xref: /OK3568_Linux_fs/u-boot/drivers/mtd/mtdpart.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  *
10  */
11 
12 #ifndef __UBOOT__
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/list.h>
18 #include <linux/kmod.h>
19 #endif
20 
21 #include <common.h>
22 #include <malloc.h>
23 #include <linux/errno.h>
24 #include <linux/compat.h>
25 #include <ubi_uboot.h>
26 
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/partitions.h>
29 #include <linux/err.h>
30 #include <linux/sizes.h>
31 
32 #include "mtdcore.h"
33 
34 #ifndef __UBOOT__
35 static DEFINE_MUTEX(mtd_partitions_mutex);
36 #else
37 DEFINE_MUTEX(mtd_partitions_mutex);
38 #endif
39 
40 #ifdef __UBOOT__
41 /* from mm/util.c */
42 
43 /**
44  * kstrdup - allocate space for and copy an existing string
45  * @s: the string to duplicate
46  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
47  */
kstrdup(const char * s,gfp_t gfp)48 char *kstrdup(const char *s, gfp_t gfp)
49 {
50 	size_t len;
51 	char *buf;
52 
53 	if (!s)
54 		return NULL;
55 
56 	len = strlen(s) + 1;
57 	buf = kmalloc(len, gfp);
58 	if (buf)
59 		memcpy(buf, s, len);
60 	return buf;
61 }
62 #endif
63 
64 #define MTD_SIZE_REMAINING		(~0LLU)
65 #define MTD_OFFSET_NOT_SPECIFIED	(~0LLU)
66 
mtd_partitions_used(struct mtd_info * master)67 bool mtd_partitions_used(struct mtd_info *master)
68 {
69 	struct mtd_info *slave;
70 
71 	list_for_each_entry(slave, &master->partitions, node) {
72 		if (slave->usecount)
73 			return true;
74 	}
75 
76 	return false;
77 }
78 
79 /**
80  * mtd_parse_partition - Parse @mtdparts partition definition, fill @partition
81  *                       with it and update the @mtdparts string pointer.
82  *
83  * The partition name is allocated and must be freed by the caller.
84  *
85  * This function is widely inspired from part_parse (mtdparts.c).
86  *
87  * @mtdparts: String describing the partition with mtdparts command syntax
88  * @partition: MTD partition structure to fill
89  *
90  * @return 0 on success, an error otherwise.
91  */
mtd_parse_partition(const char ** _mtdparts,struct mtd_partition * partition)92 static int mtd_parse_partition(const char **_mtdparts,
93 			       struct mtd_partition *partition)
94 {
95 	const char *mtdparts = *_mtdparts;
96 	const char *name = NULL;
97 	int name_len;
98 	char *buf;
99 
100 	/* Ensure the partition structure is empty */
101 	memset(partition, 0, sizeof(struct mtd_partition));
102 
103 	/* Fetch the partition size */
104 	if (*mtdparts == '-') {
105 		/* Assign all remaining space to this partition */
106 		partition->size = MTD_SIZE_REMAINING;
107 		mtdparts++;
108 	} else {
109 		partition->size = ustrtoull(mtdparts, (char **)&mtdparts, 0);
110 		if (partition->size < SZ_4K) {
111 			printf("Minimum partition size 4kiB, %lldB requested\n",
112 			       partition->size);
113 			return -EINVAL;
114 		}
115 	}
116 
117 	/* Check for the offset */
118 	partition->offset = MTD_OFFSET_NOT_SPECIFIED;
119 	if (*mtdparts == '@') {
120 		mtdparts++;
121 		partition->offset = ustrtoull(mtdparts, (char **)&mtdparts, 0);
122 	}
123 
124 	/* Now look for the name */
125 	if (*mtdparts == '(') {
126 		name = ++mtdparts;
127 		mtdparts = strchr(name, ')');
128 		if (!mtdparts) {
129 			printf("No closing ')' found in partition name\n");
130 			return -EINVAL;
131 		}
132 		name_len = mtdparts - name + 1;
133 		if ((name_len - 1) == 0) {
134 			printf("Empty partition name\n");
135 			return -EINVAL;
136 		}
137 		mtdparts++;
138 	} else {
139 		/* Name will be of the form size@offset */
140 		name_len = 22;
141 	}
142 
143 	/* Check if the partition is read-only */
144 	if (strncmp(mtdparts, "ro", 2) == 0) {
145 		partition->mask_flags |= MTD_WRITEABLE;
146 		mtdparts += 2;
147 	}
148 
149 	/* Check for a potential next partition definition */
150 	if (*mtdparts == ',') {
151 		if (partition->size == MTD_SIZE_REMAINING) {
152 			printf("No partitions allowed after a fill-up\n");
153 			return -EINVAL;
154 		}
155 		++mtdparts;
156 	} else if ((*mtdparts == ';') || (*mtdparts == '\0')) {
157 		/* NOP */
158 	} else {
159 		printf("Unexpected character '%c' in mtdparts\n", *mtdparts);
160 		return -EINVAL;
161 	}
162 
163 	/*
164 	 * Allocate a buffer for the name and either copy the provided name or
165 	 * auto-generate it with the form 'size@offset'.
166 	 */
167 	buf = malloc(name_len);
168 	if (!buf)
169 		return -ENOMEM;
170 
171 	if (name)
172 		strncpy(buf, name, name_len - 1);
173 	else
174 		snprintf(buf, name_len, "0x%08llx@0x%08llx",
175 			 partition->size, partition->offset);
176 
177 	buf[name_len - 1] = '\0';
178 	partition->name = buf;
179 
180 	*_mtdparts = mtdparts;
181 
182 	return 0;
183 }
184 
185 /**
186  * mtd_parse_partitions - Create a partition array from an mtdparts definition
187  *
188  * Stateless function that takes a @parent MTD device, a string @_mtdparts
189  * describing the partitions (with the "mtdparts" command syntax) and creates
190  * the corresponding MTD partition structure array @_parts. Both the name and
191  * the structure partition itself must be freed freed, the caller may use
192  * @mtd_free_parsed_partitions() for this purpose.
193  *
194  * @parent: MTD device which contains the partitions
195  * @_mtdparts: Pointer to a string describing the partitions with "mtdparts"
196  *             command syntax.
197  * @_parts: Allocated array containing the partitions, must be freed by the
198  *          caller.
199  * @_nparts: Size of @_parts array.
200  *
201  * @return 0 on success, an error otherwise.
202  */
mtd_parse_partitions(struct mtd_info * parent,const char ** _mtdparts,struct mtd_partition ** _parts,int * _nparts)203 int mtd_parse_partitions(struct mtd_info *parent, const char **_mtdparts,
204 			 struct mtd_partition **_parts, int *_nparts)
205 {
206 	struct mtd_partition partition = {}, *parts;
207 	const char *mtdparts = *_mtdparts;
208 	int cur_off = 0, cur_sz = 0;
209 	int nparts = 0;
210 	int ret, idx;
211 	u64 sz;
212 
213 	/* First, iterate over the partitions until we know their number */
214 	while (mtdparts[0] != '\0' && mtdparts[0] != ';') {
215 		ret = mtd_parse_partition(&mtdparts, &partition);
216 		if (ret)
217 			return ret;
218 
219 		free((char *)partition.name);
220 		nparts++;
221 	}
222 
223 	/* Allocate an array of partitions to give back to the caller */
224 	parts = malloc(sizeof(*parts) * nparts);
225 	if (!parts) {
226 		printf("Not enough space to save partitions meta-data\n");
227 		return -ENOMEM;
228 	}
229 
230 	/* Iterate again over each partition to save the data in our array */
231 	for (idx = 0; idx < nparts; idx++) {
232 		ret = mtd_parse_partition(_mtdparts, &parts[idx]);
233 		if (ret)
234 			return ret;
235 
236 		if (parts[idx].size == MTD_SIZE_REMAINING)
237 			parts[idx].size = parent->size - cur_sz;
238 		cur_sz += parts[idx].size;
239 
240 		sz = parts[idx].size;
241 		if (sz < parent->writesize || do_div(sz, parent->writesize)) {
242 			printf("Partition size must be a multiple of %d\n",
243 			       parent->writesize);
244 			return -EINVAL;
245 		}
246 
247 		if (parts[idx].offset == MTD_OFFSET_NOT_SPECIFIED)
248 			parts[idx].offset = cur_off;
249 		cur_off += parts[idx].size;
250 
251 		parts[idx].ecclayout = parent->ecclayout;
252 	}
253 
254 	/* Offset by one mtdparts to point to the next device if any */
255 	if (*_mtdparts[0] == ';')
256 		(*_mtdparts)++;
257 
258 	*_parts = parts;
259 	*_nparts = nparts;
260 
261 	return 0;
262 }
263 
264 /**
265  * mtd_free_parsed_partitions - Free dynamically allocated partitions
266  *
267  * Each successful call to @mtd_parse_partitions must be followed by a call to
268  * @mtd_free_parsed_partitions to free any allocated array during the parsing
269  * process.
270  *
271  * @parts: Array containing the partitions that will be freed.
272  * @nparts: Size of @parts array.
273  */
mtd_free_parsed_partitions(struct mtd_partition * parts,unsigned int nparts)274 void mtd_free_parsed_partitions(struct mtd_partition *parts,
275 				unsigned int nparts)
276 {
277 	int i;
278 
279 	for (i = 0; i < nparts; i++)
280 		free((char *)parts[i].name);
281 
282 	free(parts);
283 }
284 
285 /*
286  * MTD methods which simply translate the effective address and pass through
287  * to the _real_ device.
288  */
289 
part_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)290 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
291 		size_t *retlen, u_char *buf)
292 {
293 	struct mtd_ecc_stats stats;
294 	int res;
295 
296 	stats = mtd->parent->ecc_stats;
297 	res = mtd->parent->_read(mtd->parent, from + mtd->offset, len,
298 				 retlen, buf);
299 	if (unlikely(mtd_is_eccerr(res)))
300 		mtd->ecc_stats.failed +=
301 			mtd->parent->ecc_stats.failed - stats.failed;
302 	else
303 		mtd->ecc_stats.corrected +=
304 			mtd->parent->ecc_stats.corrected - stats.corrected;
305 	return res;
306 }
307 
308 #ifndef __UBOOT__
part_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)309 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
310 		size_t *retlen, void **virt, resource_size_t *phys)
311 {
312 	return mtd->parent->_point(mtd->parent, from + mtd->offset, len,
313 				   retlen, virt, phys);
314 }
315 
part_unpoint(struct mtd_info * mtd,loff_t from,size_t len)316 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
317 {
318 	return mtd->parent->_unpoint(mtd->parent, from + mtd->offset, len);
319 }
320 #endif
321 
part_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)322 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
323 					    unsigned long len,
324 					    unsigned long offset,
325 					    unsigned long flags)
326 {
327 	offset += mtd->offset;
328 	return mtd->parent->_get_unmapped_area(mtd->parent, len, offset, flags);
329 }
330 
part_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)331 static int part_read_oob(struct mtd_info *mtd, loff_t from,
332 		struct mtd_oob_ops *ops)
333 {
334 	int res;
335 
336 	if (from >= mtd->size)
337 		return -EINVAL;
338 	if (ops->datbuf && from + ops->len > mtd->size)
339 		return -EINVAL;
340 
341 	/*
342 	 * If OOB is also requested, make sure that we do not read past the end
343 	 * of this partition.
344 	 */
345 	if (ops->oobbuf) {
346 		size_t len, pages;
347 
348 		if (ops->mode == MTD_OPS_AUTO_OOB)
349 			len = mtd->oobavail;
350 		else
351 			len = mtd->oobsize;
352 		pages = mtd_div_by_ws(mtd->size, mtd);
353 		pages -= mtd_div_by_ws(from, mtd);
354 		if (ops->ooboffs + ops->ooblen > pages * len)
355 			return -EINVAL;
356 	}
357 
358 	res = mtd->parent->_read_oob(mtd->parent, from + mtd->offset, ops);
359 	if (unlikely(res)) {
360 		if (mtd_is_bitflip(res))
361 			mtd->ecc_stats.corrected++;
362 		if (mtd_is_eccerr(res))
363 			mtd->ecc_stats.failed++;
364 	}
365 	return res;
366 }
367 
part_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)368 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
369 		size_t len, size_t *retlen, u_char *buf)
370 {
371 	return mtd->parent->_read_user_prot_reg(mtd->parent, from, len,
372 						retlen, buf);
373 }
374 
part_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)375 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
376 				   size_t *retlen, struct otp_info *buf)
377 {
378 	return mtd->parent->_get_user_prot_info(mtd->parent, len, retlen,
379 						buf);
380 }
381 
part_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)382 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
383 		size_t len, size_t *retlen, u_char *buf)
384 {
385 	return mtd->parent->_read_fact_prot_reg(mtd->parent, from, len,
386 						retlen, buf);
387 }
388 
part_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)389 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
390 				   size_t *retlen, struct otp_info *buf)
391 {
392 	return mtd->parent->_get_fact_prot_info(mtd->parent, len, retlen,
393 						buf);
394 }
395 
part_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)396 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
397 		size_t *retlen, const u_char *buf)
398 {
399 	return mtd->parent->_write(mtd->parent, to + mtd->offset, len,
400 				   retlen, buf);
401 }
402 
part_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)403 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
404 		size_t *retlen, const u_char *buf)
405 {
406 	return mtd->parent->_panic_write(mtd->parent, to + mtd->offset, len,
407 					 retlen, buf);
408 }
409 
part_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)410 static int part_write_oob(struct mtd_info *mtd, loff_t to,
411 		struct mtd_oob_ops *ops)
412 {
413 	if (to >= mtd->size)
414 		return -EINVAL;
415 	if (ops->datbuf && to + ops->len > mtd->size)
416 		return -EINVAL;
417 	return mtd->parent->_write_oob(mtd->parent, to + mtd->offset, ops);
418 }
419 
part_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)420 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
421 		size_t len, size_t *retlen, u_char *buf)
422 {
423 	return mtd->parent->_write_user_prot_reg(mtd->parent, from, len,
424 						 retlen, buf);
425 }
426 
part_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)427 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
428 		size_t len)
429 {
430 	return mtd->parent->_lock_user_prot_reg(mtd->parent, from, len);
431 }
432 
433 #ifndef __UBOOT__
part_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)434 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
435 		unsigned long count, loff_t to, size_t *retlen)
436 {
437 	return mtd->parent->_writev(mtd->parent, vecs, count,
438 				    to + mtd->offset, retlen);
439 }
440 #endif
441 
part_erase(struct mtd_info * mtd,struct erase_info * instr)442 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
443 {
444 	int ret;
445 
446 	instr->addr += mtd->offset;
447 	ret = mtd->parent->_erase(mtd->parent, instr);
448 	if (ret) {
449 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
450 			instr->fail_addr -= mtd->offset;
451 		instr->addr -= mtd->offset;
452 	}
453 	return ret;
454 }
455 
mtd_erase_callback(struct erase_info * instr)456 void mtd_erase_callback(struct erase_info *instr)
457 {
458 	if (instr->mtd->_erase == part_erase) {
459 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
460 			instr->fail_addr -= instr->mtd->offset;
461 		instr->addr -= instr->mtd->offset;
462 	}
463 	if (instr->callback)
464 		instr->callback(instr);
465 }
466 EXPORT_SYMBOL_GPL(mtd_erase_callback);
467 
part_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)468 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
469 {
470 	return mtd->parent->_lock(mtd->parent, ofs + mtd->offset, len);
471 }
472 
part_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)473 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
474 {
475 	return mtd->parent->_unlock(mtd->parent, ofs + mtd->offset, len);
476 }
477 
part_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)478 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
479 {
480 	return mtd->parent->_is_locked(mtd->parent, ofs + mtd->offset, len);
481 }
482 
part_sync(struct mtd_info * mtd)483 static void part_sync(struct mtd_info *mtd)
484 {
485 	mtd->parent->_sync(mtd->parent);
486 }
487 
488 #ifndef __UBOOT__
part_suspend(struct mtd_info * mtd)489 static int part_suspend(struct mtd_info *mtd)
490 {
491 	return mtd->parent->_suspend(mtd->parent);
492 }
493 
part_resume(struct mtd_info * mtd)494 static void part_resume(struct mtd_info *mtd)
495 {
496 	mtd->parent->_resume(mtd->parent);
497 }
498 #endif
499 
part_block_isreserved(struct mtd_info * mtd,loff_t ofs)500 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
501 {
502 	ofs += mtd->offset;
503 	return mtd->parent->_block_isreserved(mtd->parent, ofs);
504 }
505 
part_block_isbad(struct mtd_info * mtd,loff_t ofs)506 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
507 {
508 	ofs += mtd->offset;
509 	return mtd->parent->_block_isbad(mtd->parent, ofs);
510 }
511 
part_block_markbad(struct mtd_info * mtd,loff_t ofs)512 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
513 {
514 	int res;
515 
516 	ofs += mtd->offset;
517 	res = mtd->parent->_block_markbad(mtd->parent, ofs);
518 	if (!res)
519 		mtd->ecc_stats.badblocks++;
520 	return res;
521 }
522 
free_partition(struct mtd_info * p)523 static inline void free_partition(struct mtd_info *p)
524 {
525 	kfree(p->name);
526 	kfree(p);
527 }
528 
529 /*
530  * This function unregisters and destroy all slave MTD objects which are
531  * attached to the given master MTD object, recursively.
532  */
do_del_mtd_partitions(struct mtd_info * master)533 static int do_del_mtd_partitions(struct mtd_info *master)
534 {
535 	struct mtd_info *slave, *next;
536 	int ret, err = 0;
537 
538 	list_for_each_entry_safe(slave, next, &master->partitions, node) {
539 		if (mtd_has_partitions(slave))
540 			del_mtd_partitions(slave);
541 
542 		debug("Deleting %s MTD partition\n", slave->name);
543 		ret = del_mtd_device(slave);
544 		if (ret < 0) {
545 			printf("Error when deleting partition \"%s\" (%d)\n",
546 			       slave->name, ret);
547 			err = ret;
548 			continue;
549 		}
550 
551 		list_del(&slave->node);
552 		free_partition(slave);
553 	}
554 
555 	return err;
556 }
557 
del_mtd_partitions(struct mtd_info * master)558 int del_mtd_partitions(struct mtd_info *master)
559 {
560 	int ret;
561 
562 	debug("Deleting MTD partitions on \"%s\":\n", master->name);
563 
564 	mutex_lock(&mtd_partitions_mutex);
565 	ret = do_del_mtd_partitions(master);
566 	mutex_unlock(&mtd_partitions_mutex);
567 
568 	return ret;
569 }
570 
allocate_partition(struct mtd_info * master,const struct mtd_partition * part,int partno,uint64_t cur_offset)571 static struct mtd_info *allocate_partition(struct mtd_info *master,
572 					   const struct mtd_partition *part,
573 					   int partno, uint64_t cur_offset)
574 {
575 	struct mtd_info *slave;
576 	char *name;
577 
578 	/* allocate the partition structure */
579 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
580 	name = kstrdup(part->name, GFP_KERNEL);
581 	if (!name || !slave) {
582 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
583 		       master->name);
584 		kfree(name);
585 		kfree(slave);
586 		return ERR_PTR(-ENOMEM);
587 	}
588 
589 	/* set up the MTD object for this partition */
590 	slave->type = master->type;
591 	slave->flags = master->flags & ~part->mask_flags;
592 	slave->size = part->size;
593 	slave->writesize = master->writesize;
594 	slave->writebufsize = master->writebufsize;
595 	slave->oobsize = master->oobsize;
596 	slave->oobavail = master->oobavail;
597 	slave->subpage_sft = master->subpage_sft;
598 
599 	slave->name = name;
600 	slave->owner = master->owner;
601 #ifndef __UBOOT__
602 	slave->backing_dev_info = master->backing_dev_info;
603 
604 	/* NOTE:  we don't arrange MTDs as a tree; it'd be error-prone
605 	 * to have the same data be in two different partitions.
606 	 */
607 	slave->dev.parent = master->dev.parent;
608 #endif
609 
610 	if (master->_read)
611 		slave->_read = part_read;
612 	if (master->_write)
613 		slave->_write = part_write;
614 
615 	if (master->_panic_write)
616 		slave->_panic_write = part_panic_write;
617 
618 #ifndef __UBOOT__
619 	if (master->_point && master->_unpoint) {
620 		slave->_point = part_point;
621 		slave->_unpoint = part_unpoint;
622 	}
623 #endif
624 
625 	if (master->_get_unmapped_area)
626 		slave->_get_unmapped_area = part_get_unmapped_area;
627 	if (master->_read_oob)
628 		slave->_read_oob = part_read_oob;
629 	if (master->_write_oob)
630 		slave->_write_oob = part_write_oob;
631 	if (master->_read_user_prot_reg)
632 		slave->_read_user_prot_reg = part_read_user_prot_reg;
633 	if (master->_read_fact_prot_reg)
634 		slave->_read_fact_prot_reg = part_read_fact_prot_reg;
635 	if (master->_write_user_prot_reg)
636 		slave->_write_user_prot_reg = part_write_user_prot_reg;
637 	if (master->_lock_user_prot_reg)
638 		slave->_lock_user_prot_reg = part_lock_user_prot_reg;
639 	if (master->_get_user_prot_info)
640 		slave->_get_user_prot_info = part_get_user_prot_info;
641 	if (master->_get_fact_prot_info)
642 		slave->_get_fact_prot_info = part_get_fact_prot_info;
643 	if (master->_sync)
644 		slave->_sync = part_sync;
645 #ifndef __UBOOT__
646 	if (!partno && !master->dev.class && master->_suspend &&
647 	    master->_resume) {
648 		slave->_suspend = part_suspend;
649 		slave->_resume = part_resume;
650 	}
651 	if (master->_writev)
652 		slave->_writev = part_writev;
653 #endif
654 	if (master->_lock)
655 		slave->_lock = part_lock;
656 	if (master->_unlock)
657 		slave->_unlock = part_unlock;
658 	if (master->_is_locked)
659 		slave->_is_locked = part_is_locked;
660 	if (master->_block_isreserved)
661 		slave->_block_isreserved = part_block_isreserved;
662 	if (master->_block_isbad)
663 		slave->_block_isbad = part_block_isbad;
664 	if (master->_block_markbad)
665 		slave->_block_markbad = part_block_markbad;
666 	slave->_erase = part_erase;
667 	slave->parent = master;
668 	slave->offset = part->offset;
669 	INIT_LIST_HEAD(&slave->partitions);
670 	INIT_LIST_HEAD(&slave->node);
671 
672 	if (slave->offset == MTDPART_OFS_APPEND)
673 		slave->offset = cur_offset;
674 	if (slave->offset == MTDPART_OFS_NXTBLK) {
675 		slave->offset = cur_offset;
676 		if (mtd_mod_by_eb(cur_offset, master) != 0) {
677 			/* Round up to next erasesize */
678 			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
679 			debug("Moving partition %d: "
680 			       "0x%012llx -> 0x%012llx\n", partno,
681 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
682 		}
683 	}
684 	if (slave->offset == MTDPART_OFS_RETAIN) {
685 		slave->offset = cur_offset;
686 		if (master->size - slave->offset >= slave->size) {
687 			slave->size = master->size - slave->offset
688 							- slave->size;
689 		} else {
690 			debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
691 				part->name, master->size - slave->offset,
692 				slave->size);
693 			/* register to preserve ordering */
694 			goto out_register;
695 		}
696 	}
697 	if (slave->size == MTDPART_SIZ_FULL)
698 		slave->size = master->size - slave->offset;
699 
700 	debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
701 		(unsigned long long)(slave->offset + slave->size), slave->name);
702 
703 	/* let's do some sanity checks */
704 	if (slave->offset >= master->size) {
705 		/* let's register it anyway to preserve ordering */
706 		slave->offset = 0;
707 		slave->size = 0;
708 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
709 			part->name);
710 		goto out_register;
711 	}
712 	if (slave->offset + slave->size > master->size) {
713 		slave->size = master->size - slave->offset;
714 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
715 		       part->name, master->name, slave->size);
716 	}
717 	if (master->numeraseregions > 1) {
718 		/* Deal with variable erase size stuff */
719 		int i, max = master->numeraseregions;
720 		u64 end = slave->offset + slave->size;
721 		struct mtd_erase_region_info *regions = master->eraseregions;
722 
723 		/* Find the first erase regions which is part of this
724 		 * partition. */
725 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
726 			;
727 		/* The loop searched for the region _behind_ the first one */
728 		if (i > 0)
729 			i--;
730 
731 		/* Pick biggest erasesize */
732 		for (; i < max && regions[i].offset < end; i++) {
733 			if (slave->erasesize < regions[i].erasesize)
734 				slave->erasesize = regions[i].erasesize;
735 		}
736 		WARN_ON(slave->erasesize == 0);
737 	} else {
738 		/* Single erase size */
739 		slave->erasesize = master->erasesize;
740 	}
741 
742 	if ((slave->flags & MTD_WRITEABLE) &&
743 	    mtd_mod_by_eb(slave->offset, slave)) {
744 		/* Doesn't start on a boundary of major erase size */
745 		/* FIXME: Let it be writable if it is on a boundary of
746 		 * _minor_ erase size though */
747 		slave->flags &= ~MTD_WRITEABLE;
748 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
749 			part->name);
750 	}
751 	if ((slave->flags & MTD_WRITEABLE) &&
752 	    mtd_mod_by_eb(slave->size, slave)) {
753 		slave->flags &= ~MTD_WRITEABLE;
754 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
755 			part->name);
756 	}
757 
758 	slave->ecclayout = master->ecclayout;
759 	slave->ecc_step_size = master->ecc_step_size;
760 	slave->ecc_strength = master->ecc_strength;
761 	slave->bitflip_threshold = master->bitflip_threshold;
762 
763 	if (master->_block_isbad) {
764 		uint64_t offs = 0;
765 
766 		while (offs < slave->size) {
767 			if (mtd_block_isbad(master, offs + slave->offset))
768 				slave->ecc_stats.badblocks++;
769 			offs += slave->erasesize;
770 		}
771 	}
772 
773 out_register:
774 	return slave;
775 }
776 
777 #ifndef __UBOOT__
mtd_add_partition(struct mtd_info * master,const char * name,long long offset,long long length)778 int mtd_add_partition(struct mtd_info *master, const char *name,
779 		      long long offset, long long length)
780 {
781 	struct mtd_partition part;
782 	struct mtd_info *p, *new;
783 	uint64_t start, end;
784 	int ret = 0;
785 
786 	/* the direct offset is expected */
787 	if (offset == MTDPART_OFS_APPEND ||
788 	    offset == MTDPART_OFS_NXTBLK)
789 		return -EINVAL;
790 
791 	if (length == MTDPART_SIZ_FULL)
792 		length = master->size - offset;
793 
794 	if (length <= 0)
795 		return -EINVAL;
796 
797 	part.name = name;
798 	part.size = length;
799 	part.offset = offset;
800 	part.mask_flags = 0;
801 	part.ecclayout = NULL;
802 
803 	new = allocate_partition(master, &part, -1, offset);
804 	if (IS_ERR(new))
805 		return PTR_ERR(new);
806 
807 	start = offset;
808 	end = offset + length;
809 
810 	mutex_lock(&mtd_partitions_mutex);
811 	list_for_each_entry(p, &master->partitions, node) {
812 		if (start >= p->offset &&
813 		    (start < (p->offset + p->size)))
814 			goto err_inv;
815 
816 		if (end >= p->offset &&
817 		    (end < (p->offset + p->size)))
818 			goto err_inv;
819 	}
820 
821 	list_add_tail(&new->node, &master->partitions);
822 	mutex_unlock(&mtd_partitions_mutex);
823 
824 	add_mtd_device(new);
825 
826 	return ret;
827 err_inv:
828 	mutex_unlock(&mtd_partitions_mutex);
829 	free_partition(new);
830 	return -EINVAL;
831 }
832 EXPORT_SYMBOL_GPL(mtd_add_partition);
833 
mtd_del_partition(struct mtd_info * master,int partno)834 int mtd_del_partition(struct mtd_info *master, int partno)
835 {
836 	struct mtd_info *slave, *next;
837 	int ret = -EINVAL;
838 
839 	mutex_lock(&mtd_partitions_mutex);
840 	list_for_each_entry_safe(slave, next, &master->partitions, node)
841 		if (slave->index == partno) {
842 			ret = del_mtd_device(slave);
843 			if (ret < 0)
844 				break;
845 
846 			list_del(&slave->node);
847 			free_partition(slave);
848 			break;
849 		}
850 	mutex_unlock(&mtd_partitions_mutex);
851 
852 	return ret;
853 }
854 EXPORT_SYMBOL_GPL(mtd_del_partition);
855 #endif
856 
857 /*
858  * This function, given a master MTD object and a partition table, creates
859  * and registers slave MTD objects which are bound to the master according to
860  * the partition definitions.
861  *
862  * We don't register the master, or expect the caller to have done so,
863  * for reasons of data integrity.
864  */
865 
add_mtd_partitions(struct mtd_info * master,const struct mtd_partition * parts,int nbparts)866 int add_mtd_partitions(struct mtd_info *master,
867 		       const struct mtd_partition *parts,
868 		       int nbparts)
869 {
870 	struct mtd_info *slave;
871 	uint64_t cur_offset = 0;
872 	int i;
873 
874 	debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
875 
876 	for (i = 0; i < nbparts; i++) {
877 		slave = allocate_partition(master, parts + i, i, cur_offset);
878 		if (IS_ERR(slave))
879 			return PTR_ERR(slave);
880 
881 		mutex_lock(&mtd_partitions_mutex);
882 		list_add_tail(&slave->node, &master->partitions);
883 		mutex_unlock(&mtd_partitions_mutex);
884 
885 		add_mtd_device(slave);
886 
887 		cur_offset = slave->offset + slave->size;
888 	}
889 
890 	return 0;
891 }
892 
893 #ifndef __UBOOT__
894 static DEFINE_SPINLOCK(part_parser_lock);
895 static LIST_HEAD(part_parsers);
896 
get_partition_parser(const char * name)897 static struct mtd_part_parser *get_partition_parser(const char *name)
898 {
899 	struct mtd_part_parser *p, *ret = NULL;
900 
901 	spin_lock(&part_parser_lock);
902 
903 	list_for_each_entry(p, &part_parsers, list)
904 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
905 			ret = p;
906 			break;
907 		}
908 
909 	spin_unlock(&part_parser_lock);
910 
911 	return ret;
912 }
913 
914 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
915 
register_mtd_parser(struct mtd_part_parser * p)916 void register_mtd_parser(struct mtd_part_parser *p)
917 {
918 	spin_lock(&part_parser_lock);
919 	list_add(&p->list, &part_parsers);
920 	spin_unlock(&part_parser_lock);
921 }
922 EXPORT_SYMBOL_GPL(register_mtd_parser);
923 
deregister_mtd_parser(struct mtd_part_parser * p)924 void deregister_mtd_parser(struct mtd_part_parser *p)
925 {
926 	spin_lock(&part_parser_lock);
927 	list_del(&p->list);
928 	spin_unlock(&part_parser_lock);
929 }
930 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
931 
932 /*
933  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
934  * are changing this array!
935  */
936 static const char * const default_mtd_part_types[] = {
937 	"cmdlinepart",
938 	"ofpart",
939 	NULL
940 };
941 
942 /**
943  * parse_mtd_partitions - parse MTD partitions
944  * @master: the master partition (describes whole MTD device)
945  * @types: names of partition parsers to try or %NULL
946  * @pparts: array of partitions found is returned here
947  * @data: MTD partition parser-specific data
948  *
949  * This function tries to find partition on MTD device @master. It uses MTD
950  * partition parsers, specified in @types. However, if @types is %NULL, then
951  * the default list of parsers is used. The default list contains only the
952  * "cmdlinepart" and "ofpart" parsers ATM.
953  * Note: If there are more then one parser in @types, the kernel only takes the
954  * partitions parsed out by the first parser.
955  *
956  * This function may return:
957  * o a negative error code in case of failure
958  * o zero if no partitions were found
959  * o a positive number of found partitions, in which case on exit @pparts will
960  *   point to an array containing this number of &struct mtd_info objects.
961  */
parse_mtd_partitions(struct mtd_info * master,const char * const * types,struct mtd_partition ** pparts,struct mtd_part_parser_data * data)962 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
963 			 struct mtd_partition **pparts,
964 			 struct mtd_part_parser_data *data)
965 {
966 	struct mtd_part_parser *parser;
967 	int ret = 0;
968 
969 	if (!types)
970 		types = default_mtd_part_types;
971 
972 	for ( ; ret <= 0 && *types; types++) {
973 		parser = get_partition_parser(*types);
974 		if (!parser && !request_module("%s", *types))
975 			parser = get_partition_parser(*types);
976 		if (!parser)
977 			continue;
978 		ret = (*parser->parse_fn)(master, pparts, data);
979 		put_partition_parser(parser);
980 		if (ret > 0) {
981 			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
982 			       ret, parser->name, master->name);
983 			break;
984 		}
985 	}
986 	return ret;
987 }
988 #endif
989 
990 /* Returns the size of the entire flash chip */
mtd_get_device_size(const struct mtd_info * mtd)991 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
992 {
993 	if (mtd_is_partition(mtd))
994 		return mtd->parent->size;
995 
996 	return mtd->size;
997 }
998 EXPORT_SYMBOL_GPL(mtd_get_device_size);
999