1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117
118 #include <linux/uaccess.h>
119
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136
137 #include <trace/events/sock.h>
138 #include <trace/hooks/sched.h>
139
140 #include <net/tcp.h>
141 #include <net/busy_poll.h>
142
143 static DEFINE_MUTEX(proto_list_mutex);
144 static LIST_HEAD(proto_list);
145
146 static void sock_inuse_add(struct net *net, int val);
147
148 /**
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
153 *
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
157 */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)158 bool sk_ns_capable(const struct sock *sk,
159 struct user_namespace *user_ns, int cap)
160 {
161 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165
166 /**
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capability to use
170 *
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
173 * namespaces.
174 */
sk_capable(const struct sock * sk,int cap)175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180
181 /**
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
185 *
186 * Test to see if the opener of the socket had when the socket was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
189 */
sk_net_capable(const struct sock * sk,int cap)190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195
196 /*
197 * Each address family might have different locking rules, so we have
198 * one slock key per address family and separate keys for internal and
199 * userspace sockets.
200 */
201 static struct lock_class_key af_family_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
205
206 /*
207 * Make lock validator output more readable. (we pre-construct these
208 * strings build-time, so that runtime initialization of socket
209 * locks is fast):
210 */
211
212 #define _sock_locks(x) \
213 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
214 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
215 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
216 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
217 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
218 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
219 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
220 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
221 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
222 x "27" , x "28" , x "AF_CAN" , \
223 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
224 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
225 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
226 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
227 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
228 x "AF_MAX"
229
230 static const char *const af_family_key_strings[AF_MAX+1] = {
231 _sock_locks("sk_lock-")
232 };
233 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
234 _sock_locks("slock-")
235 };
236 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
237 _sock_locks("clock-")
238 };
239
240 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
241 _sock_locks("k-sk_lock-")
242 };
243 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
244 _sock_locks("k-slock-")
245 };
246 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
247 _sock_locks("k-clock-")
248 };
249 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
250 _sock_locks("rlock-")
251 };
252 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
253 _sock_locks("wlock-")
254 };
255 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
256 _sock_locks("elock-")
257 };
258
259 /*
260 * sk_callback_lock and sk queues locking rules are per-address-family,
261 * so split the lock classes by using a per-AF key:
262 */
263 static struct lock_class_key af_callback_keys[AF_MAX];
264 static struct lock_class_key af_rlock_keys[AF_MAX];
265 static struct lock_class_key af_wlock_keys[AF_MAX];
266 static struct lock_class_key af_elock_keys[AF_MAX];
267 static struct lock_class_key af_kern_callback_keys[AF_MAX];
268
269 /* Run time adjustable parameters. */
270 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
271 EXPORT_SYMBOL(sysctl_wmem_max);
272 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
273 EXPORT_SYMBOL(sysctl_rmem_max);
274 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
275 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
276
277 /* Maximal space eaten by iovec or ancillary data plus some space */
278 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
279 EXPORT_SYMBOL(sysctl_optmem_max);
280
281 int sysctl_tstamp_allow_data __read_mostly = 1;
282
283 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
284 EXPORT_SYMBOL_GPL(memalloc_socks_key);
285
286 /**
287 * sk_set_memalloc - sets %SOCK_MEMALLOC
288 * @sk: socket to set it on
289 *
290 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
291 * It's the responsibility of the admin to adjust min_free_kbytes
292 * to meet the requirements
293 */
sk_set_memalloc(struct sock * sk)294 void sk_set_memalloc(struct sock *sk)
295 {
296 sock_set_flag(sk, SOCK_MEMALLOC);
297 sk->sk_allocation |= __GFP_MEMALLOC;
298 static_branch_inc(&memalloc_socks_key);
299 }
300 EXPORT_SYMBOL_GPL(sk_set_memalloc);
301
sk_clear_memalloc(struct sock * sk)302 void sk_clear_memalloc(struct sock *sk)
303 {
304 sock_reset_flag(sk, SOCK_MEMALLOC);
305 sk->sk_allocation &= ~__GFP_MEMALLOC;
306 static_branch_dec(&memalloc_socks_key);
307
308 /*
309 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
310 * progress of swapping. SOCK_MEMALLOC may be cleared while
311 * it has rmem allocations due to the last swapfile being deactivated
312 * but there is a risk that the socket is unusable due to exceeding
313 * the rmem limits. Reclaim the reserves and obey rmem limits again.
314 */
315 sk_mem_reclaim(sk);
316 }
317 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
318
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)319 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
320 {
321 int ret;
322 unsigned int noreclaim_flag;
323
324 /* these should have been dropped before queueing */
325 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
326
327 noreclaim_flag = memalloc_noreclaim_save();
328 ret = sk->sk_backlog_rcv(sk, skb);
329 memalloc_noreclaim_restore(noreclaim_flag);
330
331 return ret;
332 }
333 EXPORT_SYMBOL(__sk_backlog_rcv);
334
sock_get_timeout(long timeo,void * optval,bool old_timeval)335 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
336 {
337 struct __kernel_sock_timeval tv;
338
339 if (timeo == MAX_SCHEDULE_TIMEOUT) {
340 tv.tv_sec = 0;
341 tv.tv_usec = 0;
342 } else {
343 tv.tv_sec = timeo / HZ;
344 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
345 }
346
347 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
348 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
349 *(struct old_timeval32 *)optval = tv32;
350 return sizeof(tv32);
351 }
352
353 if (old_timeval) {
354 struct __kernel_old_timeval old_tv;
355 old_tv.tv_sec = tv.tv_sec;
356 old_tv.tv_usec = tv.tv_usec;
357 *(struct __kernel_old_timeval *)optval = old_tv;
358 return sizeof(old_tv);
359 }
360
361 *(struct __kernel_sock_timeval *)optval = tv;
362 return sizeof(tv);
363 }
364
sock_set_timeout(long * timeo_p,sockptr_t optval,int optlen,bool old_timeval)365 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
366 bool old_timeval)
367 {
368 struct __kernel_sock_timeval tv;
369
370 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
371 struct old_timeval32 tv32;
372
373 if (optlen < sizeof(tv32))
374 return -EINVAL;
375
376 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
377 return -EFAULT;
378 tv.tv_sec = tv32.tv_sec;
379 tv.tv_usec = tv32.tv_usec;
380 } else if (old_timeval) {
381 struct __kernel_old_timeval old_tv;
382
383 if (optlen < sizeof(old_tv))
384 return -EINVAL;
385 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
386 return -EFAULT;
387 tv.tv_sec = old_tv.tv_sec;
388 tv.tv_usec = old_tv.tv_usec;
389 } else {
390 if (optlen < sizeof(tv))
391 return -EINVAL;
392 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
393 return -EFAULT;
394 }
395 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
396 return -EDOM;
397
398 if (tv.tv_sec < 0) {
399 static int warned __read_mostly;
400
401 *timeo_p = 0;
402 if (warned < 10 && net_ratelimit()) {
403 warned++;
404 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
405 __func__, current->comm, task_pid_nr(current));
406 }
407 return 0;
408 }
409 *timeo_p = MAX_SCHEDULE_TIMEOUT;
410 if (tv.tv_sec == 0 && tv.tv_usec == 0)
411 return 0;
412 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
413 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
414 return 0;
415 }
416
sock_needs_netstamp(const struct sock * sk)417 static bool sock_needs_netstamp(const struct sock *sk)
418 {
419 switch (sk->sk_family) {
420 case AF_UNSPEC:
421 case AF_UNIX:
422 return false;
423 default:
424 return true;
425 }
426 }
427
sock_disable_timestamp(struct sock * sk,unsigned long flags)428 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
429 {
430 if (sk->sk_flags & flags) {
431 sk->sk_flags &= ~flags;
432 if (sock_needs_netstamp(sk) &&
433 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
434 net_disable_timestamp();
435 }
436 }
437
438
__sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)439 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
440 {
441 unsigned long flags;
442 struct sk_buff_head *list = &sk->sk_receive_queue;
443
444 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
445 atomic_inc(&sk->sk_drops);
446 trace_sock_rcvqueue_full(sk, skb);
447 return -ENOMEM;
448 }
449
450 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
451 atomic_inc(&sk->sk_drops);
452 return -ENOBUFS;
453 }
454
455 skb->dev = NULL;
456 skb_set_owner_r(skb, sk);
457
458 /* we escape from rcu protected region, make sure we dont leak
459 * a norefcounted dst
460 */
461 skb_dst_force(skb);
462
463 spin_lock_irqsave(&list->lock, flags);
464 sock_skb_set_dropcount(sk, skb);
465 __skb_queue_tail(list, skb);
466 spin_unlock_irqrestore(&list->lock, flags);
467
468 if (!sock_flag(sk, SOCK_DEAD))
469 sk->sk_data_ready(sk);
470 return 0;
471 }
472 EXPORT_SYMBOL(__sock_queue_rcv_skb);
473
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)474 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
475 {
476 int err;
477
478 err = sk_filter(sk, skb);
479 if (err)
480 return err;
481
482 return __sock_queue_rcv_skb(sk, skb);
483 }
484 EXPORT_SYMBOL(sock_queue_rcv_skb);
485
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap,bool refcounted)486 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
487 const int nested, unsigned int trim_cap, bool refcounted)
488 {
489 int rc = NET_RX_SUCCESS;
490
491 if (sk_filter_trim_cap(sk, skb, trim_cap))
492 goto discard_and_relse;
493
494 skb->dev = NULL;
495
496 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
497 atomic_inc(&sk->sk_drops);
498 goto discard_and_relse;
499 }
500 if (nested)
501 bh_lock_sock_nested(sk);
502 else
503 bh_lock_sock(sk);
504 if (!sock_owned_by_user(sk)) {
505 /*
506 * trylock + unlock semantics:
507 */
508 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
509
510 rc = sk_backlog_rcv(sk, skb);
511
512 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
513 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
514 bh_unlock_sock(sk);
515 atomic_inc(&sk->sk_drops);
516 goto discard_and_relse;
517 }
518
519 bh_unlock_sock(sk);
520 out:
521 if (refcounted)
522 sock_put(sk);
523 return rc;
524 discard_and_relse:
525 kfree_skb(skb);
526 goto out;
527 }
528 EXPORT_SYMBOL(__sk_receive_skb);
529
__sk_dst_check(struct sock * sk,u32 cookie)530 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
531 {
532 struct dst_entry *dst = __sk_dst_get(sk);
533
534 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
535 sk_tx_queue_clear(sk);
536 sk->sk_dst_pending_confirm = 0;
537 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
538 dst_release(dst);
539 return NULL;
540 }
541
542 return dst;
543 }
544 EXPORT_SYMBOL(__sk_dst_check);
545
sk_dst_check(struct sock * sk,u32 cookie)546 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
547 {
548 struct dst_entry *dst = sk_dst_get(sk);
549
550 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
551 sk_dst_reset(sk);
552 dst_release(dst);
553 return NULL;
554 }
555
556 return dst;
557 }
558 EXPORT_SYMBOL(sk_dst_check);
559
sock_bindtoindex_locked(struct sock * sk,int ifindex)560 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
561 {
562 int ret = -ENOPROTOOPT;
563 #ifdef CONFIG_NETDEVICES
564 struct net *net = sock_net(sk);
565
566 /* Sorry... */
567 ret = -EPERM;
568 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
569 goto out;
570
571 ret = -EINVAL;
572 if (ifindex < 0)
573 goto out;
574
575 sk->sk_bound_dev_if = ifindex;
576 if (sk->sk_prot->rehash)
577 sk->sk_prot->rehash(sk);
578 sk_dst_reset(sk);
579
580 ret = 0;
581
582 out:
583 #endif
584
585 return ret;
586 }
587
sock_bindtoindex(struct sock * sk,int ifindex,bool lock_sk)588 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
589 {
590 int ret;
591
592 if (lock_sk)
593 lock_sock(sk);
594 ret = sock_bindtoindex_locked(sk, ifindex);
595 if (lock_sk)
596 release_sock(sk);
597
598 return ret;
599 }
600 EXPORT_SYMBOL(sock_bindtoindex);
601
sock_setbindtodevice(struct sock * sk,sockptr_t optval,int optlen)602 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
603 {
604 int ret = -ENOPROTOOPT;
605 #ifdef CONFIG_NETDEVICES
606 struct net *net = sock_net(sk);
607 char devname[IFNAMSIZ];
608 int index;
609
610 ret = -EINVAL;
611 if (optlen < 0)
612 goto out;
613
614 /* Bind this socket to a particular device like "eth0",
615 * as specified in the passed interface name. If the
616 * name is "" or the option length is zero the socket
617 * is not bound.
618 */
619 if (optlen > IFNAMSIZ - 1)
620 optlen = IFNAMSIZ - 1;
621 memset(devname, 0, sizeof(devname));
622
623 ret = -EFAULT;
624 if (copy_from_sockptr(devname, optval, optlen))
625 goto out;
626
627 index = 0;
628 if (devname[0] != '\0') {
629 struct net_device *dev;
630
631 rcu_read_lock();
632 dev = dev_get_by_name_rcu(net, devname);
633 if (dev)
634 index = dev->ifindex;
635 rcu_read_unlock();
636 ret = -ENODEV;
637 if (!dev)
638 goto out;
639 }
640
641 return sock_bindtoindex(sk, index, true);
642 out:
643 #endif
644
645 return ret;
646 }
647
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)648 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
649 int __user *optlen, int len)
650 {
651 int ret = -ENOPROTOOPT;
652 #ifdef CONFIG_NETDEVICES
653 struct net *net = sock_net(sk);
654 char devname[IFNAMSIZ];
655
656 if (sk->sk_bound_dev_if == 0) {
657 len = 0;
658 goto zero;
659 }
660
661 ret = -EINVAL;
662 if (len < IFNAMSIZ)
663 goto out;
664
665 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
666 if (ret)
667 goto out;
668
669 len = strlen(devname) + 1;
670
671 ret = -EFAULT;
672 if (copy_to_user(optval, devname, len))
673 goto out;
674
675 zero:
676 ret = -EFAULT;
677 if (put_user(len, optlen))
678 goto out;
679
680 ret = 0;
681
682 out:
683 #endif
684
685 return ret;
686 }
687
sk_mc_loop(struct sock * sk)688 bool sk_mc_loop(struct sock *sk)
689 {
690 if (dev_recursion_level())
691 return false;
692 if (!sk)
693 return true;
694 switch (sk->sk_family) {
695 case AF_INET:
696 return inet_sk(sk)->mc_loop;
697 #if IS_ENABLED(CONFIG_IPV6)
698 case AF_INET6:
699 return inet6_sk(sk)->mc_loop;
700 #endif
701 }
702 WARN_ON_ONCE(1);
703 return true;
704 }
705 EXPORT_SYMBOL(sk_mc_loop);
706
sock_set_reuseaddr(struct sock * sk)707 void sock_set_reuseaddr(struct sock *sk)
708 {
709 lock_sock(sk);
710 sk->sk_reuse = SK_CAN_REUSE;
711 release_sock(sk);
712 }
713 EXPORT_SYMBOL(sock_set_reuseaddr);
714
sock_set_reuseport(struct sock * sk)715 void sock_set_reuseport(struct sock *sk)
716 {
717 lock_sock(sk);
718 sk->sk_reuseport = true;
719 release_sock(sk);
720 }
721 EXPORT_SYMBOL(sock_set_reuseport);
722
sock_no_linger(struct sock * sk)723 void sock_no_linger(struct sock *sk)
724 {
725 lock_sock(sk);
726 sk->sk_lingertime = 0;
727 sock_set_flag(sk, SOCK_LINGER);
728 release_sock(sk);
729 }
730 EXPORT_SYMBOL(sock_no_linger);
731
sock_set_priority(struct sock * sk,u32 priority)732 void sock_set_priority(struct sock *sk, u32 priority)
733 {
734 lock_sock(sk);
735 sk->sk_priority = priority;
736 release_sock(sk);
737 }
738 EXPORT_SYMBOL(sock_set_priority);
739
sock_set_sndtimeo(struct sock * sk,s64 secs)740 void sock_set_sndtimeo(struct sock *sk, s64 secs)
741 {
742 lock_sock(sk);
743 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
744 sk->sk_sndtimeo = secs * HZ;
745 else
746 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
747 release_sock(sk);
748 }
749 EXPORT_SYMBOL(sock_set_sndtimeo);
750
__sock_set_timestamps(struct sock * sk,bool val,bool new,bool ns)751 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
752 {
753 if (val) {
754 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
755 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
756 sock_set_flag(sk, SOCK_RCVTSTAMP);
757 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
758 } else {
759 sock_reset_flag(sk, SOCK_RCVTSTAMP);
760 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
761 }
762 }
763
sock_enable_timestamps(struct sock * sk)764 void sock_enable_timestamps(struct sock *sk)
765 {
766 lock_sock(sk);
767 __sock_set_timestamps(sk, true, false, true);
768 release_sock(sk);
769 }
770 EXPORT_SYMBOL(sock_enable_timestamps);
771
sock_set_keepalive(struct sock * sk)772 void sock_set_keepalive(struct sock *sk)
773 {
774 lock_sock(sk);
775 if (sk->sk_prot->keepalive)
776 sk->sk_prot->keepalive(sk, true);
777 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
778 release_sock(sk);
779 }
780 EXPORT_SYMBOL(sock_set_keepalive);
781
__sock_set_rcvbuf(struct sock * sk,int val)782 static void __sock_set_rcvbuf(struct sock *sk, int val)
783 {
784 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
785 * as a negative value.
786 */
787 val = min_t(int, val, INT_MAX / 2);
788 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
789
790 /* We double it on the way in to account for "struct sk_buff" etc.
791 * overhead. Applications assume that the SO_RCVBUF setting they make
792 * will allow that much actual data to be received on that socket.
793 *
794 * Applications are unaware that "struct sk_buff" and other overheads
795 * allocate from the receive buffer during socket buffer allocation.
796 *
797 * And after considering the possible alternatives, returning the value
798 * we actually used in getsockopt is the most desirable behavior.
799 */
800 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
801 }
802
sock_set_rcvbuf(struct sock * sk,int val)803 void sock_set_rcvbuf(struct sock *sk, int val)
804 {
805 lock_sock(sk);
806 __sock_set_rcvbuf(sk, val);
807 release_sock(sk);
808 }
809 EXPORT_SYMBOL(sock_set_rcvbuf);
810
__sock_set_mark(struct sock * sk,u32 val)811 static void __sock_set_mark(struct sock *sk, u32 val)
812 {
813 if (val != sk->sk_mark) {
814 sk->sk_mark = val;
815 sk_dst_reset(sk);
816 }
817 }
818
sock_set_mark(struct sock * sk,u32 val)819 void sock_set_mark(struct sock *sk, u32 val)
820 {
821 lock_sock(sk);
822 __sock_set_mark(sk, val);
823 release_sock(sk);
824 }
825 EXPORT_SYMBOL(sock_set_mark);
826
827 /*
828 * This is meant for all protocols to use and covers goings on
829 * at the socket level. Everything here is generic.
830 */
831
sock_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)832 int sock_setsockopt(struct socket *sock, int level, int optname,
833 sockptr_t optval, unsigned int optlen)
834 {
835 struct sock_txtime sk_txtime;
836 struct sock *sk = sock->sk;
837 int val;
838 int valbool;
839 struct linger ling;
840 int ret = 0;
841
842 /*
843 * Options without arguments
844 */
845
846 if (optname == SO_BINDTODEVICE)
847 return sock_setbindtodevice(sk, optval, optlen);
848
849 if (optlen < sizeof(int))
850 return -EINVAL;
851
852 if (copy_from_sockptr(&val, optval, sizeof(val)))
853 return -EFAULT;
854
855 valbool = val ? 1 : 0;
856
857 lock_sock(sk);
858
859 switch (optname) {
860 case SO_DEBUG:
861 if (val && !capable(CAP_NET_ADMIN))
862 ret = -EACCES;
863 else
864 sock_valbool_flag(sk, SOCK_DBG, valbool);
865 break;
866 case SO_REUSEADDR:
867 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
868 break;
869 case SO_REUSEPORT:
870 sk->sk_reuseport = valbool;
871 break;
872 case SO_TYPE:
873 case SO_PROTOCOL:
874 case SO_DOMAIN:
875 case SO_ERROR:
876 ret = -ENOPROTOOPT;
877 break;
878 case SO_DONTROUTE:
879 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
880 sk_dst_reset(sk);
881 break;
882 case SO_BROADCAST:
883 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
884 break;
885 case SO_SNDBUF:
886 /* Don't error on this BSD doesn't and if you think
887 * about it this is right. Otherwise apps have to
888 * play 'guess the biggest size' games. RCVBUF/SNDBUF
889 * are treated in BSD as hints
890 */
891 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
892 set_sndbuf:
893 /* Ensure val * 2 fits into an int, to prevent max_t()
894 * from treating it as a negative value.
895 */
896 val = min_t(int, val, INT_MAX / 2);
897 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
898 WRITE_ONCE(sk->sk_sndbuf,
899 max_t(int, val * 2, SOCK_MIN_SNDBUF));
900 /* Wake up sending tasks if we upped the value. */
901 sk->sk_write_space(sk);
902 break;
903
904 case SO_SNDBUFFORCE:
905 if (!capable(CAP_NET_ADMIN)) {
906 ret = -EPERM;
907 break;
908 }
909
910 /* No negative values (to prevent underflow, as val will be
911 * multiplied by 2).
912 */
913 if (val < 0)
914 val = 0;
915 goto set_sndbuf;
916
917 case SO_RCVBUF:
918 /* Don't error on this BSD doesn't and if you think
919 * about it this is right. Otherwise apps have to
920 * play 'guess the biggest size' games. RCVBUF/SNDBUF
921 * are treated in BSD as hints
922 */
923 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
924 break;
925
926 case SO_RCVBUFFORCE:
927 if (!capable(CAP_NET_ADMIN)) {
928 ret = -EPERM;
929 break;
930 }
931
932 /* No negative values (to prevent underflow, as val will be
933 * multiplied by 2).
934 */
935 __sock_set_rcvbuf(sk, max(val, 0));
936 break;
937
938 case SO_KEEPALIVE:
939 if (sk->sk_prot->keepalive)
940 sk->sk_prot->keepalive(sk, valbool);
941 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
942 break;
943
944 case SO_OOBINLINE:
945 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
946 break;
947
948 case SO_NO_CHECK:
949 sk->sk_no_check_tx = valbool;
950 break;
951
952 case SO_PRIORITY:
953 if ((val >= 0 && val <= 6) ||
954 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
955 sk->sk_priority = val;
956 else
957 ret = -EPERM;
958 break;
959
960 case SO_LINGER:
961 if (optlen < sizeof(ling)) {
962 ret = -EINVAL; /* 1003.1g */
963 break;
964 }
965 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
966 ret = -EFAULT;
967 break;
968 }
969 if (!ling.l_onoff)
970 sock_reset_flag(sk, SOCK_LINGER);
971 else {
972 #if (BITS_PER_LONG == 32)
973 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
974 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
975 else
976 #endif
977 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
978 sock_set_flag(sk, SOCK_LINGER);
979 }
980 break;
981
982 case SO_BSDCOMPAT:
983 break;
984
985 case SO_PASSCRED:
986 if (valbool)
987 set_bit(SOCK_PASSCRED, &sock->flags);
988 else
989 clear_bit(SOCK_PASSCRED, &sock->flags);
990 break;
991
992 case SO_TIMESTAMP_OLD:
993 __sock_set_timestamps(sk, valbool, false, false);
994 break;
995 case SO_TIMESTAMP_NEW:
996 __sock_set_timestamps(sk, valbool, true, false);
997 break;
998 case SO_TIMESTAMPNS_OLD:
999 __sock_set_timestamps(sk, valbool, false, true);
1000 break;
1001 case SO_TIMESTAMPNS_NEW:
1002 __sock_set_timestamps(sk, valbool, true, true);
1003 break;
1004 case SO_TIMESTAMPING_NEW:
1005 case SO_TIMESTAMPING_OLD:
1006 if (val & ~SOF_TIMESTAMPING_MASK) {
1007 ret = -EINVAL;
1008 break;
1009 }
1010
1011 if (val & SOF_TIMESTAMPING_OPT_ID &&
1012 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1013 if (sk->sk_protocol == IPPROTO_TCP &&
1014 sk->sk_type == SOCK_STREAM) {
1015 if ((1 << sk->sk_state) &
1016 (TCPF_CLOSE | TCPF_LISTEN)) {
1017 ret = -EINVAL;
1018 break;
1019 }
1020 sk->sk_tskey = tcp_sk(sk)->snd_una;
1021 } else {
1022 sk->sk_tskey = 0;
1023 }
1024 }
1025
1026 if (val & SOF_TIMESTAMPING_OPT_STATS &&
1027 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1028 ret = -EINVAL;
1029 break;
1030 }
1031
1032 sk->sk_tsflags = val;
1033 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
1034
1035 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1036 sock_enable_timestamp(sk,
1037 SOCK_TIMESTAMPING_RX_SOFTWARE);
1038 else
1039 sock_disable_timestamp(sk,
1040 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1041 break;
1042
1043 case SO_RCVLOWAT:
1044 if (val < 0)
1045 val = INT_MAX;
1046 if (sock->ops->set_rcvlowat)
1047 ret = sock->ops->set_rcvlowat(sk, val);
1048 else
1049 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1050 break;
1051
1052 case SO_RCVTIMEO_OLD:
1053 case SO_RCVTIMEO_NEW:
1054 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1055 optlen, optname == SO_RCVTIMEO_OLD);
1056 break;
1057
1058 case SO_SNDTIMEO_OLD:
1059 case SO_SNDTIMEO_NEW:
1060 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1061 optlen, optname == SO_SNDTIMEO_OLD);
1062 break;
1063
1064 case SO_ATTACH_FILTER: {
1065 struct sock_fprog fprog;
1066
1067 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1068 if (!ret)
1069 ret = sk_attach_filter(&fprog, sk);
1070 break;
1071 }
1072 case SO_ATTACH_BPF:
1073 ret = -EINVAL;
1074 if (optlen == sizeof(u32)) {
1075 u32 ufd;
1076
1077 ret = -EFAULT;
1078 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1079 break;
1080
1081 ret = sk_attach_bpf(ufd, sk);
1082 }
1083 break;
1084
1085 case SO_ATTACH_REUSEPORT_CBPF: {
1086 struct sock_fprog fprog;
1087
1088 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1089 if (!ret)
1090 ret = sk_reuseport_attach_filter(&fprog, sk);
1091 break;
1092 }
1093 case SO_ATTACH_REUSEPORT_EBPF:
1094 ret = -EINVAL;
1095 if (optlen == sizeof(u32)) {
1096 u32 ufd;
1097
1098 ret = -EFAULT;
1099 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1100 break;
1101
1102 ret = sk_reuseport_attach_bpf(ufd, sk);
1103 }
1104 break;
1105
1106 case SO_DETACH_REUSEPORT_BPF:
1107 ret = reuseport_detach_prog(sk);
1108 break;
1109
1110 case SO_DETACH_FILTER:
1111 ret = sk_detach_filter(sk);
1112 break;
1113
1114 case SO_LOCK_FILTER:
1115 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1116 ret = -EPERM;
1117 else
1118 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1119 break;
1120
1121 case SO_PASSSEC:
1122 if (valbool)
1123 set_bit(SOCK_PASSSEC, &sock->flags);
1124 else
1125 clear_bit(SOCK_PASSSEC, &sock->flags);
1126 break;
1127 case SO_MARK:
1128 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1129 ret = -EPERM;
1130 break;
1131 }
1132
1133 __sock_set_mark(sk, val);
1134 break;
1135
1136 case SO_RXQ_OVFL:
1137 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1138 break;
1139
1140 case SO_WIFI_STATUS:
1141 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1142 break;
1143
1144 case SO_PEEK_OFF:
1145 if (sock->ops->set_peek_off)
1146 ret = sock->ops->set_peek_off(sk, val);
1147 else
1148 ret = -EOPNOTSUPP;
1149 break;
1150
1151 case SO_NOFCS:
1152 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1153 break;
1154
1155 case SO_SELECT_ERR_QUEUE:
1156 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1157 break;
1158
1159 #ifdef CONFIG_NET_RX_BUSY_POLL
1160 case SO_BUSY_POLL:
1161 /* allow unprivileged users to decrease the value */
1162 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1163 ret = -EPERM;
1164 else {
1165 if (val < 0)
1166 ret = -EINVAL;
1167 else
1168 WRITE_ONCE(sk->sk_ll_usec, val);
1169 }
1170 break;
1171 #endif
1172
1173 case SO_MAX_PACING_RATE:
1174 {
1175 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1176
1177 if (sizeof(ulval) != sizeof(val) &&
1178 optlen >= sizeof(ulval) &&
1179 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1180 ret = -EFAULT;
1181 break;
1182 }
1183 if (ulval != ~0UL)
1184 cmpxchg(&sk->sk_pacing_status,
1185 SK_PACING_NONE,
1186 SK_PACING_NEEDED);
1187 sk->sk_max_pacing_rate = ulval;
1188 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1189 break;
1190 }
1191 case SO_INCOMING_CPU:
1192 WRITE_ONCE(sk->sk_incoming_cpu, val);
1193 break;
1194
1195 case SO_CNX_ADVICE:
1196 if (val == 1)
1197 dst_negative_advice(sk);
1198 break;
1199
1200 case SO_ZEROCOPY:
1201 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1202 if (!((sk->sk_type == SOCK_STREAM &&
1203 sk->sk_protocol == IPPROTO_TCP) ||
1204 (sk->sk_type == SOCK_DGRAM &&
1205 sk->sk_protocol == IPPROTO_UDP)))
1206 ret = -ENOTSUPP;
1207 } else if (sk->sk_family != PF_RDS) {
1208 ret = -ENOTSUPP;
1209 }
1210 if (!ret) {
1211 if (val < 0 || val > 1)
1212 ret = -EINVAL;
1213 else
1214 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1215 }
1216 break;
1217
1218 case SO_TXTIME:
1219 if (optlen != sizeof(struct sock_txtime)) {
1220 ret = -EINVAL;
1221 break;
1222 } else if (copy_from_sockptr(&sk_txtime, optval,
1223 sizeof(struct sock_txtime))) {
1224 ret = -EFAULT;
1225 break;
1226 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1227 ret = -EINVAL;
1228 break;
1229 }
1230 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1231 * scheduler has enough safe guards.
1232 */
1233 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1234 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1235 ret = -EPERM;
1236 break;
1237 }
1238 sock_valbool_flag(sk, SOCK_TXTIME, true);
1239 sk->sk_clockid = sk_txtime.clockid;
1240 sk->sk_txtime_deadline_mode =
1241 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1242 sk->sk_txtime_report_errors =
1243 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1244 break;
1245
1246 case SO_BINDTOIFINDEX:
1247 ret = sock_bindtoindex_locked(sk, val);
1248 break;
1249
1250 default:
1251 ret = -ENOPROTOOPT;
1252 break;
1253 }
1254 release_sock(sk);
1255 return ret;
1256 }
1257 EXPORT_SYMBOL(sock_setsockopt);
1258
sk_get_peer_cred(struct sock * sk)1259 static const struct cred *sk_get_peer_cred(struct sock *sk)
1260 {
1261 const struct cred *cred;
1262
1263 spin_lock(&sk->sk_peer_lock);
1264 cred = get_cred(sk->sk_peer_cred);
1265 spin_unlock(&sk->sk_peer_lock);
1266
1267 return cred;
1268 }
1269
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1270 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1271 struct ucred *ucred)
1272 {
1273 ucred->pid = pid_vnr(pid);
1274 ucred->uid = ucred->gid = -1;
1275 if (cred) {
1276 struct user_namespace *current_ns = current_user_ns();
1277
1278 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1279 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1280 }
1281 }
1282
groups_to_user(gid_t __user * dst,const struct group_info * src)1283 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1284 {
1285 struct user_namespace *user_ns = current_user_ns();
1286 int i;
1287
1288 for (i = 0; i < src->ngroups; i++)
1289 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1290 return -EFAULT;
1291
1292 return 0;
1293 }
1294
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1295 int sock_getsockopt(struct socket *sock, int level, int optname,
1296 char __user *optval, int __user *optlen)
1297 {
1298 struct sock *sk = sock->sk;
1299
1300 union {
1301 int val;
1302 u64 val64;
1303 unsigned long ulval;
1304 struct linger ling;
1305 struct old_timeval32 tm32;
1306 struct __kernel_old_timeval tm;
1307 struct __kernel_sock_timeval stm;
1308 struct sock_txtime txtime;
1309 } v;
1310
1311 int lv = sizeof(int);
1312 int len;
1313
1314 if (get_user(len, optlen))
1315 return -EFAULT;
1316 if (len < 0)
1317 return -EINVAL;
1318
1319 memset(&v, 0, sizeof(v));
1320
1321 switch (optname) {
1322 case SO_DEBUG:
1323 v.val = sock_flag(sk, SOCK_DBG);
1324 break;
1325
1326 case SO_DONTROUTE:
1327 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1328 break;
1329
1330 case SO_BROADCAST:
1331 v.val = sock_flag(sk, SOCK_BROADCAST);
1332 break;
1333
1334 case SO_SNDBUF:
1335 v.val = sk->sk_sndbuf;
1336 break;
1337
1338 case SO_RCVBUF:
1339 v.val = sk->sk_rcvbuf;
1340 break;
1341
1342 case SO_REUSEADDR:
1343 v.val = sk->sk_reuse;
1344 break;
1345
1346 case SO_REUSEPORT:
1347 v.val = sk->sk_reuseport;
1348 break;
1349
1350 case SO_KEEPALIVE:
1351 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1352 break;
1353
1354 case SO_TYPE:
1355 v.val = sk->sk_type;
1356 break;
1357
1358 case SO_PROTOCOL:
1359 v.val = sk->sk_protocol;
1360 break;
1361
1362 case SO_DOMAIN:
1363 v.val = sk->sk_family;
1364 break;
1365
1366 case SO_ERROR:
1367 v.val = -sock_error(sk);
1368 if (v.val == 0)
1369 v.val = xchg(&sk->sk_err_soft, 0);
1370 break;
1371
1372 case SO_OOBINLINE:
1373 v.val = sock_flag(sk, SOCK_URGINLINE);
1374 break;
1375
1376 case SO_NO_CHECK:
1377 v.val = sk->sk_no_check_tx;
1378 break;
1379
1380 case SO_PRIORITY:
1381 v.val = sk->sk_priority;
1382 break;
1383
1384 case SO_LINGER:
1385 lv = sizeof(v.ling);
1386 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1387 v.ling.l_linger = sk->sk_lingertime / HZ;
1388 break;
1389
1390 case SO_BSDCOMPAT:
1391 break;
1392
1393 case SO_TIMESTAMP_OLD:
1394 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1395 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1396 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1397 break;
1398
1399 case SO_TIMESTAMPNS_OLD:
1400 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1401 break;
1402
1403 case SO_TIMESTAMP_NEW:
1404 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1405 break;
1406
1407 case SO_TIMESTAMPNS_NEW:
1408 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1409 break;
1410
1411 case SO_TIMESTAMPING_OLD:
1412 v.val = sk->sk_tsflags;
1413 break;
1414
1415 case SO_RCVTIMEO_OLD:
1416 case SO_RCVTIMEO_NEW:
1417 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1418 break;
1419
1420 case SO_SNDTIMEO_OLD:
1421 case SO_SNDTIMEO_NEW:
1422 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1423 break;
1424
1425 case SO_RCVLOWAT:
1426 v.val = sk->sk_rcvlowat;
1427 break;
1428
1429 case SO_SNDLOWAT:
1430 v.val = 1;
1431 break;
1432
1433 case SO_PASSCRED:
1434 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1435 break;
1436
1437 case SO_PEERCRED:
1438 {
1439 struct ucred peercred;
1440 if (len > sizeof(peercred))
1441 len = sizeof(peercred);
1442
1443 spin_lock(&sk->sk_peer_lock);
1444 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1445 spin_unlock(&sk->sk_peer_lock);
1446
1447 if (copy_to_user(optval, &peercred, len))
1448 return -EFAULT;
1449 goto lenout;
1450 }
1451
1452 case SO_PEERGROUPS:
1453 {
1454 const struct cred *cred;
1455 int ret, n;
1456
1457 cred = sk_get_peer_cred(sk);
1458 if (!cred)
1459 return -ENODATA;
1460
1461 n = cred->group_info->ngroups;
1462 if (len < n * sizeof(gid_t)) {
1463 len = n * sizeof(gid_t);
1464 put_cred(cred);
1465 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1466 }
1467 len = n * sizeof(gid_t);
1468
1469 ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1470 put_cred(cred);
1471 if (ret)
1472 return ret;
1473 goto lenout;
1474 }
1475
1476 case SO_PEERNAME:
1477 {
1478 char address[128];
1479
1480 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1481 if (lv < 0)
1482 return -ENOTCONN;
1483 if (lv < len)
1484 return -EINVAL;
1485 if (copy_to_user(optval, address, len))
1486 return -EFAULT;
1487 goto lenout;
1488 }
1489
1490 /* Dubious BSD thing... Probably nobody even uses it, but
1491 * the UNIX standard wants it for whatever reason... -DaveM
1492 */
1493 case SO_ACCEPTCONN:
1494 v.val = sk->sk_state == TCP_LISTEN;
1495 break;
1496
1497 case SO_PASSSEC:
1498 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1499 break;
1500
1501 case SO_PEERSEC:
1502 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1503
1504 case SO_MARK:
1505 v.val = sk->sk_mark;
1506 break;
1507
1508 case SO_RXQ_OVFL:
1509 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1510 break;
1511
1512 case SO_WIFI_STATUS:
1513 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1514 break;
1515
1516 case SO_PEEK_OFF:
1517 if (!sock->ops->set_peek_off)
1518 return -EOPNOTSUPP;
1519
1520 v.val = sk->sk_peek_off;
1521 break;
1522 case SO_NOFCS:
1523 v.val = sock_flag(sk, SOCK_NOFCS);
1524 break;
1525
1526 case SO_BINDTODEVICE:
1527 return sock_getbindtodevice(sk, optval, optlen, len);
1528
1529 case SO_GET_FILTER:
1530 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1531 if (len < 0)
1532 return len;
1533
1534 goto lenout;
1535
1536 case SO_LOCK_FILTER:
1537 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1538 break;
1539
1540 case SO_BPF_EXTENSIONS:
1541 v.val = bpf_tell_extensions();
1542 break;
1543
1544 case SO_SELECT_ERR_QUEUE:
1545 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1546 break;
1547
1548 #ifdef CONFIG_NET_RX_BUSY_POLL
1549 case SO_BUSY_POLL:
1550 v.val = sk->sk_ll_usec;
1551 break;
1552 #endif
1553
1554 case SO_MAX_PACING_RATE:
1555 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1556 lv = sizeof(v.ulval);
1557 v.ulval = sk->sk_max_pacing_rate;
1558 } else {
1559 /* 32bit version */
1560 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1561 }
1562 break;
1563
1564 case SO_INCOMING_CPU:
1565 v.val = READ_ONCE(sk->sk_incoming_cpu);
1566 break;
1567
1568 case SO_MEMINFO:
1569 {
1570 u32 meminfo[SK_MEMINFO_VARS];
1571
1572 sk_get_meminfo(sk, meminfo);
1573
1574 len = min_t(unsigned int, len, sizeof(meminfo));
1575 if (copy_to_user(optval, &meminfo, len))
1576 return -EFAULT;
1577
1578 goto lenout;
1579 }
1580
1581 #ifdef CONFIG_NET_RX_BUSY_POLL
1582 case SO_INCOMING_NAPI_ID:
1583 v.val = READ_ONCE(sk->sk_napi_id);
1584
1585 /* aggregate non-NAPI IDs down to 0 */
1586 if (v.val < MIN_NAPI_ID)
1587 v.val = 0;
1588
1589 break;
1590 #endif
1591
1592 case SO_COOKIE:
1593 lv = sizeof(u64);
1594 if (len < lv)
1595 return -EINVAL;
1596 v.val64 = sock_gen_cookie(sk);
1597 break;
1598
1599 case SO_ZEROCOPY:
1600 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1601 break;
1602
1603 case SO_TXTIME:
1604 lv = sizeof(v.txtime);
1605 v.txtime.clockid = sk->sk_clockid;
1606 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1607 SOF_TXTIME_DEADLINE_MODE : 0;
1608 v.txtime.flags |= sk->sk_txtime_report_errors ?
1609 SOF_TXTIME_REPORT_ERRORS : 0;
1610 break;
1611
1612 case SO_BINDTOIFINDEX:
1613 v.val = sk->sk_bound_dev_if;
1614 break;
1615
1616 default:
1617 /* We implement the SO_SNDLOWAT etc to not be settable
1618 * (1003.1g 7).
1619 */
1620 return -ENOPROTOOPT;
1621 }
1622
1623 if (len > lv)
1624 len = lv;
1625 if (copy_to_user(optval, &v, len))
1626 return -EFAULT;
1627 lenout:
1628 if (put_user(len, optlen))
1629 return -EFAULT;
1630 return 0;
1631 }
1632
1633 /*
1634 * Initialize an sk_lock.
1635 *
1636 * (We also register the sk_lock with the lock validator.)
1637 */
sock_lock_init(struct sock * sk)1638 static inline void sock_lock_init(struct sock *sk)
1639 {
1640 if (sk->sk_kern_sock)
1641 sock_lock_init_class_and_name(
1642 sk,
1643 af_family_kern_slock_key_strings[sk->sk_family],
1644 af_family_kern_slock_keys + sk->sk_family,
1645 af_family_kern_key_strings[sk->sk_family],
1646 af_family_kern_keys + sk->sk_family);
1647 else
1648 sock_lock_init_class_and_name(
1649 sk,
1650 af_family_slock_key_strings[sk->sk_family],
1651 af_family_slock_keys + sk->sk_family,
1652 af_family_key_strings[sk->sk_family],
1653 af_family_keys + sk->sk_family);
1654 }
1655
1656 /*
1657 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1658 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1659 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1660 */
sock_copy(struct sock * nsk,const struct sock * osk)1661 static void sock_copy(struct sock *nsk, const struct sock *osk)
1662 {
1663 const struct proto *prot = READ_ONCE(osk->sk_prot);
1664 #ifdef CONFIG_SECURITY_NETWORK
1665 void *sptr = nsk->sk_security;
1666 #endif
1667 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1668
1669 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1670 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1671
1672 #ifdef CONFIG_SECURITY_NETWORK
1673 nsk->sk_security = sptr;
1674 security_sk_clone(osk, nsk);
1675 #endif
1676 }
1677
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1678 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1679 int family)
1680 {
1681 struct sock *sk;
1682 struct kmem_cache *slab;
1683
1684 slab = prot->slab;
1685 if (slab != NULL) {
1686 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1687 if (!sk)
1688 return sk;
1689 if (want_init_on_alloc(priority))
1690 sk_prot_clear_nulls(sk, prot->obj_size);
1691 } else
1692 sk = kmalloc(prot->obj_size, priority);
1693
1694 if (sk != NULL) {
1695 if (security_sk_alloc(sk, family, priority))
1696 goto out_free;
1697
1698 if (!try_module_get(prot->owner))
1699 goto out_free_sec;
1700 sk_tx_queue_clear(sk);
1701 }
1702
1703 return sk;
1704
1705 out_free_sec:
1706 security_sk_free(sk);
1707 out_free:
1708 if (slab != NULL)
1709 kmem_cache_free(slab, sk);
1710 else
1711 kfree(sk);
1712 return NULL;
1713 }
1714
sk_prot_free(struct proto * prot,struct sock * sk)1715 static void sk_prot_free(struct proto *prot, struct sock *sk)
1716 {
1717 struct kmem_cache *slab;
1718 struct module *owner;
1719
1720 owner = prot->owner;
1721 slab = prot->slab;
1722
1723 cgroup_sk_free(&sk->sk_cgrp_data);
1724 mem_cgroup_sk_free(sk);
1725 security_sk_free(sk);
1726 if (slab != NULL)
1727 kmem_cache_free(slab, sk);
1728 else
1729 kfree(sk);
1730 module_put(owner);
1731 }
1732
1733 /**
1734 * sk_alloc - All socket objects are allocated here
1735 * @net: the applicable net namespace
1736 * @family: protocol family
1737 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1738 * @prot: struct proto associated with this new sock instance
1739 * @kern: is this to be a kernel socket?
1740 */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)1741 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1742 struct proto *prot, int kern)
1743 {
1744 struct sock *sk;
1745
1746 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1747 if (sk) {
1748 sk->sk_family = family;
1749 /*
1750 * See comment in struct sock definition to understand
1751 * why we need sk_prot_creator -acme
1752 */
1753 sk->sk_prot = sk->sk_prot_creator = prot;
1754 sk->sk_kern_sock = kern;
1755 sock_lock_init(sk);
1756 sk->sk_net_refcnt = kern ? 0 : 1;
1757 if (likely(sk->sk_net_refcnt)) {
1758 get_net(net);
1759 sock_inuse_add(net, 1);
1760 }
1761
1762 sock_net_set(sk, net);
1763 refcount_set(&sk->sk_wmem_alloc, 1);
1764
1765 mem_cgroup_sk_alloc(sk);
1766 cgroup_sk_alloc(&sk->sk_cgrp_data);
1767 sock_update_classid(&sk->sk_cgrp_data);
1768 sock_update_netprioidx(&sk->sk_cgrp_data);
1769 sk_tx_queue_clear(sk);
1770 }
1771
1772 return sk;
1773 }
1774 EXPORT_SYMBOL(sk_alloc);
1775
1776 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1777 * grace period. This is the case for UDP sockets and TCP listeners.
1778 */
__sk_destruct(struct rcu_head * head)1779 static void __sk_destruct(struct rcu_head *head)
1780 {
1781 struct sock *sk = container_of(head, struct sock, sk_rcu);
1782 struct sk_filter *filter;
1783
1784 if (sk->sk_destruct)
1785 sk->sk_destruct(sk);
1786
1787 filter = rcu_dereference_check(sk->sk_filter,
1788 refcount_read(&sk->sk_wmem_alloc) == 0);
1789 if (filter) {
1790 sk_filter_uncharge(sk, filter);
1791 RCU_INIT_POINTER(sk->sk_filter, NULL);
1792 }
1793
1794 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1795
1796 #ifdef CONFIG_BPF_SYSCALL
1797 bpf_sk_storage_free(sk);
1798 #endif
1799
1800 if (atomic_read(&sk->sk_omem_alloc))
1801 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1802 __func__, atomic_read(&sk->sk_omem_alloc));
1803
1804 if (sk->sk_frag.page) {
1805 put_page(sk->sk_frag.page);
1806 sk->sk_frag.page = NULL;
1807 }
1808
1809 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1810 put_cred(sk->sk_peer_cred);
1811 put_pid(sk->sk_peer_pid);
1812
1813 if (likely(sk->sk_net_refcnt))
1814 put_net(sock_net(sk));
1815 sk_prot_free(sk->sk_prot_creator, sk);
1816 }
1817
sk_destruct(struct sock * sk)1818 void sk_destruct(struct sock *sk)
1819 {
1820 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1821
1822 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1823 reuseport_detach_sock(sk);
1824 use_call_rcu = true;
1825 }
1826
1827 if (use_call_rcu)
1828 call_rcu(&sk->sk_rcu, __sk_destruct);
1829 else
1830 __sk_destruct(&sk->sk_rcu);
1831 }
1832
__sk_free(struct sock * sk)1833 static void __sk_free(struct sock *sk)
1834 {
1835 if (likely(sk->sk_net_refcnt))
1836 sock_inuse_add(sock_net(sk), -1);
1837
1838 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1839 sock_diag_broadcast_destroy(sk);
1840 else
1841 sk_destruct(sk);
1842 }
1843
sk_free(struct sock * sk)1844 void sk_free(struct sock *sk)
1845 {
1846 /*
1847 * We subtract one from sk_wmem_alloc and can know if
1848 * some packets are still in some tx queue.
1849 * If not null, sock_wfree() will call __sk_free(sk) later
1850 */
1851 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1852 __sk_free(sk);
1853 }
1854 EXPORT_SYMBOL(sk_free);
1855
sk_init_common(struct sock * sk)1856 static void sk_init_common(struct sock *sk)
1857 {
1858 skb_queue_head_init(&sk->sk_receive_queue);
1859 skb_queue_head_init(&sk->sk_write_queue);
1860 skb_queue_head_init(&sk->sk_error_queue);
1861
1862 rwlock_init(&sk->sk_callback_lock);
1863 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1864 af_rlock_keys + sk->sk_family,
1865 af_family_rlock_key_strings[sk->sk_family]);
1866 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1867 af_wlock_keys + sk->sk_family,
1868 af_family_wlock_key_strings[sk->sk_family]);
1869 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1870 af_elock_keys + sk->sk_family,
1871 af_family_elock_key_strings[sk->sk_family]);
1872 lockdep_set_class_and_name(&sk->sk_callback_lock,
1873 af_callback_keys + sk->sk_family,
1874 af_family_clock_key_strings[sk->sk_family]);
1875 }
1876
1877 /**
1878 * sk_clone_lock - clone a socket, and lock its clone
1879 * @sk: the socket to clone
1880 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1881 *
1882 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1883 */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1884 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1885 {
1886 struct proto *prot = READ_ONCE(sk->sk_prot);
1887 struct sk_filter *filter;
1888 bool is_charged = true;
1889 struct sock *newsk;
1890
1891 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1892 if (!newsk)
1893 goto out;
1894
1895 sock_copy(newsk, sk);
1896
1897 newsk->sk_prot_creator = prot;
1898
1899 /* SANITY */
1900 if (likely(newsk->sk_net_refcnt)) {
1901 get_net(sock_net(newsk));
1902 sock_inuse_add(sock_net(newsk), 1);
1903 }
1904 sk_node_init(&newsk->sk_node);
1905 sock_lock_init(newsk);
1906 bh_lock_sock(newsk);
1907 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1908 newsk->sk_backlog.len = 0;
1909
1910 atomic_set(&newsk->sk_rmem_alloc, 0);
1911
1912 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
1913 refcount_set(&newsk->sk_wmem_alloc, 1);
1914
1915 atomic_set(&newsk->sk_omem_alloc, 0);
1916 sk_init_common(newsk);
1917
1918 newsk->sk_dst_cache = NULL;
1919 newsk->sk_dst_pending_confirm = 0;
1920 newsk->sk_wmem_queued = 0;
1921 newsk->sk_forward_alloc = 0;
1922 atomic_set(&newsk->sk_drops, 0);
1923 newsk->sk_send_head = NULL;
1924 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1925 atomic_set(&newsk->sk_zckey, 0);
1926
1927 sock_reset_flag(newsk, SOCK_DONE);
1928
1929 /* sk->sk_memcg will be populated at accept() time */
1930 newsk->sk_memcg = NULL;
1931
1932 cgroup_sk_clone(&newsk->sk_cgrp_data);
1933
1934 rcu_read_lock();
1935 filter = rcu_dereference(sk->sk_filter);
1936 if (filter != NULL)
1937 /* though it's an empty new sock, the charging may fail
1938 * if sysctl_optmem_max was changed between creation of
1939 * original socket and cloning
1940 */
1941 is_charged = sk_filter_charge(newsk, filter);
1942 RCU_INIT_POINTER(newsk->sk_filter, filter);
1943 rcu_read_unlock();
1944
1945 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1946 /* We need to make sure that we don't uncharge the new
1947 * socket if we couldn't charge it in the first place
1948 * as otherwise we uncharge the parent's filter.
1949 */
1950 if (!is_charged)
1951 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1952 sk_free_unlock_clone(newsk);
1953 newsk = NULL;
1954 goto out;
1955 }
1956 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1957
1958 if (bpf_sk_storage_clone(sk, newsk)) {
1959 sk_free_unlock_clone(newsk);
1960 newsk = NULL;
1961 goto out;
1962 }
1963
1964 /* Clear sk_user_data if parent had the pointer tagged
1965 * as not suitable for copying when cloning.
1966 */
1967 if (sk_user_data_is_nocopy(newsk))
1968 newsk->sk_user_data = NULL;
1969
1970 newsk->sk_err = 0;
1971 newsk->sk_err_soft = 0;
1972 newsk->sk_priority = 0;
1973 newsk->sk_incoming_cpu = raw_smp_processor_id();
1974
1975 /* Before updating sk_refcnt, we must commit prior changes to memory
1976 * (Documentation/RCU/rculist_nulls.rst for details)
1977 */
1978 smp_wmb();
1979 refcount_set(&newsk->sk_refcnt, 2);
1980
1981 /* Increment the counter in the same struct proto as the master
1982 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1983 * is the same as sk->sk_prot->socks, as this field was copied
1984 * with memcpy).
1985 *
1986 * This _changes_ the previous behaviour, where
1987 * tcp_create_openreq_child always was incrementing the
1988 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1989 * to be taken into account in all callers. -acme
1990 */
1991 sk_refcnt_debug_inc(newsk);
1992 sk_set_socket(newsk, NULL);
1993 sk_tx_queue_clear(newsk);
1994 RCU_INIT_POINTER(newsk->sk_wq, NULL);
1995
1996 if (newsk->sk_prot->sockets_allocated)
1997 sk_sockets_allocated_inc(newsk);
1998
1999 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2000 net_enable_timestamp();
2001 out:
2002 return newsk;
2003 }
2004 EXPORT_SYMBOL_GPL(sk_clone_lock);
2005
sk_free_unlock_clone(struct sock * sk)2006 void sk_free_unlock_clone(struct sock *sk)
2007 {
2008 /* It is still raw copy of parent, so invalidate
2009 * destructor and make plain sk_free() */
2010 sk->sk_destruct = NULL;
2011 bh_unlock_sock(sk);
2012 sk_free(sk);
2013 }
2014 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2015
sk_setup_caps(struct sock * sk,struct dst_entry * dst)2016 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2017 {
2018 u32 max_segs = 1;
2019
2020 sk_dst_set(sk, dst);
2021 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2022 if (sk->sk_route_caps & NETIF_F_GSO)
2023 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2024 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2025 if (sk_can_gso(sk)) {
2026 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2027 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2028 } else {
2029 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2030 sk->sk_gso_max_size = dst->dev->gso_max_size;
2031 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2032 }
2033 }
2034 sk->sk_gso_max_segs = max_segs;
2035 }
2036 EXPORT_SYMBOL_GPL(sk_setup_caps);
2037
2038 /*
2039 * Simple resource managers for sockets.
2040 */
2041
2042
2043 /*
2044 * Write buffer destructor automatically called from kfree_skb.
2045 */
sock_wfree(struct sk_buff * skb)2046 void sock_wfree(struct sk_buff *skb)
2047 {
2048 struct sock *sk = skb->sk;
2049 unsigned int len = skb->truesize;
2050
2051 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2052 /*
2053 * Keep a reference on sk_wmem_alloc, this will be released
2054 * after sk_write_space() call
2055 */
2056 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2057 sk->sk_write_space(sk);
2058 len = 1;
2059 }
2060 /*
2061 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2062 * could not do because of in-flight packets
2063 */
2064 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2065 __sk_free(sk);
2066 }
2067 EXPORT_SYMBOL(sock_wfree);
2068
2069 /* This variant of sock_wfree() is used by TCP,
2070 * since it sets SOCK_USE_WRITE_QUEUE.
2071 */
__sock_wfree(struct sk_buff * skb)2072 void __sock_wfree(struct sk_buff *skb)
2073 {
2074 struct sock *sk = skb->sk;
2075
2076 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2077 __sk_free(sk);
2078 }
2079
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)2080 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2081 {
2082 skb_orphan(skb);
2083 skb->sk = sk;
2084 #ifdef CONFIG_INET
2085 if (unlikely(!sk_fullsock(sk))) {
2086 skb->destructor = sock_edemux;
2087 sock_hold(sk);
2088 return;
2089 }
2090 #endif
2091 skb->destructor = sock_wfree;
2092 skb_set_hash_from_sk(skb, sk);
2093 /*
2094 * We used to take a refcount on sk, but following operation
2095 * is enough to guarantee sk_free() wont free this sock until
2096 * all in-flight packets are completed
2097 */
2098 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2099 }
2100 EXPORT_SYMBOL(skb_set_owner_w);
2101
can_skb_orphan_partial(const struct sk_buff * skb)2102 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2103 {
2104 #ifdef CONFIG_TLS_DEVICE
2105 /* Drivers depend on in-order delivery for crypto offload,
2106 * partial orphan breaks out-of-order-OK logic.
2107 */
2108 if (skb->decrypted)
2109 return false;
2110 #endif
2111 return (skb->destructor == sock_wfree ||
2112 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2113 }
2114
2115 /* This helper is used by netem, as it can hold packets in its
2116 * delay queue. We want to allow the owner socket to send more
2117 * packets, as if they were already TX completed by a typical driver.
2118 * But we also want to keep skb->sk set because some packet schedulers
2119 * rely on it (sch_fq for example).
2120 */
skb_orphan_partial(struct sk_buff * skb)2121 void skb_orphan_partial(struct sk_buff *skb)
2122 {
2123 if (skb_is_tcp_pure_ack(skb))
2124 return;
2125
2126 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2127 return;
2128
2129 skb_orphan(skb);
2130 }
2131 EXPORT_SYMBOL(skb_orphan_partial);
2132
2133 /*
2134 * Read buffer destructor automatically called from kfree_skb.
2135 */
sock_rfree(struct sk_buff * skb)2136 void sock_rfree(struct sk_buff *skb)
2137 {
2138 struct sock *sk = skb->sk;
2139 unsigned int len = skb->truesize;
2140
2141 atomic_sub(len, &sk->sk_rmem_alloc);
2142 sk_mem_uncharge(sk, len);
2143 }
2144 EXPORT_SYMBOL(sock_rfree);
2145
2146 /*
2147 * Buffer destructor for skbs that are not used directly in read or write
2148 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2149 */
sock_efree(struct sk_buff * skb)2150 void sock_efree(struct sk_buff *skb)
2151 {
2152 sock_put(skb->sk);
2153 }
2154 EXPORT_SYMBOL(sock_efree);
2155
2156 /* Buffer destructor for prefetch/receive path where reference count may
2157 * not be held, e.g. for listen sockets.
2158 */
2159 #ifdef CONFIG_INET
sock_pfree(struct sk_buff * skb)2160 void sock_pfree(struct sk_buff *skb)
2161 {
2162 if (sk_is_refcounted(skb->sk))
2163 sock_gen_put(skb->sk);
2164 }
2165 EXPORT_SYMBOL(sock_pfree);
2166 #endif /* CONFIG_INET */
2167
sock_i_uid(struct sock * sk)2168 kuid_t sock_i_uid(struct sock *sk)
2169 {
2170 kuid_t uid;
2171
2172 read_lock_bh(&sk->sk_callback_lock);
2173 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2174 read_unlock_bh(&sk->sk_callback_lock);
2175 return uid;
2176 }
2177 EXPORT_SYMBOL(sock_i_uid);
2178
sock_i_ino(struct sock * sk)2179 unsigned long sock_i_ino(struct sock *sk)
2180 {
2181 unsigned long ino;
2182
2183 read_lock_bh(&sk->sk_callback_lock);
2184 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2185 read_unlock_bh(&sk->sk_callback_lock);
2186 return ino;
2187 }
2188 EXPORT_SYMBOL(sock_i_ino);
2189
2190 /*
2191 * Allocate a skb from the socket's send buffer.
2192 */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)2193 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2194 gfp_t priority)
2195 {
2196 if (force ||
2197 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2198 struct sk_buff *skb = alloc_skb(size, priority);
2199
2200 if (skb) {
2201 skb_set_owner_w(skb, sk);
2202 return skb;
2203 }
2204 }
2205 return NULL;
2206 }
2207 EXPORT_SYMBOL(sock_wmalloc);
2208
sock_ofree(struct sk_buff * skb)2209 static void sock_ofree(struct sk_buff *skb)
2210 {
2211 struct sock *sk = skb->sk;
2212
2213 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2214 }
2215
sock_omalloc(struct sock * sk,unsigned long size,gfp_t priority)2216 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2217 gfp_t priority)
2218 {
2219 struct sk_buff *skb;
2220
2221 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2222 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2223 READ_ONCE(sysctl_optmem_max))
2224 return NULL;
2225
2226 skb = alloc_skb(size, priority);
2227 if (!skb)
2228 return NULL;
2229
2230 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2231 skb->sk = sk;
2232 skb->destructor = sock_ofree;
2233 return skb;
2234 }
2235
2236 /*
2237 * Allocate a memory block from the socket's option memory buffer.
2238 */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)2239 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2240 {
2241 int optmem_max = READ_ONCE(sysctl_optmem_max);
2242
2243 if ((unsigned int)size <= optmem_max &&
2244 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2245 void *mem;
2246 /* First do the add, to avoid the race if kmalloc
2247 * might sleep.
2248 */
2249 atomic_add(size, &sk->sk_omem_alloc);
2250 mem = kmalloc(size, priority);
2251 if (mem)
2252 return mem;
2253 atomic_sub(size, &sk->sk_omem_alloc);
2254 }
2255 return NULL;
2256 }
2257 EXPORT_SYMBOL(sock_kmalloc);
2258
2259 /* Free an option memory block. Note, we actually want the inline
2260 * here as this allows gcc to detect the nullify and fold away the
2261 * condition entirely.
2262 */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)2263 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2264 const bool nullify)
2265 {
2266 if (WARN_ON_ONCE(!mem))
2267 return;
2268 if (nullify)
2269 kfree_sensitive(mem);
2270 else
2271 kfree(mem);
2272 atomic_sub(size, &sk->sk_omem_alloc);
2273 }
2274
sock_kfree_s(struct sock * sk,void * mem,int size)2275 void sock_kfree_s(struct sock *sk, void *mem, int size)
2276 {
2277 __sock_kfree_s(sk, mem, size, false);
2278 }
2279 EXPORT_SYMBOL(sock_kfree_s);
2280
sock_kzfree_s(struct sock * sk,void * mem,int size)2281 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2282 {
2283 __sock_kfree_s(sk, mem, size, true);
2284 }
2285 EXPORT_SYMBOL(sock_kzfree_s);
2286
2287 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2288 I think, these locks should be removed for datagram sockets.
2289 */
sock_wait_for_wmem(struct sock * sk,long timeo)2290 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2291 {
2292 DEFINE_WAIT(wait);
2293
2294 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2295 for (;;) {
2296 if (!timeo)
2297 break;
2298 if (signal_pending(current))
2299 break;
2300 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2301 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2302 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2303 break;
2304 if (sk->sk_shutdown & SEND_SHUTDOWN)
2305 break;
2306 if (sk->sk_err)
2307 break;
2308 timeo = schedule_timeout(timeo);
2309 }
2310 finish_wait(sk_sleep(sk), &wait);
2311 return timeo;
2312 }
2313
2314
2315 /*
2316 * Generic send/receive buffer handlers
2317 */
2318
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)2319 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2320 unsigned long data_len, int noblock,
2321 int *errcode, int max_page_order)
2322 {
2323 struct sk_buff *skb;
2324 long timeo;
2325 int err;
2326
2327 timeo = sock_sndtimeo(sk, noblock);
2328 for (;;) {
2329 err = sock_error(sk);
2330 if (err != 0)
2331 goto failure;
2332
2333 err = -EPIPE;
2334 if (sk->sk_shutdown & SEND_SHUTDOWN)
2335 goto failure;
2336
2337 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2338 break;
2339
2340 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2341 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2342 err = -EAGAIN;
2343 if (!timeo)
2344 goto failure;
2345 if (signal_pending(current))
2346 goto interrupted;
2347 timeo = sock_wait_for_wmem(sk, timeo);
2348 }
2349 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2350 errcode, sk->sk_allocation);
2351 if (skb)
2352 skb_set_owner_w(skb, sk);
2353 return skb;
2354
2355 interrupted:
2356 err = sock_intr_errno(timeo);
2357 failure:
2358 *errcode = err;
2359 return NULL;
2360 }
2361 EXPORT_SYMBOL(sock_alloc_send_pskb);
2362
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)2363 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2364 int noblock, int *errcode)
2365 {
2366 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2367 }
2368 EXPORT_SYMBOL(sock_alloc_send_skb);
2369
__sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct cmsghdr * cmsg,struct sockcm_cookie * sockc)2370 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2371 struct sockcm_cookie *sockc)
2372 {
2373 u32 tsflags;
2374
2375 switch (cmsg->cmsg_type) {
2376 case SO_MARK:
2377 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2378 return -EPERM;
2379 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2380 return -EINVAL;
2381 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2382 break;
2383 case SO_TIMESTAMPING_OLD:
2384 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2385 return -EINVAL;
2386
2387 tsflags = *(u32 *)CMSG_DATA(cmsg);
2388 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2389 return -EINVAL;
2390
2391 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2392 sockc->tsflags |= tsflags;
2393 break;
2394 case SCM_TXTIME:
2395 if (!sock_flag(sk, SOCK_TXTIME))
2396 return -EINVAL;
2397 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2398 return -EINVAL;
2399 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2400 break;
2401 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2402 case SCM_RIGHTS:
2403 case SCM_CREDENTIALS:
2404 break;
2405 default:
2406 return -EINVAL;
2407 }
2408 return 0;
2409 }
2410 EXPORT_SYMBOL(__sock_cmsg_send);
2411
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)2412 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2413 struct sockcm_cookie *sockc)
2414 {
2415 struct cmsghdr *cmsg;
2416 int ret;
2417
2418 for_each_cmsghdr(cmsg, msg) {
2419 if (!CMSG_OK(msg, cmsg))
2420 return -EINVAL;
2421 if (cmsg->cmsg_level != SOL_SOCKET)
2422 continue;
2423 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2424 if (ret)
2425 return ret;
2426 }
2427 return 0;
2428 }
2429 EXPORT_SYMBOL(sock_cmsg_send);
2430
sk_enter_memory_pressure(struct sock * sk)2431 static void sk_enter_memory_pressure(struct sock *sk)
2432 {
2433 if (!sk->sk_prot->enter_memory_pressure)
2434 return;
2435
2436 sk->sk_prot->enter_memory_pressure(sk);
2437 }
2438
sk_leave_memory_pressure(struct sock * sk)2439 static void sk_leave_memory_pressure(struct sock *sk)
2440 {
2441 if (sk->sk_prot->leave_memory_pressure) {
2442 sk->sk_prot->leave_memory_pressure(sk);
2443 } else {
2444 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2445
2446 if (memory_pressure && READ_ONCE(*memory_pressure))
2447 WRITE_ONCE(*memory_pressure, 0);
2448 }
2449 }
2450
2451 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2452 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2453
2454 /**
2455 * skb_page_frag_refill - check that a page_frag contains enough room
2456 * @sz: minimum size of the fragment we want to get
2457 * @pfrag: pointer to page_frag
2458 * @gfp: priority for memory allocation
2459 *
2460 * Note: While this allocator tries to use high order pages, there is
2461 * no guarantee that allocations succeed. Therefore, @sz MUST be
2462 * less or equal than PAGE_SIZE.
2463 */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)2464 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2465 {
2466 if (pfrag->page) {
2467 if (page_ref_count(pfrag->page) == 1) {
2468 pfrag->offset = 0;
2469 return true;
2470 }
2471 if (pfrag->offset + sz <= pfrag->size)
2472 return true;
2473 put_page(pfrag->page);
2474 }
2475
2476 pfrag->offset = 0;
2477 if (SKB_FRAG_PAGE_ORDER &&
2478 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2479 /* Avoid direct reclaim but allow kswapd to wake */
2480 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2481 __GFP_COMP | __GFP_NOWARN |
2482 __GFP_NORETRY,
2483 SKB_FRAG_PAGE_ORDER);
2484 if (likely(pfrag->page)) {
2485 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2486 return true;
2487 }
2488 }
2489 pfrag->page = alloc_page(gfp);
2490 if (likely(pfrag->page)) {
2491 pfrag->size = PAGE_SIZE;
2492 return true;
2493 }
2494 return false;
2495 }
2496 EXPORT_SYMBOL(skb_page_frag_refill);
2497
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)2498 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2499 {
2500 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2501 return true;
2502
2503 sk_enter_memory_pressure(sk);
2504 sk_stream_moderate_sndbuf(sk);
2505 return false;
2506 }
2507 EXPORT_SYMBOL(sk_page_frag_refill);
2508
__lock_sock(struct sock * sk)2509 static void __lock_sock(struct sock *sk)
2510 __releases(&sk->sk_lock.slock)
2511 __acquires(&sk->sk_lock.slock)
2512 {
2513 DEFINE_WAIT(wait);
2514
2515 for (;;) {
2516 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2517 TASK_UNINTERRUPTIBLE);
2518 spin_unlock_bh(&sk->sk_lock.slock);
2519 schedule();
2520 spin_lock_bh(&sk->sk_lock.slock);
2521 if (!sock_owned_by_user(sk))
2522 break;
2523 }
2524 finish_wait(&sk->sk_lock.wq, &wait);
2525 }
2526
__release_sock(struct sock * sk)2527 void __release_sock(struct sock *sk)
2528 __releases(&sk->sk_lock.slock)
2529 __acquires(&sk->sk_lock.slock)
2530 {
2531 struct sk_buff *skb, *next;
2532
2533 while ((skb = sk->sk_backlog.head) != NULL) {
2534 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2535
2536 spin_unlock_bh(&sk->sk_lock.slock);
2537
2538 do {
2539 next = skb->next;
2540 prefetch(next);
2541 WARN_ON_ONCE(skb_dst_is_noref(skb));
2542 skb_mark_not_on_list(skb);
2543 sk_backlog_rcv(sk, skb);
2544
2545 cond_resched();
2546
2547 skb = next;
2548 } while (skb != NULL);
2549
2550 spin_lock_bh(&sk->sk_lock.slock);
2551 }
2552
2553 /*
2554 * Doing the zeroing here guarantee we can not loop forever
2555 * while a wild producer attempts to flood us.
2556 */
2557 sk->sk_backlog.len = 0;
2558 }
2559
__sk_flush_backlog(struct sock * sk)2560 void __sk_flush_backlog(struct sock *sk)
2561 {
2562 spin_lock_bh(&sk->sk_lock.slock);
2563 __release_sock(sk);
2564 spin_unlock_bh(&sk->sk_lock.slock);
2565 }
2566
2567 /**
2568 * sk_wait_data - wait for data to arrive at sk_receive_queue
2569 * @sk: sock to wait on
2570 * @timeo: for how long
2571 * @skb: last skb seen on sk_receive_queue
2572 *
2573 * Now socket state including sk->sk_err is changed only under lock,
2574 * hence we may omit checks after joining wait queue.
2575 * We check receive queue before schedule() only as optimization;
2576 * it is very likely that release_sock() added new data.
2577 */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2578 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2579 {
2580 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2581 int rc;
2582
2583 add_wait_queue(sk_sleep(sk), &wait);
2584 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2585 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2586 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2587 remove_wait_queue(sk_sleep(sk), &wait);
2588 return rc;
2589 }
2590 EXPORT_SYMBOL(sk_wait_data);
2591
2592 /**
2593 * __sk_mem_raise_allocated - increase memory_allocated
2594 * @sk: socket
2595 * @size: memory size to allocate
2596 * @amt: pages to allocate
2597 * @kind: allocation type
2598 *
2599 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2600 */
__sk_mem_raise_allocated(struct sock * sk,int size,int amt,int kind)2601 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2602 {
2603 struct proto *prot = sk->sk_prot;
2604 long allocated = sk_memory_allocated_add(sk, amt);
2605 bool charged = true;
2606
2607 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2608 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2609 goto suppress_allocation;
2610
2611 /* Under limit. */
2612 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2613 sk_leave_memory_pressure(sk);
2614 return 1;
2615 }
2616
2617 /* Under pressure. */
2618 if (allocated > sk_prot_mem_limits(sk, 1))
2619 sk_enter_memory_pressure(sk);
2620
2621 /* Over hard limit. */
2622 if (allocated > sk_prot_mem_limits(sk, 2))
2623 goto suppress_allocation;
2624
2625 /* guarantee minimum buffer size under pressure */
2626 if (kind == SK_MEM_RECV) {
2627 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2628 return 1;
2629
2630 } else { /* SK_MEM_SEND */
2631 int wmem0 = sk_get_wmem0(sk, prot);
2632
2633 if (sk->sk_type == SOCK_STREAM) {
2634 if (sk->sk_wmem_queued < wmem0)
2635 return 1;
2636 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2637 return 1;
2638 }
2639 }
2640
2641 if (sk_has_memory_pressure(sk)) {
2642 u64 alloc;
2643
2644 if (!sk_under_memory_pressure(sk))
2645 return 1;
2646 alloc = sk_sockets_allocated_read_positive(sk);
2647 if (sk_prot_mem_limits(sk, 2) > alloc *
2648 sk_mem_pages(sk->sk_wmem_queued +
2649 atomic_read(&sk->sk_rmem_alloc) +
2650 sk->sk_forward_alloc))
2651 return 1;
2652 }
2653
2654 suppress_allocation:
2655
2656 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2657 sk_stream_moderate_sndbuf(sk);
2658
2659 /* Fail only if socket is _under_ its sndbuf.
2660 * In this case we cannot block, so that we have to fail.
2661 */
2662 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2663 return 1;
2664 }
2665
2666 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2667 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2668
2669 sk_memory_allocated_sub(sk, amt);
2670
2671 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2672 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2673
2674 return 0;
2675 }
2676 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2677
2678 /**
2679 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2680 * @sk: socket
2681 * @size: memory size to allocate
2682 * @kind: allocation type
2683 *
2684 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2685 * rmem allocation. This function assumes that protocols which have
2686 * memory_pressure use sk_wmem_queued as write buffer accounting.
2687 */
__sk_mem_schedule(struct sock * sk,int size,int kind)2688 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2689 {
2690 int ret, amt = sk_mem_pages(size);
2691
2692 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2693 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2694 if (!ret)
2695 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2696 return ret;
2697 }
2698 EXPORT_SYMBOL(__sk_mem_schedule);
2699
2700 /**
2701 * __sk_mem_reduce_allocated - reclaim memory_allocated
2702 * @sk: socket
2703 * @amount: number of quanta
2704 *
2705 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2706 */
__sk_mem_reduce_allocated(struct sock * sk,int amount)2707 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2708 {
2709 sk_memory_allocated_sub(sk, amount);
2710
2711 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2712 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2713
2714 if (sk_under_memory_pressure(sk) &&
2715 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2716 sk_leave_memory_pressure(sk);
2717 }
2718 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2719
2720 /**
2721 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2722 * @sk: socket
2723 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2724 */
__sk_mem_reclaim(struct sock * sk,int amount)2725 void __sk_mem_reclaim(struct sock *sk, int amount)
2726 {
2727 amount >>= SK_MEM_QUANTUM_SHIFT;
2728 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2729 __sk_mem_reduce_allocated(sk, amount);
2730 }
2731 EXPORT_SYMBOL(__sk_mem_reclaim);
2732
sk_set_peek_off(struct sock * sk,int val)2733 int sk_set_peek_off(struct sock *sk, int val)
2734 {
2735 sk->sk_peek_off = val;
2736 return 0;
2737 }
2738 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2739
2740 /*
2741 * Set of default routines for initialising struct proto_ops when
2742 * the protocol does not support a particular function. In certain
2743 * cases where it makes no sense for a protocol to have a "do nothing"
2744 * function, some default processing is provided.
2745 */
2746
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2747 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2748 {
2749 return -EOPNOTSUPP;
2750 }
2751 EXPORT_SYMBOL(sock_no_bind);
2752
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2753 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2754 int len, int flags)
2755 {
2756 return -EOPNOTSUPP;
2757 }
2758 EXPORT_SYMBOL(sock_no_connect);
2759
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2760 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2761 {
2762 return -EOPNOTSUPP;
2763 }
2764 EXPORT_SYMBOL(sock_no_socketpair);
2765
sock_no_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)2766 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2767 bool kern)
2768 {
2769 return -EOPNOTSUPP;
2770 }
2771 EXPORT_SYMBOL(sock_no_accept);
2772
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int peer)2773 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2774 int peer)
2775 {
2776 return -EOPNOTSUPP;
2777 }
2778 EXPORT_SYMBOL(sock_no_getname);
2779
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2780 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2781 {
2782 return -EOPNOTSUPP;
2783 }
2784 EXPORT_SYMBOL(sock_no_ioctl);
2785
sock_no_listen(struct socket * sock,int backlog)2786 int sock_no_listen(struct socket *sock, int backlog)
2787 {
2788 return -EOPNOTSUPP;
2789 }
2790 EXPORT_SYMBOL(sock_no_listen);
2791
sock_no_shutdown(struct socket * sock,int how)2792 int sock_no_shutdown(struct socket *sock, int how)
2793 {
2794 return -EOPNOTSUPP;
2795 }
2796 EXPORT_SYMBOL(sock_no_shutdown);
2797
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)2798 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2799 {
2800 return -EOPNOTSUPP;
2801 }
2802 EXPORT_SYMBOL(sock_no_sendmsg);
2803
sock_no_sendmsg_locked(struct sock * sk,struct msghdr * m,size_t len)2804 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2805 {
2806 return -EOPNOTSUPP;
2807 }
2808 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2809
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)2810 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2811 int flags)
2812 {
2813 return -EOPNOTSUPP;
2814 }
2815 EXPORT_SYMBOL(sock_no_recvmsg);
2816
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2817 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2818 {
2819 /* Mirror missing mmap method error code */
2820 return -ENODEV;
2821 }
2822 EXPORT_SYMBOL(sock_no_mmap);
2823
2824 /*
2825 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2826 * various sock-based usage counts.
2827 */
__receive_sock(struct file * file)2828 void __receive_sock(struct file *file)
2829 {
2830 struct socket *sock;
2831 int error;
2832
2833 /*
2834 * The resulting value of "error" is ignored here since we only
2835 * need to take action when the file is a socket and testing
2836 * "sock" for NULL is sufficient.
2837 */
2838 sock = sock_from_file(file, &error);
2839 if (sock) {
2840 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2841 sock_update_classid(&sock->sk->sk_cgrp_data);
2842 }
2843 }
2844
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2845 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2846 {
2847 ssize_t res;
2848 struct msghdr msg = {.msg_flags = flags};
2849 struct kvec iov;
2850 char *kaddr = kmap(page);
2851 iov.iov_base = kaddr + offset;
2852 iov.iov_len = size;
2853 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2854 kunmap(page);
2855 return res;
2856 }
2857 EXPORT_SYMBOL(sock_no_sendpage);
2858
sock_no_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2859 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2860 int offset, size_t size, int flags)
2861 {
2862 ssize_t res;
2863 struct msghdr msg = {.msg_flags = flags};
2864 struct kvec iov;
2865 char *kaddr = kmap(page);
2866
2867 iov.iov_base = kaddr + offset;
2868 iov.iov_len = size;
2869 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2870 kunmap(page);
2871 return res;
2872 }
2873 EXPORT_SYMBOL(sock_no_sendpage_locked);
2874
2875 /*
2876 * Default Socket Callbacks
2877 */
2878
sock_def_wakeup(struct sock * sk)2879 static void sock_def_wakeup(struct sock *sk)
2880 {
2881 struct socket_wq *wq;
2882
2883 rcu_read_lock();
2884 wq = rcu_dereference(sk->sk_wq);
2885 if (skwq_has_sleeper(wq))
2886 wake_up_interruptible_all(&wq->wait);
2887 rcu_read_unlock();
2888 }
2889
sock_def_error_report(struct sock * sk)2890 static void sock_def_error_report(struct sock *sk)
2891 {
2892 struct socket_wq *wq;
2893
2894 rcu_read_lock();
2895 wq = rcu_dereference(sk->sk_wq);
2896 if (skwq_has_sleeper(wq))
2897 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2898 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2899 rcu_read_unlock();
2900 }
2901
sock_def_readable(struct sock * sk)2902 void sock_def_readable(struct sock *sk)
2903 {
2904 struct socket_wq *wq;
2905
2906 rcu_read_lock();
2907 wq = rcu_dereference(sk->sk_wq);
2908
2909 if (skwq_has_sleeper(wq)) {
2910 int done = 0;
2911
2912 trace_android_vh_do_wake_up_sync(&wq->wait, &done);
2913 if (done)
2914 goto out;
2915
2916 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2917 EPOLLRDNORM | EPOLLRDBAND);
2918 }
2919
2920 out:
2921 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2922 rcu_read_unlock();
2923 }
2924
sock_def_write_space(struct sock * sk)2925 static void sock_def_write_space(struct sock *sk)
2926 {
2927 struct socket_wq *wq;
2928
2929 rcu_read_lock();
2930
2931 /* Do not wake up a writer until he can make "significant"
2932 * progress. --DaveM
2933 */
2934 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2935 wq = rcu_dereference(sk->sk_wq);
2936 if (skwq_has_sleeper(wq))
2937 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2938 EPOLLWRNORM | EPOLLWRBAND);
2939
2940 /* Should agree with poll, otherwise some programs break */
2941 if (sock_writeable(sk))
2942 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2943 }
2944
2945 rcu_read_unlock();
2946 }
2947
sock_def_destruct(struct sock * sk)2948 static void sock_def_destruct(struct sock *sk)
2949 {
2950 }
2951
sk_send_sigurg(struct sock * sk)2952 void sk_send_sigurg(struct sock *sk)
2953 {
2954 if (sk->sk_socket && sk->sk_socket->file)
2955 if (send_sigurg(&sk->sk_socket->file->f_owner))
2956 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2957 }
2958 EXPORT_SYMBOL(sk_send_sigurg);
2959
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2960 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2961 unsigned long expires)
2962 {
2963 if (!mod_timer(timer, expires))
2964 sock_hold(sk);
2965 }
2966 EXPORT_SYMBOL(sk_reset_timer);
2967
sk_stop_timer(struct sock * sk,struct timer_list * timer)2968 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2969 {
2970 if (del_timer(timer))
2971 __sock_put(sk);
2972 }
2973 EXPORT_SYMBOL(sk_stop_timer);
2974
sk_stop_timer_sync(struct sock * sk,struct timer_list * timer)2975 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
2976 {
2977 if (del_timer_sync(timer))
2978 __sock_put(sk);
2979 }
2980 EXPORT_SYMBOL(sk_stop_timer_sync);
2981
sock_init_data(struct socket * sock,struct sock * sk)2982 void sock_init_data(struct socket *sock, struct sock *sk)
2983 {
2984 sk_init_common(sk);
2985 sk->sk_send_head = NULL;
2986
2987 timer_setup(&sk->sk_timer, NULL, 0);
2988
2989 sk->sk_allocation = GFP_KERNEL;
2990 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default);
2991 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
2992 sk->sk_state = TCP_CLOSE;
2993 sk_set_socket(sk, sock);
2994
2995 sock_set_flag(sk, SOCK_ZAPPED);
2996
2997 if (sock) {
2998 sk->sk_type = sock->type;
2999 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3000 sock->sk = sk;
3001 sk->sk_uid = SOCK_INODE(sock)->i_uid;
3002 } else {
3003 RCU_INIT_POINTER(sk->sk_wq, NULL);
3004 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3005 }
3006
3007 rwlock_init(&sk->sk_callback_lock);
3008 if (sk->sk_kern_sock)
3009 lockdep_set_class_and_name(
3010 &sk->sk_callback_lock,
3011 af_kern_callback_keys + sk->sk_family,
3012 af_family_kern_clock_key_strings[sk->sk_family]);
3013 else
3014 lockdep_set_class_and_name(
3015 &sk->sk_callback_lock,
3016 af_callback_keys + sk->sk_family,
3017 af_family_clock_key_strings[sk->sk_family]);
3018
3019 sk->sk_state_change = sock_def_wakeup;
3020 sk->sk_data_ready = sock_def_readable;
3021 sk->sk_write_space = sock_def_write_space;
3022 sk->sk_error_report = sock_def_error_report;
3023 sk->sk_destruct = sock_def_destruct;
3024
3025 sk->sk_frag.page = NULL;
3026 sk->sk_frag.offset = 0;
3027 sk->sk_peek_off = -1;
3028
3029 sk->sk_peer_pid = NULL;
3030 sk->sk_peer_cred = NULL;
3031 spin_lock_init(&sk->sk_peer_lock);
3032
3033 sk->sk_write_pending = 0;
3034 sk->sk_rcvlowat = 1;
3035 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3036 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3037
3038 sk->sk_stamp = SK_DEFAULT_STAMP;
3039 #if BITS_PER_LONG==32
3040 seqlock_init(&sk->sk_stamp_seq);
3041 #endif
3042 atomic_set(&sk->sk_zckey, 0);
3043
3044 #ifdef CONFIG_NET_RX_BUSY_POLL
3045 sk->sk_napi_id = 0;
3046 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read);
3047 #endif
3048
3049 sk->sk_max_pacing_rate = ~0UL;
3050 sk->sk_pacing_rate = ~0UL;
3051 WRITE_ONCE(sk->sk_pacing_shift, 10);
3052 sk->sk_incoming_cpu = -1;
3053
3054 sk_rx_queue_clear(sk);
3055 /*
3056 * Before updating sk_refcnt, we must commit prior changes to memory
3057 * (Documentation/RCU/rculist_nulls.rst for details)
3058 */
3059 smp_wmb();
3060 refcount_set(&sk->sk_refcnt, 1);
3061 atomic_set(&sk->sk_drops, 0);
3062 }
3063 EXPORT_SYMBOL(sock_init_data);
3064
lock_sock_nested(struct sock * sk,int subclass)3065 void lock_sock_nested(struct sock *sk, int subclass)
3066 {
3067 might_sleep();
3068 spin_lock_bh(&sk->sk_lock.slock);
3069 if (sk->sk_lock.owned)
3070 __lock_sock(sk);
3071 sk->sk_lock.owned = 1;
3072 spin_unlock(&sk->sk_lock.slock);
3073 /*
3074 * The sk_lock has mutex_lock() semantics here:
3075 */
3076 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3077 local_bh_enable();
3078 }
3079 EXPORT_SYMBOL(lock_sock_nested);
3080
release_sock(struct sock * sk)3081 void release_sock(struct sock *sk)
3082 {
3083 spin_lock_bh(&sk->sk_lock.slock);
3084 if (sk->sk_backlog.tail)
3085 __release_sock(sk);
3086
3087 /* Warning : release_cb() might need to release sk ownership,
3088 * ie call sock_release_ownership(sk) before us.
3089 */
3090 if (sk->sk_prot->release_cb)
3091 sk->sk_prot->release_cb(sk);
3092
3093 sock_release_ownership(sk);
3094 if (waitqueue_active(&sk->sk_lock.wq))
3095 wake_up(&sk->sk_lock.wq);
3096 spin_unlock_bh(&sk->sk_lock.slock);
3097 }
3098 EXPORT_SYMBOL(release_sock);
3099
3100 /**
3101 * lock_sock_fast - fast version of lock_sock
3102 * @sk: socket
3103 *
3104 * This version should be used for very small section, where process wont block
3105 * return false if fast path is taken:
3106 *
3107 * sk_lock.slock locked, owned = 0, BH disabled
3108 *
3109 * return true if slow path is taken:
3110 *
3111 * sk_lock.slock unlocked, owned = 1, BH enabled
3112 */
lock_sock_fast(struct sock * sk)3113 bool lock_sock_fast(struct sock *sk)
3114 {
3115 might_sleep();
3116 spin_lock_bh(&sk->sk_lock.slock);
3117
3118 if (!sk->sk_lock.owned)
3119 /*
3120 * Note : We must disable BH
3121 */
3122 return false;
3123
3124 __lock_sock(sk);
3125 sk->sk_lock.owned = 1;
3126 spin_unlock(&sk->sk_lock.slock);
3127 /*
3128 * The sk_lock has mutex_lock() semantics here:
3129 */
3130 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3131 local_bh_enable();
3132 return true;
3133 }
3134 EXPORT_SYMBOL(lock_sock_fast);
3135
sock_gettstamp(struct socket * sock,void __user * userstamp,bool timeval,bool time32)3136 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3137 bool timeval, bool time32)
3138 {
3139 struct sock *sk = sock->sk;
3140 struct timespec64 ts;
3141
3142 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3143 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3144 if (ts.tv_sec == -1)
3145 return -ENOENT;
3146 if (ts.tv_sec == 0) {
3147 ktime_t kt = ktime_get_real();
3148 sock_write_timestamp(sk, kt);
3149 ts = ktime_to_timespec64(kt);
3150 }
3151
3152 if (timeval)
3153 ts.tv_nsec /= 1000;
3154
3155 #ifdef CONFIG_COMPAT_32BIT_TIME
3156 if (time32)
3157 return put_old_timespec32(&ts, userstamp);
3158 #endif
3159 #ifdef CONFIG_SPARC64
3160 /* beware of padding in sparc64 timeval */
3161 if (timeval && !in_compat_syscall()) {
3162 struct __kernel_old_timeval __user tv = {
3163 .tv_sec = ts.tv_sec,
3164 .tv_usec = ts.tv_nsec,
3165 };
3166 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3167 return -EFAULT;
3168 return 0;
3169 }
3170 #endif
3171 return put_timespec64(&ts, userstamp);
3172 }
3173 EXPORT_SYMBOL(sock_gettstamp);
3174
sock_enable_timestamp(struct sock * sk,enum sock_flags flag)3175 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3176 {
3177 if (!sock_flag(sk, flag)) {
3178 unsigned long previous_flags = sk->sk_flags;
3179
3180 sock_set_flag(sk, flag);
3181 /*
3182 * we just set one of the two flags which require net
3183 * time stamping, but time stamping might have been on
3184 * already because of the other one
3185 */
3186 if (sock_needs_netstamp(sk) &&
3187 !(previous_flags & SK_FLAGS_TIMESTAMP))
3188 net_enable_timestamp();
3189 }
3190 }
3191
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)3192 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3193 int level, int type)
3194 {
3195 struct sock_exterr_skb *serr;
3196 struct sk_buff *skb;
3197 int copied, err;
3198
3199 err = -EAGAIN;
3200 skb = sock_dequeue_err_skb(sk);
3201 if (skb == NULL)
3202 goto out;
3203
3204 copied = skb->len;
3205 if (copied > len) {
3206 msg->msg_flags |= MSG_TRUNC;
3207 copied = len;
3208 }
3209 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3210 if (err)
3211 goto out_free_skb;
3212
3213 sock_recv_timestamp(msg, sk, skb);
3214
3215 serr = SKB_EXT_ERR(skb);
3216 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3217
3218 msg->msg_flags |= MSG_ERRQUEUE;
3219 err = copied;
3220
3221 out_free_skb:
3222 kfree_skb(skb);
3223 out:
3224 return err;
3225 }
3226 EXPORT_SYMBOL(sock_recv_errqueue);
3227
3228 /*
3229 * Get a socket option on an socket.
3230 *
3231 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3232 * asynchronous errors should be reported by getsockopt. We assume
3233 * this means if you specify SO_ERROR (otherwise whats the point of it).
3234 */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3235 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3236 char __user *optval, int __user *optlen)
3237 {
3238 struct sock *sk = sock->sk;
3239
3240 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3241 }
3242 EXPORT_SYMBOL(sock_common_getsockopt);
3243
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)3244 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3245 int flags)
3246 {
3247 struct sock *sk = sock->sk;
3248 int addr_len = 0;
3249 int err;
3250
3251 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3252 flags & ~MSG_DONTWAIT, &addr_len);
3253 if (err >= 0)
3254 msg->msg_namelen = addr_len;
3255 return err;
3256 }
3257 EXPORT_SYMBOL(sock_common_recvmsg);
3258
3259 /*
3260 * Set socket options on an inet socket.
3261 */
sock_common_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)3262 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3263 sockptr_t optval, unsigned int optlen)
3264 {
3265 struct sock *sk = sock->sk;
3266
3267 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3268 }
3269 EXPORT_SYMBOL(sock_common_setsockopt);
3270
sk_common_release(struct sock * sk)3271 void sk_common_release(struct sock *sk)
3272 {
3273 if (sk->sk_prot->destroy)
3274 sk->sk_prot->destroy(sk);
3275
3276 /*
3277 * Observation: when sk_common_release is called, processes have
3278 * no access to socket. But net still has.
3279 * Step one, detach it from networking:
3280 *
3281 * A. Remove from hash tables.
3282 */
3283
3284 sk->sk_prot->unhash(sk);
3285
3286 /*
3287 * In this point socket cannot receive new packets, but it is possible
3288 * that some packets are in flight because some CPU runs receiver and
3289 * did hash table lookup before we unhashed socket. They will achieve
3290 * receive queue and will be purged by socket destructor.
3291 *
3292 * Also we still have packets pending on receive queue and probably,
3293 * our own packets waiting in device queues. sock_destroy will drain
3294 * receive queue, but transmitted packets will delay socket destruction
3295 * until the last reference will be released.
3296 */
3297
3298 sock_orphan(sk);
3299
3300 xfrm_sk_free_policy(sk);
3301
3302 sk_refcnt_debug_release(sk);
3303
3304 sock_put(sk);
3305 }
3306 EXPORT_SYMBOL(sk_common_release);
3307
sk_get_meminfo(const struct sock * sk,u32 * mem)3308 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3309 {
3310 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3311
3312 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3313 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3314 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3315 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3316 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3317 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3318 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3319 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3320 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3321 }
3322
3323 #ifdef CONFIG_PROC_FS
3324 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3325 struct prot_inuse {
3326 int val[PROTO_INUSE_NR];
3327 };
3328
3329 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3330
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)3331 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3332 {
3333 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3334 }
3335 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3336
sock_prot_inuse_get(struct net * net,struct proto * prot)3337 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3338 {
3339 int cpu, idx = prot->inuse_idx;
3340 int res = 0;
3341
3342 for_each_possible_cpu(cpu)
3343 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3344
3345 return res >= 0 ? res : 0;
3346 }
3347 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3348
sock_inuse_add(struct net * net,int val)3349 static void sock_inuse_add(struct net *net, int val)
3350 {
3351 this_cpu_add(*net->core.sock_inuse, val);
3352 }
3353
sock_inuse_get(struct net * net)3354 int sock_inuse_get(struct net *net)
3355 {
3356 int cpu, res = 0;
3357
3358 for_each_possible_cpu(cpu)
3359 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3360
3361 return res;
3362 }
3363
3364 EXPORT_SYMBOL_GPL(sock_inuse_get);
3365
sock_inuse_init_net(struct net * net)3366 static int __net_init sock_inuse_init_net(struct net *net)
3367 {
3368 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3369 if (net->core.prot_inuse == NULL)
3370 return -ENOMEM;
3371
3372 net->core.sock_inuse = alloc_percpu(int);
3373 if (net->core.sock_inuse == NULL)
3374 goto out;
3375
3376 return 0;
3377
3378 out:
3379 free_percpu(net->core.prot_inuse);
3380 return -ENOMEM;
3381 }
3382
sock_inuse_exit_net(struct net * net)3383 static void __net_exit sock_inuse_exit_net(struct net *net)
3384 {
3385 free_percpu(net->core.prot_inuse);
3386 free_percpu(net->core.sock_inuse);
3387 }
3388
3389 static struct pernet_operations net_inuse_ops = {
3390 .init = sock_inuse_init_net,
3391 .exit = sock_inuse_exit_net,
3392 };
3393
net_inuse_init(void)3394 static __init int net_inuse_init(void)
3395 {
3396 if (register_pernet_subsys(&net_inuse_ops))
3397 panic("Cannot initialize net inuse counters");
3398
3399 return 0;
3400 }
3401
3402 core_initcall(net_inuse_init);
3403
assign_proto_idx(struct proto * prot)3404 static int assign_proto_idx(struct proto *prot)
3405 {
3406 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3407
3408 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3409 pr_err("PROTO_INUSE_NR exhausted\n");
3410 return -ENOSPC;
3411 }
3412
3413 set_bit(prot->inuse_idx, proto_inuse_idx);
3414 return 0;
3415 }
3416
release_proto_idx(struct proto * prot)3417 static void release_proto_idx(struct proto *prot)
3418 {
3419 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3420 clear_bit(prot->inuse_idx, proto_inuse_idx);
3421 }
3422 #else
assign_proto_idx(struct proto * prot)3423 static inline int assign_proto_idx(struct proto *prot)
3424 {
3425 return 0;
3426 }
3427
release_proto_idx(struct proto * prot)3428 static inline void release_proto_idx(struct proto *prot)
3429 {
3430 }
3431
sock_inuse_add(struct net * net,int val)3432 static void sock_inuse_add(struct net *net, int val)
3433 {
3434 }
3435 #endif
3436
tw_prot_cleanup(struct timewait_sock_ops * twsk_prot)3437 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3438 {
3439 if (!twsk_prot)
3440 return;
3441 kfree(twsk_prot->twsk_slab_name);
3442 twsk_prot->twsk_slab_name = NULL;
3443 kmem_cache_destroy(twsk_prot->twsk_slab);
3444 twsk_prot->twsk_slab = NULL;
3445 }
3446
req_prot_cleanup(struct request_sock_ops * rsk_prot)3447 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3448 {
3449 if (!rsk_prot)
3450 return;
3451 kfree(rsk_prot->slab_name);
3452 rsk_prot->slab_name = NULL;
3453 kmem_cache_destroy(rsk_prot->slab);
3454 rsk_prot->slab = NULL;
3455 }
3456
req_prot_init(const struct proto * prot)3457 static int req_prot_init(const struct proto *prot)
3458 {
3459 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3460
3461 if (!rsk_prot)
3462 return 0;
3463
3464 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3465 prot->name);
3466 if (!rsk_prot->slab_name)
3467 return -ENOMEM;
3468
3469 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3470 rsk_prot->obj_size, 0,
3471 SLAB_ACCOUNT | prot->slab_flags,
3472 NULL);
3473
3474 if (!rsk_prot->slab) {
3475 pr_crit("%s: Can't create request sock SLAB cache!\n",
3476 prot->name);
3477 return -ENOMEM;
3478 }
3479 return 0;
3480 }
3481
proto_register(struct proto * prot,int alloc_slab)3482 int proto_register(struct proto *prot, int alloc_slab)
3483 {
3484 int ret = -ENOBUFS;
3485
3486 if (alloc_slab) {
3487 prot->slab = kmem_cache_create_usercopy(prot->name,
3488 prot->obj_size, 0,
3489 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3490 prot->slab_flags,
3491 prot->useroffset, prot->usersize,
3492 NULL);
3493
3494 if (prot->slab == NULL) {
3495 pr_crit("%s: Can't create sock SLAB cache!\n",
3496 prot->name);
3497 goto out;
3498 }
3499
3500 if (req_prot_init(prot))
3501 goto out_free_request_sock_slab;
3502
3503 if (prot->twsk_prot != NULL) {
3504 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3505
3506 if (prot->twsk_prot->twsk_slab_name == NULL)
3507 goto out_free_request_sock_slab;
3508
3509 prot->twsk_prot->twsk_slab =
3510 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3511 prot->twsk_prot->twsk_obj_size,
3512 0,
3513 SLAB_ACCOUNT |
3514 prot->slab_flags,
3515 NULL);
3516 if (prot->twsk_prot->twsk_slab == NULL)
3517 goto out_free_timewait_sock_slab;
3518 }
3519 }
3520
3521 mutex_lock(&proto_list_mutex);
3522 ret = assign_proto_idx(prot);
3523 if (ret) {
3524 mutex_unlock(&proto_list_mutex);
3525 goto out_free_timewait_sock_slab;
3526 }
3527 list_add(&prot->node, &proto_list);
3528 mutex_unlock(&proto_list_mutex);
3529 return ret;
3530
3531 out_free_timewait_sock_slab:
3532 if (alloc_slab && prot->twsk_prot)
3533 tw_prot_cleanup(prot->twsk_prot);
3534 out_free_request_sock_slab:
3535 if (alloc_slab) {
3536 req_prot_cleanup(prot->rsk_prot);
3537
3538 kmem_cache_destroy(prot->slab);
3539 prot->slab = NULL;
3540 }
3541 out:
3542 return ret;
3543 }
3544 EXPORT_SYMBOL(proto_register);
3545
proto_unregister(struct proto * prot)3546 void proto_unregister(struct proto *prot)
3547 {
3548 mutex_lock(&proto_list_mutex);
3549 release_proto_idx(prot);
3550 list_del(&prot->node);
3551 mutex_unlock(&proto_list_mutex);
3552
3553 kmem_cache_destroy(prot->slab);
3554 prot->slab = NULL;
3555
3556 req_prot_cleanup(prot->rsk_prot);
3557 tw_prot_cleanup(prot->twsk_prot);
3558 }
3559 EXPORT_SYMBOL(proto_unregister);
3560
sock_load_diag_module(int family,int protocol)3561 int sock_load_diag_module(int family, int protocol)
3562 {
3563 if (!protocol) {
3564 if (!sock_is_registered(family))
3565 return -ENOENT;
3566
3567 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3568 NETLINK_SOCK_DIAG, family);
3569 }
3570
3571 #ifdef CONFIG_INET
3572 if (family == AF_INET &&
3573 protocol != IPPROTO_RAW &&
3574 protocol < MAX_INET_PROTOS &&
3575 !rcu_access_pointer(inet_protos[protocol]))
3576 return -ENOENT;
3577 #endif
3578
3579 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3580 NETLINK_SOCK_DIAG, family, protocol);
3581 }
3582 EXPORT_SYMBOL(sock_load_diag_module);
3583
3584 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)3585 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3586 __acquires(proto_list_mutex)
3587 {
3588 mutex_lock(&proto_list_mutex);
3589 return seq_list_start_head(&proto_list, *pos);
3590 }
3591
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)3592 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3593 {
3594 return seq_list_next(v, &proto_list, pos);
3595 }
3596
proto_seq_stop(struct seq_file * seq,void * v)3597 static void proto_seq_stop(struct seq_file *seq, void *v)
3598 __releases(proto_list_mutex)
3599 {
3600 mutex_unlock(&proto_list_mutex);
3601 }
3602
proto_method_implemented(const void * method)3603 static char proto_method_implemented(const void *method)
3604 {
3605 return method == NULL ? 'n' : 'y';
3606 }
sock_prot_memory_allocated(struct proto * proto)3607 static long sock_prot_memory_allocated(struct proto *proto)
3608 {
3609 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3610 }
3611
sock_prot_memory_pressure(struct proto * proto)3612 static const char *sock_prot_memory_pressure(struct proto *proto)
3613 {
3614 return proto->memory_pressure != NULL ?
3615 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3616 }
3617
proto_seq_printf(struct seq_file * seq,struct proto * proto)3618 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3619 {
3620
3621 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3622 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3623 proto->name,
3624 proto->obj_size,
3625 sock_prot_inuse_get(seq_file_net(seq), proto),
3626 sock_prot_memory_allocated(proto),
3627 sock_prot_memory_pressure(proto),
3628 proto->max_header,
3629 proto->slab == NULL ? "no" : "yes",
3630 module_name(proto->owner),
3631 proto_method_implemented(proto->close),
3632 proto_method_implemented(proto->connect),
3633 proto_method_implemented(proto->disconnect),
3634 proto_method_implemented(proto->accept),
3635 proto_method_implemented(proto->ioctl),
3636 proto_method_implemented(proto->init),
3637 proto_method_implemented(proto->destroy),
3638 proto_method_implemented(proto->shutdown),
3639 proto_method_implemented(proto->setsockopt),
3640 proto_method_implemented(proto->getsockopt),
3641 proto_method_implemented(proto->sendmsg),
3642 proto_method_implemented(proto->recvmsg),
3643 proto_method_implemented(proto->sendpage),
3644 proto_method_implemented(proto->bind),
3645 proto_method_implemented(proto->backlog_rcv),
3646 proto_method_implemented(proto->hash),
3647 proto_method_implemented(proto->unhash),
3648 proto_method_implemented(proto->get_port),
3649 proto_method_implemented(proto->enter_memory_pressure));
3650 }
3651
proto_seq_show(struct seq_file * seq,void * v)3652 static int proto_seq_show(struct seq_file *seq, void *v)
3653 {
3654 if (v == &proto_list)
3655 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3656 "protocol",
3657 "size",
3658 "sockets",
3659 "memory",
3660 "press",
3661 "maxhdr",
3662 "slab",
3663 "module",
3664 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3665 else
3666 proto_seq_printf(seq, list_entry(v, struct proto, node));
3667 return 0;
3668 }
3669
3670 static const struct seq_operations proto_seq_ops = {
3671 .start = proto_seq_start,
3672 .next = proto_seq_next,
3673 .stop = proto_seq_stop,
3674 .show = proto_seq_show,
3675 };
3676
proto_init_net(struct net * net)3677 static __net_init int proto_init_net(struct net *net)
3678 {
3679 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3680 sizeof(struct seq_net_private)))
3681 return -ENOMEM;
3682
3683 return 0;
3684 }
3685
proto_exit_net(struct net * net)3686 static __net_exit void proto_exit_net(struct net *net)
3687 {
3688 remove_proc_entry("protocols", net->proc_net);
3689 }
3690
3691
3692 static __net_initdata struct pernet_operations proto_net_ops = {
3693 .init = proto_init_net,
3694 .exit = proto_exit_net,
3695 };
3696
proto_init(void)3697 static int __init proto_init(void)
3698 {
3699 return register_pernet_subsys(&proto_net_ops);
3700 }
3701
3702 subsys_initcall(proto_init);
3703
3704 #endif /* PROC_FS */
3705
3706 #ifdef CONFIG_NET_RX_BUSY_POLL
sk_busy_loop_end(void * p,unsigned long start_time)3707 bool sk_busy_loop_end(void *p, unsigned long start_time)
3708 {
3709 struct sock *sk = p;
3710
3711 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3712 sk_busy_loop_timeout(sk, start_time);
3713 }
3714 EXPORT_SYMBOL(sk_busy_loop_end);
3715 #endif /* CONFIG_NET_RX_BUSY_POLL */
3716
sock_bind_add(struct sock * sk,struct sockaddr * addr,int addr_len)3717 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3718 {
3719 if (!sk->sk_prot->bind_add)
3720 return -EOPNOTSUPP;
3721 return sk->sk_prot->bind_add(sk, addr, addr_len);
3722 }
3723 EXPORT_SYMBOL(sock_bind_add);
3724