xref: /OK3568_Linux_fs/kernel/kernel/cpu.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 #include <uapi/linux/sched/types.h>
39 
40 #include <trace/events/power.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/cpuhp.h>
43 
44 #undef CREATE_TRACE_POINTS
45 #include <trace/hooks/sched.h>
46 #include <trace/hooks/cpu.h>
47 
48 #include "smpboot.h"
49 
50 /**
51  * cpuhp_cpu_state - Per cpu hotplug state storage
52  * @state:	The current cpu state
53  * @target:	The target state
54  * @thread:	Pointer to the hotplug thread
55  * @should_run:	Thread should execute
56  * @rollback:	Perform a rollback
57  * @single:	Single callback invocation
58  * @bringup:	Single callback bringup or teardown selector
59  * @cb_state:	The state for a single callback (install/uninstall)
60  * @result:	Result of the operation
61  * @done_up:	Signal completion to the issuer of the task for cpu-up
62  * @done_down:	Signal completion to the issuer of the task for cpu-down
63  */
64 struct cpuhp_cpu_state {
65 	enum cpuhp_state	state;
66 	enum cpuhp_state	target;
67 	enum cpuhp_state	fail;
68 #ifdef CONFIG_SMP
69 	struct task_struct	*thread;
70 	bool			should_run;
71 	bool			rollback;
72 	bool			single;
73 	bool			bringup;
74 	struct hlist_node	*node;
75 	struct hlist_node	*last;
76 	enum cpuhp_state	cb_state;
77 	int			result;
78 	struct completion	done_up;
79 	struct completion	done_down;
80 #endif
81 };
82 
83 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
84 	.fail = CPUHP_INVALID,
85 };
86 
87 #ifdef CONFIG_SMP
88 cpumask_t cpus_booted_once_mask;
89 #endif
90 
91 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
92 static struct lockdep_map cpuhp_state_up_map =
93 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
94 static struct lockdep_map cpuhp_state_down_map =
95 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
96 
97 
cpuhp_lock_acquire(bool bringup)98 static inline void cpuhp_lock_acquire(bool bringup)
99 {
100 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
101 }
102 
cpuhp_lock_release(bool bringup)103 static inline void cpuhp_lock_release(bool bringup)
104 {
105 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
106 }
107 #else
108 
cpuhp_lock_acquire(bool bringup)109 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)110 static inline void cpuhp_lock_release(bool bringup) { }
111 
112 #endif
113 
114 /**
115  * cpuhp_step - Hotplug state machine step
116  * @name:	Name of the step
117  * @startup:	Startup function of the step
118  * @teardown:	Teardown function of the step
119  * @cant_stop:	Bringup/teardown can't be stopped at this step
120  */
121 struct cpuhp_step {
122 	const char		*name;
123 	union {
124 		int		(*single)(unsigned int cpu);
125 		int		(*multi)(unsigned int cpu,
126 					 struct hlist_node *node);
127 	} startup;
128 	union {
129 		int		(*single)(unsigned int cpu);
130 		int		(*multi)(unsigned int cpu,
131 					 struct hlist_node *node);
132 	} teardown;
133 	struct hlist_head	list;
134 	bool			cant_stop;
135 	bool			multi_instance;
136 };
137 
138 static DEFINE_MUTEX(cpuhp_state_mutex);
139 static struct cpuhp_step cpuhp_hp_states[];
140 
cpuhp_get_step(enum cpuhp_state state)141 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
142 {
143 	return cpuhp_hp_states + state;
144 }
145 
146 /**
147  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
148  * @cpu:	The cpu for which the callback should be invoked
149  * @state:	The state to do callbacks for
150  * @bringup:	True if the bringup callback should be invoked
151  * @node:	For multi-instance, do a single entry callback for install/remove
152  * @lastp:	For multi-instance rollback, remember how far we got
153  *
154  * Called from cpu hotplug and from the state register machinery.
155  */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)156 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
157 				 bool bringup, struct hlist_node *node,
158 				 struct hlist_node **lastp)
159 {
160 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
161 	struct cpuhp_step *step = cpuhp_get_step(state);
162 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
163 	int (*cb)(unsigned int cpu);
164 	int ret, cnt;
165 
166 	if (st->fail == state) {
167 		st->fail = CPUHP_INVALID;
168 
169 		if (!(bringup ? step->startup.single : step->teardown.single))
170 			return 0;
171 
172 		return -EAGAIN;
173 	}
174 
175 	if (!step->multi_instance) {
176 		WARN_ON_ONCE(lastp && *lastp);
177 		cb = bringup ? step->startup.single : step->teardown.single;
178 		if (!cb)
179 			return 0;
180 		trace_cpuhp_enter(cpu, st->target, state, cb);
181 		ret = cb(cpu);
182 		trace_cpuhp_exit(cpu, st->state, state, ret);
183 		return ret;
184 	}
185 	cbm = bringup ? step->startup.multi : step->teardown.multi;
186 	if (!cbm)
187 		return 0;
188 
189 	/* Single invocation for instance add/remove */
190 	if (node) {
191 		WARN_ON_ONCE(lastp && *lastp);
192 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
193 		ret = cbm(cpu, node);
194 		trace_cpuhp_exit(cpu, st->state, state, ret);
195 		return ret;
196 	}
197 
198 	/* State transition. Invoke on all instances */
199 	cnt = 0;
200 	hlist_for_each(node, &step->list) {
201 		if (lastp && node == *lastp)
202 			break;
203 
204 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 		ret = cbm(cpu, node);
206 		trace_cpuhp_exit(cpu, st->state, state, ret);
207 		if (ret) {
208 			if (!lastp)
209 				goto err;
210 
211 			*lastp = node;
212 			return ret;
213 		}
214 		cnt++;
215 	}
216 	if (lastp)
217 		*lastp = NULL;
218 	return 0;
219 err:
220 	/* Rollback the instances if one failed */
221 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
222 	if (!cbm)
223 		return ret;
224 
225 	hlist_for_each(node, &step->list) {
226 		if (!cnt--)
227 			break;
228 
229 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
230 		ret = cbm(cpu, node);
231 		trace_cpuhp_exit(cpu, st->state, state, ret);
232 		/*
233 		 * Rollback must not fail,
234 		 */
235 		WARN_ON_ONCE(ret);
236 	}
237 	return ret;
238 }
239 
240 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)241 static bool cpuhp_is_ap_state(enum cpuhp_state state)
242 {
243 	/*
244 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
245 	 * purposes as that state is handled explicitly in cpu_down.
246 	 */
247 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
248 }
249 
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)250 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
251 {
252 	struct completion *done = bringup ? &st->done_up : &st->done_down;
253 	wait_for_completion(done);
254 }
255 
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)256 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
257 {
258 	struct completion *done = bringup ? &st->done_up : &st->done_down;
259 	complete(done);
260 }
261 
262 /*
263  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
264  */
cpuhp_is_atomic_state(enum cpuhp_state state)265 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
266 {
267 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
268 }
269 
270 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
271 static DEFINE_MUTEX(cpu_add_remove_lock);
272 bool cpuhp_tasks_frozen;
273 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
274 
275 /*
276  * The following two APIs (cpu_maps_update_begin/done) must be used when
277  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
278  */
cpu_maps_update_begin(void)279 void cpu_maps_update_begin(void)
280 {
281 	mutex_lock(&cpu_add_remove_lock);
282 }
283 EXPORT_SYMBOL_GPL(cpu_maps_update_begin);
284 
cpu_maps_update_done(void)285 void cpu_maps_update_done(void)
286 {
287 	mutex_unlock(&cpu_add_remove_lock);
288 }
289 EXPORT_SYMBOL_GPL(cpu_maps_update_done);
290 
291 /*
292  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
293  * Should always be manipulated under cpu_add_remove_lock
294  */
295 static int cpu_hotplug_disabled;
296 
297 #ifdef CONFIG_HOTPLUG_CPU
298 
299 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
300 
cpus_read_lock(void)301 void cpus_read_lock(void)
302 {
303 	percpu_down_read(&cpu_hotplug_lock);
304 }
305 EXPORT_SYMBOL_GPL(cpus_read_lock);
306 
cpus_read_trylock(void)307 int cpus_read_trylock(void)
308 {
309 	return percpu_down_read_trylock(&cpu_hotplug_lock);
310 }
311 EXPORT_SYMBOL_GPL(cpus_read_trylock);
312 
cpus_read_unlock(void)313 void cpus_read_unlock(void)
314 {
315 	percpu_up_read(&cpu_hotplug_lock);
316 }
317 EXPORT_SYMBOL_GPL(cpus_read_unlock);
318 
cpus_write_lock(void)319 void cpus_write_lock(void)
320 {
321 	percpu_down_write(&cpu_hotplug_lock);
322 }
323 
cpus_write_unlock(void)324 void cpus_write_unlock(void)
325 {
326 	percpu_up_write(&cpu_hotplug_lock);
327 }
328 
lockdep_assert_cpus_held(void)329 void lockdep_assert_cpus_held(void)
330 {
331 	/*
332 	 * We can't have hotplug operations before userspace starts running,
333 	 * and some init codepaths will knowingly not take the hotplug lock.
334 	 * This is all valid, so mute lockdep until it makes sense to report
335 	 * unheld locks.
336 	 */
337 	if (system_state < SYSTEM_RUNNING)
338 		return;
339 
340 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
341 }
342 
lockdep_acquire_cpus_lock(void)343 static void lockdep_acquire_cpus_lock(void)
344 {
345 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
346 }
347 
lockdep_release_cpus_lock(void)348 static void lockdep_release_cpus_lock(void)
349 {
350 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
351 }
352 
353 /*
354  * Wait for currently running CPU hotplug operations to complete (if any) and
355  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
356  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
357  * hotplug path before performing hotplug operations. So acquiring that lock
358  * guarantees mutual exclusion from any currently running hotplug operations.
359  */
cpu_hotplug_disable(void)360 void cpu_hotplug_disable(void)
361 {
362 	cpu_maps_update_begin();
363 	cpu_hotplug_disabled++;
364 	cpu_maps_update_done();
365 }
366 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
367 
__cpu_hotplug_enable(void)368 static void __cpu_hotplug_enable(void)
369 {
370 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
371 		return;
372 	cpu_hotplug_disabled--;
373 }
374 
cpu_hotplug_enable(void)375 void cpu_hotplug_enable(void)
376 {
377 	cpu_maps_update_begin();
378 	__cpu_hotplug_enable();
379 	cpu_maps_update_done();
380 }
381 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
382 
383 #else
384 
lockdep_acquire_cpus_lock(void)385 static void lockdep_acquire_cpus_lock(void)
386 {
387 }
388 
lockdep_release_cpus_lock(void)389 static void lockdep_release_cpus_lock(void)
390 {
391 }
392 
393 #endif	/* CONFIG_HOTPLUG_CPU */
394 
395 /*
396  * Architectures that need SMT-specific errata handling during SMT hotplug
397  * should override this.
398  */
arch_smt_update(void)399 void __weak arch_smt_update(void) { }
400 
401 #ifdef CONFIG_HOTPLUG_SMT
402 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
403 
cpu_smt_disable(bool force)404 void __init cpu_smt_disable(bool force)
405 {
406 	if (!cpu_smt_possible())
407 		return;
408 
409 	if (force) {
410 		pr_info("SMT: Force disabled\n");
411 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
412 	} else {
413 		pr_info("SMT: disabled\n");
414 		cpu_smt_control = CPU_SMT_DISABLED;
415 	}
416 }
417 
418 /*
419  * The decision whether SMT is supported can only be done after the full
420  * CPU identification. Called from architecture code.
421  */
cpu_smt_check_topology(void)422 void __init cpu_smt_check_topology(void)
423 {
424 	if (!topology_smt_supported())
425 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
426 }
427 
smt_cmdline_disable(char * str)428 static int __init smt_cmdline_disable(char *str)
429 {
430 	cpu_smt_disable(str && !strcmp(str, "force"));
431 	return 0;
432 }
433 early_param("nosmt", smt_cmdline_disable);
434 
cpu_smt_allowed(unsigned int cpu)435 static inline bool cpu_smt_allowed(unsigned int cpu)
436 {
437 	if (cpu_smt_control == CPU_SMT_ENABLED)
438 		return true;
439 
440 	if (topology_is_primary_thread(cpu))
441 		return true;
442 
443 	/*
444 	 * On x86 it's required to boot all logical CPUs at least once so
445 	 * that the init code can get a chance to set CR4.MCE on each
446 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
447 	 * core will shutdown the machine.
448 	 */
449 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
450 }
451 
452 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)453 bool cpu_smt_possible(void)
454 {
455 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
456 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
457 }
458 EXPORT_SYMBOL_GPL(cpu_smt_possible);
459 #else
cpu_smt_allowed(unsigned int cpu)460 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
461 #endif
462 
463 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)464 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
465 {
466 	enum cpuhp_state prev_state = st->state;
467 
468 	st->rollback = false;
469 	st->last = NULL;
470 
471 	st->target = target;
472 	st->single = false;
473 	st->bringup = st->state < target;
474 
475 	return prev_state;
476 }
477 
478 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)479 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
480 {
481 	st->rollback = true;
482 
483 	/*
484 	 * If we have st->last we need to undo partial multi_instance of this
485 	 * state first. Otherwise start undo at the previous state.
486 	 */
487 	if (!st->last) {
488 		if (st->bringup)
489 			st->state--;
490 		else
491 			st->state++;
492 	}
493 
494 	st->target = prev_state;
495 	st->bringup = !st->bringup;
496 }
497 
498 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)499 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
500 {
501 	if (!st->single && st->state == st->target)
502 		return;
503 
504 	st->result = 0;
505 	/*
506 	 * Make sure the above stores are visible before should_run becomes
507 	 * true. Paired with the mb() above in cpuhp_thread_fun()
508 	 */
509 	smp_mb();
510 	st->should_run = true;
511 	wake_up_process(st->thread);
512 	wait_for_ap_thread(st, st->bringup);
513 }
514 
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)515 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
516 {
517 	enum cpuhp_state prev_state;
518 	int ret;
519 
520 	prev_state = cpuhp_set_state(st, target);
521 	__cpuhp_kick_ap(st);
522 	if ((ret = st->result)) {
523 		cpuhp_reset_state(st, prev_state);
524 		__cpuhp_kick_ap(st);
525 	}
526 
527 	return ret;
528 }
529 
bringup_wait_for_ap(unsigned int cpu)530 static int bringup_wait_for_ap(unsigned int cpu)
531 {
532 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
533 
534 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
535 	wait_for_ap_thread(st, true);
536 	if (WARN_ON_ONCE((!cpu_online(cpu))))
537 		return -ECANCELED;
538 
539 	/* Unpark the hotplug thread of the target cpu */
540 	kthread_unpark(st->thread);
541 
542 	/*
543 	 * SMT soft disabling on X86 requires to bring the CPU out of the
544 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
545 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
546 	 * cpu_smt_allowed() check will now return false if this is not the
547 	 * primary sibling.
548 	 */
549 	if (!cpu_smt_allowed(cpu))
550 		return -ECANCELED;
551 
552 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
553 		return 0;
554 
555 	return cpuhp_kick_ap(st, st->target);
556 }
557 
bringup_cpu(unsigned int cpu)558 static int bringup_cpu(unsigned int cpu)
559 {
560 	struct task_struct *idle = idle_thread_get(cpu);
561 	int ret;
562 
563 	/*
564 	 * Reset stale stack state from the last time this CPU was online.
565 	 */
566 	scs_task_reset(idle);
567 	kasan_unpoison_task_stack(idle);
568 
569 	/*
570 	 * Some architectures have to walk the irq descriptors to
571 	 * setup the vector space for the cpu which comes online.
572 	 * Prevent irq alloc/free across the bringup.
573 	 */
574 	irq_lock_sparse();
575 
576 	/* Arch-specific enabling code. */
577 	ret = __cpu_up(cpu, idle);
578 	irq_unlock_sparse();
579 	if (ret)
580 		return ret;
581 	return bringup_wait_for_ap(cpu);
582 }
583 
finish_cpu(unsigned int cpu)584 static int finish_cpu(unsigned int cpu)
585 {
586 	struct task_struct *idle = idle_thread_get(cpu);
587 	struct mm_struct *mm = idle->active_mm;
588 
589 	/*
590 	 * idle_task_exit() will have switched to &init_mm, now
591 	 * clean up any remaining active_mm state.
592 	 */
593 	if (mm != &init_mm)
594 		idle->active_mm = &init_mm;
595 	mmdrop(mm);
596 	return 0;
597 }
598 
599 /*
600  * Hotplug state machine related functions
601  */
602 
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)603 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
604 {
605 	for (st->state--; st->state > st->target; st->state--)
606 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
607 }
608 
can_rollback_cpu(struct cpuhp_cpu_state * st)609 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
610 {
611 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
612 		return true;
613 	/*
614 	 * When CPU hotplug is disabled, then taking the CPU down is not
615 	 * possible because takedown_cpu() and the architecture and
616 	 * subsystem specific mechanisms are not available. So the CPU
617 	 * which would be completely unplugged again needs to stay around
618 	 * in the current state.
619 	 */
620 	return st->state <= CPUHP_BRINGUP_CPU;
621 }
622 
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)623 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
624 			      enum cpuhp_state target)
625 {
626 	enum cpuhp_state prev_state = st->state;
627 	int ret = 0;
628 
629 	while (st->state < target) {
630 		st->state++;
631 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
632 		if (ret) {
633 			if (can_rollback_cpu(st)) {
634 				st->target = prev_state;
635 				undo_cpu_up(cpu, st);
636 			}
637 			break;
638 		}
639 	}
640 	return ret;
641 }
642 
643 /*
644  * The cpu hotplug threads manage the bringup and teardown of the cpus
645  */
cpuhp_create(unsigned int cpu)646 static void cpuhp_create(unsigned int cpu)
647 {
648 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
649 
650 	init_completion(&st->done_up);
651 	init_completion(&st->done_down);
652 }
653 
cpuhp_should_run(unsigned int cpu)654 static int cpuhp_should_run(unsigned int cpu)
655 {
656 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
657 
658 	return st->should_run;
659 }
660 
661 /*
662  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
663  * callbacks when a state gets [un]installed at runtime.
664  *
665  * Each invocation of this function by the smpboot thread does a single AP
666  * state callback.
667  *
668  * It has 3 modes of operation:
669  *  - single: runs st->cb_state
670  *  - up:     runs ++st->state, while st->state < st->target
671  *  - down:   runs st->state--, while st->state > st->target
672  *
673  * When complete or on error, should_run is cleared and the completion is fired.
674  */
cpuhp_thread_fun(unsigned int cpu)675 static void cpuhp_thread_fun(unsigned int cpu)
676 {
677 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
678 	bool bringup = st->bringup;
679 	enum cpuhp_state state;
680 
681 	if (WARN_ON_ONCE(!st->should_run))
682 		return;
683 
684 	/*
685 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
686 	 * that if we see ->should_run we also see the rest of the state.
687 	 */
688 	smp_mb();
689 
690 	/*
691 	 * The BP holds the hotplug lock, but we're now running on the AP,
692 	 * ensure that anybody asserting the lock is held, will actually find
693 	 * it so.
694 	 */
695 	lockdep_acquire_cpus_lock();
696 	cpuhp_lock_acquire(bringup);
697 
698 	if (st->single) {
699 		state = st->cb_state;
700 		st->should_run = false;
701 	} else {
702 		if (bringup) {
703 			st->state++;
704 			state = st->state;
705 			st->should_run = (st->state < st->target);
706 			WARN_ON_ONCE(st->state > st->target);
707 		} else {
708 			state = st->state;
709 			st->state--;
710 			st->should_run = (st->state > st->target);
711 			WARN_ON_ONCE(st->state < st->target);
712 		}
713 	}
714 
715 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
716 
717 	if (cpuhp_is_atomic_state(state)) {
718 		local_irq_disable();
719 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
720 		local_irq_enable();
721 
722 		/*
723 		 * STARTING/DYING must not fail!
724 		 */
725 		WARN_ON_ONCE(st->result);
726 	} else {
727 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
728 	}
729 
730 	if (st->result) {
731 		/*
732 		 * If we fail on a rollback, we're up a creek without no
733 		 * paddle, no way forward, no way back. We loose, thanks for
734 		 * playing.
735 		 */
736 		WARN_ON_ONCE(st->rollback);
737 		st->should_run = false;
738 	}
739 
740 	cpuhp_lock_release(bringup);
741 	lockdep_release_cpus_lock();
742 
743 	if (!st->should_run)
744 		complete_ap_thread(st, bringup);
745 }
746 
747 /* Invoke a single callback on a remote cpu */
748 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)749 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
750 			 struct hlist_node *node)
751 {
752 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
753 	int ret;
754 
755 	if (!cpu_online(cpu))
756 		return 0;
757 
758 	cpuhp_lock_acquire(false);
759 	cpuhp_lock_release(false);
760 
761 	cpuhp_lock_acquire(true);
762 	cpuhp_lock_release(true);
763 
764 	/*
765 	 * If we are up and running, use the hotplug thread. For early calls
766 	 * we invoke the thread function directly.
767 	 */
768 	if (!st->thread)
769 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
770 
771 	st->rollback = false;
772 	st->last = NULL;
773 
774 	st->node = node;
775 	st->bringup = bringup;
776 	st->cb_state = state;
777 	st->single = true;
778 
779 	__cpuhp_kick_ap(st);
780 
781 	/*
782 	 * If we failed and did a partial, do a rollback.
783 	 */
784 	if ((ret = st->result) && st->last) {
785 		st->rollback = true;
786 		st->bringup = !bringup;
787 
788 		__cpuhp_kick_ap(st);
789 	}
790 
791 	/*
792 	 * Clean up the leftovers so the next hotplug operation wont use stale
793 	 * data.
794 	 */
795 	st->node = st->last = NULL;
796 	return ret;
797 }
798 
cpuhp_kick_ap_work(unsigned int cpu)799 static int cpuhp_kick_ap_work(unsigned int cpu)
800 {
801 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
802 	enum cpuhp_state prev_state = st->state;
803 	int ret;
804 
805 	cpuhp_lock_acquire(false);
806 	cpuhp_lock_release(false);
807 
808 	cpuhp_lock_acquire(true);
809 	cpuhp_lock_release(true);
810 
811 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
812 	ret = cpuhp_kick_ap(st, st->target);
813 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
814 
815 	return ret;
816 }
817 
818 static struct smp_hotplug_thread cpuhp_threads = {
819 	.store			= &cpuhp_state.thread,
820 	.create			= &cpuhp_create,
821 	.thread_should_run	= cpuhp_should_run,
822 	.thread_fn		= cpuhp_thread_fun,
823 	.thread_comm		= "cpuhp/%u",
824 	.selfparking		= true,
825 };
826 
cpuhp_threads_init(void)827 void __init cpuhp_threads_init(void)
828 {
829 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
830 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
831 }
832 
833 /*
834  *
835  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
836  * protected region.
837  *
838  * The operation is still serialized against concurrent CPU hotplug via
839  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
840  * serialized against other hotplug related activity like adding or
841  * removing of state callbacks and state instances, which invoke either the
842  * startup or the teardown callback of the affected state.
843  *
844  * This is required for subsystems which are unfixable vs. CPU hotplug and
845  * evade lock inversion problems by scheduling work which has to be
846  * completed _before_ cpu_up()/_cpu_down() returns.
847  *
848  * Don't even think about adding anything to this for any new code or even
849  * drivers. It's only purpose is to keep existing lock order trainwrecks
850  * working.
851  *
852  * For cpu_down() there might be valid reasons to finish cleanups which are
853  * not required to be done under cpu_hotplug_lock, but that's a different
854  * story and would be not invoked via this.
855  */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)856 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
857 {
858 	/*
859 	 * cpusets delegate hotplug operations to a worker to "solve" the
860 	 * lock order problems. Wait for the worker, but only if tasks are
861 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
862 	 *
863 	 * The wait is required because otherwise the hotplug operation
864 	 * returns with inconsistent state, which could even be observed in
865 	 * user space when a new CPU is brought up. The CPU plug uevent
866 	 * would be delivered and user space reacting on it would fail to
867 	 * move tasks to the newly plugged CPU up to the point where the
868 	 * work has finished because up to that point the newly plugged CPU
869 	 * is not assignable in cpusets/cgroups. On unplug that's not
870 	 * necessarily a visible issue, but it is still inconsistent state,
871 	 * which is the real problem which needs to be "fixed". This can't
872 	 * prevent the transient state between scheduling the work and
873 	 * returning from waiting for it.
874 	 */
875 	if (!tasks_frozen)
876 		cpuset_wait_for_hotplug();
877 }
878 
879 #ifdef CONFIG_HOTPLUG_CPU
880 #ifndef arch_clear_mm_cpumask_cpu
881 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
882 #endif
883 
884 /**
885  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
886  * @cpu: a CPU id
887  *
888  * This function walks all processes, finds a valid mm struct for each one and
889  * then clears a corresponding bit in mm's cpumask.  While this all sounds
890  * trivial, there are various non-obvious corner cases, which this function
891  * tries to solve in a safe manner.
892  *
893  * Also note that the function uses a somewhat relaxed locking scheme, so it may
894  * be called only for an already offlined CPU.
895  */
clear_tasks_mm_cpumask(int cpu)896 void clear_tasks_mm_cpumask(int cpu)
897 {
898 	struct task_struct *p;
899 
900 	/*
901 	 * This function is called after the cpu is taken down and marked
902 	 * offline, so its not like new tasks will ever get this cpu set in
903 	 * their mm mask. -- Peter Zijlstra
904 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
905 	 * full-fledged tasklist_lock.
906 	 */
907 	WARN_ON(cpu_online(cpu));
908 	rcu_read_lock();
909 	for_each_process(p) {
910 		struct task_struct *t;
911 
912 		/*
913 		 * Main thread might exit, but other threads may still have
914 		 * a valid mm. Find one.
915 		 */
916 		t = find_lock_task_mm(p);
917 		if (!t)
918 			continue;
919 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
920 		task_unlock(t);
921 	}
922 	rcu_read_unlock();
923 }
924 
925 /* Take this CPU down. */
take_cpu_down(void * _param)926 static int take_cpu_down(void *_param)
927 {
928 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
929 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
930 	int err, cpu = smp_processor_id();
931 	int ret;
932 
933 	/* Ensure this CPU doesn't handle any more interrupts. */
934 	err = __cpu_disable();
935 	if (err < 0)
936 		return err;
937 
938 	/*
939 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
940 	 * do this step again.
941 	 */
942 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
943 	st->state--;
944 	/* Invoke the former CPU_DYING callbacks */
945 	for (; st->state > target; st->state--) {
946 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
947 		/*
948 		 * DYING must not fail!
949 		 */
950 		WARN_ON_ONCE(ret);
951 	}
952 
953 	/* Give up timekeeping duties */
954 	tick_handover_do_timer();
955 	/* Remove CPU from timer broadcasting */
956 	tick_offline_cpu(cpu);
957 	/* Park the stopper thread */
958 	stop_machine_park(cpu);
959 	return 0;
960 }
961 
takedown_cpu(unsigned int cpu)962 static int takedown_cpu(unsigned int cpu)
963 {
964 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
965 	int err;
966 
967 	/* Park the smpboot threads */
968 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
969 
970 	/*
971 	 * Prevent irq alloc/free while the dying cpu reorganizes the
972 	 * interrupt affinities.
973 	 */
974 	irq_lock_sparse();
975 
976 	/*
977 	 * So now all preempt/rcu users must observe !cpu_active().
978 	 */
979 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
980 	if (err) {
981 		/* CPU refused to die */
982 		irq_unlock_sparse();
983 		/* Unpark the hotplug thread so we can rollback there */
984 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
985 		return err;
986 	}
987 	BUG_ON(cpu_online(cpu));
988 
989 	/*
990 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
991 	 * all runnable tasks from the CPU, there's only the idle task left now
992 	 * that the migration thread is done doing the stop_machine thing.
993 	 *
994 	 * Wait for the stop thread to go away.
995 	 */
996 	wait_for_ap_thread(st, false);
997 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
998 
999 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1000 	irq_unlock_sparse();
1001 
1002 	hotplug_cpu__broadcast_tick_pull(cpu);
1003 	/* This actually kills the CPU. */
1004 	__cpu_die(cpu);
1005 
1006 	tick_cleanup_dead_cpu(cpu);
1007 	rcutree_migrate_callbacks(cpu);
1008 	return 0;
1009 }
1010 
cpuhp_complete_idle_dead(void * arg)1011 static void cpuhp_complete_idle_dead(void *arg)
1012 {
1013 	struct cpuhp_cpu_state *st = arg;
1014 
1015 	complete_ap_thread(st, false);
1016 }
1017 
cpuhp_report_idle_dead(void)1018 void cpuhp_report_idle_dead(void)
1019 {
1020 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1021 
1022 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1023 	rcu_report_dead(smp_processor_id());
1024 	st->state = CPUHP_AP_IDLE_DEAD;
1025 	/*
1026 	 * We cannot call complete after rcu_report_dead() so we delegate it
1027 	 * to an online cpu.
1028 	 */
1029 	smp_call_function_single(cpumask_first(cpu_online_mask),
1030 				 cpuhp_complete_idle_dead, st, 0);
1031 }
1032 
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)1033 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
1034 {
1035 	for (st->state++; st->state < st->target; st->state++)
1036 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1037 }
1038 
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1039 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1040 				enum cpuhp_state target)
1041 {
1042 	enum cpuhp_state prev_state = st->state;
1043 	int ret = 0;
1044 
1045 	for (; st->state > target; st->state--) {
1046 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
1047 		if (ret) {
1048 			st->target = prev_state;
1049 			if (st->state < prev_state)
1050 				undo_cpu_down(cpu, st);
1051 			break;
1052 		}
1053 	}
1054 	return ret;
1055 }
1056 
1057 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1058 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1059 			   enum cpuhp_state target)
1060 {
1061 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1062 	int prev_state, ret = 0;
1063 
1064 	if (num_active_cpus() == 1 && cpu_active(cpu))
1065 		return -EBUSY;
1066 
1067 	if (!cpu_present(cpu))
1068 		return -EINVAL;
1069 
1070 	cpus_write_lock();
1071 
1072 	cpuhp_tasks_frozen = tasks_frozen;
1073 
1074 	prev_state = cpuhp_set_state(st, target);
1075 	/*
1076 	 * If the current CPU state is in the range of the AP hotplug thread,
1077 	 * then we need to kick the thread.
1078 	 */
1079 	if (st->state > CPUHP_TEARDOWN_CPU) {
1080 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1081 		ret = cpuhp_kick_ap_work(cpu);
1082 		/*
1083 		 * The AP side has done the error rollback already. Just
1084 		 * return the error code..
1085 		 */
1086 		if (ret)
1087 			goto out;
1088 
1089 		/*
1090 		 * We might have stopped still in the range of the AP hotplug
1091 		 * thread. Nothing to do anymore.
1092 		 */
1093 		if (st->state > CPUHP_TEARDOWN_CPU)
1094 			goto out;
1095 
1096 		st->target = target;
1097 	}
1098 	/*
1099 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1100 	 * to do the further cleanups.
1101 	 */
1102 	ret = cpuhp_down_callbacks(cpu, st, target);
1103 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1104 		cpuhp_reset_state(st, prev_state);
1105 		__cpuhp_kick_ap(st);
1106 	}
1107 
1108 out:
1109 	cpus_write_unlock();
1110 	/*
1111 	 * Do post unplug cleanup. This is still protected against
1112 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1113 	 */
1114 	lockup_detector_cleanup();
1115 	arch_smt_update();
1116 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1117 	return ret;
1118 }
1119 
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1120 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1121 {
1122 	if (cpu_hotplug_disabled)
1123 		return -EBUSY;
1124 	return _cpu_down(cpu, 0, target);
1125 }
1126 
cpu_down(unsigned int cpu,enum cpuhp_state target)1127 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1128 {
1129 	int err;
1130 
1131 	cpu_maps_update_begin();
1132 	err = cpu_down_maps_locked(cpu, target);
1133 	cpu_maps_update_done();
1134 	return err;
1135 }
1136 
1137 /**
1138  * cpu_device_down - Bring down a cpu device
1139  * @dev: Pointer to the cpu device to offline
1140  *
1141  * This function is meant to be used by device core cpu subsystem only.
1142  *
1143  * Other subsystems should use remove_cpu() instead.
1144  */
cpu_device_down(struct device * dev)1145 int cpu_device_down(struct device *dev)
1146 {
1147 	return cpu_down(dev->id, CPUHP_OFFLINE);
1148 }
1149 
remove_cpu(unsigned int cpu)1150 int remove_cpu(unsigned int cpu)
1151 {
1152 	int ret;
1153 
1154 	lock_device_hotplug();
1155 	ret = device_offline(get_cpu_device(cpu));
1156 	unlock_device_hotplug();
1157 
1158 	return ret;
1159 }
1160 EXPORT_SYMBOL_GPL(remove_cpu);
1161 
1162 extern int  dl_cpu_busy(int cpu, struct task_struct *p);
1163 
__pause_drain_rq(struct cpumask * cpus)1164 int __pause_drain_rq(struct cpumask *cpus)
1165 {
1166 	unsigned int cpu;
1167 	int err = 0;
1168 
1169 	/*
1170 	 * Disabling preemption avoids that one of the stopper, started from
1171 	 * sched_cpu_drain_rq(), blocks firing draining for the whole cpumask.
1172 	 */
1173 	preempt_disable();
1174 	for_each_cpu(cpu, cpus) {
1175 		err = sched_cpu_drain_rq(cpu);
1176 		if (err)
1177 			break;
1178 	}
1179 	preempt_enable();
1180 
1181 	return err;
1182 }
1183 
__wait_drain_rq(struct cpumask * cpus)1184 void __wait_drain_rq(struct cpumask *cpus)
1185 {
1186 	unsigned int cpu;
1187 
1188 	for_each_cpu(cpu, cpus)
1189 		sched_cpu_drain_rq_wait(cpu);
1190 }
1191 
1192 /* if rt task, set to cfs and return previous prio */
pause_reduce_prio(void)1193 static int pause_reduce_prio(void)
1194 {
1195 	int prev_prio = -1;
1196 
1197 	if (current->prio < MAX_RT_PRIO) {
1198 		struct sched_param param = { .sched_priority = 0 };
1199 
1200 		prev_prio = current->prio;
1201 		sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
1202 	}
1203 
1204 	return prev_prio;
1205 }
1206 
1207 /* if previous prio was set, restore */
pause_restore_prio(int prev_prio)1208 static void pause_restore_prio(int prev_prio)
1209 {
1210 	if (prev_prio >= 0 && prev_prio < MAX_RT_PRIO) {
1211 		struct sched_param param = { .sched_priority = MAX_RT_PRIO-1-prev_prio };
1212 
1213 		sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
1214 	}
1215 }
1216 
pause_cpus(struct cpumask * cpus)1217 int pause_cpus(struct cpumask *cpus)
1218 {
1219 	int err = 0;
1220 	int cpu;
1221 	u64 start_time = 0;
1222 	int prev_prio;
1223 
1224 	start_time = sched_clock();
1225 
1226 	cpu_maps_update_begin();
1227 
1228 	if (cpu_hotplug_disabled) {
1229 		err = -EBUSY;
1230 		goto err_cpu_maps_update;
1231 	}
1232 
1233 	/* Pausing an already inactive CPU isn't an error */
1234 	cpumask_and(cpus, cpus, cpu_active_mask);
1235 
1236 	for_each_cpu(cpu, cpus) {
1237 		if (!cpu_online(cpu) || dl_cpu_busy(cpu, NULL) ||
1238 			get_cpu_device(cpu)->offline_disabled == true) {
1239 			err = -EBUSY;
1240 			goto err_cpu_maps_update;
1241 		}
1242 	}
1243 
1244 	if (cpumask_weight(cpus) >= num_active_cpus()) {
1245 		err = -EBUSY;
1246 		goto err_cpu_maps_update;
1247 	}
1248 
1249 	if (cpumask_empty(cpus))
1250 		goto err_cpu_maps_update;
1251 
1252 	/*
1253 	 * Lazy migration:
1254 	 *
1255 	 * We do care about how fast a CPU can go idle and stay this in this
1256 	 * state. If we try to take the cpus_write_lock() here, we would have
1257 	 * to wait for a few dozens of ms, as this function might schedule.
1258 	 * However, we can, as a first step, flip the active mask and migrate
1259 	 * anything currently on the run-queue, to give a chance to the paused
1260 	 * CPUs to reach quickly an idle state. There's a risk meanwhile for
1261 	 * another CPU to observe an out-of-date active_mask or to incompletely
1262 	 * update a cpuset. Both problems would be resolved later in the slow
1263 	 * path, which ensures active_mask synchronization, triggers a cpuset
1264 	 * rebuild and migrate any task that would have escaped the lazy
1265 	 * migration.
1266 	 */
1267 	for_each_cpu(cpu, cpus)
1268 		set_cpu_active(cpu, false);
1269 	err = __pause_drain_rq(cpus);
1270 	if (err) {
1271 		__wait_drain_rq(cpus);
1272 		for_each_cpu(cpu, cpus)
1273 			set_cpu_active(cpu, true);
1274 		goto err_cpu_maps_update;
1275 	}
1276 
1277 	prev_prio = pause_reduce_prio();
1278 
1279 	/*
1280 	 * Slow path deactivation:
1281 	 *
1282 	 * Now that paused CPUs are most likely idle, we can go through a
1283 	 * complete scheduler deactivation.
1284 	 *
1285 	 * The cpu_active_mask being already set and cpus_write_lock calling
1286 	 * synchronize_rcu(), we know that all preempt-disabled and RCU users
1287 	 * will observe the updated value.
1288 	 */
1289 	cpus_write_lock();
1290 
1291 	__wait_drain_rq(cpus);
1292 
1293 	cpuhp_tasks_frozen = 0;
1294 
1295 	if (sched_cpus_deactivate_nosync(cpus)) {
1296 		err = -EBUSY;
1297 		goto err_cpus_write_unlock;
1298 	}
1299 
1300 	err = __pause_drain_rq(cpus);
1301 	__wait_drain_rq(cpus);
1302 	if (err) {
1303 		for_each_cpu(cpu, cpus)
1304 			sched_cpu_activate(cpu);
1305 		goto err_cpus_write_unlock;
1306 	}
1307 
1308 	/*
1309 	 * Even if living on the side of the regular HP path, pause is using
1310 	 * one of the HP step (CPUHP_AP_ACTIVE). This should be reflected on the
1311 	 * current state of the CPU.
1312 	 */
1313 	for_each_cpu(cpu, cpus) {
1314 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1315 
1316 		st->state = CPUHP_AP_ACTIVE - 1;
1317 		st->target = st->state;
1318 	}
1319 
1320 err_cpus_write_unlock:
1321 	cpus_write_unlock();
1322 	pause_restore_prio(prev_prio);
1323 err_cpu_maps_update:
1324 	cpu_maps_update_done();
1325 
1326 	trace_cpuhp_pause(cpus, start_time, 1);
1327 
1328 	return err;
1329 }
1330 EXPORT_SYMBOL_GPL(pause_cpus);
1331 
resume_cpus(struct cpumask * cpus)1332 int resume_cpus(struct cpumask *cpus)
1333 {
1334 	unsigned int cpu;
1335 	int err = 0;
1336 	u64 start_time = 0;
1337 	int prev_prio;
1338 
1339 	start_time = sched_clock();
1340 
1341 	cpu_maps_update_begin();
1342 
1343 	if (cpu_hotplug_disabled) {
1344 		err = -EBUSY;
1345 		goto err_cpu_maps_update;
1346 	}
1347 
1348 	/* Resuming an already active CPU isn't an error */
1349 	cpumask_andnot(cpus, cpus, cpu_active_mask);
1350 
1351 	for_each_cpu(cpu, cpus) {
1352 		if (!cpu_online(cpu)) {
1353 			err = -EBUSY;
1354 			goto err_cpu_maps_update;
1355 		}
1356 	}
1357 
1358 	if (cpumask_empty(cpus))
1359 		goto err_cpu_maps_update;
1360 
1361 	for_each_cpu(cpu, cpus)
1362 		set_cpu_active(cpu, true);
1363 
1364 	trace_android_rvh_resume_cpus(cpus, &err);
1365 	if (err)
1366 		goto err_cpu_maps_update;
1367 
1368 	prev_prio = pause_reduce_prio();
1369 
1370 	/* Lazy Resume. Build domains through schedule a workqueue on
1371 	 * resuming cpu. This is so that the resuming cpu can work more
1372 	 * early, and cannot add additional load to other busy cpu.
1373 	 */
1374 	cpuset_update_active_cpus_affine(cpumask_first(cpus));
1375 
1376 	cpus_write_lock();
1377 
1378 	cpuhp_tasks_frozen = 0;
1379 
1380 	if (sched_cpus_activate(cpus)) {
1381 		err = -EBUSY;
1382 		goto err_cpus_write_unlock;
1383 	}
1384 
1385 	/*
1386 	 * see pause_cpus.
1387 	 */
1388 	for_each_cpu(cpu, cpus) {
1389 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1390 
1391 		st->state = CPUHP_ONLINE;
1392 		st->target = st->state;
1393 	}
1394 
1395 err_cpus_write_unlock:
1396 	cpus_write_unlock();
1397 	pause_restore_prio(prev_prio);
1398 err_cpu_maps_update:
1399 	cpu_maps_update_done();
1400 
1401 	trace_cpuhp_pause(cpus, start_time, 0);
1402 
1403 	return err;
1404 }
1405 EXPORT_SYMBOL_GPL(resume_cpus);
1406 
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1407 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1408 {
1409 	unsigned int cpu;
1410 	int error;
1411 
1412 	cpu_maps_update_begin();
1413 
1414 	/*
1415 	 * Make certain the cpu I'm about to reboot on is online.
1416 	 *
1417 	 * This is inline to what migrate_to_reboot_cpu() already do.
1418 	 */
1419 	if (!cpu_online(primary_cpu))
1420 		primary_cpu = cpumask_first(cpu_online_mask);
1421 
1422 	for_each_online_cpu(cpu) {
1423 		if (cpu == primary_cpu)
1424 			continue;
1425 
1426 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1427 		if (error) {
1428 			pr_err("Failed to offline CPU%d - error=%d",
1429 				cpu, error);
1430 			break;
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * Ensure all but the reboot CPU are offline.
1436 	 */
1437 	BUG_ON(num_online_cpus() > 1);
1438 
1439 	/*
1440 	 * Make sure the CPUs won't be enabled by someone else after this
1441 	 * point. Kexec will reboot to a new kernel shortly resetting
1442 	 * everything along the way.
1443 	 */
1444 	cpu_hotplug_disabled++;
1445 
1446 	cpu_maps_update_done();
1447 }
1448 
1449 #else
1450 #define takedown_cpu		NULL
1451 #endif /*CONFIG_HOTPLUG_CPU*/
1452 
1453 /**
1454  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1455  * @cpu: cpu that just started
1456  *
1457  * It must be called by the arch code on the new cpu, before the new cpu
1458  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1459  */
notify_cpu_starting(unsigned int cpu)1460 void notify_cpu_starting(unsigned int cpu)
1461 {
1462 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1463 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1464 	int ret;
1465 
1466 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1467 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1468 	while (st->state < target) {
1469 		st->state++;
1470 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1471 		/*
1472 		 * STARTING must not fail!
1473 		 */
1474 		WARN_ON_ONCE(ret);
1475 	}
1476 }
1477 
1478 /*
1479  * Called from the idle task. Wake up the controlling task which brings the
1480  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1481  * online bringup to the hotplug thread.
1482  */
cpuhp_online_idle(enum cpuhp_state state)1483 void cpuhp_online_idle(enum cpuhp_state state)
1484 {
1485 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1486 
1487 	/* Happens for the boot cpu */
1488 	if (state != CPUHP_AP_ONLINE_IDLE)
1489 		return;
1490 
1491 	/*
1492 	 * Unpart the stopper thread before we start the idle loop (and start
1493 	 * scheduling); this ensures the stopper task is always available.
1494 	 */
1495 	stop_machine_unpark(smp_processor_id());
1496 
1497 	st->state = CPUHP_AP_ONLINE_IDLE;
1498 	complete_ap_thread(st, true);
1499 }
1500 
switch_to_rt_policy(void)1501 static int switch_to_rt_policy(void)
1502 {
1503 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1504 	unsigned int policy = current->policy;
1505 
1506 	if (policy == SCHED_NORMAL)
1507 		/* Switch to SCHED_FIFO from SCHED_NORMAL. */
1508 		return sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
1509 	else
1510 		return 1;
1511 }
1512 
switch_to_fair_policy(void)1513 static int switch_to_fair_policy(void)
1514 {
1515 	struct sched_param param = { .sched_priority = 0 };
1516 
1517 	return sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
1518 }
1519 
1520 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1521 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1522 {
1523 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1524 	struct task_struct *idle;
1525 	int ret = 0;
1526 
1527 	cpus_write_lock();
1528 
1529 	if (!cpu_present(cpu)) {
1530 		ret = -EINVAL;
1531 		goto out;
1532 	}
1533 
1534 	/*
1535 	 * The caller of cpu_up() might have raced with another
1536 	 * caller. Nothing to do.
1537 	 */
1538 	if (st->state >= target)
1539 		goto out;
1540 
1541 	if (st->state == CPUHP_OFFLINE) {
1542 		/* Let it fail before we try to bring the cpu up */
1543 		idle = idle_thread_get(cpu);
1544 		if (IS_ERR(idle)) {
1545 			ret = PTR_ERR(idle);
1546 			goto out;
1547 		}
1548 	}
1549 
1550 	cpuhp_tasks_frozen = tasks_frozen;
1551 
1552 	cpuhp_set_state(st, target);
1553 	/*
1554 	 * If the current CPU state is in the range of the AP hotplug thread,
1555 	 * then we need to kick the thread once more.
1556 	 */
1557 	if (st->state > CPUHP_BRINGUP_CPU) {
1558 		ret = cpuhp_kick_ap_work(cpu);
1559 		/*
1560 		 * The AP side has done the error rollback already. Just
1561 		 * return the error code..
1562 		 */
1563 		if (ret)
1564 			goto out;
1565 	}
1566 
1567 	/*
1568 	 * Try to reach the target state. We max out on the BP at
1569 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1570 	 * responsible for bringing it up to the target state.
1571 	 */
1572 	target = min((int)target, CPUHP_BRINGUP_CPU);
1573 	ret = cpuhp_up_callbacks(cpu, st, target);
1574 out:
1575 	cpus_write_unlock();
1576 	arch_smt_update();
1577 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1578 	return ret;
1579 }
1580 
cpu_up(unsigned int cpu,enum cpuhp_state target)1581 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1582 {
1583 	int err = 0;
1584 	int switch_err;
1585 
1586 	if (!cpu_possible(cpu)) {
1587 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1588 		       cpu);
1589 #if defined(CONFIG_IA64)
1590 		pr_err("please check additional_cpus= boot parameter\n");
1591 #endif
1592 		return -EINVAL;
1593 	}
1594 
1595 	trace_android_vh_cpu_up(cpu);
1596 
1597 	/*
1598 	 * CPU hotplug operations consists of many steps and each step
1599 	 * calls a callback of core kernel subsystem. CPU hotplug-in
1600 	 * operation may get preempted by other CFS tasks and whole
1601 	 * operation of cpu hotplug in CPU gets delayed. Switch the
1602 	 * current task to SCHED_FIFO from SCHED_NORMAL, so that
1603 	 * hotplug in operation may complete quickly in heavy loaded
1604 	 * conditions and new CPU will start handle the workload.
1605 	 */
1606 
1607 	switch_err = switch_to_rt_policy();
1608 
1609 	err = try_online_node(cpu_to_node(cpu));
1610 	if (err)
1611 		goto switch_out;
1612 
1613 	cpu_maps_update_begin();
1614 
1615 	if (cpu_hotplug_disabled) {
1616 		err = -EBUSY;
1617 		goto out;
1618 	}
1619 	if (!cpu_smt_allowed(cpu)) {
1620 		err = -EPERM;
1621 		goto out;
1622 	}
1623 
1624 	err = _cpu_up(cpu, 0, target);
1625 out:
1626 	cpu_maps_update_done();
1627 switch_out:
1628 	if (!switch_err) {
1629 		switch_err = switch_to_fair_policy();
1630 		if (switch_err)
1631 			pr_err("Hotplug policy switch err=%d Task %s pid=%d\n",
1632 				switch_err, current->comm, current->pid);
1633 	}
1634 
1635 	return err;
1636 }
1637 
1638 /**
1639  * cpu_device_up - Bring up a cpu device
1640  * @dev: Pointer to the cpu device to online
1641  *
1642  * This function is meant to be used by device core cpu subsystem only.
1643  *
1644  * Other subsystems should use add_cpu() instead.
1645  */
cpu_device_up(struct device * dev)1646 int cpu_device_up(struct device *dev)
1647 {
1648 	return cpu_up(dev->id, CPUHP_ONLINE);
1649 }
1650 
add_cpu(unsigned int cpu)1651 int add_cpu(unsigned int cpu)
1652 {
1653 	int ret;
1654 
1655 	lock_device_hotplug();
1656 	ret = device_online(get_cpu_device(cpu));
1657 	unlock_device_hotplug();
1658 
1659 	return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(add_cpu);
1662 
1663 /**
1664  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1665  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1666  *
1667  * On some architectures like arm64, we can hibernate on any CPU, but on
1668  * wake up the CPU we hibernated on might be offline as a side effect of
1669  * using maxcpus= for example.
1670  */
bringup_hibernate_cpu(unsigned int sleep_cpu)1671 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1672 {
1673 	int ret;
1674 
1675 	if (!cpu_online(sleep_cpu)) {
1676 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1677 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1678 		if (ret) {
1679 			pr_err("Failed to bring hibernate-CPU up!\n");
1680 			return ret;
1681 		}
1682 	}
1683 	return 0;
1684 }
1685 
bringup_nonboot_cpus(unsigned int setup_max_cpus)1686 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1687 {
1688 	unsigned int cpu;
1689 
1690 	for_each_present_cpu(cpu) {
1691 		if (num_online_cpus() >= setup_max_cpus)
1692 			break;
1693 		if (!cpu_online(cpu))
1694 			cpu_up(cpu, CPUHP_ONLINE);
1695 	}
1696 }
1697 
1698 #ifdef CONFIG_PM_SLEEP_SMP
1699 static cpumask_var_t frozen_cpus;
1700 
freeze_secondary_cpus(int primary)1701 int freeze_secondary_cpus(int primary)
1702 {
1703 	int cpu, error = 0;
1704 
1705 	cpu_maps_update_begin();
1706 	if (primary == -1) {
1707 		primary = cpumask_first(cpu_online_mask);
1708 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1709 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1710 	} else {
1711 		if (!cpu_online(primary))
1712 			primary = cpumask_first(cpu_online_mask);
1713 	}
1714 
1715 	/*
1716 	 * We take down all of the non-boot CPUs in one shot to avoid races
1717 	 * with the userspace trying to use the CPU hotplug at the same time
1718 	 */
1719 	cpumask_clear(frozen_cpus);
1720 
1721 	pr_info("Disabling non-boot CPUs ...\n");
1722 	for_each_online_cpu(cpu) {
1723 		if (cpu == primary)
1724 			continue;
1725 
1726 		if (pm_wakeup_pending()) {
1727 			pr_info("Wakeup pending. Abort CPU freeze\n");
1728 			error = -EBUSY;
1729 			break;
1730 		}
1731 
1732 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1733 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1734 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1735 		if (!error)
1736 			cpumask_set_cpu(cpu, frozen_cpus);
1737 		else {
1738 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1739 			break;
1740 		}
1741 	}
1742 
1743 	if (!error)
1744 		BUG_ON(num_online_cpus() > 1);
1745 	else
1746 		pr_err("Non-boot CPUs are not disabled\n");
1747 
1748 	/*
1749 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1750 	 * this even in case of failure as all freeze_secondary_cpus() users are
1751 	 * supposed to do thaw_secondary_cpus() on the failure path.
1752 	 */
1753 	cpu_hotplug_disabled++;
1754 
1755 	cpu_maps_update_done();
1756 	return error;
1757 }
1758 
arch_thaw_secondary_cpus_begin(void)1759 void __weak arch_thaw_secondary_cpus_begin(void)
1760 {
1761 }
1762 
arch_thaw_secondary_cpus_end(void)1763 void __weak arch_thaw_secondary_cpus_end(void)
1764 {
1765 }
1766 
thaw_secondary_cpus(void)1767 void thaw_secondary_cpus(void)
1768 {
1769 	int cpu, error;
1770 	struct device *cpu_device;
1771 
1772 	/* Allow everyone to use the CPU hotplug again */
1773 	cpu_maps_update_begin();
1774 	__cpu_hotplug_enable();
1775 	if (cpumask_empty(frozen_cpus))
1776 		goto out;
1777 
1778 	pr_info("Enabling non-boot CPUs ...\n");
1779 
1780 	arch_thaw_secondary_cpus_begin();
1781 
1782 	for_each_cpu(cpu, frozen_cpus) {
1783 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1784 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1785 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1786 		if (!error) {
1787 			pr_info("CPU%d is up\n", cpu);
1788 			cpu_device = get_cpu_device(cpu);
1789 			if (!cpu_device)
1790 				pr_err("%s: failed to get cpu%d device\n",
1791 				       __func__, cpu);
1792 			else
1793 				kobject_uevent(&cpu_device->kobj, KOBJ_ONLINE);
1794 			continue;
1795 		}
1796 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1797 	}
1798 
1799 	arch_thaw_secondary_cpus_end();
1800 
1801 	cpumask_clear(frozen_cpus);
1802 out:
1803 	cpu_maps_update_done();
1804 }
1805 
alloc_frozen_cpus(void)1806 static int __init alloc_frozen_cpus(void)
1807 {
1808 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1809 		return -ENOMEM;
1810 	return 0;
1811 }
1812 core_initcall(alloc_frozen_cpus);
1813 
1814 /*
1815  * When callbacks for CPU hotplug notifications are being executed, we must
1816  * ensure that the state of the system with respect to the tasks being frozen
1817  * or not, as reported by the notification, remains unchanged *throughout the
1818  * duration* of the execution of the callbacks.
1819  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1820  *
1821  * This synchronization is implemented by mutually excluding regular CPU
1822  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1823  * Hibernate notifications.
1824  */
1825 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1826 cpu_hotplug_pm_callback(struct notifier_block *nb,
1827 			unsigned long action, void *ptr)
1828 {
1829 	switch (action) {
1830 
1831 	case PM_SUSPEND_PREPARE:
1832 	case PM_HIBERNATION_PREPARE:
1833 		cpu_hotplug_disable();
1834 		break;
1835 
1836 	case PM_POST_SUSPEND:
1837 	case PM_POST_HIBERNATION:
1838 		cpu_hotplug_enable();
1839 		break;
1840 
1841 	default:
1842 		return NOTIFY_DONE;
1843 	}
1844 
1845 	return NOTIFY_OK;
1846 }
1847 
1848 
cpu_hotplug_pm_sync_init(void)1849 static int __init cpu_hotplug_pm_sync_init(void)
1850 {
1851 	/*
1852 	 * cpu_hotplug_pm_callback has higher priority than x86
1853 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1854 	 * to disable cpu hotplug to avoid cpu hotplug race.
1855 	 */
1856 	pm_notifier(cpu_hotplug_pm_callback, 0);
1857 	return 0;
1858 }
1859 core_initcall(cpu_hotplug_pm_sync_init);
1860 
1861 #endif /* CONFIG_PM_SLEEP_SMP */
1862 
1863 int __boot_cpu_id;
1864 
1865 /* Horrific hacks because we can't add more to cpuhp_hp_states. */
random_and_perf_prepare_fusion(unsigned int cpu)1866 static int random_and_perf_prepare_fusion(unsigned int cpu)
1867 {
1868 #ifdef CONFIG_PERF_EVENTS
1869 	perf_event_init_cpu(cpu);
1870 #endif
1871 	random_prepare_cpu(cpu);
1872 	return 0;
1873 }
random_and_workqueue_online_fusion(unsigned int cpu)1874 static int random_and_workqueue_online_fusion(unsigned int cpu)
1875 {
1876 	workqueue_online_cpu(cpu);
1877 	random_online_cpu(cpu);
1878 	return 0;
1879 }
1880 
1881 #endif /* CONFIG_SMP */
1882 
1883 /* Boot processor state steps */
1884 static struct cpuhp_step cpuhp_hp_states[] = {
1885 	[CPUHP_OFFLINE] = {
1886 		.name			= "offline",
1887 		.startup.single		= NULL,
1888 		.teardown.single	= NULL,
1889 	},
1890 #ifdef CONFIG_SMP
1891 	[CPUHP_CREATE_THREADS]= {
1892 		.name			= "threads:prepare",
1893 		.startup.single		= smpboot_create_threads,
1894 		.teardown.single	= NULL,
1895 		.cant_stop		= true,
1896 	},
1897 	[CPUHP_PERF_PREPARE] = {
1898 		.name			= "perf:prepare",
1899 		.startup.single		= random_and_perf_prepare_fusion,
1900 		.teardown.single	= perf_event_exit_cpu,
1901 	},
1902 	[CPUHP_WORKQUEUE_PREP] = {
1903 		.name			= "workqueue:prepare",
1904 		.startup.single		= workqueue_prepare_cpu,
1905 		.teardown.single	= NULL,
1906 	},
1907 	[CPUHP_HRTIMERS_PREPARE] = {
1908 		.name			= "hrtimers:prepare",
1909 		.startup.single		= hrtimers_prepare_cpu,
1910 		.teardown.single	= hrtimers_dead_cpu,
1911 	},
1912 	[CPUHP_SMPCFD_PREPARE] = {
1913 		.name			= "smpcfd:prepare",
1914 		.startup.single		= smpcfd_prepare_cpu,
1915 		.teardown.single	= smpcfd_dead_cpu,
1916 	},
1917 	[CPUHP_RELAY_PREPARE] = {
1918 		.name			= "relay:prepare",
1919 		.startup.single		= relay_prepare_cpu,
1920 		.teardown.single	= NULL,
1921 	},
1922 	[CPUHP_SLAB_PREPARE] = {
1923 		.name			= "slab:prepare",
1924 		.startup.single		= slab_prepare_cpu,
1925 		.teardown.single	= slab_dead_cpu,
1926 	},
1927 	[CPUHP_RCUTREE_PREP] = {
1928 		.name			= "RCU/tree:prepare",
1929 		.startup.single		= rcutree_prepare_cpu,
1930 		.teardown.single	= rcutree_dead_cpu,
1931 	},
1932 	/*
1933 	 * On the tear-down path, timers_dead_cpu() must be invoked
1934 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1935 	 * otherwise a RCU stall occurs.
1936 	 */
1937 	[CPUHP_TIMERS_PREPARE] = {
1938 		.name			= "timers:prepare",
1939 		.startup.single		= timers_prepare_cpu,
1940 		.teardown.single	= timers_dead_cpu,
1941 	},
1942 	/* Kicks the plugged cpu into life */
1943 	[CPUHP_BRINGUP_CPU] = {
1944 		.name			= "cpu:bringup",
1945 		.startup.single		= bringup_cpu,
1946 		.teardown.single	= finish_cpu,
1947 		.cant_stop		= true,
1948 	},
1949 	/* Final state before CPU kills itself */
1950 	[CPUHP_AP_IDLE_DEAD] = {
1951 		.name			= "idle:dead",
1952 	},
1953 	/*
1954 	 * Last state before CPU enters the idle loop to die. Transient state
1955 	 * for synchronization.
1956 	 */
1957 	[CPUHP_AP_OFFLINE] = {
1958 		.name			= "ap:offline",
1959 		.cant_stop		= true,
1960 	},
1961 	/* First state is scheduler control. Interrupts are disabled */
1962 	[CPUHP_AP_SCHED_STARTING] = {
1963 		.name			= "sched:starting",
1964 		.startup.single		= sched_cpu_starting,
1965 		.teardown.single	= sched_cpu_dying,
1966 	},
1967 	[CPUHP_AP_RCUTREE_DYING] = {
1968 		.name			= "RCU/tree:dying",
1969 		.startup.single		= NULL,
1970 		.teardown.single	= rcutree_dying_cpu,
1971 	},
1972 	[CPUHP_AP_SMPCFD_DYING] = {
1973 		.name			= "smpcfd:dying",
1974 		.startup.single		= NULL,
1975 		.teardown.single	= smpcfd_dying_cpu,
1976 	},
1977 	/* Entry state on starting. Interrupts enabled from here on. Transient
1978 	 * state for synchronsization */
1979 	[CPUHP_AP_ONLINE] = {
1980 		.name			= "ap:online",
1981 	},
1982 	/*
1983 	 * Handled on controll processor until the plugged processor manages
1984 	 * this itself.
1985 	 */
1986 	[CPUHP_TEARDOWN_CPU] = {
1987 		.name			= "cpu:teardown",
1988 		.startup.single		= NULL,
1989 		.teardown.single	= takedown_cpu,
1990 		.cant_stop		= true,
1991 	},
1992 	/* Handle smpboot threads park/unpark */
1993 	[CPUHP_AP_SMPBOOT_THREADS] = {
1994 		.name			= "smpboot/threads:online",
1995 		.startup.single		= smpboot_unpark_threads,
1996 		.teardown.single	= smpboot_park_threads,
1997 	},
1998 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1999 		.name			= "irq/affinity:online",
2000 		.startup.single		= irq_affinity_online_cpu,
2001 		.teardown.single	= NULL,
2002 	},
2003 	[CPUHP_AP_PERF_ONLINE] = {
2004 		.name			= "perf:online",
2005 		.startup.single		= perf_event_init_cpu,
2006 		.teardown.single	= perf_event_exit_cpu,
2007 	},
2008 	[CPUHP_AP_WATCHDOG_ONLINE] = {
2009 		.name			= "lockup_detector:online",
2010 		.startup.single		= lockup_detector_online_cpu,
2011 		.teardown.single	= lockup_detector_offline_cpu,
2012 	},
2013 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2014 		.name			= "workqueue:online",
2015 		.startup.single		= random_and_workqueue_online_fusion,
2016 		.teardown.single	= workqueue_offline_cpu,
2017 	},
2018 	[CPUHP_AP_RCUTREE_ONLINE] = {
2019 		.name			= "RCU/tree:online",
2020 		.startup.single		= rcutree_online_cpu,
2021 		.teardown.single	= rcutree_offline_cpu,
2022 	},
2023 #endif
2024 	/*
2025 	 * The dynamically registered state space is here
2026 	 */
2027 
2028 #ifdef CONFIG_SMP
2029 	/* Last state is scheduler control setting the cpu active */
2030 	[CPUHP_AP_ACTIVE] = {
2031 		.name			= "sched:active",
2032 		.startup.single		= sched_cpu_activate,
2033 		.teardown.single	= sched_cpu_deactivate,
2034 	},
2035 #endif
2036 
2037 	/* CPU is fully up and running. */
2038 	[CPUHP_ONLINE] = {
2039 		.name			= "online",
2040 		.startup.single		= NULL,
2041 		.teardown.single	= NULL,
2042 	},
2043 };
2044 
2045 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)2046 static int cpuhp_cb_check(enum cpuhp_state state)
2047 {
2048 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2049 		return -EINVAL;
2050 	return 0;
2051 }
2052 
2053 /*
2054  * Returns a free for dynamic slot assignment of the Online state. The states
2055  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2056  * by having no name assigned.
2057  */
cpuhp_reserve_state(enum cpuhp_state state)2058 static int cpuhp_reserve_state(enum cpuhp_state state)
2059 {
2060 	enum cpuhp_state i, end;
2061 	struct cpuhp_step *step;
2062 
2063 	switch (state) {
2064 	case CPUHP_AP_ONLINE_DYN:
2065 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2066 		end = CPUHP_AP_ONLINE_DYN_END;
2067 		break;
2068 	case CPUHP_BP_PREPARE_DYN:
2069 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2070 		end = CPUHP_BP_PREPARE_DYN_END;
2071 		break;
2072 	default:
2073 		return -EINVAL;
2074 	}
2075 
2076 	for (i = state; i <= end; i++, step++) {
2077 		if (!step->name)
2078 			return i;
2079 	}
2080 	WARN(1, "No more dynamic states available for CPU hotplug\n");
2081 	return -ENOSPC;
2082 }
2083 
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2084 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2085 				 int (*startup)(unsigned int cpu),
2086 				 int (*teardown)(unsigned int cpu),
2087 				 bool multi_instance)
2088 {
2089 	/* (Un)Install the callbacks for further cpu hotplug operations */
2090 	struct cpuhp_step *sp;
2091 	int ret = 0;
2092 
2093 	/*
2094 	 * If name is NULL, then the state gets removed.
2095 	 *
2096 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2097 	 * the first allocation from these dynamic ranges, so the removal
2098 	 * would trigger a new allocation and clear the wrong (already
2099 	 * empty) state, leaving the callbacks of the to be cleared state
2100 	 * dangling, which causes wreckage on the next hotplug operation.
2101 	 */
2102 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2103 		     state == CPUHP_BP_PREPARE_DYN)) {
2104 		ret = cpuhp_reserve_state(state);
2105 		if (ret < 0)
2106 			return ret;
2107 		state = ret;
2108 	}
2109 	sp = cpuhp_get_step(state);
2110 	if (name && sp->name)
2111 		return -EBUSY;
2112 
2113 	sp->startup.single = startup;
2114 	sp->teardown.single = teardown;
2115 	sp->name = name;
2116 	sp->multi_instance = multi_instance;
2117 	INIT_HLIST_HEAD(&sp->list);
2118 	return ret;
2119 }
2120 
cpuhp_get_teardown_cb(enum cpuhp_state state)2121 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2122 {
2123 	return cpuhp_get_step(state)->teardown.single;
2124 }
2125 
2126 /*
2127  * Call the startup/teardown function for a step either on the AP or
2128  * on the current CPU.
2129  */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)2130 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2131 			    struct hlist_node *node)
2132 {
2133 	struct cpuhp_step *sp = cpuhp_get_step(state);
2134 	int ret;
2135 
2136 	/*
2137 	 * If there's nothing to do, we done.
2138 	 * Relies on the union for multi_instance.
2139 	 */
2140 	if ((bringup && !sp->startup.single) ||
2141 	    (!bringup && !sp->teardown.single))
2142 		return 0;
2143 	/*
2144 	 * The non AP bound callbacks can fail on bringup. On teardown
2145 	 * e.g. module removal we crash for now.
2146 	 */
2147 #ifdef CONFIG_SMP
2148 	if (cpuhp_is_ap_state(state))
2149 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2150 	else
2151 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2152 #else
2153 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2154 #endif
2155 	BUG_ON(ret && !bringup);
2156 	return ret;
2157 }
2158 
2159 /*
2160  * Called from __cpuhp_setup_state on a recoverable failure.
2161  *
2162  * Note: The teardown callbacks for rollback are not allowed to fail!
2163  */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)2164 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2165 				   struct hlist_node *node)
2166 {
2167 	int cpu;
2168 
2169 	/* Roll back the already executed steps on the other cpus */
2170 	for_each_present_cpu(cpu) {
2171 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2172 		int cpustate = st->state;
2173 
2174 		if (cpu >= failedcpu)
2175 			break;
2176 
2177 		/* Did we invoke the startup call on that cpu ? */
2178 		if (cpustate >= state)
2179 			cpuhp_issue_call(cpu, state, false, node);
2180 	}
2181 }
2182 
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)2183 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2184 					  struct hlist_node *node,
2185 					  bool invoke)
2186 {
2187 	struct cpuhp_step *sp;
2188 	int cpu;
2189 	int ret;
2190 
2191 	lockdep_assert_cpus_held();
2192 
2193 	sp = cpuhp_get_step(state);
2194 	if (sp->multi_instance == false)
2195 		return -EINVAL;
2196 
2197 	mutex_lock(&cpuhp_state_mutex);
2198 
2199 	if (!invoke || !sp->startup.multi)
2200 		goto add_node;
2201 
2202 	/*
2203 	 * Try to call the startup callback for each present cpu
2204 	 * depending on the hotplug state of the cpu.
2205 	 */
2206 	for_each_present_cpu(cpu) {
2207 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2208 		int cpustate = st->state;
2209 
2210 		if (cpustate < state)
2211 			continue;
2212 
2213 		ret = cpuhp_issue_call(cpu, state, true, node);
2214 		if (ret) {
2215 			if (sp->teardown.multi)
2216 				cpuhp_rollback_install(cpu, state, node);
2217 			goto unlock;
2218 		}
2219 	}
2220 add_node:
2221 	ret = 0;
2222 	hlist_add_head(node, &sp->list);
2223 unlock:
2224 	mutex_unlock(&cpuhp_state_mutex);
2225 	return ret;
2226 }
2227 
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2228 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2229 			       bool invoke)
2230 {
2231 	int ret;
2232 
2233 	cpus_read_lock();
2234 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2235 	cpus_read_unlock();
2236 	return ret;
2237 }
2238 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2239 
2240 /**
2241  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2242  * @state:		The state to setup
2243  * @invoke:		If true, the startup function is invoked for cpus where
2244  *			cpu state >= @state
2245  * @startup:		startup callback function
2246  * @teardown:		teardown callback function
2247  * @multi_instance:	State is set up for multiple instances which get
2248  *			added afterwards.
2249  *
2250  * The caller needs to hold cpus read locked while calling this function.
2251  * Returns:
2252  *   On success:
2253  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
2254  *      0 for all other states
2255  *   On failure: proper (negative) error code
2256  */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2257 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2258 				   const char *name, bool invoke,
2259 				   int (*startup)(unsigned int cpu),
2260 				   int (*teardown)(unsigned int cpu),
2261 				   bool multi_instance)
2262 {
2263 	int cpu, ret = 0;
2264 	bool dynstate;
2265 
2266 	lockdep_assert_cpus_held();
2267 
2268 	if (cpuhp_cb_check(state) || !name)
2269 		return -EINVAL;
2270 
2271 	mutex_lock(&cpuhp_state_mutex);
2272 
2273 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2274 				    multi_instance);
2275 
2276 	dynstate = state == CPUHP_AP_ONLINE_DYN;
2277 	if (ret > 0 && dynstate) {
2278 		state = ret;
2279 		ret = 0;
2280 	}
2281 
2282 	if (ret || !invoke || !startup)
2283 		goto out;
2284 
2285 	/*
2286 	 * Try to call the startup callback for each present cpu
2287 	 * depending on the hotplug state of the cpu.
2288 	 */
2289 	for_each_present_cpu(cpu) {
2290 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2291 		int cpustate = st->state;
2292 
2293 		if (cpustate < state)
2294 			continue;
2295 
2296 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2297 		if (ret) {
2298 			if (teardown)
2299 				cpuhp_rollback_install(cpu, state, NULL);
2300 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2301 			goto out;
2302 		}
2303 	}
2304 out:
2305 	mutex_unlock(&cpuhp_state_mutex);
2306 	/*
2307 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2308 	 * dynamically allocated state in case of success.
2309 	 */
2310 	if (!ret && dynstate)
2311 		return state;
2312 	return ret;
2313 }
2314 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2315 
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2316 int __cpuhp_setup_state(enum cpuhp_state state,
2317 			const char *name, bool invoke,
2318 			int (*startup)(unsigned int cpu),
2319 			int (*teardown)(unsigned int cpu),
2320 			bool multi_instance)
2321 {
2322 	int ret;
2323 
2324 	cpus_read_lock();
2325 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2326 					     teardown, multi_instance);
2327 	cpus_read_unlock();
2328 	return ret;
2329 }
2330 EXPORT_SYMBOL(__cpuhp_setup_state);
2331 
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2332 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2333 				  struct hlist_node *node, bool invoke)
2334 {
2335 	struct cpuhp_step *sp = cpuhp_get_step(state);
2336 	int cpu;
2337 
2338 	BUG_ON(cpuhp_cb_check(state));
2339 
2340 	if (!sp->multi_instance)
2341 		return -EINVAL;
2342 
2343 	cpus_read_lock();
2344 	mutex_lock(&cpuhp_state_mutex);
2345 
2346 	if (!invoke || !cpuhp_get_teardown_cb(state))
2347 		goto remove;
2348 	/*
2349 	 * Call the teardown callback for each present cpu depending
2350 	 * on the hotplug state of the cpu. This function is not
2351 	 * allowed to fail currently!
2352 	 */
2353 	for_each_present_cpu(cpu) {
2354 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2355 		int cpustate = st->state;
2356 
2357 		if (cpustate >= state)
2358 			cpuhp_issue_call(cpu, state, false, node);
2359 	}
2360 
2361 remove:
2362 	hlist_del(node);
2363 	mutex_unlock(&cpuhp_state_mutex);
2364 	cpus_read_unlock();
2365 
2366 	return 0;
2367 }
2368 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2369 
2370 /**
2371  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2372  * @state:	The state to remove
2373  * @invoke:	If true, the teardown function is invoked for cpus where
2374  *		cpu state >= @state
2375  *
2376  * The caller needs to hold cpus read locked while calling this function.
2377  * The teardown callback is currently not allowed to fail. Think
2378  * about module removal!
2379  */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2380 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2381 {
2382 	struct cpuhp_step *sp = cpuhp_get_step(state);
2383 	int cpu;
2384 
2385 	BUG_ON(cpuhp_cb_check(state));
2386 
2387 	lockdep_assert_cpus_held();
2388 
2389 	mutex_lock(&cpuhp_state_mutex);
2390 	if (sp->multi_instance) {
2391 		WARN(!hlist_empty(&sp->list),
2392 		     "Error: Removing state %d which has instances left.\n",
2393 		     state);
2394 		goto remove;
2395 	}
2396 
2397 	if (!invoke || !cpuhp_get_teardown_cb(state))
2398 		goto remove;
2399 
2400 	/*
2401 	 * Call the teardown callback for each present cpu depending
2402 	 * on the hotplug state of the cpu. This function is not
2403 	 * allowed to fail currently!
2404 	 */
2405 	for_each_present_cpu(cpu) {
2406 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2407 		int cpustate = st->state;
2408 
2409 		if (cpustate >= state)
2410 			cpuhp_issue_call(cpu, state, false, NULL);
2411 	}
2412 remove:
2413 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2414 	mutex_unlock(&cpuhp_state_mutex);
2415 }
2416 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2417 
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2418 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2419 {
2420 	cpus_read_lock();
2421 	__cpuhp_remove_state_cpuslocked(state, invoke);
2422 	cpus_read_unlock();
2423 }
2424 EXPORT_SYMBOL(__cpuhp_remove_state);
2425 
2426 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2427 static void cpuhp_offline_cpu_device(unsigned int cpu)
2428 {
2429 	struct device *dev = get_cpu_device(cpu);
2430 
2431 	dev->offline = true;
2432 	/* Tell user space about the state change */
2433 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2434 }
2435 
cpuhp_online_cpu_device(unsigned int cpu)2436 static void cpuhp_online_cpu_device(unsigned int cpu)
2437 {
2438 	struct device *dev = get_cpu_device(cpu);
2439 
2440 	dev->offline = false;
2441 	/* Tell user space about the state change */
2442 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2443 }
2444 
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2445 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2446 {
2447 	int cpu, ret = 0;
2448 
2449 	cpu_maps_update_begin();
2450 	for_each_online_cpu(cpu) {
2451 		if (topology_is_primary_thread(cpu))
2452 			continue;
2453 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2454 		if (ret)
2455 			break;
2456 		/*
2457 		 * As this needs to hold the cpu maps lock it's impossible
2458 		 * to call device_offline() because that ends up calling
2459 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2460 		 * needs to be held as this might race against in kernel
2461 		 * abusers of the hotplug machinery (thermal management).
2462 		 *
2463 		 * So nothing would update device:offline state. That would
2464 		 * leave the sysfs entry stale and prevent onlining after
2465 		 * smt control has been changed to 'off' again. This is
2466 		 * called under the sysfs hotplug lock, so it is properly
2467 		 * serialized against the regular offline usage.
2468 		 */
2469 		cpuhp_offline_cpu_device(cpu);
2470 	}
2471 	if (!ret)
2472 		cpu_smt_control = ctrlval;
2473 	cpu_maps_update_done();
2474 	return ret;
2475 }
2476 
cpuhp_smt_enable(void)2477 int cpuhp_smt_enable(void)
2478 {
2479 	int cpu, ret = 0;
2480 
2481 	cpu_maps_update_begin();
2482 	cpu_smt_control = CPU_SMT_ENABLED;
2483 	for_each_present_cpu(cpu) {
2484 		/* Skip online CPUs and CPUs on offline nodes */
2485 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2486 			continue;
2487 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2488 		if (ret)
2489 			break;
2490 		/* See comment in cpuhp_smt_disable() */
2491 		cpuhp_online_cpu_device(cpu);
2492 	}
2493 	cpu_maps_update_done();
2494 	return ret;
2495 }
2496 #endif
2497 
2498 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)2499 static ssize_t show_cpuhp_state(struct device *dev,
2500 				struct device_attribute *attr, char *buf)
2501 {
2502 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2503 
2504 	return sprintf(buf, "%d\n", st->state);
2505 }
2506 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2507 
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2508 static ssize_t write_cpuhp_target(struct device *dev,
2509 				  struct device_attribute *attr,
2510 				  const char *buf, size_t count)
2511 {
2512 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2513 	struct cpuhp_step *sp;
2514 	int target, ret;
2515 
2516 	ret = kstrtoint(buf, 10, &target);
2517 	if (ret)
2518 		return ret;
2519 
2520 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2521 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2522 		return -EINVAL;
2523 #else
2524 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2525 		return -EINVAL;
2526 #endif
2527 
2528 	ret = lock_device_hotplug_sysfs();
2529 	if (ret)
2530 		return ret;
2531 
2532 	mutex_lock(&cpuhp_state_mutex);
2533 	sp = cpuhp_get_step(target);
2534 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2535 	mutex_unlock(&cpuhp_state_mutex);
2536 	if (ret)
2537 		goto out;
2538 
2539 	if (st->state < target)
2540 		ret = cpu_up(dev->id, target);
2541 	else
2542 		ret = cpu_down(dev->id, target);
2543 out:
2544 	unlock_device_hotplug();
2545 	return ret ? ret : count;
2546 }
2547 
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)2548 static ssize_t show_cpuhp_target(struct device *dev,
2549 				 struct device_attribute *attr, char *buf)
2550 {
2551 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2552 
2553 	return sprintf(buf, "%d\n", st->target);
2554 }
2555 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2556 
2557 
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2558 static ssize_t write_cpuhp_fail(struct device *dev,
2559 				struct device_attribute *attr,
2560 				const char *buf, size_t count)
2561 {
2562 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2563 	struct cpuhp_step *sp;
2564 	int fail, ret;
2565 
2566 	ret = kstrtoint(buf, 10, &fail);
2567 	if (ret)
2568 		return ret;
2569 
2570 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2571 		return -EINVAL;
2572 
2573 	/*
2574 	 * Cannot fail STARTING/DYING callbacks.
2575 	 */
2576 	if (cpuhp_is_atomic_state(fail))
2577 		return -EINVAL;
2578 
2579 	/*
2580 	 * Cannot fail anything that doesn't have callbacks.
2581 	 */
2582 	mutex_lock(&cpuhp_state_mutex);
2583 	sp = cpuhp_get_step(fail);
2584 	if (!sp->startup.single && !sp->teardown.single)
2585 		ret = -EINVAL;
2586 	mutex_unlock(&cpuhp_state_mutex);
2587 	if (ret)
2588 		return ret;
2589 
2590 	st->fail = fail;
2591 
2592 	return count;
2593 }
2594 
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)2595 static ssize_t show_cpuhp_fail(struct device *dev,
2596 			       struct device_attribute *attr, char *buf)
2597 {
2598 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2599 
2600 	return sprintf(buf, "%d\n", st->fail);
2601 }
2602 
2603 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2604 
2605 static struct attribute *cpuhp_cpu_attrs[] = {
2606 	&dev_attr_state.attr,
2607 	&dev_attr_target.attr,
2608 	&dev_attr_fail.attr,
2609 	NULL
2610 };
2611 
2612 static const struct attribute_group cpuhp_cpu_attr_group = {
2613 	.attrs = cpuhp_cpu_attrs,
2614 	.name = "hotplug",
2615 	NULL
2616 };
2617 
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2618 static ssize_t show_cpuhp_states(struct device *dev,
2619 				 struct device_attribute *attr, char *buf)
2620 {
2621 	ssize_t cur, res = 0;
2622 	int i;
2623 
2624 	mutex_lock(&cpuhp_state_mutex);
2625 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2626 		struct cpuhp_step *sp = cpuhp_get_step(i);
2627 
2628 		if (sp->name) {
2629 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2630 			buf += cur;
2631 			res += cur;
2632 		}
2633 	}
2634 	mutex_unlock(&cpuhp_state_mutex);
2635 	return res;
2636 }
2637 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2638 
2639 static struct attribute *cpuhp_cpu_root_attrs[] = {
2640 	&dev_attr_states.attr,
2641 	NULL
2642 };
2643 
2644 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2645 	.attrs = cpuhp_cpu_root_attrs,
2646 	.name = "hotplug",
2647 	NULL
2648 };
2649 
2650 #ifdef CONFIG_HOTPLUG_SMT
2651 
2652 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2653 __store_smt_control(struct device *dev, struct device_attribute *attr,
2654 		    const char *buf, size_t count)
2655 {
2656 	int ctrlval, ret;
2657 
2658 	if (sysfs_streq(buf, "on"))
2659 		ctrlval = CPU_SMT_ENABLED;
2660 	else if (sysfs_streq(buf, "off"))
2661 		ctrlval = CPU_SMT_DISABLED;
2662 	else if (sysfs_streq(buf, "forceoff"))
2663 		ctrlval = CPU_SMT_FORCE_DISABLED;
2664 	else
2665 		return -EINVAL;
2666 
2667 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2668 		return -EPERM;
2669 
2670 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2671 		return -ENODEV;
2672 
2673 	ret = lock_device_hotplug_sysfs();
2674 	if (ret)
2675 		return ret;
2676 
2677 	if (ctrlval != cpu_smt_control) {
2678 		switch (ctrlval) {
2679 		case CPU_SMT_ENABLED:
2680 			ret = cpuhp_smt_enable();
2681 			break;
2682 		case CPU_SMT_DISABLED:
2683 		case CPU_SMT_FORCE_DISABLED:
2684 			ret = cpuhp_smt_disable(ctrlval);
2685 			break;
2686 		}
2687 	}
2688 
2689 	unlock_device_hotplug();
2690 	return ret ? ret : count;
2691 }
2692 
2693 #else /* !CONFIG_HOTPLUG_SMT */
2694 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2695 __store_smt_control(struct device *dev, struct device_attribute *attr,
2696 		    const char *buf, size_t count)
2697 {
2698 	return -ENODEV;
2699 }
2700 #endif /* CONFIG_HOTPLUG_SMT */
2701 
2702 static const char *smt_states[] = {
2703 	[CPU_SMT_ENABLED]		= "on",
2704 	[CPU_SMT_DISABLED]		= "off",
2705 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2706 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2707 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2708 };
2709 
2710 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2711 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2712 {
2713 	const char *state = smt_states[cpu_smt_control];
2714 
2715 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2716 }
2717 
2718 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2719 store_smt_control(struct device *dev, struct device_attribute *attr,
2720 		  const char *buf, size_t count)
2721 {
2722 	return __store_smt_control(dev, attr, buf, count);
2723 }
2724 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2725 
2726 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2727 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2728 {
2729 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2730 }
2731 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2732 
2733 static struct attribute *cpuhp_smt_attrs[] = {
2734 	&dev_attr_control.attr,
2735 	&dev_attr_active.attr,
2736 	NULL
2737 };
2738 
2739 static const struct attribute_group cpuhp_smt_attr_group = {
2740 	.attrs = cpuhp_smt_attrs,
2741 	.name = "smt",
2742 	NULL
2743 };
2744 
cpu_smt_sysfs_init(void)2745 static int __init cpu_smt_sysfs_init(void)
2746 {
2747 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2748 				  &cpuhp_smt_attr_group);
2749 }
2750 
cpuhp_sysfs_init(void)2751 static int __init cpuhp_sysfs_init(void)
2752 {
2753 	int cpu, ret;
2754 
2755 	ret = cpu_smt_sysfs_init();
2756 	if (ret)
2757 		return ret;
2758 
2759 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2760 				 &cpuhp_cpu_root_attr_group);
2761 	if (ret)
2762 		return ret;
2763 
2764 	for_each_possible_cpu(cpu) {
2765 		struct device *dev = get_cpu_device(cpu);
2766 
2767 		if (!dev)
2768 			continue;
2769 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2770 		if (ret)
2771 			return ret;
2772 	}
2773 	return 0;
2774 }
2775 device_initcall(cpuhp_sysfs_init);
2776 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2777 
2778 /*
2779  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2780  * represents all NR_CPUS bits binary values of 1<<nr.
2781  *
2782  * It is used by cpumask_of() to get a constant address to a CPU
2783  * mask value that has a single bit set only.
2784  */
2785 
2786 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2787 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2788 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2789 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2790 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2791 
2792 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2793 
2794 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2795 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2796 #if BITS_PER_LONG > 32
2797 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2798 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2799 #endif
2800 };
2801 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2802 
2803 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2804 EXPORT_SYMBOL(cpu_all_bits);
2805 
2806 #ifdef CONFIG_INIT_ALL_POSSIBLE
2807 struct cpumask __cpu_possible_mask __read_mostly
2808 	= {CPU_BITS_ALL};
2809 #else
2810 struct cpumask __cpu_possible_mask __read_mostly;
2811 #endif
2812 EXPORT_SYMBOL(__cpu_possible_mask);
2813 
2814 struct cpumask __cpu_online_mask __read_mostly;
2815 EXPORT_SYMBOL(__cpu_online_mask);
2816 
2817 struct cpumask __cpu_present_mask __read_mostly;
2818 EXPORT_SYMBOL(__cpu_present_mask);
2819 
2820 struct cpumask __cpu_active_mask __read_mostly;
2821 EXPORT_SYMBOL(__cpu_active_mask);
2822 
2823 atomic_t __num_online_cpus __read_mostly;
2824 EXPORT_SYMBOL(__num_online_cpus);
2825 
init_cpu_present(const struct cpumask * src)2826 void init_cpu_present(const struct cpumask *src)
2827 {
2828 	cpumask_copy(&__cpu_present_mask, src);
2829 }
2830 
init_cpu_possible(const struct cpumask * src)2831 void init_cpu_possible(const struct cpumask *src)
2832 {
2833 	cpumask_copy(&__cpu_possible_mask, src);
2834 }
2835 
init_cpu_online(const struct cpumask * src)2836 void init_cpu_online(const struct cpumask *src)
2837 {
2838 	cpumask_copy(&__cpu_online_mask, src);
2839 }
2840 
set_cpu_online(unsigned int cpu,bool online)2841 void set_cpu_online(unsigned int cpu, bool online)
2842 {
2843 	/*
2844 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2845 	 * function by the reboot and kexec code which invoke it from
2846 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2847 	 * regular CPU hotplug is properly serialized.
2848 	 *
2849 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2850 	 * does not protect readers which are not serialized against
2851 	 * concurrent hotplug operations.
2852 	 */
2853 	if (online) {
2854 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2855 			atomic_inc(&__num_online_cpus);
2856 	} else {
2857 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2858 			atomic_dec(&__num_online_cpus);
2859 	}
2860 }
2861 
2862 /*
2863  * Activate the first processor.
2864  */
boot_cpu_init(void)2865 void __init boot_cpu_init(void)
2866 {
2867 	int cpu = smp_processor_id();
2868 
2869 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2870 	set_cpu_online(cpu, true);
2871 	set_cpu_active(cpu, true);
2872 	set_cpu_present(cpu, true);
2873 	set_cpu_possible(cpu, true);
2874 
2875 #ifdef CONFIG_SMP
2876 	__boot_cpu_id = cpu;
2877 #endif
2878 }
2879 
2880 /*
2881  * Must be called _AFTER_ setting up the per_cpu areas
2882  */
boot_cpu_hotplug_init(void)2883 void __init boot_cpu_hotplug_init(void)
2884 {
2885 #ifdef CONFIG_SMP
2886 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2887 #endif
2888 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2889 }
2890 
2891 /*
2892  * These are used for a global "mitigations=" cmdline option for toggling
2893  * optional CPU mitigations.
2894  */
2895 enum cpu_mitigations {
2896 	CPU_MITIGATIONS_OFF,
2897 	CPU_MITIGATIONS_AUTO,
2898 	CPU_MITIGATIONS_AUTO_NOSMT,
2899 };
2900 
2901 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2902 	CPU_MITIGATIONS_AUTO;
2903 
mitigations_parse_cmdline(char * arg)2904 static int __init mitigations_parse_cmdline(char *arg)
2905 {
2906 	if (!strcmp(arg, "off"))
2907 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2908 	else if (!strcmp(arg, "auto"))
2909 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2910 	else if (!strcmp(arg, "auto,nosmt"))
2911 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2912 	else
2913 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2914 			arg);
2915 
2916 	return 0;
2917 }
2918 early_param("mitigations", mitigations_parse_cmdline);
2919 
2920 /* mitigations=off */
cpu_mitigations_off(void)2921 bool cpu_mitigations_off(void)
2922 {
2923 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2924 }
2925 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2926 
2927 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2928 bool cpu_mitigations_auto_nosmt(void)
2929 {
2930 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2931 }
2932 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2933 
2934 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
2935 
idle_notifier_register(struct notifier_block * n)2936 void idle_notifier_register(struct notifier_block *n)
2937 {
2938 	atomic_notifier_chain_register(&idle_notifier, n);
2939 }
2940 EXPORT_SYMBOL_GPL(idle_notifier_register);
2941 
idle_notifier_unregister(struct notifier_block * n)2942 void idle_notifier_unregister(struct notifier_block *n)
2943 {
2944 	atomic_notifier_chain_unregister(&idle_notifier, n);
2945 }
2946 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
2947 
idle_notifier_call_chain(unsigned long val)2948 void idle_notifier_call_chain(unsigned long val)
2949 {
2950 	atomic_notifier_call_chain(&idle_notifier, val, NULL);
2951 }
2952 EXPORT_SYMBOL_GPL(idle_notifier_call_chain);
2953