xref: /OK3568_Linux_fs/kernel/drivers/mmc/core/block.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include <trace/hooks/mmc_core.h>
51 
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62 
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68 
69 /*
70  * Set a 10 second timeout for polling write request busy state. Note, mmc core
71  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72  * second software timer to timeout the whole request, so 10 seconds should be
73  * ample.
74  */
75 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78 
79 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
80 				  (rq_data_dir(req) == WRITE))
81 static DEFINE_MUTEX(block_mutex);
82 
83 /*
84  * The defaults come from config options but can be overriden by module
85  * or bootarg options.
86  */
87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88 
89 /*
90  * We've only got one major, so number of mmcblk devices is
91  * limited to (1 << 20) / number of minors per device.  It is also
92  * limited by the MAX_DEVICES below.
93  */
94 static int max_devices;
95 
96 #define MAX_DEVICES 256
97 
98 static DEFINE_IDA(mmc_blk_ida);
99 static DEFINE_IDA(mmc_rpmb_ida);
100 
101 /*
102  * There is one mmc_blk_data per slot.
103  */
104 struct mmc_blk_data {
105 	struct device	*parent;
106 	struct gendisk	*disk;
107 	struct mmc_queue queue;
108 	struct list_head part;
109 	struct list_head rpmbs;
110 
111 	unsigned int	flags;
112 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
113 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
114 
115 	unsigned int	usage;
116 	unsigned int	read_only;
117 	unsigned int	part_type;
118 	unsigned int	reset_done;
119 #define MMC_BLK_READ		BIT(0)
120 #define MMC_BLK_WRITE		BIT(1)
121 #define MMC_BLK_DISCARD		BIT(2)
122 #define MMC_BLK_SECDISCARD	BIT(3)
123 #define MMC_BLK_CQE_RECOVERY	BIT(4)
124 
125 	/*
126 	 * Only set in main mmc_blk_data associated
127 	 * with mmc_card with dev_set_drvdata, and keeps
128 	 * track of the current selected device partition.
129 	 */
130 	unsigned int	part_curr;
131 	struct device_attribute force_ro;
132 	struct device_attribute power_ro_lock;
133 	int	area_type;
134 
135 	/* debugfs files (only in main mmc_blk_data) */
136 	struct dentry *status_dentry;
137 	struct dentry *ext_csd_dentry;
138 };
139 
140 /* Device type for RPMB character devices */
141 static dev_t mmc_rpmb_devt;
142 
143 /* Bus type for RPMB character devices */
144 static struct bus_type mmc_rpmb_bus_type = {
145 	.name = "mmc_rpmb",
146 };
147 
148 /**
149  * struct mmc_rpmb_data - special RPMB device type for these areas
150  * @dev: the device for the RPMB area
151  * @chrdev: character device for the RPMB area
152  * @id: unique device ID number
153  * @part_index: partition index (0 on first)
154  * @md: parent MMC block device
155  * @node: list item, so we can put this device on a list
156  */
157 struct mmc_rpmb_data {
158 	struct device dev;
159 	struct cdev chrdev;
160 	int id;
161 	unsigned int part_index;
162 	struct mmc_blk_data *md;
163 	struct list_head node;
164 };
165 
166 static DEFINE_MUTEX(open_lock);
167 
168 module_param(perdev_minors, int, 0444);
169 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
170 
171 static inline int mmc_blk_part_switch(struct mmc_card *card,
172 				      unsigned int part_type);
173 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
174 			       struct mmc_card *card,
175 			       int recovery_mode,
176 			       struct mmc_queue *mq);
177 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
178 
mmc_blk_get(struct gendisk * disk)179 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
180 {
181 	struct mmc_blk_data *md;
182 
183 	mutex_lock(&open_lock);
184 	md = disk->private_data;
185 	if (md && md->usage == 0)
186 		md = NULL;
187 	if (md)
188 		md->usage++;
189 	mutex_unlock(&open_lock);
190 
191 	return md;
192 }
193 
mmc_get_devidx(struct gendisk * disk)194 static inline int mmc_get_devidx(struct gendisk *disk)
195 {
196 	int devidx = disk->first_minor / perdev_minors;
197 	return devidx;
198 }
199 
mmc_blk_put(struct mmc_blk_data * md)200 static void mmc_blk_put(struct mmc_blk_data *md)
201 {
202 	mutex_lock(&open_lock);
203 	md->usage--;
204 	if (md->usage == 0) {
205 		int devidx = mmc_get_devidx(md->disk);
206 		blk_put_queue(md->queue.queue);
207 		ida_simple_remove(&mmc_blk_ida, devidx);
208 		put_disk(md->disk);
209 		kfree(md);
210 	}
211 	mutex_unlock(&open_lock);
212 }
213 
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)214 static ssize_t power_ro_lock_show(struct device *dev,
215 		struct device_attribute *attr, char *buf)
216 {
217 	int ret;
218 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
219 	struct mmc_card *card = md->queue.card;
220 	int locked = 0;
221 
222 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
223 		locked = 2;
224 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
225 		locked = 1;
226 
227 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
228 
229 	mmc_blk_put(md);
230 
231 	return ret;
232 }
233 
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)234 static ssize_t power_ro_lock_store(struct device *dev,
235 		struct device_attribute *attr, const char *buf, size_t count)
236 {
237 	int ret;
238 	struct mmc_blk_data *md, *part_md;
239 	struct mmc_queue *mq;
240 	struct request *req;
241 	unsigned long set;
242 
243 	if (kstrtoul(buf, 0, &set))
244 		return -EINVAL;
245 
246 	if (set != 1)
247 		return count;
248 
249 	md = mmc_blk_get(dev_to_disk(dev));
250 	mq = &md->queue;
251 
252 	/* Dispatch locking to the block layer */
253 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
254 	if (IS_ERR(req)) {
255 		count = PTR_ERR(req);
256 		goto out_put;
257 	}
258 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
259 	blk_execute_rq(mq->queue, NULL, req, 0);
260 	ret = req_to_mmc_queue_req(req)->drv_op_result;
261 	blk_put_request(req);
262 
263 	if (!ret) {
264 		pr_info("%s: Locking boot partition ro until next power on\n",
265 			md->disk->disk_name);
266 		set_disk_ro(md->disk, 1);
267 
268 		list_for_each_entry(part_md, &md->part, part)
269 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
270 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
271 				set_disk_ro(part_md->disk, 1);
272 			}
273 	}
274 out_put:
275 	mmc_blk_put(md);
276 	return count;
277 }
278 
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)279 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
280 			     char *buf)
281 {
282 	int ret;
283 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
284 
285 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
286 		       get_disk_ro(dev_to_disk(dev)) ^
287 		       md->read_only);
288 	mmc_blk_put(md);
289 	return ret;
290 }
291 
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)292 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
293 			      const char *buf, size_t count)
294 {
295 	int ret;
296 	char *end;
297 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
298 	unsigned long set = simple_strtoul(buf, &end, 0);
299 	if (end == buf) {
300 		ret = -EINVAL;
301 		goto out;
302 	}
303 
304 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
305 	ret = count;
306 out:
307 	mmc_blk_put(md);
308 	return ret;
309 }
310 
mmc_blk_open(struct block_device * bdev,fmode_t mode)311 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
312 {
313 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
314 	int ret = -ENXIO;
315 
316 	mutex_lock(&block_mutex);
317 	if (md) {
318 		ret = 0;
319 		if ((mode & FMODE_WRITE) && md->read_only) {
320 			mmc_blk_put(md);
321 			ret = -EROFS;
322 		}
323 	}
324 	mutex_unlock(&block_mutex);
325 
326 	return ret;
327 }
328 
mmc_blk_release(struct gendisk * disk,fmode_t mode)329 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
330 {
331 	struct mmc_blk_data *md = disk->private_data;
332 
333 	mutex_lock(&block_mutex);
334 	mmc_blk_put(md);
335 	mutex_unlock(&block_mutex);
336 }
337 
338 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)339 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
340 {
341 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
342 	geo->heads = 4;
343 	geo->sectors = 16;
344 	return 0;
345 }
346 
347 struct mmc_blk_ioc_data {
348 	struct mmc_ioc_cmd ic;
349 	unsigned char *buf;
350 	u64 buf_bytes;
351 	struct mmc_rpmb_data *rpmb;
352 };
353 
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)354 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
355 	struct mmc_ioc_cmd __user *user)
356 {
357 	struct mmc_blk_ioc_data *idata;
358 	int err;
359 
360 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
361 	if (!idata) {
362 		err = -ENOMEM;
363 		goto out;
364 	}
365 
366 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
367 		err = -EFAULT;
368 		goto idata_err;
369 	}
370 
371 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
372 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
373 		err = -EOVERFLOW;
374 		goto idata_err;
375 	}
376 
377 	if (!idata->buf_bytes) {
378 		idata->buf = NULL;
379 		return idata;
380 	}
381 
382 	idata->buf = memdup_user((void __user *)(unsigned long)
383 				 idata->ic.data_ptr, idata->buf_bytes);
384 	if (IS_ERR(idata->buf)) {
385 		err = PTR_ERR(idata->buf);
386 		goto idata_err;
387 	}
388 
389 	return idata;
390 
391 idata_err:
392 	kfree(idata);
393 out:
394 	return ERR_PTR(err);
395 }
396 
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)397 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
398 				      struct mmc_blk_ioc_data *idata)
399 {
400 	struct mmc_ioc_cmd *ic = &idata->ic;
401 
402 	if (copy_to_user(&(ic_ptr->response), ic->response,
403 			 sizeof(ic->response)))
404 		return -EFAULT;
405 
406 	if (!idata->ic.write_flag) {
407 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
408 				 idata->buf, idata->buf_bytes))
409 			return -EFAULT;
410 	}
411 
412 	return 0;
413 }
414 
card_busy_detect(struct mmc_card * card,unsigned int timeout_ms,u32 * resp_errs)415 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
416 			    u32 *resp_errs)
417 {
418 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
419 	int err = 0;
420 	u32 status;
421 
422 	do {
423 		bool done = time_after(jiffies, timeout);
424 
425 		if (!(card->host->caps2 & MMC_CAP2_NO_SD) && card->host->ops->card_busy) {
426 			status = card->host->ops->card_busy(card->host) ?
427 				 0 : R1_READY_FOR_DATA | R1_STATE_TRAN << 9;
428 
429 			if (!status)
430 				usleep_range(100, 150);
431 		} else {
432 			err = __mmc_send_status(card, &status, 5);
433 			if (err) {
434 				dev_err(mmc_dev(card->host),
435 					"error %d requesting status\n", err);
436 				return err;
437 			}
438 
439 			/* Accumulate any response error bits seen */
440 			if (resp_errs)
441 				*resp_errs |= status;
442 		}
443 
444 		/*
445 		 * Timeout if the device never becomes ready for data and never
446 		 * leaves the program state.
447 		 */
448 		if (done) {
449 			dev_err(mmc_dev(card->host),
450 				"Card stuck in wrong state! %s status: %#x\n",
451 				 __func__, status);
452 			return -ETIMEDOUT;
453 		}
454 	} while (!mmc_ready_for_data(status));
455 
456 	return err;
457 }
458 
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data * idata)459 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
460 			       struct mmc_blk_ioc_data *idata)
461 {
462 	struct mmc_command cmd = {}, sbc = {};
463 	struct mmc_data data = {};
464 	struct mmc_request mrq = {};
465 	struct scatterlist sg;
466 	int err;
467 	unsigned int target_part;
468 
469 	if (!card || !md || !idata)
470 		return -EINVAL;
471 
472 	/*
473 	 * The RPMB accesses comes in from the character device, so we
474 	 * need to target these explicitly. Else we just target the
475 	 * partition type for the block device the ioctl() was issued
476 	 * on.
477 	 */
478 	if (idata->rpmb) {
479 		/* Support multiple RPMB partitions */
480 		target_part = idata->rpmb->part_index;
481 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
482 	} else {
483 		target_part = md->part_type;
484 	}
485 
486 	cmd.opcode = idata->ic.opcode;
487 	cmd.arg = idata->ic.arg;
488 	cmd.flags = idata->ic.flags;
489 
490 	if (idata->buf_bytes) {
491 		data.sg = &sg;
492 		data.sg_len = 1;
493 		data.blksz = idata->ic.blksz;
494 		data.blocks = idata->ic.blocks;
495 
496 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
497 
498 		if (idata->ic.write_flag)
499 			data.flags = MMC_DATA_WRITE;
500 		else
501 			data.flags = MMC_DATA_READ;
502 
503 		/* data.flags must already be set before doing this. */
504 		mmc_set_data_timeout(&data, card);
505 
506 		/* Allow overriding the timeout_ns for empirical tuning. */
507 		if (idata->ic.data_timeout_ns)
508 			data.timeout_ns = idata->ic.data_timeout_ns;
509 
510 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
511 			/*
512 			 * Pretend this is a data transfer and rely on the
513 			 * host driver to compute timeout.  When all host
514 			 * drivers support cmd.cmd_timeout for R1B, this
515 			 * can be changed to:
516 			 *
517 			 *     mrq.data = NULL;
518 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
519 			 */
520 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
521 		}
522 
523 		mrq.data = &data;
524 	}
525 
526 	mrq.cmd = &cmd;
527 
528 	err = mmc_blk_part_switch(card, target_part);
529 	if (err)
530 		return err;
531 
532 	if (idata->ic.is_acmd) {
533 		err = mmc_app_cmd(card->host, card);
534 		if (err)
535 			return err;
536 	}
537 
538 	if (idata->rpmb) {
539 		sbc.opcode = MMC_SET_BLOCK_COUNT;
540 		/*
541 		 * We don't do any blockcount validation because the max size
542 		 * may be increased by a future standard. We just copy the
543 		 * 'Reliable Write' bit here.
544 		 */
545 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
546 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
547 		mrq.sbc = &sbc;
548 	}
549 
550 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
551 	    (cmd.opcode == MMC_SWITCH))
552 		return mmc_sanitize(card);
553 
554 	mmc_wait_for_req(card->host, &mrq);
555 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
556 
557 	if (cmd.error) {
558 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
559 						__func__, cmd.error);
560 		return cmd.error;
561 	}
562 	if (data.error) {
563 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
564 						__func__, data.error);
565 		return data.error;
566 	}
567 
568 	/*
569 	 * Make sure the cache of the PARTITION_CONFIG register and
570 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
571 	 * changed it successfully.
572 	 */
573 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
574 	    (cmd.opcode == MMC_SWITCH)) {
575 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
576 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
577 
578 		/*
579 		 * Update cache so the next mmc_blk_part_switch call operates
580 		 * on up-to-date data.
581 		 */
582 		card->ext_csd.part_config = value;
583 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
584 	}
585 
586 	/*
587 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
588 	 * will get turned back on if the card is re-initialized, e.g.
589 	 * suspend/resume or hw reset in recovery.
590 	 */
591 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
592 	    (cmd.opcode == MMC_SWITCH)) {
593 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
594 
595 		card->ext_csd.cache_ctrl = value;
596 	}
597 
598 	/*
599 	 * According to the SD specs, some commands require a delay after
600 	 * issuing the command.
601 	 */
602 	if (idata->ic.postsleep_min_us)
603 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
604 
605 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
606 		/*
607 		 * Ensure RPMB/R1B command has completed by polling CMD13
608 		 * "Send Status".
609 		 */
610 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
611 	}
612 
613 	return err;
614 }
615 
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)616 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
617 			     struct mmc_ioc_cmd __user *ic_ptr,
618 			     struct mmc_rpmb_data *rpmb)
619 {
620 	struct mmc_blk_ioc_data *idata;
621 	struct mmc_blk_ioc_data *idatas[1];
622 	struct mmc_queue *mq;
623 	struct mmc_card *card;
624 	int err = 0, ioc_err = 0;
625 	struct request *req;
626 
627 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
628 	if (IS_ERR(idata))
629 		return PTR_ERR(idata);
630 	/* This will be NULL on non-RPMB ioctl():s */
631 	idata->rpmb = rpmb;
632 
633 	card = md->queue.card;
634 	if (IS_ERR(card)) {
635 		err = PTR_ERR(card);
636 		goto cmd_done;
637 	}
638 
639 	/*
640 	 * Dispatch the ioctl() into the block request queue.
641 	 */
642 	mq = &md->queue;
643 	req = blk_get_request(mq->queue,
644 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
645 	if (IS_ERR(req)) {
646 		err = PTR_ERR(req);
647 		goto cmd_done;
648 	}
649 	idatas[0] = idata;
650 	req_to_mmc_queue_req(req)->drv_op =
651 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
652 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
653 	req_to_mmc_queue_req(req)->ioc_count = 1;
654 	blk_execute_rq(mq->queue, NULL, req, 0);
655 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
656 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
657 	blk_put_request(req);
658 
659 cmd_done:
660 	kfree(idata->buf);
661 	kfree(idata);
662 	return ioc_err ? ioc_err : err;
663 }
664 
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)665 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
666 				   struct mmc_ioc_multi_cmd __user *user,
667 				   struct mmc_rpmb_data *rpmb)
668 {
669 	struct mmc_blk_ioc_data **idata = NULL;
670 	struct mmc_ioc_cmd __user *cmds = user->cmds;
671 	struct mmc_card *card;
672 	struct mmc_queue *mq;
673 	int i, err = 0, ioc_err = 0;
674 	__u64 num_of_cmds;
675 	struct request *req;
676 
677 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
678 			   sizeof(num_of_cmds)))
679 		return -EFAULT;
680 
681 	if (!num_of_cmds)
682 		return 0;
683 
684 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
685 		return -EINVAL;
686 
687 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
688 	if (!idata)
689 		return -ENOMEM;
690 
691 	for (i = 0; i < num_of_cmds; i++) {
692 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
693 		if (IS_ERR(idata[i])) {
694 			err = PTR_ERR(idata[i]);
695 			num_of_cmds = i;
696 			goto cmd_err;
697 		}
698 		/* This will be NULL on non-RPMB ioctl():s */
699 		idata[i]->rpmb = rpmb;
700 	}
701 
702 	card = md->queue.card;
703 	if (IS_ERR(card)) {
704 		err = PTR_ERR(card);
705 		goto cmd_err;
706 	}
707 
708 
709 	/*
710 	 * Dispatch the ioctl()s into the block request queue.
711 	 */
712 	mq = &md->queue;
713 	req = blk_get_request(mq->queue,
714 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
715 	if (IS_ERR(req)) {
716 		err = PTR_ERR(req);
717 		goto cmd_err;
718 	}
719 	req_to_mmc_queue_req(req)->drv_op =
720 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
721 	req_to_mmc_queue_req(req)->drv_op_data = idata;
722 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
723 	blk_execute_rq(mq->queue, NULL, req, 0);
724 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
725 
726 	/* copy to user if data and response */
727 	for (i = 0; i < num_of_cmds && !err; i++)
728 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
729 
730 	blk_put_request(req);
731 
732 cmd_err:
733 	for (i = 0; i < num_of_cmds; i++) {
734 		kfree(idata[i]->buf);
735 		kfree(idata[i]);
736 	}
737 	kfree(idata);
738 	return ioc_err ? ioc_err : err;
739 }
740 
mmc_blk_check_blkdev(struct block_device * bdev)741 static int mmc_blk_check_blkdev(struct block_device *bdev)
742 {
743 	/*
744 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
745 	 * whole block device, not on a partition.  This prevents overspray
746 	 * between sibling partitions.
747 	 */
748 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
749 		return -EPERM;
750 	return 0;
751 }
752 
mmc_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)753 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
754 	unsigned int cmd, unsigned long arg)
755 {
756 	struct mmc_blk_data *md;
757 	int ret;
758 
759 	switch (cmd) {
760 	case MMC_IOC_CMD:
761 		ret = mmc_blk_check_blkdev(bdev);
762 		if (ret)
763 			return ret;
764 		md = mmc_blk_get(bdev->bd_disk);
765 		if (!md)
766 			return -EINVAL;
767 		ret = mmc_blk_ioctl_cmd(md,
768 					(struct mmc_ioc_cmd __user *)arg,
769 					NULL);
770 		mmc_blk_put(md);
771 		return ret;
772 	case MMC_IOC_MULTI_CMD:
773 		ret = mmc_blk_check_blkdev(bdev);
774 		if (ret)
775 			return ret;
776 		md = mmc_blk_get(bdev->bd_disk);
777 		if (!md)
778 			return -EINVAL;
779 		ret = mmc_blk_ioctl_multi_cmd(md,
780 					(struct mmc_ioc_multi_cmd __user *)arg,
781 					NULL);
782 		mmc_blk_put(md);
783 		return ret;
784 	default:
785 		return -EINVAL;
786 	}
787 }
788 
789 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)790 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
791 	unsigned int cmd, unsigned long arg)
792 {
793 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
794 }
795 #endif
796 
797 static const struct block_device_operations mmc_bdops = {
798 	.open			= mmc_blk_open,
799 	.release		= mmc_blk_release,
800 	.getgeo			= mmc_blk_getgeo,
801 	.owner			= THIS_MODULE,
802 	.ioctl			= mmc_blk_ioctl,
803 #ifdef CONFIG_COMPAT
804 	.compat_ioctl		= mmc_blk_compat_ioctl,
805 #endif
806 };
807 
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)808 static int mmc_blk_part_switch_pre(struct mmc_card *card,
809 				   unsigned int part_type)
810 {
811 	int ret = 0;
812 
813 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
814 		if (card->ext_csd.cmdq_en) {
815 			ret = mmc_cmdq_disable(card);
816 			if (ret)
817 				return ret;
818 		}
819 		mmc_retune_pause(card->host);
820 	}
821 
822 	return ret;
823 }
824 
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)825 static int mmc_blk_part_switch_post(struct mmc_card *card,
826 				    unsigned int part_type)
827 {
828 	int ret = 0;
829 
830 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
831 		mmc_retune_unpause(card->host);
832 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
833 			ret = mmc_cmdq_enable(card);
834 	}
835 
836 	return ret;
837 }
838 
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)839 static inline int mmc_blk_part_switch(struct mmc_card *card,
840 				      unsigned int part_type)
841 {
842 	int ret = 0;
843 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
844 
845 	if (main_md->part_curr == part_type)
846 		return 0;
847 
848 	if (mmc_card_mmc(card)) {
849 		u8 part_config = card->ext_csd.part_config;
850 
851 		ret = mmc_blk_part_switch_pre(card, part_type);
852 		if (ret)
853 			return ret;
854 
855 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
856 		part_config |= part_type;
857 
858 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
859 				 EXT_CSD_PART_CONFIG, part_config,
860 				 card->ext_csd.part_time);
861 		if (ret) {
862 			mmc_blk_part_switch_post(card, part_type);
863 			return ret;
864 		}
865 
866 		card->ext_csd.part_config = part_config;
867 
868 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
869 	}
870 
871 	main_md->part_curr = part_type;
872 	return ret;
873 }
874 
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)875 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
876 {
877 	int err;
878 	u32 result;
879 	__be32 *blocks;
880 
881 	struct mmc_request mrq = {};
882 	struct mmc_command cmd = {};
883 	struct mmc_data data = {};
884 
885 	struct scatterlist sg;
886 
887 	cmd.opcode = MMC_APP_CMD;
888 	cmd.arg = card->rca << 16;
889 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
890 
891 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
892 	if (err)
893 		return err;
894 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
895 		return -EIO;
896 
897 	memset(&cmd, 0, sizeof(struct mmc_command));
898 
899 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
900 	cmd.arg = 0;
901 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
902 
903 	data.blksz = 4;
904 	data.blocks = 1;
905 	data.flags = MMC_DATA_READ;
906 	data.sg = &sg;
907 	data.sg_len = 1;
908 	mmc_set_data_timeout(&data, card);
909 
910 	mrq.cmd = &cmd;
911 	mrq.data = &data;
912 
913 	blocks = kmalloc(4, GFP_KERNEL);
914 	if (!blocks)
915 		return -ENOMEM;
916 
917 	sg_init_one(&sg, blocks, 4);
918 
919 	mmc_wait_for_req(card->host, &mrq);
920 
921 	result = ntohl(*blocks);
922 	kfree(blocks);
923 
924 	if (cmd.error || data.error)
925 		return -EIO;
926 
927 	*written_blocks = result;
928 
929 	return 0;
930 }
931 
mmc_blk_clock_khz(struct mmc_host * host)932 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
933 {
934 	if (host->actual_clock)
935 		return host->actual_clock / 1000;
936 
937 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
938 	if (host->ios.clock)
939 		return host->ios.clock / 2000;
940 
941 	/* How can there be no clock */
942 	WARN_ON_ONCE(1);
943 	return 100; /* 100 kHz is minimum possible value */
944 }
945 
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)946 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
947 					    struct mmc_data *data)
948 {
949 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
950 	unsigned int khz;
951 
952 	if (data->timeout_clks) {
953 		khz = mmc_blk_clock_khz(host);
954 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
955 	}
956 
957 	return ms;
958 }
959 
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)960 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
961 			 int type)
962 {
963 	int err;
964 
965 	if (md->reset_done & type)
966 		return -EEXIST;
967 
968 	md->reset_done |= type;
969 	err = mmc_hw_reset(host);
970 	/* Ensure we switch back to the correct partition */
971 	if (err != -EOPNOTSUPP) {
972 		struct mmc_blk_data *main_md =
973 			dev_get_drvdata(&host->card->dev);
974 		int part_err;
975 		bool allow = true;
976 
977 		trace_android_vh_mmc_blk_reset(host, err, &allow);
978 		if (!allow)
979 			return -ENODEV;
980 
981 		main_md->part_curr = main_md->part_type;
982 		part_err = mmc_blk_part_switch(host->card, md->part_type);
983 		if (part_err) {
984 			/*
985 			 * We have failed to get back into the correct
986 			 * partition, so we need to abort the whole request.
987 			 */
988 			return -ENODEV;
989 		}
990 	}
991 	return err;
992 }
993 
mmc_blk_reset_success(struct mmc_blk_data * md,int type)994 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
995 {
996 	md->reset_done &= ~type;
997 }
998 
999 /*
1000  * The non-block commands come back from the block layer after it queued it and
1001  * processed it with all other requests and then they get issued in this
1002  * function.
1003  */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)1004 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1005 {
1006 	struct mmc_queue_req *mq_rq;
1007 	struct mmc_card *card = mq->card;
1008 	struct mmc_blk_data *md = mq->blkdata;
1009 	struct mmc_blk_ioc_data **idata;
1010 	bool rpmb_ioctl;
1011 	u8 **ext_csd;
1012 	u32 status;
1013 	int ret;
1014 	int i;
1015 
1016 	mq_rq = req_to_mmc_queue_req(req);
1017 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1018 
1019 	switch (mq_rq->drv_op) {
1020 	case MMC_DRV_OP_IOCTL:
1021 		if (card->ext_csd.cmdq_en) {
1022 			ret = mmc_cmdq_disable(card);
1023 			if (ret)
1024 				break;
1025 		}
1026 		fallthrough;
1027 	case MMC_DRV_OP_IOCTL_RPMB:
1028 		idata = mq_rq->drv_op_data;
1029 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1030 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1031 			if (ret)
1032 				break;
1033 		}
1034 		/* Always switch back to main area after RPMB access */
1035 		if (rpmb_ioctl)
1036 			mmc_blk_part_switch(card, 0);
1037 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1038 			mmc_cmdq_enable(card);
1039 		break;
1040 	case MMC_DRV_OP_BOOT_WP:
1041 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1042 				 card->ext_csd.boot_ro_lock |
1043 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1044 				 card->ext_csd.part_time);
1045 		if (ret)
1046 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1047 			       md->disk->disk_name, ret);
1048 		else
1049 			card->ext_csd.boot_ro_lock |=
1050 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1051 		break;
1052 	case MMC_DRV_OP_GET_CARD_STATUS:
1053 		ret = mmc_send_status(card, &status);
1054 		if (!ret)
1055 			ret = status;
1056 		break;
1057 	case MMC_DRV_OP_GET_EXT_CSD:
1058 		ext_csd = mq_rq->drv_op_data;
1059 		ret = mmc_get_ext_csd(card, ext_csd);
1060 		break;
1061 	default:
1062 		pr_err("%s: unknown driver specific operation\n",
1063 		       md->disk->disk_name);
1064 		ret = -EINVAL;
1065 		break;
1066 	}
1067 	mq_rq->drv_op_result = ret;
1068 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1069 }
1070 
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1071 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1072 {
1073 	struct mmc_blk_data *md = mq->blkdata;
1074 	struct mmc_card *card = md->queue.card;
1075 	unsigned int from, nr;
1076 	int err = 0, type = MMC_BLK_DISCARD;
1077 	blk_status_t status = BLK_STS_OK;
1078 
1079 	if (!mmc_can_erase(card)) {
1080 		status = BLK_STS_NOTSUPP;
1081 		goto fail;
1082 	}
1083 
1084 	from = blk_rq_pos(req);
1085 	nr = blk_rq_sectors(req);
1086 
1087 	do {
1088 		unsigned int erase_arg = card->erase_arg;
1089 
1090 		if (mmc_card_broken_sd_discard(card))
1091 			erase_arg = SD_ERASE_ARG;
1092 
1093 		err = 0;
1094 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1095 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1096 					 INAND_CMD38_ARG_EXT_CSD,
1097 					 card->erase_arg == MMC_TRIM_ARG ?
1098 					 INAND_CMD38_ARG_TRIM :
1099 					 INAND_CMD38_ARG_ERASE,
1100 					 card->ext_csd.generic_cmd6_time);
1101 		}
1102 		if (!err)
1103 			err = mmc_erase(card, from, nr, erase_arg);
1104 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1105 	if (err)
1106 		status = BLK_STS_IOERR;
1107 	else
1108 		mmc_blk_reset_success(md, type);
1109 fail:
1110 	blk_mq_end_request(req, status);
1111 }
1112 
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1113 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1114 				       struct request *req)
1115 {
1116 	struct mmc_blk_data *md = mq->blkdata;
1117 	struct mmc_card *card = md->queue.card;
1118 	unsigned int from, nr, arg;
1119 	int err = 0, type = MMC_BLK_SECDISCARD;
1120 	blk_status_t status = BLK_STS_OK;
1121 
1122 	if (!(mmc_can_secure_erase_trim(card))) {
1123 		status = BLK_STS_NOTSUPP;
1124 		goto out;
1125 	}
1126 
1127 	from = blk_rq_pos(req);
1128 	nr = blk_rq_sectors(req);
1129 
1130 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1131 		arg = MMC_SECURE_TRIM1_ARG;
1132 	else
1133 		arg = MMC_SECURE_ERASE_ARG;
1134 
1135 retry:
1136 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1137 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1138 				 INAND_CMD38_ARG_EXT_CSD,
1139 				 arg == MMC_SECURE_TRIM1_ARG ?
1140 				 INAND_CMD38_ARG_SECTRIM1 :
1141 				 INAND_CMD38_ARG_SECERASE,
1142 				 card->ext_csd.generic_cmd6_time);
1143 		if (err)
1144 			goto out_retry;
1145 	}
1146 
1147 	err = mmc_erase(card, from, nr, arg);
1148 	if (err == -EIO)
1149 		goto out_retry;
1150 	if (err) {
1151 		status = BLK_STS_IOERR;
1152 		goto out;
1153 	}
1154 
1155 	if (arg == MMC_SECURE_TRIM1_ARG) {
1156 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1157 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1158 					 INAND_CMD38_ARG_EXT_CSD,
1159 					 INAND_CMD38_ARG_SECTRIM2,
1160 					 card->ext_csd.generic_cmd6_time);
1161 			if (err)
1162 				goto out_retry;
1163 		}
1164 
1165 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1166 		if (err == -EIO)
1167 			goto out_retry;
1168 		if (err) {
1169 			status = BLK_STS_IOERR;
1170 			goto out;
1171 		}
1172 	}
1173 
1174 out_retry:
1175 	if (err && !mmc_blk_reset(md, card->host, type))
1176 		goto retry;
1177 	if (!err)
1178 		mmc_blk_reset_success(md, type);
1179 out:
1180 	blk_mq_end_request(req, status);
1181 }
1182 
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1183 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1184 {
1185 	struct mmc_blk_data *md = mq->blkdata;
1186 	struct mmc_card *card = md->queue.card;
1187 	int ret = 0;
1188 
1189 	ret = mmc_flush_cache(card);
1190 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1191 }
1192 
1193 /*
1194  * Reformat current write as a reliable write, supporting
1195  * both legacy and the enhanced reliable write MMC cards.
1196  * In each transfer we'll handle only as much as a single
1197  * reliable write can handle, thus finish the request in
1198  * partial completions.
1199  */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1200 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1201 				    struct mmc_card *card,
1202 				    struct request *req)
1203 {
1204 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1205 		/* Legacy mode imposes restrictions on transfers. */
1206 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1207 			brq->data.blocks = 1;
1208 
1209 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1210 			brq->data.blocks = card->ext_csd.rel_sectors;
1211 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1212 			brq->data.blocks = 1;
1213 	}
1214 }
1215 
1216 #define CMD_ERRORS_EXCL_OOR						\
1217 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1218 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1219 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1220 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1221 	 R1_CC_ERROR |		/* Card controller error */		\
1222 	 R1_ERROR)		/* General/unknown error */
1223 
1224 #define CMD_ERRORS							\
1225 	(CMD_ERRORS_EXCL_OOR |						\
1226 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1227 
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1228 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1229 {
1230 	u32 val;
1231 
1232 	/*
1233 	 * Per the SD specification(physical layer version 4.10)[1],
1234 	 * section 4.3.3, it explicitly states that "When the last
1235 	 * block of user area is read using CMD18, the host should
1236 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1237 	 * is correct". And JESD84-B51 for eMMC also has a similar
1238 	 * statement on section 6.8.3.
1239 	 *
1240 	 * Multiple block read/write could be done by either predefined
1241 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1242 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1243 	 *
1244 	 * However the spec[1] doesn't tell us whether we should also
1245 	 * ignore that for predefined method. But per the spec[1], section
1246 	 * 4.15 Set Block Count Command, it says"If illegal block count
1247 	 * is set, out of range error will be indicated during read/write
1248 	 * operation (For example, data transfer is stopped at user area
1249 	 * boundary)." In another word, we could expect a out of range error
1250 	 * in the response for the following CMD18/25. And if argument of
1251 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1252 	 * we could also expect to get a -ETIMEDOUT or any error number from
1253 	 * the host drivers due to missing data response(for write)/data(for
1254 	 * read), as the cards will stop the data transfer by itself per the
1255 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1256 	 */
1257 
1258 	if (!brq->stop.error) {
1259 		bool oor_with_open_end;
1260 		/* If there is no error yet, check R1 response */
1261 
1262 		val = brq->stop.resp[0] & CMD_ERRORS;
1263 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1264 
1265 		if (val && !oor_with_open_end)
1266 			brq->stop.error = -EIO;
1267 	}
1268 }
1269 
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1270 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1271 			      int recovery_mode, bool *do_rel_wr_p,
1272 			      bool *do_data_tag_p)
1273 {
1274 	struct mmc_blk_data *md = mq->blkdata;
1275 	struct mmc_card *card = md->queue.card;
1276 	struct mmc_blk_request *brq = &mqrq->brq;
1277 	struct request *req = mmc_queue_req_to_req(mqrq);
1278 	bool do_rel_wr, do_data_tag;
1279 
1280 	/*
1281 	 * Reliable writes are used to implement Forced Unit Access and
1282 	 * are supported only on MMCs.
1283 	 */
1284 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1285 		    rq_data_dir(req) == WRITE &&
1286 		    (md->flags & MMC_BLK_REL_WR);
1287 
1288 	memset(brq, 0, sizeof(struct mmc_blk_request));
1289 
1290 	mmc_crypto_prepare_req(mqrq);
1291 
1292 	brq->mrq.data = &brq->data;
1293 	brq->mrq.tag = req->tag;
1294 
1295 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1296 	brq->stop.arg = 0;
1297 
1298 	if (rq_data_dir(req) == READ) {
1299 		brq->data.flags = MMC_DATA_READ;
1300 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1301 	} else {
1302 		brq->data.flags = MMC_DATA_WRITE;
1303 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1304 	}
1305 
1306 	brq->data.blksz = 512;
1307 	brq->data.blocks = blk_rq_sectors(req);
1308 	brq->data.blk_addr = blk_rq_pos(req);
1309 
1310 	/*
1311 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1312 	 * The eMMC will give "high" priority tasks priority over "simple"
1313 	 * priority tasks. Here we always set "simple" priority by not setting
1314 	 * MMC_DATA_PRIO.
1315 	 */
1316 
1317 	/*
1318 	 * The block layer doesn't support all sector count
1319 	 * restrictions, so we need to be prepared for too big
1320 	 * requests.
1321 	 */
1322 	if (brq->data.blocks > card->host->max_blk_count)
1323 		brq->data.blocks = card->host->max_blk_count;
1324 
1325 	if (brq->data.blocks > 1) {
1326 		/*
1327 		 * Some SD cards in SPI mode return a CRC error or even lock up
1328 		 * completely when trying to read the last block using a
1329 		 * multiblock read command.
1330 		 */
1331 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1332 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1333 		     get_capacity(md->disk)))
1334 			brq->data.blocks--;
1335 
1336 		/*
1337 		 * After a read error, we redo the request one (native) sector
1338 		 * at a time in order to accurately determine which
1339 		 * sectors can be read successfully.
1340 		 */
1341 		if (recovery_mode)
1342 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1343 
1344 		/*
1345 		 * Some controllers have HW issues while operating
1346 		 * in multiple I/O mode
1347 		 */
1348 		if (card->host->ops->multi_io_quirk)
1349 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1350 						(rq_data_dir(req) == READ) ?
1351 						MMC_DATA_READ : MMC_DATA_WRITE,
1352 						brq->data.blocks);
1353 	}
1354 
1355 	if (do_rel_wr) {
1356 		mmc_apply_rel_rw(brq, card, req);
1357 		brq->data.flags |= MMC_DATA_REL_WR;
1358 	}
1359 
1360 	/*
1361 	 * Data tag is used only during writing meta data to speed
1362 	 * up write and any subsequent read of this meta data
1363 	 */
1364 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1365 		      (req->cmd_flags & REQ_META) &&
1366 		      (rq_data_dir(req) == WRITE) &&
1367 		      ((brq->data.blocks * brq->data.blksz) >=
1368 		       card->ext_csd.data_tag_unit_size);
1369 
1370 	if (do_data_tag)
1371 		brq->data.flags |= MMC_DATA_DAT_TAG;
1372 
1373 	mmc_set_data_timeout(&brq->data, card);
1374 
1375 	brq->data.sg = mqrq->sg;
1376 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1377 
1378 	/*
1379 	 * Adjust the sg list so it is the same size as the
1380 	 * request.
1381 	 */
1382 	if (brq->data.blocks != blk_rq_sectors(req)) {
1383 		int i, data_size = brq->data.blocks << 9;
1384 		struct scatterlist *sg;
1385 
1386 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1387 			data_size -= sg->length;
1388 			if (data_size <= 0) {
1389 				sg->length += data_size;
1390 				i++;
1391 				break;
1392 			}
1393 		}
1394 		brq->data.sg_len = i;
1395 	}
1396 
1397 	if (do_rel_wr_p)
1398 		*do_rel_wr_p = do_rel_wr;
1399 
1400 	if (do_data_tag_p)
1401 		*do_data_tag_p = do_data_tag;
1402 }
1403 
1404 #define MMC_CQE_RETRIES 2
1405 
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1406 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1407 {
1408 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1409 	struct mmc_request *mrq = &mqrq->brq.mrq;
1410 	struct request_queue *q = req->q;
1411 	struct mmc_host *host = mq->card->host;
1412 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1413 	unsigned long flags;
1414 	bool put_card;
1415 	int err;
1416 
1417 	mmc_cqe_post_req(host, mrq);
1418 
1419 	if (mrq->cmd && mrq->cmd->error)
1420 		err = mrq->cmd->error;
1421 	else if (mrq->data && mrq->data->error)
1422 		err = mrq->data->error;
1423 	else
1424 		err = 0;
1425 
1426 	if (err) {
1427 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1428 			blk_mq_requeue_request(req, true);
1429 		else
1430 			blk_mq_end_request(req, BLK_STS_IOERR);
1431 	} else if (mrq->data) {
1432 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1433 			blk_mq_requeue_request(req, true);
1434 		else
1435 			__blk_mq_end_request(req, BLK_STS_OK);
1436 	} else {
1437 		blk_mq_end_request(req, BLK_STS_OK);
1438 	}
1439 
1440 	spin_lock_irqsave(&mq->lock, flags);
1441 
1442 	mq->in_flight[issue_type] -= 1;
1443 
1444 	put_card = (mmc_tot_in_flight(mq) == 0);
1445 
1446 	mmc_cqe_check_busy(mq);
1447 
1448 	spin_unlock_irqrestore(&mq->lock, flags);
1449 
1450 	if (!mq->cqe_busy)
1451 		blk_mq_run_hw_queues(q, true);
1452 
1453 	if (put_card)
1454 		mmc_put_card(mq->card, &mq->ctx);
1455 }
1456 
mmc_blk_cqe_recovery(struct mmc_queue * mq)1457 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1458 {
1459 	struct mmc_card *card = mq->card;
1460 	struct mmc_host *host = card->host;
1461 	int err;
1462 
1463 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1464 
1465 	err = mmc_cqe_recovery(host);
1466 	if (err)
1467 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1468 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1469 
1470 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1471 }
1472 
mmc_blk_cqe_req_done(struct mmc_request * mrq)1473 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1474 {
1475 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1476 						  brq.mrq);
1477 	struct request *req = mmc_queue_req_to_req(mqrq);
1478 	struct request_queue *q = req->q;
1479 	struct mmc_queue *mq = q->queuedata;
1480 
1481 	/*
1482 	 * Block layer timeouts race with completions which means the normal
1483 	 * completion path cannot be used during recovery.
1484 	 */
1485 	if (mq->in_recovery)
1486 		mmc_blk_cqe_complete_rq(mq, req);
1487 	else if (likely(!blk_should_fake_timeout(req->q)))
1488 		blk_mq_complete_request(req);
1489 }
1490 
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1491 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1492 {
1493 	mrq->done		= mmc_blk_cqe_req_done;
1494 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1495 
1496 	return mmc_cqe_start_req(host, mrq);
1497 }
1498 
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1499 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1500 						 struct request *req)
1501 {
1502 	struct mmc_blk_request *brq = &mqrq->brq;
1503 
1504 	memset(brq, 0, sizeof(*brq));
1505 
1506 	brq->mrq.cmd = &brq->cmd;
1507 	brq->mrq.tag = req->tag;
1508 
1509 	return &brq->mrq;
1510 }
1511 
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1512 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1513 {
1514 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1515 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1516 
1517 	mrq->cmd->opcode = MMC_SWITCH;
1518 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1519 			(EXT_CSD_FLUSH_CACHE << 16) |
1520 			(1 << 8) |
1521 			EXT_CSD_CMD_SET_NORMAL;
1522 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1523 
1524 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1525 }
1526 
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1527 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1528 {
1529 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1530 	struct mmc_host *host = mq->card->host;
1531 	int err;
1532 
1533 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1534 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1535 	mmc_pre_req(host, &mqrq->brq.mrq);
1536 
1537 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1538 	if (err)
1539 		mmc_post_req(host, &mqrq->brq.mrq, err);
1540 
1541 	return err;
1542 }
1543 
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1544 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1545 {
1546 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1547 	struct mmc_host *host = mq->card->host;
1548 
1549 	if (host->hsq_enabled)
1550 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1551 
1552 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1553 
1554 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1555 }
1556 
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1557 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1558 			       struct mmc_card *card,
1559 			       int recovery_mode,
1560 			       struct mmc_queue *mq)
1561 {
1562 	u32 readcmd, writecmd;
1563 	struct mmc_blk_request *brq = &mqrq->brq;
1564 	struct request *req = mmc_queue_req_to_req(mqrq);
1565 	struct mmc_blk_data *md = mq->blkdata;
1566 	bool do_rel_wr, do_data_tag;
1567 
1568 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1569 
1570 	brq->mrq.cmd = &brq->cmd;
1571 
1572 	brq->cmd.arg = blk_rq_pos(req);
1573 	if (!mmc_card_blockaddr(card))
1574 		brq->cmd.arg <<= 9;
1575 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1576 
1577 	if (brq->data.blocks > 1 || do_rel_wr) {
1578 		/* SPI multiblock writes terminate using a special
1579 		 * token, not a STOP_TRANSMISSION request.
1580 		 */
1581 		if (!mmc_host_is_spi(card->host) ||
1582 		    rq_data_dir(req) == READ)
1583 			brq->mrq.stop = &brq->stop;
1584 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1585 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1586 	} else {
1587 		brq->mrq.stop = NULL;
1588 		readcmd = MMC_READ_SINGLE_BLOCK;
1589 		writecmd = MMC_WRITE_BLOCK;
1590 	}
1591 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1592 
1593 	/*
1594 	 * Pre-defined multi-block transfers are preferable to
1595 	 * open ended-ones (and necessary for reliable writes).
1596 	 * However, it is not sufficient to just send CMD23,
1597 	 * and avoid the final CMD12, as on an error condition
1598 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1599 	 * with Auto-CMD23 enhancements provided by some
1600 	 * hosts, means that the complexity of dealing
1601 	 * with this is best left to the host. If CMD23 is
1602 	 * supported by card and host, we'll fill sbc in and let
1603 	 * the host deal with handling it correctly. This means
1604 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1605 	 * change of behavior will be observed.
1606 	 *
1607 	 * N.B: Some MMC cards experience perf degradation.
1608 	 * We'll avoid using CMD23-bounded multiblock writes for
1609 	 * these, while retaining features like reliable writes.
1610 	 */
1611 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1612 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1613 	     do_data_tag)) {
1614 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1615 		brq->sbc.arg = brq->data.blocks |
1616 			(do_rel_wr ? (1 << 31) : 0) |
1617 			(do_data_tag ? (1 << 29) : 0);
1618 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1619 		brq->mrq.sbc = &brq->sbc;
1620 	}
1621 }
1622 
1623 #define MMC_MAX_RETRIES		5
1624 #define MMC_DATA_RETRIES	2
1625 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1626 
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1627 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1628 {
1629 	struct mmc_command cmd = {
1630 		.opcode = MMC_STOP_TRANSMISSION,
1631 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1632 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1633 		.busy_timeout = timeout,
1634 	};
1635 
1636 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1637 }
1638 
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1639 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1640 {
1641 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1642 	struct mmc_blk_request *brq = &mqrq->brq;
1643 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1644 	int err;
1645 
1646 	mmc_retune_hold_now(card->host);
1647 
1648 	mmc_blk_send_stop(card, timeout);
1649 
1650 	err = card_busy_detect(card, timeout, NULL);
1651 
1652 	mmc_retune_release(card->host);
1653 
1654 	return err;
1655 }
1656 
1657 #define MMC_READ_SINGLE_RETRIES	2
1658 
1659 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1660 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1661 {
1662 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1663 	struct mmc_request *mrq = &mqrq->brq.mrq;
1664 	struct mmc_card *card = mq->card;
1665 	struct mmc_host *host = card->host;
1666 	blk_status_t error = BLK_STS_OK;
1667 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1668 
1669 	do {
1670 		u32 status;
1671 		int err;
1672 		int retries = 0;
1673 
1674 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1675 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1676 
1677 			mmc_wait_for_req(host, mrq);
1678 
1679 			err = mmc_send_status(card, &status);
1680 			if (err)
1681 				goto error_exit;
1682 
1683 			if (!mmc_host_is_spi(host) &&
1684 			    !mmc_ready_for_data(status)) {
1685 				err = mmc_blk_fix_state(card, req);
1686 				if (err)
1687 					goto error_exit;
1688 			}
1689 
1690 			if (!mrq->cmd->error)
1691 				break;
1692 		}
1693 
1694 		if (mrq->cmd->error ||
1695 		    mrq->data->error ||
1696 		    (!mmc_host_is_spi(host) &&
1697 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1698 			error = BLK_STS_IOERR;
1699 		else
1700 			error = BLK_STS_OK;
1701 
1702 	} while (blk_update_request(req, error, bytes_per_read));
1703 
1704 	return;
1705 
1706 error_exit:
1707 	mrq->data->bytes_xfered = 0;
1708 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1709 	/* Let it try the remaining request again */
1710 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1711 		mqrq->retries = MMC_MAX_RETRIES - 1;
1712 }
1713 
mmc_blk_oor_valid(struct mmc_blk_request * brq)1714 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1715 {
1716 	return !!brq->mrq.sbc;
1717 }
1718 
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1719 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1720 {
1721 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1722 }
1723 
1724 /*
1725  * Check for errors the host controller driver might not have seen such as
1726  * response mode errors or invalid card state.
1727  */
mmc_blk_status_error(struct request * req,u32 status)1728 static bool mmc_blk_status_error(struct request *req, u32 status)
1729 {
1730 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1731 	struct mmc_blk_request *brq = &mqrq->brq;
1732 	struct mmc_queue *mq = req->q->queuedata;
1733 	u32 stop_err_bits;
1734 
1735 	if (mmc_host_is_spi(mq->card->host))
1736 		return false;
1737 
1738 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1739 
1740 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1741 	       brq->stop.resp[0] & stop_err_bits ||
1742 	       status            & stop_err_bits ||
1743 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1744 }
1745 
mmc_blk_cmd_started(struct mmc_blk_request * brq)1746 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1747 {
1748 	return !brq->sbc.error && !brq->cmd.error &&
1749 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1750 }
1751 
1752 /*
1753  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1754  * policy:
1755  * 1. A request that has transferred at least some data is considered
1756  * successful and will be requeued if there is remaining data to
1757  * transfer.
1758  * 2. Otherwise the number of retries is incremented and the request
1759  * will be requeued if there are remaining retries.
1760  * 3. Otherwise the request will be errored out.
1761  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1762  * mqrq->retries. So there are only 4 possible actions here:
1763  *	1. do not accept the bytes_xfered value i.e. set it to zero
1764  *	2. change mqrq->retries to determine the number of retries
1765  *	3. try to reset the card
1766  *	4. read one sector at a time
1767  */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1768 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1769 {
1770 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1771 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1772 	struct mmc_blk_request *brq = &mqrq->brq;
1773 	struct mmc_blk_data *md = mq->blkdata;
1774 	struct mmc_card *card = mq->card;
1775 	u32 status;
1776 	u32 blocks;
1777 	int err;
1778 
1779 	/*
1780 	 * Some errors the host driver might not have seen. Set the number of
1781 	 * bytes transferred to zero in that case.
1782 	 */
1783 	err = __mmc_send_status(card, &status, 0);
1784 	if (err || mmc_blk_status_error(req, status))
1785 		brq->data.bytes_xfered = 0;
1786 
1787 	mmc_retune_release(card->host);
1788 
1789 	/*
1790 	 * Try again to get the status. This also provides an opportunity for
1791 	 * re-tuning.
1792 	 */
1793 	if (err)
1794 		err = __mmc_send_status(card, &status, 0);
1795 
1796 	/*
1797 	 * Nothing more to do after the number of bytes transferred has been
1798 	 * updated and there is no card.
1799 	 */
1800 	if (err && mmc_detect_card_removed(card->host))
1801 		return;
1802 
1803 	/* Try to get back to "tran" state */
1804 	if (!mmc_host_is_spi(mq->card->host) &&
1805 	    (err || !mmc_ready_for_data(status)))
1806 		err = mmc_blk_fix_state(mq->card, req);
1807 
1808 	/*
1809 	 * Special case for SD cards where the card might record the number of
1810 	 * blocks written.
1811 	 */
1812 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1813 	    rq_data_dir(req) == WRITE) {
1814 		if (mmc_sd_num_wr_blocks(card, &blocks))
1815 			brq->data.bytes_xfered = 0;
1816 		else
1817 			brq->data.bytes_xfered = blocks << 9;
1818 	}
1819 
1820 	/* Reset if the card is in a bad state */
1821 	if (!mmc_host_is_spi(mq->card->host) &&
1822 	    err && mmc_blk_reset(md, card->host, type)) {
1823 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1824 		mqrq->retries = MMC_NO_RETRIES;
1825 		trace_android_vh_mmc_blk_mq_rw_recovery(card);
1826 		return;
1827 	}
1828 
1829 	/*
1830 	 * If anything was done, just return and if there is anything remaining
1831 	 * on the request it will get requeued.
1832 	 */
1833 	if (brq->data.bytes_xfered)
1834 		return;
1835 
1836 	/* Reset before last retry */
1837 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1838 		mmc_blk_reset(md, card->host, type);
1839 
1840 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1841 	if (brq->sbc.error || brq->cmd.error)
1842 		return;
1843 
1844 	/* Reduce the remaining retries for data errors */
1845 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1846 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1847 		return;
1848 	}
1849 
1850 	if (rq_data_dir(req) == READ && brq->data.blocks >
1851 			queue_physical_block_size(mq->queue) >> 9) {
1852 		/* Read one (native) sector at a time */
1853 		mmc_blk_read_single(mq, req);
1854 		return;
1855 	}
1856 }
1857 
mmc_blk_rq_error(struct mmc_blk_request * brq)1858 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1859 {
1860 	mmc_blk_eval_resp_error(brq);
1861 
1862 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1863 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1864 }
1865 
mmc_blk_card_busy(struct mmc_card * card,struct request * req)1866 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1867 {
1868 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1869 	u32 status = 0;
1870 	int err;
1871 
1872 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1873 		return 0;
1874 
1875 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1876 
1877 	/*
1878 	 * Do not assume data transferred correctly if there are any error bits
1879 	 * set.
1880 	 */
1881 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1882 		mqrq->brq.data.bytes_xfered = 0;
1883 		err = err ? err : -EIO;
1884 	}
1885 
1886 	/* Copy the exception bit so it will be seen later on */
1887 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1888 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1889 
1890 	return err;
1891 }
1892 
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)1893 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1894 					    struct request *req)
1895 {
1896 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1897 
1898 	mmc_blk_reset_success(mq->blkdata, type);
1899 }
1900 
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)1901 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1902 {
1903 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1904 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1905 
1906 	if (nr_bytes) {
1907 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1908 			blk_mq_requeue_request(req, true);
1909 		else
1910 			__blk_mq_end_request(req, BLK_STS_OK);
1911 	} else if (!blk_rq_bytes(req)) {
1912 		__blk_mq_end_request(req, BLK_STS_IOERR);
1913 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1914 		blk_mq_requeue_request(req, true);
1915 	} else {
1916 		if (mmc_card_removed(mq->card))
1917 			req->rq_flags |= RQF_QUIET;
1918 		blk_mq_end_request(req, BLK_STS_IOERR);
1919 	}
1920 }
1921 
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)1922 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1923 					struct mmc_queue_req *mqrq)
1924 {
1925 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1926 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1927 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1928 }
1929 
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)1930 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1931 				 struct mmc_queue_req *mqrq)
1932 {
1933 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1934 		mmc_run_bkops(mq->card);
1935 }
1936 
mmc_blk_hsq_req_done(struct mmc_request * mrq)1937 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1938 {
1939 	struct mmc_queue_req *mqrq =
1940 		container_of(mrq, struct mmc_queue_req, brq.mrq);
1941 	struct request *req = mmc_queue_req_to_req(mqrq);
1942 	struct request_queue *q = req->q;
1943 	struct mmc_queue *mq = q->queuedata;
1944 	struct mmc_host *host = mq->card->host;
1945 	unsigned long flags;
1946 
1947 	if (mmc_blk_rq_error(&mqrq->brq) ||
1948 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1949 		spin_lock_irqsave(&mq->lock, flags);
1950 		mq->recovery_needed = true;
1951 		mq->recovery_req = req;
1952 		spin_unlock_irqrestore(&mq->lock, flags);
1953 
1954 		host->cqe_ops->cqe_recovery_start(host);
1955 
1956 		schedule_work(&mq->recovery_work);
1957 		return;
1958 	}
1959 
1960 	mmc_blk_rw_reset_success(mq, req);
1961 
1962 	/*
1963 	 * Block layer timeouts race with completions which means the normal
1964 	 * completion path cannot be used during recovery.
1965 	 */
1966 	if (mq->in_recovery)
1967 		mmc_blk_cqe_complete_rq(mq, req);
1968 	else if (likely(!blk_should_fake_timeout(req->q)))
1969 		blk_mq_complete_request(req);
1970 }
1971 
mmc_blk_mq_complete(struct request * req)1972 void mmc_blk_mq_complete(struct request *req)
1973 {
1974 	struct mmc_queue *mq = req->q->queuedata;
1975 
1976 	if (mq->use_cqe)
1977 		mmc_blk_cqe_complete_rq(mq, req);
1978 	else if (likely(!blk_should_fake_timeout(req->q)))
1979 		mmc_blk_mq_complete_rq(mq, req);
1980 }
1981 
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)1982 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1983 				       struct request *req)
1984 {
1985 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1986 	struct mmc_host *host = mq->card->host;
1987 
1988 	if (mmc_blk_rq_error(&mqrq->brq) ||
1989 	    mmc_blk_card_busy(mq->card, req)) {
1990 		mmc_blk_mq_rw_recovery(mq, req);
1991 	} else {
1992 		mmc_blk_rw_reset_success(mq, req);
1993 		mmc_retune_release(host);
1994 	}
1995 
1996 	mmc_blk_urgent_bkops(mq, mqrq);
1997 }
1998 
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,struct request * req)1999 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2000 {
2001 	unsigned long flags;
2002 	bool put_card;
2003 
2004 	spin_lock_irqsave(&mq->lock, flags);
2005 
2006 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2007 
2008 	put_card = (mmc_tot_in_flight(mq) == 0);
2009 
2010 	spin_unlock_irqrestore(&mq->lock, flags);
2011 
2012 	if (put_card)
2013 		mmc_put_card(mq->card, &mq->ctx);
2014 }
2015 
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req)2016 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2017 {
2018 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2019 	struct mmc_request *mrq = &mqrq->brq.mrq;
2020 	struct mmc_host *host = mq->card->host;
2021 
2022 	mmc_post_req(host, mrq, 0);
2023 
2024 	/*
2025 	 * Block layer timeouts race with completions which means the normal
2026 	 * completion path cannot be used during recovery.
2027 	 */
2028 	if (mq->in_recovery)
2029 		mmc_blk_mq_complete_rq(mq, req);
2030 	else if (likely(!blk_should_fake_timeout(req->q)))
2031 		blk_mq_complete_request(req);
2032 
2033 	mmc_blk_mq_dec_in_flight(mq, req);
2034 }
2035 
mmc_blk_mq_recovery(struct mmc_queue * mq)2036 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2037 {
2038 	struct request *req = mq->recovery_req;
2039 	struct mmc_host *host = mq->card->host;
2040 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2041 
2042 	mq->recovery_req = NULL;
2043 	mq->rw_wait = false;
2044 
2045 	if (mmc_blk_rq_error(&mqrq->brq)) {
2046 		mmc_retune_hold_now(host);
2047 		mmc_blk_mq_rw_recovery(mq, req);
2048 	}
2049 
2050 	mmc_blk_urgent_bkops(mq, mqrq);
2051 
2052 	mmc_blk_mq_post_req(mq, req);
2053 }
2054 
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2055 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2056 					 struct request **prev_req)
2057 {
2058 	if (mmc_host_done_complete(mq->card->host))
2059 		return;
2060 
2061 	mutex_lock(&mq->complete_lock);
2062 
2063 	if (!mq->complete_req)
2064 		goto out_unlock;
2065 
2066 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2067 
2068 	if (prev_req)
2069 		*prev_req = mq->complete_req;
2070 	else
2071 		mmc_blk_mq_post_req(mq, mq->complete_req);
2072 
2073 	mq->complete_req = NULL;
2074 
2075 out_unlock:
2076 	mutex_unlock(&mq->complete_lock);
2077 }
2078 
mmc_blk_mq_complete_work(struct work_struct * work)2079 void mmc_blk_mq_complete_work(struct work_struct *work)
2080 {
2081 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2082 					    complete_work);
2083 
2084 	mmc_blk_mq_complete_prev_req(mq, NULL);
2085 }
2086 
mmc_blk_mq_req_done(struct mmc_request * mrq)2087 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2088 {
2089 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2090 						  brq.mrq);
2091 	struct request *req = mmc_queue_req_to_req(mqrq);
2092 	struct request_queue *q = req->q;
2093 	struct mmc_queue *mq = q->queuedata;
2094 	struct mmc_host *host = mq->card->host;
2095 	unsigned long flags;
2096 
2097 	if (!mmc_host_done_complete(host)) {
2098 		bool waiting;
2099 
2100 		/*
2101 		 * We cannot complete the request in this context, so record
2102 		 * that there is a request to complete, and that a following
2103 		 * request does not need to wait (although it does need to
2104 		 * complete complete_req first).
2105 		 */
2106 		spin_lock_irqsave(&mq->lock, flags);
2107 		mq->complete_req = req;
2108 		mq->rw_wait = false;
2109 		waiting = mq->waiting;
2110 		spin_unlock_irqrestore(&mq->lock, flags);
2111 
2112 		/*
2113 		 * If 'waiting' then the waiting task will complete this
2114 		 * request, otherwise queue a work to do it. Note that
2115 		 * complete_work may still race with the dispatch of a following
2116 		 * request.
2117 		 */
2118 		if (waiting)
2119 			wake_up(&mq->wait);
2120 		else
2121 			queue_work(mq->card->complete_wq, &mq->complete_work);
2122 
2123 		return;
2124 	}
2125 
2126 	/* Take the recovery path for errors or urgent background operations */
2127 	if (mmc_blk_rq_error(&mqrq->brq) ||
2128 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2129 		spin_lock_irqsave(&mq->lock, flags);
2130 		mq->recovery_needed = true;
2131 		mq->recovery_req = req;
2132 		spin_unlock_irqrestore(&mq->lock, flags);
2133 		wake_up(&mq->wait);
2134 		schedule_work(&mq->recovery_work);
2135 		return;
2136 	}
2137 
2138 	mmc_blk_rw_reset_success(mq, req);
2139 
2140 	mq->rw_wait = false;
2141 	wake_up(&mq->wait);
2142 
2143 	mmc_blk_mq_post_req(mq, req);
2144 }
2145 
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2146 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2147 {
2148 	unsigned long flags;
2149 	bool done;
2150 
2151 	/*
2152 	 * Wait while there is another request in progress, but not if recovery
2153 	 * is needed. Also indicate whether there is a request waiting to start.
2154 	 */
2155 	spin_lock_irqsave(&mq->lock, flags);
2156 	if (mq->recovery_needed) {
2157 		*err = -EBUSY;
2158 		done = true;
2159 	} else {
2160 		done = !mq->rw_wait;
2161 	}
2162 	mq->waiting = !done;
2163 	spin_unlock_irqrestore(&mq->lock, flags);
2164 
2165 	return done;
2166 }
2167 
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2168 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2169 {
2170 	int err = 0;
2171 
2172 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2173 
2174 	/* Always complete the previous request if there is one */
2175 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2176 
2177 	return err;
2178 }
2179 
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2180 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2181 				  struct request *req)
2182 {
2183 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2184 	struct mmc_host *host = mq->card->host;
2185 	struct request *prev_req = NULL;
2186 	int err = 0;
2187 
2188 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2189 
2190 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2191 
2192 	mmc_pre_req(host, &mqrq->brq.mrq);
2193 
2194 	err = mmc_blk_rw_wait(mq, &prev_req);
2195 	if (err)
2196 		goto out_post_req;
2197 
2198 	mq->rw_wait = true;
2199 
2200 	err = mmc_start_request(host, &mqrq->brq.mrq);
2201 
2202 	if (prev_req)
2203 		mmc_blk_mq_post_req(mq, prev_req);
2204 
2205 	if (err)
2206 		mq->rw_wait = false;
2207 
2208 	/* Release re-tuning here where there is no synchronization required */
2209 	if (err || mmc_host_done_complete(host))
2210 		mmc_retune_release(host);
2211 
2212 out_post_req:
2213 	if (err)
2214 		mmc_post_req(host, &mqrq->brq.mrq, err);
2215 
2216 	return err;
2217 }
2218 
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2219 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2220 {
2221 	if (mq->use_cqe)
2222 		return host->cqe_ops->cqe_wait_for_idle(host);
2223 
2224 	return mmc_blk_rw_wait(mq, NULL);
2225 }
2226 
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2227 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2228 {
2229 	struct mmc_blk_data *md = mq->blkdata;
2230 	struct mmc_card *card = md->queue.card;
2231 	struct mmc_host *host = card->host;
2232 	int ret;
2233 
2234 	ret = mmc_blk_part_switch(card, md->part_type);
2235 	if (ret)
2236 		return MMC_REQ_FAILED_TO_START;
2237 
2238 	switch (mmc_issue_type(mq, req)) {
2239 	case MMC_ISSUE_SYNC:
2240 		ret = mmc_blk_wait_for_idle(mq, host);
2241 		if (ret)
2242 			return MMC_REQ_BUSY;
2243 		switch (req_op(req)) {
2244 		case REQ_OP_DRV_IN:
2245 		case REQ_OP_DRV_OUT:
2246 			mmc_blk_issue_drv_op(mq, req);
2247 			break;
2248 		case REQ_OP_DISCARD:
2249 			mmc_blk_issue_discard_rq(mq, req);
2250 			break;
2251 		case REQ_OP_SECURE_ERASE:
2252 			mmc_blk_issue_secdiscard_rq(mq, req);
2253 			break;
2254 		case REQ_OP_FLUSH:
2255 			mmc_blk_issue_flush(mq, req);
2256 			break;
2257 		default:
2258 			WARN_ON_ONCE(1);
2259 			return MMC_REQ_FAILED_TO_START;
2260 		}
2261 		return MMC_REQ_FINISHED;
2262 	case MMC_ISSUE_DCMD:
2263 	case MMC_ISSUE_ASYNC:
2264 		switch (req_op(req)) {
2265 		case REQ_OP_FLUSH:
2266 			if (!mmc_cache_enabled(host)) {
2267 				blk_mq_end_request(req, BLK_STS_OK);
2268 				return MMC_REQ_FINISHED;
2269 			}
2270 			ret = mmc_blk_cqe_issue_flush(mq, req);
2271 			break;
2272 		case REQ_OP_READ:
2273 		case REQ_OP_WRITE:
2274 			if (mq->use_cqe)
2275 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2276 			else
2277 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2278 			break;
2279 		default:
2280 			WARN_ON_ONCE(1);
2281 			ret = -EINVAL;
2282 		}
2283 		if (!ret)
2284 			return MMC_REQ_STARTED;
2285 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2286 	default:
2287 		WARN_ON_ONCE(1);
2288 		return MMC_REQ_FAILED_TO_START;
2289 	}
2290 }
2291 
mmc_blk_readonly(struct mmc_card * card)2292 static inline int mmc_blk_readonly(struct mmc_card *card)
2293 {
2294 	return mmc_card_readonly(card) ||
2295 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2296 }
2297 
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type)2298 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2299 					      struct device *parent,
2300 					      sector_t size,
2301 					      bool default_ro,
2302 					      const char *subname,
2303 					      int area_type)
2304 {
2305 	struct mmc_blk_data *md;
2306 	int devidx, ret;
2307 
2308 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2309 	if (devidx < 0) {
2310 		/*
2311 		 * We get -ENOSPC because there are no more any available
2312 		 * devidx. The reason may be that, either userspace haven't yet
2313 		 * unmounted the partitions, which postpones mmc_blk_release()
2314 		 * from being called, or the device has more partitions than
2315 		 * what we support.
2316 		 */
2317 		if (devidx == -ENOSPC)
2318 			dev_err(mmc_dev(card->host),
2319 				"no more device IDs available\n");
2320 
2321 		return ERR_PTR(devidx);
2322 	}
2323 
2324 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2325 	if (!md) {
2326 		ret = -ENOMEM;
2327 		goto out;
2328 	}
2329 
2330 	md->area_type = area_type;
2331 
2332 	/*
2333 	 * Set the read-only status based on the supported commands
2334 	 * and the write protect switch.
2335 	 */
2336 	md->read_only = mmc_blk_readonly(card);
2337 
2338 	md->disk = alloc_disk(perdev_minors);
2339 	if (md->disk == NULL) {
2340 		ret = -ENOMEM;
2341 		goto err_kfree;
2342 	}
2343 
2344 	INIT_LIST_HEAD(&md->part);
2345 	INIT_LIST_HEAD(&md->rpmbs);
2346 	md->usage = 1;
2347 
2348 	ret = mmc_init_queue(&md->queue, card);
2349 	if (ret)
2350 		goto err_putdisk;
2351 
2352 	md->queue.blkdata = md;
2353 
2354 	/*
2355 	 * Keep an extra reference to the queue so that we can shutdown the
2356 	 * queue (i.e. call blk_cleanup_queue()) while there are still
2357 	 * references to the 'md'. The corresponding blk_put_queue() is in
2358 	 * mmc_blk_put().
2359 	 */
2360 	if (!blk_get_queue(md->queue.queue)) {
2361 		mmc_cleanup_queue(&md->queue);
2362 		ret = -ENODEV;
2363 		goto err_putdisk;
2364 	}
2365 
2366 	md->disk->major	= MMC_BLOCK_MAJOR;
2367 	md->disk->first_minor = devidx * perdev_minors;
2368 	md->disk->fops = &mmc_bdops;
2369 	md->disk->private_data = md;
2370 	md->disk->queue = md->queue.queue;
2371 	md->parent = parent;
2372 	set_disk_ro(md->disk, md->read_only || default_ro);
2373 	md->disk->flags = GENHD_FL_EXT_DEVT;
2374 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2375 		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2376 				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2377 
2378 	/*
2379 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2380 	 *
2381 	 * - be set for removable media with permanent block devices
2382 	 * - be unset for removable block devices with permanent media
2383 	 *
2384 	 * Since MMC block devices clearly fall under the second
2385 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2386 	 * should use the block device creation/destruction hotplug
2387 	 * messages to tell when the card is present.
2388 	 */
2389 
2390 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2391 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2392 
2393 	set_capacity(md->disk, size);
2394 
2395 	if (mmc_host_cmd23(card->host)) {
2396 		if ((mmc_card_mmc(card) &&
2397 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2398 		    (mmc_card_sd(card) &&
2399 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2400 			md->flags |= MMC_BLK_CMD23;
2401 	}
2402 
2403 	if (mmc_card_mmc(card) &&
2404 	    md->flags & MMC_BLK_CMD23 &&
2405 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2406 	     card->ext_csd.rel_sectors)) {
2407 		md->flags |= MMC_BLK_REL_WR;
2408 		blk_queue_write_cache(md->queue.queue, true, true);
2409 	}
2410 
2411 	return md;
2412 
2413  err_putdisk:
2414 	put_disk(md->disk);
2415  err_kfree:
2416 	kfree(md);
2417  out:
2418 	ida_simple_remove(&mmc_blk_ida, devidx);
2419 	return ERR_PTR(ret);
2420 }
2421 
mmc_blk_alloc(struct mmc_card * card)2422 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2423 {
2424 	sector_t size;
2425 
2426 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2427 		/*
2428 		 * The EXT_CSD sector count is in number or 512 byte
2429 		 * sectors.
2430 		 */
2431 		size = card->ext_csd.sectors;
2432 	} else {
2433 		/*
2434 		 * The CSD capacity field is in units of read_blkbits.
2435 		 * set_capacity takes units of 512 bytes.
2436 		 */
2437 		size = (typeof(sector_t))card->csd.capacity
2438 			<< (card->csd.read_blkbits - 9);
2439 	}
2440 
2441 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2442 					MMC_BLK_DATA_AREA_MAIN);
2443 }
2444 
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2445 static int mmc_blk_alloc_part(struct mmc_card *card,
2446 			      struct mmc_blk_data *md,
2447 			      unsigned int part_type,
2448 			      sector_t size,
2449 			      bool default_ro,
2450 			      const char *subname,
2451 			      int area_type)
2452 {
2453 	char cap_str[10];
2454 	struct mmc_blk_data *part_md;
2455 
2456 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2457 				    subname, area_type);
2458 	if (IS_ERR(part_md))
2459 		return PTR_ERR(part_md);
2460 	part_md->part_type = part_type;
2461 	list_add(&part_md->part, &md->part);
2462 
2463 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2464 			cap_str, sizeof(cap_str));
2465 	pr_info("%s: %s %s partition %u %s\n",
2466 	       part_md->disk->disk_name, mmc_card_id(card),
2467 	       mmc_card_name(card), part_md->part_type, cap_str);
2468 	return 0;
2469 }
2470 
2471 /**
2472  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2473  * @filp: the character device file
2474  * @cmd: the ioctl() command
2475  * @arg: the argument from userspace
2476  *
2477  * This will essentially just redirect the ioctl()s coming in over to
2478  * the main block device spawning the RPMB character device.
2479  */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2480 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2481 			   unsigned long arg)
2482 {
2483 	struct mmc_rpmb_data *rpmb = filp->private_data;
2484 	int ret;
2485 
2486 	switch (cmd) {
2487 	case MMC_IOC_CMD:
2488 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2489 					(struct mmc_ioc_cmd __user *)arg,
2490 					rpmb);
2491 		break;
2492 	case MMC_IOC_MULTI_CMD:
2493 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2494 					(struct mmc_ioc_multi_cmd __user *)arg,
2495 					rpmb);
2496 		break;
2497 	default:
2498 		ret = -EINVAL;
2499 		break;
2500 	}
2501 
2502 	return ret;
2503 }
2504 
2505 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2506 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2507 			      unsigned long arg)
2508 {
2509 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2510 }
2511 #endif
2512 
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2513 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2514 {
2515 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2516 						  struct mmc_rpmb_data, chrdev);
2517 
2518 	get_device(&rpmb->dev);
2519 	filp->private_data = rpmb;
2520 	mmc_blk_get(rpmb->md->disk);
2521 
2522 	return nonseekable_open(inode, filp);
2523 }
2524 
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2525 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2526 {
2527 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2528 						  struct mmc_rpmb_data, chrdev);
2529 
2530 	mmc_blk_put(rpmb->md);
2531 	put_device(&rpmb->dev);
2532 
2533 	return 0;
2534 }
2535 
2536 static const struct file_operations mmc_rpmb_fileops = {
2537 	.release = mmc_rpmb_chrdev_release,
2538 	.open = mmc_rpmb_chrdev_open,
2539 	.owner = THIS_MODULE,
2540 	.llseek = no_llseek,
2541 	.unlocked_ioctl = mmc_rpmb_ioctl,
2542 #ifdef CONFIG_COMPAT
2543 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2544 #endif
2545 };
2546 
mmc_blk_rpmb_device_release(struct device * dev)2547 static void mmc_blk_rpmb_device_release(struct device *dev)
2548 {
2549 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2550 
2551 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2552 	kfree(rpmb);
2553 }
2554 
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2555 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2556 				   struct mmc_blk_data *md,
2557 				   unsigned int part_index,
2558 				   sector_t size,
2559 				   const char *subname)
2560 {
2561 	int devidx, ret;
2562 	char rpmb_name[DISK_NAME_LEN];
2563 	char cap_str[10];
2564 	struct mmc_rpmb_data *rpmb;
2565 
2566 	/* This creates the minor number for the RPMB char device */
2567 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2568 	if (devidx < 0)
2569 		return devidx;
2570 
2571 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2572 	if (!rpmb) {
2573 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2574 		return -ENOMEM;
2575 	}
2576 
2577 	snprintf(rpmb_name, sizeof(rpmb_name),
2578 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2579 
2580 	rpmb->id = devidx;
2581 	rpmb->part_index = part_index;
2582 	rpmb->dev.init_name = rpmb_name;
2583 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2584 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2585 	rpmb->dev.parent = &card->dev;
2586 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2587 	device_initialize(&rpmb->dev);
2588 	dev_set_drvdata(&rpmb->dev, rpmb);
2589 	rpmb->md = md;
2590 
2591 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2592 	rpmb->chrdev.owner = THIS_MODULE;
2593 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2594 	if (ret) {
2595 		pr_err("%s: could not add character device\n", rpmb_name);
2596 		goto out_put_device;
2597 	}
2598 
2599 	list_add(&rpmb->node, &md->rpmbs);
2600 
2601 	string_get_size((u64)size, 512, STRING_UNITS_2,
2602 			cap_str, sizeof(cap_str));
2603 
2604 	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2605 		rpmb_name, mmc_card_id(card),
2606 		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2607 		MAJOR(mmc_rpmb_devt), rpmb->id);
2608 
2609 	return 0;
2610 
2611 out_put_device:
2612 	put_device(&rpmb->dev);
2613 	return ret;
2614 }
2615 
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2616 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2617 
2618 {
2619 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2620 	put_device(&rpmb->dev);
2621 }
2622 
2623 /* MMC Physical partitions consist of two boot partitions and
2624  * up to four general purpose partitions.
2625  * For each partition enabled in EXT_CSD a block device will be allocatedi
2626  * to provide access to the partition.
2627  */
2628 
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2629 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2630 {
2631 	int idx, ret;
2632 
2633 	if (!mmc_card_mmc(card))
2634 		return 0;
2635 
2636 	for (idx = 0; idx < card->nr_parts; idx++) {
2637 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2638 			/*
2639 			 * RPMB partitions does not provide block access, they
2640 			 * are only accessed using ioctl():s. Thus create
2641 			 * special RPMB block devices that do not have a
2642 			 * backing block queue for these.
2643 			 */
2644 			ret = mmc_blk_alloc_rpmb_part(card, md,
2645 				card->part[idx].part_cfg,
2646 				card->part[idx].size >> 9,
2647 				card->part[idx].name);
2648 			if (ret)
2649 				return ret;
2650 		} else if (card->part[idx].size) {
2651 			ret = mmc_blk_alloc_part(card, md,
2652 				card->part[idx].part_cfg,
2653 				card->part[idx].size >> 9,
2654 				card->part[idx].force_ro,
2655 				card->part[idx].name,
2656 				card->part[idx].area_type);
2657 			if (ret)
2658 				return ret;
2659 		}
2660 	}
2661 
2662 	return 0;
2663 }
2664 
mmc_blk_remove_req(struct mmc_blk_data * md)2665 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2666 {
2667 	struct mmc_card *card;
2668 
2669 	if (md) {
2670 		/*
2671 		 * Flush remaining requests and free queues. It
2672 		 * is freeing the queue that stops new requests
2673 		 * from being accepted.
2674 		 */
2675 		card = md->queue.card;
2676 		if (md->disk->flags & GENHD_FL_UP) {
2677 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2678 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2679 					card->ext_csd.boot_ro_lockable)
2680 				device_remove_file(disk_to_dev(md->disk),
2681 					&md->power_ro_lock);
2682 
2683 			del_gendisk(md->disk);
2684 		}
2685 		mmc_cleanup_queue(&md->queue);
2686 		mmc_blk_put(md);
2687 	}
2688 }
2689 
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)2690 static void mmc_blk_remove_parts(struct mmc_card *card,
2691 				 struct mmc_blk_data *md)
2692 {
2693 	struct list_head *pos, *q;
2694 	struct mmc_blk_data *part_md;
2695 	struct mmc_rpmb_data *rpmb;
2696 
2697 	/* Remove RPMB partitions */
2698 	list_for_each_safe(pos, q, &md->rpmbs) {
2699 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2700 		list_del(pos);
2701 		mmc_blk_remove_rpmb_part(rpmb);
2702 	}
2703 	/* Remove block partitions */
2704 	list_for_each_safe(pos, q, &md->part) {
2705 		part_md = list_entry(pos, struct mmc_blk_data, part);
2706 		list_del(pos);
2707 		mmc_blk_remove_req(part_md);
2708 	}
2709 }
2710 
mmc_add_disk(struct mmc_blk_data * md)2711 static int mmc_add_disk(struct mmc_blk_data *md)
2712 {
2713 	int ret;
2714 	struct mmc_card *card = md->queue.card;
2715 
2716 	device_add_disk(md->parent, md->disk, NULL);
2717 	md->force_ro.show = force_ro_show;
2718 	md->force_ro.store = force_ro_store;
2719 	sysfs_attr_init(&md->force_ro.attr);
2720 	md->force_ro.attr.name = "force_ro";
2721 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2722 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2723 	if (ret)
2724 		goto force_ro_fail;
2725 
2726 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2727 	     card->ext_csd.boot_ro_lockable) {
2728 		umode_t mode;
2729 
2730 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2731 			mode = S_IRUGO;
2732 		else
2733 			mode = S_IRUGO | S_IWUSR;
2734 
2735 		md->power_ro_lock.show = power_ro_lock_show;
2736 		md->power_ro_lock.store = power_ro_lock_store;
2737 		sysfs_attr_init(&md->power_ro_lock.attr);
2738 		md->power_ro_lock.attr.mode = mode;
2739 		md->power_ro_lock.attr.name =
2740 					"ro_lock_until_next_power_on";
2741 		ret = device_create_file(disk_to_dev(md->disk),
2742 				&md->power_ro_lock);
2743 		if (ret)
2744 			goto power_ro_lock_fail;
2745 	}
2746 	return ret;
2747 
2748 power_ro_lock_fail:
2749 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2750 force_ro_fail:
2751 	del_gendisk(md->disk);
2752 
2753 	return ret;
2754 }
2755 
2756 #ifdef CONFIG_DEBUG_FS
2757 
mmc_dbg_card_status_get(void * data,u64 * val)2758 static int mmc_dbg_card_status_get(void *data, u64 *val)
2759 {
2760 	struct mmc_card *card = data;
2761 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2762 	struct mmc_queue *mq = &md->queue;
2763 	struct request *req;
2764 	int ret;
2765 
2766 	/* Ask the block layer about the card status */
2767 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2768 	if (IS_ERR(req))
2769 		return PTR_ERR(req);
2770 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2771 	blk_execute_rq(mq->queue, NULL, req, 0);
2772 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2773 	if (ret >= 0) {
2774 		*val = ret;
2775 		ret = 0;
2776 	}
2777 	blk_put_request(req);
2778 
2779 	return ret;
2780 }
2781 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2782 			 NULL, "%08llx\n");
2783 
2784 /* That is two digits * 512 + 1 for newline */
2785 #define EXT_CSD_STR_LEN 1025
2786 
mmc_ext_csd_open(struct inode * inode,struct file * filp)2787 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2788 {
2789 	struct mmc_card *card = inode->i_private;
2790 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2791 	struct mmc_queue *mq = &md->queue;
2792 	struct request *req;
2793 	char *buf;
2794 	ssize_t n = 0;
2795 	u8 *ext_csd;
2796 	int err, i;
2797 
2798 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2799 	if (!buf)
2800 		return -ENOMEM;
2801 
2802 	/* Ask the block layer for the EXT CSD */
2803 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2804 	if (IS_ERR(req)) {
2805 		err = PTR_ERR(req);
2806 		goto out_free;
2807 	}
2808 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2809 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2810 	blk_execute_rq(mq->queue, NULL, req, 0);
2811 	err = req_to_mmc_queue_req(req)->drv_op_result;
2812 	blk_put_request(req);
2813 	if (err) {
2814 		pr_err("FAILED %d\n", err);
2815 		goto out_free;
2816 	}
2817 
2818 	for (i = 0; i < 512; i++)
2819 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2820 	n += sprintf(buf + n, "\n");
2821 
2822 	if (n != EXT_CSD_STR_LEN) {
2823 		err = -EINVAL;
2824 		kfree(ext_csd);
2825 		goto out_free;
2826 	}
2827 
2828 	filp->private_data = buf;
2829 	kfree(ext_csd);
2830 	return 0;
2831 
2832 out_free:
2833 	kfree(buf);
2834 	return err;
2835 }
2836 
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)2837 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2838 				size_t cnt, loff_t *ppos)
2839 {
2840 	char *buf = filp->private_data;
2841 
2842 	return simple_read_from_buffer(ubuf, cnt, ppos,
2843 				       buf, EXT_CSD_STR_LEN);
2844 }
2845 
mmc_ext_csd_release(struct inode * inode,struct file * file)2846 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2847 {
2848 	kfree(file->private_data);
2849 	return 0;
2850 }
2851 
2852 static const struct file_operations mmc_dbg_ext_csd_fops = {
2853 	.open		= mmc_ext_csd_open,
2854 	.read		= mmc_ext_csd_read,
2855 	.release	= mmc_ext_csd_release,
2856 	.llseek		= default_llseek,
2857 };
2858 
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2859 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2860 {
2861 	struct dentry *root;
2862 
2863 	if (!card->debugfs_root)
2864 		return 0;
2865 
2866 	root = card->debugfs_root;
2867 
2868 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2869 		md->status_dentry =
2870 			debugfs_create_file_unsafe("status", 0400, root,
2871 						   card,
2872 						   &mmc_dbg_card_status_fops);
2873 		if (!md->status_dentry)
2874 			return -EIO;
2875 	}
2876 
2877 	if (mmc_card_mmc(card)) {
2878 		md->ext_csd_dentry =
2879 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2880 					    &mmc_dbg_ext_csd_fops);
2881 		if (!md->ext_csd_dentry)
2882 			return -EIO;
2883 	}
2884 
2885 	return 0;
2886 }
2887 
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2888 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2889 				   struct mmc_blk_data *md)
2890 {
2891 	if (!card->debugfs_root)
2892 		return;
2893 
2894 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2895 		debugfs_remove(md->status_dentry);
2896 		md->status_dentry = NULL;
2897 	}
2898 
2899 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2900 		debugfs_remove(md->ext_csd_dentry);
2901 		md->ext_csd_dentry = NULL;
2902 	}
2903 }
2904 
2905 #else
2906 
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2907 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2908 {
2909 	return 0;
2910 }
2911 
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2912 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2913 				   struct mmc_blk_data *md)
2914 {
2915 }
2916 
2917 #endif /* CONFIG_DEBUG_FS */
2918 
2919 struct mmc_card *this_card;
2920 EXPORT_SYMBOL(this_card);
2921 
mmc_blk_probe(struct mmc_card * card)2922 static int mmc_blk_probe(struct mmc_card *card)
2923 {
2924 	struct mmc_blk_data *md, *part_md;
2925 	char cap_str[10];
2926 
2927 	/*
2928 	 * Check that the card supports the command class(es) we need.
2929 	 */
2930 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2931 		return -ENODEV;
2932 
2933 	mmc_fixup_device(card, mmc_blk_fixups);
2934 
2935 	card->complete_wq = alloc_workqueue("mmc_complete",
2936 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2937 	if (unlikely(!card->complete_wq)) {
2938 		pr_err("Failed to create mmc completion workqueue");
2939 		return -ENOMEM;
2940 	}
2941 
2942 	md = mmc_blk_alloc(card);
2943 	if (IS_ERR(md))
2944 		return PTR_ERR(md);
2945 
2946 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2947 			cap_str, sizeof(cap_str));
2948 	pr_info("%s: %s %s %s %s\n",
2949 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2950 		cap_str, md->read_only ? "(ro)" : "");
2951 
2952 	if (mmc_blk_alloc_parts(card, md))
2953 		goto out;
2954 
2955 	dev_set_drvdata(&card->dev, md);
2956 
2957 #if defined(CONFIG_MMC_DW_ROCKCHIP) || defined(CONFIG_MMC_SDHCI_OF_ARASAN)
2958 	if (card->type == MMC_TYPE_MMC)
2959 		this_card = card;
2960 #endif
2961 
2962 	if (mmc_add_disk(md))
2963 		goto out;
2964 
2965 	list_for_each_entry(part_md, &md->part, part) {
2966 		if (mmc_add_disk(part_md))
2967 			goto out;
2968 	}
2969 
2970 	/* Add two debugfs entries */
2971 	mmc_blk_add_debugfs(card, md);
2972 
2973 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2974 	pm_runtime_use_autosuspend(&card->dev);
2975 
2976 	/*
2977 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2978 	 * decision to be taken during the SDIO init sequence instead.
2979 	 */
2980 	if (card->type != MMC_TYPE_SD_COMBO) {
2981 		pm_runtime_set_active(&card->dev);
2982 		pm_runtime_enable(&card->dev);
2983 	}
2984 
2985 	return 0;
2986 
2987  out:
2988 	mmc_blk_remove_parts(card, md);
2989 	mmc_blk_remove_req(md);
2990 	return 0;
2991 }
2992 
mmc_blk_remove(struct mmc_card * card)2993 static void mmc_blk_remove(struct mmc_card *card)
2994 {
2995 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2996 
2997 	mmc_blk_remove_debugfs(card, md);
2998 
2999 	#if defined(CONFIG_MMC_DW_ROCKCHIP)
3000 	if (card->type == MMC_TYPE_MMC)
3001 		this_card = NULL;
3002 	#endif
3003 
3004 	mmc_blk_remove_parts(card, md);
3005 	pm_runtime_get_sync(&card->dev);
3006 	if (md->part_curr != md->part_type) {
3007 		mmc_claim_host(card->host);
3008 		mmc_blk_part_switch(card, md->part_type);
3009 		mmc_release_host(card->host);
3010 	}
3011 	if (card->type != MMC_TYPE_SD_COMBO)
3012 		pm_runtime_disable(&card->dev);
3013 	pm_runtime_put_noidle(&card->dev);
3014 	mmc_blk_remove_req(md);
3015 	dev_set_drvdata(&card->dev, NULL);
3016 	destroy_workqueue(card->complete_wq);
3017 }
3018 
_mmc_blk_suspend(struct mmc_card * card)3019 static int _mmc_blk_suspend(struct mmc_card *card)
3020 {
3021 	struct mmc_blk_data *part_md;
3022 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3023 
3024 	if (md) {
3025 		mmc_queue_suspend(&md->queue);
3026 		list_for_each_entry(part_md, &md->part, part) {
3027 			mmc_queue_suspend(&part_md->queue);
3028 		}
3029 	}
3030 	return 0;
3031 }
3032 
mmc_blk_shutdown(struct mmc_card * card)3033 static void mmc_blk_shutdown(struct mmc_card *card)
3034 {
3035 	_mmc_blk_suspend(card);
3036 }
3037 
3038 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3039 static int mmc_blk_suspend(struct device *dev)
3040 {
3041 	struct mmc_card *card = mmc_dev_to_card(dev);
3042 
3043 	return _mmc_blk_suspend(card);
3044 }
3045 
mmc_blk_resume(struct device * dev)3046 static int mmc_blk_resume(struct device *dev)
3047 {
3048 	struct mmc_blk_data *part_md;
3049 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3050 
3051 	if (md) {
3052 		/*
3053 		 * Resume involves the card going into idle state,
3054 		 * so current partition is always the main one.
3055 		 */
3056 		md->part_curr = md->part_type;
3057 		mmc_queue_resume(&md->queue);
3058 		list_for_each_entry(part_md, &md->part, part) {
3059 			mmc_queue_resume(&part_md->queue);
3060 		}
3061 	}
3062 	return 0;
3063 }
3064 #endif
3065 
3066 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3067 
3068 static struct mmc_driver mmc_driver = {
3069 	.drv		= {
3070 		.name	= "mmcblk",
3071 		.pm	= &mmc_blk_pm_ops,
3072 	},
3073 	.probe		= mmc_blk_probe,
3074 	.remove		= mmc_blk_remove,
3075 	.shutdown	= mmc_blk_shutdown,
3076 };
3077 
mmc_blk_init(void)3078 static int __init mmc_blk_init(void)
3079 {
3080 	int res;
3081 
3082 	res  = bus_register(&mmc_rpmb_bus_type);
3083 	if (res < 0) {
3084 		pr_err("mmcblk: could not register RPMB bus type\n");
3085 		return res;
3086 	}
3087 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3088 	if (res < 0) {
3089 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3090 		goto out_bus_unreg;
3091 	}
3092 
3093 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3094 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3095 
3096 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3097 
3098 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3099 	if (res)
3100 		goto out_chrdev_unreg;
3101 
3102 	res = mmc_register_driver(&mmc_driver);
3103 	if (res)
3104 		goto out_blkdev_unreg;
3105 
3106 	return 0;
3107 
3108 out_blkdev_unreg:
3109 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3110 out_chrdev_unreg:
3111 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3112 out_bus_unreg:
3113 	bus_unregister(&mmc_rpmb_bus_type);
3114 	return res;
3115 }
3116 
mmc_blk_exit(void)3117 static void __exit mmc_blk_exit(void)
3118 {
3119 	mmc_unregister_driver(&mmc_driver);
3120 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3121 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3122 	bus_unregister(&mmc_rpmb_bus_type);
3123 }
3124 
3125 module_init(mmc_blk_init);
3126 module_exit(mmc_blk_exit);
3127 
3128 MODULE_LICENSE("GPL");
3129 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3130 
3131