1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/locking/mutex.c
4 *
5 * Mutexes: blocking mutual exclusion locks
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 *
11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12 * David Howells for suggestions and improvements.
13 *
14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15 * from the -rt tree, where it was originally implemented for rtmutexes
16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17 * and Sven Dietrich.
18 *
19 * Also see Documentation/locking/mutex-design.rst.
20 */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
35 #else
36 # include "mutex.h"
37 #endif
38
39 #include <trace/hooks/dtask.h>
40
41 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)42 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
43 {
44 atomic_long_set(&lock->owner, 0);
45 spin_lock_init(&lock->wait_lock);
46 INIT_LIST_HEAD(&lock->wait_list);
47 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
48 osq_lock_init(&lock->osq);
49 #endif
50
51 debug_mutex_init(lock, name, key);
52 }
53 EXPORT_SYMBOL(__mutex_init);
54
55 /*
56 * @owner: contains: 'struct task_struct *' to the current lock owner,
57 * NULL means not owned. Since task_struct pointers are aligned at
58 * at least L1_CACHE_BYTES, we have low bits to store extra state.
59 *
60 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
61 * Bit1 indicates unlock needs to hand the lock to the top-waiter
62 * Bit2 indicates handoff has been done and we're waiting for pickup.
63 */
64 #define MUTEX_FLAG_WAITERS 0x01
65 #define MUTEX_FLAG_HANDOFF 0x02
66 #define MUTEX_FLAG_PICKUP 0x04
67
68 #define MUTEX_FLAGS 0x07
69
70 /*
71 * Internal helper function; C doesn't allow us to hide it :/
72 *
73 * DO NOT USE (outside of mutex code).
74 */
__mutex_owner(struct mutex * lock)75 static inline struct task_struct *__mutex_owner(struct mutex *lock)
76 {
77 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
78 }
79
__owner_task(unsigned long owner)80 static inline struct task_struct *__owner_task(unsigned long owner)
81 {
82 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
83 }
84
mutex_is_locked(struct mutex * lock)85 bool mutex_is_locked(struct mutex *lock)
86 {
87 return __mutex_owner(lock) != NULL;
88 }
89 EXPORT_SYMBOL(mutex_is_locked);
90
91 __must_check enum mutex_trylock_recursive_enum
mutex_trylock_recursive(struct mutex * lock)92 mutex_trylock_recursive(struct mutex *lock)
93 {
94 if (unlikely(__mutex_owner(lock) == current))
95 return MUTEX_TRYLOCK_RECURSIVE;
96
97 return mutex_trylock(lock);
98 }
99 EXPORT_SYMBOL(mutex_trylock_recursive);
100
__owner_flags(unsigned long owner)101 static inline unsigned long __owner_flags(unsigned long owner)
102 {
103 return owner & MUTEX_FLAGS;
104 }
105
106 /*
107 * Trylock variant that retuns the owning task on failure.
108 */
__mutex_trylock_or_owner(struct mutex * lock)109 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
110 {
111 unsigned long owner, curr = (unsigned long)current;
112
113 owner = atomic_long_read(&lock->owner);
114 for (;;) { /* must loop, can race against a flag */
115 unsigned long old, flags = __owner_flags(owner);
116 unsigned long task = owner & ~MUTEX_FLAGS;
117
118 if (task) {
119 if (likely(task != curr))
120 break;
121
122 if (likely(!(flags & MUTEX_FLAG_PICKUP)))
123 break;
124
125 flags &= ~MUTEX_FLAG_PICKUP;
126 } else {
127 #ifdef CONFIG_DEBUG_MUTEXES
128 DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
129 #endif
130 }
131
132 /*
133 * We set the HANDOFF bit, we must make sure it doesn't live
134 * past the point where we acquire it. This would be possible
135 * if we (accidentally) set the bit on an unlocked mutex.
136 */
137 flags &= ~MUTEX_FLAG_HANDOFF;
138
139 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
140 if (old == owner)
141 return NULL;
142
143 owner = old;
144 }
145
146 return __owner_task(owner);
147 }
148
149 /*
150 * Actual trylock that will work on any unlocked state.
151 */
__mutex_trylock(struct mutex * lock)152 static inline bool __mutex_trylock(struct mutex *lock)
153 {
154 return !__mutex_trylock_or_owner(lock);
155 }
156
157 #ifndef CONFIG_DEBUG_LOCK_ALLOC
158 /*
159 * Lockdep annotations are contained to the slow paths for simplicity.
160 * There is nothing that would stop spreading the lockdep annotations outwards
161 * except more code.
162 */
163
164 /*
165 * Optimistic trylock that only works in the uncontended case. Make sure to
166 * follow with a __mutex_trylock() before failing.
167 */
__mutex_trylock_fast(struct mutex * lock)168 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
169 {
170 unsigned long curr = (unsigned long)current;
171 unsigned long zero = 0UL;
172
173 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) {
174 trace_android_vh_record_mutex_lock_starttime(current, jiffies);
175 return true;
176 }
177
178 return false;
179 }
180
__mutex_unlock_fast(struct mutex * lock)181 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
182 {
183 unsigned long curr = (unsigned long)current;
184
185 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
186 return true;
187
188 return false;
189 }
190 #endif
191
__mutex_set_flag(struct mutex * lock,unsigned long flag)192 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
193 {
194 atomic_long_or(flag, &lock->owner);
195 }
196
__mutex_clear_flag(struct mutex * lock,unsigned long flag)197 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
198 {
199 atomic_long_andnot(flag, &lock->owner);
200 }
201
__mutex_waiter_is_first(struct mutex * lock,struct mutex_waiter * waiter)202 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
203 {
204 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
205 }
206
207 /*
208 * Add @waiter to a given location in the lock wait_list and set the
209 * FLAG_WAITERS flag if it's the first waiter.
210 */
211 static void
__mutex_add_waiter(struct mutex * lock,struct mutex_waiter * waiter,struct list_head * list)212 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
213 struct list_head *list)
214 {
215 bool already_on_list = false;
216 debug_mutex_add_waiter(lock, waiter, current);
217
218 trace_android_vh_alter_mutex_list_add(lock, waiter, list, &already_on_list);
219 if (!already_on_list)
220 list_add_tail(&waiter->list, list);
221 if (__mutex_waiter_is_first(lock, waiter))
222 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
223 }
224
225 static void
__mutex_remove_waiter(struct mutex * lock,struct mutex_waiter * waiter)226 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
227 {
228 list_del(&waiter->list);
229 if (likely(list_empty(&lock->wait_list)))
230 __mutex_clear_flag(lock, MUTEX_FLAGS);
231
232 debug_mutex_remove_waiter(lock, waiter, current);
233 }
234
235 /*
236 * Give up ownership to a specific task, when @task = NULL, this is equivalent
237 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
238 * WAITERS. Provides RELEASE semantics like a regular unlock, the
239 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
240 */
__mutex_handoff(struct mutex * lock,struct task_struct * task)241 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
242 {
243 unsigned long owner = atomic_long_read(&lock->owner);
244
245 for (;;) {
246 unsigned long old, new;
247
248 #ifdef CONFIG_DEBUG_MUTEXES
249 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
250 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
251 #endif
252
253 new = (owner & MUTEX_FLAG_WAITERS);
254 new |= (unsigned long)task;
255 if (task)
256 new |= MUTEX_FLAG_PICKUP;
257
258 old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
259 if (old == owner)
260 break;
261
262 owner = old;
263 }
264 }
265
266 #ifndef CONFIG_DEBUG_LOCK_ALLOC
267 /*
268 * We split the mutex lock/unlock logic into separate fastpath and
269 * slowpath functions, to reduce the register pressure on the fastpath.
270 * We also put the fastpath first in the kernel image, to make sure the
271 * branch is predicted by the CPU as default-untaken.
272 */
273 static void __sched __mutex_lock_slowpath(struct mutex *lock);
274
275 /**
276 * mutex_lock - acquire the mutex
277 * @lock: the mutex to be acquired
278 *
279 * Lock the mutex exclusively for this task. If the mutex is not
280 * available right now, it will sleep until it can get it.
281 *
282 * The mutex must later on be released by the same task that
283 * acquired it. Recursive locking is not allowed. The task
284 * may not exit without first unlocking the mutex. Also, kernel
285 * memory where the mutex resides must not be freed with
286 * the mutex still locked. The mutex must first be initialized
287 * (or statically defined) before it can be locked. memset()-ing
288 * the mutex to 0 is not allowed.
289 *
290 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
291 * checks that will enforce the restrictions and will also do
292 * deadlock debugging)
293 *
294 * This function is similar to (but not equivalent to) down().
295 */
mutex_lock(struct mutex * lock)296 void __sched mutex_lock(struct mutex *lock)
297 {
298 might_sleep();
299
300 if (!__mutex_trylock_fast(lock))
301 __mutex_lock_slowpath(lock);
302 }
303 EXPORT_SYMBOL(mutex_lock);
304 #endif
305
306 /*
307 * Wait-Die:
308 * The newer transactions are killed when:
309 * It (the new transaction) makes a request for a lock being held
310 * by an older transaction.
311 *
312 * Wound-Wait:
313 * The newer transactions are wounded when:
314 * An older transaction makes a request for a lock being held by
315 * the newer transaction.
316 */
317
318 /*
319 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
320 * it.
321 */
322 static __always_inline void
ww_mutex_lock_acquired(struct ww_mutex * ww,struct ww_acquire_ctx * ww_ctx)323 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
324 {
325 #ifdef CONFIG_DEBUG_MUTEXES
326 /*
327 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
328 * but released with a normal mutex_unlock in this call.
329 *
330 * This should never happen, always use ww_mutex_unlock.
331 */
332 DEBUG_LOCKS_WARN_ON(ww->ctx);
333
334 /*
335 * Not quite done after calling ww_acquire_done() ?
336 */
337 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
338
339 if (ww_ctx->contending_lock) {
340 /*
341 * After -EDEADLK you tried to
342 * acquire a different ww_mutex? Bad!
343 */
344 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
345
346 /*
347 * You called ww_mutex_lock after receiving -EDEADLK,
348 * but 'forgot' to unlock everything else first?
349 */
350 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
351 ww_ctx->contending_lock = NULL;
352 }
353
354 /*
355 * Naughty, using a different class will lead to undefined behavior!
356 */
357 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
358 #endif
359 ww_ctx->acquired++;
360 ww->ctx = ww_ctx;
361 }
362
363 /*
364 * Determine if context @a is 'after' context @b. IOW, @a is a younger
365 * transaction than @b and depending on algorithm either needs to wait for
366 * @b or die.
367 */
368 static inline bool __sched
__ww_ctx_stamp_after(struct ww_acquire_ctx * a,struct ww_acquire_ctx * b)369 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
370 {
371
372 return (signed long)(a->stamp - b->stamp) > 0;
373 }
374
375 /*
376 * Wait-Die; wake a younger waiter context (when locks held) such that it can
377 * die.
378 *
379 * Among waiters with context, only the first one can have other locks acquired
380 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
381 * __ww_mutex_check_kill() wake any but the earliest context.
382 */
383 static bool __sched
__ww_mutex_die(struct mutex * lock,struct mutex_waiter * waiter,struct ww_acquire_ctx * ww_ctx)384 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
385 struct ww_acquire_ctx *ww_ctx)
386 {
387 if (!ww_ctx->is_wait_die)
388 return false;
389
390 if (waiter->ww_ctx->acquired > 0 &&
391 __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
392 debug_mutex_wake_waiter(lock, waiter);
393 wake_up_process(waiter->task);
394 }
395
396 return true;
397 }
398
399 /*
400 * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
401 *
402 * Wound the lock holder if there are waiters with older transactions than
403 * the lock holders. Even if multiple waiters may wound the lock holder,
404 * it's sufficient that only one does.
405 */
__ww_mutex_wound(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct ww_acquire_ctx * hold_ctx)406 static bool __ww_mutex_wound(struct mutex *lock,
407 struct ww_acquire_ctx *ww_ctx,
408 struct ww_acquire_ctx *hold_ctx)
409 {
410 struct task_struct *owner = __mutex_owner(lock);
411
412 lockdep_assert_held(&lock->wait_lock);
413
414 /*
415 * Possible through __ww_mutex_add_waiter() when we race with
416 * ww_mutex_set_context_fastpath(). In that case we'll get here again
417 * through __ww_mutex_check_waiters().
418 */
419 if (!hold_ctx)
420 return false;
421
422 /*
423 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
424 * it cannot go away because we'll have FLAG_WAITERS set and hold
425 * wait_lock.
426 */
427 if (!owner)
428 return false;
429
430 if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
431 hold_ctx->wounded = 1;
432
433 /*
434 * wake_up_process() paired with set_current_state()
435 * inserts sufficient barriers to make sure @owner either sees
436 * it's wounded in __ww_mutex_check_kill() or has a
437 * wakeup pending to re-read the wounded state.
438 */
439 if (owner != current)
440 wake_up_process(owner);
441
442 return true;
443 }
444
445 return false;
446 }
447
448 /*
449 * We just acquired @lock under @ww_ctx, if there are later contexts waiting
450 * behind us on the wait-list, check if they need to die, or wound us.
451 *
452 * See __ww_mutex_add_waiter() for the list-order construction; basically the
453 * list is ordered by stamp, smallest (oldest) first.
454 *
455 * This relies on never mixing wait-die/wound-wait on the same wait-list;
456 * which is currently ensured by that being a ww_class property.
457 *
458 * The current task must not be on the wait list.
459 */
460 static void __sched
__ww_mutex_check_waiters(struct mutex * lock,struct ww_acquire_ctx * ww_ctx)461 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
462 {
463 struct mutex_waiter *cur;
464
465 lockdep_assert_held(&lock->wait_lock);
466
467 list_for_each_entry(cur, &lock->wait_list, list) {
468 if (!cur->ww_ctx)
469 continue;
470
471 if (__ww_mutex_die(lock, cur, ww_ctx) ||
472 __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
473 break;
474 }
475 }
476
477 /*
478 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
479 * and wake up any waiters so they can recheck.
480 */
481 static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)482 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
483 {
484 ww_mutex_lock_acquired(lock, ctx);
485
486 /*
487 * The lock->ctx update should be visible on all cores before
488 * the WAITERS check is done, otherwise contended waiters might be
489 * missed. The contended waiters will either see ww_ctx == NULL
490 * and keep spinning, or it will acquire wait_lock, add itself
491 * to waiter list and sleep.
492 */
493 smp_mb(); /* See comments above and below. */
494
495 /*
496 * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS
497 * MB MB
498 * [R] MUTEX_FLAG_WAITERS [R] ww->ctx
499 *
500 * The memory barrier above pairs with the memory barrier in
501 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
502 * and/or !empty list.
503 */
504 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
505 return;
506
507 /*
508 * Uh oh, we raced in fastpath, check if any of the waiters need to
509 * die or wound us.
510 */
511 spin_lock(&lock->base.wait_lock);
512 __ww_mutex_check_waiters(&lock->base, ctx);
513 spin_unlock(&lock->base.wait_lock);
514 }
515
516 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
517
518 static inline
ww_mutex_spin_on_owner(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)519 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
520 struct mutex_waiter *waiter)
521 {
522 struct ww_mutex *ww;
523
524 ww = container_of(lock, struct ww_mutex, base);
525
526 /*
527 * If ww->ctx is set the contents are undefined, only
528 * by acquiring wait_lock there is a guarantee that
529 * they are not invalid when reading.
530 *
531 * As such, when deadlock detection needs to be
532 * performed the optimistic spinning cannot be done.
533 *
534 * Check this in every inner iteration because we may
535 * be racing against another thread's ww_mutex_lock.
536 */
537 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
538 return false;
539
540 /*
541 * If we aren't on the wait list yet, cancel the spin
542 * if there are waiters. We want to avoid stealing the
543 * lock from a waiter with an earlier stamp, since the
544 * other thread may already own a lock that we also
545 * need.
546 */
547 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
548 return false;
549
550 /*
551 * Similarly, stop spinning if we are no longer the
552 * first waiter.
553 */
554 if (waiter && !__mutex_waiter_is_first(lock, waiter))
555 return false;
556
557 return true;
558 }
559
560 /*
561 * Look out! "owner" is an entirely speculative pointer access and not
562 * reliable.
563 *
564 * "noinline" so that this function shows up on perf profiles.
565 */
566 static noinline
mutex_spin_on_owner(struct mutex * lock,struct task_struct * owner,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)567 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
568 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
569 {
570 bool ret = true;
571
572 rcu_read_lock();
573 while (__mutex_owner(lock) == owner) {
574 /*
575 * Ensure we emit the owner->on_cpu, dereference _after_
576 * checking lock->owner still matches owner. If that fails,
577 * owner might point to freed memory. If it still matches,
578 * the rcu_read_lock() ensures the memory stays valid.
579 */
580 barrier();
581
582 /*
583 * Use vcpu_is_preempted to detect lock holder preemption issue.
584 */
585 if (!owner->on_cpu || need_resched() ||
586 vcpu_is_preempted(task_cpu(owner))) {
587 ret = false;
588 break;
589 }
590
591 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
592 ret = false;
593 break;
594 }
595
596 cpu_relax();
597 }
598 rcu_read_unlock();
599
600 return ret;
601 }
602
603 /*
604 * Initial check for entering the mutex spinning loop
605 */
mutex_can_spin_on_owner(struct mutex * lock)606 static inline int mutex_can_spin_on_owner(struct mutex *lock)
607 {
608 struct task_struct *owner;
609 int retval = 1;
610
611 if (need_resched())
612 return 0;
613
614 rcu_read_lock();
615 owner = __mutex_owner(lock);
616
617 /*
618 * As lock holder preemption issue, we both skip spinning if task is not
619 * on cpu or its cpu is preempted
620 */
621 if (owner)
622 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
623 rcu_read_unlock();
624
625 /*
626 * If lock->owner is not set, the mutex has been released. Return true
627 * such that we'll trylock in the spin path, which is a faster option
628 * than the blocking slow path.
629 */
630 return retval;
631 }
632
633 /*
634 * Optimistic spinning.
635 *
636 * We try to spin for acquisition when we find that the lock owner
637 * is currently running on a (different) CPU and while we don't
638 * need to reschedule. The rationale is that if the lock owner is
639 * running, it is likely to release the lock soon.
640 *
641 * The mutex spinners are queued up using MCS lock so that only one
642 * spinner can compete for the mutex. However, if mutex spinning isn't
643 * going to happen, there is no point in going through the lock/unlock
644 * overhead.
645 *
646 * Returns true when the lock was taken, otherwise false, indicating
647 * that we need to jump to the slowpath and sleep.
648 *
649 * The waiter flag is set to true if the spinner is a waiter in the wait
650 * queue. The waiter-spinner will spin on the lock directly and concurrently
651 * with the spinner at the head of the OSQ, if present, until the owner is
652 * changed to itself.
653 */
654 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)655 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
656 struct mutex_waiter *waiter)
657 {
658 if (!waiter) {
659 /*
660 * The purpose of the mutex_can_spin_on_owner() function is
661 * to eliminate the overhead of osq_lock() and osq_unlock()
662 * in case spinning isn't possible. As a waiter-spinner
663 * is not going to take OSQ lock anyway, there is no need
664 * to call mutex_can_spin_on_owner().
665 */
666 if (!mutex_can_spin_on_owner(lock))
667 goto fail;
668
669 /*
670 * In order to avoid a stampede of mutex spinners trying to
671 * acquire the mutex all at once, the spinners need to take a
672 * MCS (queued) lock first before spinning on the owner field.
673 */
674 if (!osq_lock(&lock->osq))
675 goto fail;
676 }
677
678 for (;;) {
679 struct task_struct *owner;
680
681 /* Try to acquire the mutex... */
682 owner = __mutex_trylock_or_owner(lock);
683 if (!owner)
684 break;
685
686 /*
687 * There's an owner, wait for it to either
688 * release the lock or go to sleep.
689 */
690 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
691 goto fail_unlock;
692
693 /*
694 * The cpu_relax() call is a compiler barrier which forces
695 * everything in this loop to be re-loaded. We don't need
696 * memory barriers as we'll eventually observe the right
697 * values at the cost of a few extra spins.
698 */
699 cpu_relax();
700 }
701
702 if (!waiter)
703 osq_unlock(&lock->osq);
704
705 return true;
706
707
708 fail_unlock:
709 if (!waiter)
710 osq_unlock(&lock->osq);
711
712 fail:
713 /*
714 * If we fell out of the spin path because of need_resched(),
715 * reschedule now, before we try-lock the mutex. This avoids getting
716 * scheduled out right after we obtained the mutex.
717 */
718 if (need_resched()) {
719 /*
720 * We _should_ have TASK_RUNNING here, but just in case
721 * we do not, make it so, otherwise we might get stuck.
722 */
723 __set_current_state(TASK_RUNNING);
724 schedule_preempt_disabled();
725 }
726
727 return false;
728 }
729 #else
730 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)731 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
732 struct mutex_waiter *waiter)
733 {
734 return false;
735 }
736 #endif
737
738 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
739
740 /**
741 * mutex_unlock - release the mutex
742 * @lock: the mutex to be released
743 *
744 * Unlock a mutex that has been locked by this task previously.
745 *
746 * This function must not be used in interrupt context. Unlocking
747 * of a not locked mutex is not allowed.
748 *
749 * This function is similar to (but not equivalent to) up().
750 */
mutex_unlock(struct mutex * lock)751 void __sched mutex_unlock(struct mutex *lock)
752 {
753 trace_android_vh_record_mutex_lock_starttime(current, 0);
754 #ifndef CONFIG_DEBUG_LOCK_ALLOC
755 if (__mutex_unlock_fast(lock))
756 return;
757 #endif
758 __mutex_unlock_slowpath(lock, _RET_IP_);
759 }
760 EXPORT_SYMBOL(mutex_unlock);
761
762 /**
763 * ww_mutex_unlock - release the w/w mutex
764 * @lock: the mutex to be released
765 *
766 * Unlock a mutex that has been locked by this task previously with any of the
767 * ww_mutex_lock* functions (with or without an acquire context). It is
768 * forbidden to release the locks after releasing the acquire context.
769 *
770 * This function must not be used in interrupt context. Unlocking
771 * of a unlocked mutex is not allowed.
772 */
ww_mutex_unlock(struct ww_mutex * lock)773 void __sched ww_mutex_unlock(struct ww_mutex *lock)
774 {
775 /*
776 * The unlocking fastpath is the 0->1 transition from 'locked'
777 * into 'unlocked' state:
778 */
779 if (lock->ctx) {
780 #ifdef CONFIG_DEBUG_MUTEXES
781 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
782 #endif
783 if (lock->ctx->acquired > 0)
784 lock->ctx->acquired--;
785 lock->ctx = NULL;
786 }
787
788 mutex_unlock(&lock->base);
789 }
790 EXPORT_SYMBOL(ww_mutex_unlock);
791
792
793 static __always_inline int __sched
__ww_mutex_kill(struct mutex * lock,struct ww_acquire_ctx * ww_ctx)794 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
795 {
796 if (ww_ctx->acquired > 0) {
797 #ifdef CONFIG_DEBUG_MUTEXES
798 struct ww_mutex *ww;
799
800 ww = container_of(lock, struct ww_mutex, base);
801 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
802 ww_ctx->contending_lock = ww;
803 #endif
804 return -EDEADLK;
805 }
806
807 return 0;
808 }
809
810
811 /*
812 * Check the wound condition for the current lock acquire.
813 *
814 * Wound-Wait: If we're wounded, kill ourself.
815 *
816 * Wait-Die: If we're trying to acquire a lock already held by an older
817 * context, kill ourselves.
818 *
819 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
820 * look at waiters before us in the wait-list.
821 */
822 static inline int __sched
__ww_mutex_check_kill(struct mutex * lock,struct mutex_waiter * waiter,struct ww_acquire_ctx * ctx)823 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
824 struct ww_acquire_ctx *ctx)
825 {
826 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
827 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
828 struct mutex_waiter *cur;
829
830 if (ctx->acquired == 0)
831 return 0;
832
833 if (!ctx->is_wait_die) {
834 if (ctx->wounded)
835 return __ww_mutex_kill(lock, ctx);
836
837 return 0;
838 }
839
840 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
841 return __ww_mutex_kill(lock, ctx);
842
843 /*
844 * If there is a waiter in front of us that has a context, then its
845 * stamp is earlier than ours and we must kill ourself.
846 */
847 cur = waiter;
848 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
849 if (!cur->ww_ctx)
850 continue;
851
852 return __ww_mutex_kill(lock, ctx);
853 }
854
855 return 0;
856 }
857
858 /*
859 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
860 * first. Such that older contexts are preferred to acquire the lock over
861 * younger contexts.
862 *
863 * Waiters without context are interspersed in FIFO order.
864 *
865 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
866 * older contexts already waiting) to avoid unnecessary waiting and for
867 * Wound-Wait ensure we wound the owning context when it is younger.
868 */
869 static inline int __sched
__ww_mutex_add_waiter(struct mutex_waiter * waiter,struct mutex * lock,struct ww_acquire_ctx * ww_ctx)870 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
871 struct mutex *lock,
872 struct ww_acquire_ctx *ww_ctx)
873 {
874 struct mutex_waiter *cur;
875 struct list_head *pos;
876 bool is_wait_die;
877
878 if (!ww_ctx) {
879 __mutex_add_waiter(lock, waiter, &lock->wait_list);
880 return 0;
881 }
882
883 is_wait_die = ww_ctx->is_wait_die;
884
885 /*
886 * Add the waiter before the first waiter with a higher stamp.
887 * Waiters without a context are skipped to avoid starving
888 * them. Wait-Die waiters may die here. Wound-Wait waiters
889 * never die here, but they are sorted in stamp order and
890 * may wound the lock holder.
891 */
892 pos = &lock->wait_list;
893 list_for_each_entry_reverse(cur, &lock->wait_list, list) {
894 if (!cur->ww_ctx)
895 continue;
896
897 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
898 /*
899 * Wait-Die: if we find an older context waiting, there
900 * is no point in queueing behind it, as we'd have to
901 * die the moment it would acquire the lock.
902 */
903 if (is_wait_die) {
904 int ret = __ww_mutex_kill(lock, ww_ctx);
905
906 if (ret)
907 return ret;
908 }
909
910 break;
911 }
912
913 pos = &cur->list;
914
915 /* Wait-Die: ensure younger waiters die. */
916 __ww_mutex_die(lock, cur, ww_ctx);
917 }
918
919 __mutex_add_waiter(lock, waiter, pos);
920
921 /*
922 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
923 * wound that such that we might proceed.
924 */
925 if (!is_wait_die) {
926 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
927
928 /*
929 * See ww_mutex_set_context_fastpath(). Orders setting
930 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
931 * such that either we or the fastpath will wound @ww->ctx.
932 */
933 smp_mb();
934 __ww_mutex_wound(lock, ww_ctx, ww->ctx);
935 }
936
937 return 0;
938 }
939
940 /*
941 * Lock a mutex (possibly interruptible), slowpath:
942 */
943 static __always_inline int __sched
__mutex_lock_common(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)944 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
945 struct lockdep_map *nest_lock, unsigned long ip,
946 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
947 {
948 struct mutex_waiter waiter;
949 struct ww_mutex *ww;
950 int ret;
951
952 if (!use_ww_ctx)
953 ww_ctx = NULL;
954
955 might_sleep();
956
957 #ifdef CONFIG_DEBUG_MUTEXES
958 DEBUG_LOCKS_WARN_ON(lock->magic != lock);
959 #endif
960
961 ww = container_of(lock, struct ww_mutex, base);
962 if (ww_ctx) {
963 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
964 return -EALREADY;
965
966 /*
967 * Reset the wounded flag after a kill. No other process can
968 * race and wound us here since they can't have a valid owner
969 * pointer if we don't have any locks held.
970 */
971 if (ww_ctx->acquired == 0)
972 ww_ctx->wounded = 0;
973 }
974
975 preempt_disable();
976 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
977
978 if (__mutex_trylock(lock) ||
979 mutex_optimistic_spin(lock, ww_ctx, NULL)) {
980 /* got the lock, yay! */
981 lock_acquired(&lock->dep_map, ip);
982 if (ww_ctx)
983 ww_mutex_set_context_fastpath(ww, ww_ctx);
984 trace_android_vh_record_mutex_lock_starttime(current, jiffies);
985 preempt_enable();
986 return 0;
987 }
988
989 spin_lock(&lock->wait_lock);
990 /*
991 * After waiting to acquire the wait_lock, try again.
992 */
993 if (__mutex_trylock(lock)) {
994 if (ww_ctx)
995 __ww_mutex_check_waiters(lock, ww_ctx);
996
997 goto skip_wait;
998 }
999
1000 debug_mutex_lock_common(lock, &waiter);
1001
1002 lock_contended(&lock->dep_map, ip);
1003
1004 if (!use_ww_ctx) {
1005 /* add waiting tasks to the end of the waitqueue (FIFO): */
1006 __mutex_add_waiter(lock, &waiter, &lock->wait_list);
1007
1008
1009 #ifdef CONFIG_DEBUG_MUTEXES
1010 waiter.ww_ctx = MUTEX_POISON_WW_CTX;
1011 #endif
1012 } else {
1013 /*
1014 * Add in stamp order, waking up waiters that must kill
1015 * themselves.
1016 */
1017 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
1018 if (ret)
1019 goto err_early_kill;
1020
1021 waiter.ww_ctx = ww_ctx;
1022 }
1023
1024 waiter.task = current;
1025
1026 trace_android_vh_mutex_wait_start(lock);
1027 set_current_state(state);
1028 for (;;) {
1029 bool first;
1030
1031 /*
1032 * Once we hold wait_lock, we're serialized against
1033 * mutex_unlock() handing the lock off to us, do a trylock
1034 * before testing the error conditions to make sure we pick up
1035 * the handoff.
1036 */
1037 if (__mutex_trylock(lock))
1038 goto acquired;
1039
1040 /*
1041 * Check for signals and kill conditions while holding
1042 * wait_lock. This ensures the lock cancellation is ordered
1043 * against mutex_unlock() and wake-ups do not go missing.
1044 */
1045 if (signal_pending_state(state, current)) {
1046 ret = -EINTR;
1047 goto err;
1048 }
1049
1050 if (ww_ctx) {
1051 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
1052 if (ret)
1053 goto err;
1054 }
1055
1056 spin_unlock(&lock->wait_lock);
1057 schedule_preempt_disabled();
1058
1059 first = __mutex_waiter_is_first(lock, &waiter);
1060 if (first)
1061 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1062
1063 set_current_state(state);
1064 /*
1065 * Here we order against unlock; we must either see it change
1066 * state back to RUNNING and fall through the next schedule(),
1067 * or we must see its unlock and acquire.
1068 */
1069 if (__mutex_trylock(lock) ||
1070 (first && mutex_optimistic_spin(lock, ww_ctx, &waiter)))
1071 break;
1072
1073 spin_lock(&lock->wait_lock);
1074 }
1075 spin_lock(&lock->wait_lock);
1076 acquired:
1077 __set_current_state(TASK_RUNNING);
1078 trace_android_vh_mutex_wait_finish(lock);
1079
1080 if (ww_ctx) {
1081 /*
1082 * Wound-Wait; we stole the lock (!first_waiter), check the
1083 * waiters as anyone might want to wound us.
1084 */
1085 if (!ww_ctx->is_wait_die &&
1086 !__mutex_waiter_is_first(lock, &waiter))
1087 __ww_mutex_check_waiters(lock, ww_ctx);
1088 }
1089
1090 __mutex_remove_waiter(lock, &waiter);
1091
1092 debug_mutex_free_waiter(&waiter);
1093
1094 skip_wait:
1095 /* got the lock - cleanup and rejoice! */
1096 lock_acquired(&lock->dep_map, ip);
1097
1098 if (ww_ctx)
1099 ww_mutex_lock_acquired(ww, ww_ctx);
1100
1101 spin_unlock(&lock->wait_lock);
1102 preempt_enable();
1103 trace_android_vh_record_mutex_lock_starttime(current, jiffies);
1104 return 0;
1105
1106 err:
1107 __set_current_state(TASK_RUNNING);
1108 trace_android_vh_mutex_wait_finish(lock);
1109 __mutex_remove_waiter(lock, &waiter);
1110 err_early_kill:
1111 spin_unlock(&lock->wait_lock);
1112 debug_mutex_free_waiter(&waiter);
1113 mutex_release(&lock->dep_map, ip);
1114 preempt_enable();
1115 return ret;
1116 }
1117
1118 static int __sched
__mutex_lock(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)1119 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1120 struct lockdep_map *nest_lock, unsigned long ip)
1121 {
1122 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1123 }
1124
1125 static int __sched
__ww_mutex_lock(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx)1126 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1127 struct lockdep_map *nest_lock, unsigned long ip,
1128 struct ww_acquire_ctx *ww_ctx)
1129 {
1130 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1131 }
1132
1133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1134 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)1135 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1136 {
1137 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1138 }
1139
1140 EXPORT_SYMBOL_GPL(mutex_lock_nested);
1141
1142 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)1143 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1144 {
1145 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1146 }
1147 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1148
1149 int __sched
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)1150 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1151 {
1152 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1153 }
1154 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1155
1156 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)1157 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1158 {
1159 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1160 }
1161 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1162
1163 void __sched
mutex_lock_io_nested(struct mutex * lock,unsigned int subclass)1164 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1165 {
1166 int token;
1167
1168 might_sleep();
1169
1170 token = io_schedule_prepare();
1171 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1172 subclass, NULL, _RET_IP_, NULL, 0);
1173 io_schedule_finish(token);
1174 }
1175 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1176
1177 static inline int
ww_mutex_deadlock_injection(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1178 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1179 {
1180 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1181 unsigned tmp;
1182
1183 if (ctx->deadlock_inject_countdown-- == 0) {
1184 tmp = ctx->deadlock_inject_interval;
1185 if (tmp > UINT_MAX/4)
1186 tmp = UINT_MAX;
1187 else
1188 tmp = tmp*2 + tmp + tmp/2;
1189
1190 ctx->deadlock_inject_interval = tmp;
1191 ctx->deadlock_inject_countdown = tmp;
1192 ctx->contending_lock = lock;
1193
1194 ww_mutex_unlock(lock);
1195
1196 return -EDEADLK;
1197 }
1198 #endif
1199
1200 return 0;
1201 }
1202
1203 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1204 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1205 {
1206 int ret;
1207
1208 might_sleep();
1209 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1210 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1211 ctx);
1212 if (!ret && ctx && ctx->acquired > 1)
1213 return ww_mutex_deadlock_injection(lock, ctx);
1214
1215 return ret;
1216 }
1217 EXPORT_SYMBOL_GPL(ww_mutex_lock);
1218
1219 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1220 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1221 {
1222 int ret;
1223
1224 might_sleep();
1225 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1226 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1227 ctx);
1228
1229 if (!ret && ctx && ctx->acquired > 1)
1230 return ww_mutex_deadlock_injection(lock, ctx);
1231
1232 return ret;
1233 }
1234 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1235
1236 #endif
1237
1238 /*
1239 * Release the lock, slowpath:
1240 */
__mutex_unlock_slowpath(struct mutex * lock,unsigned long ip)1241 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1242 {
1243 struct task_struct *next = NULL;
1244 DEFINE_WAKE_Q(wake_q);
1245 unsigned long owner;
1246
1247 mutex_release(&lock->dep_map, ip);
1248
1249 /*
1250 * Release the lock before (potentially) taking the spinlock such that
1251 * other contenders can get on with things ASAP.
1252 *
1253 * Except when HANDOFF, in that case we must not clear the owner field,
1254 * but instead set it to the top waiter.
1255 */
1256 owner = atomic_long_read(&lock->owner);
1257 for (;;) {
1258 unsigned long old;
1259
1260 #ifdef CONFIG_DEBUG_MUTEXES
1261 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1262 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1263 #endif
1264
1265 if (owner & MUTEX_FLAG_HANDOFF)
1266 break;
1267
1268 old = atomic_long_cmpxchg_release(&lock->owner, owner,
1269 __owner_flags(owner));
1270 if (old == owner) {
1271 if (owner & MUTEX_FLAG_WAITERS)
1272 break;
1273
1274 return;
1275 }
1276
1277 owner = old;
1278 }
1279
1280 spin_lock(&lock->wait_lock);
1281 debug_mutex_unlock(lock);
1282 if (!list_empty(&lock->wait_list)) {
1283 /* get the first entry from the wait-list: */
1284 struct mutex_waiter *waiter =
1285 list_first_entry(&lock->wait_list,
1286 struct mutex_waiter, list);
1287
1288 next = waiter->task;
1289
1290 debug_mutex_wake_waiter(lock, waiter);
1291 wake_q_add(&wake_q, next);
1292 }
1293
1294 if (owner & MUTEX_FLAG_HANDOFF)
1295 __mutex_handoff(lock, next);
1296
1297 trace_android_vh_mutex_unlock_slowpath(lock);
1298 spin_unlock(&lock->wait_lock);
1299
1300 wake_up_q(&wake_q);
1301 trace_android_vh_mutex_unlock_slowpath_end(lock, next);
1302 }
1303
1304 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1305 /*
1306 * Here come the less common (and hence less performance-critical) APIs:
1307 * mutex_lock_interruptible() and mutex_trylock().
1308 */
1309 static noinline int __sched
1310 __mutex_lock_killable_slowpath(struct mutex *lock);
1311
1312 static noinline int __sched
1313 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1314
1315 /**
1316 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1317 * @lock: The mutex to be acquired.
1318 *
1319 * Lock the mutex like mutex_lock(). If a signal is delivered while the
1320 * process is sleeping, this function will return without acquiring the
1321 * mutex.
1322 *
1323 * Context: Process context.
1324 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1325 * signal arrived.
1326 */
mutex_lock_interruptible(struct mutex * lock)1327 int __sched mutex_lock_interruptible(struct mutex *lock)
1328 {
1329 might_sleep();
1330
1331 if (__mutex_trylock_fast(lock))
1332 return 0;
1333
1334 return __mutex_lock_interruptible_slowpath(lock);
1335 }
1336
1337 EXPORT_SYMBOL(mutex_lock_interruptible);
1338
1339 /**
1340 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1341 * @lock: The mutex to be acquired.
1342 *
1343 * Lock the mutex like mutex_lock(). If a signal which will be fatal to
1344 * the current process is delivered while the process is sleeping, this
1345 * function will return without acquiring the mutex.
1346 *
1347 * Context: Process context.
1348 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1349 * fatal signal arrived.
1350 */
mutex_lock_killable(struct mutex * lock)1351 int __sched mutex_lock_killable(struct mutex *lock)
1352 {
1353 might_sleep();
1354
1355 if (__mutex_trylock_fast(lock))
1356 return 0;
1357
1358 return __mutex_lock_killable_slowpath(lock);
1359 }
1360 EXPORT_SYMBOL(mutex_lock_killable);
1361
1362 /**
1363 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1364 * @lock: The mutex to be acquired.
1365 *
1366 * Lock the mutex like mutex_lock(). While the task is waiting for this
1367 * mutex, it will be accounted as being in the IO wait state by the
1368 * scheduler.
1369 *
1370 * Context: Process context.
1371 */
mutex_lock_io(struct mutex * lock)1372 void __sched mutex_lock_io(struct mutex *lock)
1373 {
1374 int token;
1375
1376 token = io_schedule_prepare();
1377 mutex_lock(lock);
1378 io_schedule_finish(token);
1379 }
1380 EXPORT_SYMBOL_GPL(mutex_lock_io);
1381
1382 static noinline void __sched
__mutex_lock_slowpath(struct mutex * lock)1383 __mutex_lock_slowpath(struct mutex *lock)
1384 {
1385 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1386 }
1387
1388 static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex * lock)1389 __mutex_lock_killable_slowpath(struct mutex *lock)
1390 {
1391 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1392 }
1393
1394 static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex * lock)1395 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1396 {
1397 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1398 }
1399
1400 static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1401 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1402 {
1403 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1404 _RET_IP_, ctx);
1405 }
1406
1407 static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1408 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1409 struct ww_acquire_ctx *ctx)
1410 {
1411 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1412 _RET_IP_, ctx);
1413 }
1414
1415 #endif
1416
1417 /**
1418 * mutex_trylock - try to acquire the mutex, without waiting
1419 * @lock: the mutex to be acquired
1420 *
1421 * Try to acquire the mutex atomically. Returns 1 if the mutex
1422 * has been acquired successfully, and 0 on contention.
1423 *
1424 * NOTE: this function follows the spin_trylock() convention, so
1425 * it is negated from the down_trylock() return values! Be careful
1426 * about this when converting semaphore users to mutexes.
1427 *
1428 * This function must not be used in interrupt context. The
1429 * mutex must be released by the same task that acquired it.
1430 */
mutex_trylock(struct mutex * lock)1431 int __sched mutex_trylock(struct mutex *lock)
1432 {
1433 bool locked;
1434
1435 #ifdef CONFIG_DEBUG_MUTEXES
1436 DEBUG_LOCKS_WARN_ON(lock->magic != lock);
1437 #endif
1438
1439 locked = __mutex_trylock(lock);
1440 if (locked) {
1441 trace_android_vh_record_mutex_lock_starttime(current, jiffies);
1442 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1443 }
1444
1445 return locked;
1446 }
1447 EXPORT_SYMBOL(mutex_trylock);
1448
1449 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1450 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1451 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1452 {
1453 might_sleep();
1454
1455 if (__mutex_trylock_fast(&lock->base)) {
1456 if (ctx)
1457 ww_mutex_set_context_fastpath(lock, ctx);
1458 return 0;
1459 }
1460
1461 return __ww_mutex_lock_slowpath(lock, ctx);
1462 }
1463 EXPORT_SYMBOL(ww_mutex_lock);
1464
1465 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1466 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1467 {
1468 might_sleep();
1469
1470 if (__mutex_trylock_fast(&lock->base)) {
1471 if (ctx)
1472 ww_mutex_set_context_fastpath(lock, ctx);
1473 return 0;
1474 }
1475
1476 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1477 }
1478 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1479
1480 #endif
1481
1482 /**
1483 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1484 * @cnt: the atomic which we are to dec
1485 * @lock: the mutex to return holding if we dec to 0
1486 *
1487 * return true and hold lock if we dec to 0, return false otherwise
1488 */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)1489 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1490 {
1491 /* dec if we can't possibly hit 0 */
1492 if (atomic_add_unless(cnt, -1, 1))
1493 return 0;
1494 /* we might hit 0, so take the lock */
1495 mutex_lock(lock);
1496 if (!atomic_dec_and_test(cnt)) {
1497 /* when we actually did the dec, we didn't hit 0 */
1498 mutex_unlock(lock);
1499 return 0;
1500 }
1501 /* we hit 0, and we hold the lock */
1502 return 1;
1503 }
1504 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1505