1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 struct pipe_inode_info *pipe, size_t len,
130 unsigned int flags);
131
132 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 struct socket *sock = f->private_data;
136
137 if (sock->ops->show_fdinfo)
138 sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143
144 /*
145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146 * in the operation structures but are done directly via the socketcall() multiplexor.
147 */
148
149 static const struct file_operations socket_file_ops = {
150 .owner = THIS_MODULE,
151 .llseek = no_llseek,
152 .read_iter = sock_read_iter,
153 .write_iter = sock_write_iter,
154 .poll = sock_poll,
155 .unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 .compat_ioctl = compat_sock_ioctl,
158 #endif
159 .mmap = sock_mmap,
160 .release = sock_close,
161 .fasync = sock_fasync,
162 .sendpage = sock_sendpage,
163 .splice_write = generic_splice_sendpage,
164 .splice_read = sock_splice_read,
165 .show_fdinfo = sock_show_fdinfo,
166 };
167
168 /*
169 * The protocol list. Each protocol is registered in here.
170 */
171
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248
sock_alloc_inode(struct super_block * sb)249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 init_waitqueue_head(&ei->socket.wq.wait);
257 ei->socket.wq.fasync_list = NULL;
258 ei->socket.wq.flags = 0;
259
260 ei->socket.state = SS_UNCONNECTED;
261 ei->socket.flags = 0;
262 ei->socket.ops = NULL;
263 ei->socket.sk = NULL;
264 ei->socket.file = NULL;
265
266 return &ei->vfs_inode;
267 }
268
sock_free_inode(struct inode * inode)269 static void sock_free_inode(struct inode *inode)
270 {
271 struct socket_alloc *ei;
272
273 ei = container_of(inode, struct socket_alloc, vfs_inode);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
init_once(void * foo)277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
init_inodecache(void)284 static void init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
294 }
295
296 static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .free_inode = sock_free_inode,
299 .statfs = simple_statfs,
300 };
301
302 /*
303 * sockfs_dname() is called from d_path().
304 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
309 }
310
311 static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
313 };
314
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size,int flags)315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size,
318 int flags)
319 {
320 if (value) {
321 if (dentry->d_name.len + 1 > size)
322 return -ERANGE;
323 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
324 }
325 return dentry->d_name.len + 1;
326 }
327
328 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
329 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
330 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
331
332 static const struct xattr_handler sockfs_xattr_handler = {
333 .name = XATTR_NAME_SOCKPROTONAME,
334 .get = sockfs_xattr_get,
335 };
336
sockfs_security_xattr_set(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)337 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
338 struct dentry *dentry, struct inode *inode,
339 const char *suffix, const void *value,
340 size_t size, int flags)
341 {
342 /* Handled by LSM. */
343 return -EAGAIN;
344 }
345
346 static const struct xattr_handler sockfs_security_xattr_handler = {
347 .prefix = XATTR_SECURITY_PREFIX,
348 .set = sockfs_security_xattr_set,
349 };
350
351 static const struct xattr_handler *sockfs_xattr_handlers[] = {
352 &sockfs_xattr_handler,
353 &sockfs_security_xattr_handler,
354 NULL
355 };
356
sockfs_init_fs_context(struct fs_context * fc)357 static int sockfs_init_fs_context(struct fs_context *fc)
358 {
359 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
360 if (!ctx)
361 return -ENOMEM;
362 ctx->ops = &sockfs_ops;
363 ctx->dops = &sockfs_dentry_operations;
364 ctx->xattr = sockfs_xattr_handlers;
365 return 0;
366 }
367
368 static struct vfsmount *sock_mnt __read_mostly;
369
370 static struct file_system_type sock_fs_type = {
371 .name = "sockfs",
372 .init_fs_context = sockfs_init_fs_context,
373 .kill_sb = kill_anon_super,
374 };
375
376 /*
377 * Obtains the first available file descriptor and sets it up for use.
378 *
379 * These functions create file structures and maps them to fd space
380 * of the current process. On success it returns file descriptor
381 * and file struct implicitly stored in sock->file.
382 * Note that another thread may close file descriptor before we return
383 * from this function. We use the fact that now we do not refer
384 * to socket after mapping. If one day we will need it, this
385 * function will increment ref. count on file by 1.
386 *
387 * In any case returned fd MAY BE not valid!
388 * This race condition is unavoidable
389 * with shared fd spaces, we cannot solve it inside kernel,
390 * but we take care of internal coherence yet.
391 */
392
393 /**
394 * sock_alloc_file - Bind a &socket to a &file
395 * @sock: socket
396 * @flags: file status flags
397 * @dname: protocol name
398 *
399 * Returns the &file bound with @sock, implicitly storing it
400 * in sock->file. If dname is %NULL, sets to "".
401 * On failure the return is a ERR pointer (see linux/err.h).
402 * This function uses GFP_KERNEL internally.
403 */
404
sock_alloc_file(struct socket * sock,int flags,const char * dname)405 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
406 {
407 struct file *file;
408
409 if (!dname)
410 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
411
412 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
413 O_RDWR | (flags & O_NONBLOCK),
414 &socket_file_ops);
415 if (IS_ERR(file)) {
416 sock_release(sock);
417 return file;
418 }
419
420 sock->file = file;
421 file->private_data = sock;
422 stream_open(SOCK_INODE(sock), file);
423 return file;
424 }
425 EXPORT_SYMBOL(sock_alloc_file);
426
sock_map_fd(struct socket * sock,int flags)427 static int sock_map_fd(struct socket *sock, int flags)
428 {
429 struct file *newfile;
430 int fd = get_unused_fd_flags(flags);
431 if (unlikely(fd < 0)) {
432 sock_release(sock);
433 return fd;
434 }
435
436 newfile = sock_alloc_file(sock, flags, NULL);
437 if (!IS_ERR(newfile)) {
438 fd_install(fd, newfile);
439 return fd;
440 }
441
442 put_unused_fd(fd);
443 return PTR_ERR(newfile);
444 }
445
446 /**
447 * sock_from_file - Return the &socket bounded to @file.
448 * @file: file
449 * @err: pointer to an error code return
450 *
451 * On failure returns %NULL and assigns -ENOTSOCK to @err.
452 */
453
sock_from_file(struct file * file,int * err)454 struct socket *sock_from_file(struct file *file, int *err)
455 {
456 if (file->f_op == &socket_file_ops)
457 return file->private_data; /* set in sock_map_fd */
458
459 *err = -ENOTSOCK;
460 return NULL;
461 }
462 EXPORT_SYMBOL(sock_from_file);
463
464 /**
465 * sockfd_lookup - Go from a file number to its socket slot
466 * @fd: file handle
467 * @err: pointer to an error code return
468 *
469 * The file handle passed in is locked and the socket it is bound
470 * to is returned. If an error occurs the err pointer is overwritten
471 * with a negative errno code and NULL is returned. The function checks
472 * for both invalid handles and passing a handle which is not a socket.
473 *
474 * On a success the socket object pointer is returned.
475 */
476
sockfd_lookup(int fd,int * err)477 struct socket *sockfd_lookup(int fd, int *err)
478 {
479 struct file *file;
480 struct socket *sock;
481
482 file = fget(fd);
483 if (!file) {
484 *err = -EBADF;
485 return NULL;
486 }
487
488 sock = sock_from_file(file, err);
489 if (!sock)
490 fput(file);
491 return sock;
492 }
493 EXPORT_SYMBOL(sockfd_lookup);
494
sockfd_lookup_light(int fd,int * err,int * fput_needed)495 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
496 {
497 struct fd f = fdget(fd);
498 struct socket *sock;
499
500 *err = -EBADF;
501 if (f.file) {
502 sock = sock_from_file(f.file, err);
503 if (likely(sock)) {
504 *fput_needed = f.flags & FDPUT_FPUT;
505 return sock;
506 }
507 fdput(f);
508 }
509 return NULL;
510 }
511
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)512 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
513 size_t size)
514 {
515 ssize_t len;
516 ssize_t used = 0;
517
518 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
519 if (len < 0)
520 return len;
521 used += len;
522 if (buffer) {
523 if (size < used)
524 return -ERANGE;
525 buffer += len;
526 }
527
528 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
529 used += len;
530 if (buffer) {
531 if (size < used)
532 return -ERANGE;
533 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
534 buffer += len;
535 }
536
537 return used;
538 }
539
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)540 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
541 {
542 int err = simple_setattr(dentry, iattr);
543
544 if (!err && (iattr->ia_valid & ATTR_UID)) {
545 struct socket *sock = SOCKET_I(d_inode(dentry));
546
547 if (sock->sk)
548 sock->sk->sk_uid = iattr->ia_uid;
549 else
550 err = -ENOENT;
551 }
552
553 return err;
554 }
555
556 static const struct inode_operations sockfs_inode_ops = {
557 .listxattr = sockfs_listxattr,
558 .setattr = sockfs_setattr,
559 };
560
561 /**
562 * sock_alloc - allocate a socket
563 *
564 * Allocate a new inode and socket object. The two are bound together
565 * and initialised. The socket is then returned. If we are out of inodes
566 * NULL is returned. This functions uses GFP_KERNEL internally.
567 */
568
sock_alloc(void)569 struct socket *sock_alloc(void)
570 {
571 struct inode *inode;
572 struct socket *sock;
573
574 inode = new_inode_pseudo(sock_mnt->mnt_sb);
575 if (!inode)
576 return NULL;
577
578 sock = SOCKET_I(inode);
579
580 inode->i_ino = get_next_ino();
581 inode->i_mode = S_IFSOCK | S_IRWXUGO;
582 inode->i_uid = current_fsuid();
583 inode->i_gid = current_fsgid();
584 inode->i_op = &sockfs_inode_ops;
585
586 return sock;
587 }
588 EXPORT_SYMBOL(sock_alloc);
589
__sock_release(struct socket * sock,struct inode * inode)590 static void __sock_release(struct socket *sock, struct inode *inode)
591 {
592 if (sock->ops) {
593 struct module *owner = sock->ops->owner;
594
595 if (inode)
596 inode_lock(inode);
597 sock->ops->release(sock);
598 sock->sk = NULL;
599 if (inode)
600 inode_unlock(inode);
601 sock->ops = NULL;
602 module_put(owner);
603 }
604
605 if (sock->wq.fasync_list)
606 pr_err("%s: fasync list not empty!\n", __func__);
607
608 if (!sock->file) {
609 iput(SOCK_INODE(sock));
610 return;
611 }
612 sock->file = NULL;
613 }
614
615 /**
616 * sock_release - close a socket
617 * @sock: socket to close
618 *
619 * The socket is released from the protocol stack if it has a release
620 * callback, and the inode is then released if the socket is bound to
621 * an inode not a file.
622 */
sock_release(struct socket * sock)623 void sock_release(struct socket *sock)
624 {
625 __sock_release(sock, NULL);
626 }
627 EXPORT_SYMBOL(sock_release);
628
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)629 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
630 {
631 u8 flags = *tx_flags;
632
633 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
634 flags |= SKBTX_HW_TSTAMP;
635
636 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
637 flags |= SKBTX_SW_TSTAMP;
638
639 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
640 flags |= SKBTX_SCHED_TSTAMP;
641
642 *tx_flags = flags;
643 }
644 EXPORT_SYMBOL(__sock_tx_timestamp);
645
646 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
647 size_t));
648 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
649 size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)650 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
651 {
652 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
653 inet_sendmsg, sock, msg,
654 msg_data_left(msg));
655 BUG_ON(ret == -EIOCBQUEUED);
656 return ret;
657 }
658
659 /**
660 * sock_sendmsg - send a message through @sock
661 * @sock: socket
662 * @msg: message to send
663 *
664 * Sends @msg through @sock, passing through LSM.
665 * Returns the number of bytes sent, or an error code.
666 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)667 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
668 {
669 int err = security_socket_sendmsg(sock, msg,
670 msg_data_left(msg));
671
672 return err ?: sock_sendmsg_nosec(sock, msg);
673 }
674 EXPORT_SYMBOL(sock_sendmsg);
675
676 /**
677 * kernel_sendmsg - send a message through @sock (kernel-space)
678 * @sock: socket
679 * @msg: message header
680 * @vec: kernel vec
681 * @num: vec array length
682 * @size: total message data size
683 *
684 * Builds the message data with @vec and sends it through @sock.
685 * Returns the number of bytes sent, or an error code.
686 */
687
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)688 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
689 struct kvec *vec, size_t num, size_t size)
690 {
691 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
692 return sock_sendmsg(sock, msg);
693 }
694 EXPORT_SYMBOL(kernel_sendmsg);
695
696 /**
697 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
698 * @sk: sock
699 * @msg: message header
700 * @vec: output s/g array
701 * @num: output s/g array length
702 * @size: total message data size
703 *
704 * Builds the message data with @vec and sends it through @sock.
705 * Returns the number of bytes sent, or an error code.
706 * Caller must hold @sk.
707 */
708
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)709 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
710 struct kvec *vec, size_t num, size_t size)
711 {
712 struct socket *sock = sk->sk_socket;
713
714 if (!sock->ops->sendmsg_locked)
715 return sock_no_sendmsg_locked(sk, msg, size);
716
717 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
718
719 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
720 }
721 EXPORT_SYMBOL(kernel_sendmsg_locked);
722
skb_is_err_queue(const struct sk_buff * skb)723 static bool skb_is_err_queue(const struct sk_buff *skb)
724 {
725 /* pkt_type of skbs enqueued on the error queue are set to
726 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
727 * in recvmsg, since skbs received on a local socket will never
728 * have a pkt_type of PACKET_OUTGOING.
729 */
730 return skb->pkt_type == PACKET_OUTGOING;
731 }
732
733 /* On transmit, software and hardware timestamps are returned independently.
734 * As the two skb clones share the hardware timestamp, which may be updated
735 * before the software timestamp is received, a hardware TX timestamp may be
736 * returned only if there is no software TX timestamp. Ignore false software
737 * timestamps, which may be made in the __sock_recv_timestamp() call when the
738 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
739 * hardware timestamp.
740 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)741 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
742 {
743 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
744 }
745
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)746 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
747 {
748 struct scm_ts_pktinfo ts_pktinfo;
749 struct net_device *orig_dev;
750
751 if (!skb_mac_header_was_set(skb))
752 return;
753
754 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
755
756 rcu_read_lock();
757 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
758 if (orig_dev)
759 ts_pktinfo.if_index = orig_dev->ifindex;
760 rcu_read_unlock();
761
762 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
763 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
764 sizeof(ts_pktinfo), &ts_pktinfo);
765 }
766
767 /*
768 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
769 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)770 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
771 struct sk_buff *skb)
772 {
773 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
774 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
775 struct scm_timestamping_internal tss;
776
777 int empty = 1, false_tstamp = 0;
778 struct skb_shared_hwtstamps *shhwtstamps =
779 skb_hwtstamps(skb);
780
781 /* Race occurred between timestamp enabling and packet
782 receiving. Fill in the current time for now. */
783 if (need_software_tstamp && skb->tstamp == 0) {
784 __net_timestamp(skb);
785 false_tstamp = 1;
786 }
787
788 if (need_software_tstamp) {
789 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
790 if (new_tstamp) {
791 struct __kernel_sock_timeval tv;
792
793 skb_get_new_timestamp(skb, &tv);
794 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
795 sizeof(tv), &tv);
796 } else {
797 struct __kernel_old_timeval tv;
798
799 skb_get_timestamp(skb, &tv);
800 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
801 sizeof(tv), &tv);
802 }
803 } else {
804 if (new_tstamp) {
805 struct __kernel_timespec ts;
806
807 skb_get_new_timestampns(skb, &ts);
808 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
809 sizeof(ts), &ts);
810 } else {
811 struct __kernel_old_timespec ts;
812
813 skb_get_timestampns(skb, &ts);
814 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
815 sizeof(ts), &ts);
816 }
817 }
818 }
819
820 memset(&tss, 0, sizeof(tss));
821 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
822 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
823 empty = 0;
824 if (shhwtstamps &&
825 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
826 !skb_is_swtx_tstamp(skb, false_tstamp) &&
827 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
828 empty = 0;
829 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
830 !skb_is_err_queue(skb))
831 put_ts_pktinfo(msg, skb);
832 }
833 if (!empty) {
834 if (sock_flag(sk, SOCK_TSTAMP_NEW))
835 put_cmsg_scm_timestamping64(msg, &tss);
836 else
837 put_cmsg_scm_timestamping(msg, &tss);
838
839 if (skb_is_err_queue(skb) && skb->len &&
840 SKB_EXT_ERR(skb)->opt_stats)
841 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
842 skb->len, skb->data);
843 }
844 }
845 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
846
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)847 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
848 struct sk_buff *skb)
849 {
850 int ack;
851
852 if (!sock_flag(sk, SOCK_WIFI_STATUS))
853 return;
854 if (!skb->wifi_acked_valid)
855 return;
856
857 ack = skb->wifi_acked;
858
859 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
860 }
861 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
862
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)863 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
864 struct sk_buff *skb)
865 {
866 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
867 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
868 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
869 }
870
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)871 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
872 struct sk_buff *skb)
873 {
874 sock_recv_timestamp(msg, sk, skb);
875 sock_recv_drops(msg, sk, skb);
876 }
877 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
878
879 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
880 size_t, int));
881 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
882 size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)883 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
884 int flags)
885 {
886 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
887 inet_recvmsg, sock, msg, msg_data_left(msg),
888 flags);
889 }
890
891 /**
892 * sock_recvmsg - receive a message from @sock
893 * @sock: socket
894 * @msg: message to receive
895 * @flags: message flags
896 *
897 * Receives @msg from @sock, passing through LSM. Returns the total number
898 * of bytes received, or an error.
899 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)900 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
901 {
902 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
903
904 return err ?: sock_recvmsg_nosec(sock, msg, flags);
905 }
906 EXPORT_SYMBOL(sock_recvmsg);
907
908 /**
909 * kernel_recvmsg - Receive a message from a socket (kernel space)
910 * @sock: The socket to receive the message from
911 * @msg: Received message
912 * @vec: Input s/g array for message data
913 * @num: Size of input s/g array
914 * @size: Number of bytes to read
915 * @flags: Message flags (MSG_DONTWAIT, etc...)
916 *
917 * On return the msg structure contains the scatter/gather array passed in the
918 * vec argument. The array is modified so that it consists of the unfilled
919 * portion of the original array.
920 *
921 * The returned value is the total number of bytes received, or an error.
922 */
923
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)924 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
925 struct kvec *vec, size_t num, size_t size, int flags)
926 {
927 msg->msg_control_is_user = false;
928 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
929 return sock_recvmsg(sock, msg, flags);
930 }
931 EXPORT_SYMBOL(kernel_recvmsg);
932
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)933 static ssize_t sock_sendpage(struct file *file, struct page *page,
934 int offset, size_t size, loff_t *ppos, int more)
935 {
936 struct socket *sock;
937 int flags;
938
939 sock = file->private_data;
940
941 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
942 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
943 flags |= more;
944
945 return kernel_sendpage(sock, page, offset, size, flags);
946 }
947
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)948 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
949 struct pipe_inode_info *pipe, size_t len,
950 unsigned int flags)
951 {
952 struct socket *sock = file->private_data;
953
954 if (unlikely(!sock->ops->splice_read))
955 return generic_file_splice_read(file, ppos, pipe, len, flags);
956
957 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
958 }
959
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)960 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
961 {
962 struct file *file = iocb->ki_filp;
963 struct socket *sock = file->private_data;
964 struct msghdr msg = {.msg_iter = *to,
965 .msg_iocb = iocb};
966 ssize_t res;
967
968 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
969 msg.msg_flags = MSG_DONTWAIT;
970
971 if (iocb->ki_pos != 0)
972 return -ESPIPE;
973
974 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
975 return 0;
976
977 res = sock_recvmsg(sock, &msg, msg.msg_flags);
978 *to = msg.msg_iter;
979 return res;
980 }
981
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)982 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
983 {
984 struct file *file = iocb->ki_filp;
985 struct socket *sock = file->private_data;
986 struct msghdr msg = {.msg_iter = *from,
987 .msg_iocb = iocb};
988 ssize_t res;
989
990 if (iocb->ki_pos != 0)
991 return -ESPIPE;
992
993 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
994 msg.msg_flags = MSG_DONTWAIT;
995
996 if (sock->type == SOCK_SEQPACKET)
997 msg.msg_flags |= MSG_EOR;
998
999 res = sock_sendmsg(sock, &msg);
1000 *from = msg.msg_iter;
1001 return res;
1002 }
1003
1004 /*
1005 * Atomic setting of ioctl hooks to avoid race
1006 * with module unload.
1007 */
1008
1009 static DEFINE_MUTEX(br_ioctl_mutex);
1010 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1011
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))1012 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1013 {
1014 mutex_lock(&br_ioctl_mutex);
1015 br_ioctl_hook = hook;
1016 mutex_unlock(&br_ioctl_mutex);
1017 }
1018 EXPORT_SYMBOL(brioctl_set);
1019
1020 static DEFINE_MUTEX(vlan_ioctl_mutex);
1021 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1022
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1023 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1024 {
1025 mutex_lock(&vlan_ioctl_mutex);
1026 vlan_ioctl_hook = hook;
1027 mutex_unlock(&vlan_ioctl_mutex);
1028 }
1029 EXPORT_SYMBOL(vlan_ioctl_set);
1030
1031 static DEFINE_MUTEX(dlci_ioctl_mutex);
1032 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1033
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))1034 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1035 {
1036 mutex_lock(&dlci_ioctl_mutex);
1037 dlci_ioctl_hook = hook;
1038 mutex_unlock(&dlci_ioctl_mutex);
1039 }
1040 EXPORT_SYMBOL(dlci_ioctl_set);
1041
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1042 static long sock_do_ioctl(struct net *net, struct socket *sock,
1043 unsigned int cmd, unsigned long arg)
1044 {
1045 int err;
1046 void __user *argp = (void __user *)arg;
1047
1048 err = sock->ops->ioctl(sock, cmd, arg);
1049
1050 /*
1051 * If this ioctl is unknown try to hand it down
1052 * to the NIC driver.
1053 */
1054 if (err != -ENOIOCTLCMD)
1055 return err;
1056
1057 if (cmd == SIOCGIFCONF) {
1058 struct ifconf ifc;
1059 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1060 return -EFAULT;
1061 rtnl_lock();
1062 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1063 rtnl_unlock();
1064 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1065 err = -EFAULT;
1066 } else if (is_socket_ioctl_cmd(cmd)) {
1067 struct ifreq ifr;
1068 bool need_copyout;
1069 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1070 return -EFAULT;
1071 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1072 if (!err && need_copyout)
1073 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1074 return -EFAULT;
1075 } else {
1076 err = -ENOTTY;
1077 }
1078 return err;
1079 }
1080
1081 /*
1082 * With an ioctl, arg may well be a user mode pointer, but we don't know
1083 * what to do with it - that's up to the protocol still.
1084 */
1085
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1086 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1087 {
1088 struct socket *sock;
1089 struct sock *sk;
1090 void __user *argp = (void __user *)arg;
1091 int pid, err;
1092 struct net *net;
1093
1094 sock = file->private_data;
1095 sk = sock->sk;
1096 net = sock_net(sk);
1097 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1098 struct ifreq ifr;
1099 bool need_copyout;
1100 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1101 return -EFAULT;
1102 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1103 if (!err && need_copyout)
1104 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1105 return -EFAULT;
1106 } else
1107 #ifdef CONFIG_WEXT_CORE
1108 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1109 err = wext_handle_ioctl(net, cmd, argp);
1110 } else
1111 #endif
1112 switch (cmd) {
1113 case FIOSETOWN:
1114 case SIOCSPGRP:
1115 err = -EFAULT;
1116 if (get_user(pid, (int __user *)argp))
1117 break;
1118 err = f_setown(sock->file, pid, 1);
1119 break;
1120 case FIOGETOWN:
1121 case SIOCGPGRP:
1122 err = put_user(f_getown(sock->file),
1123 (int __user *)argp);
1124 break;
1125 case SIOCGIFBR:
1126 case SIOCSIFBR:
1127 case SIOCBRADDBR:
1128 case SIOCBRDELBR:
1129 err = -ENOPKG;
1130 if (!br_ioctl_hook)
1131 request_module("bridge");
1132
1133 mutex_lock(&br_ioctl_mutex);
1134 if (br_ioctl_hook)
1135 err = br_ioctl_hook(net, cmd, argp);
1136 mutex_unlock(&br_ioctl_mutex);
1137 break;
1138 case SIOCGIFVLAN:
1139 case SIOCSIFVLAN:
1140 err = -ENOPKG;
1141 if (!vlan_ioctl_hook)
1142 request_module("8021q");
1143
1144 mutex_lock(&vlan_ioctl_mutex);
1145 if (vlan_ioctl_hook)
1146 err = vlan_ioctl_hook(net, argp);
1147 mutex_unlock(&vlan_ioctl_mutex);
1148 break;
1149 case SIOCADDDLCI:
1150 case SIOCDELDLCI:
1151 err = -ENOPKG;
1152 if (!dlci_ioctl_hook)
1153 request_module("dlci");
1154
1155 mutex_lock(&dlci_ioctl_mutex);
1156 if (dlci_ioctl_hook)
1157 err = dlci_ioctl_hook(cmd, argp);
1158 mutex_unlock(&dlci_ioctl_mutex);
1159 break;
1160 case SIOCGSKNS:
1161 err = -EPERM;
1162 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1163 break;
1164
1165 err = open_related_ns(&net->ns, get_net_ns);
1166 break;
1167 case SIOCGSTAMP_OLD:
1168 case SIOCGSTAMPNS_OLD:
1169 if (!sock->ops->gettstamp) {
1170 err = -ENOIOCTLCMD;
1171 break;
1172 }
1173 err = sock->ops->gettstamp(sock, argp,
1174 cmd == SIOCGSTAMP_OLD,
1175 !IS_ENABLED(CONFIG_64BIT));
1176 break;
1177 case SIOCGSTAMP_NEW:
1178 case SIOCGSTAMPNS_NEW:
1179 if (!sock->ops->gettstamp) {
1180 err = -ENOIOCTLCMD;
1181 break;
1182 }
1183 err = sock->ops->gettstamp(sock, argp,
1184 cmd == SIOCGSTAMP_NEW,
1185 false);
1186 break;
1187 default:
1188 err = sock_do_ioctl(net, sock, cmd, arg);
1189 break;
1190 }
1191 return err;
1192 }
1193
1194 /**
1195 * sock_create_lite - creates a socket
1196 * @family: protocol family (AF_INET, ...)
1197 * @type: communication type (SOCK_STREAM, ...)
1198 * @protocol: protocol (0, ...)
1199 * @res: new socket
1200 *
1201 * Creates a new socket and assigns it to @res, passing through LSM.
1202 * The new socket initialization is not complete, see kernel_accept().
1203 * Returns 0 or an error. On failure @res is set to %NULL.
1204 * This function internally uses GFP_KERNEL.
1205 */
1206
sock_create_lite(int family,int type,int protocol,struct socket ** res)1207 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1208 {
1209 int err;
1210 struct socket *sock = NULL;
1211
1212 err = security_socket_create(family, type, protocol, 1);
1213 if (err)
1214 goto out;
1215
1216 sock = sock_alloc();
1217 if (!sock) {
1218 err = -ENOMEM;
1219 goto out;
1220 }
1221
1222 sock->type = type;
1223 err = security_socket_post_create(sock, family, type, protocol, 1);
1224 if (err)
1225 goto out_release;
1226
1227 out:
1228 *res = sock;
1229 return err;
1230 out_release:
1231 sock_release(sock);
1232 sock = NULL;
1233 goto out;
1234 }
1235 EXPORT_SYMBOL(sock_create_lite);
1236
1237 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1238 static __poll_t sock_poll(struct file *file, poll_table *wait)
1239 {
1240 struct socket *sock = file->private_data;
1241 __poll_t events = poll_requested_events(wait), flag = 0;
1242
1243 if (!sock->ops->poll)
1244 return 0;
1245
1246 if (sk_can_busy_loop(sock->sk)) {
1247 /* poll once if requested by the syscall */
1248 if (events & POLL_BUSY_LOOP)
1249 sk_busy_loop(sock->sk, 1);
1250
1251 /* if this socket can poll_ll, tell the system call */
1252 flag = POLL_BUSY_LOOP;
1253 }
1254
1255 return sock->ops->poll(file, sock, wait) | flag;
1256 }
1257
sock_mmap(struct file * file,struct vm_area_struct * vma)1258 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1259 {
1260 struct socket *sock = file->private_data;
1261
1262 return sock->ops->mmap(file, sock, vma);
1263 }
1264
sock_close(struct inode * inode,struct file * filp)1265 static int sock_close(struct inode *inode, struct file *filp)
1266 {
1267 __sock_release(SOCKET_I(inode), inode);
1268 return 0;
1269 }
1270
1271 /*
1272 * Update the socket async list
1273 *
1274 * Fasync_list locking strategy.
1275 *
1276 * 1. fasync_list is modified only under process context socket lock
1277 * i.e. under semaphore.
1278 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1279 * or under socket lock
1280 */
1281
sock_fasync(int fd,struct file * filp,int on)1282 static int sock_fasync(int fd, struct file *filp, int on)
1283 {
1284 struct socket *sock = filp->private_data;
1285 struct sock *sk = sock->sk;
1286 struct socket_wq *wq = &sock->wq;
1287
1288 if (sk == NULL)
1289 return -EINVAL;
1290
1291 lock_sock(sk);
1292 fasync_helper(fd, filp, on, &wq->fasync_list);
1293
1294 if (!wq->fasync_list)
1295 sock_reset_flag(sk, SOCK_FASYNC);
1296 else
1297 sock_set_flag(sk, SOCK_FASYNC);
1298
1299 release_sock(sk);
1300 return 0;
1301 }
1302
1303 /* This function may be called only under rcu_lock */
1304
sock_wake_async(struct socket_wq * wq,int how,int band)1305 int sock_wake_async(struct socket_wq *wq, int how, int band)
1306 {
1307 if (!wq || !wq->fasync_list)
1308 return -1;
1309
1310 switch (how) {
1311 case SOCK_WAKE_WAITD:
1312 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1313 break;
1314 goto call_kill;
1315 case SOCK_WAKE_SPACE:
1316 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1317 break;
1318 fallthrough;
1319 case SOCK_WAKE_IO:
1320 call_kill:
1321 kill_fasync(&wq->fasync_list, SIGIO, band);
1322 break;
1323 case SOCK_WAKE_URG:
1324 kill_fasync(&wq->fasync_list, SIGURG, band);
1325 }
1326
1327 return 0;
1328 }
1329 EXPORT_SYMBOL(sock_wake_async);
1330
1331 /**
1332 * __sock_create - creates a socket
1333 * @net: net namespace
1334 * @family: protocol family (AF_INET, ...)
1335 * @type: communication type (SOCK_STREAM, ...)
1336 * @protocol: protocol (0, ...)
1337 * @res: new socket
1338 * @kern: boolean for kernel space sockets
1339 *
1340 * Creates a new socket and assigns it to @res, passing through LSM.
1341 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1342 * be set to true if the socket resides in kernel space.
1343 * This function internally uses GFP_KERNEL.
1344 */
1345
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1346 int __sock_create(struct net *net, int family, int type, int protocol,
1347 struct socket **res, int kern)
1348 {
1349 int err;
1350 struct socket *sock;
1351 const struct net_proto_family *pf;
1352
1353 /*
1354 * Check protocol is in range
1355 */
1356 if (family < 0 || family >= NPROTO)
1357 return -EAFNOSUPPORT;
1358 if (type < 0 || type >= SOCK_MAX)
1359 return -EINVAL;
1360
1361 /* Compatibility.
1362
1363 This uglymoron is moved from INET layer to here to avoid
1364 deadlock in module load.
1365 */
1366 if (family == PF_INET && type == SOCK_PACKET) {
1367 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1368 current->comm);
1369 family = PF_PACKET;
1370 }
1371
1372 err = security_socket_create(family, type, protocol, kern);
1373 if (err)
1374 return err;
1375
1376 /*
1377 * Allocate the socket and allow the family to set things up. if
1378 * the protocol is 0, the family is instructed to select an appropriate
1379 * default.
1380 */
1381 sock = sock_alloc();
1382 if (!sock) {
1383 net_warn_ratelimited("socket: no more sockets\n");
1384 return -ENFILE; /* Not exactly a match, but its the
1385 closest posix thing */
1386 }
1387
1388 sock->type = type;
1389
1390 #ifdef CONFIG_MODULES
1391 /* Attempt to load a protocol module if the find failed.
1392 *
1393 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1394 * requested real, full-featured networking support upon configuration.
1395 * Otherwise module support will break!
1396 */
1397 if (rcu_access_pointer(net_families[family]) == NULL)
1398 request_module("net-pf-%d", family);
1399 #endif
1400
1401 rcu_read_lock();
1402 pf = rcu_dereference(net_families[family]);
1403 err = -EAFNOSUPPORT;
1404 if (!pf)
1405 goto out_release;
1406
1407 /*
1408 * We will call the ->create function, that possibly is in a loadable
1409 * module, so we have to bump that loadable module refcnt first.
1410 */
1411 if (!try_module_get(pf->owner))
1412 goto out_release;
1413
1414 /* Now protected by module ref count */
1415 rcu_read_unlock();
1416
1417 err = pf->create(net, sock, protocol, kern);
1418 if (err < 0)
1419 goto out_module_put;
1420
1421 /*
1422 * Now to bump the refcnt of the [loadable] module that owns this
1423 * socket at sock_release time we decrement its refcnt.
1424 */
1425 if (!try_module_get(sock->ops->owner))
1426 goto out_module_busy;
1427
1428 /*
1429 * Now that we're done with the ->create function, the [loadable]
1430 * module can have its refcnt decremented
1431 */
1432 module_put(pf->owner);
1433 err = security_socket_post_create(sock, family, type, protocol, kern);
1434 if (err)
1435 goto out_sock_release;
1436 *res = sock;
1437
1438 return 0;
1439
1440 out_module_busy:
1441 err = -EAFNOSUPPORT;
1442 out_module_put:
1443 sock->ops = NULL;
1444 module_put(pf->owner);
1445 out_sock_release:
1446 sock_release(sock);
1447 return err;
1448
1449 out_release:
1450 rcu_read_unlock();
1451 goto out_sock_release;
1452 }
1453 EXPORT_SYMBOL(__sock_create);
1454
1455 /**
1456 * sock_create - creates a socket
1457 * @family: protocol family (AF_INET, ...)
1458 * @type: communication type (SOCK_STREAM, ...)
1459 * @protocol: protocol (0, ...)
1460 * @res: new socket
1461 *
1462 * A wrapper around __sock_create().
1463 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1464 */
1465
sock_create(int family,int type,int protocol,struct socket ** res)1466 int sock_create(int family, int type, int protocol, struct socket **res)
1467 {
1468 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1469 }
1470 EXPORT_SYMBOL(sock_create);
1471
1472 /**
1473 * sock_create_kern - creates a socket (kernel space)
1474 * @net: net namespace
1475 * @family: protocol family (AF_INET, ...)
1476 * @type: communication type (SOCK_STREAM, ...)
1477 * @protocol: protocol (0, ...)
1478 * @res: new socket
1479 *
1480 * A wrapper around __sock_create().
1481 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1482 */
1483
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1484 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1485 {
1486 return __sock_create(net, family, type, protocol, res, 1);
1487 }
1488 EXPORT_SYMBOL(sock_create_kern);
1489
__sys_socket(int family,int type,int protocol)1490 int __sys_socket(int family, int type, int protocol)
1491 {
1492 int retval;
1493 struct socket *sock;
1494 int flags;
1495
1496 /* Check the SOCK_* constants for consistency. */
1497 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1498 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1499 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1500 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1501
1502 flags = type & ~SOCK_TYPE_MASK;
1503 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1504 return -EINVAL;
1505 type &= SOCK_TYPE_MASK;
1506
1507 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1508 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1509
1510 retval = sock_create(family, type, protocol, &sock);
1511 if (retval < 0)
1512 return retval;
1513
1514 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1515 }
1516
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1517 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1518 {
1519 return __sys_socket(family, type, protocol);
1520 }
1521
1522 /*
1523 * Create a pair of connected sockets.
1524 */
1525
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1526 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1527 {
1528 struct socket *sock1, *sock2;
1529 int fd1, fd2, err;
1530 struct file *newfile1, *newfile2;
1531 int flags;
1532
1533 flags = type & ~SOCK_TYPE_MASK;
1534 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1535 return -EINVAL;
1536 type &= SOCK_TYPE_MASK;
1537
1538 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1539 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1540
1541 /*
1542 * reserve descriptors and make sure we won't fail
1543 * to return them to userland.
1544 */
1545 fd1 = get_unused_fd_flags(flags);
1546 if (unlikely(fd1 < 0))
1547 return fd1;
1548
1549 fd2 = get_unused_fd_flags(flags);
1550 if (unlikely(fd2 < 0)) {
1551 put_unused_fd(fd1);
1552 return fd2;
1553 }
1554
1555 err = put_user(fd1, &usockvec[0]);
1556 if (err)
1557 goto out;
1558
1559 err = put_user(fd2, &usockvec[1]);
1560 if (err)
1561 goto out;
1562
1563 /*
1564 * Obtain the first socket and check if the underlying protocol
1565 * supports the socketpair call.
1566 */
1567
1568 err = sock_create(family, type, protocol, &sock1);
1569 if (unlikely(err < 0))
1570 goto out;
1571
1572 err = sock_create(family, type, protocol, &sock2);
1573 if (unlikely(err < 0)) {
1574 sock_release(sock1);
1575 goto out;
1576 }
1577
1578 err = security_socket_socketpair(sock1, sock2);
1579 if (unlikely(err)) {
1580 sock_release(sock2);
1581 sock_release(sock1);
1582 goto out;
1583 }
1584
1585 err = sock1->ops->socketpair(sock1, sock2);
1586 if (unlikely(err < 0)) {
1587 sock_release(sock2);
1588 sock_release(sock1);
1589 goto out;
1590 }
1591
1592 newfile1 = sock_alloc_file(sock1, flags, NULL);
1593 if (IS_ERR(newfile1)) {
1594 err = PTR_ERR(newfile1);
1595 sock_release(sock2);
1596 goto out;
1597 }
1598
1599 newfile2 = sock_alloc_file(sock2, flags, NULL);
1600 if (IS_ERR(newfile2)) {
1601 err = PTR_ERR(newfile2);
1602 fput(newfile1);
1603 goto out;
1604 }
1605
1606 audit_fd_pair(fd1, fd2);
1607
1608 fd_install(fd1, newfile1);
1609 fd_install(fd2, newfile2);
1610 return 0;
1611
1612 out:
1613 put_unused_fd(fd2);
1614 put_unused_fd(fd1);
1615 return err;
1616 }
1617
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1618 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1619 int __user *, usockvec)
1620 {
1621 return __sys_socketpair(family, type, protocol, usockvec);
1622 }
1623
1624 /*
1625 * Bind a name to a socket. Nothing much to do here since it's
1626 * the protocol's responsibility to handle the local address.
1627 *
1628 * We move the socket address to kernel space before we call
1629 * the protocol layer (having also checked the address is ok).
1630 */
1631
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1632 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1633 {
1634 struct socket *sock;
1635 struct sockaddr_storage address;
1636 int err, fput_needed;
1637
1638 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1639 if (sock) {
1640 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1641 if (!err) {
1642 err = security_socket_bind(sock,
1643 (struct sockaddr *)&address,
1644 addrlen);
1645 if (!err)
1646 err = sock->ops->bind(sock,
1647 (struct sockaddr *)
1648 &address, addrlen);
1649 }
1650 fput_light(sock->file, fput_needed);
1651 }
1652 return err;
1653 }
1654
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1655 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1656 {
1657 return __sys_bind(fd, umyaddr, addrlen);
1658 }
1659
1660 /*
1661 * Perform a listen. Basically, we allow the protocol to do anything
1662 * necessary for a listen, and if that works, we mark the socket as
1663 * ready for listening.
1664 */
1665
__sys_listen(int fd,int backlog)1666 int __sys_listen(int fd, int backlog)
1667 {
1668 struct socket *sock;
1669 int err, fput_needed;
1670 int somaxconn;
1671
1672 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1673 if (sock) {
1674 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1675 if ((unsigned int)backlog > somaxconn)
1676 backlog = somaxconn;
1677
1678 err = security_socket_listen(sock, backlog);
1679 if (!err)
1680 err = sock->ops->listen(sock, backlog);
1681
1682 fput_light(sock->file, fput_needed);
1683 }
1684 return err;
1685 }
1686
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1687 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1688 {
1689 return __sys_listen(fd, backlog);
1690 }
1691
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1692 struct file *do_accept(struct file *file, unsigned file_flags,
1693 struct sockaddr __user *upeer_sockaddr,
1694 int __user *upeer_addrlen, int flags)
1695 {
1696 struct socket *sock, *newsock;
1697 struct file *newfile;
1698 int err, len;
1699 struct sockaddr_storage address;
1700
1701 sock = sock_from_file(file, &err);
1702 if (!sock)
1703 return ERR_PTR(err);
1704
1705 newsock = sock_alloc();
1706 if (!newsock)
1707 return ERR_PTR(-ENFILE);
1708
1709 newsock->type = sock->type;
1710 newsock->ops = sock->ops;
1711
1712 /*
1713 * We don't need try_module_get here, as the listening socket (sock)
1714 * has the protocol module (sock->ops->owner) held.
1715 */
1716 __module_get(newsock->ops->owner);
1717
1718 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1719 if (IS_ERR(newfile))
1720 return newfile;
1721
1722 err = security_socket_accept(sock, newsock);
1723 if (err)
1724 goto out_fd;
1725
1726 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1727 false);
1728 if (err < 0)
1729 goto out_fd;
1730
1731 if (upeer_sockaddr) {
1732 len = newsock->ops->getname(newsock,
1733 (struct sockaddr *)&address, 2);
1734 if (len < 0) {
1735 err = -ECONNABORTED;
1736 goto out_fd;
1737 }
1738 err = move_addr_to_user(&address,
1739 len, upeer_sockaddr, upeer_addrlen);
1740 if (err < 0)
1741 goto out_fd;
1742 }
1743
1744 /* File flags are not inherited via accept() unlike another OSes. */
1745 return newfile;
1746 out_fd:
1747 fput(newfile);
1748 return ERR_PTR(err);
1749 }
1750
__sys_accept4_file(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags,unsigned long nofile)1751 int __sys_accept4_file(struct file *file, unsigned file_flags,
1752 struct sockaddr __user *upeer_sockaddr,
1753 int __user *upeer_addrlen, int flags,
1754 unsigned long nofile)
1755 {
1756 struct file *newfile;
1757 int newfd;
1758
1759 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1760 return -EINVAL;
1761
1762 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1763 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1764
1765 newfd = __get_unused_fd_flags(flags, nofile);
1766 if (unlikely(newfd < 0))
1767 return newfd;
1768
1769 newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1770 flags);
1771 if (IS_ERR(newfile)) {
1772 put_unused_fd(newfd);
1773 return PTR_ERR(newfile);
1774 }
1775 fd_install(newfd, newfile);
1776 return newfd;
1777 }
1778
1779 /*
1780 * For accept, we attempt to create a new socket, set up the link
1781 * with the client, wake up the client, then return the new
1782 * connected fd. We collect the address of the connector in kernel
1783 * space and move it to user at the very end. This is unclean because
1784 * we open the socket then return an error.
1785 *
1786 * 1003.1g adds the ability to recvmsg() to query connection pending
1787 * status to recvmsg. We need to add that support in a way thats
1788 * clean when we restructure accept also.
1789 */
1790
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1791 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1792 int __user *upeer_addrlen, int flags)
1793 {
1794 int ret = -EBADF;
1795 struct fd f;
1796
1797 f = fdget(fd);
1798 if (f.file) {
1799 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1800 upeer_addrlen, flags,
1801 rlimit(RLIMIT_NOFILE));
1802 fdput(f);
1803 }
1804
1805 return ret;
1806 }
1807
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1808 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1809 int __user *, upeer_addrlen, int, flags)
1810 {
1811 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1812 }
1813
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1814 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1815 int __user *, upeer_addrlen)
1816 {
1817 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1818 }
1819
1820 /*
1821 * Attempt to connect to a socket with the server address. The address
1822 * is in user space so we verify it is OK and move it to kernel space.
1823 *
1824 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1825 * break bindings
1826 *
1827 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1828 * other SEQPACKET protocols that take time to connect() as it doesn't
1829 * include the -EINPROGRESS status for such sockets.
1830 */
1831
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)1832 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1833 int addrlen, int file_flags)
1834 {
1835 struct socket *sock;
1836 int err;
1837
1838 sock = sock_from_file(file, &err);
1839 if (!sock)
1840 goto out;
1841
1842 err =
1843 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1844 if (err)
1845 goto out;
1846
1847 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1848 sock->file->f_flags | file_flags);
1849 out:
1850 return err;
1851 }
1852
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1853 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1854 {
1855 int ret = -EBADF;
1856 struct fd f;
1857
1858 f = fdget(fd);
1859 if (f.file) {
1860 struct sockaddr_storage address;
1861
1862 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1863 if (!ret)
1864 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1865 fdput(f);
1866 }
1867
1868 return ret;
1869 }
1870
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1871 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1872 int, addrlen)
1873 {
1874 return __sys_connect(fd, uservaddr, addrlen);
1875 }
1876
1877 /*
1878 * Get the local address ('name') of a socket object. Move the obtained
1879 * name to user space.
1880 */
1881
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1882 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1883 int __user *usockaddr_len)
1884 {
1885 struct socket *sock;
1886 struct sockaddr_storage address;
1887 int err, fput_needed;
1888
1889 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1890 if (!sock)
1891 goto out;
1892
1893 err = security_socket_getsockname(sock);
1894 if (err)
1895 goto out_put;
1896
1897 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1898 if (err < 0)
1899 goto out_put;
1900 /* "err" is actually length in this case */
1901 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1902
1903 out_put:
1904 fput_light(sock->file, fput_needed);
1905 out:
1906 return err;
1907 }
1908
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1909 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1910 int __user *, usockaddr_len)
1911 {
1912 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1913 }
1914
1915 /*
1916 * Get the remote address ('name') of a socket object. Move the obtained
1917 * name to user space.
1918 */
1919
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1920 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1921 int __user *usockaddr_len)
1922 {
1923 struct socket *sock;
1924 struct sockaddr_storage address;
1925 int err, fput_needed;
1926
1927 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1928 if (sock != NULL) {
1929 err = security_socket_getpeername(sock);
1930 if (err) {
1931 fput_light(sock->file, fput_needed);
1932 return err;
1933 }
1934
1935 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1936 if (err >= 0)
1937 /* "err" is actually length in this case */
1938 err = move_addr_to_user(&address, err, usockaddr,
1939 usockaddr_len);
1940 fput_light(sock->file, fput_needed);
1941 }
1942 return err;
1943 }
1944
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1945 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1946 int __user *, usockaddr_len)
1947 {
1948 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1949 }
1950
1951 /*
1952 * Send a datagram to a given address. We move the address into kernel
1953 * space and check the user space data area is readable before invoking
1954 * the protocol.
1955 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)1956 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1957 struct sockaddr __user *addr, int addr_len)
1958 {
1959 struct socket *sock;
1960 struct sockaddr_storage address;
1961 int err;
1962 struct msghdr msg;
1963 struct iovec iov;
1964 int fput_needed;
1965
1966 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1967 if (unlikely(err))
1968 return err;
1969 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1970 if (!sock)
1971 goto out;
1972
1973 msg.msg_name = NULL;
1974 msg.msg_control = NULL;
1975 msg.msg_controllen = 0;
1976 msg.msg_namelen = 0;
1977 if (addr) {
1978 err = move_addr_to_kernel(addr, addr_len, &address);
1979 if (err < 0)
1980 goto out_put;
1981 msg.msg_name = (struct sockaddr *)&address;
1982 msg.msg_namelen = addr_len;
1983 }
1984 if (sock->file->f_flags & O_NONBLOCK)
1985 flags |= MSG_DONTWAIT;
1986 msg.msg_flags = flags;
1987 err = sock_sendmsg(sock, &msg);
1988
1989 out_put:
1990 fput_light(sock->file, fput_needed);
1991 out:
1992 return err;
1993 }
1994
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1995 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1996 unsigned int, flags, struct sockaddr __user *, addr,
1997 int, addr_len)
1998 {
1999 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2000 }
2001
2002 /*
2003 * Send a datagram down a socket.
2004 */
2005
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2006 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2007 unsigned int, flags)
2008 {
2009 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2010 }
2011
2012 /*
2013 * Receive a frame from the socket and optionally record the address of the
2014 * sender. We verify the buffers are writable and if needed move the
2015 * sender address from kernel to user space.
2016 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2017 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2018 struct sockaddr __user *addr, int __user *addr_len)
2019 {
2020 struct socket *sock;
2021 struct iovec iov;
2022 struct msghdr msg;
2023 struct sockaddr_storage address;
2024 int err, err2;
2025 int fput_needed;
2026
2027 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2028 if (unlikely(err))
2029 return err;
2030 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2031 if (!sock)
2032 goto out;
2033
2034 msg.msg_control = NULL;
2035 msg.msg_controllen = 0;
2036 /* Save some cycles and don't copy the address if not needed */
2037 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2038 /* We assume all kernel code knows the size of sockaddr_storage */
2039 msg.msg_namelen = 0;
2040 msg.msg_iocb = NULL;
2041 msg.msg_flags = 0;
2042 if (sock->file->f_flags & O_NONBLOCK)
2043 flags |= MSG_DONTWAIT;
2044 err = sock_recvmsg(sock, &msg, flags);
2045
2046 if (err >= 0 && addr != NULL) {
2047 err2 = move_addr_to_user(&address,
2048 msg.msg_namelen, addr, addr_len);
2049 if (err2 < 0)
2050 err = err2;
2051 }
2052
2053 fput_light(sock->file, fput_needed);
2054 out:
2055 return err;
2056 }
2057
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2058 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2059 unsigned int, flags, struct sockaddr __user *, addr,
2060 int __user *, addr_len)
2061 {
2062 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2063 }
2064
2065 /*
2066 * Receive a datagram from a socket.
2067 */
2068
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2069 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2070 unsigned int, flags)
2071 {
2072 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2073 }
2074
sock_use_custom_sol_socket(const struct socket * sock)2075 static bool sock_use_custom_sol_socket(const struct socket *sock)
2076 {
2077 const struct sock *sk = sock->sk;
2078
2079 /* Use sock->ops->setsockopt() for MPTCP */
2080 return IS_ENABLED(CONFIG_MPTCP) &&
2081 sk->sk_protocol == IPPROTO_MPTCP &&
2082 sk->sk_type == SOCK_STREAM &&
2083 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2084 }
2085
2086 /*
2087 * Set a socket option. Because we don't know the option lengths we have
2088 * to pass the user mode parameter for the protocols to sort out.
2089 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2090 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2091 int optlen)
2092 {
2093 sockptr_t optval = USER_SOCKPTR(user_optval);
2094 char *kernel_optval = NULL;
2095 int err, fput_needed;
2096 struct socket *sock;
2097
2098 if (optlen < 0)
2099 return -EINVAL;
2100
2101 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2102 if (!sock)
2103 return err;
2104
2105 err = security_socket_setsockopt(sock, level, optname);
2106 if (err)
2107 goto out_put;
2108
2109 if (!in_compat_syscall())
2110 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2111 user_optval, &optlen,
2112 &kernel_optval);
2113 if (err < 0)
2114 goto out_put;
2115 if (err > 0) {
2116 err = 0;
2117 goto out_put;
2118 }
2119
2120 if (kernel_optval)
2121 optval = KERNEL_SOCKPTR(kernel_optval);
2122 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2123 err = sock_setsockopt(sock, level, optname, optval, optlen);
2124 else if (unlikely(!sock->ops->setsockopt))
2125 err = -EOPNOTSUPP;
2126 else
2127 err = sock->ops->setsockopt(sock, level, optname, optval,
2128 optlen);
2129 kfree(kernel_optval);
2130 out_put:
2131 fput_light(sock->file, fput_needed);
2132 return err;
2133 }
2134
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2135 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2136 char __user *, optval, int, optlen)
2137 {
2138 return __sys_setsockopt(fd, level, optname, optval, optlen);
2139 }
2140
2141 /*
2142 * Get a socket option. Because we don't know the option lengths we have
2143 * to pass a user mode parameter for the protocols to sort out.
2144 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2145 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2146 int __user *optlen)
2147 {
2148 int err, fput_needed;
2149 struct socket *sock;
2150 int max_optlen;
2151
2152 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2153 if (!sock)
2154 return err;
2155
2156 err = security_socket_getsockopt(sock, level, optname);
2157 if (err)
2158 goto out_put;
2159
2160 if (!in_compat_syscall())
2161 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2162
2163 if (level == SOL_SOCKET)
2164 err = sock_getsockopt(sock, level, optname, optval, optlen);
2165 else if (unlikely(!sock->ops->getsockopt))
2166 err = -EOPNOTSUPP;
2167 else
2168 err = sock->ops->getsockopt(sock, level, optname, optval,
2169 optlen);
2170
2171 if (!in_compat_syscall())
2172 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2173 optval, optlen, max_optlen,
2174 err);
2175 out_put:
2176 fput_light(sock->file, fput_needed);
2177 return err;
2178 }
2179
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2180 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2181 char __user *, optval, int __user *, optlen)
2182 {
2183 return __sys_getsockopt(fd, level, optname, optval, optlen);
2184 }
2185
2186 /*
2187 * Shutdown a socket.
2188 */
2189
__sys_shutdown_sock(struct socket * sock,int how)2190 int __sys_shutdown_sock(struct socket *sock, int how)
2191 {
2192 int err;
2193
2194 err = security_socket_shutdown(sock, how);
2195 if (!err)
2196 err = sock->ops->shutdown(sock, how);
2197
2198 return err;
2199 }
2200
__sys_shutdown(int fd,int how)2201 int __sys_shutdown(int fd, int how)
2202 {
2203 int err, fput_needed;
2204 struct socket *sock;
2205
2206 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2207 if (sock != NULL) {
2208 err = __sys_shutdown_sock(sock, how);
2209 fput_light(sock->file, fput_needed);
2210 }
2211 return err;
2212 }
2213
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2214 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2215 {
2216 return __sys_shutdown(fd, how);
2217 }
2218
2219 /* A couple of helpful macros for getting the address of the 32/64 bit
2220 * fields which are the same type (int / unsigned) on our platforms.
2221 */
2222 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2223 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2224 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2225
2226 struct used_address {
2227 struct sockaddr_storage name;
2228 unsigned int name_len;
2229 };
2230
__copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec __user ** uiov,size_t * nsegs)2231 int __copy_msghdr_from_user(struct msghdr *kmsg,
2232 struct user_msghdr __user *umsg,
2233 struct sockaddr __user **save_addr,
2234 struct iovec __user **uiov, size_t *nsegs)
2235 {
2236 struct user_msghdr msg;
2237 ssize_t err;
2238
2239 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2240 return -EFAULT;
2241
2242 kmsg->msg_control_is_user = true;
2243 kmsg->msg_control_user = msg.msg_control;
2244 kmsg->msg_controllen = msg.msg_controllen;
2245 kmsg->msg_flags = msg.msg_flags;
2246
2247 kmsg->msg_namelen = msg.msg_namelen;
2248 if (!msg.msg_name)
2249 kmsg->msg_namelen = 0;
2250
2251 if (kmsg->msg_namelen < 0)
2252 return -EINVAL;
2253
2254 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2255 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2256
2257 if (save_addr)
2258 *save_addr = msg.msg_name;
2259
2260 if (msg.msg_name && kmsg->msg_namelen) {
2261 if (!save_addr) {
2262 err = move_addr_to_kernel(msg.msg_name,
2263 kmsg->msg_namelen,
2264 kmsg->msg_name);
2265 if (err < 0)
2266 return err;
2267 }
2268 } else {
2269 kmsg->msg_name = NULL;
2270 kmsg->msg_namelen = 0;
2271 }
2272
2273 if (msg.msg_iovlen > UIO_MAXIOV)
2274 return -EMSGSIZE;
2275
2276 kmsg->msg_iocb = NULL;
2277 *uiov = msg.msg_iov;
2278 *nsegs = msg.msg_iovlen;
2279 return 0;
2280 }
2281
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2282 static int copy_msghdr_from_user(struct msghdr *kmsg,
2283 struct user_msghdr __user *umsg,
2284 struct sockaddr __user **save_addr,
2285 struct iovec **iov)
2286 {
2287 struct user_msghdr msg;
2288 ssize_t err;
2289
2290 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2291 &msg.msg_iovlen);
2292 if (err)
2293 return err;
2294
2295 err = import_iovec(save_addr ? READ : WRITE,
2296 msg.msg_iov, msg.msg_iovlen,
2297 UIO_FASTIOV, iov, &kmsg->msg_iter);
2298 return err < 0 ? err : 0;
2299 }
2300
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2301 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2302 unsigned int flags, struct used_address *used_address,
2303 unsigned int allowed_msghdr_flags)
2304 {
2305 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2306 __aligned(sizeof(__kernel_size_t));
2307 /* 20 is size of ipv6_pktinfo */
2308 unsigned char *ctl_buf = ctl;
2309 int ctl_len;
2310 ssize_t err;
2311
2312 err = -ENOBUFS;
2313
2314 if (msg_sys->msg_controllen > INT_MAX)
2315 goto out;
2316 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2317 ctl_len = msg_sys->msg_controllen;
2318 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2319 err =
2320 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2321 sizeof(ctl));
2322 if (err)
2323 goto out;
2324 ctl_buf = msg_sys->msg_control;
2325 ctl_len = msg_sys->msg_controllen;
2326 } else if (ctl_len) {
2327 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2328 CMSG_ALIGN(sizeof(struct cmsghdr)));
2329 if (ctl_len > sizeof(ctl)) {
2330 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2331 if (ctl_buf == NULL)
2332 goto out;
2333 }
2334 err = -EFAULT;
2335 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2336 goto out_freectl;
2337 msg_sys->msg_control = ctl_buf;
2338 msg_sys->msg_control_is_user = false;
2339 }
2340 msg_sys->msg_flags = flags;
2341
2342 if (sock->file->f_flags & O_NONBLOCK)
2343 msg_sys->msg_flags |= MSG_DONTWAIT;
2344 /*
2345 * If this is sendmmsg() and current destination address is same as
2346 * previously succeeded address, omit asking LSM's decision.
2347 * used_address->name_len is initialized to UINT_MAX so that the first
2348 * destination address never matches.
2349 */
2350 if (used_address && msg_sys->msg_name &&
2351 used_address->name_len == msg_sys->msg_namelen &&
2352 !memcmp(&used_address->name, msg_sys->msg_name,
2353 used_address->name_len)) {
2354 err = sock_sendmsg_nosec(sock, msg_sys);
2355 goto out_freectl;
2356 }
2357 err = sock_sendmsg(sock, msg_sys);
2358 /*
2359 * If this is sendmmsg() and sending to current destination address was
2360 * successful, remember it.
2361 */
2362 if (used_address && err >= 0) {
2363 used_address->name_len = msg_sys->msg_namelen;
2364 if (msg_sys->msg_name)
2365 memcpy(&used_address->name, msg_sys->msg_name,
2366 used_address->name_len);
2367 }
2368
2369 out_freectl:
2370 if (ctl_buf != ctl)
2371 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2372 out:
2373 return err;
2374 }
2375
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2376 int sendmsg_copy_msghdr(struct msghdr *msg,
2377 struct user_msghdr __user *umsg, unsigned flags,
2378 struct iovec **iov)
2379 {
2380 int err;
2381
2382 if (flags & MSG_CMSG_COMPAT) {
2383 struct compat_msghdr __user *msg_compat;
2384
2385 msg_compat = (struct compat_msghdr __user *) umsg;
2386 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2387 } else {
2388 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2389 }
2390 if (err < 0)
2391 return err;
2392
2393 return 0;
2394 }
2395
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2396 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2397 struct msghdr *msg_sys, unsigned int flags,
2398 struct used_address *used_address,
2399 unsigned int allowed_msghdr_flags)
2400 {
2401 struct sockaddr_storage address;
2402 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2403 ssize_t err;
2404
2405 msg_sys->msg_name = &address;
2406
2407 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2408 if (err < 0)
2409 return err;
2410
2411 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2412 allowed_msghdr_flags);
2413 kfree(iov);
2414 return err;
2415 }
2416
2417 /*
2418 * BSD sendmsg interface
2419 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2420 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2421 unsigned int flags)
2422 {
2423 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2424 }
2425
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2426 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2427 bool forbid_cmsg_compat)
2428 {
2429 int fput_needed, err;
2430 struct msghdr msg_sys;
2431 struct socket *sock;
2432
2433 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2434 return -EINVAL;
2435
2436 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2437 if (!sock)
2438 goto out;
2439
2440 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2441
2442 fput_light(sock->file, fput_needed);
2443 out:
2444 return err;
2445 }
2446
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2447 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2448 {
2449 return __sys_sendmsg(fd, msg, flags, true);
2450 }
2451
2452 /*
2453 * Linux sendmmsg interface
2454 */
2455
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2456 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2457 unsigned int flags, bool forbid_cmsg_compat)
2458 {
2459 int fput_needed, err, datagrams;
2460 struct socket *sock;
2461 struct mmsghdr __user *entry;
2462 struct compat_mmsghdr __user *compat_entry;
2463 struct msghdr msg_sys;
2464 struct used_address used_address;
2465 unsigned int oflags = flags;
2466
2467 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2468 return -EINVAL;
2469
2470 if (vlen > UIO_MAXIOV)
2471 vlen = UIO_MAXIOV;
2472
2473 datagrams = 0;
2474
2475 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2476 if (!sock)
2477 return err;
2478
2479 used_address.name_len = UINT_MAX;
2480 entry = mmsg;
2481 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2482 err = 0;
2483 flags |= MSG_BATCH;
2484
2485 while (datagrams < vlen) {
2486 if (datagrams == vlen - 1)
2487 flags = oflags;
2488
2489 if (MSG_CMSG_COMPAT & flags) {
2490 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2491 &msg_sys, flags, &used_address, MSG_EOR);
2492 if (err < 0)
2493 break;
2494 err = __put_user(err, &compat_entry->msg_len);
2495 ++compat_entry;
2496 } else {
2497 err = ___sys_sendmsg(sock,
2498 (struct user_msghdr __user *)entry,
2499 &msg_sys, flags, &used_address, MSG_EOR);
2500 if (err < 0)
2501 break;
2502 err = put_user(err, &entry->msg_len);
2503 ++entry;
2504 }
2505
2506 if (err)
2507 break;
2508 ++datagrams;
2509 if (msg_data_left(&msg_sys))
2510 break;
2511 cond_resched();
2512 }
2513
2514 fput_light(sock->file, fput_needed);
2515
2516 /* We only return an error if no datagrams were able to be sent */
2517 if (datagrams != 0)
2518 return datagrams;
2519
2520 return err;
2521 }
2522
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2523 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2524 unsigned int, vlen, unsigned int, flags)
2525 {
2526 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2527 }
2528
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2529 int recvmsg_copy_msghdr(struct msghdr *msg,
2530 struct user_msghdr __user *umsg, unsigned flags,
2531 struct sockaddr __user **uaddr,
2532 struct iovec **iov)
2533 {
2534 ssize_t err;
2535
2536 if (MSG_CMSG_COMPAT & flags) {
2537 struct compat_msghdr __user *msg_compat;
2538
2539 msg_compat = (struct compat_msghdr __user *) umsg;
2540 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2541 } else {
2542 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2543 }
2544 if (err < 0)
2545 return err;
2546
2547 return 0;
2548 }
2549
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2550 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2551 struct user_msghdr __user *msg,
2552 struct sockaddr __user *uaddr,
2553 unsigned int flags, int nosec)
2554 {
2555 struct compat_msghdr __user *msg_compat =
2556 (struct compat_msghdr __user *) msg;
2557 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2558 struct sockaddr_storage addr;
2559 unsigned long cmsg_ptr;
2560 int len;
2561 ssize_t err;
2562
2563 msg_sys->msg_name = &addr;
2564 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2565 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2566
2567 /* We assume all kernel code knows the size of sockaddr_storage */
2568 msg_sys->msg_namelen = 0;
2569
2570 if (sock->file->f_flags & O_NONBLOCK)
2571 flags |= MSG_DONTWAIT;
2572
2573 if (unlikely(nosec))
2574 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2575 else
2576 err = sock_recvmsg(sock, msg_sys, flags);
2577
2578 if (err < 0)
2579 goto out;
2580 len = err;
2581
2582 if (uaddr != NULL) {
2583 err = move_addr_to_user(&addr,
2584 msg_sys->msg_namelen, uaddr,
2585 uaddr_len);
2586 if (err < 0)
2587 goto out;
2588 }
2589 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2590 COMPAT_FLAGS(msg));
2591 if (err)
2592 goto out;
2593 if (MSG_CMSG_COMPAT & flags)
2594 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2595 &msg_compat->msg_controllen);
2596 else
2597 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2598 &msg->msg_controllen);
2599 if (err)
2600 goto out;
2601 err = len;
2602 out:
2603 return err;
2604 }
2605
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2606 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2607 struct msghdr *msg_sys, unsigned int flags, int nosec)
2608 {
2609 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2610 /* user mode address pointers */
2611 struct sockaddr __user *uaddr;
2612 ssize_t err;
2613
2614 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2615 if (err < 0)
2616 return err;
2617
2618 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2619 kfree(iov);
2620 return err;
2621 }
2622
2623 /*
2624 * BSD recvmsg interface
2625 */
2626
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2627 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2628 struct user_msghdr __user *umsg,
2629 struct sockaddr __user *uaddr, unsigned int flags)
2630 {
2631 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2632 }
2633
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2634 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2635 bool forbid_cmsg_compat)
2636 {
2637 int fput_needed, err;
2638 struct msghdr msg_sys;
2639 struct socket *sock;
2640
2641 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2642 return -EINVAL;
2643
2644 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2645 if (!sock)
2646 goto out;
2647
2648 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2649
2650 fput_light(sock->file, fput_needed);
2651 out:
2652 return err;
2653 }
2654
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2655 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2656 unsigned int, flags)
2657 {
2658 return __sys_recvmsg(fd, msg, flags, true);
2659 }
2660
2661 /*
2662 * Linux recvmmsg interface
2663 */
2664
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2665 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2666 unsigned int vlen, unsigned int flags,
2667 struct timespec64 *timeout)
2668 {
2669 int fput_needed, err, datagrams;
2670 struct socket *sock;
2671 struct mmsghdr __user *entry;
2672 struct compat_mmsghdr __user *compat_entry;
2673 struct msghdr msg_sys;
2674 struct timespec64 end_time;
2675 struct timespec64 timeout64;
2676
2677 if (timeout &&
2678 poll_select_set_timeout(&end_time, timeout->tv_sec,
2679 timeout->tv_nsec))
2680 return -EINVAL;
2681
2682 datagrams = 0;
2683
2684 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2685 if (!sock)
2686 return err;
2687
2688 if (likely(!(flags & MSG_ERRQUEUE))) {
2689 err = sock_error(sock->sk);
2690 if (err) {
2691 datagrams = err;
2692 goto out_put;
2693 }
2694 }
2695
2696 entry = mmsg;
2697 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2698
2699 while (datagrams < vlen) {
2700 /*
2701 * No need to ask LSM for more than the first datagram.
2702 */
2703 if (MSG_CMSG_COMPAT & flags) {
2704 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2705 &msg_sys, flags & ~MSG_WAITFORONE,
2706 datagrams);
2707 if (err < 0)
2708 break;
2709 err = __put_user(err, &compat_entry->msg_len);
2710 ++compat_entry;
2711 } else {
2712 err = ___sys_recvmsg(sock,
2713 (struct user_msghdr __user *)entry,
2714 &msg_sys, flags & ~MSG_WAITFORONE,
2715 datagrams);
2716 if (err < 0)
2717 break;
2718 err = put_user(err, &entry->msg_len);
2719 ++entry;
2720 }
2721
2722 if (err)
2723 break;
2724 ++datagrams;
2725
2726 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2727 if (flags & MSG_WAITFORONE)
2728 flags |= MSG_DONTWAIT;
2729
2730 if (timeout) {
2731 ktime_get_ts64(&timeout64);
2732 *timeout = timespec64_sub(end_time, timeout64);
2733 if (timeout->tv_sec < 0) {
2734 timeout->tv_sec = timeout->tv_nsec = 0;
2735 break;
2736 }
2737
2738 /* Timeout, return less than vlen datagrams */
2739 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2740 break;
2741 }
2742
2743 /* Out of band data, return right away */
2744 if (msg_sys.msg_flags & MSG_OOB)
2745 break;
2746 cond_resched();
2747 }
2748
2749 if (err == 0)
2750 goto out_put;
2751
2752 if (datagrams == 0) {
2753 datagrams = err;
2754 goto out_put;
2755 }
2756
2757 /*
2758 * We may return less entries than requested (vlen) if the
2759 * sock is non block and there aren't enough datagrams...
2760 */
2761 if (err != -EAGAIN) {
2762 /*
2763 * ... or if recvmsg returns an error after we
2764 * received some datagrams, where we record the
2765 * error to return on the next call or if the
2766 * app asks about it using getsockopt(SO_ERROR).
2767 */
2768 sock->sk->sk_err = -err;
2769 }
2770 out_put:
2771 fput_light(sock->file, fput_needed);
2772
2773 return datagrams;
2774 }
2775
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2776 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2777 unsigned int vlen, unsigned int flags,
2778 struct __kernel_timespec __user *timeout,
2779 struct old_timespec32 __user *timeout32)
2780 {
2781 int datagrams;
2782 struct timespec64 timeout_sys;
2783
2784 if (timeout && get_timespec64(&timeout_sys, timeout))
2785 return -EFAULT;
2786
2787 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2788 return -EFAULT;
2789
2790 if (!timeout && !timeout32)
2791 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2792
2793 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2794
2795 if (datagrams <= 0)
2796 return datagrams;
2797
2798 if (timeout && put_timespec64(&timeout_sys, timeout))
2799 datagrams = -EFAULT;
2800
2801 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2802 datagrams = -EFAULT;
2803
2804 return datagrams;
2805 }
2806
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2807 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2808 unsigned int, vlen, unsigned int, flags,
2809 struct __kernel_timespec __user *, timeout)
2810 {
2811 if (flags & MSG_CMSG_COMPAT)
2812 return -EINVAL;
2813
2814 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2815 }
2816
2817 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2818 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2819 unsigned int, vlen, unsigned int, flags,
2820 struct old_timespec32 __user *, timeout)
2821 {
2822 if (flags & MSG_CMSG_COMPAT)
2823 return -EINVAL;
2824
2825 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2826 }
2827 #endif
2828
2829 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2830 /* Argument list sizes for sys_socketcall */
2831 #define AL(x) ((x) * sizeof(unsigned long))
2832 static const unsigned char nargs[21] = {
2833 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2834 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2835 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2836 AL(4), AL(5), AL(4)
2837 };
2838
2839 #undef AL
2840
2841 /*
2842 * System call vectors.
2843 *
2844 * Argument checking cleaned up. Saved 20% in size.
2845 * This function doesn't need to set the kernel lock because
2846 * it is set by the callees.
2847 */
2848
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2849 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2850 {
2851 unsigned long a[AUDITSC_ARGS];
2852 unsigned long a0, a1;
2853 int err;
2854 unsigned int len;
2855
2856 if (call < 1 || call > SYS_SENDMMSG)
2857 return -EINVAL;
2858 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2859
2860 len = nargs[call];
2861 if (len > sizeof(a))
2862 return -EINVAL;
2863
2864 /* copy_from_user should be SMP safe. */
2865 if (copy_from_user(a, args, len))
2866 return -EFAULT;
2867
2868 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2869 if (err)
2870 return err;
2871
2872 a0 = a[0];
2873 a1 = a[1];
2874
2875 switch (call) {
2876 case SYS_SOCKET:
2877 err = __sys_socket(a0, a1, a[2]);
2878 break;
2879 case SYS_BIND:
2880 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2881 break;
2882 case SYS_CONNECT:
2883 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2884 break;
2885 case SYS_LISTEN:
2886 err = __sys_listen(a0, a1);
2887 break;
2888 case SYS_ACCEPT:
2889 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2890 (int __user *)a[2], 0);
2891 break;
2892 case SYS_GETSOCKNAME:
2893 err =
2894 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2895 (int __user *)a[2]);
2896 break;
2897 case SYS_GETPEERNAME:
2898 err =
2899 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2900 (int __user *)a[2]);
2901 break;
2902 case SYS_SOCKETPAIR:
2903 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2904 break;
2905 case SYS_SEND:
2906 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2907 NULL, 0);
2908 break;
2909 case SYS_SENDTO:
2910 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2911 (struct sockaddr __user *)a[4], a[5]);
2912 break;
2913 case SYS_RECV:
2914 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2915 NULL, NULL);
2916 break;
2917 case SYS_RECVFROM:
2918 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2919 (struct sockaddr __user *)a[4],
2920 (int __user *)a[5]);
2921 break;
2922 case SYS_SHUTDOWN:
2923 err = __sys_shutdown(a0, a1);
2924 break;
2925 case SYS_SETSOCKOPT:
2926 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2927 a[4]);
2928 break;
2929 case SYS_GETSOCKOPT:
2930 err =
2931 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2932 (int __user *)a[4]);
2933 break;
2934 case SYS_SENDMSG:
2935 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2936 a[2], true);
2937 break;
2938 case SYS_SENDMMSG:
2939 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2940 a[3], true);
2941 break;
2942 case SYS_RECVMSG:
2943 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2944 a[2], true);
2945 break;
2946 case SYS_RECVMMSG:
2947 if (IS_ENABLED(CONFIG_64BIT))
2948 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2949 a[2], a[3],
2950 (struct __kernel_timespec __user *)a[4],
2951 NULL);
2952 else
2953 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2954 a[2], a[3], NULL,
2955 (struct old_timespec32 __user *)a[4]);
2956 break;
2957 case SYS_ACCEPT4:
2958 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2959 (int __user *)a[2], a[3]);
2960 break;
2961 default:
2962 err = -EINVAL;
2963 break;
2964 }
2965 return err;
2966 }
2967
2968 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2969
2970 /**
2971 * sock_register - add a socket protocol handler
2972 * @ops: description of protocol
2973 *
2974 * This function is called by a protocol handler that wants to
2975 * advertise its address family, and have it linked into the
2976 * socket interface. The value ops->family corresponds to the
2977 * socket system call protocol family.
2978 */
sock_register(const struct net_proto_family * ops)2979 int sock_register(const struct net_proto_family *ops)
2980 {
2981 int err;
2982
2983 if (ops->family >= NPROTO) {
2984 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2985 return -ENOBUFS;
2986 }
2987
2988 spin_lock(&net_family_lock);
2989 if (rcu_dereference_protected(net_families[ops->family],
2990 lockdep_is_held(&net_family_lock)))
2991 err = -EEXIST;
2992 else {
2993 rcu_assign_pointer(net_families[ops->family], ops);
2994 err = 0;
2995 }
2996 spin_unlock(&net_family_lock);
2997
2998 pr_info("NET: Registered protocol family %d\n", ops->family);
2999 return err;
3000 }
3001 EXPORT_SYMBOL(sock_register);
3002
3003 /**
3004 * sock_unregister - remove a protocol handler
3005 * @family: protocol family to remove
3006 *
3007 * This function is called by a protocol handler that wants to
3008 * remove its address family, and have it unlinked from the
3009 * new socket creation.
3010 *
3011 * If protocol handler is a module, then it can use module reference
3012 * counts to protect against new references. If protocol handler is not
3013 * a module then it needs to provide its own protection in
3014 * the ops->create routine.
3015 */
sock_unregister(int family)3016 void sock_unregister(int family)
3017 {
3018 BUG_ON(family < 0 || family >= NPROTO);
3019
3020 spin_lock(&net_family_lock);
3021 RCU_INIT_POINTER(net_families[family], NULL);
3022 spin_unlock(&net_family_lock);
3023
3024 synchronize_rcu();
3025
3026 pr_info("NET: Unregistered protocol family %d\n", family);
3027 }
3028 EXPORT_SYMBOL(sock_unregister);
3029
sock_is_registered(int family)3030 bool sock_is_registered(int family)
3031 {
3032 return family < NPROTO && rcu_access_pointer(net_families[family]);
3033 }
3034
sock_init(void)3035 static int __init sock_init(void)
3036 {
3037 int err;
3038 /*
3039 * Initialize the network sysctl infrastructure.
3040 */
3041 err = net_sysctl_init();
3042 if (err)
3043 goto out;
3044
3045 /*
3046 * Initialize skbuff SLAB cache
3047 */
3048 skb_init();
3049
3050 /*
3051 * Initialize the protocols module.
3052 */
3053
3054 init_inodecache();
3055
3056 err = register_filesystem(&sock_fs_type);
3057 if (err)
3058 goto out;
3059 sock_mnt = kern_mount(&sock_fs_type);
3060 if (IS_ERR(sock_mnt)) {
3061 err = PTR_ERR(sock_mnt);
3062 goto out_mount;
3063 }
3064
3065 /* The real protocol initialization is performed in later initcalls.
3066 */
3067
3068 #ifdef CONFIG_NETFILTER
3069 err = netfilter_init();
3070 if (err)
3071 goto out;
3072 #endif
3073
3074 ptp_classifier_init();
3075
3076 out:
3077 return err;
3078
3079 out_mount:
3080 unregister_filesystem(&sock_fs_type);
3081 goto out;
3082 }
3083
3084 core_initcall(sock_init); /* early initcall */
3085
3086 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3087 void socket_seq_show(struct seq_file *seq)
3088 {
3089 seq_printf(seq, "sockets: used %d\n",
3090 sock_inuse_get(seq->private));
3091 }
3092 #endif /* CONFIG_PROC_FS */
3093
3094 #ifdef CONFIG_COMPAT
compat_dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)3095 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3096 {
3097 struct compat_ifconf ifc32;
3098 struct ifconf ifc;
3099 int err;
3100
3101 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3102 return -EFAULT;
3103
3104 ifc.ifc_len = ifc32.ifc_len;
3105 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3106
3107 rtnl_lock();
3108 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3109 rtnl_unlock();
3110 if (err)
3111 return err;
3112
3113 ifc32.ifc_len = ifc.ifc_len;
3114 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3115 return -EFAULT;
3116
3117 return 0;
3118 }
3119
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3120 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3121 {
3122 compat_uptr_t uptr32;
3123 struct ifreq ifr;
3124 void __user *saved;
3125 int err;
3126
3127 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3128 return -EFAULT;
3129
3130 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3131 return -EFAULT;
3132
3133 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3134 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3135
3136 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3137 if (!err) {
3138 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3139 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3140 err = -EFAULT;
3141 }
3142 return err;
3143 }
3144
3145 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3146 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3147 struct compat_ifreq __user *u_ifreq32)
3148 {
3149 struct ifreq ifreq;
3150 u32 data32;
3151
3152 if (!is_socket_ioctl_cmd(cmd))
3153 return -ENOTTY;
3154 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3155 return -EFAULT;
3156 if (get_user(data32, &u_ifreq32->ifr_data))
3157 return -EFAULT;
3158 ifreq.ifr_data = compat_ptr(data32);
3159
3160 return dev_ioctl(net, cmd, &ifreq, NULL);
3161 }
3162
compat_ifreq_ioctl(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)3163 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3164 unsigned int cmd,
3165 struct compat_ifreq __user *uifr32)
3166 {
3167 struct ifreq __user *uifr;
3168 int err;
3169
3170 /* Handle the fact that while struct ifreq has the same *layout* on
3171 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3172 * which are handled elsewhere, it still has different *size* due to
3173 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3174 * resulting in struct ifreq being 32 and 40 bytes respectively).
3175 * As a result, if the struct happens to be at the end of a page and
3176 * the next page isn't readable/writable, we get a fault. To prevent
3177 * that, copy back and forth to the full size.
3178 */
3179
3180 uifr = compat_alloc_user_space(sizeof(*uifr));
3181 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3182 return -EFAULT;
3183
3184 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3185
3186 if (!err) {
3187 switch (cmd) {
3188 case SIOCGIFFLAGS:
3189 case SIOCGIFMETRIC:
3190 case SIOCGIFMTU:
3191 case SIOCGIFMEM:
3192 case SIOCGIFHWADDR:
3193 case SIOCGIFINDEX:
3194 case SIOCGIFADDR:
3195 case SIOCGIFBRDADDR:
3196 case SIOCGIFDSTADDR:
3197 case SIOCGIFNETMASK:
3198 case SIOCGIFPFLAGS:
3199 case SIOCGIFTXQLEN:
3200 case SIOCGMIIPHY:
3201 case SIOCGMIIREG:
3202 case SIOCGIFNAME:
3203 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3204 err = -EFAULT;
3205 break;
3206 }
3207 }
3208 return err;
3209 }
3210
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3211 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3212 struct compat_ifreq __user *uifr32)
3213 {
3214 struct ifreq ifr;
3215 struct compat_ifmap __user *uifmap32;
3216 int err;
3217
3218 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3219 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3220 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3221 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3222 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3223 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3224 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3225 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3226 if (err)
3227 return -EFAULT;
3228
3229 err = dev_ioctl(net, cmd, &ifr, NULL);
3230
3231 if (cmd == SIOCGIFMAP && !err) {
3232 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3233 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3234 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3235 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3236 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3237 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3238 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3239 if (err)
3240 err = -EFAULT;
3241 }
3242 return err;
3243 }
3244
3245 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3246 * for some operations; this forces use of the newer bridge-utils that
3247 * use compatible ioctls
3248 */
old_bridge_ioctl(compat_ulong_t __user * argp)3249 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3250 {
3251 compat_ulong_t tmp;
3252
3253 if (get_user(tmp, argp))
3254 return -EFAULT;
3255 if (tmp == BRCTL_GET_VERSION)
3256 return BRCTL_VERSION + 1;
3257 return -EINVAL;
3258 }
3259
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3260 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3261 unsigned int cmd, unsigned long arg)
3262 {
3263 void __user *argp = compat_ptr(arg);
3264 struct sock *sk = sock->sk;
3265 struct net *net = sock_net(sk);
3266
3267 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3268 return compat_ifr_data_ioctl(net, cmd, argp);
3269
3270 switch (cmd) {
3271 case SIOCSIFBR:
3272 case SIOCGIFBR:
3273 return old_bridge_ioctl(argp);
3274 case SIOCGIFCONF:
3275 return compat_dev_ifconf(net, argp);
3276 case SIOCWANDEV:
3277 return compat_siocwandev(net, argp);
3278 case SIOCGIFMAP:
3279 case SIOCSIFMAP:
3280 return compat_sioc_ifmap(net, cmd, argp);
3281 case SIOCGSTAMP_OLD:
3282 case SIOCGSTAMPNS_OLD:
3283 if (!sock->ops->gettstamp)
3284 return -ENOIOCTLCMD;
3285 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3286 !COMPAT_USE_64BIT_TIME);
3287
3288 case SIOCETHTOOL:
3289 case SIOCBONDSLAVEINFOQUERY:
3290 case SIOCBONDINFOQUERY:
3291 case SIOCSHWTSTAMP:
3292 case SIOCGHWTSTAMP:
3293 return compat_ifr_data_ioctl(net, cmd, argp);
3294
3295 case FIOSETOWN:
3296 case SIOCSPGRP:
3297 case FIOGETOWN:
3298 case SIOCGPGRP:
3299 case SIOCBRADDBR:
3300 case SIOCBRDELBR:
3301 case SIOCGIFVLAN:
3302 case SIOCSIFVLAN:
3303 case SIOCADDDLCI:
3304 case SIOCDELDLCI:
3305 case SIOCGSKNS:
3306 case SIOCGSTAMP_NEW:
3307 case SIOCGSTAMPNS_NEW:
3308 return sock_ioctl(file, cmd, arg);
3309
3310 case SIOCGIFFLAGS:
3311 case SIOCSIFFLAGS:
3312 case SIOCGIFMETRIC:
3313 case SIOCSIFMETRIC:
3314 case SIOCGIFMTU:
3315 case SIOCSIFMTU:
3316 case SIOCGIFMEM:
3317 case SIOCSIFMEM:
3318 case SIOCGIFHWADDR:
3319 case SIOCSIFHWADDR:
3320 case SIOCADDMULTI:
3321 case SIOCDELMULTI:
3322 case SIOCGIFINDEX:
3323 case SIOCGIFADDR:
3324 case SIOCSIFADDR:
3325 case SIOCSIFHWBROADCAST:
3326 case SIOCDIFADDR:
3327 case SIOCGIFBRDADDR:
3328 case SIOCSIFBRDADDR:
3329 case SIOCGIFDSTADDR:
3330 case SIOCSIFDSTADDR:
3331 case SIOCGIFNETMASK:
3332 case SIOCSIFNETMASK:
3333 case SIOCSIFPFLAGS:
3334 case SIOCGIFPFLAGS:
3335 case SIOCGIFTXQLEN:
3336 case SIOCSIFTXQLEN:
3337 case SIOCBRADDIF:
3338 case SIOCBRDELIF:
3339 case SIOCGIFNAME:
3340 case SIOCSIFNAME:
3341 case SIOCGMIIPHY:
3342 case SIOCGMIIREG:
3343 case SIOCSMIIREG:
3344 case SIOCBONDENSLAVE:
3345 case SIOCBONDRELEASE:
3346 case SIOCBONDSETHWADDR:
3347 case SIOCBONDCHANGEACTIVE:
3348 return compat_ifreq_ioctl(net, sock, cmd, argp);
3349
3350 case SIOCSARP:
3351 case SIOCGARP:
3352 case SIOCDARP:
3353 case SIOCOUTQ:
3354 case SIOCOUTQNSD:
3355 case SIOCATMARK:
3356 return sock_do_ioctl(net, sock, cmd, arg);
3357 }
3358
3359 return -ENOIOCTLCMD;
3360 }
3361
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3362 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3363 unsigned long arg)
3364 {
3365 struct socket *sock = file->private_data;
3366 int ret = -ENOIOCTLCMD;
3367 struct sock *sk;
3368 struct net *net;
3369
3370 sk = sock->sk;
3371 net = sock_net(sk);
3372
3373 if (sock->ops->compat_ioctl)
3374 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3375
3376 if (ret == -ENOIOCTLCMD &&
3377 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3378 ret = compat_wext_handle_ioctl(net, cmd, arg);
3379
3380 if (ret == -ENOIOCTLCMD)
3381 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3382
3383 return ret;
3384 }
3385 #endif
3386
3387 /**
3388 * kernel_bind - bind an address to a socket (kernel space)
3389 * @sock: socket
3390 * @addr: address
3391 * @addrlen: length of address
3392 *
3393 * Returns 0 or an error.
3394 */
3395
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3396 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3397 {
3398 return sock->ops->bind(sock, addr, addrlen);
3399 }
3400 EXPORT_SYMBOL(kernel_bind);
3401
3402 /**
3403 * kernel_listen - move socket to listening state (kernel space)
3404 * @sock: socket
3405 * @backlog: pending connections queue size
3406 *
3407 * Returns 0 or an error.
3408 */
3409
kernel_listen(struct socket * sock,int backlog)3410 int kernel_listen(struct socket *sock, int backlog)
3411 {
3412 return sock->ops->listen(sock, backlog);
3413 }
3414 EXPORT_SYMBOL(kernel_listen);
3415
3416 /**
3417 * kernel_accept - accept a connection (kernel space)
3418 * @sock: listening socket
3419 * @newsock: new connected socket
3420 * @flags: flags
3421 *
3422 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3423 * If it fails, @newsock is guaranteed to be %NULL.
3424 * Returns 0 or an error.
3425 */
3426
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3427 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3428 {
3429 struct sock *sk = sock->sk;
3430 int err;
3431
3432 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3433 newsock);
3434 if (err < 0)
3435 goto done;
3436
3437 err = sock->ops->accept(sock, *newsock, flags, true);
3438 if (err < 0) {
3439 sock_release(*newsock);
3440 *newsock = NULL;
3441 goto done;
3442 }
3443
3444 (*newsock)->ops = sock->ops;
3445 __module_get((*newsock)->ops->owner);
3446
3447 done:
3448 return err;
3449 }
3450 EXPORT_SYMBOL(kernel_accept);
3451
3452 /**
3453 * kernel_connect - connect a socket (kernel space)
3454 * @sock: socket
3455 * @addr: address
3456 * @addrlen: address length
3457 * @flags: flags (O_NONBLOCK, ...)
3458 *
3459 * For datagram sockets, @addr is the addres to which datagrams are sent
3460 * by default, and the only address from which datagrams are received.
3461 * For stream sockets, attempts to connect to @addr.
3462 * Returns 0 or an error code.
3463 */
3464
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3465 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3466 int flags)
3467 {
3468 return sock->ops->connect(sock, addr, addrlen, flags);
3469 }
3470 EXPORT_SYMBOL(kernel_connect);
3471
3472 /**
3473 * kernel_getsockname - get the address which the socket is bound (kernel space)
3474 * @sock: socket
3475 * @addr: address holder
3476 *
3477 * Fills the @addr pointer with the address which the socket is bound.
3478 * Returns 0 or an error code.
3479 */
3480
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3481 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3482 {
3483 return sock->ops->getname(sock, addr, 0);
3484 }
3485 EXPORT_SYMBOL(kernel_getsockname);
3486
3487 /**
3488 * kernel_getpeername - get the address which the socket is connected (kernel space)
3489 * @sock: socket
3490 * @addr: address holder
3491 *
3492 * Fills the @addr pointer with the address which the socket is connected.
3493 * Returns 0 or an error code.
3494 */
3495
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3496 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3497 {
3498 return sock->ops->getname(sock, addr, 1);
3499 }
3500 EXPORT_SYMBOL(kernel_getpeername);
3501
3502 /**
3503 * kernel_sendpage - send a &page through a socket (kernel space)
3504 * @sock: socket
3505 * @page: page
3506 * @offset: page offset
3507 * @size: total size in bytes
3508 * @flags: flags (MSG_DONTWAIT, ...)
3509 *
3510 * Returns the total amount sent in bytes or an error.
3511 */
3512
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3513 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3514 size_t size, int flags)
3515 {
3516 if (sock->ops->sendpage) {
3517 /* Warn in case the improper page to zero-copy send */
3518 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3519 return sock->ops->sendpage(sock, page, offset, size, flags);
3520 }
3521 return sock_no_sendpage(sock, page, offset, size, flags);
3522 }
3523 EXPORT_SYMBOL(kernel_sendpage);
3524
3525 /**
3526 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3527 * @sk: sock
3528 * @page: page
3529 * @offset: page offset
3530 * @size: total size in bytes
3531 * @flags: flags (MSG_DONTWAIT, ...)
3532 *
3533 * Returns the total amount sent in bytes or an error.
3534 * Caller must hold @sk.
3535 */
3536
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3537 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3538 size_t size, int flags)
3539 {
3540 struct socket *sock = sk->sk_socket;
3541
3542 if (sock->ops->sendpage_locked)
3543 return sock->ops->sendpage_locked(sk, page, offset, size,
3544 flags);
3545
3546 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3547 }
3548 EXPORT_SYMBOL(kernel_sendpage_locked);
3549
3550 /**
3551 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3552 * @sock: socket
3553 * @how: connection part
3554 *
3555 * Returns 0 or an error.
3556 */
3557
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3558 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3559 {
3560 return sock->ops->shutdown(sock, how);
3561 }
3562 EXPORT_SYMBOL(kernel_sock_shutdown);
3563
3564 /**
3565 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3566 * @sk: socket
3567 *
3568 * This routine returns the IP overhead imposed by a socket i.e.
3569 * the length of the underlying IP header, depending on whether
3570 * this is an IPv4 or IPv6 socket and the length from IP options turned
3571 * on at the socket. Assumes that the caller has a lock on the socket.
3572 */
3573
kernel_sock_ip_overhead(struct sock * sk)3574 u32 kernel_sock_ip_overhead(struct sock *sk)
3575 {
3576 struct inet_sock *inet;
3577 struct ip_options_rcu *opt;
3578 u32 overhead = 0;
3579 #if IS_ENABLED(CONFIG_IPV6)
3580 struct ipv6_pinfo *np;
3581 struct ipv6_txoptions *optv6 = NULL;
3582 #endif /* IS_ENABLED(CONFIG_IPV6) */
3583
3584 if (!sk)
3585 return overhead;
3586
3587 switch (sk->sk_family) {
3588 case AF_INET:
3589 inet = inet_sk(sk);
3590 overhead += sizeof(struct iphdr);
3591 opt = rcu_dereference_protected(inet->inet_opt,
3592 sock_owned_by_user(sk));
3593 if (opt)
3594 overhead += opt->opt.optlen;
3595 return overhead;
3596 #if IS_ENABLED(CONFIG_IPV6)
3597 case AF_INET6:
3598 np = inet6_sk(sk);
3599 overhead += sizeof(struct ipv6hdr);
3600 if (np)
3601 optv6 = rcu_dereference_protected(np->opt,
3602 sock_owned_by_user(sk));
3603 if (optv6)
3604 overhead += (optv6->opt_flen + optv6->opt_nflen);
3605 return overhead;
3606 #endif /* IS_ENABLED(CONFIG_IPV6) */
3607 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3608 return overhead;
3609 }
3610 }
3611 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3612