xref: /rk3399_ARM-atf/common/fdt_fixup.c (revision 55877c6341b29c416ed88b705dca1a6343db194f)
1 /*
2  * Copyright (c) 2016-2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 /*
8  * Contains generic routines to fix up the device tree blob passed on to
9  * payloads like BL32 and BL33 (and further down the boot chain).
10  * This allows to easily add PSCI nodes, when the original DT does not have
11  * it or advertises another method.
12  * Also it supports to add reserved memory nodes to describe memory that
13  * is used by the secure world, so that non-secure software avoids using
14  * that.
15  */
16 
17 #include <errno.h>
18 #include <stdio.h>
19 #include <string.h>
20 
21 #include <libfdt.h>
22 
23 #include <arch.h>
24 #include <common/debug.h>
25 #include <common/fdt_fixup.h>
26 #include <common/fdt_wrappers.h>
27 #include <drivers/console.h>
28 #include <lib/psci/psci.h>
29 #include <lib/utils_def.h>
30 #include <plat/common/platform.h>
31 
32 
append_psci_compatible(void * fdt,int offs,const char * str)33 static int append_psci_compatible(void *fdt, int offs, const char *str)
34 {
35 	return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1);
36 }
37 
38 /*
39  * Those defines are for PSCI v0.1 legacy clients, which we expect to use
40  * the same execution state (AArch32/AArch64) as TF-A.
41  * Kernels running in AArch32 on an AArch64 TF-A should use PSCI v0.2.
42  */
43 #ifdef __aarch64__
44 #define PSCI_CPU_SUSPEND_FNID	PSCI_CPU_SUSPEND_AARCH64
45 #define PSCI_CPU_ON_FNID	PSCI_CPU_ON_AARCH64
46 #else
47 #define PSCI_CPU_SUSPEND_FNID	PSCI_CPU_SUSPEND_AARCH32
48 #define PSCI_CPU_ON_FNID	PSCI_CPU_ON_AARCH32
49 #endif
50 
51 /*******************************************************************************
52  * dt_add_psci_node() - Add a PSCI node into an existing device tree
53  * @fdt:	pointer to the device tree blob in memory
54  *
55  * Add a device tree node describing PSCI into the root level of an existing
56  * device tree blob in memory.
57  * This will add v0.1, v0.2 and v1.0 compatible strings and the standard
58  * function IDs for v0.1 compatibility.
59  * An existing PSCI node will not be touched, the function will return success
60  * in this case. This function will not touch the /cpus enable methods, use
61  * dt_add_psci_cpu_enable_methods() for that.
62  *
63  * Return: 0 on success, -1 otherwise.
64  ******************************************************************************/
dt_add_psci_node(void * fdt)65 int dt_add_psci_node(void *fdt)
66 {
67 	int offs;
68 
69 	if (fdt_path_offset(fdt, "/psci") >= 0) {
70 		WARN("PSCI Device Tree node already exists!\n");
71 		return 0;
72 	}
73 
74 	offs = fdt_path_offset(fdt, "/");
75 	if (offs < 0) {
76 		return -1;
77 	}
78 	offs = fdt_add_subnode(fdt, offs, "psci");
79 	if (offs < 0) {
80 		return -1;
81 	}
82 	if (append_psci_compatible(fdt, offs, "arm,psci-1.0") != 0) {
83 		return -1;
84 	}
85 	if (append_psci_compatible(fdt, offs, "arm,psci-0.2") != 0) {
86 		return -1;
87 	}
88 	if (append_psci_compatible(fdt, offs, "arm,psci") != 0) {
89 		return -1;
90 	}
91 	if (fdt_setprop_string(fdt, offs, "method", "smc") != 0) {
92 		return -1;
93 	}
94 	if (fdt_setprop_u32(fdt, offs, "cpu_suspend", PSCI_CPU_SUSPEND_FNID) != 0) {
95 		return -1;
96 	}
97 	if (fdt_setprop_u32(fdt, offs, "cpu_off", PSCI_CPU_OFF) != 0) {
98 		return -1;
99 	}
100 	if (fdt_setprop_u32(fdt, offs, "cpu_on", PSCI_CPU_ON_FNID) != 0) {
101 		return -1;
102 	}
103 	return 0;
104 }
105 
106 /*
107  * Find the first subnode that has a "device_type" property with the value
108  * "cpu" and which's enable-method is not "psci" (yet).
109  * Returns 0 if no such subnode is found, so all have already been patched
110  * or none have to be patched in the first place.
111  * Returns 1 if *one* such subnode has been found and successfully changed
112  * to "psci".
113  * Returns negative values on error.
114  *
115  * Call in a loop until it returns 0. Recalculate the node offset after
116  * it has returned 1.
117  */
dt_update_one_cpu_node(void * fdt,int offset)118 static int dt_update_one_cpu_node(void *fdt, int offset)
119 {
120 	int offs;
121 
122 	/* Iterate over all subnodes to find those with device_type = "cpu". */
123 	for (offs = fdt_first_subnode(fdt, offset); offs >= 0;
124 	     offs = fdt_next_subnode(fdt, offs)) {
125 		const char *prop;
126 		int len;
127 		int ret;
128 
129 		prop = fdt_getprop(fdt, offs, "device_type", &len);
130 		if (prop == NULL)
131 			continue;
132 		if ((strcmp(prop, "cpu") != 0) || (len != 4))
133 			continue;
134 
135 		/* Ignore any nodes which already use "psci". */
136 		prop = fdt_getprop(fdt, offs, "enable-method", &len);
137 		if ((prop != NULL) &&
138 		    (strcmp(prop, "psci") == 0) && (len == 5))
139 			continue;
140 
141 		ret = fdt_setprop_string(fdt, offs, "enable-method", "psci");
142 		if (ret < 0)
143 			return ret;
144 		/*
145 		 * Subnode found and patched.
146 		 * Restart to accommodate potentially changed offsets.
147 		 */
148 		return 1;
149 	}
150 
151 	if (offs == -FDT_ERR_NOTFOUND)
152 		return 0;
153 
154 	return offs;
155 }
156 
157 /*******************************************************************************
158  * dt_add_psci_cpu_enable_methods() - switch CPU nodes in DT to use PSCI
159  * @fdt:	pointer to the device tree blob in memory
160  *
161  * Iterate over all CPU device tree nodes (/cpus/cpu@x) in memory to change
162  * the enable-method to PSCI. This will add the enable-method properties, if
163  * required, or will change existing properties to read "psci".
164  *
165  * Return: 0 on success, or a negative error value otherwise.
166  ******************************************************************************/
167 
dt_add_psci_cpu_enable_methods(void * fdt)168 int dt_add_psci_cpu_enable_methods(void *fdt)
169 {
170 	int offs, ret;
171 
172 	do {
173 		offs = fdt_path_offset(fdt, "/cpus");
174 		if (offs < 0) {
175 			return offs;
176 		}
177 
178 		ret = dt_update_one_cpu_node(fdt, offs);
179 	} while (ret > 0);
180 
181 	return ret;
182 }
183 
184 #define HIGH_BITS_U32(x)		((sizeof(x) > 4U) ? (uint32_t)((x) >> 32) : (uint32_t)0)
185 
186 /*******************************************************************************
187  * fdt_add_reserved_memory() - reserve (secure) memory regions in DT
188  * @dtb:	pointer to the device tree blob in memory
189  * @node_name:	name of the subnode to be used
190  * @base:	physical base address of the reserved region
191  * @size:	size of the reserved region
192  *
193  * Add a region of memory to the /reserved-memory node in a device tree in
194  * memory, creating that node if required. Each region goes into a subnode
195  * of that node and has a @node_name, a @base address and a @size.
196  * This will prevent any device tree consumer from using that memory. It
197  * can be used to announce secure memory regions, as it adds the "no-map"
198  * property to prevent mapping and speculative operations on that region.
199  *
200  * See reserved-memory/reserved-memory.txt in the (Linux kernel) DT binding
201  * documentation for details.
202  * According to this binding, the address-cells and size-cells must match
203  * those of the root node.
204  *
205  * Return: 0 on success, a negative error value otherwise.
206  ******************************************************************************/
fdt_add_reserved_memory(void * dtb,const char * node_name,uintptr_t base,size_t size)207 int fdt_add_reserved_memory(void *dtb, const char *node_name,
208 			    uintptr_t base, size_t size)
209 {
210 	int offs = fdt_path_offset(dtb, "/reserved-memory");
211 	int node;
212 	uint32_t addresses[4];
213 	int ac, sc;
214 	unsigned int idx = 0;
215 
216 	ac = fdt_address_cells(dtb, 0);
217 	sc = fdt_size_cells(dtb, 0);
218 	if (ac < 0 || sc < 0) {
219 		return -EINVAL;
220 	}
221 	if (offs < 0) {			/* create if not existing yet */
222 		offs = fdt_add_subnode(dtb, 0, "reserved-memory");
223 		if (offs < 0) {
224 			return offs;
225 		}
226 		fdt_setprop_u32(dtb, offs, "#address-cells", (uint32_t)ac);
227 		fdt_setprop_u32(dtb, offs, "#size-cells", (uint32_t)sc);
228 		fdt_setprop(dtb, offs, "ranges", NULL, 0);
229 	}
230 
231 	/* Check for existing regions */
232 	fdt_for_each_subnode(node, dtb, offs) {
233 		uintptr_t c_base;
234 		size_t c_size;
235 		int ret;
236 
237 		ret = fdt_get_reg_props_by_index(dtb, node, 0, &c_base, &c_size);
238 		/* Ignore illegal subnodes */
239 		if (ret != 0) {
240 			continue;
241 		}
242 
243 		/* existing region entirely contains the new region */
244 		if (base >= c_base && (base + size) <= (c_base + c_size)) {
245 			return 0;
246 		}
247 	}
248 
249 	if (ac > 1) {
250 		addresses[idx] = cpu_to_fdt32(HIGH_BITS_U32(base));
251 		idx++;
252 	}
253 	addresses[idx] = cpu_to_fdt32(LO(base));
254 	idx++;
255 	if (sc > 1) {
256 		addresses[idx] = cpu_to_fdt32(HIGH_BITS_U32(size));
257 		idx++;
258 	}
259 	addresses[idx] = cpu_to_fdt32(LO(size));
260 	idx++;
261 	offs = fdt_add_subnode(dtb, offs, node_name);
262 	fdt_setprop(dtb, offs, "no-map", NULL, 0);
263 	fdt_setprop(dtb, offs, "reg", addresses, idx * sizeof(uint32_t));
264 
265 	return 0;
266 }
267 
268 /*******************************************************************************
269  * fdt_add_cpu()	Add a new CPU node to the DT
270  * @dtb:		Pointer to the device tree blob in memory
271  * @parent:		Offset of the parent node
272  * @mpidr:		MPIDR for the current CPU
273  *
274  * Create and add a new cpu node to a DTB.
275  *
276  * Return the offset of the new node or a negative value in case of error
277  ******************************************************************************/
278 
fdt_add_cpu(void * dtb,int parent,u_register_t mpidr)279 static int fdt_add_cpu(void *dtb, int parent, u_register_t mpidr)
280 {
281 	int cpu_offs;
282 	int err;
283 	char snode_name[15];
284 	uint64_t reg_prop;
285 
286 	reg_prop = mpidr & MPID_MASK & ~MPIDR_MT_MASK;
287 
288 	snprintf(snode_name, sizeof(snode_name), "cpu@%x",
289 					(unsigned int)reg_prop);
290 
291 	cpu_offs = fdt_add_subnode(dtb, parent, snode_name);
292 	if (cpu_offs < 0) {
293 		ERROR ("FDT: add subnode \"%s\" failed: %i\n",
294 							snode_name, cpu_offs);
295 		return cpu_offs;
296 	}
297 
298 	err = fdt_setprop_string(dtb, cpu_offs, "compatible", "arm,armv8");
299 	if (err < 0) {
300 		ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n",
301 			"compatible", cpu_offs);
302 		return err;
303 	}
304 
305 	err = fdt_setprop_u64(dtb, cpu_offs, "reg", reg_prop);
306 	if (err < 0) {
307 		ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n",
308 			"reg", cpu_offs);
309 		return err;
310 	}
311 
312 	err = fdt_setprop_string(dtb, cpu_offs, "device_type", "cpu");
313 	if (err < 0) {
314 		ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n",
315 			"device_type", cpu_offs);
316 		return err;
317 	}
318 
319 	err = fdt_setprop_string(dtb, cpu_offs, "enable-method", "psci");
320 	if (err < 0) {
321 		ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n",
322 			"enable-method", cpu_offs);
323 		return err;
324 	}
325 
326 	return cpu_offs;
327 }
328 
329 /******************************************************************************
330  * fdt_add_cpus_node() - Add the cpus node to the DTB
331  * @dtb:		pointer to the device tree blob in memory
332  * @afflv0:		Maximum number of threads per core (affinity level 0).
333  * @afflv1:		Maximum number of CPUs per cluster (affinity level 1).
334  * @afflv2:		Maximum number of clusters (affinity level 2).
335  *
336  * Iterate over all the possible MPIDs given the maximum affinity levels and
337  * add a cpus node to the DTB with all the valid CPUs on the system.
338  * If there is already a /cpus node, exit gracefully
339  *
340  * A system with two CPUs would generate a node equivalent or similar to:
341  *
342  *	cpus {
343  *		#address-cells = <2>;
344  *		#size-cells = <0>;
345  *
346  *		cpu0: cpu@0 {
347  *			compatible = "arm,armv8";
348  *			reg = <0x0 0x0>;
349  *			device_type = "cpu";
350  *			enable-method = "psci";
351  *		};
352  *		cpu1: cpu@10000 {
353  *			compatible = "arm,armv8";
354  *			reg = <0x0 0x100>;
355  *			device_type = "cpu";
356  *			enable-method = "psci";
357  *		};
358  *	};
359  *
360  * Full documentation about the CPU bindings can be found at:
361  * https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/cpus.txt
362  *
363  * Return the offset of the node or a negative value on error.
364  ******************************************************************************/
365 
fdt_add_cpus_node(void * dtb,unsigned int afflv0,unsigned int afflv1,unsigned int afflv2)366 int fdt_add_cpus_node(void *dtb, unsigned int afflv0,
367 		      unsigned int afflv1, unsigned int afflv2)
368 {
369 	int offs;
370 	int err;
371 	unsigned int i, j, k;
372 	u_register_t mpidr;
373 	int cpuid;
374 
375 	if (fdt_path_offset(dtb, "/cpus") >= 0) {
376 		return -EEXIST;
377 	}
378 
379 	offs = fdt_add_subnode(dtb, 0, "cpus");
380 	if (offs < 0) {
381 		ERROR ("FDT: add subnode \"cpus\" node to parent node failed");
382 		return offs;
383 	}
384 
385 	err = fdt_setprop_u32(dtb, offs, "#address-cells", 2);
386 	if (err < 0) {
387 		ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n",
388 			"#address-cells", offs);
389 		return err;
390 	}
391 
392 	err = fdt_setprop_u32(dtb, offs, "#size-cells", 0);
393 	if (err < 0) {
394 		ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n",
395 			"#size-cells", offs);
396 		return err;
397 	}
398 
399 	/*
400 	 * Populate the node with the CPUs.
401 	 * As libfdt prepends subnodes within a node, reverse the index count
402 	 * so the CPU nodes would be better ordered.
403 	 */
404 	for (i = afflv2; i > 0U; i--) {
405 		for (j = afflv1; j > 0U; j--) {
406 			for (k = afflv0; k > 0U; k--) {
407 				mpidr = ((i - 1) << MPIDR_AFF2_SHIFT) |
408 					((j - 1) << MPIDR_AFF1_SHIFT) |
409 					((k - 1) << MPIDR_AFF0_SHIFT) |
410 					(read_mpidr_el1() & MPIDR_MT_MASK);
411 
412 				cpuid = plat_core_pos_by_mpidr(mpidr);
413 				if (cpuid >= 0) {
414 					/* Valid MPID found */
415 					err = fdt_add_cpu(dtb, offs, mpidr);
416 					if (err < 0) {
417 						ERROR ("FDT: %s 0x%08x\n",
418 							"error adding CPU",
419 							(uint32_t)mpidr);
420 						return err;
421 					}
422 				}
423 			}
424 		}
425 	}
426 
427 	return offs;
428 }
429 
430 /*******************************************************************************
431  * fdt_add_cpu_idle_states() - add PSCI CPU idle states to cpu nodes in the DT
432  * @dtb:	pointer to the device tree blob in memory
433  * @states:	array of idle state descriptions, ending with empty element
434  *
435  * Add information about CPU idle states to the devicetree. This function
436  * assumes that CPU idle states are not already present in the devicetree, and
437  * that all CPU states are equally applicable to all CPUs.
438  *
439  * See arm/idle-states.yaml and arm/psci.yaml in the (Linux kernel) DT binding
440  * documentation for more details.
441  *
442  * Return: 0 on success, a negative error value otherwise.
443  ******************************************************************************/
fdt_add_cpu_idle_states(void * dtb,const struct psci_cpu_idle_state * state)444 int fdt_add_cpu_idle_states(void *dtb, const struct psci_cpu_idle_state *state)
445 {
446 	int cpu_node, cpus_node, idle_states_node, ret;
447 	uint32_t count, phandle;
448 
449 	ret = fdt_find_max_phandle(dtb, &phandle);
450 	phandle++;
451 	if (ret < 0) {
452 		return ret;
453 	}
454 
455 	cpus_node = fdt_path_offset(dtb, "/cpus");
456 	if (cpus_node < 0) {
457 		return cpus_node;
458 	}
459 
460 	/* Create the idle-states node and its child nodes. */
461 	idle_states_node = fdt_add_subnode(dtb, cpus_node, "idle-states");
462 	if (idle_states_node < 0) {
463 		return idle_states_node;
464 	}
465 
466 	ret = fdt_setprop_string(dtb, idle_states_node, "entry-method", "psci");
467 	if (ret < 0) {
468 		return ret;
469 	}
470 
471 	for (count = 0U; state->name != NULL; count++, phandle++, state++) {
472 		int idle_state_node;
473 
474 		idle_state_node = fdt_add_subnode(dtb, idle_states_node,
475 						  state->name);
476 		if (idle_state_node < 0) {
477 			return idle_state_node;
478 		}
479 
480 		fdt_setprop_string(dtb, idle_state_node, "compatible",
481 				   "arm,idle-state");
482 		fdt_setprop_u32(dtb, idle_state_node, "arm,psci-suspend-param",
483 				state->power_state);
484 		if (state->local_timer_stop) {
485 			fdt_setprop_empty(dtb, idle_state_node,
486 					  "local-timer-stop");
487 		}
488 		fdt_setprop_u32(dtb, idle_state_node, "entry-latency-us",
489 				state->entry_latency_us);
490 		fdt_setprop_u32(dtb, idle_state_node, "exit-latency-us",
491 				state->exit_latency_us);
492 		fdt_setprop_u32(dtb, idle_state_node, "min-residency-us",
493 				state->min_residency_us);
494 		if (state->wakeup_latency_us) {
495 			fdt_setprop_u32(dtb, idle_state_node,
496 					"wakeup-latency-us",
497 					state->wakeup_latency_us);
498 		}
499 		fdt_setprop_u32(dtb, idle_state_node, "phandle", phandle);
500 	}
501 
502 	if (count == 0U) {
503 		return 0;
504 	}
505 
506 	/* Link each cpu node to the idle state nodes. */
507 	fdt_for_each_subnode(cpu_node, dtb, cpus_node) {
508 		const char *device_type;
509 		fdt32_t *value;
510 
511 		/* Only process child nodes with device_type = "cpu". */
512 		device_type = fdt_getprop(dtb, cpu_node, "device_type", NULL);
513 		if (device_type == NULL || strcmp(device_type, "cpu") != 0) {
514 			continue;
515 		}
516 
517 		/* Allocate space for the list of phandles. */
518 		ret = fdt_setprop_placeholder(dtb, cpu_node, "cpu-idle-states",
519 					      count * sizeof(phandle),
520 					      (void **)&value);
521 		if (ret < 0) {
522 			return ret;
523 		}
524 
525 		/* Fill in the phandles of the idle state nodes. */
526 		for (uint32_t i = 0U; i < count; ++i) {
527 			value[i] = cpu_to_fdt32(phandle - count + i);
528 		}
529 	}
530 
531 	return 0;
532 }
533 
534 /**
535  * fdt_adjust_gic_redist() - Adjust GICv3 redistributor size
536  * @dtb: Pointer to the DT blob in memory
537  * @nr_cores: Number of CPU cores on this system.
538  * @gicr_base: Base address of the first GICR frame, or ~0 if unchanged
539  * @gicr_frame_size: Size of the GICR frame per core
540  *
541  * On a GICv3 compatible interrupt controller, the redistributor provides
542  * a number of 64k pages per each supported core. So with a dynamic topology,
543  * this size cannot be known upfront and thus can't be hardcoded into the DTB.
544  *
545  * Find the DT node describing the GICv3 interrupt controller, and adjust
546  * the size of the redistributor to match the number of actual cores on
547  * this system.
548  * A GICv4 compatible redistributor uses four 64K pages per core, whereas GICs
549  * without support for direct injection of virtual interrupts use two 64K pages.
550  * The @gicr_frame_size parameter should be 262144 and 131072, respectively.
551  * Also optionally allow adjusting the GICR frame base address, when this is
552  * different due to ITS frames between distributor and redistributor.
553  *
554  * Return: 0 on success, negative error value otherwise.
555  */
fdt_adjust_gic_redist(void * dtb,unsigned int nr_cores,uintptr_t gicr_base,unsigned int gicr_frame_size)556 int fdt_adjust_gic_redist(void *dtb, unsigned int nr_cores,
557 			  uintptr_t gicr_base, unsigned int gicr_frame_size)
558 {
559 	int offset = fdt_node_offset_by_compatible(dtb, 0, "arm,gic-v3");
560 	uint64_t reg_64;
561 	uint32_t reg_32;
562 	void *val;
563 	int parent, ret;
564 	int ac, sc;
565 
566 	if (offset < 0) {
567 		return offset;
568 	}
569 
570 	parent = fdt_parent_offset(dtb, offset);
571 	if (parent < 0) {
572 		return parent;
573 	}
574 	ac = fdt_address_cells(dtb, parent);
575 	sc = fdt_size_cells(dtb, parent);
576 	if (ac < 0 || sc < 0) {
577 		return -EINVAL;
578 	}
579 
580 	if (gicr_base != INVALID_BASE_ADDR) {
581 		if (ac == 1) {
582 			reg_32 = cpu_to_fdt32(gicr_base);
583 			val = &reg_32;
584 		} else {
585 			reg_64 = cpu_to_fdt64(gicr_base);
586 			val = &reg_64;
587 		}
588 		/*
589 		 * The redistributor base address is the second address in
590 		 * the "reg" entry, so we have to skip one address and one
591 		 * size cell.
592 		 */
593 		ret = fdt_setprop_inplace_namelen_partial(dtb, offset,
594 							  "reg", 3,
595 							  (ac + sc) * 4,
596 							  val, ac * 4);
597 		if (ret < 0) {
598 			return ret;
599 		}
600 	}
601 
602 	if (sc == 1) {
603 		reg_32 = cpu_to_fdt32(nr_cores * gicr_frame_size);
604 		val = &reg_32;
605 	} else {
606 		reg_64 = cpu_to_fdt64(nr_cores * (uint64_t)gicr_frame_size);
607 		val = &reg_64;
608 	}
609 
610 	/*
611 	 * The redistributor is described in the second "reg" entry.
612 	 * So we have to skip one address and one size cell, then another
613 	 * address cell to get to the second size cell.
614 	 */
615 	return fdt_setprop_inplace_namelen_partial(dtb, offset, "reg", 3,
616 						   (ac + sc + ac) * 4,
617 						   val, sc * 4);
618 }
619 /**
620  * fdt_set_mac_address () - store MAC address in device tree
621  * @dtb:	pointer to the device tree blob in memory
622  * @eth_idx:	number of Ethernet interface in /aliases node
623  * @mac_addr:	pointer to 6 byte MAC address to store
624  *
625  * Use the generic local-mac-address property in a network device DT node
626  * to define the MAC address this device should be using. Many platform
627  * network devices lack device-specific non-volatile storage to hold this
628  * address, and leave it up to firmware to find and store a unique MAC
629  * address in the DT.
630  * The MAC address could be read from some board or firmware defined storage,
631  * or could be derived from some other unique property like a serial number.
632  *
633  * Return: 0 on success, a negative libfdt error value otherwise.
634  */
fdt_set_mac_address(void * dtb,unsigned int ethernet_idx,const uint8_t * mac_addr)635 int fdt_set_mac_address(void *dtb, unsigned int ethernet_idx,
636 			const uint8_t *mac_addr)
637 {
638 	char eth_alias[12];
639 	const char *path;
640 	int node;
641 
642 	if (ethernet_idx > 9U) {
643 		return -FDT_ERR_BADVALUE;
644 	}
645 	snprintf(eth_alias, sizeof(eth_alias), "ethernet%d", ethernet_idx);
646 
647 	path = fdt_get_alias(dtb, eth_alias);
648 	if (path == NULL) {
649 		return -FDT_ERR_NOTFOUND;
650 	}
651 
652 	node = fdt_path_offset(dtb, path);
653 	if (node < 0) {
654 		ERROR("Path \"%s\" not found in DT: %d\n", path, node);
655 		return node;
656 	}
657 
658 	return fdt_setprop(dtb, node, "local-mac-address", mac_addr, 6);
659 }
660