xref: /OK3568_Linux_fs/kernel/fs/incfs/data_mgmt.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 #include <linux/crc32.h>
6 #include <linux/delay.h>
7 #include <linux/file.h>
8 #include <linux/fsverity.h>
9 #include <linux/gfp.h>
10 #include <linux/kobject.h>
11 #include <linux/ktime.h>
12 #include <linux/lz4.h>
13 #include <linux/mm.h>
14 #include <linux/namei.h>
15 #include <linux/pagemap.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19 
20 #include "data_mgmt.h"
21 #include "format.h"
22 #include "integrity.h"
23 #include "sysfs.h"
24 #include "verity.h"
25 
26 static int incfs_scan_metadata_chain(struct data_file *df);
27 
log_wake_up_all(struct work_struct * work)28 static void log_wake_up_all(struct work_struct *work)
29 {
30 	struct delayed_work *dw = container_of(work, struct delayed_work, work);
31 	struct read_log *rl = container_of(dw, struct read_log, ml_wakeup_work);
32 	wake_up_all(&rl->ml_notif_wq);
33 }
34 
zstd_free_workspace(struct work_struct * work)35 static void zstd_free_workspace(struct work_struct *work)
36 {
37 	struct delayed_work *dw = container_of(work, struct delayed_work, work);
38 	struct mount_info *mi =
39 		container_of(dw, struct mount_info, mi_zstd_cleanup_work);
40 
41 	mutex_lock(&mi->mi_zstd_workspace_mutex);
42 	kvfree(mi->mi_zstd_workspace);
43 	mi->mi_zstd_workspace = NULL;
44 	mi->mi_zstd_stream = NULL;
45 	mutex_unlock(&mi->mi_zstd_workspace_mutex);
46 }
47 
incfs_alloc_mount_info(struct super_block * sb,struct mount_options * options,struct path * backing_dir_path)48 struct mount_info *incfs_alloc_mount_info(struct super_block *sb,
49 					  struct mount_options *options,
50 					  struct path *backing_dir_path)
51 {
52 	struct mount_info *mi = NULL;
53 	int error = 0;
54 	struct incfs_sysfs_node *node;
55 
56 	mi = kzalloc(sizeof(*mi), GFP_NOFS);
57 	if (!mi)
58 		return ERR_PTR(-ENOMEM);
59 
60 	mi->mi_sb = sb;
61 	mi->mi_backing_dir_path = *backing_dir_path;
62 	mi->mi_owner = get_current_cred();
63 	path_get(&mi->mi_backing_dir_path);
64 	mutex_init(&mi->mi_dir_struct_mutex);
65 	init_waitqueue_head(&mi->mi_pending_reads_notif_wq);
66 	init_waitqueue_head(&mi->mi_log.ml_notif_wq);
67 	init_waitqueue_head(&mi->mi_blocks_written_notif_wq);
68 	atomic_set(&mi->mi_blocks_written, 0);
69 	INIT_DELAYED_WORK(&mi->mi_log.ml_wakeup_work, log_wake_up_all);
70 	spin_lock_init(&mi->mi_log.rl_lock);
71 	spin_lock_init(&mi->pending_read_lock);
72 	INIT_LIST_HEAD(&mi->mi_reads_list_head);
73 	spin_lock_init(&mi->mi_per_uid_read_timeouts_lock);
74 	mutex_init(&mi->mi_zstd_workspace_mutex);
75 	INIT_DELAYED_WORK(&mi->mi_zstd_cleanup_work, zstd_free_workspace);
76 	mutex_init(&mi->mi_le_mutex);
77 
78 	node = incfs_add_sysfs_node(options->sysfs_name, mi);
79 	if (IS_ERR(node)) {
80 		error = PTR_ERR(node);
81 		goto err;
82 	}
83 	mi->mi_sysfs_node = node;
84 
85 	error = incfs_realloc_mount_info(mi, options);
86 	if (error)
87 		goto err;
88 
89 	return mi;
90 
91 err:
92 	incfs_free_mount_info(mi);
93 	return ERR_PTR(error);
94 }
95 
incfs_realloc_mount_info(struct mount_info * mi,struct mount_options * options)96 int incfs_realloc_mount_info(struct mount_info *mi,
97 			     struct mount_options *options)
98 {
99 	void *new_buffer = NULL;
100 	void *old_buffer;
101 	size_t new_buffer_size = 0;
102 
103 	if (options->read_log_pages != mi->mi_options.read_log_pages) {
104 		struct read_log_state log_state;
105 		/*
106 		 * Even though having two buffers allocated at once isn't
107 		 * usually good, allocating a multipage buffer under a spinlock
108 		 * is even worse, so let's optimize for the shorter lock
109 		 * duration. It's not end of the world if we fail to increase
110 		 * the buffer size anyway.
111 		 */
112 		if (options->read_log_pages > 0) {
113 			new_buffer_size = PAGE_SIZE * options->read_log_pages;
114 			new_buffer = kzalloc(new_buffer_size, GFP_NOFS);
115 			if (!new_buffer)
116 				return -ENOMEM;
117 		}
118 
119 		spin_lock(&mi->mi_log.rl_lock);
120 		old_buffer = mi->mi_log.rl_ring_buf;
121 		mi->mi_log.rl_ring_buf = new_buffer;
122 		mi->mi_log.rl_size = new_buffer_size;
123 		log_state = (struct read_log_state){
124 			.generation_id = mi->mi_log.rl_head.generation_id + 1,
125 		};
126 		mi->mi_log.rl_head = log_state;
127 		mi->mi_log.rl_tail = log_state;
128 		spin_unlock(&mi->mi_log.rl_lock);
129 
130 		kfree(old_buffer);
131 	}
132 
133 	if (options->sysfs_name && !mi->mi_sysfs_node)
134 		mi->mi_sysfs_node = incfs_add_sysfs_node(options->sysfs_name,
135 							 mi);
136 	else if (!options->sysfs_name && mi->mi_sysfs_node) {
137 		incfs_free_sysfs_node(mi->mi_sysfs_node);
138 		mi->mi_sysfs_node = NULL;
139 	} else if (options->sysfs_name &&
140 		strcmp(options->sysfs_name,
141 		       kobject_name(&mi->mi_sysfs_node->isn_sysfs_node))) {
142 		incfs_free_sysfs_node(mi->mi_sysfs_node);
143 		mi->mi_sysfs_node = incfs_add_sysfs_node(options->sysfs_name,
144 							 mi);
145 	}
146 
147 	if (IS_ERR(mi->mi_sysfs_node)) {
148 		int err = PTR_ERR(mi->mi_sysfs_node);
149 
150 		mi->mi_sysfs_node = NULL;
151 		return err;
152 	}
153 
154 	mi->mi_options = *options;
155 	return 0;
156 }
157 
incfs_free_mount_info(struct mount_info * mi)158 void incfs_free_mount_info(struct mount_info *mi)
159 {
160 	int i;
161 	if (!mi)
162 		return;
163 
164 	flush_delayed_work(&mi->mi_log.ml_wakeup_work);
165 	flush_delayed_work(&mi->mi_zstd_cleanup_work);
166 
167 	dput(mi->mi_index_dir);
168 	dput(mi->mi_incomplete_dir);
169 	path_put(&mi->mi_backing_dir_path);
170 	mutex_destroy(&mi->mi_dir_struct_mutex);
171 	mutex_destroy(&mi->mi_zstd_workspace_mutex);
172 	put_cred(mi->mi_owner);
173 	kfree(mi->mi_log.rl_ring_buf);
174 	for (i = 0; i < ARRAY_SIZE(mi->pseudo_file_xattr); ++i)
175 		kfree(mi->pseudo_file_xattr[i].data);
176 	kfree(mi->mi_per_uid_read_timeouts);
177 	incfs_free_sysfs_node(mi->mi_sysfs_node);
178 	kfree(mi);
179 }
180 
data_file_segment_init(struct data_file_segment * segment)181 static void data_file_segment_init(struct data_file_segment *segment)
182 {
183 	init_waitqueue_head(&segment->new_data_arrival_wq);
184 	init_rwsem(&segment->rwsem);
185 	INIT_LIST_HEAD(&segment->reads_list_head);
186 }
187 
file_id_to_str(incfs_uuid_t id)188 char *file_id_to_str(incfs_uuid_t id)
189 {
190 	char *result = kmalloc(1 + sizeof(id.bytes) * 2, GFP_NOFS);
191 	char *end;
192 
193 	if (!result)
194 		return NULL;
195 
196 	end = bin2hex(result, id.bytes, sizeof(id.bytes));
197 	*end = 0;
198 	return result;
199 }
200 
incfs_lookup_dentry(struct dentry * parent,const char * name)201 struct dentry *incfs_lookup_dentry(struct dentry *parent, const char *name)
202 {
203 	struct inode *inode;
204 	struct dentry *result = NULL;
205 
206 	if (!parent)
207 		return ERR_PTR(-EFAULT);
208 
209 	inode = d_inode(parent);
210 	inode_lock_nested(inode, I_MUTEX_PARENT);
211 	result = lookup_one_len(name, parent, strlen(name));
212 	inode_unlock(inode);
213 
214 	if (IS_ERR(result))
215 		pr_warn("%s err:%ld\n", __func__, PTR_ERR(result));
216 
217 	return result;
218 }
219 
handle_mapped_file(struct mount_info * mi,struct data_file * df)220 static struct data_file *handle_mapped_file(struct mount_info *mi,
221 					    struct data_file *df)
222 {
223 	char *file_id_str;
224 	struct dentry *index_file_dentry;
225 	struct path path;
226 	struct file *bf;
227 	struct data_file *result = NULL;
228 	const struct cred *old_cred;
229 
230 	file_id_str = file_id_to_str(df->df_id);
231 	if (!file_id_str)
232 		return ERR_PTR(-ENOENT);
233 
234 	index_file_dentry = incfs_lookup_dentry(mi->mi_index_dir,
235 						file_id_str);
236 	kfree(file_id_str);
237 	if (!index_file_dentry)
238 		return ERR_PTR(-ENOENT);
239 	if (IS_ERR(index_file_dentry))
240 		return (struct data_file *)index_file_dentry;
241 	if (!d_really_is_positive(index_file_dentry)) {
242 		result = ERR_PTR(-ENOENT);
243 		goto out;
244 	}
245 
246 	path = (struct path) {
247 		.mnt = mi->mi_backing_dir_path.mnt,
248 		.dentry = index_file_dentry
249 	};
250 
251 	old_cred = override_creds(mi->mi_owner);
252 	bf = dentry_open(&path, O_RDWR | O_NOATIME | O_LARGEFILE,
253 			 current_cred());
254 	revert_creds(old_cred);
255 
256 	if (IS_ERR(bf)) {
257 		result = (struct data_file *)bf;
258 		goto out;
259 	}
260 
261 	result = incfs_open_data_file(mi, bf);
262 	fput(bf);
263 	if (IS_ERR(result))
264 		goto out;
265 
266 	result->df_mapped_offset = df->df_metadata_off;
267 
268 out:
269 	dput(index_file_dentry);
270 	return result;
271 }
272 
incfs_open_data_file(struct mount_info * mi,struct file * bf)273 struct data_file *incfs_open_data_file(struct mount_info *mi, struct file *bf)
274 {
275 	struct data_file *df = NULL;
276 	struct backing_file_context *bfc = NULL;
277 	int md_records;
278 	u64 size;
279 	int error = 0;
280 	int i;
281 
282 	if (!bf || !mi)
283 		return ERR_PTR(-EFAULT);
284 
285 	if (!S_ISREG(bf->f_inode->i_mode))
286 		return ERR_PTR(-EBADF);
287 
288 	bfc = incfs_alloc_bfc(mi, bf);
289 	if (IS_ERR(bfc))
290 		return ERR_CAST(bfc);
291 
292 	df = kzalloc(sizeof(*df), GFP_NOFS);
293 	if (!df) {
294 		error = -ENOMEM;
295 		goto out;
296 	}
297 
298 	mutex_init(&df->df_enable_verity);
299 
300 	df->df_backing_file_context = bfc;
301 	df->df_mount_info = mi;
302 	for (i = 0; i < ARRAY_SIZE(df->df_segments); i++)
303 		data_file_segment_init(&df->df_segments[i]);
304 
305 	error = incfs_read_file_header(bfc, &df->df_metadata_off, &df->df_id,
306 				       &size, &df->df_header_flags);
307 
308 	if (error)
309 		goto out;
310 
311 	df->df_size = size;
312 	if (size > 0)
313 		df->df_data_block_count = get_blocks_count_for_size(size);
314 
315 	if (df->df_header_flags & INCFS_FILE_MAPPED) {
316 		struct data_file *mapped_df = handle_mapped_file(mi, df);
317 
318 		incfs_free_data_file(df);
319 		return mapped_df;
320 	}
321 
322 	md_records = incfs_scan_metadata_chain(df);
323 	if (md_records < 0)
324 		error = md_records;
325 
326 out:
327 	if (error) {
328 		incfs_free_bfc(bfc);
329 		if (df)
330 			df->df_backing_file_context = NULL;
331 		incfs_free_data_file(df);
332 		return ERR_PTR(error);
333 	}
334 	return df;
335 }
336 
incfs_free_data_file(struct data_file * df)337 void incfs_free_data_file(struct data_file *df)
338 {
339 	u32 data_blocks_written, hash_blocks_written;
340 
341 	if (!df)
342 		return;
343 
344 	data_blocks_written = atomic_read(&df->df_data_blocks_written);
345 	hash_blocks_written = atomic_read(&df->df_hash_blocks_written);
346 
347 	if (data_blocks_written != df->df_initial_data_blocks_written ||
348 	    hash_blocks_written != df->df_initial_hash_blocks_written) {
349 		struct backing_file_context *bfc = df->df_backing_file_context;
350 		int error = -1;
351 
352 		if (bfc && !mutex_lock_interruptible(&bfc->bc_mutex)) {
353 			error = incfs_write_status_to_backing_file(
354 						df->df_backing_file_context,
355 						df->df_status_offset,
356 						data_blocks_written,
357 						hash_blocks_written);
358 			mutex_unlock(&bfc->bc_mutex);
359 		}
360 
361 		if (error)
362 			/* Nothing can be done, just warn */
363 			pr_warn("incfs: failed to write status to backing file\n");
364 	}
365 
366 	incfs_free_mtree(df->df_hash_tree);
367 	incfs_free_bfc(df->df_backing_file_context);
368 	kfree(df->df_signature);
369 	kfree(df->df_verity_file_digest.data);
370 	kfree(df->df_verity_signature);
371 	mutex_destroy(&df->df_enable_verity);
372 	kfree(df);
373 }
374 
make_inode_ready_for_data_ops(struct mount_info * mi,struct inode * inode,struct file * backing_file)375 int make_inode_ready_for_data_ops(struct mount_info *mi,
376 				struct inode *inode,
377 				struct file *backing_file)
378 {
379 	struct inode_info *node = get_incfs_node(inode);
380 	struct data_file *df = NULL;
381 	int err = 0;
382 
383 	inode_lock(inode);
384 	if (S_ISREG(inode->i_mode)) {
385 		if (!node->n_file) {
386 			df = incfs_open_data_file(mi, backing_file);
387 
388 			if (IS_ERR(df))
389 				err = PTR_ERR(df);
390 			else
391 				node->n_file = df;
392 		}
393 	} else
394 		err = -EBADF;
395 	inode_unlock(inode);
396 	return err;
397 }
398 
incfs_open_dir_file(struct mount_info * mi,struct file * bf)399 struct dir_file *incfs_open_dir_file(struct mount_info *mi, struct file *bf)
400 {
401 	struct dir_file *dir = NULL;
402 
403 	if (!S_ISDIR(bf->f_inode->i_mode))
404 		return ERR_PTR(-EBADF);
405 
406 	dir = kzalloc(sizeof(*dir), GFP_NOFS);
407 	if (!dir)
408 		return ERR_PTR(-ENOMEM);
409 
410 	dir->backing_dir = get_file(bf);
411 	dir->mount_info = mi;
412 	return dir;
413 }
414 
incfs_free_dir_file(struct dir_file * dir)415 void incfs_free_dir_file(struct dir_file *dir)
416 {
417 	if (!dir)
418 		return;
419 	if (dir->backing_dir)
420 		fput(dir->backing_dir);
421 	kfree(dir);
422 }
423 
zstd_decompress_safe(struct mount_info * mi,struct mem_range src,struct mem_range dst)424 static ssize_t zstd_decompress_safe(struct mount_info *mi,
425 				    struct mem_range src, struct mem_range dst)
426 {
427 	ssize_t result;
428 	ZSTD_inBuffer inbuf = {.src = src.data,	.size = src.len};
429 	ZSTD_outBuffer outbuf = {.dst = dst.data, .size = dst.len};
430 
431 	result = mutex_lock_interruptible(&mi->mi_zstd_workspace_mutex);
432 	if (result)
433 		return result;
434 
435 	if (!mi->mi_zstd_stream) {
436 		unsigned int workspace_size = ZSTD_DStreamWorkspaceBound(
437 						INCFS_DATA_FILE_BLOCK_SIZE);
438 		void *workspace = kvmalloc(workspace_size, GFP_NOFS);
439 		ZSTD_DStream *stream;
440 
441 		if (!workspace) {
442 			result = -ENOMEM;
443 			goto out;
444 		}
445 
446 		stream = ZSTD_initDStream(INCFS_DATA_FILE_BLOCK_SIZE, workspace,
447 				  workspace_size);
448 		if (!stream) {
449 			kvfree(workspace);
450 			result = -EIO;
451 			goto out;
452 		}
453 
454 		mi->mi_zstd_workspace = workspace;
455 		mi->mi_zstd_stream = stream;
456 	}
457 
458 	result = ZSTD_decompressStream(mi->mi_zstd_stream, &outbuf, &inbuf) ?
459 		-EBADMSG : outbuf.pos;
460 
461 	mod_delayed_work(system_wq, &mi->mi_zstd_cleanup_work,
462 			 msecs_to_jiffies(5000));
463 
464 out:
465 	mutex_unlock(&mi->mi_zstd_workspace_mutex);
466 	return result;
467 }
468 
decompress(struct mount_info * mi,struct mem_range src,struct mem_range dst,int alg)469 static ssize_t decompress(struct mount_info *mi,
470 			  struct mem_range src, struct mem_range dst, int alg)
471 {
472 	int result;
473 
474 	switch (alg) {
475 	case INCFS_BLOCK_COMPRESSED_LZ4:
476 		result = LZ4_decompress_safe(src.data, dst.data, src.len,
477 					     dst.len);
478 		if (result < 0)
479 			return -EBADMSG;
480 		return result;
481 
482 	case INCFS_BLOCK_COMPRESSED_ZSTD:
483 		return zstd_decompress_safe(mi, src, dst);
484 
485 	default:
486 		WARN_ON(true);
487 		return -EOPNOTSUPP;
488 	}
489 }
490 
log_read_one_record(struct read_log * rl,struct read_log_state * rs)491 static void log_read_one_record(struct read_log *rl, struct read_log_state *rs)
492 {
493 	union log_record *record =
494 		(union log_record *)((u8 *)rl->rl_ring_buf + rs->next_offset);
495 	size_t record_size;
496 
497 	switch (record->full_record.type) {
498 	case FULL:
499 		rs->base_record = record->full_record;
500 		record_size = sizeof(record->full_record);
501 		break;
502 
503 	case SAME_FILE:
504 		rs->base_record.block_index =
505 			record->same_file.block_index;
506 		rs->base_record.absolute_ts_us +=
507 			record->same_file.relative_ts_us;
508 		rs->base_record.uid = record->same_file.uid;
509 		record_size = sizeof(record->same_file);
510 		break;
511 
512 	case SAME_FILE_CLOSE_BLOCK:
513 		rs->base_record.block_index +=
514 			record->same_file_close_block.block_index_delta;
515 		rs->base_record.absolute_ts_us +=
516 			record->same_file_close_block.relative_ts_us;
517 		record_size = sizeof(record->same_file_close_block);
518 		break;
519 
520 	case SAME_FILE_CLOSE_BLOCK_SHORT:
521 		rs->base_record.block_index +=
522 			record->same_file_close_block_short.block_index_delta;
523 		rs->base_record.absolute_ts_us +=
524 		   record->same_file_close_block_short.relative_ts_tens_us * 10;
525 		record_size = sizeof(record->same_file_close_block_short);
526 		break;
527 
528 	case SAME_FILE_NEXT_BLOCK:
529 		++rs->base_record.block_index;
530 		rs->base_record.absolute_ts_us +=
531 			record->same_file_next_block.relative_ts_us;
532 		record_size = sizeof(record->same_file_next_block);
533 		break;
534 
535 	case SAME_FILE_NEXT_BLOCK_SHORT:
536 		++rs->base_record.block_index;
537 		rs->base_record.absolute_ts_us +=
538 		    record->same_file_next_block_short.relative_ts_tens_us * 10;
539 		record_size = sizeof(record->same_file_next_block_short);
540 		break;
541 	}
542 
543 	rs->next_offset += record_size;
544 	if (rs->next_offset > rl->rl_size - sizeof(*record)) {
545 		rs->next_offset = 0;
546 		++rs->current_pass_no;
547 	}
548 	++rs->current_record_no;
549 }
550 
log_block_read(struct mount_info * mi,incfs_uuid_t * id,int block_index)551 static void log_block_read(struct mount_info *mi, incfs_uuid_t *id,
552 			   int block_index)
553 {
554 	struct read_log *log = &mi->mi_log;
555 	struct read_log_state *head, *tail;
556 	s64 now_us;
557 	s64 relative_us;
558 	union log_record record;
559 	size_t record_size;
560 	uid_t uid = current_uid().val;
561 	int block_delta;
562 	bool same_file, same_uid;
563 	bool next_block, close_block, very_close_block;
564 	bool close_time, very_close_time, very_very_close_time;
565 
566 	/*
567 	 * This may read the old value, but it's OK to delay the logging start
568 	 * right after the configuration update.
569 	 */
570 	if (READ_ONCE(log->rl_size) == 0)
571 		return;
572 
573 	now_us = ktime_to_us(ktime_get());
574 
575 	spin_lock(&log->rl_lock);
576 	if (log->rl_size == 0) {
577 		spin_unlock(&log->rl_lock);
578 		return;
579 	}
580 
581 	head = &log->rl_head;
582 	tail = &log->rl_tail;
583 	relative_us = now_us - head->base_record.absolute_ts_us;
584 
585 	same_file = !memcmp(id, &head->base_record.file_id,
586 			    sizeof(incfs_uuid_t));
587 	same_uid = uid == head->base_record.uid;
588 
589 	block_delta = block_index - head->base_record.block_index;
590 	next_block = block_delta == 1;
591 	very_close_block = block_delta >= S8_MIN && block_delta <= S8_MAX;
592 	close_block = block_delta >= S16_MIN && block_delta <= S16_MAX;
593 
594 	very_very_close_time = relative_us < (1 << 5) * 10;
595 	very_close_time = relative_us < (1 << 13);
596 	close_time = relative_us < (1 << 16);
597 
598 	if (same_file && same_uid && next_block && very_very_close_time) {
599 		record.same_file_next_block_short =
600 			(struct same_file_next_block_short){
601 				.type = SAME_FILE_NEXT_BLOCK_SHORT,
602 				.relative_ts_tens_us = div_s64(relative_us, 10),
603 			};
604 		record_size = sizeof(struct same_file_next_block_short);
605 	} else if (same_file && same_uid && next_block && very_close_time) {
606 		record.same_file_next_block = (struct same_file_next_block){
607 			.type = SAME_FILE_NEXT_BLOCK,
608 			.relative_ts_us = relative_us,
609 		};
610 		record_size = sizeof(struct same_file_next_block);
611 	} else if (same_file && same_uid && very_close_block &&
612 		   very_very_close_time) {
613 		record.same_file_close_block_short =
614 			(struct same_file_close_block_short){
615 				.type = SAME_FILE_CLOSE_BLOCK_SHORT,
616 				.relative_ts_tens_us = div_s64(relative_us, 10),
617 				.block_index_delta = block_delta,
618 			};
619 		record_size = sizeof(struct same_file_close_block_short);
620 	} else if (same_file && same_uid && close_block && very_close_time) {
621 		record.same_file_close_block = (struct same_file_close_block){
622 				.type = SAME_FILE_CLOSE_BLOCK,
623 				.relative_ts_us = relative_us,
624 				.block_index_delta = block_delta,
625 			};
626 		record_size = sizeof(struct same_file_close_block);
627 	} else if (same_file && close_time) {
628 		record.same_file = (struct same_file){
629 			.type = SAME_FILE,
630 			.block_index = block_index,
631 			.relative_ts_us = relative_us,
632 			.uid = uid,
633 		};
634 		record_size = sizeof(struct same_file);
635 	} else {
636 		record.full_record = (struct full_record){
637 			.type = FULL,
638 			.block_index = block_index,
639 			.file_id = *id,
640 			.absolute_ts_us = now_us,
641 			.uid = uid,
642 		};
643 		head->base_record.file_id = *id;
644 		record_size = sizeof(struct full_record);
645 	}
646 
647 	head->base_record.block_index = block_index;
648 	head->base_record.absolute_ts_us = now_us;
649 
650 	/* Advance tail beyond area we are going to overwrite */
651 	while (tail->current_pass_no < head->current_pass_no &&
652 	       tail->next_offset < head->next_offset + record_size)
653 		log_read_one_record(log, tail);
654 
655 	memcpy(((u8 *)log->rl_ring_buf) + head->next_offset, &record,
656 	       record_size);
657 	head->next_offset += record_size;
658 	if (head->next_offset > log->rl_size - sizeof(record)) {
659 		head->next_offset = 0;
660 		++head->current_pass_no;
661 	}
662 	++head->current_record_no;
663 
664 	spin_unlock(&log->rl_lock);
665 	schedule_delayed_work(&log->ml_wakeup_work, msecs_to_jiffies(16));
666 }
667 
validate_hash_tree(struct backing_file_context * bfc,struct file * f,int block_index,struct mem_range data,u8 * buf)668 static int validate_hash_tree(struct backing_file_context *bfc, struct file *f,
669 			      int block_index, struct mem_range data, u8 *buf)
670 {
671 	struct data_file *df = get_incfs_data_file(f);
672 	u8 stored_digest[INCFS_MAX_HASH_SIZE] = {};
673 	u8 calculated_digest[INCFS_MAX_HASH_SIZE] = {};
674 	struct mtree *tree = NULL;
675 	struct incfs_df_signature *sig = NULL;
676 	int digest_size;
677 	int hash_block_index = block_index;
678 	int lvl;
679 	int res;
680 	loff_t hash_block_offset[INCFS_MAX_MTREE_LEVELS];
681 	size_t hash_offset_in_block[INCFS_MAX_MTREE_LEVELS];
682 	int hash_per_block;
683 	pgoff_t file_pages;
684 
685 	/*
686 	 * Memory barrier to make sure tree is fully present if added via enable
687 	 * verity
688 	 */
689 	tree = smp_load_acquire(&df->df_hash_tree);
690 	sig = df->df_signature;
691 	if (!tree || !sig)
692 		return 0;
693 
694 	digest_size = tree->alg->digest_size;
695 	hash_per_block = INCFS_DATA_FILE_BLOCK_SIZE / digest_size;
696 	for (lvl = 0; lvl < tree->depth; lvl++) {
697 		loff_t lvl_off = tree->hash_level_suboffset[lvl];
698 
699 		hash_block_offset[lvl] =
700 			lvl_off + round_down(hash_block_index * digest_size,
701 					     INCFS_DATA_FILE_BLOCK_SIZE);
702 		hash_offset_in_block[lvl] = hash_block_index * digest_size %
703 					    INCFS_DATA_FILE_BLOCK_SIZE;
704 		hash_block_index /= hash_per_block;
705 	}
706 
707 	memcpy(stored_digest, tree->root_hash, digest_size);
708 
709 	file_pages = DIV_ROUND_UP(df->df_size, INCFS_DATA_FILE_BLOCK_SIZE);
710 	for (lvl = tree->depth - 1; lvl >= 0; lvl--) {
711 		pgoff_t hash_page =
712 			file_pages +
713 			hash_block_offset[lvl] / INCFS_DATA_FILE_BLOCK_SIZE;
714 		struct page *page = find_get_page_flags(
715 			f->f_inode->i_mapping, hash_page, FGP_ACCESSED);
716 
717 		if (page && PageChecked(page)) {
718 			u8 *addr = kmap_atomic(page);
719 
720 			memcpy(stored_digest, addr + hash_offset_in_block[lvl],
721 			       digest_size);
722 			kunmap_atomic(addr);
723 			put_page(page);
724 			continue;
725 		}
726 
727 		if (page)
728 			put_page(page);
729 
730 		res = incfs_kread(bfc, buf, INCFS_DATA_FILE_BLOCK_SIZE,
731 				  hash_block_offset[lvl] + sig->hash_offset);
732 		if (res < 0)
733 			return res;
734 		if (res != INCFS_DATA_FILE_BLOCK_SIZE)
735 			return -EIO;
736 		res = incfs_calc_digest(tree->alg,
737 					range(buf, INCFS_DATA_FILE_BLOCK_SIZE),
738 					range(calculated_digest, digest_size));
739 		if (res)
740 			return res;
741 
742 		if (memcmp(stored_digest, calculated_digest, digest_size)) {
743 			int i;
744 			bool zero = true;
745 
746 			pr_warn("incfs: Hash mismatch lvl:%d blk:%d\n",
747 				lvl, block_index);
748 			for (i = 0; i < digest_size; i++)
749 				if (stored_digest[i]) {
750 					zero = false;
751 					break;
752 				}
753 
754 			if (zero)
755 				pr_debug("Note saved_digest all zero - did you forget to load the hashes?\n");
756 			return -EBADMSG;
757 		}
758 
759 		memcpy(stored_digest, buf + hash_offset_in_block[lvl],
760 		       digest_size);
761 
762 		page = grab_cache_page(f->f_inode->i_mapping, hash_page);
763 		if (page) {
764 			u8 *addr = kmap_atomic(page);
765 
766 			memcpy(addr, buf, INCFS_DATA_FILE_BLOCK_SIZE);
767 			kunmap_atomic(addr);
768 			SetPageChecked(page);
769 			unlock_page(page);
770 			put_page(page);
771 		}
772 	}
773 
774 	res = incfs_calc_digest(tree->alg, data,
775 				range(calculated_digest, digest_size));
776 	if (res)
777 		return res;
778 
779 	if (memcmp(stored_digest, calculated_digest, digest_size)) {
780 		pr_debug("Leaf hash mismatch blk:%d\n", block_index);
781 		return -EBADMSG;
782 	}
783 
784 	return 0;
785 }
786 
get_file_segment(struct data_file * df,int block_index)787 static struct data_file_segment *get_file_segment(struct data_file *df,
788 						  int block_index)
789 {
790 	int seg_idx = block_index % ARRAY_SIZE(df->df_segments);
791 
792 	return &df->df_segments[seg_idx];
793 }
794 
is_data_block_present(struct data_file_block * block)795 static bool is_data_block_present(struct data_file_block *block)
796 {
797 	return (block->db_backing_file_data_offset != 0) &&
798 	       (block->db_stored_size != 0);
799 }
800 
convert_data_file_block(struct incfs_blockmap_entry * bme,struct data_file_block * res_block)801 static void convert_data_file_block(struct incfs_blockmap_entry *bme,
802 				    struct data_file_block *res_block)
803 {
804 	u16 flags = le16_to_cpu(bme->me_flags);
805 
806 	res_block->db_backing_file_data_offset =
807 		le16_to_cpu(bme->me_data_offset_hi);
808 	res_block->db_backing_file_data_offset <<= 32;
809 	res_block->db_backing_file_data_offset |=
810 		le32_to_cpu(bme->me_data_offset_lo);
811 	res_block->db_stored_size = le16_to_cpu(bme->me_data_size);
812 	res_block->db_comp_alg = flags & INCFS_BLOCK_COMPRESSED_MASK;
813 }
814 
get_data_file_block(struct data_file * df,int index,struct data_file_block * res_block)815 static int get_data_file_block(struct data_file *df, int index,
816 			       struct data_file_block *res_block)
817 {
818 	struct incfs_blockmap_entry bme = {};
819 	struct backing_file_context *bfc = NULL;
820 	loff_t blockmap_off = 0;
821 	int error = 0;
822 
823 	if (!df || !res_block)
824 		return -EFAULT;
825 
826 	blockmap_off = df->df_blockmap_off;
827 	bfc = df->df_backing_file_context;
828 
829 	if (index < 0 || blockmap_off == 0)
830 		return -EINVAL;
831 
832 	error = incfs_read_blockmap_entry(bfc, index, blockmap_off, &bme);
833 	if (error)
834 		return error;
835 
836 	convert_data_file_block(&bme, res_block);
837 	return 0;
838 }
839 
check_room_for_one_range(u32 size,u32 size_out)840 static int check_room_for_one_range(u32 size, u32 size_out)
841 {
842 	if (size_out + sizeof(struct incfs_filled_range) > size)
843 		return -ERANGE;
844 	return 0;
845 }
846 
copy_one_range(struct incfs_filled_range * range,void __user * buffer,u32 size,u32 * size_out)847 static int copy_one_range(struct incfs_filled_range *range, void __user *buffer,
848 			  u32 size, u32 *size_out)
849 {
850 	int error = check_room_for_one_range(size, *size_out);
851 	if (error)
852 		return error;
853 
854 	if (copy_to_user(((char __user *)buffer) + *size_out, range,
855 				sizeof(*range)))
856 		return -EFAULT;
857 
858 	*size_out += sizeof(*range);
859 	return 0;
860 }
861 
862 #define READ_BLOCKMAP_ENTRIES 512
incfs_get_filled_blocks(struct data_file * df,struct incfs_file_data * fd,struct incfs_get_filled_blocks_args * arg)863 int incfs_get_filled_blocks(struct data_file *df,
864 			    struct incfs_file_data *fd,
865 			    struct incfs_get_filled_blocks_args *arg)
866 {
867 	int error = 0;
868 	bool in_range = false;
869 	struct incfs_filled_range range;
870 	void __user *buffer = u64_to_user_ptr(arg->range_buffer);
871 	u32 size = arg->range_buffer_size;
872 	u32 end_index =
873 		arg->end_index ? arg->end_index : df->df_total_block_count;
874 	u32 *size_out = &arg->range_buffer_size_out;
875 	int i = READ_BLOCKMAP_ENTRIES - 1;
876 	int entries_read = 0;
877 	struct incfs_blockmap_entry *bme;
878 	int data_blocks_filled = 0;
879 	int hash_blocks_filled = 0;
880 
881 	*size_out = 0;
882 	if (end_index > df->df_total_block_count)
883 		end_index = df->df_total_block_count;
884 	arg->total_blocks_out = df->df_total_block_count;
885 	arg->data_blocks_out = df->df_data_block_count;
886 
887 	if (atomic_read(&df->df_data_blocks_written) ==
888 	    df->df_data_block_count) {
889 		pr_debug("File marked full, fast get_filled_blocks");
890 		if (arg->start_index > end_index) {
891 			arg->index_out = arg->start_index;
892 			return 0;
893 		}
894 		arg->index_out = arg->start_index;
895 
896 		error = check_room_for_one_range(size, *size_out);
897 		if (error)
898 			return error;
899 
900 		range = (struct incfs_filled_range){
901 			.begin = arg->start_index,
902 			.end = end_index,
903 		};
904 
905 		error = copy_one_range(&range, buffer, size, size_out);
906 		if (error)
907 			return error;
908 		arg->index_out = end_index;
909 		return 0;
910 	}
911 
912 	bme = kzalloc(sizeof(*bme) * READ_BLOCKMAP_ENTRIES,
913 		      GFP_NOFS | __GFP_COMP);
914 	if (!bme)
915 		return -ENOMEM;
916 
917 	for (arg->index_out = arg->start_index; arg->index_out < end_index;
918 	     ++arg->index_out) {
919 		struct data_file_block dfb;
920 
921 		if (++i == READ_BLOCKMAP_ENTRIES) {
922 			entries_read = incfs_read_blockmap_entries(
923 				df->df_backing_file_context, bme,
924 				arg->index_out, READ_BLOCKMAP_ENTRIES,
925 				df->df_blockmap_off);
926 			if (entries_read < 0) {
927 				error = entries_read;
928 				break;
929 			}
930 
931 			i = 0;
932 		}
933 
934 		if (i >= entries_read) {
935 			error = -EIO;
936 			break;
937 		}
938 
939 		convert_data_file_block(bme + i, &dfb);
940 
941 		if (is_data_block_present(&dfb)) {
942 			if (arg->index_out >= df->df_data_block_count)
943 				++hash_blocks_filled;
944 			else
945 				++data_blocks_filled;
946 		}
947 
948 		if (is_data_block_present(&dfb) == in_range)
949 			continue;
950 
951 		if (!in_range) {
952 			error = check_room_for_one_range(size, *size_out);
953 			if (error)
954 				break;
955 			in_range = true;
956 			range.begin = arg->index_out;
957 		} else {
958 			range.end = arg->index_out;
959 			error = copy_one_range(&range, buffer, size, size_out);
960 			if (error) {
961 				/* there will be another try out of the loop,
962 				 * it will reset the index_out if it fails too
963 				 */
964 				break;
965 			}
966 			in_range = false;
967 		}
968 	}
969 
970 	if (in_range) {
971 		range.end = arg->index_out;
972 		error = copy_one_range(&range, buffer, size, size_out);
973 		if (error)
974 			arg->index_out = range.begin;
975 	}
976 
977 	if (arg->start_index == 0) {
978 		fd->fd_get_block_pos = 0;
979 		fd->fd_filled_data_blocks = 0;
980 		fd->fd_filled_hash_blocks = 0;
981 	}
982 
983 	if (arg->start_index == fd->fd_get_block_pos) {
984 		fd->fd_get_block_pos = arg->index_out + 1;
985 		fd->fd_filled_data_blocks += data_blocks_filled;
986 		fd->fd_filled_hash_blocks += hash_blocks_filled;
987 	}
988 
989 	if (fd->fd_get_block_pos == df->df_total_block_count + 1) {
990 		if (fd->fd_filled_data_blocks >
991 		   atomic_read(&df->df_data_blocks_written))
992 			atomic_set(&df->df_data_blocks_written,
993 				   fd->fd_filled_data_blocks);
994 
995 		if (fd->fd_filled_hash_blocks >
996 		   atomic_read(&df->df_hash_blocks_written))
997 			atomic_set(&df->df_hash_blocks_written,
998 				   fd->fd_filled_hash_blocks);
999 	}
1000 
1001 	kfree(bme);
1002 	return error;
1003 }
1004 
is_read_done(struct pending_read * read)1005 static bool is_read_done(struct pending_read *read)
1006 {
1007 	return atomic_read_acquire(&read->done) != 0;
1008 }
1009 
set_read_done(struct pending_read * read)1010 static void set_read_done(struct pending_read *read)
1011 {
1012 	atomic_set_release(&read->done, 1);
1013 }
1014 
1015 /*
1016  * Notifies a given data file about pending read from a given block.
1017  * Returns a new pending read entry.
1018  */
add_pending_read(struct data_file * df,int block_index)1019 static struct pending_read *add_pending_read(struct data_file *df,
1020 					     int block_index)
1021 {
1022 	struct pending_read *result = NULL;
1023 	struct data_file_segment *segment = NULL;
1024 	struct mount_info *mi = NULL;
1025 
1026 	segment = get_file_segment(df, block_index);
1027 	mi = df->df_mount_info;
1028 
1029 	result = kzalloc(sizeof(*result), GFP_NOFS);
1030 	if (!result)
1031 		return NULL;
1032 
1033 	result->file_id = df->df_id;
1034 	result->block_index = block_index;
1035 	result->timestamp_us = ktime_to_us(ktime_get());
1036 	result->uid = current_uid().val;
1037 
1038 	spin_lock(&mi->pending_read_lock);
1039 
1040 	result->serial_number = ++mi->mi_last_pending_read_number;
1041 	mi->mi_pending_reads_count++;
1042 
1043 	list_add_rcu(&result->mi_reads_list, &mi->mi_reads_list_head);
1044 	list_add_rcu(&result->segment_reads_list, &segment->reads_list_head);
1045 
1046 	spin_unlock(&mi->pending_read_lock);
1047 
1048 	wake_up_all(&mi->mi_pending_reads_notif_wq);
1049 	return result;
1050 }
1051 
free_pending_read_entry(struct rcu_head * entry)1052 static void free_pending_read_entry(struct rcu_head *entry)
1053 {
1054 	struct pending_read *read;
1055 
1056 	read = container_of(entry, struct pending_read, rcu);
1057 
1058 	kfree(read);
1059 }
1060 
1061 /* Notifies a given data file that pending read is completed. */
remove_pending_read(struct data_file * df,struct pending_read * read)1062 static void remove_pending_read(struct data_file *df, struct pending_read *read)
1063 {
1064 	struct mount_info *mi = NULL;
1065 
1066 	if (!df || !read) {
1067 		WARN_ON(!df);
1068 		WARN_ON(!read);
1069 		return;
1070 	}
1071 
1072 	mi = df->df_mount_info;
1073 
1074 	spin_lock(&mi->pending_read_lock);
1075 
1076 	list_del_rcu(&read->mi_reads_list);
1077 	list_del_rcu(&read->segment_reads_list);
1078 
1079 	mi->mi_pending_reads_count--;
1080 
1081 	spin_unlock(&mi->pending_read_lock);
1082 
1083 	/* Don't free. Wait for readers */
1084 	call_rcu(&read->rcu, free_pending_read_entry);
1085 }
1086 
notify_pending_reads(struct mount_info * mi,struct data_file_segment * segment,int index)1087 static void notify_pending_reads(struct mount_info *mi,
1088 		struct data_file_segment *segment,
1089 		int index)
1090 {
1091 	struct pending_read *entry = NULL;
1092 
1093 	/* Notify pending reads waiting for this block. */
1094 	rcu_read_lock();
1095 	list_for_each_entry_rcu(entry, &segment->reads_list_head,
1096 						segment_reads_list) {
1097 		if (entry->block_index == index)
1098 			set_read_done(entry);
1099 	}
1100 	rcu_read_unlock();
1101 	wake_up_all(&segment->new_data_arrival_wq);
1102 
1103 	atomic_inc(&mi->mi_blocks_written);
1104 	wake_up_all(&mi->mi_blocks_written_notif_wq);
1105 }
1106 
usleep_interruptible(u32 us)1107 static int usleep_interruptible(u32 us)
1108 {
1109 	/* See:
1110 	 * https://www.kernel.org/doc/Documentation/timers/timers-howto.txt
1111 	 * for explanation
1112 	 */
1113 	if (us < 10) {
1114 		udelay(us);
1115 		return 0;
1116 	} else if (us < 20000) {
1117 		usleep_range(us, us + us / 10);
1118 		return 0;
1119 	} else
1120 		return msleep_interruptible(us / 1000);
1121 }
1122 
wait_for_data_block(struct data_file * df,int block_index,struct data_file_block * res_block,struct incfs_read_data_file_timeouts * timeouts)1123 static int wait_for_data_block(struct data_file *df, int block_index,
1124 			       struct data_file_block *res_block,
1125 			       struct incfs_read_data_file_timeouts *timeouts)
1126 {
1127 	struct data_file_block block = {};
1128 	struct data_file_segment *segment = NULL;
1129 	struct pending_read *read = NULL;
1130 	struct mount_info *mi = NULL;
1131 	int error;
1132 	int wait_res = 0;
1133 	unsigned int delayed_pending_us = 0, delayed_min_us = 0;
1134 	bool delayed_pending = false;
1135 
1136 	if (!df || !res_block)
1137 		return -EFAULT;
1138 
1139 	if (block_index < 0 || block_index >= df->df_data_block_count)
1140 		return -EINVAL;
1141 
1142 	if (df->df_blockmap_off <= 0 || !df->df_mount_info)
1143 		return -ENODATA;
1144 
1145 	mi = df->df_mount_info;
1146 	segment = get_file_segment(df, block_index);
1147 
1148 	error = down_read_killable(&segment->rwsem);
1149 	if (error)
1150 		return error;
1151 
1152 	/* Look up the given block */
1153 	error = get_data_file_block(df, block_index, &block);
1154 
1155 	up_read(&segment->rwsem);
1156 
1157 	if (error)
1158 		return error;
1159 
1160 	/* If the block was found, just return it. No need to wait. */
1161 	if (is_data_block_present(&block)) {
1162 		*res_block = block;
1163 		if (timeouts && timeouts->min_time_us) {
1164 			delayed_min_us = timeouts->min_time_us;
1165 			error = usleep_interruptible(delayed_min_us);
1166 			goto out;
1167 		}
1168 		return 0;
1169 	} else {
1170 		/* If it's not found, create a pending read */
1171 		if (timeouts && timeouts->max_pending_time_us) {
1172 			read = add_pending_read(df, block_index);
1173 			if (!read)
1174 				return -ENOMEM;
1175 		} else {
1176 			log_block_read(mi, &df->df_id, block_index);
1177 			return -ETIME;
1178 		}
1179 	}
1180 
1181 	/* Rest of function only applies if timeouts != NULL */
1182 	if (!timeouts) {
1183 		pr_warn("incfs: timeouts unexpectedly NULL\n");
1184 		return -EFSCORRUPTED;
1185 	}
1186 
1187 	/* Wait for notifications about block's arrival */
1188 	wait_res =
1189 		wait_event_interruptible_timeout(segment->new_data_arrival_wq,
1190 			(is_read_done(read)),
1191 			usecs_to_jiffies(timeouts->max_pending_time_us));
1192 
1193 	/* Woke up, the pending read is no longer needed. */
1194 	remove_pending_read(df, read);
1195 
1196 	if (wait_res == 0) {
1197 		/* Wait has timed out */
1198 		log_block_read(mi, &df->df_id, block_index);
1199 		return -ETIME;
1200 	}
1201 	if (wait_res < 0) {
1202 		/*
1203 		 * Only ERESTARTSYS is really expected here when a signal
1204 		 * comes while we wait.
1205 		 */
1206 		return wait_res;
1207 	}
1208 
1209 	delayed_pending = true;
1210 	delayed_pending_us = timeouts->max_pending_time_us -
1211 				jiffies_to_usecs(wait_res);
1212 	if (timeouts->min_pending_time_us > delayed_pending_us) {
1213 		delayed_min_us = timeouts->min_pending_time_us -
1214 					     delayed_pending_us;
1215 		error = usleep_interruptible(delayed_min_us);
1216 		if (error)
1217 			return error;
1218 	}
1219 
1220 	error = down_read_killable(&segment->rwsem);
1221 	if (error)
1222 		return error;
1223 
1224 	/*
1225 	 * Re-read blocks info now, it has just arrived and
1226 	 * should be available.
1227 	 */
1228 	error = get_data_file_block(df, block_index, &block);
1229 	if (!error) {
1230 		if (is_data_block_present(&block))
1231 			*res_block = block;
1232 		else {
1233 			/*
1234 			 * Somehow wait finished successfully but block still
1235 			 * can't be found. It's not normal.
1236 			 */
1237 			pr_warn("incfs: Wait succeeded but block not found.\n");
1238 			error = -ENODATA;
1239 		}
1240 	}
1241 	up_read(&segment->rwsem);
1242 
1243 out:
1244 	if (error)
1245 		return error;
1246 
1247 	if (delayed_pending) {
1248 		mi->mi_reads_delayed_pending++;
1249 		mi->mi_reads_delayed_pending_us +=
1250 			delayed_pending_us;
1251 	}
1252 
1253 	if (delayed_min_us) {
1254 		mi->mi_reads_delayed_min++;
1255 		mi->mi_reads_delayed_min_us += delayed_min_us;
1256 	}
1257 
1258 	return 0;
1259 }
1260 
incfs_update_sysfs_error(struct file * file,int index,int result,struct mount_info * mi,struct data_file * df)1261 static int incfs_update_sysfs_error(struct file *file, int index, int result,
1262 				struct mount_info *mi, struct data_file *df)
1263 {
1264 	int error;
1265 
1266 	if (result >= 0)
1267 		return 0;
1268 
1269 	error = mutex_lock_interruptible(&mi->mi_le_mutex);
1270 	if (error)
1271 		return error;
1272 
1273 	mi->mi_le_file_id = df->df_id;
1274 	mi->mi_le_time_us = ktime_to_us(ktime_get());
1275 	mi->mi_le_page = index;
1276 	mi->mi_le_errno = result;
1277 	mi->mi_le_uid = current_uid().val;
1278 	mutex_unlock(&mi->mi_le_mutex);
1279 
1280 	return 0;
1281 }
1282 
incfs_read_data_file_block(struct mem_range dst,struct file * f,int index,struct mem_range tmp,struct incfs_read_data_file_timeouts * timeouts)1283 ssize_t incfs_read_data_file_block(struct mem_range dst, struct file *f,
1284 			int index, struct mem_range tmp,
1285 			struct incfs_read_data_file_timeouts *timeouts)
1286 {
1287 	loff_t pos;
1288 	ssize_t result;
1289 	size_t bytes_to_read;
1290 	struct mount_info *mi = NULL;
1291 	struct backing_file_context *bfc = NULL;
1292 	struct data_file_block block = {};
1293 	struct data_file *df = get_incfs_data_file(f);
1294 
1295 	if (!dst.data || !df || !tmp.data)
1296 		return -EFAULT;
1297 
1298 	if (tmp.len < 2 * INCFS_DATA_FILE_BLOCK_SIZE)
1299 		return -ERANGE;
1300 
1301 	mi = df->df_mount_info;
1302 	bfc = df->df_backing_file_context;
1303 
1304 	result = wait_for_data_block(df, index, &block, timeouts);
1305 	if (result < 0)
1306 		goto out;
1307 
1308 	pos = block.db_backing_file_data_offset;
1309 	if (block.db_comp_alg == COMPRESSION_NONE) {
1310 		bytes_to_read = min(dst.len, block.db_stored_size);
1311 		result = incfs_kread(bfc, dst.data, bytes_to_read, pos);
1312 
1313 		/* Some data was read, but not enough */
1314 		if (result >= 0 && result != bytes_to_read)
1315 			result = -EIO;
1316 	} else {
1317 		bytes_to_read = min(tmp.len, block.db_stored_size);
1318 		result = incfs_kread(bfc, tmp.data, bytes_to_read, pos);
1319 		if (result == bytes_to_read) {
1320 			result =
1321 				decompress(mi, range(tmp.data, bytes_to_read),
1322 					   dst, block.db_comp_alg);
1323 			if (result < 0) {
1324 				const char *name =
1325 				    bfc->bc_file->f_path.dentry->d_name.name;
1326 
1327 				pr_warn_once("incfs: Decompression error. %s",
1328 					     name);
1329 			}
1330 		} else if (result >= 0) {
1331 			/* Some data was read, but not enough */
1332 			result = -EIO;
1333 		}
1334 	}
1335 
1336 	if (result > 0) {
1337 		int err = validate_hash_tree(bfc, f, index, dst, tmp.data);
1338 
1339 		if (err < 0)
1340 			result = err;
1341 	}
1342 
1343 	if (result >= 0)
1344 		log_block_read(mi, &df->df_id, index);
1345 
1346 out:
1347 	if (result == -ETIME)
1348 		mi->mi_reads_failed_timed_out++;
1349 	else if (result == -EBADMSG)
1350 		mi->mi_reads_failed_hash_verification++;
1351 	else if (result < 0)
1352 		mi->mi_reads_failed_other++;
1353 
1354 	incfs_update_sysfs_error(f, index, result, mi, df);
1355 
1356 	return result;
1357 }
1358 
incfs_read_merkle_tree_blocks(struct mem_range dst,struct data_file * df,size_t offset)1359 ssize_t incfs_read_merkle_tree_blocks(struct mem_range dst,
1360 				      struct data_file *df, size_t offset)
1361 {
1362 	struct backing_file_context *bfc = NULL;
1363 	struct incfs_df_signature *sig = NULL;
1364 	size_t to_read = dst.len;
1365 
1366 	if (!dst.data || !df)
1367 		return -EFAULT;
1368 
1369 	sig = df->df_signature;
1370 	bfc = df->df_backing_file_context;
1371 
1372 	if (offset > sig->hash_size)
1373 		return -ERANGE;
1374 
1375 	if (offset + to_read > sig->hash_size)
1376 		to_read = sig->hash_size - offset;
1377 
1378 	return incfs_kread(bfc, dst.data, to_read, sig->hash_offset + offset);
1379 }
1380 
incfs_process_new_data_block(struct data_file * df,struct incfs_fill_block * block,u8 * data)1381 int incfs_process_new_data_block(struct data_file *df,
1382 				 struct incfs_fill_block *block, u8 *data)
1383 {
1384 	struct mount_info *mi = NULL;
1385 	struct backing_file_context *bfc = NULL;
1386 	struct data_file_segment *segment = NULL;
1387 	struct data_file_block existing_block = {};
1388 	u16 flags = 0;
1389 	int error = 0;
1390 
1391 	if (!df || !block)
1392 		return -EFAULT;
1393 
1394 	bfc = df->df_backing_file_context;
1395 	mi = df->df_mount_info;
1396 
1397 	if (block->block_index >= df->df_data_block_count)
1398 		return -ERANGE;
1399 
1400 	segment = get_file_segment(df, block->block_index);
1401 	if (!segment)
1402 		return -EFAULT;
1403 
1404 	if (block->compression == COMPRESSION_LZ4)
1405 		flags |= INCFS_BLOCK_COMPRESSED_LZ4;
1406 	else if (block->compression == COMPRESSION_ZSTD)
1407 		flags |= INCFS_BLOCK_COMPRESSED_ZSTD;
1408 	else if (block->compression)
1409 		return -EINVAL;
1410 
1411 	error = down_read_killable(&segment->rwsem);
1412 	if (error)
1413 		return error;
1414 
1415 	error = get_data_file_block(df, block->block_index, &existing_block);
1416 
1417 	up_read(&segment->rwsem);
1418 
1419 	if (error)
1420 		return error;
1421 	if (is_data_block_present(&existing_block)) {
1422 		/* Block is already present, nothing to do here */
1423 		return 0;
1424 	}
1425 
1426 	error = down_write_killable(&segment->rwsem);
1427 	if (error)
1428 		return error;
1429 
1430 	error = mutex_lock_interruptible(&bfc->bc_mutex);
1431 	if (!error) {
1432 		error = incfs_write_data_block_to_backing_file(
1433 			bfc, range(data, block->data_len), block->block_index,
1434 			df->df_blockmap_off, flags);
1435 		mutex_unlock(&bfc->bc_mutex);
1436 	}
1437 	if (!error) {
1438 		notify_pending_reads(mi, segment, block->block_index);
1439 		atomic_inc(&df->df_data_blocks_written);
1440 	}
1441 
1442 	up_write(&segment->rwsem);
1443 
1444 	if (error)
1445 		pr_debug("%d error: %d\n", block->block_index, error);
1446 	return error;
1447 }
1448 
incfs_read_file_signature(struct data_file * df,struct mem_range dst)1449 int incfs_read_file_signature(struct data_file *df, struct mem_range dst)
1450 {
1451 	struct backing_file_context *bfc = df->df_backing_file_context;
1452 	struct incfs_df_signature *sig;
1453 	int read_res = 0;
1454 
1455 	if (!dst.data)
1456 		return -EFAULT;
1457 
1458 	sig = df->df_signature;
1459 	if (!sig)
1460 		return 0;
1461 
1462 	if (dst.len < sig->sig_size)
1463 		return -E2BIG;
1464 
1465 	read_res = incfs_kread(bfc, dst.data, sig->sig_size, sig->sig_offset);
1466 
1467 	if (read_res < 0)
1468 		return read_res;
1469 
1470 	if (read_res != sig->sig_size)
1471 		return -EIO;
1472 
1473 	return read_res;
1474 }
1475 
incfs_process_new_hash_block(struct data_file * df,struct incfs_fill_block * block,u8 * data)1476 int incfs_process_new_hash_block(struct data_file *df,
1477 				 struct incfs_fill_block *block, u8 *data)
1478 {
1479 	struct backing_file_context *bfc = NULL;
1480 	struct mount_info *mi = NULL;
1481 	struct mtree *hash_tree = NULL;
1482 	struct incfs_df_signature *sig = NULL;
1483 	loff_t hash_area_base = 0;
1484 	loff_t hash_area_size = 0;
1485 	int error = 0;
1486 
1487 	if (!df || !block)
1488 		return -EFAULT;
1489 
1490 	if (!(block->flags & INCFS_BLOCK_FLAGS_HASH))
1491 		return -EINVAL;
1492 
1493 	bfc = df->df_backing_file_context;
1494 	mi = df->df_mount_info;
1495 
1496 	if (!df)
1497 		return -ENOENT;
1498 
1499 	hash_tree = df->df_hash_tree;
1500 	sig = df->df_signature;
1501 	if (!hash_tree || !sig || sig->hash_offset == 0)
1502 		return -ENOTSUPP;
1503 
1504 	hash_area_base = sig->hash_offset;
1505 	hash_area_size = sig->hash_size;
1506 	if (hash_area_size < block->block_index * INCFS_DATA_FILE_BLOCK_SIZE
1507 				+ block->data_len) {
1508 		/* Hash block goes beyond dedicated hash area of this file. */
1509 		return -ERANGE;
1510 	}
1511 
1512 	error = mutex_lock_interruptible(&bfc->bc_mutex);
1513 	if (!error) {
1514 		error = incfs_write_hash_block_to_backing_file(
1515 			bfc, range(data, block->data_len), block->block_index,
1516 			hash_area_base, df->df_blockmap_off, df->df_size);
1517 		mutex_unlock(&bfc->bc_mutex);
1518 	}
1519 	if (!error)
1520 		atomic_inc(&df->df_hash_blocks_written);
1521 
1522 	return error;
1523 }
1524 
process_blockmap_md(struct incfs_blockmap * bm,struct metadata_handler * handler)1525 static int process_blockmap_md(struct incfs_blockmap *bm,
1526 			       struct metadata_handler *handler)
1527 {
1528 	struct data_file *df = handler->context;
1529 	int error = 0;
1530 	loff_t base_off = le64_to_cpu(bm->m_base_offset);
1531 	u32 block_count = le32_to_cpu(bm->m_block_count);
1532 
1533 	if (!df)
1534 		return -EFAULT;
1535 
1536 	if (df->df_data_block_count > block_count)
1537 		return -EBADMSG;
1538 
1539 	df->df_total_block_count = block_count;
1540 	df->df_blockmap_off = base_off;
1541 	return error;
1542 }
1543 
process_file_signature_md(struct incfs_file_signature * sg,struct metadata_handler * handler)1544 static int process_file_signature_md(struct incfs_file_signature *sg,
1545 				struct metadata_handler *handler)
1546 {
1547 	struct data_file *df = handler->context;
1548 	struct mtree *hash_tree = NULL;
1549 	int error = 0;
1550 	struct incfs_df_signature *signature =
1551 		kzalloc(sizeof(*signature), GFP_NOFS);
1552 	void *buf = NULL;
1553 	ssize_t read;
1554 
1555 	if (!signature)
1556 		return -ENOMEM;
1557 
1558 	if (!df || !df->df_backing_file_context ||
1559 	    !df->df_backing_file_context->bc_file) {
1560 		error = -ENOENT;
1561 		goto out;
1562 	}
1563 
1564 	signature->hash_offset = le64_to_cpu(sg->sg_hash_tree_offset);
1565 	signature->hash_size = le32_to_cpu(sg->sg_hash_tree_size);
1566 	signature->sig_offset = le64_to_cpu(sg->sg_sig_offset);
1567 	signature->sig_size = le32_to_cpu(sg->sg_sig_size);
1568 
1569 	buf = kzalloc(signature->sig_size, GFP_NOFS);
1570 	if (!buf) {
1571 		error = -ENOMEM;
1572 		goto out;
1573 	}
1574 
1575 	read = incfs_kread(df->df_backing_file_context, buf,
1576 			   signature->sig_size, signature->sig_offset);
1577 	if (read < 0) {
1578 		error = read;
1579 		goto out;
1580 	}
1581 
1582 	if (read != signature->sig_size) {
1583 		error = -EINVAL;
1584 		goto out;
1585 	}
1586 
1587 	hash_tree = incfs_alloc_mtree(range(buf, signature->sig_size),
1588 				      df->df_data_block_count);
1589 	if (IS_ERR(hash_tree)) {
1590 		error = PTR_ERR(hash_tree);
1591 		hash_tree = NULL;
1592 		goto out;
1593 	}
1594 	if (hash_tree->hash_tree_area_size != signature->hash_size) {
1595 		error = -EINVAL;
1596 		goto out;
1597 	}
1598 	if (signature->hash_size > 0 &&
1599 	    handler->md_record_offset <= signature->hash_offset) {
1600 		error = -EINVAL;
1601 		goto out;
1602 	}
1603 	if (handler->md_record_offset <= signature->sig_offset) {
1604 		error = -EINVAL;
1605 		goto out;
1606 	}
1607 	df->df_hash_tree = hash_tree;
1608 	hash_tree = NULL;
1609 	df->df_signature = signature;
1610 	signature = NULL;
1611 out:
1612 	incfs_free_mtree(hash_tree);
1613 	kfree(signature);
1614 	kfree(buf);
1615 
1616 	return error;
1617 }
1618 
process_status_md(struct incfs_status * is,struct metadata_handler * handler)1619 static int process_status_md(struct incfs_status *is,
1620 			     struct metadata_handler *handler)
1621 {
1622 	struct data_file *df = handler->context;
1623 
1624 	df->df_initial_data_blocks_written =
1625 		le32_to_cpu(is->is_data_blocks_written);
1626 	atomic_set(&df->df_data_blocks_written,
1627 		   df->df_initial_data_blocks_written);
1628 
1629 	df->df_initial_hash_blocks_written =
1630 		le32_to_cpu(is->is_hash_blocks_written);
1631 	atomic_set(&df->df_hash_blocks_written,
1632 		   df->df_initial_hash_blocks_written);
1633 
1634 	df->df_status_offset = handler->md_record_offset;
1635 	return 0;
1636 }
1637 
process_file_verity_signature_md(struct incfs_file_verity_signature * vs,struct metadata_handler * handler)1638 static int process_file_verity_signature_md(
1639 		struct incfs_file_verity_signature *vs,
1640 		struct metadata_handler *handler)
1641 {
1642 	struct data_file *df = handler->context;
1643 	struct incfs_df_verity_signature *verity_signature;
1644 
1645 	if (!df)
1646 		return -EFAULT;
1647 
1648 	verity_signature = kzalloc(sizeof(*verity_signature), GFP_NOFS);
1649 	if (!verity_signature)
1650 		return -ENOMEM;
1651 
1652 	verity_signature->offset = le64_to_cpu(vs->vs_offset);
1653 	verity_signature->size = le32_to_cpu(vs->vs_size);
1654 	if (verity_signature->size > FS_VERITY_MAX_SIGNATURE_SIZE) {
1655 		kfree(verity_signature);
1656 		return -EFAULT;
1657 	}
1658 
1659 	df->df_verity_signature = verity_signature;
1660 	return 0;
1661 }
1662 
incfs_scan_metadata_chain(struct data_file * df)1663 static int incfs_scan_metadata_chain(struct data_file *df)
1664 {
1665 	struct metadata_handler *handler = NULL;
1666 	int result = 0;
1667 	int records_count = 0;
1668 	int error = 0;
1669 	struct backing_file_context *bfc = NULL;
1670 	int nondata_block_count;
1671 
1672 	if (!df || !df->df_backing_file_context)
1673 		return -EFAULT;
1674 
1675 	bfc = df->df_backing_file_context;
1676 
1677 	handler = kzalloc(sizeof(*handler), GFP_NOFS);
1678 	if (!handler)
1679 		return -ENOMEM;
1680 
1681 	handler->md_record_offset = df->df_metadata_off;
1682 	handler->context = df;
1683 	handler->handle_blockmap = process_blockmap_md;
1684 	handler->handle_signature = process_file_signature_md;
1685 	handler->handle_status = process_status_md;
1686 	handler->handle_verity_signature = process_file_verity_signature_md;
1687 
1688 	while (handler->md_record_offset > 0) {
1689 		error = incfs_read_next_metadata_record(bfc, handler);
1690 		if (error) {
1691 			pr_warn("incfs: Error during reading incfs-metadata record. Offset: %lld Record #%d Error code: %d\n",
1692 				handler->md_record_offset, records_count + 1,
1693 				-error);
1694 			break;
1695 		}
1696 		records_count++;
1697 	}
1698 	if (error) {
1699 		pr_warn("incfs: Error %d after reading %d incfs-metadata records.\n",
1700 			 -error, records_count);
1701 		result = error;
1702 	} else
1703 		result = records_count;
1704 
1705 	nondata_block_count = df->df_total_block_count -
1706 		df->df_data_block_count;
1707 	if (df->df_hash_tree) {
1708 		int hash_block_count = get_blocks_count_for_size(
1709 			df->df_hash_tree->hash_tree_area_size);
1710 
1711 		/*
1712 		 * Files that were created with a hash tree have the hash tree
1713 		 * included in the block map, i.e. nondata_block_count ==
1714 		 * hash_block_count.  Files whose hash tree was added by
1715 		 * FS_IOC_ENABLE_VERITY will still have the original block
1716 		 * count, i.e. nondata_block_count == 0.
1717 		 */
1718 		if (nondata_block_count != hash_block_count &&
1719 		    nondata_block_count != 0)
1720 			result = -EINVAL;
1721 	} else if (nondata_block_count != 0) {
1722 		result = -EINVAL;
1723 	}
1724 
1725 	kfree(handler);
1726 	return result;
1727 }
1728 
1729 /*
1730  * Quickly checks if there are pending reads with a serial number larger
1731  * than a given one.
1732  */
incfs_fresh_pending_reads_exist(struct mount_info * mi,int last_number)1733 bool incfs_fresh_pending_reads_exist(struct mount_info *mi, int last_number)
1734 {
1735 	bool result = false;
1736 
1737 	spin_lock(&mi->pending_read_lock);
1738 	result = (mi->mi_last_pending_read_number > last_number) &&
1739 		(mi->mi_pending_reads_count > 0);
1740 	spin_unlock(&mi->pending_read_lock);
1741 	return result;
1742 }
1743 
incfs_collect_pending_reads(struct mount_info * mi,int sn_lowerbound,struct incfs_pending_read_info * reads,struct incfs_pending_read_info2 * reads2,int reads_size,int * new_max_sn)1744 int incfs_collect_pending_reads(struct mount_info *mi, int sn_lowerbound,
1745 				struct incfs_pending_read_info *reads,
1746 				struct incfs_pending_read_info2 *reads2,
1747 				int reads_size, int *new_max_sn)
1748 {
1749 	int reported_reads = 0;
1750 	struct pending_read *entry = NULL;
1751 
1752 	if (!mi)
1753 		return -EFAULT;
1754 
1755 	if (reads_size <= 0)
1756 		return 0;
1757 
1758 	if (!incfs_fresh_pending_reads_exist(mi, sn_lowerbound))
1759 		return 0;
1760 
1761 	rcu_read_lock();
1762 
1763 	list_for_each_entry_rcu(entry, &mi->mi_reads_list_head, mi_reads_list) {
1764 		if (entry->serial_number <= sn_lowerbound)
1765 			continue;
1766 
1767 		if (reads) {
1768 			reads[reported_reads].file_id = entry->file_id;
1769 			reads[reported_reads].block_index = entry->block_index;
1770 			reads[reported_reads].serial_number =
1771 				entry->serial_number;
1772 			reads[reported_reads].timestamp_us =
1773 				entry->timestamp_us;
1774 		}
1775 
1776 		if (reads2) {
1777 			reads2[reported_reads].file_id = entry->file_id;
1778 			reads2[reported_reads].block_index = entry->block_index;
1779 			reads2[reported_reads].serial_number =
1780 				entry->serial_number;
1781 			reads2[reported_reads].timestamp_us =
1782 				entry->timestamp_us;
1783 			reads2[reported_reads].uid = entry->uid;
1784 		}
1785 
1786 		if (entry->serial_number > *new_max_sn)
1787 			*new_max_sn = entry->serial_number;
1788 
1789 		reported_reads++;
1790 		if (reported_reads >= reads_size)
1791 			break;
1792 	}
1793 
1794 	rcu_read_unlock();
1795 
1796 	return reported_reads;
1797 }
1798 
incfs_get_log_state(struct mount_info * mi)1799 struct read_log_state incfs_get_log_state(struct mount_info *mi)
1800 {
1801 	struct read_log *log = &mi->mi_log;
1802 	struct read_log_state result;
1803 
1804 	spin_lock(&log->rl_lock);
1805 	result = log->rl_head;
1806 	spin_unlock(&log->rl_lock);
1807 	return result;
1808 }
1809 
incfs_get_uncollected_logs_count(struct mount_info * mi,const struct read_log_state * state)1810 int incfs_get_uncollected_logs_count(struct mount_info *mi,
1811 				     const struct read_log_state *state)
1812 {
1813 	struct read_log *log = &mi->mi_log;
1814 	u32 generation;
1815 	u64 head_no, tail_no;
1816 
1817 	spin_lock(&log->rl_lock);
1818 	tail_no = log->rl_tail.current_record_no;
1819 	head_no = log->rl_head.current_record_no;
1820 	generation = log->rl_head.generation_id;
1821 	spin_unlock(&log->rl_lock);
1822 
1823 	if (generation != state->generation_id)
1824 		return head_no - tail_no;
1825 	else
1826 		return head_no - max_t(u64, tail_no, state->current_record_no);
1827 }
1828 
incfs_collect_logged_reads(struct mount_info * mi,struct read_log_state * state,struct incfs_pending_read_info * reads,struct incfs_pending_read_info2 * reads2,int reads_size)1829 int incfs_collect_logged_reads(struct mount_info *mi,
1830 			       struct read_log_state *state,
1831 			       struct incfs_pending_read_info *reads,
1832 			       struct incfs_pending_read_info2 *reads2,
1833 			       int reads_size)
1834 {
1835 	int dst_idx;
1836 	struct read_log *log = &mi->mi_log;
1837 	struct read_log_state *head, *tail;
1838 
1839 	spin_lock(&log->rl_lock);
1840 	head = &log->rl_head;
1841 	tail = &log->rl_tail;
1842 
1843 	if (state->generation_id != head->generation_id) {
1844 		pr_debug("read ptr is wrong generation: %u/%u",
1845 			 state->generation_id, head->generation_id);
1846 
1847 		*state = (struct read_log_state){
1848 			.generation_id = head->generation_id,
1849 		};
1850 	}
1851 
1852 	if (state->current_record_no < tail->current_record_no) {
1853 		pr_debug("read ptr is behind, moving: %u/%u -> %u/%u\n",
1854 			 (u32)state->next_offset,
1855 			 (u32)state->current_pass_no,
1856 			 (u32)tail->next_offset, (u32)tail->current_pass_no);
1857 
1858 		*state = *tail;
1859 	}
1860 
1861 	for (dst_idx = 0; dst_idx < reads_size; dst_idx++) {
1862 		if (state->current_record_no == head->current_record_no)
1863 			break;
1864 
1865 		log_read_one_record(log, state);
1866 
1867 		if (reads)
1868 			reads[dst_idx] = (struct incfs_pending_read_info) {
1869 				.file_id = state->base_record.file_id,
1870 				.block_index = state->base_record.block_index,
1871 				.serial_number = state->current_record_no,
1872 				.timestamp_us =
1873 					state->base_record.absolute_ts_us,
1874 			};
1875 
1876 		if (reads2)
1877 			reads2[dst_idx] = (struct incfs_pending_read_info2) {
1878 				.file_id = state->base_record.file_id,
1879 				.block_index = state->base_record.block_index,
1880 				.serial_number = state->current_record_no,
1881 				.timestamp_us =
1882 					state->base_record.absolute_ts_us,
1883 				.uid = state->base_record.uid,
1884 			};
1885 	}
1886 
1887 	spin_unlock(&log->rl_lock);
1888 	return dst_idx;
1889 }
1890 
1891