xref: /OK3568_Linux_fs/kernel/net/socket.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112 
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 			      struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 			      unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 			     int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 				struct pipe_inode_info *pipe, size_t len,
130 				unsigned int flags);
131 
132 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 	struct socket *sock = f->private_data;
136 
137 	if (sock->ops->show_fdinfo)
138 		sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143 
144 /*
145  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146  *	in the operation structures but are done directly via the socketcall() multiplexor.
147  */
148 
149 static const struct file_operations socket_file_ops = {
150 	.owner =	THIS_MODULE,
151 	.llseek =	no_llseek,
152 	.read_iter =	sock_read_iter,
153 	.write_iter =	sock_write_iter,
154 	.poll =		sock_poll,
155 	.unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 	.compat_ioctl = compat_sock_ioctl,
158 #endif
159 	.mmap =		sock_mmap,
160 	.release =	sock_close,
161 	.fasync =	sock_fasync,
162 	.sendpage =	sock_sendpage,
163 	.splice_write = generic_splice_sendpage,
164 	.splice_read =	sock_splice_read,
165 	.show_fdinfo =	sock_show_fdinfo,
166 };
167 
168 /*
169  *	The protocol list. Each protocol is registered in here.
170  */
171 
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248 
sock_alloc_inode(struct super_block * sb)249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 
253 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 	if (!ei)
255 		return NULL;
256 	init_waitqueue_head(&ei->socket.wq.wait);
257 	ei->socket.wq.fasync_list = NULL;
258 	ei->socket.wq.flags = 0;
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
sock_free_inode(struct inode * inode)269 static void sock_free_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 
273 	ei = container_of(inode, struct socket_alloc, vfs_inode);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
init_once(void * foo)277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
init_inodecache(void)284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.free_inode	= sock_free_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size,int flags)315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size,
318 			    int flags)
319 {
320 	if (value) {
321 		if (dentry->d_name.len + 1 > size)
322 			return -ERANGE;
323 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
324 	}
325 	return dentry->d_name.len + 1;
326 }
327 
328 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
329 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
330 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
331 
332 static const struct xattr_handler sockfs_xattr_handler = {
333 	.name = XATTR_NAME_SOCKPROTONAME,
334 	.get = sockfs_xattr_get,
335 };
336 
sockfs_security_xattr_set(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)337 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
338 				     struct dentry *dentry, struct inode *inode,
339 				     const char *suffix, const void *value,
340 				     size_t size, int flags)
341 {
342 	/* Handled by LSM. */
343 	return -EAGAIN;
344 }
345 
346 static const struct xattr_handler sockfs_security_xattr_handler = {
347 	.prefix = XATTR_SECURITY_PREFIX,
348 	.set = sockfs_security_xattr_set,
349 };
350 
351 static const struct xattr_handler *sockfs_xattr_handlers[] = {
352 	&sockfs_xattr_handler,
353 	&sockfs_security_xattr_handler,
354 	NULL
355 };
356 
sockfs_init_fs_context(struct fs_context * fc)357 static int sockfs_init_fs_context(struct fs_context *fc)
358 {
359 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
360 	if (!ctx)
361 		return -ENOMEM;
362 	ctx->ops = &sockfs_ops;
363 	ctx->dops = &sockfs_dentry_operations;
364 	ctx->xattr = sockfs_xattr_handlers;
365 	return 0;
366 }
367 
368 static struct vfsmount *sock_mnt __read_mostly;
369 
370 static struct file_system_type sock_fs_type = {
371 	.name =		"sockfs",
372 	.init_fs_context = sockfs_init_fs_context,
373 	.kill_sb =	kill_anon_super,
374 };
375 
376 /*
377  *	Obtains the first available file descriptor and sets it up for use.
378  *
379  *	These functions create file structures and maps them to fd space
380  *	of the current process. On success it returns file descriptor
381  *	and file struct implicitly stored in sock->file.
382  *	Note that another thread may close file descriptor before we return
383  *	from this function. We use the fact that now we do not refer
384  *	to socket after mapping. If one day we will need it, this
385  *	function will increment ref. count on file by 1.
386  *
387  *	In any case returned fd MAY BE not valid!
388  *	This race condition is unavoidable
389  *	with shared fd spaces, we cannot solve it inside kernel,
390  *	but we take care of internal coherence yet.
391  */
392 
393 /**
394  *	sock_alloc_file - Bind a &socket to a &file
395  *	@sock: socket
396  *	@flags: file status flags
397  *	@dname: protocol name
398  *
399  *	Returns the &file bound with @sock, implicitly storing it
400  *	in sock->file. If dname is %NULL, sets to "".
401  *	On failure the return is a ERR pointer (see linux/err.h).
402  *	This function uses GFP_KERNEL internally.
403  */
404 
sock_alloc_file(struct socket * sock,int flags,const char * dname)405 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
406 {
407 	struct file *file;
408 
409 	if (!dname)
410 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
411 
412 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
413 				O_RDWR | (flags & O_NONBLOCK),
414 				&socket_file_ops);
415 	if (IS_ERR(file)) {
416 		sock_release(sock);
417 		return file;
418 	}
419 
420 	sock->file = file;
421 	file->private_data = sock;
422 	stream_open(SOCK_INODE(sock), file);
423 	return file;
424 }
425 EXPORT_SYMBOL(sock_alloc_file);
426 
sock_map_fd(struct socket * sock,int flags)427 static int sock_map_fd(struct socket *sock, int flags)
428 {
429 	struct file *newfile;
430 	int fd = get_unused_fd_flags(flags);
431 	if (unlikely(fd < 0)) {
432 		sock_release(sock);
433 		return fd;
434 	}
435 
436 	newfile = sock_alloc_file(sock, flags, NULL);
437 	if (!IS_ERR(newfile)) {
438 		fd_install(fd, newfile);
439 		return fd;
440 	}
441 
442 	put_unused_fd(fd);
443 	return PTR_ERR(newfile);
444 }
445 
446 /**
447  *	sock_from_file - Return the &socket bounded to @file.
448  *	@file: file
449  *	@err: pointer to an error code return
450  *
451  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
452  */
453 
sock_from_file(struct file * file,int * err)454 struct socket *sock_from_file(struct file *file, int *err)
455 {
456 	if (file->f_op == &socket_file_ops)
457 		return file->private_data;	/* set in sock_map_fd */
458 
459 	*err = -ENOTSOCK;
460 	return NULL;
461 }
462 EXPORT_SYMBOL(sock_from_file);
463 
464 /**
465  *	sockfd_lookup - Go from a file number to its socket slot
466  *	@fd: file handle
467  *	@err: pointer to an error code return
468  *
469  *	The file handle passed in is locked and the socket it is bound
470  *	to is returned. If an error occurs the err pointer is overwritten
471  *	with a negative errno code and NULL is returned. The function checks
472  *	for both invalid handles and passing a handle which is not a socket.
473  *
474  *	On a success the socket object pointer is returned.
475  */
476 
sockfd_lookup(int fd,int * err)477 struct socket *sockfd_lookup(int fd, int *err)
478 {
479 	struct file *file;
480 	struct socket *sock;
481 
482 	file = fget(fd);
483 	if (!file) {
484 		*err = -EBADF;
485 		return NULL;
486 	}
487 
488 	sock = sock_from_file(file, err);
489 	if (!sock)
490 		fput(file);
491 	return sock;
492 }
493 EXPORT_SYMBOL(sockfd_lookup);
494 
sockfd_lookup_light(int fd,int * err,int * fput_needed)495 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
496 {
497 	struct fd f = fdget(fd);
498 	struct socket *sock;
499 
500 	*err = -EBADF;
501 	if (f.file) {
502 		sock = sock_from_file(f.file, err);
503 		if (likely(sock)) {
504 			*fput_needed = f.flags & FDPUT_FPUT;
505 			return sock;
506 		}
507 		fdput(f);
508 	}
509 	return NULL;
510 }
511 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)512 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
513 				size_t size)
514 {
515 	ssize_t len;
516 	ssize_t used = 0;
517 
518 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
519 	if (len < 0)
520 		return len;
521 	used += len;
522 	if (buffer) {
523 		if (size < used)
524 			return -ERANGE;
525 		buffer += len;
526 	}
527 
528 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
529 	used += len;
530 	if (buffer) {
531 		if (size < used)
532 			return -ERANGE;
533 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
534 		buffer += len;
535 	}
536 
537 	return used;
538 }
539 
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)540 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
541 {
542 	int err = simple_setattr(dentry, iattr);
543 
544 	if (!err && (iattr->ia_valid & ATTR_UID)) {
545 		struct socket *sock = SOCKET_I(d_inode(dentry));
546 
547 		if (sock->sk)
548 			sock->sk->sk_uid = iattr->ia_uid;
549 		else
550 			err = -ENOENT;
551 	}
552 
553 	return err;
554 }
555 
556 static const struct inode_operations sockfs_inode_ops = {
557 	.listxattr = sockfs_listxattr,
558 	.setattr = sockfs_setattr,
559 };
560 
561 /**
562  *	sock_alloc - allocate a socket
563  *
564  *	Allocate a new inode and socket object. The two are bound together
565  *	and initialised. The socket is then returned. If we are out of inodes
566  *	NULL is returned. This functions uses GFP_KERNEL internally.
567  */
568 
sock_alloc(void)569 struct socket *sock_alloc(void)
570 {
571 	struct inode *inode;
572 	struct socket *sock;
573 
574 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
575 	if (!inode)
576 		return NULL;
577 
578 	sock = SOCKET_I(inode);
579 
580 	inode->i_ino = get_next_ino();
581 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
582 	inode->i_uid = current_fsuid();
583 	inode->i_gid = current_fsgid();
584 	inode->i_op = &sockfs_inode_ops;
585 
586 	return sock;
587 }
588 EXPORT_SYMBOL(sock_alloc);
589 
__sock_release(struct socket * sock,struct inode * inode)590 static void __sock_release(struct socket *sock, struct inode *inode)
591 {
592 	if (sock->ops) {
593 		struct module *owner = sock->ops->owner;
594 
595 		if (inode)
596 			inode_lock(inode);
597 		sock->ops->release(sock);
598 		sock->sk = NULL;
599 		if (inode)
600 			inode_unlock(inode);
601 		sock->ops = NULL;
602 		module_put(owner);
603 	}
604 
605 	if (sock->wq.fasync_list)
606 		pr_err("%s: fasync list not empty!\n", __func__);
607 
608 	if (!sock->file) {
609 		iput(SOCK_INODE(sock));
610 		return;
611 	}
612 	sock->file = NULL;
613 }
614 
615 /**
616  *	sock_release - close a socket
617  *	@sock: socket to close
618  *
619  *	The socket is released from the protocol stack if it has a release
620  *	callback, and the inode is then released if the socket is bound to
621  *	an inode not a file.
622  */
sock_release(struct socket * sock)623 void sock_release(struct socket *sock)
624 {
625 	__sock_release(sock, NULL);
626 }
627 EXPORT_SYMBOL(sock_release);
628 
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)629 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
630 {
631 	u8 flags = *tx_flags;
632 
633 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
634 		flags |= SKBTX_HW_TSTAMP;
635 
636 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
637 		flags |= SKBTX_SW_TSTAMP;
638 
639 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
640 		flags |= SKBTX_SCHED_TSTAMP;
641 
642 	*tx_flags = flags;
643 }
644 EXPORT_SYMBOL(__sock_tx_timestamp);
645 
646 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
647 					   size_t));
648 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
649 					    size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)650 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
651 {
652 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
653 				     inet_sendmsg, sock, msg,
654 				     msg_data_left(msg));
655 	BUG_ON(ret == -EIOCBQUEUED);
656 	return ret;
657 }
658 
659 /**
660  *	sock_sendmsg - send a message through @sock
661  *	@sock: socket
662  *	@msg: message to send
663  *
664  *	Sends @msg through @sock, passing through LSM.
665  *	Returns the number of bytes sent, or an error code.
666  */
sock_sendmsg(struct socket * sock,struct msghdr * msg)667 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
668 {
669 	int err = security_socket_sendmsg(sock, msg,
670 					  msg_data_left(msg));
671 
672 	return err ?: sock_sendmsg_nosec(sock, msg);
673 }
674 EXPORT_SYMBOL(sock_sendmsg);
675 
676 /**
677  *	kernel_sendmsg - send a message through @sock (kernel-space)
678  *	@sock: socket
679  *	@msg: message header
680  *	@vec: kernel vec
681  *	@num: vec array length
682  *	@size: total message data size
683  *
684  *	Builds the message data with @vec and sends it through @sock.
685  *	Returns the number of bytes sent, or an error code.
686  */
687 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)688 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
689 		   struct kvec *vec, size_t num, size_t size)
690 {
691 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
692 	return sock_sendmsg(sock, msg);
693 }
694 EXPORT_SYMBOL(kernel_sendmsg);
695 
696 /**
697  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
698  *	@sk: sock
699  *	@msg: message header
700  *	@vec: output s/g array
701  *	@num: output s/g array length
702  *	@size: total message data size
703  *
704  *	Builds the message data with @vec and sends it through @sock.
705  *	Returns the number of bytes sent, or an error code.
706  *	Caller must hold @sk.
707  */
708 
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)709 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
710 			  struct kvec *vec, size_t num, size_t size)
711 {
712 	struct socket *sock = sk->sk_socket;
713 
714 	if (!sock->ops->sendmsg_locked)
715 		return sock_no_sendmsg_locked(sk, msg, size);
716 
717 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
718 
719 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
720 }
721 EXPORT_SYMBOL(kernel_sendmsg_locked);
722 
skb_is_err_queue(const struct sk_buff * skb)723 static bool skb_is_err_queue(const struct sk_buff *skb)
724 {
725 	/* pkt_type of skbs enqueued on the error queue are set to
726 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
727 	 * in recvmsg, since skbs received on a local socket will never
728 	 * have a pkt_type of PACKET_OUTGOING.
729 	 */
730 	return skb->pkt_type == PACKET_OUTGOING;
731 }
732 
733 /* On transmit, software and hardware timestamps are returned independently.
734  * As the two skb clones share the hardware timestamp, which may be updated
735  * before the software timestamp is received, a hardware TX timestamp may be
736  * returned only if there is no software TX timestamp. Ignore false software
737  * timestamps, which may be made in the __sock_recv_timestamp() call when the
738  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
739  * hardware timestamp.
740  */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)741 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
742 {
743 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
744 }
745 
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)746 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
747 {
748 	struct scm_ts_pktinfo ts_pktinfo;
749 	struct net_device *orig_dev;
750 
751 	if (!skb_mac_header_was_set(skb))
752 		return;
753 
754 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
755 
756 	rcu_read_lock();
757 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
758 	if (orig_dev)
759 		ts_pktinfo.if_index = orig_dev->ifindex;
760 	rcu_read_unlock();
761 
762 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
763 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
764 		 sizeof(ts_pktinfo), &ts_pktinfo);
765 }
766 
767 /*
768  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
769  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)770 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
771 	struct sk_buff *skb)
772 {
773 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
774 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
775 	struct scm_timestamping_internal tss;
776 
777 	int empty = 1, false_tstamp = 0;
778 	struct skb_shared_hwtstamps *shhwtstamps =
779 		skb_hwtstamps(skb);
780 
781 	/* Race occurred between timestamp enabling and packet
782 	   receiving.  Fill in the current time for now. */
783 	if (need_software_tstamp && skb->tstamp == 0) {
784 		__net_timestamp(skb);
785 		false_tstamp = 1;
786 	}
787 
788 	if (need_software_tstamp) {
789 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
790 			if (new_tstamp) {
791 				struct __kernel_sock_timeval tv;
792 
793 				skb_get_new_timestamp(skb, &tv);
794 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
795 					 sizeof(tv), &tv);
796 			} else {
797 				struct __kernel_old_timeval tv;
798 
799 				skb_get_timestamp(skb, &tv);
800 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
801 					 sizeof(tv), &tv);
802 			}
803 		} else {
804 			if (new_tstamp) {
805 				struct __kernel_timespec ts;
806 
807 				skb_get_new_timestampns(skb, &ts);
808 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
809 					 sizeof(ts), &ts);
810 			} else {
811 				struct __kernel_old_timespec ts;
812 
813 				skb_get_timestampns(skb, &ts);
814 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
815 					 sizeof(ts), &ts);
816 			}
817 		}
818 	}
819 
820 	memset(&tss, 0, sizeof(tss));
821 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
822 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
823 		empty = 0;
824 	if (shhwtstamps &&
825 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
826 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
827 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
828 		empty = 0;
829 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
830 		    !skb_is_err_queue(skb))
831 			put_ts_pktinfo(msg, skb);
832 	}
833 	if (!empty) {
834 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
835 			put_cmsg_scm_timestamping64(msg, &tss);
836 		else
837 			put_cmsg_scm_timestamping(msg, &tss);
838 
839 		if (skb_is_err_queue(skb) && skb->len &&
840 		    SKB_EXT_ERR(skb)->opt_stats)
841 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
842 				 skb->len, skb->data);
843 	}
844 }
845 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
846 
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)847 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
848 	struct sk_buff *skb)
849 {
850 	int ack;
851 
852 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
853 		return;
854 	if (!skb->wifi_acked_valid)
855 		return;
856 
857 	ack = skb->wifi_acked;
858 
859 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
860 }
861 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
862 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)863 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
864 				   struct sk_buff *skb)
865 {
866 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
867 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
868 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
869 }
870 
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)871 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
872 	struct sk_buff *skb)
873 {
874 	sock_recv_timestamp(msg, sk, skb);
875 	sock_recv_drops(msg, sk, skb);
876 }
877 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
878 
879 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
880 					   size_t, int));
881 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
882 					    size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)883 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
884 				     int flags)
885 {
886 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
887 				  inet_recvmsg, sock, msg, msg_data_left(msg),
888 				  flags);
889 }
890 
891 /**
892  *	sock_recvmsg - receive a message from @sock
893  *	@sock: socket
894  *	@msg: message to receive
895  *	@flags: message flags
896  *
897  *	Receives @msg from @sock, passing through LSM. Returns the total number
898  *	of bytes received, or an error.
899  */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)900 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
901 {
902 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
903 
904 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
905 }
906 EXPORT_SYMBOL(sock_recvmsg);
907 
908 /**
909  *	kernel_recvmsg - Receive a message from a socket (kernel space)
910  *	@sock: The socket to receive the message from
911  *	@msg: Received message
912  *	@vec: Input s/g array for message data
913  *	@num: Size of input s/g array
914  *	@size: Number of bytes to read
915  *	@flags: Message flags (MSG_DONTWAIT, etc...)
916  *
917  *	On return the msg structure contains the scatter/gather array passed in the
918  *	vec argument. The array is modified so that it consists of the unfilled
919  *	portion of the original array.
920  *
921  *	The returned value is the total number of bytes received, or an error.
922  */
923 
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)924 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
925 		   struct kvec *vec, size_t num, size_t size, int flags)
926 {
927 	msg->msg_control_is_user = false;
928 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
929 	return sock_recvmsg(sock, msg, flags);
930 }
931 EXPORT_SYMBOL(kernel_recvmsg);
932 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)933 static ssize_t sock_sendpage(struct file *file, struct page *page,
934 			     int offset, size_t size, loff_t *ppos, int more)
935 {
936 	struct socket *sock;
937 	int flags;
938 
939 	sock = file->private_data;
940 
941 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
942 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
943 	flags |= more;
944 
945 	return kernel_sendpage(sock, page, offset, size, flags);
946 }
947 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)948 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
949 				struct pipe_inode_info *pipe, size_t len,
950 				unsigned int flags)
951 {
952 	struct socket *sock = file->private_data;
953 
954 	if (unlikely(!sock->ops->splice_read))
955 		return generic_file_splice_read(file, ppos, pipe, len, flags);
956 
957 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
958 }
959 
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)960 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
961 {
962 	struct file *file = iocb->ki_filp;
963 	struct socket *sock = file->private_data;
964 	struct msghdr msg = {.msg_iter = *to,
965 			     .msg_iocb = iocb};
966 	ssize_t res;
967 
968 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
969 		msg.msg_flags = MSG_DONTWAIT;
970 
971 	if (iocb->ki_pos != 0)
972 		return -ESPIPE;
973 
974 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
975 		return 0;
976 
977 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
978 	*to = msg.msg_iter;
979 	return res;
980 }
981 
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)982 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
983 {
984 	struct file *file = iocb->ki_filp;
985 	struct socket *sock = file->private_data;
986 	struct msghdr msg = {.msg_iter = *from,
987 			     .msg_iocb = iocb};
988 	ssize_t res;
989 
990 	if (iocb->ki_pos != 0)
991 		return -ESPIPE;
992 
993 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
994 		msg.msg_flags = MSG_DONTWAIT;
995 
996 	if (sock->type == SOCK_SEQPACKET)
997 		msg.msg_flags |= MSG_EOR;
998 
999 	res = sock_sendmsg(sock, &msg);
1000 	*from = msg.msg_iter;
1001 	return res;
1002 }
1003 
1004 /*
1005  * Atomic setting of ioctl hooks to avoid race
1006  * with module unload.
1007  */
1008 
1009 static DEFINE_MUTEX(br_ioctl_mutex);
1010 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1011 
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))1012 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1013 {
1014 	mutex_lock(&br_ioctl_mutex);
1015 	br_ioctl_hook = hook;
1016 	mutex_unlock(&br_ioctl_mutex);
1017 }
1018 EXPORT_SYMBOL(brioctl_set);
1019 
1020 static DEFINE_MUTEX(vlan_ioctl_mutex);
1021 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1022 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1023 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1024 {
1025 	mutex_lock(&vlan_ioctl_mutex);
1026 	vlan_ioctl_hook = hook;
1027 	mutex_unlock(&vlan_ioctl_mutex);
1028 }
1029 EXPORT_SYMBOL(vlan_ioctl_set);
1030 
1031 static DEFINE_MUTEX(dlci_ioctl_mutex);
1032 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1033 
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))1034 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1035 {
1036 	mutex_lock(&dlci_ioctl_mutex);
1037 	dlci_ioctl_hook = hook;
1038 	mutex_unlock(&dlci_ioctl_mutex);
1039 }
1040 EXPORT_SYMBOL(dlci_ioctl_set);
1041 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1042 static long sock_do_ioctl(struct net *net, struct socket *sock,
1043 			  unsigned int cmd, unsigned long arg)
1044 {
1045 	int err;
1046 	void __user *argp = (void __user *)arg;
1047 
1048 	err = sock->ops->ioctl(sock, cmd, arg);
1049 
1050 	/*
1051 	 * If this ioctl is unknown try to hand it down
1052 	 * to the NIC driver.
1053 	 */
1054 	if (err != -ENOIOCTLCMD)
1055 		return err;
1056 
1057 	if (cmd == SIOCGIFCONF) {
1058 		struct ifconf ifc;
1059 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1060 			return -EFAULT;
1061 		rtnl_lock();
1062 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1063 		rtnl_unlock();
1064 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1065 			err = -EFAULT;
1066 	} else if (is_socket_ioctl_cmd(cmd)) {
1067 		struct ifreq ifr;
1068 		bool need_copyout;
1069 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1070 			return -EFAULT;
1071 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1072 		if (!err && need_copyout)
1073 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1074 				return -EFAULT;
1075 	} else {
1076 		err = -ENOTTY;
1077 	}
1078 	return err;
1079 }
1080 
1081 /*
1082  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1083  *	what to do with it - that's up to the protocol still.
1084  */
1085 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1086 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1087 {
1088 	struct socket *sock;
1089 	struct sock *sk;
1090 	void __user *argp = (void __user *)arg;
1091 	int pid, err;
1092 	struct net *net;
1093 
1094 	sock = file->private_data;
1095 	sk = sock->sk;
1096 	net = sock_net(sk);
1097 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1098 		struct ifreq ifr;
1099 		bool need_copyout;
1100 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1101 			return -EFAULT;
1102 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1103 		if (!err && need_copyout)
1104 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1105 				return -EFAULT;
1106 	} else
1107 #ifdef CONFIG_WEXT_CORE
1108 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1109 		err = wext_handle_ioctl(net, cmd, argp);
1110 	} else
1111 #endif
1112 		switch (cmd) {
1113 		case FIOSETOWN:
1114 		case SIOCSPGRP:
1115 			err = -EFAULT;
1116 			if (get_user(pid, (int __user *)argp))
1117 				break;
1118 			err = f_setown(sock->file, pid, 1);
1119 			break;
1120 		case FIOGETOWN:
1121 		case SIOCGPGRP:
1122 			err = put_user(f_getown(sock->file),
1123 				       (int __user *)argp);
1124 			break;
1125 		case SIOCGIFBR:
1126 		case SIOCSIFBR:
1127 		case SIOCBRADDBR:
1128 		case SIOCBRDELBR:
1129 			err = -ENOPKG;
1130 			if (!br_ioctl_hook)
1131 				request_module("bridge");
1132 
1133 			mutex_lock(&br_ioctl_mutex);
1134 			if (br_ioctl_hook)
1135 				err = br_ioctl_hook(net, cmd, argp);
1136 			mutex_unlock(&br_ioctl_mutex);
1137 			break;
1138 		case SIOCGIFVLAN:
1139 		case SIOCSIFVLAN:
1140 			err = -ENOPKG;
1141 			if (!vlan_ioctl_hook)
1142 				request_module("8021q");
1143 
1144 			mutex_lock(&vlan_ioctl_mutex);
1145 			if (vlan_ioctl_hook)
1146 				err = vlan_ioctl_hook(net, argp);
1147 			mutex_unlock(&vlan_ioctl_mutex);
1148 			break;
1149 		case SIOCADDDLCI:
1150 		case SIOCDELDLCI:
1151 			err = -ENOPKG;
1152 			if (!dlci_ioctl_hook)
1153 				request_module("dlci");
1154 
1155 			mutex_lock(&dlci_ioctl_mutex);
1156 			if (dlci_ioctl_hook)
1157 				err = dlci_ioctl_hook(cmd, argp);
1158 			mutex_unlock(&dlci_ioctl_mutex);
1159 			break;
1160 		case SIOCGSKNS:
1161 			err = -EPERM;
1162 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1163 				break;
1164 
1165 			err = open_related_ns(&net->ns, get_net_ns);
1166 			break;
1167 		case SIOCGSTAMP_OLD:
1168 		case SIOCGSTAMPNS_OLD:
1169 			if (!sock->ops->gettstamp) {
1170 				err = -ENOIOCTLCMD;
1171 				break;
1172 			}
1173 			err = sock->ops->gettstamp(sock, argp,
1174 						   cmd == SIOCGSTAMP_OLD,
1175 						   !IS_ENABLED(CONFIG_64BIT));
1176 			break;
1177 		case SIOCGSTAMP_NEW:
1178 		case SIOCGSTAMPNS_NEW:
1179 			if (!sock->ops->gettstamp) {
1180 				err = -ENOIOCTLCMD;
1181 				break;
1182 			}
1183 			err = sock->ops->gettstamp(sock, argp,
1184 						   cmd == SIOCGSTAMP_NEW,
1185 						   false);
1186 			break;
1187 		default:
1188 			err = sock_do_ioctl(net, sock, cmd, arg);
1189 			break;
1190 		}
1191 	return err;
1192 }
1193 
1194 /**
1195  *	sock_create_lite - creates a socket
1196  *	@family: protocol family (AF_INET, ...)
1197  *	@type: communication type (SOCK_STREAM, ...)
1198  *	@protocol: protocol (0, ...)
1199  *	@res: new socket
1200  *
1201  *	Creates a new socket and assigns it to @res, passing through LSM.
1202  *	The new socket initialization is not complete, see kernel_accept().
1203  *	Returns 0 or an error. On failure @res is set to %NULL.
1204  *	This function internally uses GFP_KERNEL.
1205  */
1206 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1207 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1208 {
1209 	int err;
1210 	struct socket *sock = NULL;
1211 
1212 	err = security_socket_create(family, type, protocol, 1);
1213 	if (err)
1214 		goto out;
1215 
1216 	sock = sock_alloc();
1217 	if (!sock) {
1218 		err = -ENOMEM;
1219 		goto out;
1220 	}
1221 
1222 	sock->type = type;
1223 	err = security_socket_post_create(sock, family, type, protocol, 1);
1224 	if (err)
1225 		goto out_release;
1226 
1227 out:
1228 	*res = sock;
1229 	return err;
1230 out_release:
1231 	sock_release(sock);
1232 	sock = NULL;
1233 	goto out;
1234 }
1235 EXPORT_SYMBOL(sock_create_lite);
1236 
1237 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1238 static __poll_t sock_poll(struct file *file, poll_table *wait)
1239 {
1240 	struct socket *sock = file->private_data;
1241 	__poll_t events = poll_requested_events(wait), flag = 0;
1242 
1243 	if (!sock->ops->poll)
1244 		return 0;
1245 
1246 	if (sk_can_busy_loop(sock->sk)) {
1247 		/* poll once if requested by the syscall */
1248 		if (events & POLL_BUSY_LOOP)
1249 			sk_busy_loop(sock->sk, 1);
1250 
1251 		/* if this socket can poll_ll, tell the system call */
1252 		flag = POLL_BUSY_LOOP;
1253 	}
1254 
1255 	return sock->ops->poll(file, sock, wait) | flag;
1256 }
1257 
sock_mmap(struct file * file,struct vm_area_struct * vma)1258 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1259 {
1260 	struct socket *sock = file->private_data;
1261 
1262 	return sock->ops->mmap(file, sock, vma);
1263 }
1264 
sock_close(struct inode * inode,struct file * filp)1265 static int sock_close(struct inode *inode, struct file *filp)
1266 {
1267 	__sock_release(SOCKET_I(inode), inode);
1268 	return 0;
1269 }
1270 
1271 /*
1272  *	Update the socket async list
1273  *
1274  *	Fasync_list locking strategy.
1275  *
1276  *	1. fasync_list is modified only under process context socket lock
1277  *	   i.e. under semaphore.
1278  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1279  *	   or under socket lock
1280  */
1281 
sock_fasync(int fd,struct file * filp,int on)1282 static int sock_fasync(int fd, struct file *filp, int on)
1283 {
1284 	struct socket *sock = filp->private_data;
1285 	struct sock *sk = sock->sk;
1286 	struct socket_wq *wq = &sock->wq;
1287 
1288 	if (sk == NULL)
1289 		return -EINVAL;
1290 
1291 	lock_sock(sk);
1292 	fasync_helper(fd, filp, on, &wq->fasync_list);
1293 
1294 	if (!wq->fasync_list)
1295 		sock_reset_flag(sk, SOCK_FASYNC);
1296 	else
1297 		sock_set_flag(sk, SOCK_FASYNC);
1298 
1299 	release_sock(sk);
1300 	return 0;
1301 }
1302 
1303 /* This function may be called only under rcu_lock */
1304 
sock_wake_async(struct socket_wq * wq,int how,int band)1305 int sock_wake_async(struct socket_wq *wq, int how, int band)
1306 {
1307 	if (!wq || !wq->fasync_list)
1308 		return -1;
1309 
1310 	switch (how) {
1311 	case SOCK_WAKE_WAITD:
1312 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1313 			break;
1314 		goto call_kill;
1315 	case SOCK_WAKE_SPACE:
1316 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1317 			break;
1318 		fallthrough;
1319 	case SOCK_WAKE_IO:
1320 call_kill:
1321 		kill_fasync(&wq->fasync_list, SIGIO, band);
1322 		break;
1323 	case SOCK_WAKE_URG:
1324 		kill_fasync(&wq->fasync_list, SIGURG, band);
1325 	}
1326 
1327 	return 0;
1328 }
1329 EXPORT_SYMBOL(sock_wake_async);
1330 
1331 /**
1332  *	__sock_create - creates a socket
1333  *	@net: net namespace
1334  *	@family: protocol family (AF_INET, ...)
1335  *	@type: communication type (SOCK_STREAM, ...)
1336  *	@protocol: protocol (0, ...)
1337  *	@res: new socket
1338  *	@kern: boolean for kernel space sockets
1339  *
1340  *	Creates a new socket and assigns it to @res, passing through LSM.
1341  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1342  *	be set to true if the socket resides in kernel space.
1343  *	This function internally uses GFP_KERNEL.
1344  */
1345 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1346 int __sock_create(struct net *net, int family, int type, int protocol,
1347 			 struct socket **res, int kern)
1348 {
1349 	int err;
1350 	struct socket *sock;
1351 	const struct net_proto_family *pf;
1352 
1353 	/*
1354 	 *      Check protocol is in range
1355 	 */
1356 	if (family < 0 || family >= NPROTO)
1357 		return -EAFNOSUPPORT;
1358 	if (type < 0 || type >= SOCK_MAX)
1359 		return -EINVAL;
1360 
1361 	/* Compatibility.
1362 
1363 	   This uglymoron is moved from INET layer to here to avoid
1364 	   deadlock in module load.
1365 	 */
1366 	if (family == PF_INET && type == SOCK_PACKET) {
1367 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1368 			     current->comm);
1369 		family = PF_PACKET;
1370 	}
1371 
1372 	err = security_socket_create(family, type, protocol, kern);
1373 	if (err)
1374 		return err;
1375 
1376 	/*
1377 	 *	Allocate the socket and allow the family to set things up. if
1378 	 *	the protocol is 0, the family is instructed to select an appropriate
1379 	 *	default.
1380 	 */
1381 	sock = sock_alloc();
1382 	if (!sock) {
1383 		net_warn_ratelimited("socket: no more sockets\n");
1384 		return -ENFILE;	/* Not exactly a match, but its the
1385 				   closest posix thing */
1386 	}
1387 
1388 	sock->type = type;
1389 
1390 #ifdef CONFIG_MODULES
1391 	/* Attempt to load a protocol module if the find failed.
1392 	 *
1393 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1394 	 * requested real, full-featured networking support upon configuration.
1395 	 * Otherwise module support will break!
1396 	 */
1397 	if (rcu_access_pointer(net_families[family]) == NULL)
1398 		request_module("net-pf-%d", family);
1399 #endif
1400 
1401 	rcu_read_lock();
1402 	pf = rcu_dereference(net_families[family]);
1403 	err = -EAFNOSUPPORT;
1404 	if (!pf)
1405 		goto out_release;
1406 
1407 	/*
1408 	 * We will call the ->create function, that possibly is in a loadable
1409 	 * module, so we have to bump that loadable module refcnt first.
1410 	 */
1411 	if (!try_module_get(pf->owner))
1412 		goto out_release;
1413 
1414 	/* Now protected by module ref count */
1415 	rcu_read_unlock();
1416 
1417 	err = pf->create(net, sock, protocol, kern);
1418 	if (err < 0)
1419 		goto out_module_put;
1420 
1421 	/*
1422 	 * Now to bump the refcnt of the [loadable] module that owns this
1423 	 * socket at sock_release time we decrement its refcnt.
1424 	 */
1425 	if (!try_module_get(sock->ops->owner))
1426 		goto out_module_busy;
1427 
1428 	/*
1429 	 * Now that we're done with the ->create function, the [loadable]
1430 	 * module can have its refcnt decremented
1431 	 */
1432 	module_put(pf->owner);
1433 	err = security_socket_post_create(sock, family, type, protocol, kern);
1434 	if (err)
1435 		goto out_sock_release;
1436 	*res = sock;
1437 
1438 	return 0;
1439 
1440 out_module_busy:
1441 	err = -EAFNOSUPPORT;
1442 out_module_put:
1443 	sock->ops = NULL;
1444 	module_put(pf->owner);
1445 out_sock_release:
1446 	sock_release(sock);
1447 	return err;
1448 
1449 out_release:
1450 	rcu_read_unlock();
1451 	goto out_sock_release;
1452 }
1453 EXPORT_SYMBOL(__sock_create);
1454 
1455 /**
1456  *	sock_create - creates a socket
1457  *	@family: protocol family (AF_INET, ...)
1458  *	@type: communication type (SOCK_STREAM, ...)
1459  *	@protocol: protocol (0, ...)
1460  *	@res: new socket
1461  *
1462  *	A wrapper around __sock_create().
1463  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1464  */
1465 
sock_create(int family,int type,int protocol,struct socket ** res)1466 int sock_create(int family, int type, int protocol, struct socket **res)
1467 {
1468 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1469 }
1470 EXPORT_SYMBOL(sock_create);
1471 
1472 /**
1473  *	sock_create_kern - creates a socket (kernel space)
1474  *	@net: net namespace
1475  *	@family: protocol family (AF_INET, ...)
1476  *	@type: communication type (SOCK_STREAM, ...)
1477  *	@protocol: protocol (0, ...)
1478  *	@res: new socket
1479  *
1480  *	A wrapper around __sock_create().
1481  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1482  */
1483 
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1484 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1485 {
1486 	return __sock_create(net, family, type, protocol, res, 1);
1487 }
1488 EXPORT_SYMBOL(sock_create_kern);
1489 
__sys_socket(int family,int type,int protocol)1490 int __sys_socket(int family, int type, int protocol)
1491 {
1492 	int retval;
1493 	struct socket *sock;
1494 	int flags;
1495 
1496 	/* Check the SOCK_* constants for consistency.  */
1497 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1498 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1499 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1500 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1501 
1502 	flags = type & ~SOCK_TYPE_MASK;
1503 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1504 		return -EINVAL;
1505 	type &= SOCK_TYPE_MASK;
1506 
1507 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1508 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1509 
1510 	retval = sock_create(family, type, protocol, &sock);
1511 	if (retval < 0)
1512 		return retval;
1513 
1514 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1515 }
1516 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1517 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1518 {
1519 	return __sys_socket(family, type, protocol);
1520 }
1521 
1522 /*
1523  *	Create a pair of connected sockets.
1524  */
1525 
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1526 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1527 {
1528 	struct socket *sock1, *sock2;
1529 	int fd1, fd2, err;
1530 	struct file *newfile1, *newfile2;
1531 	int flags;
1532 
1533 	flags = type & ~SOCK_TYPE_MASK;
1534 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1535 		return -EINVAL;
1536 	type &= SOCK_TYPE_MASK;
1537 
1538 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1539 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1540 
1541 	/*
1542 	 * reserve descriptors and make sure we won't fail
1543 	 * to return them to userland.
1544 	 */
1545 	fd1 = get_unused_fd_flags(flags);
1546 	if (unlikely(fd1 < 0))
1547 		return fd1;
1548 
1549 	fd2 = get_unused_fd_flags(flags);
1550 	if (unlikely(fd2 < 0)) {
1551 		put_unused_fd(fd1);
1552 		return fd2;
1553 	}
1554 
1555 	err = put_user(fd1, &usockvec[0]);
1556 	if (err)
1557 		goto out;
1558 
1559 	err = put_user(fd2, &usockvec[1]);
1560 	if (err)
1561 		goto out;
1562 
1563 	/*
1564 	 * Obtain the first socket and check if the underlying protocol
1565 	 * supports the socketpair call.
1566 	 */
1567 
1568 	err = sock_create(family, type, protocol, &sock1);
1569 	if (unlikely(err < 0))
1570 		goto out;
1571 
1572 	err = sock_create(family, type, protocol, &sock2);
1573 	if (unlikely(err < 0)) {
1574 		sock_release(sock1);
1575 		goto out;
1576 	}
1577 
1578 	err = security_socket_socketpair(sock1, sock2);
1579 	if (unlikely(err)) {
1580 		sock_release(sock2);
1581 		sock_release(sock1);
1582 		goto out;
1583 	}
1584 
1585 	err = sock1->ops->socketpair(sock1, sock2);
1586 	if (unlikely(err < 0)) {
1587 		sock_release(sock2);
1588 		sock_release(sock1);
1589 		goto out;
1590 	}
1591 
1592 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1593 	if (IS_ERR(newfile1)) {
1594 		err = PTR_ERR(newfile1);
1595 		sock_release(sock2);
1596 		goto out;
1597 	}
1598 
1599 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1600 	if (IS_ERR(newfile2)) {
1601 		err = PTR_ERR(newfile2);
1602 		fput(newfile1);
1603 		goto out;
1604 	}
1605 
1606 	audit_fd_pair(fd1, fd2);
1607 
1608 	fd_install(fd1, newfile1);
1609 	fd_install(fd2, newfile2);
1610 	return 0;
1611 
1612 out:
1613 	put_unused_fd(fd2);
1614 	put_unused_fd(fd1);
1615 	return err;
1616 }
1617 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1618 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1619 		int __user *, usockvec)
1620 {
1621 	return __sys_socketpair(family, type, protocol, usockvec);
1622 }
1623 
1624 /*
1625  *	Bind a name to a socket. Nothing much to do here since it's
1626  *	the protocol's responsibility to handle the local address.
1627  *
1628  *	We move the socket address to kernel space before we call
1629  *	the protocol layer (having also checked the address is ok).
1630  */
1631 
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1632 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1633 {
1634 	struct socket *sock;
1635 	struct sockaddr_storage address;
1636 	int err, fput_needed;
1637 
1638 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1639 	if (sock) {
1640 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1641 		if (!err) {
1642 			err = security_socket_bind(sock,
1643 						   (struct sockaddr *)&address,
1644 						   addrlen);
1645 			if (!err)
1646 				err = sock->ops->bind(sock,
1647 						      (struct sockaddr *)
1648 						      &address, addrlen);
1649 		}
1650 		fput_light(sock->file, fput_needed);
1651 	}
1652 	return err;
1653 }
1654 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1655 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1656 {
1657 	return __sys_bind(fd, umyaddr, addrlen);
1658 }
1659 
1660 /*
1661  *	Perform a listen. Basically, we allow the protocol to do anything
1662  *	necessary for a listen, and if that works, we mark the socket as
1663  *	ready for listening.
1664  */
1665 
__sys_listen(int fd,int backlog)1666 int __sys_listen(int fd, int backlog)
1667 {
1668 	struct socket *sock;
1669 	int err, fput_needed;
1670 	int somaxconn;
1671 
1672 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1673 	if (sock) {
1674 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1675 		if ((unsigned int)backlog > somaxconn)
1676 			backlog = somaxconn;
1677 
1678 		err = security_socket_listen(sock, backlog);
1679 		if (!err)
1680 			err = sock->ops->listen(sock, backlog);
1681 
1682 		fput_light(sock->file, fput_needed);
1683 	}
1684 	return err;
1685 }
1686 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1687 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1688 {
1689 	return __sys_listen(fd, backlog);
1690 }
1691 
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1692 struct file *do_accept(struct file *file, unsigned file_flags,
1693 		       struct sockaddr __user *upeer_sockaddr,
1694 		       int __user *upeer_addrlen, int flags)
1695 {
1696 	struct socket *sock, *newsock;
1697 	struct file *newfile;
1698 	int err, len;
1699 	struct sockaddr_storage address;
1700 
1701 	sock = sock_from_file(file, &err);
1702 	if (!sock)
1703 		return ERR_PTR(err);
1704 
1705 	newsock = sock_alloc();
1706 	if (!newsock)
1707 		return ERR_PTR(-ENFILE);
1708 
1709 	newsock->type = sock->type;
1710 	newsock->ops = sock->ops;
1711 
1712 	/*
1713 	 * We don't need try_module_get here, as the listening socket (sock)
1714 	 * has the protocol module (sock->ops->owner) held.
1715 	 */
1716 	__module_get(newsock->ops->owner);
1717 
1718 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1719 	if (IS_ERR(newfile))
1720 		return newfile;
1721 
1722 	err = security_socket_accept(sock, newsock);
1723 	if (err)
1724 		goto out_fd;
1725 
1726 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1727 					false);
1728 	if (err < 0)
1729 		goto out_fd;
1730 
1731 	if (upeer_sockaddr) {
1732 		len = newsock->ops->getname(newsock,
1733 					(struct sockaddr *)&address, 2);
1734 		if (len < 0) {
1735 			err = -ECONNABORTED;
1736 			goto out_fd;
1737 		}
1738 		err = move_addr_to_user(&address,
1739 					len, upeer_sockaddr, upeer_addrlen);
1740 		if (err < 0)
1741 			goto out_fd;
1742 	}
1743 
1744 	/* File flags are not inherited via accept() unlike another OSes. */
1745 	return newfile;
1746 out_fd:
1747 	fput(newfile);
1748 	return ERR_PTR(err);
1749 }
1750 
__sys_accept4_file(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags,unsigned long nofile)1751 int __sys_accept4_file(struct file *file, unsigned file_flags,
1752 		       struct sockaddr __user *upeer_sockaddr,
1753 		       int __user *upeer_addrlen, int flags,
1754 		       unsigned long nofile)
1755 {
1756 	struct file *newfile;
1757 	int newfd;
1758 
1759 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1760 		return -EINVAL;
1761 
1762 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1763 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1764 
1765 	newfd = __get_unused_fd_flags(flags, nofile);
1766 	if (unlikely(newfd < 0))
1767 		return newfd;
1768 
1769 	newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1770 			    flags);
1771 	if (IS_ERR(newfile)) {
1772 		put_unused_fd(newfd);
1773 		return PTR_ERR(newfile);
1774 	}
1775 	fd_install(newfd, newfile);
1776 	return newfd;
1777 }
1778 
1779 /*
1780  *	For accept, we attempt to create a new socket, set up the link
1781  *	with the client, wake up the client, then return the new
1782  *	connected fd. We collect the address of the connector in kernel
1783  *	space and move it to user at the very end. This is unclean because
1784  *	we open the socket then return an error.
1785  *
1786  *	1003.1g adds the ability to recvmsg() to query connection pending
1787  *	status to recvmsg. We need to add that support in a way thats
1788  *	clean when we restructure accept also.
1789  */
1790 
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1791 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1792 		  int __user *upeer_addrlen, int flags)
1793 {
1794 	int ret = -EBADF;
1795 	struct fd f;
1796 
1797 	f = fdget(fd);
1798 	if (f.file) {
1799 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1800 						upeer_addrlen, flags,
1801 						rlimit(RLIMIT_NOFILE));
1802 		fdput(f);
1803 	}
1804 
1805 	return ret;
1806 }
1807 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1808 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1809 		int __user *, upeer_addrlen, int, flags)
1810 {
1811 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1812 }
1813 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1814 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1815 		int __user *, upeer_addrlen)
1816 {
1817 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1818 }
1819 
1820 /*
1821  *	Attempt to connect to a socket with the server address.  The address
1822  *	is in user space so we verify it is OK and move it to kernel space.
1823  *
1824  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1825  *	break bindings
1826  *
1827  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1828  *	other SEQPACKET protocols that take time to connect() as it doesn't
1829  *	include the -EINPROGRESS status for such sockets.
1830  */
1831 
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)1832 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1833 		       int addrlen, int file_flags)
1834 {
1835 	struct socket *sock;
1836 	int err;
1837 
1838 	sock = sock_from_file(file, &err);
1839 	if (!sock)
1840 		goto out;
1841 
1842 	err =
1843 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1844 	if (err)
1845 		goto out;
1846 
1847 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1848 				 sock->file->f_flags | file_flags);
1849 out:
1850 	return err;
1851 }
1852 
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1853 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1854 {
1855 	int ret = -EBADF;
1856 	struct fd f;
1857 
1858 	f = fdget(fd);
1859 	if (f.file) {
1860 		struct sockaddr_storage address;
1861 
1862 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1863 		if (!ret)
1864 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1865 		fdput(f);
1866 	}
1867 
1868 	return ret;
1869 }
1870 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1871 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1872 		int, addrlen)
1873 {
1874 	return __sys_connect(fd, uservaddr, addrlen);
1875 }
1876 
1877 /*
1878  *	Get the local address ('name') of a socket object. Move the obtained
1879  *	name to user space.
1880  */
1881 
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1882 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1883 		      int __user *usockaddr_len)
1884 {
1885 	struct socket *sock;
1886 	struct sockaddr_storage address;
1887 	int err, fput_needed;
1888 
1889 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1890 	if (!sock)
1891 		goto out;
1892 
1893 	err = security_socket_getsockname(sock);
1894 	if (err)
1895 		goto out_put;
1896 
1897 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1898 	if (err < 0)
1899 		goto out_put;
1900         /* "err" is actually length in this case */
1901 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1902 
1903 out_put:
1904 	fput_light(sock->file, fput_needed);
1905 out:
1906 	return err;
1907 }
1908 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1909 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1910 		int __user *, usockaddr_len)
1911 {
1912 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1913 }
1914 
1915 /*
1916  *	Get the remote address ('name') of a socket object. Move the obtained
1917  *	name to user space.
1918  */
1919 
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1920 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1921 		      int __user *usockaddr_len)
1922 {
1923 	struct socket *sock;
1924 	struct sockaddr_storage address;
1925 	int err, fput_needed;
1926 
1927 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1928 	if (sock != NULL) {
1929 		err = security_socket_getpeername(sock);
1930 		if (err) {
1931 			fput_light(sock->file, fput_needed);
1932 			return err;
1933 		}
1934 
1935 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1936 		if (err >= 0)
1937 			/* "err" is actually length in this case */
1938 			err = move_addr_to_user(&address, err, usockaddr,
1939 						usockaddr_len);
1940 		fput_light(sock->file, fput_needed);
1941 	}
1942 	return err;
1943 }
1944 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1945 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1946 		int __user *, usockaddr_len)
1947 {
1948 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1949 }
1950 
1951 /*
1952  *	Send a datagram to a given address. We move the address into kernel
1953  *	space and check the user space data area is readable before invoking
1954  *	the protocol.
1955  */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)1956 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1957 		 struct sockaddr __user *addr,  int addr_len)
1958 {
1959 	struct socket *sock;
1960 	struct sockaddr_storage address;
1961 	int err;
1962 	struct msghdr msg;
1963 	struct iovec iov;
1964 	int fput_needed;
1965 
1966 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1967 	if (unlikely(err))
1968 		return err;
1969 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1970 	if (!sock)
1971 		goto out;
1972 
1973 	msg.msg_name = NULL;
1974 	msg.msg_control = NULL;
1975 	msg.msg_controllen = 0;
1976 	msg.msg_namelen = 0;
1977 	if (addr) {
1978 		err = move_addr_to_kernel(addr, addr_len, &address);
1979 		if (err < 0)
1980 			goto out_put;
1981 		msg.msg_name = (struct sockaddr *)&address;
1982 		msg.msg_namelen = addr_len;
1983 	}
1984 	if (sock->file->f_flags & O_NONBLOCK)
1985 		flags |= MSG_DONTWAIT;
1986 	msg.msg_flags = flags;
1987 	err = sock_sendmsg(sock, &msg);
1988 
1989 out_put:
1990 	fput_light(sock->file, fput_needed);
1991 out:
1992 	return err;
1993 }
1994 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1995 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1996 		unsigned int, flags, struct sockaddr __user *, addr,
1997 		int, addr_len)
1998 {
1999 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2000 }
2001 
2002 /*
2003  *	Send a datagram down a socket.
2004  */
2005 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2006 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2007 		unsigned int, flags)
2008 {
2009 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2010 }
2011 
2012 /*
2013  *	Receive a frame from the socket and optionally record the address of the
2014  *	sender. We verify the buffers are writable and if needed move the
2015  *	sender address from kernel to user space.
2016  */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2017 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2018 		   struct sockaddr __user *addr, int __user *addr_len)
2019 {
2020 	struct socket *sock;
2021 	struct iovec iov;
2022 	struct msghdr msg;
2023 	struct sockaddr_storage address;
2024 	int err, err2;
2025 	int fput_needed;
2026 
2027 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2028 	if (unlikely(err))
2029 		return err;
2030 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2031 	if (!sock)
2032 		goto out;
2033 
2034 	msg.msg_control = NULL;
2035 	msg.msg_controllen = 0;
2036 	/* Save some cycles and don't copy the address if not needed */
2037 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2038 	/* We assume all kernel code knows the size of sockaddr_storage */
2039 	msg.msg_namelen = 0;
2040 	msg.msg_iocb = NULL;
2041 	msg.msg_flags = 0;
2042 	if (sock->file->f_flags & O_NONBLOCK)
2043 		flags |= MSG_DONTWAIT;
2044 	err = sock_recvmsg(sock, &msg, flags);
2045 
2046 	if (err >= 0 && addr != NULL) {
2047 		err2 = move_addr_to_user(&address,
2048 					 msg.msg_namelen, addr, addr_len);
2049 		if (err2 < 0)
2050 			err = err2;
2051 	}
2052 
2053 	fput_light(sock->file, fput_needed);
2054 out:
2055 	return err;
2056 }
2057 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2058 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2059 		unsigned int, flags, struct sockaddr __user *, addr,
2060 		int __user *, addr_len)
2061 {
2062 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2063 }
2064 
2065 /*
2066  *	Receive a datagram from a socket.
2067  */
2068 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2069 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2070 		unsigned int, flags)
2071 {
2072 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2073 }
2074 
sock_use_custom_sol_socket(const struct socket * sock)2075 static bool sock_use_custom_sol_socket(const struct socket *sock)
2076 {
2077 	const struct sock *sk = sock->sk;
2078 
2079 	/* Use sock->ops->setsockopt() for MPTCP */
2080 	return IS_ENABLED(CONFIG_MPTCP) &&
2081 	       sk->sk_protocol == IPPROTO_MPTCP &&
2082 	       sk->sk_type == SOCK_STREAM &&
2083 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2084 }
2085 
2086 /*
2087  *	Set a socket option. Because we don't know the option lengths we have
2088  *	to pass the user mode parameter for the protocols to sort out.
2089  */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2090 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2091 		int optlen)
2092 {
2093 	sockptr_t optval = USER_SOCKPTR(user_optval);
2094 	char *kernel_optval = NULL;
2095 	int err, fput_needed;
2096 	struct socket *sock;
2097 
2098 	if (optlen < 0)
2099 		return -EINVAL;
2100 
2101 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2102 	if (!sock)
2103 		return err;
2104 
2105 	err = security_socket_setsockopt(sock, level, optname);
2106 	if (err)
2107 		goto out_put;
2108 
2109 	if (!in_compat_syscall())
2110 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2111 						     user_optval, &optlen,
2112 						     &kernel_optval);
2113 	if (err < 0)
2114 		goto out_put;
2115 	if (err > 0) {
2116 		err = 0;
2117 		goto out_put;
2118 	}
2119 
2120 	if (kernel_optval)
2121 		optval = KERNEL_SOCKPTR(kernel_optval);
2122 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2123 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2124 	else if (unlikely(!sock->ops->setsockopt))
2125 		err = -EOPNOTSUPP;
2126 	else
2127 		err = sock->ops->setsockopt(sock, level, optname, optval,
2128 					    optlen);
2129 	kfree(kernel_optval);
2130 out_put:
2131 	fput_light(sock->file, fput_needed);
2132 	return err;
2133 }
2134 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2135 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2136 		char __user *, optval, int, optlen)
2137 {
2138 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2139 }
2140 
2141 /*
2142  *	Get a socket option. Because we don't know the option lengths we have
2143  *	to pass a user mode parameter for the protocols to sort out.
2144  */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2145 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2146 		int __user *optlen)
2147 {
2148 	int err, fput_needed;
2149 	struct socket *sock;
2150 	int max_optlen;
2151 
2152 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2153 	if (!sock)
2154 		return err;
2155 
2156 	err = security_socket_getsockopt(sock, level, optname);
2157 	if (err)
2158 		goto out_put;
2159 
2160 	if (!in_compat_syscall())
2161 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2162 
2163 	if (level == SOL_SOCKET)
2164 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2165 	else if (unlikely(!sock->ops->getsockopt))
2166 		err = -EOPNOTSUPP;
2167 	else
2168 		err = sock->ops->getsockopt(sock, level, optname, optval,
2169 					    optlen);
2170 
2171 	if (!in_compat_syscall())
2172 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2173 						     optval, optlen, max_optlen,
2174 						     err);
2175 out_put:
2176 	fput_light(sock->file, fput_needed);
2177 	return err;
2178 }
2179 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2180 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2181 		char __user *, optval, int __user *, optlen)
2182 {
2183 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2184 }
2185 
2186 /*
2187  *	Shutdown a socket.
2188  */
2189 
__sys_shutdown_sock(struct socket * sock,int how)2190 int __sys_shutdown_sock(struct socket *sock, int how)
2191 {
2192 	int err;
2193 
2194 	err = security_socket_shutdown(sock, how);
2195 	if (!err)
2196 		err = sock->ops->shutdown(sock, how);
2197 
2198 	return err;
2199 }
2200 
__sys_shutdown(int fd,int how)2201 int __sys_shutdown(int fd, int how)
2202 {
2203 	int err, fput_needed;
2204 	struct socket *sock;
2205 
2206 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2207 	if (sock != NULL) {
2208 		err = __sys_shutdown_sock(sock, how);
2209 		fput_light(sock->file, fput_needed);
2210 	}
2211 	return err;
2212 }
2213 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2214 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2215 {
2216 	return __sys_shutdown(fd, how);
2217 }
2218 
2219 /* A couple of helpful macros for getting the address of the 32/64 bit
2220  * fields which are the same type (int / unsigned) on our platforms.
2221  */
2222 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2223 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2224 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2225 
2226 struct used_address {
2227 	struct sockaddr_storage name;
2228 	unsigned int name_len;
2229 };
2230 
__copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec __user ** uiov,size_t * nsegs)2231 int __copy_msghdr_from_user(struct msghdr *kmsg,
2232 			    struct user_msghdr __user *umsg,
2233 			    struct sockaddr __user **save_addr,
2234 			    struct iovec __user **uiov, size_t *nsegs)
2235 {
2236 	struct user_msghdr msg;
2237 	ssize_t err;
2238 
2239 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2240 		return -EFAULT;
2241 
2242 	kmsg->msg_control_is_user = true;
2243 	kmsg->msg_control_user = msg.msg_control;
2244 	kmsg->msg_controllen = msg.msg_controllen;
2245 	kmsg->msg_flags = msg.msg_flags;
2246 
2247 	kmsg->msg_namelen = msg.msg_namelen;
2248 	if (!msg.msg_name)
2249 		kmsg->msg_namelen = 0;
2250 
2251 	if (kmsg->msg_namelen < 0)
2252 		return -EINVAL;
2253 
2254 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2255 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2256 
2257 	if (save_addr)
2258 		*save_addr = msg.msg_name;
2259 
2260 	if (msg.msg_name && kmsg->msg_namelen) {
2261 		if (!save_addr) {
2262 			err = move_addr_to_kernel(msg.msg_name,
2263 						  kmsg->msg_namelen,
2264 						  kmsg->msg_name);
2265 			if (err < 0)
2266 				return err;
2267 		}
2268 	} else {
2269 		kmsg->msg_name = NULL;
2270 		kmsg->msg_namelen = 0;
2271 	}
2272 
2273 	if (msg.msg_iovlen > UIO_MAXIOV)
2274 		return -EMSGSIZE;
2275 
2276 	kmsg->msg_iocb = NULL;
2277 	*uiov = msg.msg_iov;
2278 	*nsegs = msg.msg_iovlen;
2279 	return 0;
2280 }
2281 
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2282 static int copy_msghdr_from_user(struct msghdr *kmsg,
2283 				 struct user_msghdr __user *umsg,
2284 				 struct sockaddr __user **save_addr,
2285 				 struct iovec **iov)
2286 {
2287 	struct user_msghdr msg;
2288 	ssize_t err;
2289 
2290 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2291 					&msg.msg_iovlen);
2292 	if (err)
2293 		return err;
2294 
2295 	err = import_iovec(save_addr ? READ : WRITE,
2296 			    msg.msg_iov, msg.msg_iovlen,
2297 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2298 	return err < 0 ? err : 0;
2299 }
2300 
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2301 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2302 			   unsigned int flags, struct used_address *used_address,
2303 			   unsigned int allowed_msghdr_flags)
2304 {
2305 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2306 				__aligned(sizeof(__kernel_size_t));
2307 	/* 20 is size of ipv6_pktinfo */
2308 	unsigned char *ctl_buf = ctl;
2309 	int ctl_len;
2310 	ssize_t err;
2311 
2312 	err = -ENOBUFS;
2313 
2314 	if (msg_sys->msg_controllen > INT_MAX)
2315 		goto out;
2316 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2317 	ctl_len = msg_sys->msg_controllen;
2318 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2319 		err =
2320 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2321 						     sizeof(ctl));
2322 		if (err)
2323 			goto out;
2324 		ctl_buf = msg_sys->msg_control;
2325 		ctl_len = msg_sys->msg_controllen;
2326 	} else if (ctl_len) {
2327 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2328 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2329 		if (ctl_len > sizeof(ctl)) {
2330 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2331 			if (ctl_buf == NULL)
2332 				goto out;
2333 		}
2334 		err = -EFAULT;
2335 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2336 			goto out_freectl;
2337 		msg_sys->msg_control = ctl_buf;
2338 		msg_sys->msg_control_is_user = false;
2339 	}
2340 	msg_sys->msg_flags = flags;
2341 
2342 	if (sock->file->f_flags & O_NONBLOCK)
2343 		msg_sys->msg_flags |= MSG_DONTWAIT;
2344 	/*
2345 	 * If this is sendmmsg() and current destination address is same as
2346 	 * previously succeeded address, omit asking LSM's decision.
2347 	 * used_address->name_len is initialized to UINT_MAX so that the first
2348 	 * destination address never matches.
2349 	 */
2350 	if (used_address && msg_sys->msg_name &&
2351 	    used_address->name_len == msg_sys->msg_namelen &&
2352 	    !memcmp(&used_address->name, msg_sys->msg_name,
2353 		    used_address->name_len)) {
2354 		err = sock_sendmsg_nosec(sock, msg_sys);
2355 		goto out_freectl;
2356 	}
2357 	err = sock_sendmsg(sock, msg_sys);
2358 	/*
2359 	 * If this is sendmmsg() and sending to current destination address was
2360 	 * successful, remember it.
2361 	 */
2362 	if (used_address && err >= 0) {
2363 		used_address->name_len = msg_sys->msg_namelen;
2364 		if (msg_sys->msg_name)
2365 			memcpy(&used_address->name, msg_sys->msg_name,
2366 			       used_address->name_len);
2367 	}
2368 
2369 out_freectl:
2370 	if (ctl_buf != ctl)
2371 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2372 out:
2373 	return err;
2374 }
2375 
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2376 int sendmsg_copy_msghdr(struct msghdr *msg,
2377 			struct user_msghdr __user *umsg, unsigned flags,
2378 			struct iovec **iov)
2379 {
2380 	int err;
2381 
2382 	if (flags & MSG_CMSG_COMPAT) {
2383 		struct compat_msghdr __user *msg_compat;
2384 
2385 		msg_compat = (struct compat_msghdr __user *) umsg;
2386 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2387 	} else {
2388 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2389 	}
2390 	if (err < 0)
2391 		return err;
2392 
2393 	return 0;
2394 }
2395 
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2396 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2397 			 struct msghdr *msg_sys, unsigned int flags,
2398 			 struct used_address *used_address,
2399 			 unsigned int allowed_msghdr_flags)
2400 {
2401 	struct sockaddr_storage address;
2402 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2403 	ssize_t err;
2404 
2405 	msg_sys->msg_name = &address;
2406 
2407 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2408 	if (err < 0)
2409 		return err;
2410 
2411 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2412 				allowed_msghdr_flags);
2413 	kfree(iov);
2414 	return err;
2415 }
2416 
2417 /*
2418  *	BSD sendmsg interface
2419  */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2420 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2421 			unsigned int flags)
2422 {
2423 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2424 }
2425 
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2426 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2427 		   bool forbid_cmsg_compat)
2428 {
2429 	int fput_needed, err;
2430 	struct msghdr msg_sys;
2431 	struct socket *sock;
2432 
2433 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2434 		return -EINVAL;
2435 
2436 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2437 	if (!sock)
2438 		goto out;
2439 
2440 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2441 
2442 	fput_light(sock->file, fput_needed);
2443 out:
2444 	return err;
2445 }
2446 
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2447 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2448 {
2449 	return __sys_sendmsg(fd, msg, flags, true);
2450 }
2451 
2452 /*
2453  *	Linux sendmmsg interface
2454  */
2455 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2456 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2457 		   unsigned int flags, bool forbid_cmsg_compat)
2458 {
2459 	int fput_needed, err, datagrams;
2460 	struct socket *sock;
2461 	struct mmsghdr __user *entry;
2462 	struct compat_mmsghdr __user *compat_entry;
2463 	struct msghdr msg_sys;
2464 	struct used_address used_address;
2465 	unsigned int oflags = flags;
2466 
2467 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2468 		return -EINVAL;
2469 
2470 	if (vlen > UIO_MAXIOV)
2471 		vlen = UIO_MAXIOV;
2472 
2473 	datagrams = 0;
2474 
2475 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2476 	if (!sock)
2477 		return err;
2478 
2479 	used_address.name_len = UINT_MAX;
2480 	entry = mmsg;
2481 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2482 	err = 0;
2483 	flags |= MSG_BATCH;
2484 
2485 	while (datagrams < vlen) {
2486 		if (datagrams == vlen - 1)
2487 			flags = oflags;
2488 
2489 		if (MSG_CMSG_COMPAT & flags) {
2490 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2491 					     &msg_sys, flags, &used_address, MSG_EOR);
2492 			if (err < 0)
2493 				break;
2494 			err = __put_user(err, &compat_entry->msg_len);
2495 			++compat_entry;
2496 		} else {
2497 			err = ___sys_sendmsg(sock,
2498 					     (struct user_msghdr __user *)entry,
2499 					     &msg_sys, flags, &used_address, MSG_EOR);
2500 			if (err < 0)
2501 				break;
2502 			err = put_user(err, &entry->msg_len);
2503 			++entry;
2504 		}
2505 
2506 		if (err)
2507 			break;
2508 		++datagrams;
2509 		if (msg_data_left(&msg_sys))
2510 			break;
2511 		cond_resched();
2512 	}
2513 
2514 	fput_light(sock->file, fput_needed);
2515 
2516 	/* We only return an error if no datagrams were able to be sent */
2517 	if (datagrams != 0)
2518 		return datagrams;
2519 
2520 	return err;
2521 }
2522 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2523 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2524 		unsigned int, vlen, unsigned int, flags)
2525 {
2526 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2527 }
2528 
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2529 int recvmsg_copy_msghdr(struct msghdr *msg,
2530 			struct user_msghdr __user *umsg, unsigned flags,
2531 			struct sockaddr __user **uaddr,
2532 			struct iovec **iov)
2533 {
2534 	ssize_t err;
2535 
2536 	if (MSG_CMSG_COMPAT & flags) {
2537 		struct compat_msghdr __user *msg_compat;
2538 
2539 		msg_compat = (struct compat_msghdr __user *) umsg;
2540 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2541 	} else {
2542 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2543 	}
2544 	if (err < 0)
2545 		return err;
2546 
2547 	return 0;
2548 }
2549 
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2550 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2551 			   struct user_msghdr __user *msg,
2552 			   struct sockaddr __user *uaddr,
2553 			   unsigned int flags, int nosec)
2554 {
2555 	struct compat_msghdr __user *msg_compat =
2556 					(struct compat_msghdr __user *) msg;
2557 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2558 	struct sockaddr_storage addr;
2559 	unsigned long cmsg_ptr;
2560 	int len;
2561 	ssize_t err;
2562 
2563 	msg_sys->msg_name = &addr;
2564 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2565 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2566 
2567 	/* We assume all kernel code knows the size of sockaddr_storage */
2568 	msg_sys->msg_namelen = 0;
2569 
2570 	if (sock->file->f_flags & O_NONBLOCK)
2571 		flags |= MSG_DONTWAIT;
2572 
2573 	if (unlikely(nosec))
2574 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2575 	else
2576 		err = sock_recvmsg(sock, msg_sys, flags);
2577 
2578 	if (err < 0)
2579 		goto out;
2580 	len = err;
2581 
2582 	if (uaddr != NULL) {
2583 		err = move_addr_to_user(&addr,
2584 					msg_sys->msg_namelen, uaddr,
2585 					uaddr_len);
2586 		if (err < 0)
2587 			goto out;
2588 	}
2589 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2590 			 COMPAT_FLAGS(msg));
2591 	if (err)
2592 		goto out;
2593 	if (MSG_CMSG_COMPAT & flags)
2594 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2595 				 &msg_compat->msg_controllen);
2596 	else
2597 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2598 				 &msg->msg_controllen);
2599 	if (err)
2600 		goto out;
2601 	err = len;
2602 out:
2603 	return err;
2604 }
2605 
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2606 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2607 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2608 {
2609 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2610 	/* user mode address pointers */
2611 	struct sockaddr __user *uaddr;
2612 	ssize_t err;
2613 
2614 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2615 	if (err < 0)
2616 		return err;
2617 
2618 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2619 	kfree(iov);
2620 	return err;
2621 }
2622 
2623 /*
2624  *	BSD recvmsg interface
2625  */
2626 
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2627 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2628 			struct user_msghdr __user *umsg,
2629 			struct sockaddr __user *uaddr, unsigned int flags)
2630 {
2631 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2632 }
2633 
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2634 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2635 		   bool forbid_cmsg_compat)
2636 {
2637 	int fput_needed, err;
2638 	struct msghdr msg_sys;
2639 	struct socket *sock;
2640 
2641 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2642 		return -EINVAL;
2643 
2644 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2645 	if (!sock)
2646 		goto out;
2647 
2648 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2649 
2650 	fput_light(sock->file, fput_needed);
2651 out:
2652 	return err;
2653 }
2654 
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2655 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2656 		unsigned int, flags)
2657 {
2658 	return __sys_recvmsg(fd, msg, flags, true);
2659 }
2660 
2661 /*
2662  *     Linux recvmmsg interface
2663  */
2664 
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2665 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2666 			  unsigned int vlen, unsigned int flags,
2667 			  struct timespec64 *timeout)
2668 {
2669 	int fput_needed, err, datagrams;
2670 	struct socket *sock;
2671 	struct mmsghdr __user *entry;
2672 	struct compat_mmsghdr __user *compat_entry;
2673 	struct msghdr msg_sys;
2674 	struct timespec64 end_time;
2675 	struct timespec64 timeout64;
2676 
2677 	if (timeout &&
2678 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2679 				    timeout->tv_nsec))
2680 		return -EINVAL;
2681 
2682 	datagrams = 0;
2683 
2684 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2685 	if (!sock)
2686 		return err;
2687 
2688 	if (likely(!(flags & MSG_ERRQUEUE))) {
2689 		err = sock_error(sock->sk);
2690 		if (err) {
2691 			datagrams = err;
2692 			goto out_put;
2693 		}
2694 	}
2695 
2696 	entry = mmsg;
2697 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2698 
2699 	while (datagrams < vlen) {
2700 		/*
2701 		 * No need to ask LSM for more than the first datagram.
2702 		 */
2703 		if (MSG_CMSG_COMPAT & flags) {
2704 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2705 					     &msg_sys, flags & ~MSG_WAITFORONE,
2706 					     datagrams);
2707 			if (err < 0)
2708 				break;
2709 			err = __put_user(err, &compat_entry->msg_len);
2710 			++compat_entry;
2711 		} else {
2712 			err = ___sys_recvmsg(sock,
2713 					     (struct user_msghdr __user *)entry,
2714 					     &msg_sys, flags & ~MSG_WAITFORONE,
2715 					     datagrams);
2716 			if (err < 0)
2717 				break;
2718 			err = put_user(err, &entry->msg_len);
2719 			++entry;
2720 		}
2721 
2722 		if (err)
2723 			break;
2724 		++datagrams;
2725 
2726 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2727 		if (flags & MSG_WAITFORONE)
2728 			flags |= MSG_DONTWAIT;
2729 
2730 		if (timeout) {
2731 			ktime_get_ts64(&timeout64);
2732 			*timeout = timespec64_sub(end_time, timeout64);
2733 			if (timeout->tv_sec < 0) {
2734 				timeout->tv_sec = timeout->tv_nsec = 0;
2735 				break;
2736 			}
2737 
2738 			/* Timeout, return less than vlen datagrams */
2739 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2740 				break;
2741 		}
2742 
2743 		/* Out of band data, return right away */
2744 		if (msg_sys.msg_flags & MSG_OOB)
2745 			break;
2746 		cond_resched();
2747 	}
2748 
2749 	if (err == 0)
2750 		goto out_put;
2751 
2752 	if (datagrams == 0) {
2753 		datagrams = err;
2754 		goto out_put;
2755 	}
2756 
2757 	/*
2758 	 * We may return less entries than requested (vlen) if the
2759 	 * sock is non block and there aren't enough datagrams...
2760 	 */
2761 	if (err != -EAGAIN) {
2762 		/*
2763 		 * ... or  if recvmsg returns an error after we
2764 		 * received some datagrams, where we record the
2765 		 * error to return on the next call or if the
2766 		 * app asks about it using getsockopt(SO_ERROR).
2767 		 */
2768 		sock->sk->sk_err = -err;
2769 	}
2770 out_put:
2771 	fput_light(sock->file, fput_needed);
2772 
2773 	return datagrams;
2774 }
2775 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2776 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2777 		   unsigned int vlen, unsigned int flags,
2778 		   struct __kernel_timespec __user *timeout,
2779 		   struct old_timespec32 __user *timeout32)
2780 {
2781 	int datagrams;
2782 	struct timespec64 timeout_sys;
2783 
2784 	if (timeout && get_timespec64(&timeout_sys, timeout))
2785 		return -EFAULT;
2786 
2787 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2788 		return -EFAULT;
2789 
2790 	if (!timeout && !timeout32)
2791 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2792 
2793 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2794 
2795 	if (datagrams <= 0)
2796 		return datagrams;
2797 
2798 	if (timeout && put_timespec64(&timeout_sys, timeout))
2799 		datagrams = -EFAULT;
2800 
2801 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2802 		datagrams = -EFAULT;
2803 
2804 	return datagrams;
2805 }
2806 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2807 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2808 		unsigned int, vlen, unsigned int, flags,
2809 		struct __kernel_timespec __user *, timeout)
2810 {
2811 	if (flags & MSG_CMSG_COMPAT)
2812 		return -EINVAL;
2813 
2814 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2815 }
2816 
2817 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2818 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2819 		unsigned int, vlen, unsigned int, flags,
2820 		struct old_timespec32 __user *, timeout)
2821 {
2822 	if (flags & MSG_CMSG_COMPAT)
2823 		return -EINVAL;
2824 
2825 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2826 }
2827 #endif
2828 
2829 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2830 /* Argument list sizes for sys_socketcall */
2831 #define AL(x) ((x) * sizeof(unsigned long))
2832 static const unsigned char nargs[21] = {
2833 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2834 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2835 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2836 	AL(4), AL(5), AL(4)
2837 };
2838 
2839 #undef AL
2840 
2841 /*
2842  *	System call vectors.
2843  *
2844  *	Argument checking cleaned up. Saved 20% in size.
2845  *  This function doesn't need to set the kernel lock because
2846  *  it is set by the callees.
2847  */
2848 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2849 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2850 {
2851 	unsigned long a[AUDITSC_ARGS];
2852 	unsigned long a0, a1;
2853 	int err;
2854 	unsigned int len;
2855 
2856 	if (call < 1 || call > SYS_SENDMMSG)
2857 		return -EINVAL;
2858 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2859 
2860 	len = nargs[call];
2861 	if (len > sizeof(a))
2862 		return -EINVAL;
2863 
2864 	/* copy_from_user should be SMP safe. */
2865 	if (copy_from_user(a, args, len))
2866 		return -EFAULT;
2867 
2868 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2869 	if (err)
2870 		return err;
2871 
2872 	a0 = a[0];
2873 	a1 = a[1];
2874 
2875 	switch (call) {
2876 	case SYS_SOCKET:
2877 		err = __sys_socket(a0, a1, a[2]);
2878 		break;
2879 	case SYS_BIND:
2880 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2881 		break;
2882 	case SYS_CONNECT:
2883 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2884 		break;
2885 	case SYS_LISTEN:
2886 		err = __sys_listen(a0, a1);
2887 		break;
2888 	case SYS_ACCEPT:
2889 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2890 				    (int __user *)a[2], 0);
2891 		break;
2892 	case SYS_GETSOCKNAME:
2893 		err =
2894 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2895 				      (int __user *)a[2]);
2896 		break;
2897 	case SYS_GETPEERNAME:
2898 		err =
2899 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2900 				      (int __user *)a[2]);
2901 		break;
2902 	case SYS_SOCKETPAIR:
2903 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2904 		break;
2905 	case SYS_SEND:
2906 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2907 				   NULL, 0);
2908 		break;
2909 	case SYS_SENDTO:
2910 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2911 				   (struct sockaddr __user *)a[4], a[5]);
2912 		break;
2913 	case SYS_RECV:
2914 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2915 				     NULL, NULL);
2916 		break;
2917 	case SYS_RECVFROM:
2918 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2919 				     (struct sockaddr __user *)a[4],
2920 				     (int __user *)a[5]);
2921 		break;
2922 	case SYS_SHUTDOWN:
2923 		err = __sys_shutdown(a0, a1);
2924 		break;
2925 	case SYS_SETSOCKOPT:
2926 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2927 				       a[4]);
2928 		break;
2929 	case SYS_GETSOCKOPT:
2930 		err =
2931 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2932 				     (int __user *)a[4]);
2933 		break;
2934 	case SYS_SENDMSG:
2935 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2936 				    a[2], true);
2937 		break;
2938 	case SYS_SENDMMSG:
2939 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2940 				     a[3], true);
2941 		break;
2942 	case SYS_RECVMSG:
2943 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2944 				    a[2], true);
2945 		break;
2946 	case SYS_RECVMMSG:
2947 		if (IS_ENABLED(CONFIG_64BIT))
2948 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2949 					     a[2], a[3],
2950 					     (struct __kernel_timespec __user *)a[4],
2951 					     NULL);
2952 		else
2953 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2954 					     a[2], a[3], NULL,
2955 					     (struct old_timespec32 __user *)a[4]);
2956 		break;
2957 	case SYS_ACCEPT4:
2958 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2959 				    (int __user *)a[2], a[3]);
2960 		break;
2961 	default:
2962 		err = -EINVAL;
2963 		break;
2964 	}
2965 	return err;
2966 }
2967 
2968 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2969 
2970 /**
2971  *	sock_register - add a socket protocol handler
2972  *	@ops: description of protocol
2973  *
2974  *	This function is called by a protocol handler that wants to
2975  *	advertise its address family, and have it linked into the
2976  *	socket interface. The value ops->family corresponds to the
2977  *	socket system call protocol family.
2978  */
sock_register(const struct net_proto_family * ops)2979 int sock_register(const struct net_proto_family *ops)
2980 {
2981 	int err;
2982 
2983 	if (ops->family >= NPROTO) {
2984 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2985 		return -ENOBUFS;
2986 	}
2987 
2988 	spin_lock(&net_family_lock);
2989 	if (rcu_dereference_protected(net_families[ops->family],
2990 				      lockdep_is_held(&net_family_lock)))
2991 		err = -EEXIST;
2992 	else {
2993 		rcu_assign_pointer(net_families[ops->family], ops);
2994 		err = 0;
2995 	}
2996 	spin_unlock(&net_family_lock);
2997 
2998 	pr_info("NET: Registered protocol family %d\n", ops->family);
2999 	return err;
3000 }
3001 EXPORT_SYMBOL(sock_register);
3002 
3003 /**
3004  *	sock_unregister - remove a protocol handler
3005  *	@family: protocol family to remove
3006  *
3007  *	This function is called by a protocol handler that wants to
3008  *	remove its address family, and have it unlinked from the
3009  *	new socket creation.
3010  *
3011  *	If protocol handler is a module, then it can use module reference
3012  *	counts to protect against new references. If protocol handler is not
3013  *	a module then it needs to provide its own protection in
3014  *	the ops->create routine.
3015  */
sock_unregister(int family)3016 void sock_unregister(int family)
3017 {
3018 	BUG_ON(family < 0 || family >= NPROTO);
3019 
3020 	spin_lock(&net_family_lock);
3021 	RCU_INIT_POINTER(net_families[family], NULL);
3022 	spin_unlock(&net_family_lock);
3023 
3024 	synchronize_rcu();
3025 
3026 	pr_info("NET: Unregistered protocol family %d\n", family);
3027 }
3028 EXPORT_SYMBOL(sock_unregister);
3029 
sock_is_registered(int family)3030 bool sock_is_registered(int family)
3031 {
3032 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3033 }
3034 
sock_init(void)3035 static int __init sock_init(void)
3036 {
3037 	int err;
3038 	/*
3039 	 *      Initialize the network sysctl infrastructure.
3040 	 */
3041 	err = net_sysctl_init();
3042 	if (err)
3043 		goto out;
3044 
3045 	/*
3046 	 *      Initialize skbuff SLAB cache
3047 	 */
3048 	skb_init();
3049 
3050 	/*
3051 	 *      Initialize the protocols module.
3052 	 */
3053 
3054 	init_inodecache();
3055 
3056 	err = register_filesystem(&sock_fs_type);
3057 	if (err)
3058 		goto out;
3059 	sock_mnt = kern_mount(&sock_fs_type);
3060 	if (IS_ERR(sock_mnt)) {
3061 		err = PTR_ERR(sock_mnt);
3062 		goto out_mount;
3063 	}
3064 
3065 	/* The real protocol initialization is performed in later initcalls.
3066 	 */
3067 
3068 #ifdef CONFIG_NETFILTER
3069 	err = netfilter_init();
3070 	if (err)
3071 		goto out;
3072 #endif
3073 
3074 	ptp_classifier_init();
3075 
3076 out:
3077 	return err;
3078 
3079 out_mount:
3080 	unregister_filesystem(&sock_fs_type);
3081 	goto out;
3082 }
3083 
3084 core_initcall(sock_init);	/* early initcall */
3085 
3086 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3087 void socket_seq_show(struct seq_file *seq)
3088 {
3089 	seq_printf(seq, "sockets: used %d\n",
3090 		   sock_inuse_get(seq->private));
3091 }
3092 #endif				/* CONFIG_PROC_FS */
3093 
3094 #ifdef CONFIG_COMPAT
compat_dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)3095 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3096 {
3097 	struct compat_ifconf ifc32;
3098 	struct ifconf ifc;
3099 	int err;
3100 
3101 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3102 		return -EFAULT;
3103 
3104 	ifc.ifc_len = ifc32.ifc_len;
3105 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3106 
3107 	rtnl_lock();
3108 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3109 	rtnl_unlock();
3110 	if (err)
3111 		return err;
3112 
3113 	ifc32.ifc_len = ifc.ifc_len;
3114 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3115 		return -EFAULT;
3116 
3117 	return 0;
3118 }
3119 
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3120 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3121 {
3122 	compat_uptr_t uptr32;
3123 	struct ifreq ifr;
3124 	void __user *saved;
3125 	int err;
3126 
3127 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3128 		return -EFAULT;
3129 
3130 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3131 		return -EFAULT;
3132 
3133 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3134 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3135 
3136 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3137 	if (!err) {
3138 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3139 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3140 			err = -EFAULT;
3141 	}
3142 	return err;
3143 }
3144 
3145 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3146 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3147 				 struct compat_ifreq __user *u_ifreq32)
3148 {
3149 	struct ifreq ifreq;
3150 	u32 data32;
3151 
3152 	if (!is_socket_ioctl_cmd(cmd))
3153 		return -ENOTTY;
3154 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3155 		return -EFAULT;
3156 	if (get_user(data32, &u_ifreq32->ifr_data))
3157 		return -EFAULT;
3158 	ifreq.ifr_data = compat_ptr(data32);
3159 
3160 	return dev_ioctl(net, cmd, &ifreq, NULL);
3161 }
3162 
compat_ifreq_ioctl(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)3163 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3164 			      unsigned int cmd,
3165 			      struct compat_ifreq __user *uifr32)
3166 {
3167 	struct ifreq __user *uifr;
3168 	int err;
3169 
3170 	/* Handle the fact that while struct ifreq has the same *layout* on
3171 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3172 	 * which are handled elsewhere, it still has different *size* due to
3173 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3174 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3175 	 * As a result, if the struct happens to be at the end of a page and
3176 	 * the next page isn't readable/writable, we get a fault. To prevent
3177 	 * that, copy back and forth to the full size.
3178 	 */
3179 
3180 	uifr = compat_alloc_user_space(sizeof(*uifr));
3181 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3182 		return -EFAULT;
3183 
3184 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3185 
3186 	if (!err) {
3187 		switch (cmd) {
3188 		case SIOCGIFFLAGS:
3189 		case SIOCGIFMETRIC:
3190 		case SIOCGIFMTU:
3191 		case SIOCGIFMEM:
3192 		case SIOCGIFHWADDR:
3193 		case SIOCGIFINDEX:
3194 		case SIOCGIFADDR:
3195 		case SIOCGIFBRDADDR:
3196 		case SIOCGIFDSTADDR:
3197 		case SIOCGIFNETMASK:
3198 		case SIOCGIFPFLAGS:
3199 		case SIOCGIFTXQLEN:
3200 		case SIOCGMIIPHY:
3201 		case SIOCGMIIREG:
3202 		case SIOCGIFNAME:
3203 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3204 				err = -EFAULT;
3205 			break;
3206 		}
3207 	}
3208 	return err;
3209 }
3210 
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3211 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3212 			struct compat_ifreq __user *uifr32)
3213 {
3214 	struct ifreq ifr;
3215 	struct compat_ifmap __user *uifmap32;
3216 	int err;
3217 
3218 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3219 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3220 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3221 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3222 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3223 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3224 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3225 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3226 	if (err)
3227 		return -EFAULT;
3228 
3229 	err = dev_ioctl(net, cmd, &ifr, NULL);
3230 
3231 	if (cmd == SIOCGIFMAP && !err) {
3232 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3233 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3234 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3235 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3236 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3237 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3238 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3239 		if (err)
3240 			err = -EFAULT;
3241 	}
3242 	return err;
3243 }
3244 
3245 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3246  * for some operations; this forces use of the newer bridge-utils that
3247  * use compatible ioctls
3248  */
old_bridge_ioctl(compat_ulong_t __user * argp)3249 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3250 {
3251 	compat_ulong_t tmp;
3252 
3253 	if (get_user(tmp, argp))
3254 		return -EFAULT;
3255 	if (tmp == BRCTL_GET_VERSION)
3256 		return BRCTL_VERSION + 1;
3257 	return -EINVAL;
3258 }
3259 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3260 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3261 			 unsigned int cmd, unsigned long arg)
3262 {
3263 	void __user *argp = compat_ptr(arg);
3264 	struct sock *sk = sock->sk;
3265 	struct net *net = sock_net(sk);
3266 
3267 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3268 		return compat_ifr_data_ioctl(net, cmd, argp);
3269 
3270 	switch (cmd) {
3271 	case SIOCSIFBR:
3272 	case SIOCGIFBR:
3273 		return old_bridge_ioctl(argp);
3274 	case SIOCGIFCONF:
3275 		return compat_dev_ifconf(net, argp);
3276 	case SIOCWANDEV:
3277 		return compat_siocwandev(net, argp);
3278 	case SIOCGIFMAP:
3279 	case SIOCSIFMAP:
3280 		return compat_sioc_ifmap(net, cmd, argp);
3281 	case SIOCGSTAMP_OLD:
3282 	case SIOCGSTAMPNS_OLD:
3283 		if (!sock->ops->gettstamp)
3284 			return -ENOIOCTLCMD;
3285 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3286 					    !COMPAT_USE_64BIT_TIME);
3287 
3288 	case SIOCETHTOOL:
3289 	case SIOCBONDSLAVEINFOQUERY:
3290 	case SIOCBONDINFOQUERY:
3291 	case SIOCSHWTSTAMP:
3292 	case SIOCGHWTSTAMP:
3293 		return compat_ifr_data_ioctl(net, cmd, argp);
3294 
3295 	case FIOSETOWN:
3296 	case SIOCSPGRP:
3297 	case FIOGETOWN:
3298 	case SIOCGPGRP:
3299 	case SIOCBRADDBR:
3300 	case SIOCBRDELBR:
3301 	case SIOCGIFVLAN:
3302 	case SIOCSIFVLAN:
3303 	case SIOCADDDLCI:
3304 	case SIOCDELDLCI:
3305 	case SIOCGSKNS:
3306 	case SIOCGSTAMP_NEW:
3307 	case SIOCGSTAMPNS_NEW:
3308 		return sock_ioctl(file, cmd, arg);
3309 
3310 	case SIOCGIFFLAGS:
3311 	case SIOCSIFFLAGS:
3312 	case SIOCGIFMETRIC:
3313 	case SIOCSIFMETRIC:
3314 	case SIOCGIFMTU:
3315 	case SIOCSIFMTU:
3316 	case SIOCGIFMEM:
3317 	case SIOCSIFMEM:
3318 	case SIOCGIFHWADDR:
3319 	case SIOCSIFHWADDR:
3320 	case SIOCADDMULTI:
3321 	case SIOCDELMULTI:
3322 	case SIOCGIFINDEX:
3323 	case SIOCGIFADDR:
3324 	case SIOCSIFADDR:
3325 	case SIOCSIFHWBROADCAST:
3326 	case SIOCDIFADDR:
3327 	case SIOCGIFBRDADDR:
3328 	case SIOCSIFBRDADDR:
3329 	case SIOCGIFDSTADDR:
3330 	case SIOCSIFDSTADDR:
3331 	case SIOCGIFNETMASK:
3332 	case SIOCSIFNETMASK:
3333 	case SIOCSIFPFLAGS:
3334 	case SIOCGIFPFLAGS:
3335 	case SIOCGIFTXQLEN:
3336 	case SIOCSIFTXQLEN:
3337 	case SIOCBRADDIF:
3338 	case SIOCBRDELIF:
3339 	case SIOCGIFNAME:
3340 	case SIOCSIFNAME:
3341 	case SIOCGMIIPHY:
3342 	case SIOCGMIIREG:
3343 	case SIOCSMIIREG:
3344 	case SIOCBONDENSLAVE:
3345 	case SIOCBONDRELEASE:
3346 	case SIOCBONDSETHWADDR:
3347 	case SIOCBONDCHANGEACTIVE:
3348 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3349 
3350 	case SIOCSARP:
3351 	case SIOCGARP:
3352 	case SIOCDARP:
3353 	case SIOCOUTQ:
3354 	case SIOCOUTQNSD:
3355 	case SIOCATMARK:
3356 		return sock_do_ioctl(net, sock, cmd, arg);
3357 	}
3358 
3359 	return -ENOIOCTLCMD;
3360 }
3361 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3362 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3363 			      unsigned long arg)
3364 {
3365 	struct socket *sock = file->private_data;
3366 	int ret = -ENOIOCTLCMD;
3367 	struct sock *sk;
3368 	struct net *net;
3369 
3370 	sk = sock->sk;
3371 	net = sock_net(sk);
3372 
3373 	if (sock->ops->compat_ioctl)
3374 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3375 
3376 	if (ret == -ENOIOCTLCMD &&
3377 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3378 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3379 
3380 	if (ret == -ENOIOCTLCMD)
3381 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3382 
3383 	return ret;
3384 }
3385 #endif
3386 
3387 /**
3388  *	kernel_bind - bind an address to a socket (kernel space)
3389  *	@sock: socket
3390  *	@addr: address
3391  *	@addrlen: length of address
3392  *
3393  *	Returns 0 or an error.
3394  */
3395 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3396 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3397 {
3398 	return sock->ops->bind(sock, addr, addrlen);
3399 }
3400 EXPORT_SYMBOL(kernel_bind);
3401 
3402 /**
3403  *	kernel_listen - move socket to listening state (kernel space)
3404  *	@sock: socket
3405  *	@backlog: pending connections queue size
3406  *
3407  *	Returns 0 or an error.
3408  */
3409 
kernel_listen(struct socket * sock,int backlog)3410 int kernel_listen(struct socket *sock, int backlog)
3411 {
3412 	return sock->ops->listen(sock, backlog);
3413 }
3414 EXPORT_SYMBOL(kernel_listen);
3415 
3416 /**
3417  *	kernel_accept - accept a connection (kernel space)
3418  *	@sock: listening socket
3419  *	@newsock: new connected socket
3420  *	@flags: flags
3421  *
3422  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3423  *	If it fails, @newsock is guaranteed to be %NULL.
3424  *	Returns 0 or an error.
3425  */
3426 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3427 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3428 {
3429 	struct sock *sk = sock->sk;
3430 	int err;
3431 
3432 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3433 			       newsock);
3434 	if (err < 0)
3435 		goto done;
3436 
3437 	err = sock->ops->accept(sock, *newsock, flags, true);
3438 	if (err < 0) {
3439 		sock_release(*newsock);
3440 		*newsock = NULL;
3441 		goto done;
3442 	}
3443 
3444 	(*newsock)->ops = sock->ops;
3445 	__module_get((*newsock)->ops->owner);
3446 
3447 done:
3448 	return err;
3449 }
3450 EXPORT_SYMBOL(kernel_accept);
3451 
3452 /**
3453  *	kernel_connect - connect a socket (kernel space)
3454  *	@sock: socket
3455  *	@addr: address
3456  *	@addrlen: address length
3457  *	@flags: flags (O_NONBLOCK, ...)
3458  *
3459  *	For datagram sockets, @addr is the addres to which datagrams are sent
3460  *	by default, and the only address from which datagrams are received.
3461  *	For stream sockets, attempts to connect to @addr.
3462  *	Returns 0 or an error code.
3463  */
3464 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3465 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3466 		   int flags)
3467 {
3468 	return sock->ops->connect(sock, addr, addrlen, flags);
3469 }
3470 EXPORT_SYMBOL(kernel_connect);
3471 
3472 /**
3473  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3474  *	@sock: socket
3475  *	@addr: address holder
3476  *
3477  * 	Fills the @addr pointer with the address which the socket is bound.
3478  *	Returns 0 or an error code.
3479  */
3480 
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3481 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3482 {
3483 	return sock->ops->getname(sock, addr, 0);
3484 }
3485 EXPORT_SYMBOL(kernel_getsockname);
3486 
3487 /**
3488  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3489  *	@sock: socket
3490  *	@addr: address holder
3491  *
3492  * 	Fills the @addr pointer with the address which the socket is connected.
3493  *	Returns 0 or an error code.
3494  */
3495 
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3496 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3497 {
3498 	return sock->ops->getname(sock, addr, 1);
3499 }
3500 EXPORT_SYMBOL(kernel_getpeername);
3501 
3502 /**
3503  *	kernel_sendpage - send a &page through a socket (kernel space)
3504  *	@sock: socket
3505  *	@page: page
3506  *	@offset: page offset
3507  *	@size: total size in bytes
3508  *	@flags: flags (MSG_DONTWAIT, ...)
3509  *
3510  *	Returns the total amount sent in bytes or an error.
3511  */
3512 
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3513 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3514 		    size_t size, int flags)
3515 {
3516 	if (sock->ops->sendpage) {
3517 		/* Warn in case the improper page to zero-copy send */
3518 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3519 		return sock->ops->sendpage(sock, page, offset, size, flags);
3520 	}
3521 	return sock_no_sendpage(sock, page, offset, size, flags);
3522 }
3523 EXPORT_SYMBOL(kernel_sendpage);
3524 
3525 /**
3526  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3527  *	@sk: sock
3528  *	@page: page
3529  *	@offset: page offset
3530  *	@size: total size in bytes
3531  *	@flags: flags (MSG_DONTWAIT, ...)
3532  *
3533  *	Returns the total amount sent in bytes or an error.
3534  *	Caller must hold @sk.
3535  */
3536 
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3537 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3538 			   size_t size, int flags)
3539 {
3540 	struct socket *sock = sk->sk_socket;
3541 
3542 	if (sock->ops->sendpage_locked)
3543 		return sock->ops->sendpage_locked(sk, page, offset, size,
3544 						  flags);
3545 
3546 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3547 }
3548 EXPORT_SYMBOL(kernel_sendpage_locked);
3549 
3550 /**
3551  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3552  *	@sock: socket
3553  *	@how: connection part
3554  *
3555  *	Returns 0 or an error.
3556  */
3557 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3558 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3559 {
3560 	return sock->ops->shutdown(sock, how);
3561 }
3562 EXPORT_SYMBOL(kernel_sock_shutdown);
3563 
3564 /**
3565  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3566  *	@sk: socket
3567  *
3568  *	This routine returns the IP overhead imposed by a socket i.e.
3569  *	the length of the underlying IP header, depending on whether
3570  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3571  *	on at the socket. Assumes that the caller has a lock on the socket.
3572  */
3573 
kernel_sock_ip_overhead(struct sock * sk)3574 u32 kernel_sock_ip_overhead(struct sock *sk)
3575 {
3576 	struct inet_sock *inet;
3577 	struct ip_options_rcu *opt;
3578 	u32 overhead = 0;
3579 #if IS_ENABLED(CONFIG_IPV6)
3580 	struct ipv6_pinfo *np;
3581 	struct ipv6_txoptions *optv6 = NULL;
3582 #endif /* IS_ENABLED(CONFIG_IPV6) */
3583 
3584 	if (!sk)
3585 		return overhead;
3586 
3587 	switch (sk->sk_family) {
3588 	case AF_INET:
3589 		inet = inet_sk(sk);
3590 		overhead += sizeof(struct iphdr);
3591 		opt = rcu_dereference_protected(inet->inet_opt,
3592 						sock_owned_by_user(sk));
3593 		if (opt)
3594 			overhead += opt->opt.optlen;
3595 		return overhead;
3596 #if IS_ENABLED(CONFIG_IPV6)
3597 	case AF_INET6:
3598 		np = inet6_sk(sk);
3599 		overhead += sizeof(struct ipv6hdr);
3600 		if (np)
3601 			optv6 = rcu_dereference_protected(np->opt,
3602 							  sock_owned_by_user(sk));
3603 		if (optv6)
3604 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3605 		return overhead;
3606 #endif /* IS_ENABLED(CONFIG_IPV6) */
3607 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3608 		return overhead;
3609 	}
3610 }
3611 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3612