1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37
38 #include "core.h"
39 #include "card.h"
40 #include "crypto.h"
41 #include "bus.h"
42 #include "host.h"
43 #include "sdio_bus.h"
44 #include "pwrseq.h"
45
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS (250)
53
54 /*
55 * Enabling software CRCs on the data blocks can be a significant (30%)
56 * performance cost, and for other reasons may not always be desired.
57 * So we allow it it to be disabled.
58 */
59 bool use_spi_crc = 1;
60 module_param(use_spi_crc, bool, 0);
61
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)62 static int mmc_schedule_delayed_work(struct delayed_work *work,
63 unsigned long delay)
64 {
65 /*
66 * We use the system_freezable_wq, because of two reasons.
67 * First, it allows several works (not the same work item) to be
68 * executed simultaneously. Second, the queue becomes frozen when
69 * userspace becomes frozen during system PM.
70 */
71 return queue_delayed_work(system_freezable_wq, work, delay);
72 }
73
74 #ifdef CONFIG_FAIL_MMC_REQUEST
75
76 /*
77 * Internal function. Inject random data errors.
78 * If mmc_data is NULL no errors are injected.
79 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)80 static void mmc_should_fail_request(struct mmc_host *host,
81 struct mmc_request *mrq)
82 {
83 struct mmc_command *cmd = mrq->cmd;
84 struct mmc_data *data = mrq->data;
85 static const int data_errors[] = {
86 -ETIMEDOUT,
87 -EILSEQ,
88 -EIO,
89 };
90
91 if (!data)
92 return;
93
94 if ((cmd && cmd->error) || data->error ||
95 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
96 return;
97
98 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
99 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
100 }
101
102 #else /* CONFIG_FAIL_MMC_REQUEST */
103
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)104 static inline void mmc_should_fail_request(struct mmc_host *host,
105 struct mmc_request *mrq)
106 {
107 }
108
109 #endif /* CONFIG_FAIL_MMC_REQUEST */
110
mmc_complete_cmd(struct mmc_request * mrq)111 static inline void mmc_complete_cmd(struct mmc_request *mrq)
112 {
113 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
114 complete_all(&mrq->cmd_completion);
115 }
116
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)117 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
118 {
119 if (!mrq->cap_cmd_during_tfr)
120 return;
121
122 mmc_complete_cmd(mrq);
123
124 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
125 mmc_hostname(host), mrq->cmd->opcode);
126 }
127 EXPORT_SYMBOL(mmc_command_done);
128
129 /**
130 * mmc_request_done - finish processing an MMC request
131 * @host: MMC host which completed request
132 * @mrq: MMC request which request
133 *
134 * MMC drivers should call this function when they have completed
135 * their processing of a request.
136 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)137 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
138 {
139 struct mmc_command *cmd = mrq->cmd;
140 int err = cmd->error;
141
142 /* Flag re-tuning needed on CRC errors */
143 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
144 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
145 !host->retune_crc_disable &&
146 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
147 (mrq->data && mrq->data->error == -EILSEQ) ||
148 (mrq->stop && mrq->stop->error == -EILSEQ)))
149 mmc_retune_needed(host);
150
151 if (err && cmd->retries && mmc_host_is_spi(host)) {
152 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
153 cmd->retries = 0;
154 }
155
156 if (host->ongoing_mrq == mrq)
157 host->ongoing_mrq = NULL;
158
159 mmc_complete_cmd(mrq);
160
161 trace_mmc_request_done(host, mrq);
162
163 /*
164 * We list various conditions for the command to be considered
165 * properly done:
166 *
167 * - There was no error, OK fine then
168 * - We are not doing some kind of retry
169 * - The card was removed (...so just complete everything no matter
170 * if there are errors or retries)
171 */
172 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
173 mmc_should_fail_request(host, mrq);
174
175 if (!host->ongoing_mrq)
176 led_trigger_event(host->led, LED_OFF);
177
178 if (mrq->sbc) {
179 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
180 mmc_hostname(host), mrq->sbc->opcode,
181 mrq->sbc->error,
182 mrq->sbc->resp[0], mrq->sbc->resp[1],
183 mrq->sbc->resp[2], mrq->sbc->resp[3]);
184 }
185
186 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
187 mmc_hostname(host), cmd->opcode, err,
188 cmd->resp[0], cmd->resp[1],
189 cmd->resp[2], cmd->resp[3]);
190
191 if (mrq->data) {
192 pr_debug("%s: %d bytes transferred: %d\n",
193 mmc_hostname(host),
194 mrq->data->bytes_xfered, mrq->data->error);
195 }
196
197 if (mrq->stop) {
198 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
199 mmc_hostname(host), mrq->stop->opcode,
200 mrq->stop->error,
201 mrq->stop->resp[0], mrq->stop->resp[1],
202 mrq->stop->resp[2], mrq->stop->resp[3]);
203 }
204 }
205 /*
206 * Request starter must handle retries - see
207 * mmc_wait_for_req_done().
208 */
209 if (mrq->done)
210 mrq->done(mrq);
211 }
212
213 EXPORT_SYMBOL(mmc_request_done);
214
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)215 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
216 {
217 int err;
218
219 /* Assumes host controller has been runtime resumed by mmc_claim_host */
220 err = mmc_retune(host);
221 if (err) {
222 mrq->cmd->error = err;
223 mmc_request_done(host, mrq);
224 return;
225 }
226
227 /*
228 * For sdio rw commands we must wait for card busy otherwise some
229 * sdio devices won't work properly.
230 * And bypass I/O abort, reset and bus suspend operations.
231 */
232 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
233 host->ops->card_busy) {
234 int tries = 500; /* Wait aprox 500ms at maximum */
235
236 while (host->ops->card_busy(host) && --tries)
237 mmc_delay(1);
238
239 if (tries == 0) {
240 mrq->cmd->error = -EBUSY;
241 mmc_request_done(host, mrq);
242 return;
243 }
244 }
245
246 if (mrq->cap_cmd_during_tfr) {
247 host->ongoing_mrq = mrq;
248 /*
249 * Retry path could come through here without having waiting on
250 * cmd_completion, so ensure it is reinitialised.
251 */
252 reinit_completion(&mrq->cmd_completion);
253 }
254
255 trace_mmc_request_start(host, mrq);
256
257 if (host->cqe_on)
258 host->cqe_ops->cqe_off(host);
259
260 host->ops->request(host, mrq);
261 }
262
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)263 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
264 bool cqe)
265 {
266 if (mrq->sbc) {
267 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
268 mmc_hostname(host), mrq->sbc->opcode,
269 mrq->sbc->arg, mrq->sbc->flags);
270 }
271
272 if (mrq->cmd) {
273 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
274 mmc_hostname(host), cqe ? "CQE direct " : "",
275 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
276 } else if (cqe) {
277 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
278 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
279 }
280
281 if (mrq->data) {
282 pr_debug("%s: blksz %d blocks %d flags %08x "
283 "tsac %d ms nsac %d\n",
284 mmc_hostname(host), mrq->data->blksz,
285 mrq->data->blocks, mrq->data->flags,
286 mrq->data->timeout_ns / 1000000,
287 mrq->data->timeout_clks);
288 }
289
290 if (mrq->stop) {
291 pr_debug("%s: CMD%u arg %08x flags %08x\n",
292 mmc_hostname(host), mrq->stop->opcode,
293 mrq->stop->arg, mrq->stop->flags);
294 }
295 }
296
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)297 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
298 {
299 unsigned int i, sz = 0;
300 struct scatterlist *sg;
301
302 if (mrq->cmd) {
303 mrq->cmd->error = 0;
304 mrq->cmd->mrq = mrq;
305 mrq->cmd->data = mrq->data;
306 }
307 if (mrq->sbc) {
308 mrq->sbc->error = 0;
309 mrq->sbc->mrq = mrq;
310 }
311 if (mrq->data) {
312 if (mrq->data->blksz > host->max_blk_size ||
313 mrq->data->blocks > host->max_blk_count ||
314 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
315 return -EINVAL;
316
317 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
318 sz += sg->length;
319 if (sz != mrq->data->blocks * mrq->data->blksz)
320 return -EINVAL;
321
322 mrq->data->error = 0;
323 mrq->data->mrq = mrq;
324 if (mrq->stop) {
325 mrq->data->stop = mrq->stop;
326 mrq->stop->error = 0;
327 mrq->stop->mrq = mrq;
328 }
329 }
330
331 return 0;
332 }
333
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)334 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
335 {
336 int err;
337
338 init_completion(&mrq->cmd_completion);
339
340 mmc_retune_hold(host);
341
342 if (mmc_card_removed(host->card))
343 return -ENOMEDIUM;
344
345 mmc_mrq_pr_debug(host, mrq, false);
346
347 WARN_ON(!host->claimed);
348
349 err = mmc_mrq_prep(host, mrq);
350 if (err)
351 return err;
352
353 led_trigger_event(host->led, LED_FULL);
354 __mmc_start_request(host, mrq);
355
356 return 0;
357 }
358 EXPORT_SYMBOL(mmc_start_request);
359
mmc_wait_done(struct mmc_request * mrq)360 static void mmc_wait_done(struct mmc_request *mrq)
361 {
362 complete(&mrq->completion);
363 }
364
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)365 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
366 {
367 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
368
369 /*
370 * If there is an ongoing transfer, wait for the command line to become
371 * available.
372 */
373 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
374 wait_for_completion(&ongoing_mrq->cmd_completion);
375 }
376
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)377 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
378 {
379 int err;
380
381 mmc_wait_ongoing_tfr_cmd(host);
382
383 init_completion(&mrq->completion);
384 mrq->done = mmc_wait_done;
385
386 err = mmc_start_request(host, mrq);
387 if (err) {
388 mrq->cmd->error = err;
389 mmc_complete_cmd(mrq);
390 complete(&mrq->completion);
391 }
392
393 return err;
394 }
395
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)396 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
397 {
398 struct mmc_command *cmd;
399
400 while (1) {
401 wait_for_completion(&mrq->completion);
402
403 cmd = mrq->cmd;
404
405 if (!cmd->error || !cmd->retries ||
406 mmc_card_removed(host->card))
407 break;
408
409 mmc_retune_recheck(host);
410
411 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
412 mmc_hostname(host), cmd->opcode, cmd->error);
413 cmd->retries--;
414 cmd->error = 0;
415 __mmc_start_request(host, mrq);
416 }
417
418 mmc_retune_release(host);
419 }
420 EXPORT_SYMBOL(mmc_wait_for_req_done);
421
422 /*
423 * mmc_cqe_start_req - Start a CQE request.
424 * @host: MMC host to start the request
425 * @mrq: request to start
426 *
427 * Start the request, re-tuning if needed and it is possible. Returns an error
428 * code if the request fails to start or -EBUSY if CQE is busy.
429 */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)430 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
431 {
432 int err;
433
434 /*
435 * CQE cannot process re-tuning commands. Caller must hold retuning
436 * while CQE is in use. Re-tuning can happen here only when CQE has no
437 * active requests i.e. this is the first. Note, re-tuning will call
438 * ->cqe_off().
439 */
440 err = mmc_retune(host);
441 if (err)
442 goto out_err;
443
444 mrq->host = host;
445
446 mmc_mrq_pr_debug(host, mrq, true);
447
448 err = mmc_mrq_prep(host, mrq);
449 if (err)
450 goto out_err;
451
452 err = host->cqe_ops->cqe_request(host, mrq);
453 if (err)
454 goto out_err;
455
456 trace_mmc_request_start(host, mrq);
457
458 return 0;
459
460 out_err:
461 if (mrq->cmd) {
462 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
463 mmc_hostname(host), mrq->cmd->opcode, err);
464 } else {
465 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
466 mmc_hostname(host), mrq->tag, err);
467 }
468 return err;
469 }
470 EXPORT_SYMBOL(mmc_cqe_start_req);
471
472 /**
473 * mmc_cqe_request_done - CQE has finished processing an MMC request
474 * @host: MMC host which completed request
475 * @mrq: MMC request which completed
476 *
477 * CQE drivers should call this function when they have completed
478 * their processing of a request.
479 */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)480 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
481 {
482 mmc_should_fail_request(host, mrq);
483
484 /* Flag re-tuning needed on CRC errors */
485 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
486 (mrq->data && mrq->data->error == -EILSEQ))
487 mmc_retune_needed(host);
488
489 trace_mmc_request_done(host, mrq);
490
491 if (mrq->cmd) {
492 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
493 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
494 } else {
495 pr_debug("%s: CQE transfer done tag %d\n",
496 mmc_hostname(host), mrq->tag);
497 }
498
499 if (mrq->data) {
500 pr_debug("%s: %d bytes transferred: %d\n",
501 mmc_hostname(host),
502 mrq->data->bytes_xfered, mrq->data->error);
503 }
504
505 mrq->done(mrq);
506 }
507 EXPORT_SYMBOL(mmc_cqe_request_done);
508
509 /**
510 * mmc_cqe_post_req - CQE post process of a completed MMC request
511 * @host: MMC host
512 * @mrq: MMC request to be processed
513 */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)514 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
515 {
516 if (host->cqe_ops->cqe_post_req)
517 host->cqe_ops->cqe_post_req(host, mrq);
518 }
519 EXPORT_SYMBOL(mmc_cqe_post_req);
520
521 /* Arbitrary 1 second timeout */
522 #define MMC_CQE_RECOVERY_TIMEOUT 1000
523
524 /*
525 * mmc_cqe_recovery - Recover from CQE errors.
526 * @host: MMC host to recover
527 *
528 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
529 * in eMMC, and discarding the queue in CQE. CQE must call
530 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
531 * fails to discard its queue.
532 */
mmc_cqe_recovery(struct mmc_host * host)533 int mmc_cqe_recovery(struct mmc_host *host)
534 {
535 struct mmc_command cmd;
536 int err;
537
538 mmc_retune_hold_now(host);
539
540 /*
541 * Recovery is expected seldom, if at all, but it reduces performance,
542 * so make sure it is not completely silent.
543 */
544 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
545
546 host->cqe_ops->cqe_recovery_start(host);
547
548 memset(&cmd, 0, sizeof(cmd));
549 cmd.opcode = MMC_STOP_TRANSMISSION,
550 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
551 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
552 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
553 mmc_wait_for_cmd(host, &cmd, 0);
554
555 memset(&cmd, 0, sizeof(cmd));
556 cmd.opcode = MMC_CMDQ_TASK_MGMT;
557 cmd.arg = 1; /* Discard entire queue */
558 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
559 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
560 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
561 err = mmc_wait_for_cmd(host, &cmd, 0);
562
563 host->cqe_ops->cqe_recovery_finish(host);
564
565 mmc_retune_release(host);
566
567 return err;
568 }
569 EXPORT_SYMBOL(mmc_cqe_recovery);
570
571 /**
572 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
573 * @host: MMC host
574 * @mrq: MMC request
575 *
576 * mmc_is_req_done() is used with requests that have
577 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
578 * starting a request and before waiting for it to complete. That is,
579 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
580 * and before mmc_wait_for_req_done(). If it is called at other times the
581 * result is not meaningful.
582 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)583 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
584 {
585 return completion_done(&mrq->completion);
586 }
587 EXPORT_SYMBOL(mmc_is_req_done);
588
589 /**
590 * mmc_wait_for_req - start a request and wait for completion
591 * @host: MMC host to start command
592 * @mrq: MMC request to start
593 *
594 * Start a new MMC custom command request for a host, and wait
595 * for the command to complete. In the case of 'cap_cmd_during_tfr'
596 * requests, the transfer is ongoing and the caller can issue further
597 * commands that do not use the data lines, and then wait by calling
598 * mmc_wait_for_req_done().
599 * Does not attempt to parse the response.
600 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)601 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
602 {
603 __mmc_start_req(host, mrq);
604
605 if (!mrq->cap_cmd_during_tfr)
606 mmc_wait_for_req_done(host, mrq);
607 }
608 EXPORT_SYMBOL(mmc_wait_for_req);
609
610 /**
611 * mmc_wait_for_cmd - start a command and wait for completion
612 * @host: MMC host to start command
613 * @cmd: MMC command to start
614 * @retries: maximum number of retries
615 *
616 * Start a new MMC command for a host, and wait for the command
617 * to complete. Return any error that occurred while the command
618 * was executing. Do not attempt to parse the response.
619 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)620 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
621 {
622 struct mmc_request mrq = {};
623
624 WARN_ON(!host->claimed);
625
626 memset(cmd->resp, 0, sizeof(cmd->resp));
627 cmd->retries = retries;
628
629 mrq.cmd = cmd;
630 cmd->data = NULL;
631
632 mmc_wait_for_req(host, &mrq);
633
634 return cmd->error;
635 }
636
637 EXPORT_SYMBOL(mmc_wait_for_cmd);
638
639 /**
640 * mmc_set_data_timeout - set the timeout for a data command
641 * @data: data phase for command
642 * @card: the MMC card associated with the data transfer
643 *
644 * Computes the data timeout parameters according to the
645 * correct algorithm given the card type.
646 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)647 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
648 {
649 unsigned int mult;
650
651 /*
652 * SDIO cards only define an upper 1 s limit on access.
653 */
654 if (mmc_card_sdio(card)) {
655 data->timeout_ns = 1000000000;
656 data->timeout_clks = 0;
657 return;
658 }
659
660 /*
661 * SD cards use a 100 multiplier rather than 10
662 */
663 mult = mmc_card_sd(card) ? 100 : 10;
664
665 /*
666 * Scale up the multiplier (and therefore the timeout) by
667 * the r2w factor for writes.
668 */
669 if (data->flags & MMC_DATA_WRITE)
670 mult <<= card->csd.r2w_factor;
671
672 data->timeout_ns = card->csd.taac_ns * mult;
673 data->timeout_clks = card->csd.taac_clks * mult;
674
675 /*
676 * SD cards also have an upper limit on the timeout.
677 */
678 if (mmc_card_sd(card)) {
679 unsigned int timeout_us, limit_us;
680
681 timeout_us = data->timeout_ns / 1000;
682 if (card->host->ios.clock)
683 timeout_us += data->timeout_clks * 1000 /
684 (card->host->ios.clock / 1000);
685
686 if (data->flags & MMC_DATA_WRITE)
687 /*
688 * The MMC spec "It is strongly recommended
689 * for hosts to implement more than 500ms
690 * timeout value even if the card indicates
691 * the 250ms maximum busy length." Even the
692 * previous value of 300ms is known to be
693 * insufficient for some cards.
694 */
695 limit_us = 3000000;
696 else
697 limit_us = 100000;
698
699 /*
700 * SDHC cards always use these fixed values.
701 */
702 if (timeout_us > limit_us) {
703 data->timeout_ns = limit_us * 1000;
704 data->timeout_clks = 0;
705 }
706
707 /* assign limit value if invalid */
708 if (timeout_us == 0)
709 data->timeout_ns = limit_us * 1000;
710 }
711
712 /*
713 * Some cards require longer data read timeout than indicated in CSD.
714 * Address this by setting the read timeout to a "reasonably high"
715 * value. For the cards tested, 600ms has proven enough. If necessary,
716 * this value can be increased if other problematic cards require this.
717 */
718 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
719 data->timeout_ns = 600000000;
720 data->timeout_clks = 0;
721 }
722
723 /*
724 * Some cards need very high timeouts if driven in SPI mode.
725 * The worst observed timeout was 900ms after writing a
726 * continuous stream of data until the internal logic
727 * overflowed.
728 */
729 if (mmc_host_is_spi(card->host)) {
730 if (data->flags & MMC_DATA_WRITE) {
731 if (data->timeout_ns < 1000000000)
732 data->timeout_ns = 1000000000; /* 1s */
733 } else {
734 if (data->timeout_ns < 100000000)
735 data->timeout_ns = 100000000; /* 100ms */
736 }
737 }
738 }
739 EXPORT_SYMBOL(mmc_set_data_timeout);
740
741 /*
742 * Allow claiming an already claimed host if the context is the same or there is
743 * no context but the task is the same.
744 */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)745 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
746 struct task_struct *task)
747 {
748 return host->claimer == ctx ||
749 (!ctx && task && host->claimer->task == task);
750 }
751
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)752 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
753 struct mmc_ctx *ctx,
754 struct task_struct *task)
755 {
756 if (!host->claimer) {
757 if (ctx)
758 host->claimer = ctx;
759 else
760 host->claimer = &host->default_ctx;
761 }
762 if (task)
763 host->claimer->task = task;
764 }
765
766 /**
767 * __mmc_claim_host - exclusively claim a host
768 * @host: mmc host to claim
769 * @ctx: context that claims the host or NULL in which case the default
770 * context will be used
771 * @abort: whether or not the operation should be aborted
772 *
773 * Claim a host for a set of operations. If @abort is non null and
774 * dereference a non-zero value then this will return prematurely with
775 * that non-zero value without acquiring the lock. Returns zero
776 * with the lock held otherwise.
777 */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)778 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
779 atomic_t *abort)
780 {
781 struct task_struct *task = ctx ? NULL : current;
782 DECLARE_WAITQUEUE(wait, current);
783 unsigned long flags;
784 int stop;
785 bool pm = false;
786
787 might_sleep();
788
789 add_wait_queue(&host->wq, &wait);
790 spin_lock_irqsave(&host->lock, flags);
791 while (1) {
792 set_current_state(TASK_UNINTERRUPTIBLE);
793 stop = abort ? atomic_read(abort) : 0;
794 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
795 break;
796 spin_unlock_irqrestore(&host->lock, flags);
797 schedule();
798 spin_lock_irqsave(&host->lock, flags);
799 }
800 set_current_state(TASK_RUNNING);
801 if (!stop) {
802 host->claimed = 1;
803 mmc_ctx_set_claimer(host, ctx, task);
804 host->claim_cnt += 1;
805 if (host->claim_cnt == 1)
806 pm = true;
807 } else
808 wake_up(&host->wq);
809 spin_unlock_irqrestore(&host->lock, flags);
810 remove_wait_queue(&host->wq, &wait);
811
812 if (pm)
813 pm_runtime_get_sync(mmc_dev(host));
814
815 return stop;
816 }
817 EXPORT_SYMBOL(__mmc_claim_host);
818
819 /**
820 * mmc_release_host - release a host
821 * @host: mmc host to release
822 *
823 * Release a MMC host, allowing others to claim the host
824 * for their operations.
825 */
mmc_release_host(struct mmc_host * host)826 void mmc_release_host(struct mmc_host *host)
827 {
828 unsigned long flags;
829
830 WARN_ON(!host->claimed);
831
832 spin_lock_irqsave(&host->lock, flags);
833 if (--host->claim_cnt) {
834 /* Release for nested claim */
835 spin_unlock_irqrestore(&host->lock, flags);
836 } else {
837 host->claimed = 0;
838 host->claimer->task = NULL;
839 host->claimer = NULL;
840 spin_unlock_irqrestore(&host->lock, flags);
841 wake_up(&host->wq);
842 pm_runtime_mark_last_busy(mmc_dev(host));
843 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
844 pm_runtime_put_sync_suspend(mmc_dev(host));
845 else
846 pm_runtime_put_autosuspend(mmc_dev(host));
847 }
848 }
849 EXPORT_SYMBOL(mmc_release_host);
850
851 /*
852 * This is a helper function, which fetches a runtime pm reference for the
853 * card device and also claims the host.
854 */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)855 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
856 {
857 pm_runtime_get_sync(&card->dev);
858 __mmc_claim_host(card->host, ctx, NULL);
859 }
860 EXPORT_SYMBOL(mmc_get_card);
861
862 /*
863 * This is a helper function, which releases the host and drops the runtime
864 * pm reference for the card device.
865 */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)866 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
867 {
868 struct mmc_host *host = card->host;
869
870 WARN_ON(ctx && host->claimer != ctx);
871
872 mmc_release_host(host);
873 pm_runtime_mark_last_busy(&card->dev);
874 pm_runtime_put_autosuspend(&card->dev);
875 }
876 EXPORT_SYMBOL(mmc_put_card);
877
878 /*
879 * Internal function that does the actual ios call to the host driver,
880 * optionally printing some debug output.
881 */
mmc_set_ios(struct mmc_host * host)882 static inline void mmc_set_ios(struct mmc_host *host)
883 {
884 struct mmc_ios *ios = &host->ios;
885
886 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
887 "width %u timing %u\n",
888 mmc_hostname(host), ios->clock, ios->bus_mode,
889 ios->power_mode, ios->chip_select, ios->vdd,
890 1 << ios->bus_width, ios->timing);
891
892 host->ops->set_ios(host, ios);
893 }
894
895 /*
896 * Control chip select pin on a host.
897 */
mmc_set_chip_select(struct mmc_host * host,int mode)898 void mmc_set_chip_select(struct mmc_host *host, int mode)
899 {
900 host->ios.chip_select = mode;
901 mmc_set_ios(host);
902 }
903
904 /*
905 * Sets the host clock to the highest possible frequency that
906 * is below "hz".
907 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)908 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
909 {
910 WARN_ON(hz && hz < host->f_min);
911
912 if (hz > host->f_max)
913 hz = host->f_max;
914
915 host->ios.clock = hz;
916 mmc_set_ios(host);
917 }
918 EXPORT_SYMBOL_GPL(mmc_set_clock);
919
mmc_execute_tuning(struct mmc_card * card)920 int mmc_execute_tuning(struct mmc_card *card)
921 {
922 struct mmc_host *host = card->host;
923 u32 opcode;
924 int err;
925
926 if (!host->ops->execute_tuning)
927 return 0;
928
929 if (host->cqe_on)
930 host->cqe_ops->cqe_off(host);
931
932 if (mmc_card_mmc(card))
933 opcode = MMC_SEND_TUNING_BLOCK_HS200;
934 else
935 opcode = MMC_SEND_TUNING_BLOCK;
936
937 err = host->ops->execute_tuning(host, opcode);
938
939 if (err) {
940 pr_err("%s: tuning execution failed: %d\n",
941 mmc_hostname(host), err);
942 } else {
943 host->retune_now = 0;
944 host->need_retune = 0;
945 mmc_retune_enable(host);
946 }
947
948 return err;
949 }
950
951 /*
952 * Change the bus mode (open drain/push-pull) of a host.
953 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)954 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
955 {
956 host->ios.bus_mode = mode;
957 mmc_set_ios(host);
958 }
959
960 /*
961 * Change data bus width of a host.
962 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)963 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
964 {
965 host->ios.bus_width = width;
966 mmc_set_ios(host);
967 }
968
969 /*
970 * Set initial state after a power cycle or a hw_reset.
971 */
mmc_set_initial_state(struct mmc_host * host)972 void mmc_set_initial_state(struct mmc_host *host)
973 {
974 if (host->cqe_on)
975 host->cqe_ops->cqe_off(host);
976
977 mmc_retune_disable(host);
978
979 if (mmc_host_is_spi(host))
980 host->ios.chip_select = MMC_CS_HIGH;
981 else
982 host->ios.chip_select = MMC_CS_DONTCARE;
983 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
984 host->ios.bus_width = MMC_BUS_WIDTH_1;
985 host->ios.timing = MMC_TIMING_LEGACY;
986 host->ios.drv_type = 0;
987 host->ios.enhanced_strobe = false;
988
989 /*
990 * Make sure we are in non-enhanced strobe mode before we
991 * actually enable it in ext_csd.
992 */
993 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
994 host->ops->hs400_enhanced_strobe)
995 host->ops->hs400_enhanced_strobe(host, &host->ios);
996
997 mmc_set_ios(host);
998
999 mmc_crypto_set_initial_state(host);
1000 }
1001 EXPORT_SYMBOL_GPL(mmc_set_initial_state);
1002
1003 /**
1004 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1005 * @vdd: voltage (mV)
1006 * @low_bits: prefer low bits in boundary cases
1007 *
1008 * This function returns the OCR bit number according to the provided @vdd
1009 * value. If conversion is not possible a negative errno value returned.
1010 *
1011 * Depending on the @low_bits flag the function prefers low or high OCR bits
1012 * on boundary voltages. For example,
1013 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1014 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1015 *
1016 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1017 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1018 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1019 {
1020 const int max_bit = ilog2(MMC_VDD_35_36);
1021 int bit;
1022
1023 if (vdd < 1650 || vdd > 3600)
1024 return -EINVAL;
1025
1026 if (vdd >= 1650 && vdd <= 1950)
1027 return ilog2(MMC_VDD_165_195);
1028
1029 if (low_bits)
1030 vdd -= 1;
1031
1032 /* Base 2000 mV, step 100 mV, bit's base 8. */
1033 bit = (vdd - 2000) / 100 + 8;
1034 if (bit > max_bit)
1035 return max_bit;
1036 return bit;
1037 }
1038
1039 /**
1040 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1041 * @vdd_min: minimum voltage value (mV)
1042 * @vdd_max: maximum voltage value (mV)
1043 *
1044 * This function returns the OCR mask bits according to the provided @vdd_min
1045 * and @vdd_max values. If conversion is not possible the function returns 0.
1046 *
1047 * Notes wrt boundary cases:
1048 * This function sets the OCR bits for all boundary voltages, for example
1049 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1050 * MMC_VDD_34_35 mask.
1051 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1052 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1053 {
1054 u32 mask = 0;
1055
1056 if (vdd_max < vdd_min)
1057 return 0;
1058
1059 /* Prefer high bits for the boundary vdd_max values. */
1060 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1061 if (vdd_max < 0)
1062 return 0;
1063
1064 /* Prefer low bits for the boundary vdd_min values. */
1065 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1066 if (vdd_min < 0)
1067 return 0;
1068
1069 /* Fill the mask, from max bit to min bit. */
1070 while (vdd_max >= vdd_min)
1071 mask |= 1 << vdd_max--;
1072
1073 return mask;
1074 }
1075
mmc_of_get_func_num(struct device_node * node)1076 static int mmc_of_get_func_num(struct device_node *node)
1077 {
1078 u32 reg;
1079 int ret;
1080
1081 ret = of_property_read_u32(node, "reg", ®);
1082 if (ret < 0)
1083 return ret;
1084
1085 return reg;
1086 }
1087
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1088 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1089 unsigned func_num)
1090 {
1091 struct device_node *node;
1092
1093 if (!host->parent || !host->parent->of_node)
1094 return NULL;
1095
1096 for_each_child_of_node(host->parent->of_node, node) {
1097 if (mmc_of_get_func_num(node) == func_num)
1098 return node;
1099 }
1100
1101 return NULL;
1102 }
1103
1104 /*
1105 * Mask off any voltages we don't support and select
1106 * the lowest voltage
1107 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1108 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1109 {
1110 int bit;
1111
1112 /*
1113 * Sanity check the voltages that the card claims to
1114 * support.
1115 */
1116 if (ocr & 0x7F) {
1117 dev_warn(mmc_dev(host),
1118 "card claims to support voltages below defined range\n");
1119 ocr &= ~0x7F;
1120 }
1121
1122 ocr &= host->ocr_avail;
1123 if (!ocr) {
1124 dev_warn(mmc_dev(host), "no support for card's volts\n");
1125 return 0;
1126 }
1127
1128 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1129 bit = ffs(ocr) - 1;
1130 ocr &= 3 << bit;
1131 mmc_power_cycle(host, ocr);
1132 } else {
1133 bit = fls(ocr) - 1;
1134 /*
1135 * The bit variable represents the highest voltage bit set in
1136 * the OCR register.
1137 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1138 * we must shift the mask '3' with (bit - 1).
1139 */
1140 ocr &= 3 << (bit - 1);
1141 if (bit != host->ios.vdd)
1142 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1143 }
1144
1145 return ocr;
1146 }
1147
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1148 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1149 {
1150 int err = 0;
1151 int old_signal_voltage = host->ios.signal_voltage;
1152
1153 host->ios.signal_voltage = signal_voltage;
1154 if (host->ops->start_signal_voltage_switch)
1155 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1156
1157 if (err)
1158 host->ios.signal_voltage = old_signal_voltage;
1159
1160 return err;
1161
1162 }
1163
mmc_set_initial_signal_voltage(struct mmc_host * host)1164 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1165 {
1166 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1167 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1168 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1169 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1170 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1171 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1172 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1173 }
1174
mmc_host_set_uhs_voltage(struct mmc_host * host)1175 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1176 {
1177 u32 clock;
1178
1179 /*
1180 * During a signal voltage level switch, the clock must be gated
1181 * for 5 ms according to the SD spec
1182 */
1183 clock = host->ios.clock;
1184 host->ios.clock = 0;
1185 mmc_set_ios(host);
1186
1187 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1188 return -EAGAIN;
1189
1190 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1191 mmc_delay(10);
1192 host->ios.clock = clock;
1193 mmc_set_ios(host);
1194
1195 return 0;
1196 }
1197
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1198 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1199 {
1200 struct mmc_command cmd = {};
1201 int err = 0;
1202
1203 /*
1204 * If we cannot switch voltages, return failure so the caller
1205 * can continue without UHS mode
1206 */
1207 if (!host->ops->start_signal_voltage_switch)
1208 return -EPERM;
1209 if (!host->ops->card_busy)
1210 pr_warn("%s: cannot verify signal voltage switch\n",
1211 mmc_hostname(host));
1212
1213 cmd.opcode = SD_SWITCH_VOLTAGE;
1214 cmd.arg = 0;
1215 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1216
1217 err = mmc_wait_for_cmd(host, &cmd, 0);
1218 if (err)
1219 goto power_cycle;
1220
1221 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1222 return -EIO;
1223
1224 /*
1225 * The card should drive cmd and dat[0:3] low immediately
1226 * after the response of cmd11, but wait 1 ms to be sure
1227 */
1228 mmc_delay(1);
1229 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1230 err = -EAGAIN;
1231 goto power_cycle;
1232 }
1233
1234 if (mmc_host_set_uhs_voltage(host)) {
1235 /*
1236 * Voltages may not have been switched, but we've already
1237 * sent CMD11, so a power cycle is required anyway
1238 */
1239 err = -EAGAIN;
1240 goto power_cycle;
1241 }
1242
1243 /* Wait for at least 1 ms according to spec */
1244 mmc_delay(1);
1245
1246 /*
1247 * Failure to switch is indicated by the card holding
1248 * dat[0:3] low
1249 */
1250 if (host->ops->card_busy && host->ops->card_busy(host))
1251 err = -EAGAIN;
1252
1253 power_cycle:
1254 if (err) {
1255 pr_debug("%s: Signal voltage switch failed, "
1256 "power cycling card\n", mmc_hostname(host));
1257 mmc_power_cycle(host, ocr);
1258 }
1259
1260 return err;
1261 }
1262
1263 /*
1264 * Select timing parameters for host.
1265 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1266 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1267 {
1268 host->ios.timing = timing;
1269 mmc_set_ios(host);
1270 }
1271 EXPORT_SYMBOL_GPL(mmc_set_timing);
1272
1273 /*
1274 * Select appropriate driver type for host.
1275 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1276 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1277 {
1278 host->ios.drv_type = drv_type;
1279 mmc_set_ios(host);
1280 }
1281
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1282 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1283 int card_drv_type, int *drv_type)
1284 {
1285 struct mmc_host *host = card->host;
1286 int host_drv_type = SD_DRIVER_TYPE_B;
1287
1288 *drv_type = 0;
1289
1290 if (!host->ops->select_drive_strength)
1291 return 0;
1292
1293 /* Use SD definition of driver strength for hosts */
1294 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1295 host_drv_type |= SD_DRIVER_TYPE_A;
1296
1297 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1298 host_drv_type |= SD_DRIVER_TYPE_C;
1299
1300 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1301 host_drv_type |= SD_DRIVER_TYPE_D;
1302
1303 /*
1304 * The drive strength that the hardware can support
1305 * depends on the board design. Pass the appropriate
1306 * information and let the hardware specific code
1307 * return what is possible given the options
1308 */
1309 return host->ops->select_drive_strength(card, max_dtr,
1310 host_drv_type,
1311 card_drv_type,
1312 drv_type);
1313 }
1314
1315 /*
1316 * Apply power to the MMC stack. This is a two-stage process.
1317 * First, we enable power to the card without the clock running.
1318 * We then wait a bit for the power to stabilise. Finally,
1319 * enable the bus drivers and clock to the card.
1320 *
1321 * We must _NOT_ enable the clock prior to power stablising.
1322 *
1323 * If a host does all the power sequencing itself, ignore the
1324 * initial MMC_POWER_UP stage.
1325 */
mmc_power_up(struct mmc_host * host,u32 ocr)1326 void mmc_power_up(struct mmc_host *host, u32 ocr)
1327 {
1328 if (host->ios.power_mode == MMC_POWER_ON)
1329 return;
1330
1331 mmc_pwrseq_pre_power_on(host);
1332
1333 host->ios.vdd = fls(ocr) - 1;
1334 host->ios.power_mode = MMC_POWER_UP;
1335 /* Set initial state and call mmc_set_ios */
1336 mmc_set_initial_state(host);
1337
1338 mmc_set_initial_signal_voltage(host);
1339
1340 /*
1341 * This delay should be sufficient to allow the power supply
1342 * to reach the minimum voltage.
1343 */
1344 mmc_delay(host->ios.power_delay_ms);
1345
1346 mmc_pwrseq_post_power_on(host);
1347
1348 host->ios.clock = host->f_init;
1349
1350 host->ios.power_mode = MMC_POWER_ON;
1351 mmc_set_ios(host);
1352
1353 /*
1354 * This delay must be at least 74 clock sizes, or 1 ms, or the
1355 * time required to reach a stable voltage.
1356 */
1357 mmc_delay(host->ios.power_delay_ms);
1358 }
1359
mmc_power_off(struct mmc_host * host)1360 void mmc_power_off(struct mmc_host *host)
1361 {
1362 if (host->ios.power_mode == MMC_POWER_OFF)
1363 return;
1364
1365 mmc_pwrseq_power_off(host);
1366
1367 host->ios.clock = 0;
1368 host->ios.vdd = 0;
1369
1370 host->ios.power_mode = MMC_POWER_OFF;
1371 /* Set initial state and call mmc_set_ios */
1372 mmc_set_initial_state(host);
1373
1374 /*
1375 * Some configurations, such as the 802.11 SDIO card in the OLPC
1376 * XO-1.5, require a short delay after poweroff before the card
1377 * can be successfully turned on again.
1378 */
1379 mmc_delay(1);
1380 }
1381
mmc_power_cycle(struct mmc_host * host,u32 ocr)1382 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1383 {
1384 mmc_power_off(host);
1385 /* Wait at least 1 ms according to SD spec */
1386 mmc_delay(1);
1387 mmc_power_up(host, ocr);
1388 }
1389
1390 /*
1391 * Cleanup when the last reference to the bus operator is dropped.
1392 */
__mmc_release_bus(struct mmc_host * host)1393 static void __mmc_release_bus(struct mmc_host *host)
1394 {
1395 WARN_ON(!host->bus_dead);
1396
1397 host->bus_ops = NULL;
1398 }
1399
1400 /*
1401 * Increase reference count of bus operator
1402 */
mmc_bus_get(struct mmc_host * host)1403 static inline void mmc_bus_get(struct mmc_host *host)
1404 {
1405 unsigned long flags;
1406
1407 spin_lock_irqsave(&host->lock, flags);
1408 host->bus_refs++;
1409 spin_unlock_irqrestore(&host->lock, flags);
1410 }
1411
1412 /*
1413 * Decrease reference count of bus operator and free it if
1414 * it is the last reference.
1415 */
mmc_bus_put(struct mmc_host * host)1416 static inline void mmc_bus_put(struct mmc_host *host)
1417 {
1418 unsigned long flags;
1419
1420 spin_lock_irqsave(&host->lock, flags);
1421 host->bus_refs--;
1422 if ((host->bus_refs == 0) && host->bus_ops)
1423 __mmc_release_bus(host);
1424 spin_unlock_irqrestore(&host->lock, flags);
1425 }
1426
1427 /*
1428 * Assign a mmc bus handler to a host. Only one bus handler may control a
1429 * host at any given time.
1430 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1431 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1432 {
1433 unsigned long flags;
1434
1435 WARN_ON(!host->claimed);
1436
1437 spin_lock_irqsave(&host->lock, flags);
1438
1439 WARN_ON(host->bus_ops);
1440 WARN_ON(host->bus_refs);
1441
1442 host->bus_ops = ops;
1443 host->bus_refs = 1;
1444 host->bus_dead = 0;
1445
1446 spin_unlock_irqrestore(&host->lock, flags);
1447 }
1448
1449 /*
1450 * Remove the current bus handler from a host.
1451 */
mmc_detach_bus(struct mmc_host * host)1452 void mmc_detach_bus(struct mmc_host *host)
1453 {
1454 unsigned long flags;
1455
1456 WARN_ON(!host->claimed);
1457 WARN_ON(!host->bus_ops);
1458
1459 spin_lock_irqsave(&host->lock, flags);
1460
1461 host->bus_dead = 1;
1462
1463 spin_unlock_irqrestore(&host->lock, flags);
1464
1465 mmc_bus_put(host);
1466 }
1467
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1468 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1469 {
1470 /*
1471 * Prevent system sleep for 5s to allow user space to consume the
1472 * corresponding uevent. This is especially useful, when CD irq is used
1473 * as a system wakeup, but doesn't hurt in other cases.
1474 */
1475 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1476 __pm_wakeup_event(host->ws, 5000);
1477
1478 host->detect_change = 1;
1479 mmc_schedule_delayed_work(&host->detect, delay);
1480 }
1481
1482 /**
1483 * mmc_detect_change - process change of state on a MMC socket
1484 * @host: host which changed state.
1485 * @delay: optional delay to wait before detection (jiffies)
1486 *
1487 * MMC drivers should call this when they detect a card has been
1488 * inserted or removed. The MMC layer will confirm that any
1489 * present card is still functional, and initialize any newly
1490 * inserted.
1491 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1492 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1493 {
1494 _mmc_detect_change(host, delay, true);
1495 }
1496 EXPORT_SYMBOL(mmc_detect_change);
1497
mmc_init_erase(struct mmc_card * card)1498 void mmc_init_erase(struct mmc_card *card)
1499 {
1500 unsigned int sz;
1501
1502 if (is_power_of_2(card->erase_size))
1503 card->erase_shift = ffs(card->erase_size) - 1;
1504 else
1505 card->erase_shift = 0;
1506
1507 /*
1508 * It is possible to erase an arbitrarily large area of an SD or MMC
1509 * card. That is not desirable because it can take a long time
1510 * (minutes) potentially delaying more important I/O, and also the
1511 * timeout calculations become increasingly hugely over-estimated.
1512 * Consequently, 'pref_erase' is defined as a guide to limit erases
1513 * to that size and alignment.
1514 *
1515 * For SD cards that define Allocation Unit size, limit erases to one
1516 * Allocation Unit at a time.
1517 * For MMC, have a stab at ai good value and for modern cards it will
1518 * end up being 4MiB. Note that if the value is too small, it can end
1519 * up taking longer to erase. Also note, erase_size is already set to
1520 * High Capacity Erase Size if available when this function is called.
1521 */
1522 if (mmc_card_sd(card) && card->ssr.au) {
1523 card->pref_erase = card->ssr.au;
1524 card->erase_shift = ffs(card->ssr.au) - 1;
1525 } else if (card->erase_size) {
1526 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1527 if (sz < 128)
1528 card->pref_erase = 512 * 1024 / 512;
1529 else if (sz < 512)
1530 card->pref_erase = 1024 * 1024 / 512;
1531 else if (sz < 1024)
1532 card->pref_erase = 2 * 1024 * 1024 / 512;
1533 else
1534 card->pref_erase = 4 * 1024 * 1024 / 512;
1535 if (card->pref_erase < card->erase_size)
1536 card->pref_erase = card->erase_size;
1537 else {
1538 sz = card->pref_erase % card->erase_size;
1539 if (sz)
1540 card->pref_erase += card->erase_size - sz;
1541 }
1542 } else
1543 card->pref_erase = 0;
1544 }
1545
is_trim_arg(unsigned int arg)1546 static bool is_trim_arg(unsigned int arg)
1547 {
1548 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1549 }
1550
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1551 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1552 unsigned int arg, unsigned int qty)
1553 {
1554 unsigned int erase_timeout;
1555
1556 if (arg == MMC_DISCARD_ARG ||
1557 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1558 erase_timeout = card->ext_csd.trim_timeout;
1559 } else if (card->ext_csd.erase_group_def & 1) {
1560 /* High Capacity Erase Group Size uses HC timeouts */
1561 if (arg == MMC_TRIM_ARG)
1562 erase_timeout = card->ext_csd.trim_timeout;
1563 else
1564 erase_timeout = card->ext_csd.hc_erase_timeout;
1565 } else {
1566 /* CSD Erase Group Size uses write timeout */
1567 unsigned int mult = (10 << card->csd.r2w_factor);
1568 unsigned int timeout_clks = card->csd.taac_clks * mult;
1569 unsigned int timeout_us;
1570
1571 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1572 if (card->csd.taac_ns < 1000000)
1573 timeout_us = (card->csd.taac_ns * mult) / 1000;
1574 else
1575 timeout_us = (card->csd.taac_ns / 1000) * mult;
1576
1577 /*
1578 * ios.clock is only a target. The real clock rate might be
1579 * less but not that much less, so fudge it by multiplying by 2.
1580 */
1581 timeout_clks <<= 1;
1582 timeout_us += (timeout_clks * 1000) /
1583 (card->host->ios.clock / 1000);
1584
1585 erase_timeout = timeout_us / 1000;
1586
1587 /*
1588 * Theoretically, the calculation could underflow so round up
1589 * to 1ms in that case.
1590 */
1591 if (!erase_timeout)
1592 erase_timeout = 1;
1593 }
1594
1595 /* Multiplier for secure operations */
1596 if (arg & MMC_SECURE_ARGS) {
1597 if (arg == MMC_SECURE_ERASE_ARG)
1598 erase_timeout *= card->ext_csd.sec_erase_mult;
1599 else
1600 erase_timeout *= card->ext_csd.sec_trim_mult;
1601 }
1602
1603 erase_timeout *= qty;
1604
1605 /*
1606 * Ensure at least a 1 second timeout for SPI as per
1607 * 'mmc_set_data_timeout()'
1608 */
1609 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1610 erase_timeout = 1000;
1611
1612 return erase_timeout;
1613 }
1614
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1615 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1616 unsigned int arg,
1617 unsigned int qty)
1618 {
1619 unsigned int erase_timeout;
1620
1621 /* for DISCARD none of the below calculation applies.
1622 * the busy timeout is 250msec per discard command.
1623 */
1624 if (arg == SD_DISCARD_ARG)
1625 return SD_DISCARD_TIMEOUT_MS;
1626
1627 if (card->ssr.erase_timeout) {
1628 /* Erase timeout specified in SD Status Register (SSR) */
1629 erase_timeout = card->ssr.erase_timeout * qty +
1630 card->ssr.erase_offset;
1631 } else {
1632 /*
1633 * Erase timeout not specified in SD Status Register (SSR) so
1634 * use 250ms per write block.
1635 */
1636 erase_timeout = 250 * qty;
1637 }
1638
1639 /* Must not be less than 1 second */
1640 if (erase_timeout < 1000)
1641 erase_timeout = 1000;
1642
1643 return erase_timeout;
1644 }
1645
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1646 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1647 unsigned int arg,
1648 unsigned int qty)
1649 {
1650 if (mmc_card_sd(card))
1651 return mmc_sd_erase_timeout(card, arg, qty);
1652 else
1653 return mmc_mmc_erase_timeout(card, arg, qty);
1654 }
1655
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1656 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1657 unsigned int to, unsigned int arg)
1658 {
1659 struct mmc_command cmd = {};
1660 unsigned int qty = 0, busy_timeout = 0;
1661 bool use_r1b_resp = false;
1662 int err;
1663
1664 mmc_retune_hold(card->host);
1665
1666 /*
1667 * qty is used to calculate the erase timeout which depends on how many
1668 * erase groups (or allocation units in SD terminology) are affected.
1669 * We count erasing part of an erase group as one erase group.
1670 * For SD, the allocation units are always a power of 2. For MMC, the
1671 * erase group size is almost certainly also power of 2, but it does not
1672 * seem to insist on that in the JEDEC standard, so we fall back to
1673 * division in that case. SD may not specify an allocation unit size,
1674 * in which case the timeout is based on the number of write blocks.
1675 *
1676 * Note that the timeout for secure trim 2 will only be correct if the
1677 * number of erase groups specified is the same as the total of all
1678 * preceding secure trim 1 commands. Since the power may have been
1679 * lost since the secure trim 1 commands occurred, it is generally
1680 * impossible to calculate the secure trim 2 timeout correctly.
1681 */
1682 if (card->erase_shift)
1683 qty += ((to >> card->erase_shift) -
1684 (from >> card->erase_shift)) + 1;
1685 else if (mmc_card_sd(card))
1686 qty += to - from + 1;
1687 else
1688 qty += ((to / card->erase_size) -
1689 (from / card->erase_size)) + 1;
1690
1691 if (!mmc_card_blockaddr(card)) {
1692 from <<= 9;
1693 to <<= 9;
1694 }
1695
1696 if (mmc_card_sd(card))
1697 cmd.opcode = SD_ERASE_WR_BLK_START;
1698 else
1699 cmd.opcode = MMC_ERASE_GROUP_START;
1700 cmd.arg = from;
1701 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1702 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1703 if (err) {
1704 pr_err("mmc_erase: group start error %d, "
1705 "status %#x\n", err, cmd.resp[0]);
1706 err = -EIO;
1707 goto out;
1708 }
1709
1710 memset(&cmd, 0, sizeof(struct mmc_command));
1711 if (mmc_card_sd(card))
1712 cmd.opcode = SD_ERASE_WR_BLK_END;
1713 else
1714 cmd.opcode = MMC_ERASE_GROUP_END;
1715 cmd.arg = to;
1716 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1717 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1718 if (err) {
1719 pr_err("mmc_erase: group end error %d, status %#x\n",
1720 err, cmd.resp[0]);
1721 err = -EIO;
1722 goto out;
1723 }
1724
1725 memset(&cmd, 0, sizeof(struct mmc_command));
1726 cmd.opcode = MMC_ERASE;
1727 cmd.arg = arg;
1728 busy_timeout = mmc_erase_timeout(card, arg, qty);
1729 /*
1730 * If the host controller supports busy signalling and the timeout for
1731 * the erase operation does not exceed the max_busy_timeout, we should
1732 * use R1B response. Or we need to prevent the host from doing hw busy
1733 * detection, which is done by converting to a R1 response instead.
1734 * Note, some hosts requires R1B, which also means they are on their own
1735 * when it comes to deal with the busy timeout.
1736 */
1737 if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1738 card->host->max_busy_timeout &&
1739 busy_timeout > card->host->max_busy_timeout) {
1740 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1741 } else {
1742 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1743 cmd.busy_timeout = busy_timeout;
1744 use_r1b_resp = true;
1745 }
1746
1747 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1748 if (err) {
1749 pr_err("mmc_erase: erase error %d, status %#x\n",
1750 err, cmd.resp[0]);
1751 err = -EIO;
1752 goto out;
1753 }
1754
1755 if (mmc_host_is_spi(card->host))
1756 goto out;
1757
1758 /*
1759 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1760 * shall be avoided.
1761 */
1762 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1763 goto out;
1764
1765 /* Let's poll to find out when the erase operation completes. */
1766 err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
1767
1768 out:
1769 mmc_retune_release(card->host);
1770 return err;
1771 }
1772
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1773 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1774 unsigned int *from,
1775 unsigned int *to,
1776 unsigned int nr)
1777 {
1778 unsigned int from_new = *from, nr_new = nr, rem;
1779
1780 /*
1781 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1782 * to align the erase size efficiently.
1783 */
1784 if (is_power_of_2(card->erase_size)) {
1785 unsigned int temp = from_new;
1786
1787 from_new = round_up(temp, card->erase_size);
1788 rem = from_new - temp;
1789
1790 if (nr_new > rem)
1791 nr_new -= rem;
1792 else
1793 return 0;
1794
1795 nr_new = round_down(nr_new, card->erase_size);
1796 } else {
1797 rem = from_new % card->erase_size;
1798 if (rem) {
1799 rem = card->erase_size - rem;
1800 from_new += rem;
1801 if (nr_new > rem)
1802 nr_new -= rem;
1803 else
1804 return 0;
1805 }
1806
1807 rem = nr_new % card->erase_size;
1808 if (rem)
1809 nr_new -= rem;
1810 }
1811
1812 if (nr_new == 0)
1813 return 0;
1814
1815 *to = from_new + nr_new;
1816 *from = from_new;
1817
1818 return nr_new;
1819 }
1820
1821 /**
1822 * mmc_erase - erase sectors.
1823 * @card: card to erase
1824 * @from: first sector to erase
1825 * @nr: number of sectors to erase
1826 * @arg: erase command argument
1827 *
1828 * Caller must claim host before calling this function.
1829 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1830 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1831 unsigned int arg)
1832 {
1833 unsigned int rem, to = from + nr;
1834 int err;
1835
1836 if (!(card->csd.cmdclass & CCC_ERASE))
1837 return -EOPNOTSUPP;
1838
1839 if (!card->erase_size)
1840 return -EOPNOTSUPP;
1841
1842 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1843 return -EOPNOTSUPP;
1844
1845 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1846 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1847 return -EOPNOTSUPP;
1848
1849 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1850 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1851 return -EOPNOTSUPP;
1852
1853 if (arg == MMC_SECURE_ERASE_ARG) {
1854 if (from % card->erase_size || nr % card->erase_size)
1855 return -EINVAL;
1856 }
1857
1858 if (arg == MMC_ERASE_ARG)
1859 nr = mmc_align_erase_size(card, &from, &to, nr);
1860
1861 if (nr == 0)
1862 return 0;
1863
1864 if (to <= from)
1865 return -EINVAL;
1866
1867 /* 'from' and 'to' are inclusive */
1868 to -= 1;
1869
1870 /*
1871 * Special case where only one erase-group fits in the timeout budget:
1872 * If the region crosses an erase-group boundary on this particular
1873 * case, we will be trimming more than one erase-group which, does not
1874 * fit in the timeout budget of the controller, so we need to split it
1875 * and call mmc_do_erase() twice if necessary. This special case is
1876 * identified by the card->eg_boundary flag.
1877 */
1878 rem = card->erase_size - (from % card->erase_size);
1879 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1880 err = mmc_do_erase(card, from, from + rem - 1, arg);
1881 from += rem;
1882 if ((err) || (to <= from))
1883 return err;
1884 }
1885
1886 return mmc_do_erase(card, from, to, arg);
1887 }
1888 EXPORT_SYMBOL(mmc_erase);
1889
mmc_can_erase(struct mmc_card * card)1890 int mmc_can_erase(struct mmc_card *card)
1891 {
1892 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1893 return 1;
1894 return 0;
1895 }
1896 EXPORT_SYMBOL(mmc_can_erase);
1897
mmc_can_trim(struct mmc_card * card)1898 int mmc_can_trim(struct mmc_card *card)
1899 {
1900 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1901 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1902 return 1;
1903 return 0;
1904 }
1905 EXPORT_SYMBOL(mmc_can_trim);
1906
mmc_can_discard(struct mmc_card * card)1907 int mmc_can_discard(struct mmc_card *card)
1908 {
1909 /*
1910 * As there's no way to detect the discard support bit at v4.5
1911 * use the s/w feature support filed.
1912 */
1913 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1914 return 1;
1915 return 0;
1916 }
1917 EXPORT_SYMBOL(mmc_can_discard);
1918
mmc_can_sanitize(struct mmc_card * card)1919 int mmc_can_sanitize(struct mmc_card *card)
1920 {
1921 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1922 return 0;
1923 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1924 return 1;
1925 return 0;
1926 }
1927
mmc_can_secure_erase_trim(struct mmc_card * card)1928 int mmc_can_secure_erase_trim(struct mmc_card *card)
1929 {
1930 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1931 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1932 return 1;
1933 return 0;
1934 }
1935 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1936
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1937 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1938 unsigned int nr)
1939 {
1940 if (!card->erase_size)
1941 return 0;
1942 if (from % card->erase_size || nr % card->erase_size)
1943 return 0;
1944 return 1;
1945 }
1946 EXPORT_SYMBOL(mmc_erase_group_aligned);
1947
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1948 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1949 unsigned int arg)
1950 {
1951 struct mmc_host *host = card->host;
1952 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1953 unsigned int last_timeout = 0;
1954 unsigned int max_busy_timeout = host->max_busy_timeout ?
1955 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1956
1957 if (card->erase_shift) {
1958 max_qty = UINT_MAX >> card->erase_shift;
1959 min_qty = card->pref_erase >> card->erase_shift;
1960 } else if (mmc_card_sd(card)) {
1961 max_qty = UINT_MAX;
1962 min_qty = card->pref_erase;
1963 } else {
1964 max_qty = UINT_MAX / card->erase_size;
1965 min_qty = card->pref_erase / card->erase_size;
1966 }
1967
1968 /*
1969 * We should not only use 'host->max_busy_timeout' as the limitation
1970 * when deciding the max discard sectors. We should set a balance value
1971 * to improve the erase speed, and it can not get too long timeout at
1972 * the same time.
1973 *
1974 * Here we set 'card->pref_erase' as the minimal discard sectors no
1975 * matter what size of 'host->max_busy_timeout', but if the
1976 * 'host->max_busy_timeout' is large enough for more discard sectors,
1977 * then we can continue to increase the max discard sectors until we
1978 * get a balance value. In cases when the 'host->max_busy_timeout'
1979 * isn't specified, use the default max erase timeout.
1980 */
1981 do {
1982 y = 0;
1983 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1984 timeout = mmc_erase_timeout(card, arg, qty + x);
1985
1986 if (qty + x > min_qty && timeout > max_busy_timeout)
1987 break;
1988
1989 if (timeout < last_timeout)
1990 break;
1991 last_timeout = timeout;
1992 y = x;
1993 }
1994 qty += y;
1995 } while (y);
1996
1997 if (!qty)
1998 return 0;
1999
2000 /*
2001 * When specifying a sector range to trim, chances are we might cross
2002 * an erase-group boundary even if the amount of sectors is less than
2003 * one erase-group.
2004 * If we can only fit one erase-group in the controller timeout budget,
2005 * we have to care that erase-group boundaries are not crossed by a
2006 * single trim operation. We flag that special case with "eg_boundary".
2007 * In all other cases we can just decrement qty and pretend that we
2008 * always touch (qty + 1) erase-groups as a simple optimization.
2009 */
2010 if (qty == 1)
2011 card->eg_boundary = 1;
2012 else
2013 qty--;
2014
2015 /* Convert qty to sectors */
2016 if (card->erase_shift)
2017 max_discard = qty << card->erase_shift;
2018 else if (mmc_card_sd(card))
2019 max_discard = qty + 1;
2020 else
2021 max_discard = qty * card->erase_size;
2022
2023 return max_discard;
2024 }
2025
mmc_calc_max_discard(struct mmc_card * card)2026 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2027 {
2028 struct mmc_host *host = card->host;
2029 unsigned int max_discard, max_trim;
2030
2031 /*
2032 * Without erase_group_def set, MMC erase timeout depends on clock
2033 * frequence which can change. In that case, the best choice is
2034 * just the preferred erase size.
2035 */
2036 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2037 return card->pref_erase;
2038
2039 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2040 if (mmc_can_trim(card)) {
2041 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2042 if (max_trim < max_discard || max_discard == 0)
2043 max_discard = max_trim;
2044 } else if (max_discard < card->erase_size) {
2045 max_discard = 0;
2046 }
2047 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2048 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2049 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2050 return max_discard;
2051 }
2052 EXPORT_SYMBOL(mmc_calc_max_discard);
2053
mmc_card_is_blockaddr(struct mmc_card * card)2054 bool mmc_card_is_blockaddr(struct mmc_card *card)
2055 {
2056 return card ? mmc_card_blockaddr(card) : false;
2057 }
2058 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2059
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2060 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2061 {
2062 struct mmc_command cmd = {};
2063
2064 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2065 mmc_card_hs400(card) || mmc_card_hs400es(card))
2066 return 0;
2067
2068 cmd.opcode = MMC_SET_BLOCKLEN;
2069 cmd.arg = blocklen;
2070 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2071 return mmc_wait_for_cmd(card->host, &cmd, 5);
2072 }
2073 EXPORT_SYMBOL(mmc_set_blocklen);
2074
2075 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
mmc_hw_reset_for_init(struct mmc_host * host)2076 static void mmc_hw_reset_for_init(struct mmc_host *host)
2077 {
2078 mmc_pwrseq_reset(host);
2079
2080 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2081 return;
2082 host->ops->hw_reset(host);
2083 }
2084 #endif
2085
2086 /**
2087 * mmc_hw_reset - reset the card in hardware
2088 * @host: MMC host to which the card is attached
2089 *
2090 * Hard reset the card. This function is only for upper layers, like the
2091 * block layer or card drivers. You cannot use it in host drivers (struct
2092 * mmc_card might be gone then).
2093 *
2094 * Return: 0 on success, -errno on failure
2095 */
mmc_hw_reset(struct mmc_host * host)2096 int mmc_hw_reset(struct mmc_host *host)
2097 {
2098 int ret;
2099
2100 if (!host->card)
2101 return -EINVAL;
2102
2103 mmc_bus_get(host);
2104 if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2105 mmc_bus_put(host);
2106 return -EOPNOTSUPP;
2107 }
2108
2109 ret = host->bus_ops->hw_reset(host);
2110 mmc_bus_put(host);
2111
2112 if (ret < 0)
2113 pr_warn("%s: tried to HW reset card, got error %d\n",
2114 mmc_hostname(host), ret);
2115
2116 return ret;
2117 }
2118 EXPORT_SYMBOL(mmc_hw_reset);
2119
mmc_sw_reset(struct mmc_host * host)2120 int mmc_sw_reset(struct mmc_host *host)
2121 {
2122 int ret;
2123
2124 if (!host->card)
2125 return -EINVAL;
2126
2127 mmc_bus_get(host);
2128 if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2129 mmc_bus_put(host);
2130 return -EOPNOTSUPP;
2131 }
2132
2133 ret = host->bus_ops->sw_reset(host);
2134 mmc_bus_put(host);
2135
2136 if (ret)
2137 pr_warn("%s: tried to SW reset card, got error %d\n",
2138 mmc_hostname(host), ret);
2139
2140 return ret;
2141 }
2142 EXPORT_SYMBOL(mmc_sw_reset);
2143
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2144 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2145 {
2146 host->f_init = freq;
2147
2148 pr_debug("%s: %s: trying to init card at %u Hz\n",
2149 mmc_hostname(host), __func__, host->f_init);
2150
2151 mmc_power_up(host, host->ocr_avail);
2152
2153 /*
2154 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2155 * do a hardware reset if possible.
2156 */
2157 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
2158 mmc_hw_reset_for_init(host);
2159 #endif
2160
2161 /*
2162 * sdio_reset sends CMD52 to reset card. Since we do not know
2163 * if the card is being re-initialized, just send it. CMD52
2164 * should be ignored by SD/eMMC cards.
2165 * Skip it if we already know that we do not support SDIO commands
2166 */
2167 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2168 sdio_reset(host);
2169
2170 mmc_go_idle(host);
2171
2172 if (!(host->caps2 & MMC_CAP2_NO_SD))
2173 mmc_send_if_cond(host, host->ocr_avail);
2174
2175 /* Order's important: probe SDIO, then SD, then MMC */
2176 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2177 if (!mmc_attach_sdio(host))
2178 return 0;
2179
2180 if (!(host->caps2 & MMC_CAP2_NO_SD))
2181 if (!mmc_attach_sd(host))
2182 return 0;
2183
2184 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2185 if (!mmc_attach_mmc(host))
2186 return 0;
2187
2188 mmc_power_off(host);
2189 return -EIO;
2190 }
2191
_mmc_detect_card_removed(struct mmc_host * host)2192 int _mmc_detect_card_removed(struct mmc_host *host)
2193 {
2194 int ret;
2195
2196 if (!host->card || mmc_card_removed(host->card))
2197 return 1;
2198
2199 ret = host->bus_ops->alive(host);
2200
2201 /*
2202 * Card detect status and alive check may be out of sync if card is
2203 * removed slowly, when card detect switch changes while card/slot
2204 * pads are still contacted in hardware (refer to "SD Card Mechanical
2205 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2206 * detect work 200ms later for this case.
2207 */
2208 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2209 mmc_detect_change(host, msecs_to_jiffies(200));
2210 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2211 }
2212
2213 if (ret) {
2214 mmc_card_set_removed(host->card);
2215 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2216 }
2217
2218 return ret;
2219 }
2220
mmc_detect_card_removed(struct mmc_host * host)2221 int mmc_detect_card_removed(struct mmc_host *host)
2222 {
2223 struct mmc_card *card = host->card;
2224 int ret;
2225
2226 WARN_ON(!host->claimed);
2227
2228 if (!card)
2229 return 1;
2230
2231 if (!mmc_card_is_removable(host))
2232 return 0;
2233
2234 ret = mmc_card_removed(card);
2235 /*
2236 * The card will be considered unchanged unless we have been asked to
2237 * detect a change or host requires polling to provide card detection.
2238 */
2239 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2240 return ret;
2241
2242 host->detect_change = 0;
2243 if (!ret) {
2244 ret = _mmc_detect_card_removed(host);
2245 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2246 /*
2247 * Schedule a detect work as soon as possible to let a
2248 * rescan handle the card removal.
2249 */
2250 cancel_delayed_work(&host->detect);
2251 _mmc_detect_change(host, 0, false);
2252 }
2253 }
2254
2255 return ret;
2256 }
2257 EXPORT_SYMBOL(mmc_detect_card_removed);
2258
mmc_rescan(struct work_struct * work)2259 void mmc_rescan(struct work_struct *work)
2260 {
2261 struct mmc_host *host =
2262 container_of(work, struct mmc_host, detect.work);
2263 int i;
2264
2265 if (host->rescan_disable)
2266 return;
2267
2268 /* If there is a non-removable card registered, only scan once */
2269 if (!mmc_card_is_removable(host) && host->rescan_entered)
2270 return;
2271 host->rescan_entered = 1;
2272
2273 if (host->trigger_card_event && host->ops->card_event) {
2274 mmc_claim_host(host);
2275 host->ops->card_event(host);
2276 mmc_release_host(host);
2277 host->trigger_card_event = false;
2278 }
2279
2280 mmc_bus_get(host);
2281
2282 /* Verify a registered card to be functional, else remove it. */
2283 if (host->bus_ops && !host->bus_dead)
2284 host->bus_ops->detect(host);
2285
2286 host->detect_change = 0;
2287
2288 /*
2289 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2290 * the card is no longer present.
2291 */
2292 mmc_bus_put(host);
2293 mmc_bus_get(host);
2294
2295 /* if there still is a card present, stop here */
2296 if (host->bus_ops != NULL) {
2297 mmc_bus_put(host);
2298 goto out;
2299 }
2300
2301 /*
2302 * Only we can add a new handler, so it's safe to
2303 * release the lock here.
2304 */
2305 mmc_bus_put(host);
2306
2307 mmc_claim_host(host);
2308 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2309 host->ops->get_cd(host) == 0) {
2310 mmc_power_off(host);
2311 mmc_release_host(host);
2312 goto out;
2313 }
2314
2315 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2316 unsigned int freq = freqs[i];
2317 if (freq > host->f_max) {
2318 if (i + 1 < ARRAY_SIZE(freqs))
2319 continue;
2320 freq = host->f_max;
2321 }
2322 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2323 break;
2324 if (freqs[i] <= host->f_min)
2325 break;
2326 }
2327 mmc_release_host(host);
2328
2329 out:
2330 if (host->caps & MMC_CAP_NEEDS_POLL)
2331 mmc_schedule_delayed_work(&host->detect, HZ);
2332 }
2333
mmc_start_host(struct mmc_host * host)2334 void mmc_start_host(struct mmc_host *host)
2335 {
2336 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2337 host->rescan_disable = 0;
2338
2339 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2340 mmc_claim_host(host);
2341 mmc_power_up(host, host->ocr_avail);
2342 mmc_release_host(host);
2343 }
2344
2345 mmc_gpiod_request_cd_irq(host);
2346 _mmc_detect_change(host, 0, false);
2347 }
2348
__mmc_stop_host(struct mmc_host * host)2349 void __mmc_stop_host(struct mmc_host *host)
2350 {
2351 if (host->slot.cd_irq >= 0) {
2352 mmc_gpio_set_cd_wake(host, false);
2353 disable_irq(host->slot.cd_irq);
2354 }
2355
2356 host->rescan_disable = 1;
2357 cancel_delayed_work_sync(&host->detect);
2358 }
2359
mmc_stop_host(struct mmc_host * host)2360 void mmc_stop_host(struct mmc_host *host)
2361 {
2362 __mmc_stop_host(host);
2363
2364 /* clear pm flags now and let card drivers set them as needed */
2365 host->pm_flags = 0;
2366
2367 mmc_bus_get(host);
2368 if (host->bus_ops && !host->bus_dead) {
2369 /* Calling bus_ops->remove() with a claimed host can deadlock */
2370 host->bus_ops->remove(host);
2371 mmc_claim_host(host);
2372 mmc_detach_bus(host);
2373 mmc_power_off(host);
2374 mmc_release_host(host);
2375 mmc_bus_put(host);
2376 return;
2377 }
2378 mmc_bus_put(host);
2379
2380 mmc_claim_host(host);
2381 mmc_power_off(host);
2382 mmc_release_host(host);
2383 }
2384
mmc_init(void)2385 static int __init mmc_init(void)
2386 {
2387 int ret;
2388
2389 ret = mmc_register_bus();
2390 if (ret)
2391 return ret;
2392
2393 ret = mmc_register_host_class();
2394 if (ret)
2395 goto unregister_bus;
2396
2397 ret = sdio_register_bus();
2398 if (ret)
2399 goto unregister_host_class;
2400
2401 return 0;
2402
2403 unregister_host_class:
2404 mmc_unregister_host_class();
2405 unregister_bus:
2406 mmc_unregister_bus();
2407 return ret;
2408 }
2409
mmc_exit(void)2410 static void __exit mmc_exit(void)
2411 {
2412 sdio_unregister_bus();
2413 mmc_unregister_host_class();
2414 mmc_unregister_bus();
2415 }
2416
2417 subsys_initcall(mmc_init);
2418 module_exit(mmc_exit);
2419
2420 MODULE_LICENSE("GPL");
2421