xref: /OK3568_Linux_fs/external/security/librkcrypto/test/c_mode/ecp_curves.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  *  Elliptic curves over GF(p): curve-specific data and functions
3  *
4  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  *
19  *  This file is part of mbed TLS (https://tls.mbed.org)
20  */
21 #define MBEDTLS_ECP_C
22 #if defined(MBEDTLS_ECP_C)
23 
24 #include "ecp.h"
25 
26 #include <string.h>
27 
28 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
29     !defined(inline) && !defined(__cplusplus)
30 #define inline __inline
31 #endif
32 
33 /*
34  * Conversion macros for embedded constants:
35  * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
36  */
37 #if defined(MBEDTLS_HAVE_INT32)
38 
39 #define BYTES_TO_T_UINT_4( a, b, c, d )             \
40     ( (mbedtls_mpi_uint) a <<  0 ) |                          \
41     ( (mbedtls_mpi_uint) b <<  8 ) |                          \
42     ( (mbedtls_mpi_uint) c << 16 ) |                          \
43     ( (mbedtls_mpi_uint) d << 24 )
44 
45 #define BYTES_TO_T_UINT_2( a, b )                   \
46     BYTES_TO_T_UINT_4( a, b, 0, 0 )
47 
48 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
49     BYTES_TO_T_UINT_4( a, b, c, d ),                \
50     BYTES_TO_T_UINT_4( e, f, g, h )
51 
52 #else /* 64-bits */
53 
54 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
55     ( (mbedtls_mpi_uint) a <<  0 ) |                          \
56     ( (mbedtls_mpi_uint) b <<  8 ) |                          \
57     ( (mbedtls_mpi_uint) c << 16 ) |                          \
58     ( (mbedtls_mpi_uint) d << 24 ) |                          \
59     ( (mbedtls_mpi_uint) e << 32 ) |                          \
60     ( (mbedtls_mpi_uint) f << 40 ) |                          \
61     ( (mbedtls_mpi_uint) g << 48 ) |                          \
62     ( (mbedtls_mpi_uint) h << 56 )
63 
64 #define BYTES_TO_T_UINT_4( a, b, c, d )             \
65     BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
66 
67 #define BYTES_TO_T_UINT_2( a, b )                   \
68     BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
69 
70 #endif /* bits in mbedtls_mpi_uint */
71 
72 /*
73  * Note: the constants are in little-endian order
74  * to be directly usable in MPIs
75  */
76 
77 /*
78  * Domain parameters for secp192r1
79  */
80 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
81 static const mbedtls_mpi_uint secp192r1_p[] = {
82     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
83     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
84     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
85 };
86 static const mbedtls_mpi_uint secp192r1_b[] = {
87     BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
88     BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
89     BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
90 };
91 static const mbedtls_mpi_uint secp192r1_gx[] = {
92     BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
93     BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
94     BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
95 };
96 static const mbedtls_mpi_uint secp192r1_gy[] = {
97     BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
98     BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
99     BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
100 };
101 static const mbedtls_mpi_uint secp192r1_n[] = {
102     BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
103     BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
104     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
105 };
106 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
107 
108 /*
109  * Domain parameters for secp224r1
110  */
111 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
112 static const mbedtls_mpi_uint secp224r1_p[] = {
113     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
114     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
115     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
116     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
117 };
118 static const mbedtls_mpi_uint secp224r1_b[] = {
119     BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
120     BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
121     BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
122     BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
123 };
124 static const mbedtls_mpi_uint secp224r1_gx[] = {
125     BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
126     BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
127     BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
128     BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
129 };
130 static const mbedtls_mpi_uint secp224r1_gy[] = {
131     BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
132     BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
133     BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
134     BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
135 };
136 static const mbedtls_mpi_uint secp224r1_n[] = {
137     BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
138     BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
139     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
140     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
141 };
142 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
143 
144 /*
145  * Domain parameters for secp256r1
146  */
147 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
148 static const mbedtls_mpi_uint secp256r1_p[] = {
149     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
150     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
151     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
152     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
153 };
154 static const mbedtls_mpi_uint secp256r1_b[] = {
155     BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
156     BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
157     BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
158     BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
159 };
160 static const mbedtls_mpi_uint secp256r1_gx[] = {
161     BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
162     BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
163     BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
164     BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
165 };
166 static const mbedtls_mpi_uint secp256r1_gy[] = {
167     BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
168     BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
169     BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
170     BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
171 };
172 static const mbedtls_mpi_uint secp256r1_n[] = {
173     BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
174     BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
175     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
176     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
177 };
178 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
179 
180 /*
181  * Domain parameters for secp384r1
182  */
183 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
184 static const mbedtls_mpi_uint secp384r1_p[] = {
185     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
186     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
187     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
188     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
189     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
190     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
191 };
192 static const mbedtls_mpi_uint secp384r1_b[] = {
193     BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
194     BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
195     BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
196     BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
197     BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
198     BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
199 };
200 static const mbedtls_mpi_uint secp384r1_gx[] = {
201     BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
202     BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
203     BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
204     BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
205     BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
206     BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
207 };
208 static const mbedtls_mpi_uint secp384r1_gy[] = {
209     BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
210     BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
211     BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
212     BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
213     BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
214     BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
215 };
216 static const mbedtls_mpi_uint secp384r1_n[] = {
217     BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
218     BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
219     BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
220     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
221     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
222     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
223 };
224 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
225 
226 /*
227  * Domain parameters for secp521r1
228  */
229 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
230 static const mbedtls_mpi_uint secp521r1_p[] = {
231     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
232     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
233     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
234     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
235     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
236     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
237     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
238     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
239     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
240 };
241 static const mbedtls_mpi_uint secp521r1_b[] = {
242     BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
243     BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
244     BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
245     BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
246     BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
247     BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
248     BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
249     BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
250     BYTES_TO_T_UINT_2( 0x51, 0x00 ),
251 };
252 static const mbedtls_mpi_uint secp521r1_gx[] = {
253     BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
254     BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
255     BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
256     BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
257     BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
258     BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
259     BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
260     BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
261     BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
262 };
263 static const mbedtls_mpi_uint secp521r1_gy[] = {
264     BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
265     BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
266     BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
267     BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
268     BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
269     BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
270     BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
271     BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
272     BYTES_TO_T_UINT_2( 0x18, 0x01 ),
273 };
274 static const mbedtls_mpi_uint secp521r1_n[] = {
275     BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
276     BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
277     BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
278     BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
279     BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
280     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
281     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
282     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
283     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
284 };
285 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
286 
287 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
288 static const mbedtls_mpi_uint secp192k1_p[] = {
289     BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
290     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
291     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
292 };
293 static const mbedtls_mpi_uint secp192k1_a[] = {
294     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
295 };
296 static const mbedtls_mpi_uint secp192k1_b[] = {
297     BYTES_TO_T_UINT_2( 0x03, 0x00 ),
298 };
299 static const mbedtls_mpi_uint secp192k1_gx[] = {
300     BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
301     BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
302     BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
303 };
304 static const mbedtls_mpi_uint secp192k1_gy[] = {
305     BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
306     BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
307     BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
308 };
309 static const mbedtls_mpi_uint secp192k1_n[] = {
310     BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
311     BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
312     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
313 };
314 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
315 
316 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
317 static const mbedtls_mpi_uint secp224k1_p[] = {
318     BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
319     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
320     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
321     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
322 };
323 static const mbedtls_mpi_uint secp224k1_a[] = {
324     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
325 };
326 static const mbedtls_mpi_uint secp224k1_b[] = {
327     BYTES_TO_T_UINT_2( 0x05, 0x00 ),
328 };
329 static const mbedtls_mpi_uint secp224k1_gx[] = {
330     BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
331     BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
332     BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
333     BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
334 };
335 static const mbedtls_mpi_uint secp224k1_gy[] = {
336     BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
337     BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
338     BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
339     BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
340 };
341 static const mbedtls_mpi_uint secp224k1_n[] = {
342     BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
343     BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
344     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
345     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
346 };
347 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
348 
349 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
350 static const mbedtls_mpi_uint secp256k1_p[] = {
351     BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
352     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
353     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
354     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
355 };
356 static const mbedtls_mpi_uint secp256k1_a[] = {
357     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
358 };
359 static const mbedtls_mpi_uint secp256k1_b[] = {
360     BYTES_TO_T_UINT_2( 0x07, 0x00 ),
361 };
362 static const mbedtls_mpi_uint secp256k1_gx[] = {
363     BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
364     BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
365     BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
366     BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
367 };
368 static const mbedtls_mpi_uint secp256k1_gy[] = {
369     BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
370     BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
371     BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
372     BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
373 };
374 static const mbedtls_mpi_uint secp256k1_n[] = {
375     BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
376     BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
377     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
378     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
379 };
380 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
381 
382 /*
383  * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
384  */
385 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
386 static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
387     BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
388     BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
389     BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
390     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
391 };
392 static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
393     BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
394     BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
395     BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
396     BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
397 };
398 static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
399     BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
400     BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
401     BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
402     BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
403 };
404 static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
405     BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
406     BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
407     BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
408     BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
409 };
410 static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
411     BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
412     BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
413     BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
414     BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
415 };
416 static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
417     BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
418     BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
419     BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
420     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
421 };
422 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
423 
424 /*
425  * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
426  */
427 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
428 static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
429     BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
430     BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
431     BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
432     BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
433     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
434     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
435 };
436 static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
437     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
438     BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
439     BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
440     BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
441     BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
442     BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
443 };
444 static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
445     BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
446     BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
447     BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
448     BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
449     BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
450     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
451 };
452 static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
453     BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
454     BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
455     BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
456     BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
457     BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
458     BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
459 };
460 static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
461     BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
462     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
463     BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
464     BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
465     BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
466     BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
467 };
468 static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
469     BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
470     BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
471     BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
472     BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
473     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
474     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
475 };
476 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
477 
478 /*
479  * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
480  */
481 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
482 static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
483     BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
484     BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
485     BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
486     BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
487     BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
488     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
489     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
490     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
491 };
492 static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
493     BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
494     BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
495     BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
496     BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
497     BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
498     BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
499     BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
500     BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
501 };
502 static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
503     BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
504     BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
505     BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
506     BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
507     BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
508     BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
509     BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
510     BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
511 };
512 static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
513     BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
514     BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
515     BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
516     BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
517     BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
518     BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
519     BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
520     BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
521 };
522 static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
523     BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
524     BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
525     BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
526     BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
527     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
528     BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
529     BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
530     BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
531 };
532 static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
533     BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
534     BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
535     BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
536     BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
537     BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
538     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
539     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
540     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
541 };
542 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
543 
544 /*
545  * Create an MPI from embedded constants
546  * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
547  */
ecp_mpi_load(mbedtls_mpi * X,const mbedtls_mpi_uint * p,size_t len)548 static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
549 {
550     X->s = 1;
551     X->n = len / sizeof( mbedtls_mpi_uint );
552     X->p = (mbedtls_mpi_uint *) p;
553 }
554 
555 /*
556  * Set an MPI to static value 1
557  */
ecp_mpi_set1(mbedtls_mpi * X)558 static inline void ecp_mpi_set1( mbedtls_mpi *X )
559 {
560     static mbedtls_mpi_uint one[] = { 1 };
561     X->s = 1;
562     X->n = 1;
563     X->p = one;
564 }
565 
566 /*
567  * Make group available from embedded constants
568  */
ecp_group_load(mbedtls_ecp_group * grp,const mbedtls_mpi_uint * p,size_t plen,const mbedtls_mpi_uint * a,size_t alen,const mbedtls_mpi_uint * b,size_t blen,const mbedtls_mpi_uint * gx,size_t gxlen,const mbedtls_mpi_uint * gy,size_t gylen,const mbedtls_mpi_uint * n,size_t nlen)569 static int ecp_group_load( mbedtls_ecp_group *grp,
570                            const mbedtls_mpi_uint *p,  size_t plen,
571                            const mbedtls_mpi_uint *a,  size_t alen,
572                            const mbedtls_mpi_uint *b,  size_t blen,
573                            const mbedtls_mpi_uint *gx, size_t gxlen,
574                            const mbedtls_mpi_uint *gy, size_t gylen,
575                            const mbedtls_mpi_uint *n,  size_t nlen)
576 {
577     ecp_mpi_load( &grp->P, p, plen );
578     if( a != NULL )
579         ecp_mpi_load( &grp->A, a, alen );
580     ecp_mpi_load( &grp->B, b, blen );
581     ecp_mpi_load( &grp->N, n, nlen );
582 
583     ecp_mpi_load( &grp->G.X, gx, gxlen );
584     ecp_mpi_load( &grp->G.Y, gy, gylen );
585     ecp_mpi_set1( &grp->G.Z );
586 
587     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
588     grp->nbits = mbedtls_mpi_bitlen( &grp->N );
589 
590     grp->h = 1;
591 
592     return( 0 );
593 }
594 
595 #if defined(MBEDTLS_ECP_NIST_OPTIM)
596 /* Forward declarations */
597 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
598 static int ecp_mod_p192( mbedtls_mpi * );
599 #endif
600 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
601 static int ecp_mod_p224( mbedtls_mpi * );
602 #endif
603 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
604 static int ecp_mod_p256( mbedtls_mpi * );
605 #endif
606 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
607 static int ecp_mod_p384( mbedtls_mpi * );
608 #endif
609 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
610 static int ecp_mod_p521( mbedtls_mpi * );
611 #endif
612 
613 #define NIST_MODP( P )      grp->modp = ecp_mod_ ## P;
614 #else
615 #define NIST_MODP( P )
616 #endif /* MBEDTLS_ECP_NIST_OPTIM */
617 
618 /* Additional forward declarations */
619 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
620 static int ecp_mod_p255( mbedtls_mpi * );
621 #endif
622 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
623 static int ecp_mod_p192k1( mbedtls_mpi * );
624 #endif
625 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
626 static int ecp_mod_p224k1( mbedtls_mpi * );
627 #endif
628 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
629 static int ecp_mod_p256k1( mbedtls_mpi * );
630 #endif
631 
632 #define LOAD_GROUP_A( G )   ecp_group_load( grp,            \
633                             G ## _p,  sizeof( G ## _p  ),   \
634                             G ## _a,  sizeof( G ## _a  ),   \
635                             G ## _b,  sizeof( G ## _b  ),   \
636                             G ## _gx, sizeof( G ## _gx ),   \
637                             G ## _gy, sizeof( G ## _gy ),   \
638                             G ## _n,  sizeof( G ## _n  ) )
639 
640 #define LOAD_GROUP( G )     ecp_group_load( grp,            \
641                             G ## _p,  sizeof( G ## _p  ),   \
642                             NULL,     0,                    \
643                             G ## _b,  sizeof( G ## _b  ),   \
644                             G ## _gx, sizeof( G ## _gx ),   \
645                             G ## _gy, sizeof( G ## _gy ),   \
646                             G ## _n,  sizeof( G ## _n  ) )
647 
648 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
649 /*
650  * Specialized function for creating the Curve25519 group
651  */
ecp_use_curve25519(mbedtls_ecp_group * grp)652 static int ecp_use_curve25519( mbedtls_ecp_group *grp )
653 {
654     int ret;
655 
656     /* Actually ( A + 2 ) / 4 */
657     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
658 
659     /* P = 2^255 - 19 */
660     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
661     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
662     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
663     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
664 
665     /* Y intentionaly not set, since we use x/z coordinates.
666      * This is used as a marker to identify Montgomery curves! */
667     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
668     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
669     mbedtls_mpi_free( &grp->G.Y );
670 
671     /* Actually, the required msb for private keys */
672     grp->nbits = 254;
673 
674 cleanup:
675     if( ret != 0 )
676         mbedtls_ecp_group_free( grp );
677 
678     return( ret );
679 }
680 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
681 
682 /*
683  * Set a group using well-known domain parameters
684  */
mbedtls_ecp_group_load(mbedtls_ecp_group * grp,mbedtls_ecp_group_id id)685 int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
686 {
687     mbedtls_ecp_group_free( grp );
688 
689     grp->id = id;
690 
691     switch( id )
692     {
693 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
694         case MBEDTLS_ECP_DP_SECP192R1:
695             NIST_MODP( p192 );
696             return( LOAD_GROUP( secp192r1 ) );
697 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
698 
699 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
700         case MBEDTLS_ECP_DP_SECP224R1:
701             NIST_MODP( p224 );
702             return( LOAD_GROUP( secp224r1 ) );
703 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
704 
705 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
706         case MBEDTLS_ECP_DP_SECP256R1:
707             NIST_MODP( p256 );
708             return( LOAD_GROUP( secp256r1 ) );
709 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
710 
711 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
712         case MBEDTLS_ECP_DP_SECP384R1:
713             NIST_MODP( p384 );
714             return( LOAD_GROUP( secp384r1 ) );
715 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
716 
717 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
718         case MBEDTLS_ECP_DP_SECP521R1:
719             NIST_MODP( p521 );
720             return( LOAD_GROUP( secp521r1 ) );
721 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
722 
723 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
724         case MBEDTLS_ECP_DP_SECP192K1:
725             grp->modp = ecp_mod_p192k1;
726             return( LOAD_GROUP_A( secp192k1 ) );
727 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
728 
729 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
730         case MBEDTLS_ECP_DP_SECP224K1:
731             grp->modp = ecp_mod_p224k1;
732             return( LOAD_GROUP_A( secp224k1 ) );
733 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
734 
735 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
736         case MBEDTLS_ECP_DP_SECP256K1:
737             grp->modp = ecp_mod_p256k1;
738             return( LOAD_GROUP_A( secp256k1 ) );
739 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
740 
741 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
742         case MBEDTLS_ECP_DP_BP256R1:
743             return( LOAD_GROUP_A( brainpoolP256r1 ) );
744 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
745 
746 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
747         case MBEDTLS_ECP_DP_BP384R1:
748             return( LOAD_GROUP_A( brainpoolP384r1 ) );
749 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
750 
751 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
752         case MBEDTLS_ECP_DP_BP512R1:
753             return( LOAD_GROUP_A( brainpoolP512r1 ) );
754 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
755 
756 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
757         case MBEDTLS_ECP_DP_CURVE25519:
758             grp->modp = ecp_mod_p255;
759             return( ecp_use_curve25519( grp ) );
760 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
761 
762         default:
763             mbedtls_ecp_group_free( grp );
764             return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
765     }
766 }
767 
768 #if defined(MBEDTLS_ECP_NIST_OPTIM)
769 /*
770  * Fast reduction modulo the primes used by the NIST curves.
771  *
772  * These functions are critical for speed, but not needed for correct
773  * operations. So, we make the choice to heavily rely on the internals of our
774  * bignum library, which creates a tight coupling between these functions and
775  * our MPI implementation.  However, the coupling between the ECP module and
776  * MPI remains loose, since these functions can be deactivated at will.
777  */
778 
779 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
780 /*
781  * Compared to the way things are presented in FIPS 186-3 D.2,
782  * we proceed in columns, from right (least significant chunk) to left,
783  * adding chunks to N in place, and keeping a carry for the next chunk.
784  * This avoids moving things around in memory, and uselessly adding zeros,
785  * compared to the more straightforward, line-oriented approach.
786  *
787  * For this prime we need to handle data in chunks of 64 bits.
788  * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
789  * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
790  */
791 
792 /* Add 64-bit chunks (dst += src) and update carry */
add64(mbedtls_mpi_uint * dst,mbedtls_mpi_uint * src,mbedtls_mpi_uint * carry)793 static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
794 {
795     unsigned char i;
796     mbedtls_mpi_uint c = 0;
797     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
798     {
799         *dst += c;      c  = ( *dst < c );
800         *dst += *src;   c += ( *dst < *src );
801     }
802     *carry += c;
803 }
804 
805 /* Add carry to a 64-bit chunk and update carry */
carry64(mbedtls_mpi_uint * dst,mbedtls_mpi_uint * carry)806 static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
807 {
808     unsigned char i;
809     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
810     {
811         *dst += *carry;
812         *carry  = ( *dst < *carry );
813     }
814 }
815 
816 #define WIDTH       8 / sizeof( mbedtls_mpi_uint )
817 #define A( i )      N->p + i * WIDTH
818 #define ADD( i )    add64( p, A( i ), &c )
819 #define NEXT        p += WIDTH; carry64( p, &c )
820 #define LAST        p += WIDTH; *p = c; while( ++p < end ) *p = 0
821 
822 /*
823  * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
824  */
ecp_mod_p192(mbedtls_mpi * N)825 static int ecp_mod_p192( mbedtls_mpi *N )
826 {
827     int ret;
828     mbedtls_mpi_uint c = 0;
829     mbedtls_mpi_uint *p, *end;
830 
831     /* Make sure we have enough blocks so that A(5) is legal */
832     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
833 
834     p = N->p;
835     end = p + N->n;
836 
837     ADD( 3 ); ADD( 5 );             NEXT; // A0 += A3 + A5
838     ADD( 3 ); ADD( 4 ); ADD( 5 );   NEXT; // A1 += A3 + A4 + A5
839     ADD( 4 ); ADD( 5 );             LAST; // A2 += A4 + A5
840 
841 cleanup:
842     return( ret );
843 }
844 
845 #undef WIDTH
846 #undef A
847 #undef ADD
848 #undef NEXT
849 #undef LAST
850 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
851 
852 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
853     defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
854     defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
855 /*
856  * The reader is advised to first understand ecp_mod_p192() since the same
857  * general structure is used here, but with additional complications:
858  * (1) chunks of 32 bits, and (2) subtractions.
859  */
860 
861 /*
862  * For these primes, we need to handle data in chunks of 32 bits.
863  * This makes it more complicated if we use 64 bits limbs in MPI,
864  * which prevents us from using a uniform access method as for p192.
865  *
866  * So, we define a mini abstraction layer to access 32 bit chunks,
867  * load them in 'cur' for work, and store them back from 'cur' when done.
868  *
869  * While at it, also define the size of N in terms of 32-bit chunks.
870  */
871 #define LOAD32      cur = A( i );
872 
873 #if defined(MBEDTLS_HAVE_INT32)  /* 32 bit */
874 
875 #define MAX32       N->n
876 #define A( j )      N->p[j]
877 #define STORE32     N->p[i] = cur;
878 
879 #else                               /* 64-bit */
880 
881 #define MAX32       N->n * 2
882 #define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
883 #define STORE32                                   \
884     if( i % 2 ) {                                 \
885         N->p[i/2] &= 0x00000000FFFFFFFF;          \
886         N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32;        \
887     } else {                                      \
888         N->p[i/2] &= 0xFFFFFFFF00000000;          \
889         N->p[i/2] |= (mbedtls_mpi_uint) cur;                \
890     }
891 
892 #endif /* sizeof( mbedtls_mpi_uint ) */
893 
894 /*
895  * Helpers for addition and subtraction of chunks, with signed carry.
896  */
add32(uint32_t * dst,uint32_t src,signed char * carry)897 static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
898 {
899     *dst += src;
900     *carry += ( *dst < src );
901 }
902 
sub32(uint32_t * dst,uint32_t src,signed char * carry)903 static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
904 {
905     *carry -= ( *dst < src );
906     *dst -= src;
907 }
908 
909 #define ADD( j )    add32( &cur, A( j ), &c );
910 #define SUB( j )    sub32( &cur, A( j ), &c );
911 
912 /*
913  * Helpers for the main 'loop'
914  * (see fix_negative for the motivation of C)
915  */
916 #define INIT( b )                                           \
917     int ret;                                                \
918     signed char c = 0, cc;                                  \
919     uint32_t cur;                                           \
920     size_t i = 0, bits = b;                                 \
921     mbedtls_mpi C;                                                  \
922     mbedtls_mpi_uint Cp[ b / 8 / sizeof( mbedtls_mpi_uint) + 1 ];               \
923                                                             \
924     C.s = 1;                                                \
925     C.n = b / 8 / sizeof( mbedtls_mpi_uint) + 1;                      \
926     C.p = Cp;                                               \
927     memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) );                \
928                                                             \
929     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, b * 2 / 8 / sizeof( mbedtls_mpi_uint ) ) ); \
930     LOAD32;
931 
932 #define NEXT                    \
933     STORE32; i++; LOAD32;       \
934     cc = c; c = 0;              \
935     if( cc < 0 )                \
936         sub32( &cur, -cc, &c ); \
937     else                        \
938         add32( &cur, cc, &c );  \
939 
940 #define LAST                                    \
941     STORE32; i++;                               \
942     cur = c > 0 ? c : 0; STORE32;               \
943     cur = 0; while( ++i < MAX32 ) { STORE32; }  \
944     if( c < 0 ) fix_negative( N, c, &C, bits );
945 
946 /*
947  * If the result is negative, we get it in the form
948  * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
949  */
fix_negative(mbedtls_mpi * N,signed char c,mbedtls_mpi * C,size_t bits)950 static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
951 {
952     int ret;
953 
954     /* C = - c * 2^(bits + 32) */
955 #if !defined(MBEDTLS_HAVE_INT64)
956     ((void) bits);
957 #else
958     if( bits == 224 )
959         C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
960     else
961 #endif
962         C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
963 
964     /* N = - ( C - N ) */
965     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
966     N->s = -1;
967 
968 cleanup:
969 
970     return( ret );
971 }
972 
973 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
974 /*
975  * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
976  */
ecp_mod_p224(mbedtls_mpi * N)977 static int ecp_mod_p224( mbedtls_mpi *N )
978 {
979     INIT( 224 );
980 
981     SUB(  7 ); SUB( 11 );               NEXT; // A0 += -A7 - A11
982     SUB(  8 ); SUB( 12 );               NEXT; // A1 += -A8 - A12
983     SUB(  9 ); SUB( 13 );               NEXT; // A2 += -A9 - A13
984     SUB( 10 ); ADD(  7 ); ADD( 11 );    NEXT; // A3 += -A10 + A7 + A11
985     SUB( 11 ); ADD(  8 ); ADD( 12 );    NEXT; // A4 += -A11 + A8 + A12
986     SUB( 12 ); ADD(  9 ); ADD( 13 );    NEXT; // A5 += -A12 + A9 + A13
987     SUB( 13 ); ADD( 10 );               LAST; // A6 += -A13 + A10
988 
989 cleanup:
990     return( ret );
991 }
992 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
993 
994 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
995 /*
996  * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
997  */
ecp_mod_p256(mbedtls_mpi * N)998 static int ecp_mod_p256( mbedtls_mpi *N )
999 {
1000     INIT( 256 );
1001 
1002     ADD(  8 ); ADD(  9 );
1003     SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 );             NEXT; // A0
1004 
1005     ADD(  9 ); ADD( 10 );
1006     SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 );             NEXT; // A1
1007 
1008     ADD( 10 ); ADD( 11 );
1009     SUB( 13 ); SUB( 14 ); SUB( 15 );                        NEXT; // A2
1010 
1011     ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1012     SUB( 15 ); SUB(  8 ); SUB(  9 );                        NEXT; // A3
1013 
1014     ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1015     SUB(  9 ); SUB( 10 );                                   NEXT; // A4
1016 
1017     ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1018     SUB( 10 ); SUB( 11 );                                   NEXT; // A5
1019 
1020     ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1021     SUB(  8 ); SUB(  9 );                                   NEXT; // A6
1022 
1023     ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1024     SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 );             LAST; // A7
1025 
1026 cleanup:
1027     return( ret );
1028 }
1029 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
1030 
1031 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1032 /*
1033  * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1034  */
ecp_mod_p384(mbedtls_mpi * N)1035 static int ecp_mod_p384( mbedtls_mpi *N )
1036 {
1037     INIT( 384 );
1038 
1039     ADD( 12 ); ADD( 21 ); ADD( 20 );
1040     SUB( 23 );                                              NEXT; // A0
1041 
1042     ADD( 13 ); ADD( 22 ); ADD( 23 );
1043     SUB( 12 ); SUB( 20 );                                   NEXT; // A2
1044 
1045     ADD( 14 ); ADD( 23 );
1046     SUB( 13 ); SUB( 21 );                                   NEXT; // A2
1047 
1048     ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1049     SUB( 14 ); SUB( 22 ); SUB( 23 );                        NEXT; // A3
1050 
1051     ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1052     SUB( 15 ); SUB( 23 ); SUB( 23 );                        NEXT; // A4
1053 
1054     ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1055     SUB( 16 );                                              NEXT; // A5
1056 
1057     ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1058     SUB( 17 );                                              NEXT; // A6
1059 
1060     ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1061     SUB( 18 );                                              NEXT; // A7
1062 
1063     ADD( 20 ); ADD( 17 ); ADD( 16 );
1064     SUB( 19 );                                              NEXT; // A8
1065 
1066     ADD( 21 ); ADD( 18 ); ADD( 17 );
1067     SUB( 20 );                                              NEXT; // A9
1068 
1069     ADD( 22 ); ADD( 19 ); ADD( 18 );
1070     SUB( 21 );                                              NEXT; // A10
1071 
1072     ADD( 23 ); ADD( 20 ); ADD( 19 );
1073     SUB( 22 );                                              LAST; // A11
1074 
1075 cleanup:
1076     return( ret );
1077 }
1078 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1079 
1080 #undef A
1081 #undef LOAD32
1082 #undef STORE32
1083 #undef MAX32
1084 #undef INIT
1085 #undef NEXT
1086 #undef LAST
1087 
1088 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
1089           MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
1090           MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1091 
1092 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
1093 /*
1094  * Here we have an actual Mersenne prime, so things are more straightforward.
1095  * However, chunks are aligned on a 'weird' boundary (521 bits).
1096  */
1097 
1098 /* Size of p521 in terms of mbedtls_mpi_uint */
1099 #define P521_WIDTH      ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1100 
1101 /* Bits to keep in the most significant mbedtls_mpi_uint */
1102 #define P521_MASK       0x01FF
1103 
1104 /*
1105  * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1106  * Write N as A1 + 2^521 A0, return A0 + A1
1107  */
ecp_mod_p521(mbedtls_mpi * N)1108 static int ecp_mod_p521( mbedtls_mpi *N )
1109 {
1110     int ret;
1111     size_t i;
1112     mbedtls_mpi M;
1113     mbedtls_mpi_uint Mp[P521_WIDTH + 1];
1114     /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
1115      * we need to hold bits 513 to 1056, which is 34 limbs, that is
1116      * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1117 
1118     if( N->n < P521_WIDTH )
1119         return( 0 );
1120 
1121     /* M = A1 */
1122     M.s = 1;
1123     M.n = N->n - ( P521_WIDTH - 1 );
1124     if( M.n > P521_WIDTH + 1 )
1125         M.n = P521_WIDTH + 1;
1126     M.p = Mp;
1127     memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1128     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1129 
1130     /* N = A0 */
1131     N->p[P521_WIDTH - 1] &= P521_MASK;
1132     for( i = P521_WIDTH; i < N->n; i++ )
1133         N->p[i] = 0;
1134 
1135     /* N = A0 + A1 */
1136     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1137 
1138 cleanup:
1139     return( ret );
1140 }
1141 
1142 #undef P521_WIDTH
1143 #undef P521_MASK
1144 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
1145 
1146 #endif /* MBEDTLS_ECP_NIST_OPTIM */
1147 
1148 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
1149 
1150 /* Size of p255 in terms of mbedtls_mpi_uint */
1151 #define P255_WIDTH      ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1152 
1153 /*
1154  * Fast quasi-reduction modulo p255 = 2^255 - 19
1155  * Write N as A0 + 2^255 A1, return A0 + 19 * A1
1156  */
ecp_mod_p255(mbedtls_mpi * N)1157 static int ecp_mod_p255( mbedtls_mpi *N )
1158 {
1159     int ret;
1160     size_t i;
1161     mbedtls_mpi M;
1162     mbedtls_mpi_uint Mp[P255_WIDTH + 2];
1163 
1164     if( N->n < P255_WIDTH )
1165         return( 0 );
1166 
1167     /* M = A1 */
1168     M.s = 1;
1169     M.n = N->n - ( P255_WIDTH - 1 );
1170     if( M.n > P255_WIDTH + 1 )
1171         M.n = P255_WIDTH + 1;
1172     M.p = Mp;
1173     memset( Mp, 0, sizeof Mp );
1174     memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1175     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1176     M.n++; /* Make room for multiplication by 19 */
1177 
1178     /* N = A0 */
1179     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
1180     for( i = P255_WIDTH; i < N->n; i++ )
1181         N->p[i] = 0;
1182 
1183     /* N = A0 + 19 * A1 */
1184     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
1185     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1186 
1187 cleanup:
1188     return( ret );
1189 }
1190 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
1191 
1192 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
1193     defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
1194     defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1195 /*
1196  * Fast quasi-reduction modulo P = 2^s - R,
1197  * with R about 33 bits, used by the Koblitz curves.
1198  *
1199  * Write N as A0 + 2^224 A1, return A0 + R * A1.
1200  * Actually do two passes, since R is big.
1201  */
1202 #define P_KOBLITZ_MAX   ( 256 / 8 / sizeof( mbedtls_mpi_uint ) )  // Max limbs in P
1203 #define P_KOBLITZ_R     ( 8 / sizeof( mbedtls_mpi_uint ) )        // Limbs in R
ecp_mod_koblitz(mbedtls_mpi * N,mbedtls_mpi_uint * Rp,size_t p_limbs,size_t adjust,size_t shift,mbedtls_mpi_uint mask)1204 static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
1205                                    size_t adjust, size_t shift, mbedtls_mpi_uint mask )
1206 {
1207     int ret;
1208     size_t i;
1209     mbedtls_mpi M, R;
1210     mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
1211 
1212     if( N->n < p_limbs )
1213         return( 0 );
1214 
1215     /* Init R */
1216     R.s = 1;
1217     R.p = Rp;
1218     R.n = P_KOBLITZ_R;
1219 
1220     /* Common setup for M */
1221     M.s = 1;
1222     M.p = Mp;
1223 
1224     /* M = A1 */
1225     M.n = N->n - ( p_limbs - adjust );
1226     if( M.n > p_limbs + adjust )
1227         M.n = p_limbs + adjust;
1228     memset( Mp, 0, sizeof Mp );
1229     memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1230     if( shift != 0 )
1231         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1232     M.n += R.n; /* Make room for multiplication by R */
1233 
1234     /* N = A0 */
1235     if( mask != 0 )
1236         N->p[p_limbs - 1] &= mask;
1237     for( i = p_limbs; i < N->n; i++ )
1238         N->p[i] = 0;
1239 
1240     /* N = A0 + R * A1 */
1241     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1242     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1243 
1244     /* Second pass */
1245 
1246     /* M = A1 */
1247     M.n = N->n - ( p_limbs - adjust );
1248     if( M.n > p_limbs + adjust )
1249         M.n = p_limbs + adjust;
1250     memset( Mp, 0, sizeof Mp );
1251     memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1252     if( shift != 0 )
1253         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1254     M.n += R.n; /* Make room for multiplication by R */
1255 
1256     /* N = A0 */
1257     if( mask != 0 )
1258         N->p[p_limbs - 1] &= mask;
1259     for( i = p_limbs; i < N->n; i++ )
1260         N->p[i] = 0;
1261 
1262     /* N = A0 + R * A1 */
1263     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1264     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1265 
1266 cleanup:
1267     return( ret );
1268 }
1269 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
1270           MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
1271           MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
1272 
1273 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
1274 /*
1275  * Fast quasi-reduction modulo p192k1 = 2^192 - R,
1276  * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
1277  */
ecp_mod_p192k1(mbedtls_mpi * N)1278 static int ecp_mod_p192k1( mbedtls_mpi *N )
1279 {
1280     static mbedtls_mpi_uint Rp[] = {
1281         BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1282 
1283     return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1284 }
1285 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
1286 
1287 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
1288 /*
1289  * Fast quasi-reduction modulo p224k1 = 2^224 - R,
1290  * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
1291  */
ecp_mod_p224k1(mbedtls_mpi * N)1292 static int ecp_mod_p224k1( mbedtls_mpi *N )
1293 {
1294     static mbedtls_mpi_uint Rp[] = {
1295         BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1296 
1297 #if defined(MBEDTLS_HAVE_INT64)
1298     return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
1299 #else
1300     return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1301 #endif
1302 }
1303 
1304 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
1305 
1306 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1307 /*
1308  * Fast quasi-reduction modulo p256k1 = 2^256 - R,
1309  * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
1310  */
ecp_mod_p256k1(mbedtls_mpi * N)1311 static int ecp_mod_p256k1( mbedtls_mpi *N )
1312 {
1313     static mbedtls_mpi_uint Rp[] = {
1314         BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1315     return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1316 }
1317 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
1318 
1319 #endif /* MBEDTLS_ECP_C */
1320