.pagesize - iter->req.dataoffs,
829 				  iter->dataleft);
830 	iter->req.oobbuf.in = req->oobbuf;
831 	iter->req.ooblen = min_t(unsigned int,
832 				 iter->oobbytes_per_page - iter->req.ooboffs,
833 				 iter->oobleft);
834 }
835 
836 /**
837  * nand_io_iter_next_page - Move to the next page
838  * @nand: NAND device
839  * @iter: NAND I/O iterator
840  *
841  * Updates the @iter to point to the next page.
842  */
nanddev_io_iter_next_page(struct nand_device * nand,struct nand_io_iter * iter)843 static inline void nanddev_io_iter_next_page(struct nand_device *nand,
844 					     struct nand_io_iter *iter)
845 {
846 	nanddev_pos_next_page(nand, &iter->req.pos);
847 	iter->dataleft -= iter->req.datalen;
848 	iter->req.databuf.in += iter->req.datalen;
849 	iter->oobleft -= iter->req.ooblen;
850 	iter->req.oobbuf.in += iter->req.ooblen;
851 	iter->req.dataoffs = 0;
852 	iter->req.ooboffs = 0;
853 	iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
854 				  iter->dataleft);
855 	iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
856 				 iter->oobleft);
857 }
858 
859 /**
860  * nand_io_iter_end - Should end iteration or not
861  * @nand: NAND device
862  * @iter: NAND I/O iterator
863  *
864  * Check whether @iter has reached the end of the NAND portion it was asked to
865  * iterate on or not.
866  *
867  * Return: true if @iter has reached the end of the iteration request, false
868  *	   otherwise.
869  */
nanddev_io_iter_end(struct nand_device * nand,const struct nand_io_iter * iter)870 static inline bool nanddev_io_iter_end(struct nand_device *nand,
871 				       const struct nand_io_iter *iter)
872 {
873 	if (iter->dataleft || iter->oobleft)
874 		return false;
875 
876 	return true;
877 }
878 
879 /**
880  * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
881  *			   request
882  * @nand: NAND device
883  * @start: start address to read/write from
884  * @req: MTD I/O request
885  * @iter: NAND I/O iterator
886  *
887  * Should be used for iterate over pages that are contained in an MTD request.
888  */
889 #define nanddev_io_for_each_page(nand, type, start, req, iter)		\
890 	for (nanddev_io_iter_init(nand, type, start, req, iter);	\
891 	     !nanddev_io_iter_end(nand, iter);				\
892 	     nanddev_io_iter_next_page(nand, iter))
893 
894 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
895 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
896 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
897 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
898 
899 /* BBT related functions */
900 enum nand_bbt_block_status {
901 	NAND_BBT_BLOCK_STATUS_UNKNOWN,
902 	NAND_BBT_BLOCK_GOOD,
903 	NAND_BBT_BLOCK_WORN,
904 	NAND_BBT_BLOCK_RESERVED,
905 	NAND_BBT_BLOCK_FACTORY_BAD,
906 	NAND_BBT_BLOCK_NUM_STATUS,
907 };
908 
909 int nanddev_bbt_init(struct nand_device *nand);
910 void nanddev_bbt_cleanup(struct nand_device *nand);
911 int nanddev_bbt_update(struct nand_device *nand);
912 int nanddev_bbt_get_block_status(const struct nand_device *nand,
913 				 unsigned int entry);
914 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
915 				 enum nand_bbt_block_status status);
916 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
917 
918 /**
919  * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
920  * @nand: NAND device
921  * @pos: the NAND position we want to get BBT entry for
922  *
923  * Return the BBT entry used to store information about the eraseblock pointed
924  * by @pos.
925  *
926  * Return: the BBT entry storing information about eraseblock pointed by @pos.
927  */
nanddev_bbt_pos_to_entry(struct nand_device * nand,const struct nand_pos * pos)928 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
929 						    const struct nand_pos *pos)
930 {
931 	return pos->eraseblock +
932 	       ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
933 		nand->memorg.eraseblocks_per_lun);
934 }
935 
936 /**
937  * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
938  * @nand: NAND device
939  *
940  * Return: true if the BBT has been initialized, false otherwise.
941  */
nanddev_bbt_is_initialized(struct nand_device * nand)942 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
943 {
944 	return !!nand->bbt.cache;
945 }
946 
947 /* MTD -> NAND helper functions. */
948 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
949 int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len);
950 
951 #endif /* __LINUX_MTD_NAND_H */
952