xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_main.c (revision 234519eec022a8dc9b25aee9fe3d9e9084e18993)
1 /*
2  * Copyright (c) 2022-2025, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdio.h>
10 
11 #include <arch_helpers.h>
12 #include <bl31/bl31.h>
13 #include <bl31/ehf.h>
14 #include <bl31/interrupt_mgmt.h>
15 #include <common/debug.h>
16 #include <common/fdt_wrappers.h>
17 #include <common/runtime_svc.h>
18 #include <common/uuid.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/smccc.h>
21 #include <lib/utils.h>
22 #include <lib/xlat_tables/xlat_tables_v2.h>
23 #include <libfdt.h>
24 #include <plat/common/platform.h>
25 #include <services/el3_spmc_logical_sp.h>
26 #include <services/ffa_svc.h>
27 #include <services/spmc_svc.h>
28 #include <services/spmd_svc.h>
29 #include "spmc.h"
30 #include "spmc_shared_mem.h"
31 #if TRANSFER_LIST
32 #include <transfer_list.h>
33 #endif
34 
35 #include <platform_def.h>
36 
37 /* FFA_MEM_PERM_* helpers */
38 #define FFA_MEM_PERM_MASK		U(7)
39 #define FFA_MEM_PERM_DATA_MASK		U(3)
40 #define FFA_MEM_PERM_DATA_SHIFT		U(0)
41 #define FFA_MEM_PERM_DATA_NA		U(0)
42 #define FFA_MEM_PERM_DATA_RW		U(1)
43 #define FFA_MEM_PERM_DATA_RES		U(2)
44 #define FFA_MEM_PERM_DATA_RO		U(3)
45 #define FFA_MEM_PERM_INST_EXEC          (U(0) << 2)
46 #define FFA_MEM_PERM_INST_NON_EXEC      (U(1) << 2)
47 
48 /* Declare the maximum number of SPs and El3 LPs. */
49 #define MAX_SP_LP_PARTITIONS (SECURE_PARTITION_COUNT + MAX_EL3_LP_DESCS_COUNT)
50 
51 #define FFA_VERSION_SPMC_MAJOR U(1)
52 #define FFA_VERSION_SPMC_MINOR U(2)
53 
54 /*
55  * Allocate a secure partition descriptor to describe each SP in the system that
56  * does not reside at EL3.
57  */
58 static struct secure_partition_desc sp_desc[SECURE_PARTITION_COUNT];
59 
60 /*
61  * Allocate an NS endpoint descriptor to describe each VM and the Hypervisor in
62  * the system that interacts with a SP. It is used to track the Hypervisor
63  * buffer pair, version and ID for now. It could be extended to track VM
64  * properties when the SPMC supports indirect messaging.
65  */
66 static struct ns_endpoint_desc ns_ep_desc[NS_PARTITION_COUNT];
67 
68 static uint64_t spmc_sp_interrupt_handler(uint32_t id,
69 					  uint32_t flags,
70 					  void *handle,
71 					  void *cookie);
72 
73 /*
74  * Helper function to obtain the array storing the EL3
75  * Logical Partition descriptors.
76  */
get_el3_lp_array(void)77 struct el3_lp_desc *get_el3_lp_array(void)
78 {
79 	return (struct el3_lp_desc *) EL3_LP_DESCS_START;
80 }
81 
82 /*
83  * Helper function to obtain the descriptor of the last SP to whom control was
84  * handed to on this physical cpu. Currently, we assume there is only one SP.
85  * TODO: Expand to track multiple partitions when required.
86  */
spmc_get_current_sp_ctx(void)87 struct secure_partition_desc *spmc_get_current_sp_ctx(void)
88 {
89 	return &(sp_desc[ACTIVE_SP_DESC_INDEX]);
90 }
91 
92 /*
93  * Helper function to obtain the execution context of an SP on the
94  * current physical cpu.
95  */
spmc_get_sp_ec(struct secure_partition_desc * sp)96 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp)
97 {
98 	return &(sp->ec[get_ec_index(sp)]);
99 }
100 
101 /* Helper function to get pointer to SP context from its ID. */
spmc_get_sp_ctx(uint16_t id)102 struct secure_partition_desc *spmc_get_sp_ctx(uint16_t id)
103 {
104 	/* Check for Secure World Partitions. */
105 	for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) {
106 		if (sp_desc[i].sp_id == id) {
107 			return &(sp_desc[i]);
108 		}
109 	}
110 	return NULL;
111 }
112 
113 /*
114  * Helper function to obtain the descriptor of the Hypervisor or OS kernel.
115  * We assume that the first descriptor is reserved for this entity.
116  */
spmc_get_hyp_ctx(void)117 struct ns_endpoint_desc *spmc_get_hyp_ctx(void)
118 {
119 	return &(ns_ep_desc[0]);
120 }
121 
122 /*
123  * Helper function to obtain the RX/TX buffer pair descriptor of the Hypervisor
124  * or OS kernel in the normal world or the last SP that was run.
125  */
spmc_get_mbox_desc(bool secure_origin)126 struct mailbox *spmc_get_mbox_desc(bool secure_origin)
127 {
128 	/* Obtain the RX/TX buffer pair descriptor. */
129 	if (secure_origin) {
130 		return &(spmc_get_current_sp_ctx()->mailbox);
131 	} else {
132 		return &(spmc_get_hyp_ctx()->mailbox);
133 	}
134 }
135 
136 /******************************************************************************
137  * This function returns to the place where spmc_sp_synchronous_entry() was
138  * called originally.
139  ******************************************************************************/
spmc_sp_synchronous_exit(struct sp_exec_ctx * ec,uint64_t rc)140 __dead2 void spmc_sp_synchronous_exit(struct sp_exec_ctx *ec, uint64_t rc)
141 {
142 	/*
143 	 * The SPM must have initiated the original request through a
144 	 * synchronous entry into the secure partition. Jump back to the
145 	 * original C runtime context with the value of rc in x0;
146 	 */
147 	spm_secure_partition_exit(ec->c_rt_ctx, rc);
148 
149 	panic();
150 }
151 
152 /*******************************************************************************
153  * Return FFA_ERROR with specified error code.
154  ******************************************************************************/
spmc_ffa_error_return(void * handle,int error_code)155 uint64_t spmc_ffa_error_return(void *handle, int error_code)
156 {
157 	SMC_RET8(handle, FFA_ERROR,
158 		 FFA_TARGET_INFO_MBZ, error_code,
159 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
160 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ);
161 }
162 
163 /******************************************************************************
164  * Helper function to validate a secure partition ID to ensure it does not
165  * conflict with any other FF-A component and follows the convention to
166  * indicate it resides within the secure world.
167  ******************************************************************************/
is_ffa_secure_id_valid(uint16_t partition_id)168 bool is_ffa_secure_id_valid(uint16_t partition_id)
169 {
170 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
171 
172 	/* Ensure the ID is not the invalid partition ID. */
173 	if (partition_id == INV_SP_ID) {
174 		return false;
175 	}
176 
177 	/* Ensure the ID is not the SPMD ID. */
178 	if (partition_id == SPMD_DIRECT_MSG_ENDPOINT_ID) {
179 		return false;
180 	}
181 
182 	/*
183 	 * Ensure the ID follows the convention to indicate it resides
184 	 * in the secure world.
185 	 */
186 	if (!ffa_is_secure_world_id(partition_id)) {
187 		return false;
188 	}
189 
190 	/* Ensure we don't conflict with the SPMC partition ID. */
191 	if (partition_id == FFA_SPMC_ID) {
192 		return false;
193 	}
194 
195 	/* Ensure we do not already have an SP context with this ID. */
196 	if (spmc_get_sp_ctx(partition_id)) {
197 		return false;
198 	}
199 
200 	/* Ensure we don't clash with any Logical SP's. */
201 	for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) {
202 		if (el3_lp_descs[i].sp_id == partition_id) {
203 			return false;
204 		}
205 	}
206 
207 	return true;
208 }
209 
210 /*******************************************************************************
211  * This function either forwards the request to the other world or returns
212  * with an ERET depending on the source of the call.
213  * We can assume that the destination is for an entity at a lower exception
214  * level as any messages destined for a logical SP resident in EL3 will have
215  * already been taken care of by the SPMC before entering this function.
216  ******************************************************************************/
spmc_smc_return(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * handle,void * cookie,uint64_t flags,uint16_t dst_id,uint32_t sp_ffa_version)217 static uint64_t spmc_smc_return(uint32_t smc_fid,
218 				bool secure_origin,
219 				uint64_t x1,
220 				uint64_t x2,
221 				uint64_t x3,
222 				uint64_t x4,
223 				void *handle,
224 				void *cookie,
225 				uint64_t flags,
226 				uint16_t dst_id,
227 				uint32_t sp_ffa_version)
228 {
229 	/* If the destination is in the normal world always go via the SPMD. */
230 	if (ffa_is_normal_world_id(dst_id)) {
231 		return spmd_smc_handler(smc_fid, x1, x2, x3, x4,
232 					cookie, handle, flags, sp_ffa_version);
233 	}
234 	/*
235 	 * If the caller is secure and we want to return to the secure world,
236 	 * ERET directly.
237 	 */
238 	else if (secure_origin && ffa_is_secure_world_id(dst_id)) {
239 		SMC_RET5(handle, smc_fid, x1, x2, x3, x4);
240 	}
241 	/* If we originated in the normal world then switch contexts. */
242 	else if (!secure_origin && ffa_is_secure_world_id(dst_id)) {
243 		return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2,
244 					     x3, x4, handle, flags, sp_ffa_version);
245 	} else {
246 		/* Unknown State. */
247 		panic();
248 	}
249 
250 	/* Shouldn't be Reached. */
251 	return 0;
252 }
253 
254 /*******************************************************************************
255  * FF-A ABI Handlers.
256  ******************************************************************************/
257 
258 /*******************************************************************************
259  * Helper function to validate arg2 as part of a direct message.
260  ******************************************************************************/
direct_msg_validate_arg2(uint64_t x2)261 static inline bool direct_msg_validate_arg2(uint64_t x2)
262 {
263 	/* Check message type. */
264 	if (x2 & FFA_FWK_MSG_BIT) {
265 		/* We have a framework message, ensure it is a known message. */
266 		if (x2 & ~(FFA_FWK_MSG_MASK | FFA_FWK_MSG_BIT)) {
267 			VERBOSE("Invalid message format 0x%lx.\n", x2);
268 			return false;
269 		}
270 	} else {
271 		/* We have a partition messages, ensure x2 is not set. */
272 		if (x2 != (uint64_t) 0) {
273 			VERBOSE("Arg2 MBZ for partition messages. (0x%lx).\n",
274 				x2);
275 			return false;
276 		}
277 	}
278 	return true;
279 }
280 
281 /*******************************************************************************
282  * Helper function to validate the destination ID of a direct response.
283  ******************************************************************************/
direct_msg_validate_dst_id(uint16_t dst_id)284 static bool direct_msg_validate_dst_id(uint16_t dst_id)
285 {
286 	struct secure_partition_desc *sp;
287 
288 	/* Check if we're targeting a normal world partition. */
289 	if (ffa_is_normal_world_id(dst_id)) {
290 		return true;
291 	}
292 
293 	/* Or directed to the SPMC itself.*/
294 	if (dst_id == FFA_SPMC_ID) {
295 		return true;
296 	}
297 
298 	/* Otherwise ensure the SP exists. */
299 	sp = spmc_get_sp_ctx(dst_id);
300 	if (sp != NULL) {
301 		return true;
302 	}
303 
304 	return false;
305 }
306 
307 /*******************************************************************************
308  * Helper function to validate the response from a Logical Partition.
309  ******************************************************************************/
direct_msg_validate_lp_resp(uint16_t origin_id,uint16_t lp_id,void * handle)310 static bool direct_msg_validate_lp_resp(uint16_t origin_id, uint16_t lp_id,
311 					void *handle)
312 {
313 	/* Retrieve populated Direct Response Arguments. */
314 	uint64_t smc_fid = SMC_GET_GP(handle, CTX_GPREG_X0);
315 	uint64_t x1 = SMC_GET_GP(handle, CTX_GPREG_X1);
316 	uint64_t x2 = SMC_GET_GP(handle, CTX_GPREG_X2);
317 	uint16_t src_id = ffa_endpoint_source(x1);
318 	uint16_t dst_id = ffa_endpoint_destination(x1);
319 
320 	if (src_id != lp_id) {
321 		ERROR("Invalid EL3 LP source ID (0x%x).\n", src_id);
322 		return false;
323 	}
324 
325 	/*
326 	 * Check the destination ID is valid and ensure the LP is responding to
327 	 * the original request.
328 	 */
329 	if ((!direct_msg_validate_dst_id(dst_id)) || (dst_id != origin_id)) {
330 		ERROR("Invalid EL3 LP destination ID (0x%x).\n", dst_id);
331 		return false;
332 	}
333 
334 	if ((smc_fid != FFA_MSG_SEND_DIRECT_RESP2_SMC64) &&
335 			!direct_msg_validate_arg2(x2)) {
336 		ERROR("Invalid EL3 LP message encoding.\n");
337 		return false;
338 	}
339 	return true;
340 }
341 
342 /*******************************************************************************
343  * Helper function to check that partition can receive direct msg or not.
344  ******************************************************************************/
direct_msg_receivable(uint32_t properties,uint16_t dir_req_fnum)345 static bool direct_msg_receivable(uint32_t properties, uint16_t dir_req_fnum)
346 {
347 	if ((dir_req_fnum == FFA_FNUM_MSG_SEND_DIRECT_REQ &&
348 			((properties & FFA_PARTITION_DIRECT_REQ_RECV) == 0U)) ||
349 			(dir_req_fnum == FFA_FNUM_MSG_SEND_DIRECT_REQ2 &&
350 			((properties & FFA_PARTITION_DIRECT_REQ2_RECV) == 0U))) {
351 		return false;
352 	}
353 
354 	return true;
355 }
356 
357 /*******************************************************************************
358  * Helper function to obtain the FF-A version of the calling partition.
359  ******************************************************************************/
get_partition_ffa_version(bool secure_origin)360 uint32_t get_partition_ffa_version(bool secure_origin)
361 {
362 	if (secure_origin) {
363 		return spmc_get_current_sp_ctx()->ffa_version;
364 	} else {
365 		return spmc_get_hyp_ctx()->ffa_version;
366 	}
367 }
368 
369 /*******************************************************************************
370  * Handle direct request messages and route to the appropriate destination.
371  ******************************************************************************/
direct_req_smc_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)372 static uint64_t direct_req_smc_handler(uint32_t smc_fid,
373 				       bool secure_origin,
374 				       uint64_t x1,
375 				       uint64_t x2,
376 				       uint64_t x3,
377 				       uint64_t x4,
378 				       void *cookie,
379 				       void *handle,
380 				       uint64_t flags)
381 {
382 	uint16_t src_id = ffa_endpoint_source(x1);
383 	uint16_t dst_id = ffa_endpoint_destination(x1);
384 	uint16_t dir_req_funcid;
385 	struct el3_lp_desc *el3_lp_descs;
386 	struct secure_partition_desc *sp;
387 	unsigned int idx;
388 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
389 
390 	dir_req_funcid = (smc_fid != FFA_MSG_SEND_DIRECT_REQ2_SMC64) ?
391 		FFA_FNUM_MSG_SEND_DIRECT_REQ : FFA_FNUM_MSG_SEND_DIRECT_REQ2;
392 
393 	if ((dir_req_funcid == FFA_FNUM_MSG_SEND_DIRECT_REQ2) &&
394 			ffa_version < MAKE_FFA_VERSION(U(1), U(2))) {
395 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
396 	}
397 
398 	/*
399 	 * Sanity check for DIRECT_REQ:
400 	 * Check if arg2 has been populated correctly based on message type
401 	 */
402 	if ((dir_req_funcid == FFA_FNUM_MSG_SEND_DIRECT_REQ) &&
403 			!direct_msg_validate_arg2(x2)) {
404 		return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER);
405 	}
406 
407 	/* Validate Sender is either the current SP or from the normal world. */
408 	if ((secure_origin && src_id != spmc_get_current_sp_ctx()->sp_id) ||
409 		(!secure_origin && !ffa_is_normal_world_id(src_id))) {
410 		ERROR("Invalid direct request source ID (0x%x).\n", src_id);
411 		return spmc_ffa_error_return(handle,
412 					FFA_ERROR_INVALID_PARAMETER);
413 	}
414 
415 	el3_lp_descs = get_el3_lp_array();
416 
417 	/* Check if the request is destined for a Logical Partition. */
418 	for (unsigned int i = 0U; i < MAX_EL3_LP_DESCS_COUNT; i++) {
419 		if (el3_lp_descs[i].sp_id == dst_id) {
420 			if (!direct_msg_receivable(el3_lp_descs[i].properties, dir_req_funcid)) {
421 				return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
422 			}
423 
424 			uint64_t ret = el3_lp_descs[i].direct_req(
425 						smc_fid, secure_origin, x1, x2,
426 						x3, x4, cookie, handle, flags);
427 			if (!direct_msg_validate_lp_resp(src_id, dst_id,
428 							 handle)) {
429 				panic();
430 			}
431 
432 			/* Message checks out. */
433 			return ret;
434 		}
435 	}
436 
437 	/*
438 	 * If the request was not targeted to a LSP and from the secure world
439 	 * then it is invalid since a SP cannot call into the Normal world and
440 	 * there is no other SP to call into. If there are other SPs in future
441 	 * then the partition runtime model would need to be validated as well.
442 	 */
443 	if (secure_origin) {
444 		VERBOSE("Direct request not supported to the Normal World.\n");
445 		return spmc_ffa_error_return(handle,
446 					     FFA_ERROR_INVALID_PARAMETER);
447 	}
448 
449 	/* Check if the SP ID is valid. */
450 	sp = spmc_get_sp_ctx(dst_id);
451 	if (sp == NULL) {
452 		VERBOSE("Direct request to unknown partition ID (0x%x).\n",
453 			dst_id);
454 		return spmc_ffa_error_return(handle,
455 					     FFA_ERROR_INVALID_PARAMETER);
456 	}
457 
458 	if (!direct_msg_receivable(sp->properties, dir_req_funcid)) {
459 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
460 	}
461 
462 	/* Protect the runtime state of a UP S-EL0 SP with a lock. */
463 	if (sp->runtime_el == S_EL0) {
464 		spin_lock(&sp->rt_state_lock);
465 	}
466 
467 	/*
468 	 * Check that the target execution context is in a waiting state before
469 	 * forwarding the direct request to it.
470 	 */
471 	idx = get_ec_index(sp);
472 	if (sp->ec[idx].rt_state != RT_STATE_WAITING) {
473 		VERBOSE("SP context on core%u is not waiting (%u).\n",
474 			idx, sp->ec[idx].rt_model);
475 
476 		if (sp->runtime_el == S_EL0) {
477 			spin_unlock(&sp->rt_state_lock);
478 		}
479 
480 		return spmc_ffa_error_return(handle, FFA_ERROR_BUSY);
481 	}
482 
483 	/*
484 	 * Everything checks out so forward the request to the SP after updating
485 	 * its state and runtime model.
486 	 */
487 	sp->ec[idx].rt_state = RT_STATE_RUNNING;
488 	sp->ec[idx].rt_model = RT_MODEL_DIR_REQ;
489 	sp->ec[idx].dir_req_origin_id = src_id;
490 	sp->ec[idx].dir_req_funcid = dir_req_funcid;
491 
492 	if (sp->runtime_el == S_EL0) {
493 		spin_unlock(&sp->rt_state_lock);
494 	}
495 
496 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
497 			       handle, cookie, flags, dst_id, sp->ffa_version);
498 }
499 
500 /*******************************************************************************
501  * Handle direct response messages and route to the appropriate destination.
502  ******************************************************************************/
direct_resp_smc_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)503 static uint64_t direct_resp_smc_handler(uint32_t smc_fid,
504 					bool secure_origin,
505 					uint64_t x1,
506 					uint64_t x2,
507 					uint64_t x3,
508 					uint64_t x4,
509 					void *cookie,
510 					void *handle,
511 					uint64_t flags)
512 {
513 	uint16_t dst_id = ffa_endpoint_destination(x1);
514 	uint16_t dir_req_funcid;
515 	struct secure_partition_desc *sp;
516 	unsigned int idx;
517 
518 	dir_req_funcid = (smc_fid != FFA_MSG_SEND_DIRECT_RESP2_SMC64) ?
519 		FFA_FNUM_MSG_SEND_DIRECT_REQ : FFA_FNUM_MSG_SEND_DIRECT_REQ2;
520 
521 	/* Check if arg2 has been populated correctly based on message type. */
522 	if (!direct_msg_validate_arg2(x2)) {
523 		return spmc_ffa_error_return(handle,
524 					     FFA_ERROR_INVALID_PARAMETER);
525 	}
526 
527 	/* Check that the response did not originate from the Normal world. */
528 	if (!secure_origin) {
529 		VERBOSE("Direct Response not supported from Normal World.\n");
530 		return spmc_ffa_error_return(handle,
531 					     FFA_ERROR_INVALID_PARAMETER);
532 	}
533 
534 	/*
535 	 * Check that the response is either targeted to the Normal world or the
536 	 * SPMC e.g. a PM response.
537 	 */
538 	if (!direct_msg_validate_dst_id(dst_id)) {
539 		VERBOSE("Direct response to invalid partition ID (0x%x).\n",
540 			dst_id);
541 		return spmc_ffa_error_return(handle,
542 					     FFA_ERROR_INVALID_PARAMETER);
543 	}
544 
545 	/* Obtain the SP descriptor and update its runtime state. */
546 	sp = spmc_get_sp_ctx(ffa_endpoint_source(x1));
547 	if (sp == NULL) {
548 		VERBOSE("Direct response to unknown partition ID (0x%x).\n",
549 			dst_id);
550 		return spmc_ffa_error_return(handle,
551 					     FFA_ERROR_INVALID_PARAMETER);
552 	}
553 
554 	if (sp->runtime_el == S_EL0) {
555 		spin_lock(&sp->rt_state_lock);
556 	}
557 
558 	/* Sanity check state is being tracked correctly in the SPMC. */
559 	idx = get_ec_index(sp);
560 	assert(sp->ec[idx].rt_state == RT_STATE_RUNNING);
561 
562 	/* Ensure SP execution context was in the right runtime model. */
563 	if (sp->ec[idx].rt_model != RT_MODEL_DIR_REQ) {
564 		VERBOSE("SP context on core%u not handling direct req (%u).\n",
565 			idx, sp->ec[idx].rt_model);
566 		if (sp->runtime_el == S_EL0) {
567 			spin_unlock(&sp->rt_state_lock);
568 		}
569 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
570 	}
571 
572 	if (dir_req_funcid != sp->ec[idx].dir_req_funcid) {
573 		WARN("Unmatched direct req/resp func id. req:%x, resp:%x on core%u.\n",
574 		     sp->ec[idx].dir_req_funcid, (smc_fid & FUNCID_NUM_MASK), idx);
575 		if (sp->runtime_el == S_EL0) {
576 			spin_unlock(&sp->rt_state_lock);
577 		}
578 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
579 	}
580 
581 	if (sp->ec[idx].dir_req_origin_id != dst_id) {
582 		WARN("Invalid direct resp partition ID 0x%x != 0x%x on core%u.\n",
583 		     dst_id, sp->ec[idx].dir_req_origin_id, idx);
584 		if (sp->runtime_el == S_EL0) {
585 			spin_unlock(&sp->rt_state_lock);
586 		}
587 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
588 	}
589 
590 	/* Update the state of the SP execution context. */
591 	sp->ec[idx].rt_state = RT_STATE_WAITING;
592 
593 	/* Clear the ongoing direct request ID. */
594 	sp->ec[idx].dir_req_origin_id = INV_SP_ID;
595 
596 	/* Clear the ongoing direct request message version. */
597 	sp->ec[idx].dir_req_funcid = 0U;
598 
599 	if (sp->runtime_el == S_EL0) {
600 		spin_unlock(&sp->rt_state_lock);
601 	}
602 
603 	/*
604 	 * If the receiver is not the SPMC then forward the response to the
605 	 * Normal world.
606 	 */
607 	if (dst_id == FFA_SPMC_ID) {
608 		spmc_sp_synchronous_exit(&sp->ec[idx], x4);
609 		/* Should not get here. */
610 		panic();
611 	}
612 
613 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
614 			       handle, cookie, flags, dst_id, sp->ffa_version);
615 }
616 
617 /*******************************************************************************
618  * This function handles the FFA_MSG_WAIT SMC to allow an SP to relinquish its
619  * cycles.
620  ******************************************************************************/
msg_wait_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)621 static uint64_t msg_wait_handler(uint32_t smc_fid,
622 				 bool secure_origin,
623 				 uint64_t x1,
624 				 uint64_t x2,
625 				 uint64_t x3,
626 				 uint64_t x4,
627 				 void *cookie,
628 				 void *handle,
629 				 uint64_t flags)
630 {
631 	struct secure_partition_desc *sp;
632 	unsigned int idx;
633 
634 	/*
635 	 * Check that the response did not originate from the Normal world as
636 	 * only the secure world can call this ABI.
637 	 */
638 	if (!secure_origin) {
639 		VERBOSE("Normal world cannot call FFA_MSG_WAIT.\n");
640 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
641 	}
642 
643 	/* Get the descriptor of the SP that invoked FFA_MSG_WAIT. */
644 	sp = spmc_get_current_sp_ctx();
645 	if (sp == NULL) {
646 		return spmc_ffa_error_return(handle,
647 					     FFA_ERROR_INVALID_PARAMETER);
648 	}
649 
650 	/*
651 	 * Get the execution context of the SP that invoked FFA_MSG_WAIT.
652 	 */
653 	idx = get_ec_index(sp);
654 	if (sp->runtime_el == S_EL0) {
655 		spin_lock(&sp->rt_state_lock);
656 	}
657 
658 	/* Ensure SP execution context was in the right runtime model. */
659 	if (sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) {
660 		if (sp->runtime_el == S_EL0) {
661 			spin_unlock(&sp->rt_state_lock);
662 		}
663 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
664 	}
665 
666 	/* Sanity check the state is being tracked correctly in the SPMC. */
667 	assert(sp->ec[idx].rt_state == RT_STATE_RUNNING);
668 
669 	/*
670 	 * Perform a synchronous exit if the partition was initialising. The
671 	 * state is updated after the exit.
672 	 */
673 	if (sp->ec[idx].rt_model == RT_MODEL_INIT) {
674 		if (sp->runtime_el == S_EL0) {
675 			spin_unlock(&sp->rt_state_lock);
676 		}
677 		spmc_sp_synchronous_exit(&sp->ec[idx], x4);
678 		/* Should not get here */
679 		panic();
680 	}
681 
682 	/* Update the state of the SP execution context. */
683 	sp->ec[idx].rt_state = RT_STATE_WAITING;
684 
685 	/* Resume normal world if a secure interrupt was handled. */
686 	if (sp->ec[idx].rt_model == RT_MODEL_INTR) {
687 		if (sp->runtime_el == S_EL0) {
688 			spin_unlock(&sp->rt_state_lock);
689 		}
690 
691 		return spmd_smc_switch_state(FFA_NORMAL_WORLD_RESUME, secure_origin,
692 					     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
693 					     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
694 					     handle, flags, sp->ffa_version);
695 	}
696 
697 	/* Protect the runtime state of a S-EL0 SP with a lock. */
698 	if (sp->runtime_el == S_EL0) {
699 		spin_unlock(&sp->rt_state_lock);
700 	}
701 
702 	/* Forward the response to the Normal world. */
703 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
704 			       handle, cookie, flags, FFA_NWD_ID, sp->ffa_version);
705 }
706 
ffa_error_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)707 static uint64_t ffa_error_handler(uint32_t smc_fid,
708 				 bool secure_origin,
709 				 uint64_t x1,
710 				 uint64_t x2,
711 				 uint64_t x3,
712 				 uint64_t x4,
713 				 void *cookie,
714 				 void *handle,
715 				 uint64_t flags)
716 {
717 	struct secure_partition_desc *sp;
718 	unsigned int idx;
719 	uint16_t dst_id = ffa_endpoint_destination(x1);
720 	bool cancel_dir_req = false;
721 
722 	/* Check that the response did not originate from the Normal world. */
723 	if (!secure_origin) {
724 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
725 	}
726 
727 	/* Get the descriptor of the SP that invoked FFA_ERROR. */
728 	sp = spmc_get_current_sp_ctx();
729 	if (sp == NULL) {
730 		return spmc_ffa_error_return(handle,
731 					     FFA_ERROR_INVALID_PARAMETER);
732 	}
733 
734 	/* Get the execution context of the SP that invoked FFA_ERROR. */
735 	idx = get_ec_index(sp);
736 
737 	/*
738 	 * We only expect FFA_ERROR to be received during SP initialisation
739 	 * otherwise this is an invalid call.
740 	 */
741 	if (sp->ec[idx].rt_model == RT_MODEL_INIT) {
742 		ERROR("SP 0x%x failed to initialize.\n", sp->sp_id);
743 		spmc_sp_synchronous_exit(&sp->ec[idx], x2);
744 		/* Should not get here. */
745 		panic();
746 	}
747 
748 	if (sp->runtime_el == S_EL0) {
749 		spin_lock(&sp->rt_state_lock);
750 	}
751 
752 	if (sp->ec[idx].rt_state == RT_STATE_RUNNING &&
753 			sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) {
754 		sp->ec[idx].rt_state = RT_STATE_WAITING;
755 		sp->ec[idx].dir_req_origin_id = INV_SP_ID;
756 		sp->ec[idx].dir_req_funcid = 0x00;
757 		cancel_dir_req = true;
758 	}
759 
760 	if (sp->runtime_el == S_EL0) {
761 		spin_unlock(&sp->rt_state_lock);
762 	}
763 
764 	if (cancel_dir_req) {
765 		if (dst_id == FFA_SPMC_ID) {
766 			spmc_sp_synchronous_exit(&sp->ec[idx], x4);
767 			/* Should not get here. */
768 			panic();
769 		} else
770 			return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
771 					       handle, cookie, flags, dst_id, sp->ffa_version);
772 	}
773 
774 	return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
775 }
776 
ffa_version_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)777 static uint64_t ffa_version_handler(uint32_t smc_fid,
778 				    bool secure_origin,
779 				    uint64_t x1,
780 				    uint64_t x2,
781 				    uint64_t x3,
782 				    uint64_t x4,
783 				    void *cookie,
784 				    void *handle,
785 				    uint64_t flags)
786 {
787 	uint32_t requested_version = x1 & FFA_VERSION_MASK;
788 
789 	if (requested_version & FFA_VERSION_BIT31_MASK) {
790 		/* Invalid encoding, return an error. */
791 		SMC_RET1(handle, FFA_ERROR_NOT_SUPPORTED);
792 		/* Execution stops here. */
793 	}
794 
795 	/* Determine the caller to store the requested version. */
796 	if (secure_origin) {
797 		/*
798 		 * Ensure that the SP is reporting the same version as
799 		 * specified in its manifest. If these do not match there is
800 		 * something wrong with the SP.
801 		 * TODO: Should we abort the SP? For now assert this is not
802 		 *       case.
803 		 */
804 		assert(requested_version ==
805 		       spmc_get_current_sp_ctx()->ffa_version);
806 	} else {
807 		/*
808 		 * If this is called by the normal world, record this
809 		 * information in its descriptor.
810 		 */
811 		spmc_get_hyp_ctx()->ffa_version = requested_version;
812 	}
813 
814 	SMC_RET1(handle, MAKE_FFA_VERSION(FFA_VERSION_SPMC_MAJOR,
815 					  FFA_VERSION_SPMC_MINOR));
816 }
817 
rxtx_map_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)818 static uint64_t rxtx_map_handler(uint32_t smc_fid,
819 				 bool secure_origin,
820 				 uint64_t x1,
821 				 uint64_t x2,
822 				 uint64_t x3,
823 				 uint64_t x4,
824 				 void *cookie,
825 				 void *handle,
826 				 uint64_t flags)
827 {
828 	int ret;
829 	uint32_t error_code;
830 	uint32_t mem_atts = secure_origin ? MT_SECURE : MT_NS;
831 	struct mailbox *mbox;
832 	uintptr_t tx_address = x1;
833 	uintptr_t rx_address = x2;
834 	uint32_t page_count = x3 & FFA_RXTX_PAGE_COUNT_MASK; /* Bits [5:0] */
835 	uint32_t buf_size = page_count * FFA_PAGE_SIZE;
836 
837 	/*
838 	 * The SPMC does not support mapping of VM RX/TX pairs to facilitate
839 	 * indirect messaging with SPs. Check if the Hypervisor has invoked this
840 	 * ABI on behalf of a VM and reject it if this is the case.
841 	 */
842 	if (tx_address == 0 || rx_address == 0) {
843 		WARN("Mapping RX/TX Buffers on behalf of VM not supported.\n");
844 		return spmc_ffa_error_return(handle,
845 					     FFA_ERROR_INVALID_PARAMETER);
846 	}
847 
848 	/* Ensure the specified buffers are not the same. */
849 	if (tx_address == rx_address) {
850 		WARN("TX Buffer must not be the same as RX Buffer.\n");
851 		return spmc_ffa_error_return(handle,
852 					     FFA_ERROR_INVALID_PARAMETER);
853 	}
854 
855 	/* Ensure the buffer size is not 0. */
856 	if (buf_size == 0U) {
857 		WARN("Buffer size must not be 0\n");
858 		return spmc_ffa_error_return(handle,
859 					     FFA_ERROR_INVALID_PARAMETER);
860 	}
861 
862 	/*
863 	 * Ensure the buffer size is a multiple of the translation granule size
864 	 * in TF-A.
865 	 */
866 	if (buf_size % PAGE_SIZE != 0U) {
867 		WARN("Buffer size must be aligned to translation granule.\n");
868 		return spmc_ffa_error_return(handle,
869 					     FFA_ERROR_INVALID_PARAMETER);
870 	}
871 
872 	/* Obtain the RX/TX buffer pair descriptor. */
873 	mbox = spmc_get_mbox_desc(secure_origin);
874 
875 	spin_lock(&mbox->lock);
876 
877 	/* Check if buffers have already been mapped. */
878 	if (mbox->rx_buffer != 0 || mbox->tx_buffer != 0) {
879 		WARN("RX/TX Buffers already mapped (%p/%p)\n",
880 		     (void *) mbox->rx_buffer, (void *)mbox->tx_buffer);
881 		error_code = FFA_ERROR_DENIED;
882 		goto err;
883 	}
884 
885 	/* memmap the TX buffer as read only. */
886 	ret = mmap_add_dynamic_region(tx_address, /* PA */
887 			tx_address, /* VA */
888 			buf_size, /* size */
889 			mem_atts | MT_RO_DATA); /* attrs */
890 	if (ret != 0) {
891 		/* Return the correct error code. */
892 		error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY :
893 						FFA_ERROR_INVALID_PARAMETER;
894 		WARN("Unable to map TX buffer: %d\n", error_code);
895 		goto err;
896 	}
897 
898 	/* memmap the RX buffer as read write. */
899 	ret = mmap_add_dynamic_region(rx_address, /* PA */
900 			rx_address, /* VA */
901 			buf_size, /* size */
902 			mem_atts | MT_RW_DATA); /* attrs */
903 
904 	if (ret != 0) {
905 		error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY :
906 						FFA_ERROR_INVALID_PARAMETER;
907 		WARN("Unable to map RX buffer: %d\n", error_code);
908 		/* Unmap the TX buffer again. */
909 		mmap_remove_dynamic_region(tx_address, buf_size);
910 		goto err;
911 	}
912 
913 	mbox->tx_buffer = (void *) tx_address;
914 	mbox->rx_buffer = (void *) rx_address;
915 	mbox->rxtx_page_count = page_count;
916 	spin_unlock(&mbox->lock);
917 
918 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
919 	/* Execution stops here. */
920 err:
921 	spin_unlock(&mbox->lock);
922 	return spmc_ffa_error_return(handle, error_code);
923 }
924 
rxtx_unmap_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)925 static uint64_t rxtx_unmap_handler(uint32_t smc_fid,
926 				   bool secure_origin,
927 				   uint64_t x1,
928 				   uint64_t x2,
929 				   uint64_t x3,
930 				   uint64_t x4,
931 				   void *cookie,
932 				   void *handle,
933 				   uint64_t flags)
934 {
935 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
936 	uint32_t buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
937 
938 	/*
939 	 * The SPMC does not support mapping of VM RX/TX pairs to facilitate
940 	 * indirect messaging with SPs. Check if the Hypervisor has invoked this
941 	 * ABI on behalf of a VM and reject it if this is the case.
942 	 */
943 	if (x1 != 0UL) {
944 		return spmc_ffa_error_return(handle,
945 					     FFA_ERROR_INVALID_PARAMETER);
946 	}
947 
948 	spin_lock(&mbox->lock);
949 
950 	/* Check if buffers are currently mapped. */
951 	if (mbox->rx_buffer == 0 || mbox->tx_buffer == 0) {
952 		spin_unlock(&mbox->lock);
953 		return spmc_ffa_error_return(handle,
954 					     FFA_ERROR_INVALID_PARAMETER);
955 	}
956 
957 	/* Unmap RX Buffer */
958 	if (mmap_remove_dynamic_region((uintptr_t) mbox->rx_buffer,
959 				       buf_size) != 0) {
960 		WARN("Unable to unmap RX buffer!\n");
961 	}
962 
963 	mbox->rx_buffer = 0;
964 
965 	/* Unmap TX Buffer */
966 	if (mmap_remove_dynamic_region((uintptr_t) mbox->tx_buffer,
967 				       buf_size) != 0) {
968 		WARN("Unable to unmap TX buffer!\n");
969 	}
970 
971 	mbox->tx_buffer = 0;
972 	mbox->rxtx_page_count = 0;
973 
974 	spin_unlock(&mbox->lock);
975 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
976 }
977 
978 /*
979  * Helper function to populate the properties field of a Partition Info Get
980  * descriptor.
981  */
982 static uint32_t
partition_info_get_populate_properties(uint32_t sp_properties,enum sp_execution_state sp_ec_state)983 partition_info_get_populate_properties(uint32_t sp_properties,
984 				       enum sp_execution_state sp_ec_state)
985 {
986 	uint32_t properties = sp_properties;
987 	uint32_t ec_state;
988 
989 	/* Determine the execution state of the SP. */
990 	ec_state = sp_ec_state == SP_STATE_AARCH64 ?
991 		   FFA_PARTITION_INFO_GET_AARCH64_STATE :
992 		   FFA_PARTITION_INFO_GET_AARCH32_STATE;
993 
994 	properties |= ec_state << FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT;
995 
996 	return properties;
997 }
998 
999 /*
1000  * Collate the partition information in a v1.1 partition information
1001  * descriptor format, this will be converter later if required.
1002  */
partition_info_get_handler_v1_1(uint32_t * uuid,struct ffa_partition_info_v1_1 * partitions,uint32_t max_partitions,uint32_t * partition_count)1003 static int partition_info_get_handler_v1_1(uint32_t *uuid,
1004 					   struct ffa_partition_info_v1_1
1005 						  *partitions,
1006 					   uint32_t max_partitions,
1007 					   uint32_t *partition_count)
1008 {
1009 	uint32_t index;
1010 	struct ffa_partition_info_v1_1 *desc;
1011 	bool null_uuid = is_null_uuid(uuid);
1012 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
1013 
1014 	/* Deal with Logical Partitions. */
1015 	for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) {
1016 		if (null_uuid || uuid_match(uuid, el3_lp_descs[index].uuid)) {
1017 			/* Found a matching UUID, populate appropriately. */
1018 			if (*partition_count >= max_partitions) {
1019 				return FFA_ERROR_NO_MEMORY;
1020 			}
1021 
1022 			desc = &partitions[*partition_count];
1023 			desc->ep_id = el3_lp_descs[index].sp_id;
1024 			desc->execution_ctx_count = PLATFORM_CORE_COUNT;
1025 			/* LSPs must be AArch64. */
1026 			desc->properties =
1027 				partition_info_get_populate_properties(
1028 					el3_lp_descs[index].properties,
1029 					SP_STATE_AARCH64);
1030 
1031 			if (null_uuid) {
1032 				copy_uuid(desc->uuid, el3_lp_descs[index].uuid);
1033 			}
1034 			(*partition_count)++;
1035 		}
1036 	}
1037 
1038 	/* Deal with physical SP's. */
1039 	for (index = 0U; index < SECURE_PARTITION_COUNT; index++) {
1040 		uint32_t uuid_index;
1041 		uint32_t *sp_uuid;
1042 
1043 		for (uuid_index = 0; uuid_index < sp_desc[index].num_uuids;
1044 		     uuid_index++) {
1045 			sp_uuid = sp_desc[index].uuid_array[uuid_index].uuid;
1046 
1047 			if (null_uuid || uuid_match(uuid, sp_uuid)) {
1048 				/* Found a matching UUID, populate appropriately. */
1049 
1050 				if (*partition_count >= max_partitions) {
1051 					return FFA_ERROR_NO_MEMORY;
1052 				}
1053 
1054 				desc = &partitions[*partition_count];
1055 				desc->ep_id = sp_desc[index].sp_id;
1056 				/*
1057 				 * Execution context count must match No. cores for
1058 				 * S-EL1 SPs.
1059 				 */
1060 				desc->execution_ctx_count = PLATFORM_CORE_COUNT;
1061 				desc->properties =
1062 					partition_info_get_populate_properties(
1063 						sp_desc[index].properties,
1064 						sp_desc[index].execution_state);
1065 
1066 				(*partition_count)++;
1067 				if (null_uuid) {
1068 					copy_uuid(desc->uuid, sp_uuid);
1069 				} else {
1070 					/* Found UUID in this SP, go to next SP */
1071 					break;
1072 				}
1073 			}
1074 		}
1075 	}
1076 	return 0;
1077 }
1078 
1079 /*
1080  * Handle the case where that caller only wants the count of partitions
1081  * matching a given UUID and does not want the corresponding descriptors
1082  * populated.
1083  */
partition_info_get_handler_count_only(uint32_t * uuid)1084 static uint32_t partition_info_get_handler_count_only(uint32_t *uuid)
1085 {
1086 	uint32_t index = 0;
1087 	uint32_t partition_count = 0;
1088 	bool null_uuid = is_null_uuid(uuid);
1089 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
1090 
1091 	/* Deal with Logical Partitions. */
1092 	for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) {
1093 		if (null_uuid ||
1094 		    uuid_match(uuid, el3_lp_descs[index].uuid)) {
1095 			(partition_count)++;
1096 		}
1097 	}
1098 
1099 	/* Deal with physical SP's. */
1100 	for (index = 0U; index < SECURE_PARTITION_COUNT; index++) {
1101 		uint32_t uuid_index;
1102 
1103 		for (uuid_index = 0; uuid_index < sp_desc[index].num_uuids;
1104 		     uuid_index++) {
1105 			uint32_t *sp_uuid =
1106 				sp_desc[index].uuid_array[uuid_index].uuid;
1107 
1108 			if (null_uuid) {
1109 				(partition_count)++;
1110 			} else if (uuid_match(uuid, sp_uuid)) {
1111 				(partition_count)++;
1112 				/* Found a match, go to next SP */
1113 				break;
1114 			}
1115 		}
1116 	}
1117 	return partition_count;
1118 }
1119 
1120 /*
1121  * If the caller of the PARTITION_INFO_GET ABI was a v1.0 caller, populate
1122  * the corresponding descriptor format from the v1.1 descriptor array.
1123  */
partition_info_populate_v1_0(struct ffa_partition_info_v1_1 * partitions,struct mailbox * mbox,int partition_count)1124 static uint64_t partition_info_populate_v1_0(struct ffa_partition_info_v1_1
1125 					     *partitions,
1126 					     struct mailbox *mbox,
1127 					     int partition_count)
1128 {
1129 	uint32_t index;
1130 	uint32_t buf_size;
1131 	uint32_t descriptor_size;
1132 	struct ffa_partition_info_v1_0 *v1_0_partitions =
1133 		(struct ffa_partition_info_v1_0 *) mbox->rx_buffer;
1134 
1135 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1136 	descriptor_size = partition_count *
1137 			  sizeof(struct ffa_partition_info_v1_0);
1138 
1139 	if (descriptor_size > buf_size) {
1140 		return FFA_ERROR_NO_MEMORY;
1141 	}
1142 
1143 	for (index = 0U; index < partition_count; index++) {
1144 		v1_0_partitions[index].ep_id = partitions[index].ep_id;
1145 		v1_0_partitions[index].execution_ctx_count =
1146 			partitions[index].execution_ctx_count;
1147 		/* Only report v1.0 properties. */
1148 		v1_0_partitions[index].properties =
1149 			(partitions[index].properties &
1150 			FFA_PARTITION_INFO_GET_PROPERTIES_V1_0_MASK);
1151 	}
1152 	return 0;
1153 }
1154 
1155 /*
1156  * Main handler for FFA_PARTITION_INFO_GET which supports both FF-A v1.1 and
1157  * v1.0 implementations.
1158  */
partition_info_get_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1159 static uint64_t partition_info_get_handler(uint32_t smc_fid,
1160 					   bool secure_origin,
1161 					   uint64_t x1,
1162 					   uint64_t x2,
1163 					   uint64_t x3,
1164 					   uint64_t x4,
1165 					   void *cookie,
1166 					   void *handle,
1167 					   uint64_t flags)
1168 {
1169 	int ret;
1170 	uint32_t partition_count = 0;
1171 	uint32_t size = 0;
1172 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1173 	struct mailbox *mbox;
1174 	uint64_t info_get_flags;
1175 	bool count_only;
1176 	uint32_t uuid[4];
1177 
1178 	uuid[0] = x1;
1179 	uuid[1] = x2;
1180 	uuid[2] = x3;
1181 	uuid[3] = x4;
1182 
1183 	/* Determine if the Partition descriptors should be populated. */
1184 	info_get_flags = SMC_GET_GP(handle, CTX_GPREG_X5);
1185 	count_only = (info_get_flags & FFA_PARTITION_INFO_GET_COUNT_FLAG_MASK);
1186 
1187 	/* Handle the case where we don't need to populate the descriptors. */
1188 	if (count_only) {
1189 		partition_count = partition_info_get_handler_count_only(uuid);
1190 		if (partition_count == 0) {
1191 			return spmc_ffa_error_return(handle,
1192 						FFA_ERROR_INVALID_PARAMETER);
1193 		}
1194 	} else {
1195 		struct ffa_partition_info_v1_1
1196 			partitions[MAX_SP_LP_PARTITIONS *
1197 				   SPMC_AT_EL3_PARTITION_MAX_UUIDS];
1198 		/*
1199 		 * Handle the case where the partition descriptors are required,
1200 		 * check we have the buffers available and populate the
1201 		 * appropriate structure version.
1202 		 */
1203 
1204 		/* Obtain the v1.1 format of the descriptors. */
1205 		ret = partition_info_get_handler_v1_1(
1206 			uuid, partitions,
1207 			(MAX_SP_LP_PARTITIONS *
1208 			 SPMC_AT_EL3_PARTITION_MAX_UUIDS),
1209 			&partition_count);
1210 
1211 		/* Check if an error occurred during discovery. */
1212 		if (ret != 0) {
1213 			goto err;
1214 		}
1215 
1216 		/* If we didn't find any matches the UUID is unknown. */
1217 		if (partition_count == 0) {
1218 			ret = FFA_ERROR_INVALID_PARAMETER;
1219 			goto err;
1220 		}
1221 
1222 		/* Obtain the partition mailbox RX/TX buffer pair descriptor. */
1223 		mbox = spmc_get_mbox_desc(secure_origin);
1224 
1225 		/*
1226 		 * If the caller has not bothered registering its RX/TX pair
1227 		 * then return an error code.
1228 		 */
1229 		spin_lock(&mbox->lock);
1230 		if (mbox->rx_buffer == NULL) {
1231 			ret = FFA_ERROR_BUSY;
1232 			goto err_unlock;
1233 		}
1234 
1235 		/* Ensure the RX buffer is currently free. */
1236 		if (mbox->state != MAILBOX_STATE_EMPTY) {
1237 			ret = FFA_ERROR_BUSY;
1238 			goto err_unlock;
1239 		}
1240 
1241 		/* Zero the RX buffer before populating. */
1242 		(void)memset(mbox->rx_buffer, 0,
1243 			     mbox->rxtx_page_count * FFA_PAGE_SIZE);
1244 
1245 		/*
1246 		 * Depending on the FF-A version of the requesting partition
1247 		 * we may need to convert to a v1.0 format otherwise we can copy
1248 		 * directly.
1249 		 */
1250 		if (ffa_version == MAKE_FFA_VERSION(U(1), U(0))) {
1251 			ret = partition_info_populate_v1_0(partitions,
1252 							   mbox,
1253 							   partition_count);
1254 			if (ret != 0) {
1255 				goto err_unlock;
1256 			}
1257 		} else {
1258 			uint32_t buf_size = mbox->rxtx_page_count *
1259 					    FFA_PAGE_SIZE;
1260 
1261 			/* Ensure the descriptor will fit in the buffer. */
1262 			size = sizeof(struct ffa_partition_info_v1_1);
1263 			if (partition_count * size  > buf_size) {
1264 				ret = FFA_ERROR_NO_MEMORY;
1265 				goto err_unlock;
1266 			}
1267 			memcpy(mbox->rx_buffer, partitions,
1268 			       partition_count * size);
1269 		}
1270 
1271 		mbox->state = MAILBOX_STATE_FULL;
1272 		spin_unlock(&mbox->lock);
1273 	}
1274 	SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, partition_count, size);
1275 
1276 err_unlock:
1277 	spin_unlock(&mbox->lock);
1278 err:
1279 	return spmc_ffa_error_return(handle, ret);
1280 }
1281 
ffa_feature_success(void * handle,uint32_t arg2)1282 static uint64_t ffa_feature_success(void *handle, uint32_t arg2)
1283 {
1284 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, arg2);
1285 }
1286 
ffa_features_retrieve_request(bool secure_origin,uint32_t input_properties,void * handle)1287 static uint64_t ffa_features_retrieve_request(bool secure_origin,
1288 					      uint32_t input_properties,
1289 					      void *handle)
1290 {
1291 	/*
1292 	 * If we're called by the normal world we don't support any
1293 	 * additional features.
1294 	 */
1295 	if (!secure_origin) {
1296 		if ((input_properties & FFA_FEATURES_RET_REQ_NS_BIT) != 0U) {
1297 			return spmc_ffa_error_return(handle,
1298 						     FFA_ERROR_NOT_SUPPORTED);
1299 		}
1300 
1301 	} else {
1302 		struct secure_partition_desc *sp = spmc_get_current_sp_ctx();
1303 		/*
1304 		 * If v1.1 or higher the NS bit must be set otherwise it is
1305 		 * an invalid call. If v1.0 check and store whether the SP
1306 		 * has requested the use of the NS bit.
1307 		 */
1308 		if (spmc_compatible_version(sp->ffa_version, 1, 1)) {
1309 			if ((input_properties &
1310 			     FFA_FEATURES_RET_REQ_NS_BIT) == 0U) {
1311 				return spmc_ffa_error_return(handle,
1312 						       FFA_ERROR_NOT_SUPPORTED);
1313 			}
1314 			return ffa_feature_success(handle,
1315 						   FFA_FEATURES_RET_REQ_NS_BIT);
1316 		} else {
1317 			sp->ns_bit_requested = (input_properties &
1318 					       FFA_FEATURES_RET_REQ_NS_BIT) !=
1319 					       0U;
1320 		}
1321 		if (sp->ns_bit_requested) {
1322 			return ffa_feature_success(handle,
1323 						   FFA_FEATURES_RET_REQ_NS_BIT);
1324 		}
1325 	}
1326 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1327 }
1328 
ffa_features_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1329 static uint64_t ffa_features_handler(uint32_t smc_fid,
1330 				     bool secure_origin,
1331 				     uint64_t x1,
1332 				     uint64_t x2,
1333 				     uint64_t x3,
1334 				     uint64_t x4,
1335 				     void *cookie,
1336 				     void *handle,
1337 				     uint64_t flags)
1338 {
1339 	uint32_t function_id = (uint32_t) x1;
1340 	uint32_t input_properties = (uint32_t) x2;
1341 
1342 	/* Check if a Feature ID was requested. */
1343 	if ((function_id & FFA_FEATURES_BIT31_MASK) == 0U) {
1344 		/* We currently don't support any additional features. */
1345 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1346 	}
1347 
1348 	/*
1349 	 * Handle the cases where we have separate handlers due to additional
1350 	 * properties.
1351 	 */
1352 	switch (function_id) {
1353 	case FFA_MEM_RETRIEVE_REQ_SMC32:
1354 	case FFA_MEM_RETRIEVE_REQ_SMC64:
1355 		return ffa_features_retrieve_request(secure_origin,
1356 						     input_properties,
1357 						     handle);
1358 	}
1359 
1360 	/*
1361 	 * We don't currently support additional input properties for these
1362 	 * other ABIs therefore ensure this value is set to 0.
1363 	 */
1364 	if (input_properties != 0U) {
1365 		return spmc_ffa_error_return(handle,
1366 					     FFA_ERROR_NOT_SUPPORTED);
1367 	}
1368 
1369 	/* Report if any other FF-A ABI is supported. */
1370 	switch (function_id) {
1371 	/* Supported features from both worlds. */
1372 	case FFA_ERROR:
1373 	case FFA_SUCCESS_SMC32:
1374 	case FFA_INTERRUPT:
1375 	case FFA_SPM_ID_GET:
1376 	case FFA_ID_GET:
1377 	case FFA_FEATURES:
1378 	case FFA_VERSION:
1379 	case FFA_RX_RELEASE:
1380 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
1381 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
1382 	case FFA_MSG_SEND_DIRECT_REQ2_SMC64:
1383 	case FFA_PARTITION_INFO_GET:
1384 	case FFA_RXTX_MAP_SMC32:
1385 	case FFA_RXTX_MAP_SMC64:
1386 	case FFA_RXTX_UNMAP:
1387 	case FFA_MEM_FRAG_TX:
1388 	case FFA_MSG_RUN:
1389 
1390 		/*
1391 		 * We are relying on the fact that the other registers
1392 		 * will be set to 0 as these values align with the
1393 		 * currently implemented features of the SPMC. If this
1394 		 * changes this function must be extended to handle
1395 		 * reporting the additional functionality.
1396 		 */
1397 
1398 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1399 		/* Execution stops here. */
1400 
1401 	/* Supported ABIs only from the secure world. */
1402 	case FFA_MEM_PERM_GET_SMC32:
1403 	case FFA_MEM_PERM_GET_SMC64:
1404 	case FFA_MEM_PERM_SET_SMC32:
1405 	case FFA_MEM_PERM_SET_SMC64:
1406 	/* these ABIs are only supported from S-EL0 SPs */
1407 	#if !(SPMC_AT_EL3_SEL0_SP)
1408 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1409 	#endif
1410 	/* fall through */
1411 
1412 	case FFA_SECONDARY_EP_REGISTER_SMC64:
1413 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
1414 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
1415 	case FFA_MSG_SEND_DIRECT_RESP2_SMC64:
1416 	case FFA_MEM_RELINQUISH:
1417 	case FFA_MSG_WAIT:
1418 	case FFA_CONSOLE_LOG_SMC32:
1419 	case FFA_CONSOLE_LOG_SMC64:
1420 		if (!secure_origin) {
1421 			return spmc_ffa_error_return(handle,
1422 				FFA_ERROR_NOT_SUPPORTED);
1423 		}
1424 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1425 		/* Execution stops here. */
1426 
1427 	/* Supported features only from the normal world. */
1428 	case FFA_MEM_SHARE_SMC32:
1429 	case FFA_MEM_SHARE_SMC64:
1430 	case FFA_MEM_LEND_SMC32:
1431 	case FFA_MEM_LEND_SMC64:
1432 	case FFA_MEM_RECLAIM:
1433 	case FFA_MEM_FRAG_RX:
1434 
1435 		if (secure_origin) {
1436 			return spmc_ffa_error_return(handle,
1437 					FFA_ERROR_NOT_SUPPORTED);
1438 		}
1439 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1440 		/* Execution stops here. */
1441 
1442 	default:
1443 		return spmc_ffa_error_return(handle,
1444 					FFA_ERROR_NOT_SUPPORTED);
1445 	}
1446 }
1447 
ffa_id_get_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1448 static uint64_t ffa_id_get_handler(uint32_t smc_fid,
1449 				   bool secure_origin,
1450 				   uint64_t x1,
1451 				   uint64_t x2,
1452 				   uint64_t x3,
1453 				   uint64_t x4,
1454 				   void *cookie,
1455 				   void *handle,
1456 				   uint64_t flags)
1457 {
1458 	if (secure_origin) {
1459 		SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0,
1460 			 spmc_get_current_sp_ctx()->sp_id);
1461 	} else {
1462 		SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0,
1463 			 spmc_get_hyp_ctx()->ns_ep_id);
1464 	}
1465 }
1466 
1467 /*
1468  * Enable an SP to query the ID assigned to the SPMC.
1469  */
ffa_spm_id_get_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1470 static uint64_t ffa_spm_id_get_handler(uint32_t smc_fid,
1471 				       bool secure_origin,
1472 				       uint64_t x1,
1473 				       uint64_t x2,
1474 				       uint64_t x3,
1475 				       uint64_t x4,
1476 				       void *cookie,
1477 				       void *handle,
1478 				       uint64_t flags)
1479 {
1480 	assert(x1 == 0UL);
1481 	assert(x2 == 0UL);
1482 	assert(x3 == 0UL);
1483 	assert(x4 == 0UL);
1484 	assert(SMC_GET_GP(handle, CTX_GPREG_X5) == 0UL);
1485 	assert(SMC_GET_GP(handle, CTX_GPREG_X6) == 0UL);
1486 	assert(SMC_GET_GP(handle, CTX_GPREG_X7) == 0UL);
1487 
1488 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, FFA_SPMC_ID);
1489 }
1490 
ffa_run_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1491 static uint64_t ffa_run_handler(uint32_t smc_fid,
1492 				bool secure_origin,
1493 				uint64_t x1,
1494 				uint64_t x2,
1495 				uint64_t x3,
1496 				uint64_t x4,
1497 				void *cookie,
1498 				void *handle,
1499 				uint64_t flags)
1500 {
1501 	struct secure_partition_desc *sp;
1502 	uint16_t target_id = FFA_RUN_EP_ID(x1);
1503 	uint16_t vcpu_id = FFA_RUN_VCPU_ID(x1);
1504 	unsigned int idx;
1505 	unsigned int *rt_state;
1506 	unsigned int *rt_model;
1507 
1508 	/* Can only be called from the normal world. */
1509 	if (secure_origin) {
1510 		ERROR("FFA_RUN can only be called from NWd.\n");
1511 		return spmc_ffa_error_return(handle,
1512 					     FFA_ERROR_INVALID_PARAMETER);
1513 	}
1514 
1515 	/* Cannot run a Normal world partition. */
1516 	if (ffa_is_normal_world_id(target_id)) {
1517 		ERROR("Cannot run a NWd partition (0x%x).\n", target_id);
1518 		return spmc_ffa_error_return(handle,
1519 					     FFA_ERROR_INVALID_PARAMETER);
1520 	}
1521 
1522 	/* Check that the target SP exists. */
1523 	sp = spmc_get_sp_ctx(target_id);
1524 	if (sp == NULL) {
1525 		ERROR("Unknown partition ID (0x%x).\n", target_id);
1526 		return spmc_ffa_error_return(handle,
1527 					     FFA_ERROR_INVALID_PARAMETER);
1528 	}
1529 
1530 	idx = get_ec_index(sp);
1531 
1532 	if (idx != vcpu_id) {
1533 		ERROR("Cannot run vcpu %d != %d.\n", idx, vcpu_id);
1534 		return spmc_ffa_error_return(handle,
1535 					     FFA_ERROR_INVALID_PARAMETER);
1536 	}
1537 	if (sp->runtime_el == S_EL0) {
1538 		spin_lock(&sp->rt_state_lock);
1539 	}
1540 	rt_state = &((sp->ec[idx]).rt_state);
1541 	rt_model = &((sp->ec[idx]).rt_model);
1542 	if (*rt_state == RT_STATE_RUNNING) {
1543 		if (sp->runtime_el == S_EL0) {
1544 			spin_unlock(&sp->rt_state_lock);
1545 		}
1546 		ERROR("Partition (0x%x) is already running.\n", target_id);
1547 		return spmc_ffa_error_return(handle, FFA_ERROR_BUSY);
1548 	}
1549 
1550 	/*
1551 	 * Sanity check that if the execution context was not waiting then it
1552 	 * was either in the direct request or the run partition runtime model.
1553 	 */
1554 	if (*rt_state == RT_STATE_PREEMPTED || *rt_state == RT_STATE_BLOCKED) {
1555 		assert(*rt_model == RT_MODEL_RUN ||
1556 		       *rt_model == RT_MODEL_DIR_REQ);
1557 	}
1558 
1559 	/*
1560 	 * If the context was waiting then update the partition runtime model.
1561 	 */
1562 	if (*rt_state == RT_STATE_WAITING) {
1563 		*rt_model = RT_MODEL_RUN;
1564 	}
1565 
1566 	/*
1567 	 * Forward the request to the correct SP vCPU after updating
1568 	 * its state.
1569 	 */
1570 	*rt_state = RT_STATE_RUNNING;
1571 
1572 	if (sp->runtime_el == S_EL0) {
1573 		spin_unlock(&sp->rt_state_lock);
1574 	}
1575 
1576 	return spmc_smc_return(smc_fid, secure_origin, x1, 0, 0, 0,
1577 			       handle, cookie, flags, target_id, sp->ffa_version);
1578 }
1579 
rx_release_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1580 static uint64_t rx_release_handler(uint32_t smc_fid,
1581 				   bool secure_origin,
1582 				   uint64_t x1,
1583 				   uint64_t x2,
1584 				   uint64_t x3,
1585 				   uint64_t x4,
1586 				   void *cookie,
1587 				   void *handle,
1588 				   uint64_t flags)
1589 {
1590 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1591 
1592 	spin_lock(&mbox->lock);
1593 
1594 	if (mbox->state != MAILBOX_STATE_FULL) {
1595 		spin_unlock(&mbox->lock);
1596 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1597 	}
1598 
1599 	mbox->state = MAILBOX_STATE_EMPTY;
1600 	spin_unlock(&mbox->lock);
1601 
1602 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1603 }
1604 
spmc_ffa_console_log(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1605 static uint64_t spmc_ffa_console_log(uint32_t smc_fid,
1606 				     bool secure_origin,
1607 				     uint64_t x1,
1608 				     uint64_t x2,
1609 				     uint64_t x3,
1610 				     uint64_t x4,
1611 				     void *cookie,
1612 				     void *handle,
1613 				     uint64_t flags)
1614 {
1615 	/* Maximum number of characters is 48: 6 registers of 8 bytes each. */
1616 	char chars[48] = {0};
1617 	size_t chars_max;
1618 	size_t chars_count = x1;
1619 
1620 	/* Does not support request from Nwd. */
1621 	if (!secure_origin) {
1622 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1623 	}
1624 
1625 	assert(smc_fid == FFA_CONSOLE_LOG_SMC32 || smc_fid == FFA_CONSOLE_LOG_SMC64);
1626 	if (smc_fid == FFA_CONSOLE_LOG_SMC32) {
1627 		uint32_t *registers = (uint32_t *)chars;
1628 		registers[0] = (uint32_t)x2;
1629 		registers[1] = (uint32_t)x3;
1630 		registers[2] = (uint32_t)x4;
1631 		registers[3] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X5);
1632 		registers[4] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X6);
1633 		registers[5] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X7);
1634 		chars_max = 6 * sizeof(uint32_t);
1635 	} else {
1636 		uint64_t *registers = (uint64_t *)chars;
1637 		registers[0] = x2;
1638 		registers[1] = x3;
1639 		registers[2] = x4;
1640 		registers[3] = SMC_GET_GP(handle, CTX_GPREG_X5);
1641 		registers[4] = SMC_GET_GP(handle, CTX_GPREG_X6);
1642 		registers[5] = SMC_GET_GP(handle, CTX_GPREG_X7);
1643 		chars_max = 6 * sizeof(uint64_t);
1644 	}
1645 
1646 	if ((chars_count == 0) || (chars_count > chars_max)) {
1647 		return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER);
1648 	}
1649 
1650 	for (size_t i = 0; (i < chars_count) && (chars[i] != '\0'); i++) {
1651 		putchar(chars[i]);
1652 	}
1653 
1654 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1655 }
1656 
1657 /*
1658  * Perform initial validation on the provided secondary entry point.
1659  * For now ensure it does not lie within the BL31 Image or the SP's
1660  * RX/TX buffers as these are mapped within EL3.
1661  * TODO: perform validation for additional invalid memory regions.
1662  */
validate_secondary_ep(uintptr_t ep,struct secure_partition_desc * sp)1663 static int validate_secondary_ep(uintptr_t ep, struct secure_partition_desc *sp)
1664 {
1665 	struct mailbox *mb;
1666 	uintptr_t buffer_size;
1667 	uintptr_t sp_rx_buffer;
1668 	uintptr_t sp_tx_buffer;
1669 	uintptr_t sp_rx_buffer_limit;
1670 	uintptr_t sp_tx_buffer_limit;
1671 
1672 	mb = &sp->mailbox;
1673 	buffer_size = (uintptr_t) (mb->rxtx_page_count * FFA_PAGE_SIZE);
1674 	sp_rx_buffer = (uintptr_t) mb->rx_buffer;
1675 	sp_tx_buffer = (uintptr_t) mb->tx_buffer;
1676 	sp_rx_buffer_limit = sp_rx_buffer + buffer_size;
1677 	sp_tx_buffer_limit = sp_tx_buffer + buffer_size;
1678 
1679 	/*
1680 	 * Check if the entry point lies within BL31, or the
1681 	 * SP's RX or TX buffer.
1682 	 */
1683 	if ((ep >= BL31_BASE && ep < BL31_LIMIT) ||
1684 	    (ep >= sp_rx_buffer && ep < sp_rx_buffer_limit) ||
1685 	    (ep >= sp_tx_buffer && ep < sp_tx_buffer_limit)) {
1686 		return -EINVAL;
1687 	}
1688 	return 0;
1689 }
1690 
1691 /*******************************************************************************
1692  * This function handles the FFA_SECONDARY_EP_REGISTER SMC to allow an SP to
1693  *  register an entry point for initialization during a secondary cold boot.
1694  ******************************************************************************/
ffa_sec_ep_register_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1695 static uint64_t ffa_sec_ep_register_handler(uint32_t smc_fid,
1696 					    bool secure_origin,
1697 					    uint64_t x1,
1698 					    uint64_t x2,
1699 					    uint64_t x3,
1700 					    uint64_t x4,
1701 					    void *cookie,
1702 					    void *handle,
1703 					    uint64_t flags)
1704 {
1705 	struct secure_partition_desc *sp;
1706 	struct sp_exec_ctx *sp_ctx;
1707 
1708 	/* This request cannot originate from the Normal world. */
1709 	if (!secure_origin) {
1710 		WARN("%s: Can only be called from SWd.\n", __func__);
1711 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1712 	}
1713 
1714 	/* Get the context of the current SP. */
1715 	sp = spmc_get_current_sp_ctx();
1716 	if (sp == NULL) {
1717 		WARN("%s: Cannot find SP context.\n", __func__);
1718 		return spmc_ffa_error_return(handle,
1719 					     FFA_ERROR_INVALID_PARAMETER);
1720 	}
1721 
1722 	/* Only an S-EL1 SP should be invoking this ABI. */
1723 	if (sp->runtime_el != S_EL1) {
1724 		WARN("%s: Can only be called for a S-EL1 SP.\n", __func__);
1725 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1726 	}
1727 
1728 	/* Ensure the SP is in its initialization state. */
1729 	sp_ctx = spmc_get_sp_ec(sp);
1730 	if (sp_ctx->rt_model != RT_MODEL_INIT) {
1731 		WARN("%s: Can only be called during SP initialization.\n",
1732 		     __func__);
1733 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1734 	}
1735 
1736 	/* Perform initial validation of the secondary entry point. */
1737 	if (validate_secondary_ep(x1, sp)) {
1738 		WARN("%s: Invalid entry point provided (0x%lx).\n",
1739 		     __func__, x1);
1740 		return spmc_ffa_error_return(handle,
1741 					     FFA_ERROR_INVALID_PARAMETER);
1742 	}
1743 
1744 	/*
1745 	 * Update the secondary entrypoint in SP context.
1746 	 * We don't need a lock here as during partition initialization there
1747 	 * will only be a single core online.
1748 	 */
1749 	sp->secondary_ep = x1;
1750 	VERBOSE("%s: 0x%lx\n", __func__, sp->secondary_ep);
1751 
1752 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1753 }
1754 
1755 /*******************************************************************************
1756  * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs
1757  * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This
1758  * function converts a permission value from the FF-A format to the mmap_attr_t
1759  * format by setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and
1760  * MT_EXECUTE/MT_EXECUTE_NEVER. The other fields are left as 0 because they are
1761  * ignored by the function xlat_change_mem_attributes_ctx().
1762  ******************************************************************************/
ffa_perm_to_mmap_perm(unsigned int perms)1763 static unsigned int ffa_perm_to_mmap_perm(unsigned int perms)
1764 {
1765 	unsigned int tf_attr = 0U;
1766 	unsigned int access;
1767 
1768 	/* Deal with data access permissions first. */
1769 	access = (perms & FFA_MEM_PERM_DATA_MASK) >> FFA_MEM_PERM_DATA_SHIFT;
1770 
1771 	switch (access) {
1772 	case FFA_MEM_PERM_DATA_RW:
1773 		/* Return 0 if the execute is set with RW. */
1774 		if ((perms & FFA_MEM_PERM_INST_NON_EXEC) != 0) {
1775 			tf_attr |= MT_RW | MT_USER | MT_EXECUTE_NEVER;
1776 		}
1777 		break;
1778 
1779 	case FFA_MEM_PERM_DATA_RO:
1780 		tf_attr |= MT_RO | MT_USER;
1781 		/* Deal with the instruction access permissions next. */
1782 		if ((perms & FFA_MEM_PERM_INST_NON_EXEC) == 0) {
1783 			tf_attr |= MT_EXECUTE;
1784 		} else {
1785 			tf_attr |= MT_EXECUTE_NEVER;
1786 		}
1787 		break;
1788 
1789 	case FFA_MEM_PERM_DATA_NA:
1790 	default:
1791 		return tf_attr;
1792 	}
1793 
1794 	return tf_attr;
1795 }
1796 
1797 /*******************************************************************************
1798  * Handler to set the permissions of a set of contiguous pages of a S-EL0 SP
1799  ******************************************************************************/
ffa_mem_perm_set_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1800 static uint64_t ffa_mem_perm_set_handler(uint32_t smc_fid,
1801 					 bool secure_origin,
1802 					 uint64_t x1,
1803 					 uint64_t x2,
1804 					 uint64_t x3,
1805 					 uint64_t x4,
1806 					 void *cookie,
1807 					 void *handle,
1808 					 uint64_t flags)
1809 {
1810 	struct secure_partition_desc *sp;
1811 	unsigned int idx;
1812 	uintptr_t base_va = (uintptr_t) x1;
1813 	size_t size = (size_t)(x2 * PAGE_SIZE);
1814 	uint32_t tf_attr;
1815 	int ret;
1816 
1817 	/* This request cannot originate from the Normal world. */
1818 	if (!secure_origin) {
1819 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1820 	}
1821 
1822 	if (size == 0) {
1823 		return spmc_ffa_error_return(handle,
1824 					     FFA_ERROR_INVALID_PARAMETER);
1825 	}
1826 
1827 	/* Get the context of the current SP. */
1828 	sp = spmc_get_current_sp_ctx();
1829 	if (sp == NULL) {
1830 		return spmc_ffa_error_return(handle,
1831 					     FFA_ERROR_INVALID_PARAMETER);
1832 	}
1833 
1834 	/* A S-EL1 SP has no business invoking this ABI. */
1835 	if (sp->runtime_el == S_EL1) {
1836 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1837 	}
1838 
1839 	if ((x3 & ~((uint64_t)FFA_MEM_PERM_MASK)) != 0) {
1840 		return spmc_ffa_error_return(handle,
1841 					     FFA_ERROR_INVALID_PARAMETER);
1842 	}
1843 
1844 	/* Get the execution context of the calling SP. */
1845 	idx = get_ec_index(sp);
1846 
1847 	/*
1848 	 * Ensure that the S-EL0 SP is initialising itself. We do not need to
1849 	 * synchronise this operation through a spinlock since a S-EL0 SP is UP
1850 	 * and can only be initialising on this cpu.
1851 	 */
1852 	if (sp->ec[idx].rt_model != RT_MODEL_INIT) {
1853 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1854 	}
1855 
1856 	VERBOSE("Setting memory permissions:\n");
1857 	VERBOSE("  Start address  : 0x%lx\n", base_va);
1858 	VERBOSE("  Number of pages: %lu (%zu bytes)\n", x2, size);
1859 	VERBOSE("  Attributes     : 0x%x\n", (uint32_t)x3);
1860 
1861 	/* Convert inbound permissions to TF-A permission attributes */
1862 	tf_attr = ffa_perm_to_mmap_perm((unsigned int)x3);
1863 	if (tf_attr == 0U) {
1864 		return spmc_ffa_error_return(handle,
1865 					     FFA_ERROR_INVALID_PARAMETER);
1866 	}
1867 
1868 	/* Request the change in permissions */
1869 	ret = xlat_change_mem_attributes_ctx(sp->xlat_ctx_handle,
1870 					     base_va, size, tf_attr);
1871 	if (ret != 0) {
1872 		return spmc_ffa_error_return(handle,
1873 					     FFA_ERROR_INVALID_PARAMETER);
1874 	}
1875 
1876 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1877 }
1878 
1879 /*******************************************************************************
1880  * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs
1881  * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This
1882  * function converts a permission value from the mmap_attr_t format to the FF-A
1883  * format.
1884  ******************************************************************************/
mmap_perm_to_ffa_perm(unsigned int attr)1885 static unsigned int mmap_perm_to_ffa_perm(unsigned int attr)
1886 {
1887 	unsigned int perms = 0U;
1888 	unsigned int data_access;
1889 
1890 	if ((attr & MT_USER) == 0) {
1891 		/* No access from EL0. */
1892 		data_access = FFA_MEM_PERM_DATA_NA;
1893 	} else {
1894 		if ((attr & MT_RW) != 0) {
1895 			data_access = FFA_MEM_PERM_DATA_RW;
1896 		} else {
1897 			data_access = FFA_MEM_PERM_DATA_RO;
1898 		}
1899 	}
1900 
1901 	perms |= (data_access & FFA_MEM_PERM_DATA_MASK)
1902 		<< FFA_MEM_PERM_DATA_SHIFT;
1903 
1904 	if ((attr & MT_EXECUTE_NEVER) != 0U) {
1905 		perms |= FFA_MEM_PERM_INST_NON_EXEC;
1906 	}
1907 
1908 	return perms;
1909 }
1910 
1911 /*******************************************************************************
1912  * Handler to get the permissions of a set of contiguous pages of a S-EL0 SP
1913  ******************************************************************************/
ffa_mem_perm_get_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1914 static uint64_t ffa_mem_perm_get_handler(uint32_t smc_fid,
1915 					 bool secure_origin,
1916 					 uint64_t x1,
1917 					 uint64_t x2,
1918 					 uint64_t x3,
1919 					 uint64_t x4,
1920 					 void *cookie,
1921 					 void *handle,
1922 					 uint64_t flags)
1923 {
1924 	struct secure_partition_desc *sp;
1925 	unsigned int idx;
1926 	uintptr_t base_va = (uintptr_t)x1;
1927 	uint64_t max_page_count = x2 + 1;
1928 	uint64_t page_count = 0;
1929 	uint32_t base_page_attr = 0;
1930 	uint32_t page_attr = 0;
1931 	unsigned int table_level;
1932 	int ret;
1933 
1934 	/* This request cannot originate from the Normal world. */
1935 	if (!secure_origin) {
1936 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1937 	}
1938 
1939 	/* Get the context of the current SP. */
1940 	sp = spmc_get_current_sp_ctx();
1941 	if (sp == NULL) {
1942 		return spmc_ffa_error_return(handle,
1943 					     FFA_ERROR_INVALID_PARAMETER);
1944 	}
1945 
1946 	/* A S-EL1 SP has no business invoking this ABI. */
1947 	if (sp->runtime_el == S_EL1) {
1948 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1949 	}
1950 
1951 	/* Get the execution context of the calling SP. */
1952 	idx = get_ec_index(sp);
1953 
1954 	/*
1955 	 * Ensure that the S-EL0 SP is initialising itself. We do not need to
1956 	 * synchronise this operation through a spinlock since a S-EL0 SP is UP
1957 	 * and can only be initialising on this cpu.
1958 	 */
1959 	if (sp->ec[idx].rt_model != RT_MODEL_INIT) {
1960 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1961 	}
1962 
1963 	base_va &= ~(PAGE_SIZE_MASK);
1964 
1965 	/* Request the permissions */
1966 	ret = xlat_get_mem_attributes_ctx(sp->xlat_ctx_handle, base_va,
1967 			&base_page_attr, &table_level);
1968 	if (ret != 0) {
1969 		return spmc_ffa_error_return(handle,
1970 					     FFA_ERROR_INVALID_PARAMETER);
1971 	}
1972 
1973 	/*
1974 	 * Caculate how many pages in this block entry from base_va including
1975 	 * its page.
1976 	 */
1977 	page_count = ((XLAT_BLOCK_SIZE(table_level) -
1978 			(base_va & XLAT_BLOCK_MASK(table_level))) >> PAGE_SIZE_SHIFT);
1979 	base_va += XLAT_BLOCK_SIZE(table_level);
1980 
1981 	while ((page_count < max_page_count) && (base_va != 0x00)) {
1982 		ret = xlat_get_mem_attributes_ctx(sp->xlat_ctx_handle, base_va,
1983 				&page_attr, &table_level);
1984 		if (ret != 0) {
1985 			return spmc_ffa_error_return(handle,
1986 						     FFA_ERROR_INVALID_PARAMETER);
1987 		}
1988 
1989 		if (page_attr != base_page_attr) {
1990 			break;
1991 		}
1992 
1993 		base_va += XLAT_BLOCK_SIZE(table_level);
1994 		page_count += (XLAT_BLOCK_SIZE(table_level) >> PAGE_SIZE_SHIFT);
1995 	}
1996 
1997 	if (page_count > max_page_count) {
1998 		page_count = max_page_count;
1999 	}
2000 
2001 	/* Convert TF-A permission to FF-A permissions attributes. */
2002 	x2 = mmap_perm_to_ffa_perm(base_page_attr);
2003 
2004 	/* x3 should be page count - 1 */
2005 	SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, x2, --page_count);
2006 }
2007 
2008 /*******************************************************************************
2009  * This function will parse the Secure Partition Manifest. From manifest, it
2010  * will fetch details for preparing Secure partition image context and secure
2011  * partition image boot arguments if any.
2012  ******************************************************************************/
sp_manifest_parse(void * sp_manifest,int offset,struct secure_partition_desc * sp,entry_point_info_t * ep_info,int32_t * boot_info_reg)2013 static int sp_manifest_parse(void *sp_manifest, int offset,
2014 			     struct secure_partition_desc *sp,
2015 			     entry_point_info_t *ep_info,
2016 			     int32_t *boot_info_reg)
2017 {
2018 	int32_t ret, node;
2019 	uint32_t config_32;
2020 	int uuid_size;
2021 	const fdt32_t *prop;
2022 
2023 	/*
2024 	 * Look for the mandatory fields that are expected to be present in
2025 	 * the SP manifests.
2026 	 */
2027 	node = fdt_path_offset(sp_manifest, "/");
2028 	if (node < 0) {
2029 		ERROR("Did not find root node.\n");
2030 		return node;
2031 	}
2032 
2033 	prop = fdt_getprop(sp_manifest, node, "uuid", &uuid_size);
2034 	if (prop == NULL) {
2035 		ERROR("Couldn't find property uuid in manifest\n");
2036 		return -FDT_ERR_NOTFOUND;
2037 	}
2038 
2039 	sp->num_uuids = (uint32_t)uuid_size / sizeof(struct ffa_uuid);
2040 	if (sp->num_uuids > ARRAY_SIZE(sp->uuid_array)) {
2041 		ERROR("Too many UUIDs (%d) in manifest, maximum is %zd\n",
2042 		      sp->num_uuids, ARRAY_SIZE(sp->uuid_array));
2043 		return -FDT_ERR_BADVALUE;
2044 	}
2045 
2046 	ret = fdt_read_uint32_array(sp_manifest, node, "uuid",
2047 				    (uuid_size / sizeof(uint32_t)),
2048 				    sp->uuid_array[0].uuid);
2049 	if (ret != 0) {
2050 		ERROR("Missing Secure Partition UUID.\n");
2051 		return ret;
2052 	}
2053 
2054 	for (uint32_t i = 0; i < sp->num_uuids; i++) {
2055 		for (uint32_t j = 0; j < i; j++) {
2056 			if (memcmp(&sp->uuid_array[i], &sp->uuid_array[j],
2057 				   sizeof(struct ffa_uuid)) == 0) {
2058 				ERROR("Duplicate UUIDs in manifest: 0x%x 0x%x 0x%x 0x%x\n",
2059 				      sp->uuid_array[i].uuid[0],
2060 				      sp->uuid_array[i].uuid[1],
2061 				      sp->uuid_array[i].uuid[2],
2062 				      sp->uuid_array[i].uuid[3]);
2063 				return -FDT_ERR_BADVALUE;
2064 			}
2065 		}
2066 	}
2067 
2068 	ret = fdt_read_uint32(sp_manifest, node, "exception-level", &config_32);
2069 	if (ret != 0) {
2070 		ERROR("Missing SP Exception Level information.\n");
2071 		return ret;
2072 	}
2073 
2074 	sp->runtime_el = config_32;
2075 
2076 	ret = fdt_read_uint32(sp_manifest, node, "ffa-version", &config_32);
2077 	if (ret != 0) {
2078 		ERROR("Missing Secure Partition FF-A Version.\n");
2079 		return ret;
2080 	}
2081 
2082 	sp->ffa_version = config_32;
2083 
2084 	ret = fdt_read_uint32(sp_manifest, node, "execution-state", &config_32);
2085 	if (ret != 0) {
2086 		ERROR("Missing Secure Partition Execution State.\n");
2087 		return ret;
2088 	}
2089 
2090 	sp->execution_state = config_32;
2091 
2092 	ret = fdt_read_uint32(sp_manifest, node,
2093 			      "messaging-method", &config_32);
2094 	if (ret != 0) {
2095 		ERROR("Missing Secure Partition messaging method.\n");
2096 		return ret;
2097 	}
2098 
2099 	/* Validate this entry, we currently only support direct messaging. */
2100 	if ((config_32 & ~(FFA_PARTITION_DIRECT_REQ_RECV |
2101 			  FFA_PARTITION_DIRECT_REQ_SEND |
2102 			  FFA_PARTITION_DIRECT_REQ2_RECV |
2103 			  FFA_PARTITION_DIRECT_REQ2_SEND)) != 0U) {
2104 		WARN("Invalid Secure Partition messaging method (0x%x)\n",
2105 		     config_32);
2106 		return -EINVAL;
2107 	}
2108 
2109 	sp->properties = config_32;
2110 
2111 	ret = fdt_read_uint32(sp_manifest, node,
2112 			      "execution-ctx-count", &config_32);
2113 
2114 	if (ret != 0) {
2115 		ERROR("Missing SP Execution Context Count.\n");
2116 		return ret;
2117 	}
2118 
2119 	/*
2120 	 * Ensure this field is set correctly in the manifest however
2121 	 * since this is currently a hardcoded value for S-EL1 partitions
2122 	 * we don't need to save it here, just validate.
2123 	 */
2124 	if ((sp->runtime_el == S_EL1) && (config_32 != PLATFORM_CORE_COUNT)) {
2125 		ERROR("SP Execution Context Count (%u) must be %u.\n",
2126 			config_32, PLATFORM_CORE_COUNT);
2127 		return -EINVAL;
2128 	}
2129 
2130 	/*
2131 	 * Look for the optional fields that are expected to be present in
2132 	 * an SP manifest.
2133 	 */
2134 	ret = fdt_read_uint32(sp_manifest, node, "id", &config_32);
2135 	if (ret != 0) {
2136 		WARN("Missing Secure Partition ID.\n");
2137 	} else {
2138 		if (!is_ffa_secure_id_valid(config_32)) {
2139 			ERROR("Invalid Secure Partition ID (0x%x).\n",
2140 			      config_32);
2141 			return -EINVAL;
2142 		}
2143 		sp->sp_id = config_32;
2144 	}
2145 
2146 	ret = fdt_read_uint32(sp_manifest, node,
2147 			      "power-management-messages", &config_32);
2148 	if (ret != 0) {
2149 		WARN("Missing Power Management Messages entry.\n");
2150 	} else {
2151 		if ((sp->runtime_el == S_EL0) && (config_32 != 0)) {
2152 			ERROR("Power messages not supported for S-EL0 SP\n");
2153 			return -EINVAL;
2154 		}
2155 
2156 		/*
2157 		 * Ensure only the currently supported power messages have
2158 		 * been requested.
2159 		 */
2160 		if (config_32 & ~(FFA_PM_MSG_SUB_CPU_OFF |
2161 				  FFA_PM_MSG_SUB_CPU_SUSPEND |
2162 				  FFA_PM_MSG_SUB_CPU_SUSPEND_RESUME)) {
2163 			ERROR("Requested unsupported PM messages (%x)\n",
2164 			      config_32);
2165 			return -EINVAL;
2166 		}
2167 		sp->pwr_mgmt_msgs = config_32;
2168 	}
2169 
2170 	ret = fdt_read_uint32(sp_manifest, node,
2171 			      "gp-register-num", &config_32);
2172 	if (ret != 0) {
2173 		WARN("Missing boot information register.\n");
2174 	} else {
2175 		/* Check if a register number between 0-3 is specified. */
2176 		if (config_32 < 4) {
2177 			*boot_info_reg = config_32;
2178 		} else {
2179 			WARN("Incorrect boot information register (%u).\n",
2180 			     config_32);
2181 		}
2182 	}
2183 
2184 	ret = fdt_read_uint32(sp_manifest, node,
2185 			      "vm-availability-messages", &config_32);
2186 	if (ret != 0) {
2187 		WARN("Missing VM availability messaging.\n");
2188 	} else if ((sp->properties & FFA_PARTITION_DIRECT_REQ_RECV) == 0) {
2189 		ERROR("VM availability messaging requested without "
2190 		      "direct message receive support.\n");
2191 		return -EINVAL;
2192 	} else {
2193 		/* Validate this entry. */
2194 		if ((config_32 & ~(FFA_VM_AVAILABILITY_CREATED |
2195 				  FFA_VM_AVAILABILITY_DESTROYED)) != 0U) {
2196 			WARN("Invalid VM availability messaging (0x%x)\n",
2197 			     config_32);
2198 			return -EINVAL;
2199 		}
2200 
2201 		if ((config_32 & FFA_VM_AVAILABILITY_CREATED) != 0U) {
2202 			sp->properties |= FFA_PARTITION_VM_CREATED;
2203 		}
2204 		if ((config_32 & FFA_VM_AVAILABILITY_DESTROYED) != 0U) {
2205 			sp->properties |= FFA_PARTITION_VM_DESTROYED;
2206 		}
2207 	}
2208 
2209 	return 0;
2210 }
2211 
2212 /*******************************************************************************
2213  * This function gets the Secure Partition Manifest base and maps the manifest
2214  * region.
2215  * Currently only one Secure Partition manifest is considered which is used to
2216  * prepare the context for the single Secure Partition.
2217  ******************************************************************************/
find_and_prepare_sp_context(void)2218 static int find_and_prepare_sp_context(void)
2219 {
2220 	void *sp_manifest;
2221 	uintptr_t manifest_base;
2222 	uintptr_t manifest_base_align __maybe_unused;
2223 	entry_point_info_t *next_image_ep_info;
2224 	int32_t ret, boot_info_reg = -1;
2225 	struct secure_partition_desc *sp;
2226 	struct transfer_list_header *tl __maybe_unused;
2227 	struct transfer_list_entry *te __maybe_unused;
2228 
2229 	next_image_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
2230 	if (next_image_ep_info == NULL) {
2231 		WARN("No Secure Partition image provided by BL2.\n");
2232 		return -ENOENT;
2233 	}
2234 
2235 
2236 #if TRANSFER_LIST && !RESET_TO_BL31
2237 	tl = (struct transfer_list_header *)next_image_ep_info->args.arg3;
2238 	te = transfer_list_find(tl, TL_TAG_DT_FFA_MANIFEST);
2239 	if (te == NULL) {
2240 		WARN("Secure Partition manifest absent.\n");
2241 		return -ENOENT;
2242 	}
2243 
2244 	sp_manifest = (void *)transfer_list_entry_data(te);
2245 	manifest_base = (uintptr_t)sp_manifest;
2246 #else
2247 	sp_manifest = (void *)next_image_ep_info->args.arg0;
2248 	if (sp_manifest == NULL) {
2249 		WARN("Secure Partition manifest absent.\n");
2250 		return -ENOENT;
2251 	}
2252 
2253 	manifest_base = (uintptr_t)sp_manifest;
2254 	manifest_base_align = page_align(manifest_base, DOWN);
2255 
2256 	/*
2257 	 * Map the secure partition manifest region in the EL3 translation
2258 	 * regime.
2259 	 * Map an area equal to (2 * PAGE_SIZE) for now. During manifest base
2260 	 * alignment the region of 1 PAGE_SIZE from manifest align base may
2261 	 * not completely accommodate the secure partition manifest region.
2262 	 */
2263 	ret = mmap_add_dynamic_region((unsigned long long)manifest_base_align,
2264 				      manifest_base_align,
2265 				      PAGE_SIZE * 2,
2266 				      MT_RO_DATA);
2267 	if (ret != 0) {
2268 		ERROR("Error while mapping SP manifest (%d).\n", ret);
2269 		return ret;
2270 	}
2271 #endif
2272 
2273 	ret = fdt_node_offset_by_compatible(sp_manifest, -1,
2274 					    "arm,ffa-manifest-1.0");
2275 	if (ret < 0) {
2276 		ERROR("Error happened in SP manifest reading.\n");
2277 		return -EINVAL;
2278 	}
2279 
2280 	/*
2281 	 * Store the size of the manifest so that it can be used later to pass
2282 	 * the manifest as boot information later.
2283 	 */
2284 	next_image_ep_info->args.arg1 = fdt_totalsize(sp_manifest);
2285 	INFO("Manifest adr = %lx , size = %lu bytes\n", manifest_base,
2286 	     next_image_ep_info->args.arg1);
2287 
2288 	/*
2289 	 * Select an SP descriptor for initialising the partition's execution
2290 	 * context on the primary CPU.
2291 	 */
2292 	sp = spmc_get_current_sp_ctx();
2293 
2294 #if SPMC_AT_EL3_SEL0_SP
2295 	/* Assign translation tables context. */
2296 	sp_desc->xlat_ctx_handle = spm_get_sp_xlat_context();
2297 
2298 #endif /* SPMC_AT_EL3_SEL0_SP */
2299 	/* Initialize entry point information for the SP */
2300 	SET_PARAM_HEAD(next_image_ep_info, PARAM_EP, VERSION_1,
2301 		       SECURE | EP_ST_ENABLE);
2302 
2303 	/* Parse the SP manifest. */
2304 	ret = sp_manifest_parse(sp_manifest, ret, sp, next_image_ep_info,
2305 				&boot_info_reg);
2306 	if (ret != 0) {
2307 		ERROR("Error in Secure Partition manifest parsing.\n");
2308 		return ret;
2309 	}
2310 
2311 	/* Perform any common initialisation. */
2312 	spmc_sp_common_setup(sp, next_image_ep_info, boot_info_reg);
2313 
2314 	/* Perform any initialisation specific to S-EL1 SPs. */
2315 	if (sp->runtime_el == S_EL1) {
2316 		spmc_el1_sp_setup(sp, next_image_ep_info);
2317 		spmc_sp_common_ep_commit(sp, next_image_ep_info);
2318 	}
2319 #if SPMC_AT_EL3_SEL0_SP
2320 	/* Perform any initialisation specific to S-EL0 SPs. */
2321 	else if (sp->runtime_el == S_EL0) {
2322 		/* Setup spsr in endpoint info for common context management routine. */
2323 		spmc_el0_sp_spsr_setup(next_image_ep_info);
2324 
2325 		spmc_sp_common_ep_commit(sp, next_image_ep_info);
2326 
2327 		/*
2328 		 * Perform any initialisation specific to S-EL0 not set by common
2329 		 * context management routine.
2330 		 */
2331 		spmc_el0_sp_setup(sp, boot_info_reg, sp_manifest);
2332 	}
2333 #endif /* SPMC_AT_EL3_SEL0_SP */
2334 	else {
2335 		ERROR("Unexpected runtime EL: %u\n", sp->runtime_el);
2336 		return -EINVAL;
2337 	}
2338 
2339 	return 0;
2340 }
2341 
2342 /*******************************************************************************
2343  * This function takes an SP context pointer and performs a synchronous entry
2344  * into it.
2345  ******************************************************************************/
logical_sp_init(void)2346 static int32_t logical_sp_init(void)
2347 {
2348 	int32_t rc = 0;
2349 	struct el3_lp_desc *el3_lp_descs;
2350 
2351 	/* Perform initial validation of the Logical Partitions. */
2352 	rc = el3_sp_desc_validate();
2353 	if (rc != 0) {
2354 		ERROR("Logical Partition validation failed!\n");
2355 		return rc;
2356 	}
2357 
2358 	el3_lp_descs = get_el3_lp_array();
2359 
2360 	INFO("Logical Secure Partition init start.\n");
2361 	for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) {
2362 		rc = el3_lp_descs[i].init();
2363 		if (rc != 0) {
2364 			ERROR("Logical SP (0x%x) Failed to Initialize\n",
2365 			      el3_lp_descs[i].sp_id);
2366 			return rc;
2367 		}
2368 		VERBOSE("Logical SP (0x%x) Initialized\n",
2369 			      el3_lp_descs[i].sp_id);
2370 	}
2371 
2372 	INFO("Logical Secure Partition init completed.\n");
2373 
2374 	return rc;
2375 }
2376 
spmc_sp_synchronous_entry(struct sp_exec_ctx * ec)2377 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec)
2378 {
2379 	uint64_t rc;
2380 
2381 	assert(ec != NULL);
2382 
2383 	/* Assign the context of the SP to this CPU */
2384 	cm_set_context(&(ec->cpu_ctx), SECURE);
2385 
2386 	/* Restore the context assigned above */
2387 	cm_el1_sysregs_context_restore(SECURE);
2388 	cm_set_next_eret_context(SECURE);
2389 
2390 	/* Invalidate TLBs at EL1. */
2391 	tlbivmalle1();
2392 	dsbish();
2393 
2394 	/* Enter Secure Partition */
2395 	rc = spm_secure_partition_enter(&ec->c_rt_ctx);
2396 
2397 	/* Save secure state */
2398 	cm_el1_sysregs_context_save(SECURE);
2399 
2400 	return rc;
2401 }
2402 
2403 /*******************************************************************************
2404  * SPMC Helper Functions.
2405  ******************************************************************************/
sp_init(void)2406 static int32_t sp_init(void)
2407 {
2408 	uint64_t rc;
2409 	struct secure_partition_desc *sp;
2410 	struct sp_exec_ctx *ec;
2411 
2412 	sp = spmc_get_current_sp_ctx();
2413 	ec = spmc_get_sp_ec(sp);
2414 	ec->rt_model = RT_MODEL_INIT;
2415 	ec->rt_state = RT_STATE_RUNNING;
2416 
2417 	INFO("Secure Partition (0x%x) init start.\n", sp->sp_id);
2418 
2419 	rc = spmc_sp_synchronous_entry(ec);
2420 	if (rc != 0) {
2421 		/* Indicate SP init was not successful. */
2422 		ERROR("SP (0x%x) failed to initialize (%lu).\n",
2423 		      sp->sp_id, rc);
2424 		return 0;
2425 	}
2426 
2427 	ec->rt_state = RT_STATE_WAITING;
2428 	INFO("Secure Partition initialized.\n");
2429 
2430 	return 1;
2431 }
2432 
initalize_sp_descs(void)2433 static void initalize_sp_descs(void)
2434 {
2435 	struct secure_partition_desc *sp;
2436 
2437 	for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) {
2438 		sp = &sp_desc[i];
2439 		sp->sp_id = INV_SP_ID;
2440 		sp->mailbox.rx_buffer = NULL;
2441 		sp->mailbox.tx_buffer = NULL;
2442 		sp->mailbox.state = MAILBOX_STATE_EMPTY;
2443 		sp->secondary_ep = 0;
2444 	}
2445 }
2446 
initalize_ns_ep_descs(void)2447 static void initalize_ns_ep_descs(void)
2448 {
2449 	struct ns_endpoint_desc *ns_ep;
2450 
2451 	for (unsigned int i = 0U; i < NS_PARTITION_COUNT; i++) {
2452 		ns_ep = &ns_ep_desc[i];
2453 		/*
2454 		 * Clashes with the Hypervisor ID but will not be a
2455 		 * problem in practice.
2456 		 */
2457 		ns_ep->ns_ep_id = 0;
2458 		ns_ep->ffa_version = 0;
2459 		ns_ep->mailbox.rx_buffer = NULL;
2460 		ns_ep->mailbox.tx_buffer = NULL;
2461 		ns_ep->mailbox.state = MAILBOX_STATE_EMPTY;
2462 	}
2463 }
2464 
2465 /*******************************************************************************
2466  * Initialize SPMC attributes for the SPMD.
2467  ******************************************************************************/
spmc_populate_attrs(spmc_manifest_attribute_t * spmc_attrs)2468 void spmc_populate_attrs(spmc_manifest_attribute_t *spmc_attrs)
2469 {
2470 	spmc_attrs->major_version = FFA_VERSION_SPMC_MAJOR;
2471 	spmc_attrs->minor_version = FFA_VERSION_SPMC_MINOR;
2472 	spmc_attrs->exec_state = MODE_RW_64;
2473 	spmc_attrs->spmc_id = FFA_SPMC_ID;
2474 }
2475 
2476 /*******************************************************************************
2477  * Initialize contexts of all Secure Partitions.
2478  ******************************************************************************/
spmc_setup(void)2479 int32_t spmc_setup(void)
2480 {
2481 	int32_t ret;
2482 	uint32_t flags;
2483 
2484 	/* Initialize endpoint descriptors */
2485 	initalize_sp_descs();
2486 	initalize_ns_ep_descs();
2487 
2488 	/*
2489 	 * Retrieve the information of the datastore for tracking shared memory
2490 	 * requests allocated by platform code and zero the region if available.
2491 	 */
2492 	ret = plat_spmc_shmem_datastore_get(&spmc_shmem_obj_state.data,
2493 					    &spmc_shmem_obj_state.data_size);
2494 	if (ret != 0) {
2495 		ERROR("Failed to obtain memory descriptor backing store!\n");
2496 		return ret;
2497 	}
2498 	memset(spmc_shmem_obj_state.data, 0, spmc_shmem_obj_state.data_size);
2499 
2500 	/* Setup logical SPs. */
2501 	ret = logical_sp_init();
2502 	if (ret != 0) {
2503 		ERROR("Failed to initialize Logical Partitions.\n");
2504 		return ret;
2505 	}
2506 
2507 	/* Perform physical SP setup. */
2508 
2509 	/* Disable MMU at EL1 (initialized by BL2) */
2510 	disable_mmu_icache_el1();
2511 
2512 	/* Initialize context of the SP */
2513 	INFO("Secure Partition context setup start.\n");
2514 
2515 	ret = find_and_prepare_sp_context();
2516 	if (ret != 0) {
2517 		ERROR("Error in SP finding and context preparation.\n");
2518 		return ret;
2519 	}
2520 
2521 	/* Register power management hooks with PSCI */
2522 	psci_register_spd_pm_hook(&spmc_pm);
2523 
2524 	/*
2525 	 * Register an interrupt handler for S-EL1 interrupts
2526 	 * when generated during code executing in the
2527 	 * non-secure state.
2528 	 */
2529 	flags = 0;
2530 	set_interrupt_rm_flag(flags, NON_SECURE);
2531 	ret = register_interrupt_type_handler(INTR_TYPE_S_EL1,
2532 					      spmc_sp_interrupt_handler,
2533 					      flags);
2534 	if (ret != 0) {
2535 		ERROR("Failed to register interrupt handler! (%d)\n", ret);
2536 		panic();
2537 	}
2538 
2539 	/* Register init function for deferred init.  */
2540 	bl31_register_bl32_init(&sp_init);
2541 
2542 	INFO("Secure Partition setup done.\n");
2543 
2544 	return 0;
2545 }
2546 
2547 /*******************************************************************************
2548  * Secure Partition Manager SMC handler.
2549  ******************************************************************************/
spmc_smc_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)2550 uint64_t spmc_smc_handler(uint32_t smc_fid,
2551 			  bool secure_origin,
2552 			  uint64_t x1,
2553 			  uint64_t x2,
2554 			  uint64_t x3,
2555 			  uint64_t x4,
2556 			  void *cookie,
2557 			  void *handle,
2558 			  uint64_t flags)
2559 {
2560 	switch (smc_fid) {
2561 
2562 	case FFA_VERSION:
2563 		return ffa_version_handler(smc_fid, secure_origin, x1, x2, x3,
2564 					   x4, cookie, handle, flags);
2565 
2566 	case FFA_SPM_ID_GET:
2567 		return ffa_spm_id_get_handler(smc_fid, secure_origin, x1, x2,
2568 					     x3, x4, cookie, handle, flags);
2569 
2570 	case FFA_ID_GET:
2571 		return ffa_id_get_handler(smc_fid, secure_origin, x1, x2, x3,
2572 					  x4, cookie, handle, flags);
2573 
2574 	case FFA_FEATURES:
2575 		return ffa_features_handler(smc_fid, secure_origin, x1, x2, x3,
2576 					    x4, cookie, handle, flags);
2577 
2578 	case FFA_SECONDARY_EP_REGISTER_SMC64:
2579 		return ffa_sec_ep_register_handler(smc_fid, secure_origin, x1,
2580 						   x2, x3, x4, cookie, handle,
2581 						   flags);
2582 
2583 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
2584 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
2585 	case FFA_MSG_SEND_DIRECT_REQ2_SMC64:
2586 		return direct_req_smc_handler(smc_fid, secure_origin, x1, x2,
2587 					      x3, x4, cookie, handle, flags);
2588 
2589 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
2590 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
2591 	case FFA_MSG_SEND_DIRECT_RESP2_SMC64:
2592 		return direct_resp_smc_handler(smc_fid, secure_origin, x1, x2,
2593 					       x3, x4, cookie, handle, flags);
2594 
2595 	case FFA_RXTX_MAP_SMC32:
2596 	case FFA_RXTX_MAP_SMC64:
2597 		return rxtx_map_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2598 					cookie, handle, flags);
2599 
2600 	case FFA_RXTX_UNMAP:
2601 		return rxtx_unmap_handler(smc_fid, secure_origin, x1, x2, x3,
2602 					  x4, cookie, handle, flags);
2603 
2604 	case FFA_PARTITION_INFO_GET:
2605 		return partition_info_get_handler(smc_fid, secure_origin, x1,
2606 						  x2, x3, x4, cookie, handle,
2607 						  flags);
2608 
2609 	case FFA_RX_RELEASE:
2610 		return rx_release_handler(smc_fid, secure_origin, x1, x2, x3,
2611 					  x4, cookie, handle, flags);
2612 
2613 	case FFA_MSG_WAIT:
2614 		return msg_wait_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2615 					cookie, handle, flags);
2616 
2617 	case FFA_ERROR:
2618 		return ffa_error_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2619 					cookie, handle, flags);
2620 
2621 	case FFA_MSG_RUN:
2622 		return ffa_run_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2623 				       cookie, handle, flags);
2624 
2625 	case FFA_MEM_SHARE_SMC32:
2626 	case FFA_MEM_SHARE_SMC64:
2627 	case FFA_MEM_LEND_SMC32:
2628 	case FFA_MEM_LEND_SMC64:
2629 		return spmc_ffa_mem_send(smc_fid, secure_origin, x1, x2, x3, x4,
2630 					 cookie, handle, flags);
2631 
2632 	case FFA_MEM_FRAG_TX:
2633 		return spmc_ffa_mem_frag_tx(smc_fid, secure_origin, x1, x2, x3,
2634 					    x4, cookie, handle, flags);
2635 
2636 	case FFA_MEM_FRAG_RX:
2637 		return spmc_ffa_mem_frag_rx(smc_fid, secure_origin, x1, x2, x3,
2638 					    x4, cookie, handle, flags);
2639 
2640 	case FFA_MEM_RETRIEVE_REQ_SMC32:
2641 	case FFA_MEM_RETRIEVE_REQ_SMC64:
2642 		return spmc_ffa_mem_retrieve_req(smc_fid, secure_origin, x1, x2,
2643 						 x3, x4, cookie, handle, flags);
2644 
2645 	case FFA_MEM_RELINQUISH:
2646 		return spmc_ffa_mem_relinquish(smc_fid, secure_origin, x1, x2,
2647 					       x3, x4, cookie, handle, flags);
2648 
2649 	case FFA_MEM_RECLAIM:
2650 		return spmc_ffa_mem_reclaim(smc_fid, secure_origin, x1, x2, x3,
2651 						x4, cookie, handle, flags);
2652 	case FFA_CONSOLE_LOG_SMC32:
2653 	case FFA_CONSOLE_LOG_SMC64:
2654 		return spmc_ffa_console_log(smc_fid, secure_origin, x1, x2, x3,
2655 						x4, cookie, handle, flags);
2656 
2657 	case FFA_MEM_PERM_GET_SMC32:
2658 	case FFA_MEM_PERM_GET_SMC64:
2659 		return ffa_mem_perm_get_handler(smc_fid, secure_origin, x1, x2,
2660 						x3, x4, cookie, handle, flags);
2661 
2662 	case FFA_MEM_PERM_SET_SMC32:
2663 	case FFA_MEM_PERM_SET_SMC64:
2664 		return ffa_mem_perm_set_handler(smc_fid, secure_origin, x1, x2,
2665 						x3, x4, cookie, handle, flags);
2666 
2667 	default:
2668 		WARN("Unsupported FF-A call 0x%08x.\n", smc_fid);
2669 		break;
2670 	}
2671 	return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
2672 }
2673 
2674 /*******************************************************************************
2675  * This function is the handler registered for S-EL1 interrupts by the SPMC. It
2676  * validates the interrupt and upon success arranges entry into the SP for
2677  * handling the interrupt.
2678  ******************************************************************************/
spmc_sp_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)2679 static uint64_t spmc_sp_interrupt_handler(uint32_t id,
2680 					  uint32_t flags,
2681 					  void *handle,
2682 					  void *cookie)
2683 {
2684 	struct secure_partition_desc *sp = spmc_get_current_sp_ctx();
2685 	struct sp_exec_ctx *ec;
2686 	uint32_t linear_id = plat_my_core_pos();
2687 
2688 	/* Sanity check for a NULL pointer dereference. */
2689 	assert(sp != NULL);
2690 
2691 	/* Check the security state when the exception was generated. */
2692 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
2693 
2694 	/* Panic if not an S-EL1 Partition. */
2695 	if (sp->runtime_el != S_EL1) {
2696 		ERROR("Interrupt received for a non S-EL1 SP on core%u.\n",
2697 		      linear_id);
2698 		panic();
2699 	}
2700 
2701 	/* Obtain a reference to the SP execution context. */
2702 	ec = spmc_get_sp_ec(sp);
2703 
2704 	/* Ensure that the execution context is in waiting state else panic. */
2705 	if (ec->rt_state != RT_STATE_WAITING) {
2706 		ERROR("SP EC on core%u is not waiting (%u), it is (%u).\n",
2707 		      linear_id, RT_STATE_WAITING, ec->rt_state);
2708 		panic();
2709 	}
2710 
2711 	/* Update the runtime model and state of the partition. */
2712 	ec->rt_model = RT_MODEL_INTR;
2713 	ec->rt_state = RT_STATE_RUNNING;
2714 
2715 	VERBOSE("SP (0x%x) interrupt start on core%u.\n", sp->sp_id, linear_id);
2716 
2717 	/*
2718 	 * Forward the interrupt to the S-EL1 SP. The interrupt ID is not
2719 	 * populated as the SP can determine this by itself.
2720 	 * The flags field is forced to 0 mainly to pass the SVE hint bit
2721 	 * cleared for consumption by the lower EL.
2722 	 */
2723 	return spmd_smc_switch_state(FFA_INTERRUPT, false,
2724 				     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
2725 				     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
2726 				     handle, 0ULL, sp->ffa_version);
2727 }
2728