1 /*
2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /*
9 * NOTE:
10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
11 * limits the maximum size of addressable storage to < 2 Terra Bytes
12 */
13 #include <asm/unaligned.h>
14 #include <common.h>
15 #include <command.h>
16 #include <fdtdec.h>
17 #include <ide.h>
18 #include <inttypes.h>
19 #include <malloc.h>
20 #include <memalign.h>
21 #include <part_efi.h>
22 #include <linux/compiler.h>
23 #include <linux/ctype.h>
24
25 DECLARE_GLOBAL_DATA_PTR;
26
27 #ifdef HAVE_BLOCK_DEVICE
28 /**
29 * efi_crc32() - EFI version of crc32 function
30 * @buf: buffer to calculate crc32 of
31 * @len - length of buf
32 *
33 * Description: Returns EFI-style CRC32 value for @buf
34 */
efi_crc32(const void * buf,u32 len)35 static inline u32 efi_crc32(const void *buf, u32 len)
36 {
37 return crc32(0, buf, len);
38 }
39
40 /*
41 * Private function prototypes
42 */
43
44 static int pmbr_part_valid(struct partition *part);
45 static int is_pmbr_valid(legacy_mbr * mbr);
46 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
47 gpt_header *pgpt_head, gpt_entry **pgpt_pte);
48 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
49 gpt_header *pgpt_head);
50 static int is_pte_valid(gpt_entry * pte);
51
print_efiname(gpt_entry * pte)52 static char *print_efiname(gpt_entry *pte)
53 {
54 static char name[PARTNAME_SZ + 1];
55 int i;
56 for (i = 0; i < PARTNAME_SZ; i++) {
57 u8 c;
58 c = pte->partition_name[i] & 0xff;
59 c = (c && !isprint(c)) ? '.' : c;
60 name[i] = c;
61 }
62 name[PARTNAME_SZ] = 0;
63 return name;
64 }
65
66 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
67
is_bootable(gpt_entry * p)68 static inline int is_bootable(gpt_entry *p)
69 {
70 return p->attributes.fields.legacy_bios_bootable ||
71 !memcmp(&(p->partition_type_guid), &system_guid,
72 sizeof(efi_guid_t));
73 }
74
75 #define FACTORY_UNKNOWN_LBA (0xffffffff - 34)
validate_gpt_header(gpt_header * gpt_h,lbaint_t lba,lbaint_t lastlba)76 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
77 lbaint_t lastlba)
78 {
79 uint32_t crc32_backup = 0;
80 uint32_t calc_crc32;
81
82 /* Check the GPT header signature */
83 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) {
84 if (le64_to_cpu(gpt_h->signature) != 0)
85 printf("%s signature is wrong: 0x%llX != 0x%llX\n",
86 "GUID Partition Table Header",
87 le64_to_cpu(gpt_h->signature),
88 GPT_HEADER_SIGNATURE);
89 return -1;
90 }
91
92 /* Check the GUID Partition Table CRC */
93 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
94 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
95
96 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
97 le32_to_cpu(gpt_h->header_size));
98
99 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
100
101 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
102 printf("%s CRC is wrong: 0x%x != 0x%x\n",
103 "GUID Partition Table Header",
104 le32_to_cpu(crc32_backup), calc_crc32);
105 return -1;
106 }
107
108 /*
109 * Check that the my_lba entry points to the LBA that contains the GPT
110 */
111 if (le64_to_cpu(gpt_h->my_lba) != lba) {
112 printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
113 le64_to_cpu(gpt_h->my_lba),
114 lba);
115 return -1;
116 }
117
118 /*
119 * Check that the first_usable_lba and that the last_usable_lba are
120 * within the disk.
121 */
122 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
123 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
124 le64_to_cpu(gpt_h->first_usable_lba), lastlba);
125 return -1;
126 }
127 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
128 if (le64_to_cpu(gpt_h->last_usable_lba) == FACTORY_UNKNOWN_LBA) {
129 #ifdef CONFIG_SPL_BUILD
130 printf("GPT: SPL workaround factory last_usable_lba\n");
131 gpt_h->last_usable_lba = lastlba - 34;
132 return 0;
133 #else
134 printf("GPT: last_usable_lba need repair\n");
135 return 0;
136 #endif
137 }
138 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
139 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
140 return -1;
141 }
142
143 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
144 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
145 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
146
147 return 0;
148 }
149
validate_gpt_entries(gpt_header * gpt_h,gpt_entry * gpt_e)150 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
151 {
152 uint32_t calc_crc32;
153
154 /* Check the GUID Partition Table Entry Array CRC */
155 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
156 le32_to_cpu(gpt_h->num_partition_entries) *
157 le32_to_cpu(gpt_h->sizeof_partition_entry));
158
159 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
160 printf("%s: 0x%x != 0x%x\n",
161 "GUID Partition Table Entry Array CRC is wrong",
162 le32_to_cpu(gpt_h->partition_entry_array_crc32),
163 calc_crc32);
164 return -1;
165 }
166
167 return 0;
168 }
169
prepare_backup_gpt_header(gpt_header * gpt_h)170 static void prepare_backup_gpt_header(gpt_header *gpt_h)
171 {
172 uint32_t calc_crc32;
173 uint64_t val;
174
175 /* recalculate the values for the Backup GPT Header */
176 val = le64_to_cpu(gpt_h->my_lba);
177 gpt_h->my_lba = gpt_h->alternate_lba;
178 gpt_h->alternate_lba = cpu_to_le64(val);
179 gpt_h->partition_entry_lba =
180 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
181 gpt_h->header_crc32 = 0;
182
183 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
184 le32_to_cpu(gpt_h->header_size));
185 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
186 }
187
188 #if CONFIG_IS_ENABLED(EFI_PARTITION)
189 /*
190 * Public Functions (include/part.h)
191 */
192
193 /*
194 * UUID is displayed as 32 hexadecimal digits, in 5 groups,
195 * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters
196 */
get_disk_guid(struct blk_desc * dev_desc,char * guid)197 int get_disk_guid(struct blk_desc * dev_desc, char *guid)
198 {
199 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
200 gpt_entry *gpt_pte = NULL;
201 unsigned char *guid_bin;
202
203 /* This function validates AND fills in the GPT header and PTE */
204 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
205 gpt_head, &gpt_pte) != 1) {
206 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
207 if (is_gpt_valid(dev_desc, dev_desc->lba - 1,
208 gpt_head, &gpt_pte) != 1) {
209 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
210 __func__);
211 return -EINVAL;
212 } else {
213 printf("%s: *** Using Backup GPT ***\n",
214 __func__);
215 }
216 }
217
218 guid_bin = gpt_head->disk_guid.b;
219 uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID);
220
221 return 0;
222 }
223
part_print_efi(struct blk_desc * dev_desc)224 void part_print_efi(struct blk_desc *dev_desc)
225 {
226 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
227 gpt_entry *gpt_pte = NULL;
228 int i = 0;
229 char uuid[UUID_STR_LEN + 1];
230 unsigned char *uuid_bin;
231
232 /* This function validates AND fills in the GPT header and PTE */
233 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
234 gpt_head, &gpt_pte) != 1) {
235 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
236 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
237 gpt_head, &gpt_pte) != 1) {
238 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
239 __func__);
240 return;
241 } else {
242 printf("%s: *** Using Backup GPT ***\n",
243 __func__);
244 }
245 }
246
247 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
248
249 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
250 printf("\tAttributes\n");
251 printf("\tType GUID\n");
252 printf("\tPartition GUID\n");
253
254 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
255 /* Stop at the first non valid PTE */
256 if (!is_pte_valid(&gpt_pte[i]))
257 break;
258
259 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
260 le64_to_cpu(gpt_pte[i].starting_lba),
261 le64_to_cpu(gpt_pte[i].ending_lba),
262 print_efiname(&gpt_pte[i]));
263 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
264 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
265 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
266 printf("\ttype:\t%s\n", uuid);
267 #ifdef CONFIG_PARTITION_TYPE_GUID
268 if (!uuid_guid_get_str(uuid_bin, uuid))
269 printf("\ttype:\t%s\n", uuid);
270 #endif
271 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
272 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
273 printf("\tguid:\t%s\n", uuid);
274 }
275
276 /* Remember to free pte */
277 free(gpt_pte);
278 return;
279 }
280
part_get_info_efi(struct blk_desc * dev_desc,int part,disk_partition_t * info)281 int part_get_info_efi(struct blk_desc *dev_desc, int part,
282 disk_partition_t *info)
283 {
284 static gpt_entry *gpt_pte = NULL;
285 static gpt_header *gpt_head = NULL;
286
287 if (!gpt_head)
288 gpt_head = memalign(ARCH_DMA_MINALIGN, dev_desc->blksz);
289
290 /*
291 * We suppose different dev have different size, eg. emmc vs sd
292 * free the pte first if exist and then will malloc and init a new one.
293 */
294 if (gpt_head && (gpt_head->last_usable_lba + 0x22) != dev_desc->lba) {
295 if (gpt_pte)
296 free(gpt_pte);
297 gpt_pte = NULL;
298 }
299
300 /* "part" argument must be at least 1 */
301 if (part < 1) {
302 printf("%s: Invalid Argument(s)\n", __func__);
303 return -1;
304 }
305
306 /* This function validates AND fills in the GPT header and PTE */
307 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
308 gpt_head, &gpt_pte) != 1) {
309 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
310 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
311 gpt_head, &gpt_pte) != 1) {
312 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
313 __func__);
314 return -1;
315 } else {
316 printf("%s: *** Using Backup GPT ***\n",
317 __func__);
318 }
319 }
320
321 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
322 !is_pte_valid(&gpt_pte[part - 1])) {
323 debug("%s: *** ERROR: Invalid partition number %d ***\n",
324 __func__, part);
325 return -1;
326 }
327
328 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
329 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
330 /* The ending LBA is inclusive, to calculate size, add 1 to it */
331 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
332 - info->start;
333 info->blksz = dev_desc->blksz;
334
335 sprintf((char *)info->name, "%s",
336 print_efiname(&gpt_pte[part - 1]));
337 strcpy((char *)info->type, "U-Boot");
338 info->bootable = is_bootable(&gpt_pte[part - 1]);
339 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
340 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
341 UUID_STR_FORMAT_GUID);
342 #endif
343 #ifdef CONFIG_PARTITION_TYPE_GUID
344 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
345 info->type_guid, UUID_STR_FORMAT_GUID);
346 #endif
347
348 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
349 info->start, info->size, info->name);
350
351 return 0;
352 }
353
354 #ifdef CONFIG_RKIMG_BOOTLOADER
355 #if defined(CONFIG_SPL_KERNEL_BOOT) || !defined(CONFIG_SPL_BUILD)
gpt_entry_modify(struct blk_desc * dev_desc,gpt_entry * gpt_pte,gpt_header * gpt_head)356 static void gpt_entry_modify(struct blk_desc *dev_desc,
357 gpt_entry *gpt_pte,
358 gpt_header *gpt_head)
359 {
360 int i;
361 uint32_t calc_crc32;
362
363 for (i = 0; i < gpt_head->num_partition_entries; i++) {
364 if (!is_pte_valid(&gpt_pte[i]))
365 break;
366 }
367
368 if (gpt_pte[i - 1].ending_lba <= (dev_desc->lba - 0x22))
369 return;
370 /* The last partition size need align to 4KB, here align to 32KB. */
371 gpt_pte[i - 1].ending_lba = dev_desc->lba - 0x41;
372 calc_crc32 = efi_crc32((const unsigned char *)gpt_pte,
373 le32_to_cpu(gpt_head->num_partition_entries) *
374 le32_to_cpu(gpt_head->sizeof_partition_entry));
375 gpt_head->partition_entry_array_crc32 = calc_crc32;
376 }
377
part_efi_repair(struct blk_desc * dev_desc,gpt_entry * gpt_pte,gpt_header * gpt_head,int head_gpt_valid,int backup_gpt_valid)378 static int part_efi_repair(struct blk_desc *dev_desc, gpt_entry *gpt_pte,
379 gpt_header *gpt_head, int head_gpt_valid,
380 int backup_gpt_valid)
381 {
382 uint32_t calc_crc32;
383 size_t count = 0, blk_cnt;
384 lbaint_t blk;
385
386 if (head_gpt_valid == 1 && backup_gpt_valid == 1) {
387 return 0;
388 } else if (head_gpt_valid == 0 && backup_gpt_valid == 0) {
389 return -1;
390 } else if (head_gpt_valid == 1 && backup_gpt_valid == 0) {
391 gpt_head->header_crc32 = 0;
392 gpt_head->my_lba = dev_desc->lba - 1;
393 gpt_head->alternate_lba = 1;
394 gpt_head->partition_entry_lba = dev_desc->lba - 0x21;
395 gpt_head->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
396 gpt_entry_modify(dev_desc, gpt_pte, gpt_head);
397 calc_crc32 = efi_crc32((const unsigned char *)gpt_head,
398 le32_to_cpu(gpt_head->header_size));
399 gpt_head->header_crc32 = calc_crc32;
400 if (blk_dwrite(dev_desc, dev_desc->lba - 1, 1, gpt_head) != 1) {
401 printf("*** ERROR: Can't write GPT header ***\n");
402 return -1;
403 }
404 count = le32_to_cpu(gpt_head->num_partition_entries) *
405 le32_to_cpu(gpt_head->sizeof_partition_entry);
406 blk = le64_to_cpu(gpt_head->partition_entry_lba);
407 blk_cnt = BLOCK_CNT(count, dev_desc);
408 if (blk_dwrite(dev_desc, blk, (lbaint_t)blk_cnt, gpt_pte) !=
409 blk_cnt) {
410 printf("*** ERROR: Can't write entry partitions ***\n");
411 return -1;
412 }
413 printf("Repair the backup gpt table OK!\n");
414 } else if (head_gpt_valid == 0 && backup_gpt_valid == 1) {
415 gpt_head->header_crc32 = 0;
416 gpt_head->my_lba = 1;
417 gpt_head->alternate_lba = dev_desc->lba - 1;
418 gpt_head->partition_entry_lba = 0x2;
419 gpt_head->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
420 gpt_entry_modify(dev_desc, gpt_pte, gpt_head);
421 calc_crc32 = efi_crc32((const unsigned char *)gpt_head,
422 le32_to_cpu(gpt_head->header_size));
423 gpt_head->header_crc32 = calc_crc32;
424 if (blk_dwrite(dev_desc, 1, 1, gpt_head) != 1) {
425 printf("*** ERROR: Can't write GPT header ***\n");
426 return -1;
427 }
428 count = le32_to_cpu(gpt_head->num_partition_entries) *
429 le32_to_cpu(gpt_head->sizeof_partition_entry);
430 blk = le64_to_cpu(gpt_head->partition_entry_lba);
431 blk_cnt = BLOCK_CNT(count, dev_desc);
432 if (blk_dwrite(dev_desc, blk, (lbaint_t)blk_cnt, gpt_pte) !=
433 blk_cnt) {
434 printf("*** ERROR: Can't write entry partitions ***\n");
435 return -1;
436 }
437 printf("Repair the Primary gpt table OK!\n");
438 }
439
440 return 0;
441 }
442 #endif
443 #endif
444
part_test_efi(struct blk_desc * dev_desc)445 static int part_test_efi(struct blk_desc *dev_desc)
446 {
447 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
448 int ret = 0;
449
450 /* Read legacy MBR from block 0 and validate it */
451 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1)
452 || (is_pmbr_valid(legacymbr) != 1)) {
453 return -1;
454 }
455 #ifdef CONFIG_RKIMG_BOOTLOADER
456 #if defined(CONFIG_SPL_KERNEL_BOOT) || !defined(CONFIG_SPL_BUILD)
457 gpt_entry *h_gpt_pte = NULL;
458 gpt_header *h_gpt_head = NULL;
459 gpt_entry *b_gpt_pte = NULL;
460 gpt_header *b_gpt_head = NULL;
461 int head_gpt_valid = 0;
462 int backup_gpt_valid = 0;
463
464 if (!h_gpt_head)
465 h_gpt_head = memalign(ARCH_DMA_MINALIGN, dev_desc->blksz);
466 if (!b_gpt_head)
467 b_gpt_head = memalign(ARCH_DMA_MINALIGN, dev_desc->blksz);
468
469 head_gpt_valid = is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
470 h_gpt_head, &h_gpt_pte);
471 backup_gpt_valid = is_gpt_valid(dev_desc, (dev_desc->lba - 1),
472 b_gpt_head, &b_gpt_pte);
473
474 if ((head_gpt_valid == 1) &&
475 (le64_to_cpu(h_gpt_head->last_usable_lba)
476 == FACTORY_UNKNOWN_LBA)) {
477 if (part_efi_repair(dev_desc, h_gpt_pte, h_gpt_head,
478 0, 1))
479 printf("Primary GPT repair fail!\n");
480 /* Force repair backup GPT for factory or ota upgrade. */
481 backup_gpt_valid = 0;
482 }
483
484 if (head_gpt_valid == 1 && backup_gpt_valid == 0) {
485 if (part_efi_repair(dev_desc, h_gpt_pte, h_gpt_head,
486 head_gpt_valid, backup_gpt_valid))
487 printf("Backup GPT repair fail!\n");
488 } else if (head_gpt_valid == 0 && backup_gpt_valid == 1) {
489 if (part_efi_repair(dev_desc, b_gpt_pte, b_gpt_head,
490 head_gpt_valid, backup_gpt_valid))
491 printf("Primary GPT repair fail!\n");
492 } else if (head_gpt_valid == 0 && backup_gpt_valid == 0) {
493 ret = -1;
494 }
495
496 free(h_gpt_pte);
497 h_gpt_pte = NULL;
498 free(h_gpt_head);
499 h_gpt_head = NULL;
500 free(b_gpt_pte);
501 b_gpt_pte = NULL;
502 free(b_gpt_head);
503 b_gpt_head = NULL;
504 #endif
505 #endif
506 return ret;
507 }
508
509 /**
510 * set_protective_mbr(): Set the EFI protective MBR
511 * @param dev_desc - block device descriptor
512 *
513 * @return - zero on success, otherwise error
514 */
set_protective_mbr(struct blk_desc * dev_desc)515 static int set_protective_mbr(struct blk_desc *dev_desc)
516 {
517 /* Setup the Protective MBR */
518 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
519 memset(p_mbr, 0, sizeof(*p_mbr));
520
521 if (p_mbr == NULL) {
522 printf("%s: calloc failed!\n", __func__);
523 return -1;
524 }
525
526 /* Read MBR to backup boot code if it exists */
527 if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) {
528 pr_err("** Can't read from device %d **\n", dev_desc->devnum);
529 return -1;
530 }
531
532 /* Append signature */
533 p_mbr->signature = MSDOS_MBR_SIGNATURE;
534 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
535 p_mbr->partition_record[0].start_sect = 1;
536 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
537
538 /* Write MBR sector to the MMC device */
539 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) {
540 printf("** Can't write to device %d **\n",
541 dev_desc->devnum);
542 return -1;
543 }
544
545 return 0;
546 }
547
write_gpt_table(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e)548 int write_gpt_table(struct blk_desc *dev_desc,
549 gpt_header *gpt_h, gpt_entry *gpt_e)
550 {
551 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
552 * sizeof(gpt_entry)), dev_desc);
553 u32 calc_crc32;
554
555 debug("max lba: %x\n", (u32) dev_desc->lba);
556 /* Setup the Protective MBR */
557 if (set_protective_mbr(dev_desc) < 0)
558 goto err;
559
560 /* Generate CRC for the Primary GPT Header */
561 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
562 le32_to_cpu(gpt_h->num_partition_entries) *
563 le32_to_cpu(gpt_h->sizeof_partition_entry));
564 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
565
566 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
567 le32_to_cpu(gpt_h->header_size));
568 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
569
570 /* Write the First GPT to the block right after the Legacy MBR */
571 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1)
572 goto err;
573
574 if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba),
575 pte_blk_cnt, gpt_e) != pte_blk_cnt)
576 goto err;
577
578 prepare_backup_gpt_header(gpt_h);
579
580 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
581 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
582 goto err;
583
584 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
585 gpt_h) != 1)
586 goto err;
587
588 debug("GPT successfully written to block device!\n");
589 return 0;
590
591 err:
592 printf("** Can't write to device %d **\n", dev_desc->devnum);
593 return -1;
594 }
595
gpt_fill_pte(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e,disk_partition_t * partitions,int parts)596 int gpt_fill_pte(struct blk_desc *dev_desc,
597 gpt_header *gpt_h, gpt_entry *gpt_e,
598 disk_partition_t *partitions, int parts)
599 {
600 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
601 lbaint_t last_usable_lba = (lbaint_t)
602 le64_to_cpu(gpt_h->last_usable_lba);
603 int i, k;
604 size_t efiname_len, dosname_len;
605 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
606 char *str_uuid;
607 unsigned char *bin_uuid;
608 #endif
609 #ifdef CONFIG_PARTITION_TYPE_GUID
610 char *str_type_guid;
611 unsigned char *bin_type_guid;
612 #endif
613 size_t hdr_start = gpt_h->my_lba;
614 size_t hdr_end = hdr_start + 1;
615
616 size_t pte_start = gpt_h->partition_entry_lba;
617 size_t pte_end = pte_start +
618 gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry /
619 dev_desc->blksz;
620
621 for (i = 0; i < parts; i++) {
622 /* partition starting lba */
623 lbaint_t start = partitions[i].start;
624 lbaint_t size = partitions[i].size;
625
626 if (start) {
627 offset = start + size;
628 } else {
629 start = offset;
630 offset += size;
631 }
632
633 /*
634 * If our partition overlaps with either the GPT
635 * header, or the partition entry, reject it.
636 */
637 if (((start < hdr_end && hdr_start < (start + size)) ||
638 (start < pte_end && pte_start < (start + size)))) {
639 printf("Partition overlap\n");
640 return -1;
641 }
642
643 gpt_e[i].starting_lba = cpu_to_le64(start);
644
645 if (offset > (last_usable_lba + 1)) {
646 printf("Partitions layout exceds disk size\n");
647 return -1;
648 }
649 /* partition ending lba */
650 if ((i == parts - 1) && (size == 0))
651 /* extend the last partition to maximuim */
652 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
653 else
654 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
655
656 #ifdef CONFIG_PARTITION_TYPE_GUID
657 str_type_guid = partitions[i].type_guid;
658 bin_type_guid = gpt_e[i].partition_type_guid.b;
659 if (strlen(str_type_guid)) {
660 if (uuid_str_to_bin(str_type_guid, bin_type_guid,
661 UUID_STR_FORMAT_GUID)) {
662 printf("Partition no. %d: invalid type guid: %s\n",
663 i, str_type_guid);
664 return -1;
665 }
666 } else {
667 /* default partition type GUID */
668 memcpy(bin_type_guid,
669 &PARTITION_BASIC_DATA_GUID, 16);
670 }
671 #else
672 /* partition type GUID */
673 memcpy(gpt_e[i].partition_type_guid.b,
674 &PARTITION_BASIC_DATA_GUID, 16);
675 #endif
676
677 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
678 str_uuid = partitions[i].uuid;
679 bin_uuid = gpt_e[i].unique_partition_guid.b;
680
681 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) {
682 printf("Partition no. %d: invalid guid: %s\n",
683 i, str_uuid);
684 return -1;
685 }
686 #endif
687
688 /* partition attributes */
689 memset(&gpt_e[i].attributes, 0,
690 sizeof(gpt_entry_attributes));
691
692 if (partitions[i].bootable)
693 gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
694
695 /* partition name */
696 efiname_len = sizeof(gpt_e[i].partition_name)
697 / sizeof(efi_char16_t);
698 dosname_len = sizeof(partitions[i].name);
699
700 memset(gpt_e[i].partition_name, 0,
701 sizeof(gpt_e[i].partition_name));
702
703 for (k = 0; k < min(dosname_len, efiname_len); k++)
704 gpt_e[i].partition_name[k] =
705 (efi_char16_t)(partitions[i].name[k]);
706
707 debug("%s: name: %s offset[%d]: 0x" LBAF
708 " size[%d]: 0x" LBAF "\n",
709 __func__, partitions[i].name, i,
710 offset, i, size);
711 }
712
713 return 0;
714 }
715
partition_entries_offset(struct blk_desc * dev_desc)716 static uint32_t partition_entries_offset(struct blk_desc *dev_desc)
717 {
718 uint32_t offset_blks = 2;
719 uint32_t __maybe_unused offset_bytes;
720 int __maybe_unused config_offset;
721
722 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
723 /*
724 * Some architectures require their SPL loader at a fixed
725 * address within the first 16KB of the disk. To avoid an
726 * overlap with the partition entries of the EFI partition
727 * table, the first safe offset (in bytes, from the start of
728 * the disk) for the entries can be set in
729 * CONFIG_EFI_PARTITION_ENTRIES_OFF.
730 */
731 offset_bytes =
732 PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc);
733 offset_blks = offset_bytes / dev_desc->blksz;
734 #endif
735
736 #if defined(CONFIG_OF_CONTROL)
737 /*
738 * Allow the offset of the first partition entires (in bytes
739 * from the start of the device) to be specified as a property
740 * of the device tree '/config' node.
741 */
742 config_offset = fdtdec_get_config_int(gd->fdt_blob,
743 "u-boot,efi-partition-entries-offset",
744 -EINVAL);
745 if (config_offset != -EINVAL) {
746 offset_bytes = PAD_TO_BLOCKSIZE(config_offset, dev_desc);
747 offset_blks = offset_bytes / dev_desc->blksz;
748 }
749 #endif
750
751 debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
752
753 /*
754 * The earliest LBA this can be at is LBA#2 (i.e. right behind
755 * the (protective) MBR and the GPT header.
756 */
757 if (offset_blks < 2)
758 offset_blks = 2;
759
760 return offset_blks;
761 }
762
gpt_fill_header(struct blk_desc * dev_desc,gpt_header * gpt_h,char * str_guid,int parts_count)763 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h,
764 char *str_guid, int parts_count)
765 {
766 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
767 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
768 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
769 gpt_h->my_lba = cpu_to_le64(1);
770 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
771 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
772 gpt_h->partition_entry_lba =
773 cpu_to_le64(partition_entries_offset(dev_desc));
774 gpt_h->first_usable_lba =
775 cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
776 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
777 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
778 gpt_h->header_crc32 = 0;
779 gpt_h->partition_entry_array_crc32 = 0;
780
781 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
782 return -1;
783
784 return 0;
785 }
786
gpt_restore(struct blk_desc * dev_desc,char * str_disk_guid,disk_partition_t * partitions,int parts_count)787 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid,
788 disk_partition_t *partitions, int parts_count)
789 {
790 gpt_header *gpt_h;
791 gpt_entry *gpt_e;
792 int ret, size;
793
794 size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), dev_desc);
795 gpt_h = malloc_cache_aligned(size);
796 if (gpt_h == NULL) {
797 printf("%s: calloc failed!\n", __func__);
798 return -1;
799 }
800 memset(gpt_h, 0, size);
801
802 size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry),
803 dev_desc);
804 gpt_e = malloc_cache_aligned(size);
805 if (gpt_e == NULL) {
806 printf("%s: calloc failed!\n", __func__);
807 free(gpt_h);
808 return -1;
809 }
810 memset(gpt_e, 0, size);
811
812 /* Generate Primary GPT header (LBA1) */
813 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
814 if (ret)
815 goto err;
816
817 /* Generate partition entries */
818 ret = gpt_fill_pte(dev_desc, gpt_h, gpt_e, partitions, parts_count);
819 if (ret)
820 goto err;
821
822 /* Write GPT partition table */
823 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
824
825 err:
826 free(gpt_e);
827 free(gpt_h);
828 return ret;
829 }
830
831 /**
832 * gpt_convert_efi_name_to_char() - convert u16 string to char string
833 *
834 * TODO: this conversion only supports ANSI characters
835 *
836 * @s: target buffer
837 * @es: u16 string to be converted
838 * @n: size of target buffer
839 */
gpt_convert_efi_name_to_char(char * s,void * es,int n)840 static void gpt_convert_efi_name_to_char(char *s, void *es, int n)
841 {
842 char *ess = es;
843 int i, j;
844
845 memset(s, '\0', n);
846
847 for (i = 0, j = 0; j < n; i += 2, j++) {
848 s[j] = ess[i];
849 if (!ess[i])
850 return;
851 }
852 }
853
gpt_verify_headers(struct blk_desc * dev_desc,gpt_header * gpt_head,gpt_entry ** gpt_pte)854 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head,
855 gpt_entry **gpt_pte)
856 {
857 /*
858 * This function validates AND
859 * fills in the GPT header and PTE
860 */
861 if (is_gpt_valid(dev_desc,
862 GPT_PRIMARY_PARTITION_TABLE_LBA,
863 gpt_head, gpt_pte) != 1) {
864 printf("%s: *** ERROR: Invalid GPT ***\n",
865 __func__);
866 return -1;
867 }
868 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
869 gpt_head, gpt_pte) != 1) {
870 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
871 __func__);
872 return -1;
873 }
874
875 return 0;
876 }
877
gpt_verify_partitions(struct blk_desc * dev_desc,disk_partition_t * partitions,int parts,gpt_header * gpt_head,gpt_entry ** gpt_pte)878 int gpt_verify_partitions(struct blk_desc *dev_desc,
879 disk_partition_t *partitions, int parts,
880 gpt_header *gpt_head, gpt_entry **gpt_pte)
881 {
882 char efi_str[PARTNAME_SZ + 1];
883 u64 gpt_part_size;
884 gpt_entry *gpt_e;
885 int ret, i;
886
887 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
888 if (ret)
889 return ret;
890
891 gpt_e = *gpt_pte;
892
893 for (i = 0; i < parts; i++) {
894 if (i == gpt_head->num_partition_entries) {
895 pr_err("More partitions than allowed!\n");
896 return -1;
897 }
898
899 /* Check if GPT and ENV partition names match */
900 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
901 PARTNAME_SZ + 1);
902
903 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
904 __func__, i, efi_str, partitions[i].name);
905
906 if (strncmp(efi_str, (char *)partitions[i].name,
907 sizeof(partitions->name))) {
908 pr_err("Partition name: %s does not match %s!\n",
909 efi_str, (char *)partitions[i].name);
910 return -1;
911 }
912
913 /* Check if GPT and ENV sizes match */
914 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
915 le64_to_cpu(gpt_e[i].starting_lba) + 1;
916 debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
917 (unsigned long long)gpt_part_size,
918 (unsigned long long)partitions[i].size);
919
920 if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
921 /* We do not check the extend partition size */
922 if ((i == parts - 1) && (partitions[i].size == 0))
923 continue;
924
925 pr_err("Partition %s size: %llu does not match %llu!\n",
926 efi_str, (unsigned long long)gpt_part_size,
927 (unsigned long long)partitions[i].size);
928 return -1;
929 }
930
931 /*
932 * Start address is optional - check only if provided
933 * in '$partition' variable
934 */
935 if (!partitions[i].start) {
936 debug("\n");
937 continue;
938 }
939
940 /* Check if GPT and ENV start LBAs match */
941 debug("start LBA - GPT: %8llu, ENV: %8llu\n",
942 le64_to_cpu(gpt_e[i].starting_lba),
943 (unsigned long long)partitions[i].start);
944
945 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
946 pr_err("Partition %s start: %llu does not match %llu!\n",
947 efi_str, le64_to_cpu(gpt_e[i].starting_lba),
948 (unsigned long long)partitions[i].start);
949 return -1;
950 }
951 }
952
953 return 0;
954 }
955
is_valid_gpt_buf(struct blk_desc * dev_desc,void * buf)956 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf)
957 {
958 gpt_header *gpt_h;
959 gpt_entry *gpt_e;
960
961 /* determine start of GPT Header in the buffer */
962 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
963 dev_desc->blksz);
964
965 if ((le64_to_cpu(gpt_h->alternate_lba) + 1)
966 != cpu_to_le64(dev_desc->lba) &&
967 le64_to_cpu(gpt_h->last_usable_lba) != FACTORY_UNKNOWN_LBA) {
968 printf("%s: failed checking '%s'\n", __func__,
969 "invalid GPT Disk Size");
970 return -1;
971 }
972
973 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
974 dev_desc->lba))
975 return -1;
976
977 /* determine start of GPT Entries in the buffer */
978 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
979 dev_desc->blksz);
980 if (validate_gpt_entries(gpt_h, gpt_e))
981 return -1;
982
983 return 0;
984 }
985
write_mbr_and_gpt_partitions(struct blk_desc * dev_desc,void * buf)986 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf)
987 {
988 gpt_header *gpt_h;
989 gpt_entry *gpt_e;
990 int gpt_e_blk_cnt;
991 lbaint_t lba;
992 int cnt;
993
994 if (is_valid_gpt_buf(dev_desc, buf))
995 return -1;
996
997 /* determine start of GPT Header in the buffer */
998 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
999 dev_desc->blksz);
1000
1001 /* determine start of GPT Entries in the buffer */
1002 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
1003 dev_desc->blksz);
1004 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
1005 le32_to_cpu(gpt_h->sizeof_partition_entry)),
1006 dev_desc);
1007
1008 /* write MBR */
1009 lba = 0; /* MBR is always at 0 */
1010 cnt = 1; /* MBR (1 block) */
1011 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) {
1012 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
1013 __func__, "MBR", cnt, lba);
1014 return 1;
1015 }
1016
1017 /* write Primary GPT */
1018 lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
1019 cnt = 1; /* GPT Header (1 block) */
1020 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
1021 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
1022 __func__, "Primary GPT Header", cnt, lba);
1023 return 1;
1024 }
1025
1026 lba = le64_to_cpu(gpt_h->partition_entry_lba);
1027 cnt = gpt_e_blk_cnt;
1028 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
1029 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
1030 __func__, "Primary GPT Entries", cnt, lba);
1031 return 1;
1032 }
1033
1034 prepare_backup_gpt_header(gpt_h);
1035
1036 /* write Backup GPT */
1037 lba = le64_to_cpu(gpt_h->partition_entry_lba);
1038 cnt = gpt_e_blk_cnt;
1039 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
1040 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
1041 __func__, "Backup GPT Entries", cnt, lba);
1042 return 1;
1043 }
1044
1045 lba = le64_to_cpu(gpt_h->my_lba);
1046 cnt = 1; /* GPT Header (1 block) */
1047 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
1048 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
1049 __func__, "Backup GPT Header", cnt, lba);
1050 return 1;
1051 }
1052
1053 return 0;
1054 }
1055 #endif
1056
1057 /*
1058 * Private functions
1059 */
1060 /*
1061 * pmbr_part_valid(): Check for EFI partition signature
1062 *
1063 * Returns: 1 if EFI GPT partition type is found.
1064 */
pmbr_part_valid(struct partition * part)1065 static int pmbr_part_valid(struct partition *part)
1066 {
1067 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
1068 get_unaligned_le32(&part->start_sect) == 1UL) {
1069 return 1;
1070 }
1071
1072 return 0;
1073 }
1074
1075 /*
1076 * is_pmbr_valid(): test Protective MBR for validity
1077 *
1078 * Returns: 1 if PMBR is valid, 0 otherwise.
1079 * Validity depends on two things:
1080 * 1) MSDOS signature is in the last two bytes of the MBR
1081 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
1082 */
is_pmbr_valid(legacy_mbr * mbr)1083 static int is_pmbr_valid(legacy_mbr * mbr)
1084 {
1085 int i = 0;
1086
1087 #ifdef CONFIG_ARCH_ROCKCHIP
1088 /*
1089 * In sd-update card, we use RKPARM partition in bootloader to load
1090 * firmware, and use MS-DOS partition in recovery to update system.
1091 * Now, we want to use gpt in bootloader and abandon the RKPARM
1092 * partition. So in new sd-update card, we write the MS-DOS partition
1093 * table and gpt to sd card. Then we must return 1 directly when test
1094 * the mbr sector otherwise the gpt is unavailable.
1095 */
1096 return 1;
1097 #endif
1098
1099 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
1100 return 0;
1101
1102 for (i = 0; i < 4; i++) {
1103 if (pmbr_part_valid(&mbr->partition_record[i])) {
1104 return 1;
1105 }
1106 }
1107 return 0;
1108 }
1109
1110 /**
1111 * is_gpt_valid() - tests one GPT header and PTEs for validity
1112 *
1113 * lba is the logical block address of the GPT header to test
1114 * gpt is a GPT header ptr, filled on return.
1115 * ptes is a PTEs ptr, filled on return.
1116 *
1117 * Description: returns 1 if valid, 0 on error.
1118 * If valid, returns pointers to PTEs.
1119 */
is_gpt_valid(struct blk_desc * dev_desc,u64 lba,gpt_header * pgpt_head,gpt_entry ** pgpt_pte)1120 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
1121 gpt_header *pgpt_head, gpt_entry **pgpt_pte)
1122 {
1123 /* Confirm valid arguments prior to allocation. */
1124 if (!dev_desc || !pgpt_head) {
1125 printf("%s: Invalid Argument(s)\n", __func__);
1126 return 0;
1127 }
1128
1129 /* Re-use pte if it's not NULL */
1130 if (*pgpt_pte)
1131 return 1;
1132
1133 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, mbr, dev_desc->blksz);
1134
1135 /* Read MBR Header from device */
1136 if (blk_dread(dev_desc, 0, 1, (ulong *)mbr) != 1) {
1137 printf("*** ERROR: Can't read MBR header ***\n");
1138 return 0;
1139 }
1140
1141 /* Read GPT Header from device */
1142 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
1143 printf("*** ERROR: Can't read GPT header ***\n");
1144 return 0;
1145 }
1146
1147 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
1148 return 0;
1149
1150 if (dev_desc->sig_type == SIG_TYPE_NONE) {
1151 efi_guid_t empty = {};
1152 if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) {
1153 dev_desc->sig_type = SIG_TYPE_GUID;
1154 memcpy(&dev_desc->guid_sig, &pgpt_head->disk_guid,
1155 sizeof(empty));
1156 } else if (mbr->unique_mbr_signature != 0) {
1157 dev_desc->sig_type = SIG_TYPE_MBR;
1158 dev_desc->mbr_sig = mbr->unique_mbr_signature;
1159 }
1160 }
1161
1162 /* Read and allocate Partition Table Entries */
1163 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
1164 if (*pgpt_pte == NULL) {
1165 printf("GPT: Failed to allocate memory for PTE\n");
1166 return 0;
1167 }
1168
1169 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
1170 free(*pgpt_pte);
1171 *pgpt_pte = NULL;
1172 return 0;
1173 }
1174
1175 /* We're done, all's well */
1176 return 1;
1177 }
1178
1179 /**
1180 * alloc_read_gpt_entries(): reads partition entries from disk
1181 * @dev_desc
1182 * @gpt - GPT header
1183 *
1184 * Description: Returns ptes on success, NULL on error.
1185 * Allocates space for PTEs based on information found in @gpt.
1186 * Notes: remember to free pte when you're done!
1187 */
alloc_read_gpt_entries(struct blk_desc * dev_desc,gpt_header * pgpt_head)1188 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
1189 gpt_header *pgpt_head)
1190 {
1191 size_t count = 0, blk_cnt;
1192 lbaint_t blk;
1193 gpt_entry *pte = NULL;
1194
1195 if (!dev_desc || !pgpt_head) {
1196 printf("%s: Invalid Argument(s)\n", __func__);
1197 return NULL;
1198 }
1199
1200 count = le32_to_cpu(pgpt_head->num_partition_entries) *
1201 le32_to_cpu(pgpt_head->sizeof_partition_entry);
1202
1203 debug("%s: count = %u * %u = %lu\n", __func__,
1204 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
1205 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry),
1206 (ulong)count);
1207
1208 /* Allocate memory for PTE, remember to FREE */
1209 if (count != 0) {
1210 pte = memalign(ARCH_DMA_MINALIGN,
1211 PAD_TO_BLOCKSIZE(count, dev_desc));
1212 }
1213
1214 if (count == 0 || pte == NULL) {
1215 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n",
1216 __func__, (ulong)count);
1217 return NULL;
1218 }
1219
1220 /* Read GPT Entries from device */
1221 blk = le64_to_cpu(pgpt_head->partition_entry_lba);
1222 blk_cnt = BLOCK_CNT(count, dev_desc);
1223 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
1224 printf("*** ERROR: Can't read GPT Entries ***\n");
1225 free(pte);
1226 return NULL;
1227 }
1228 return pte;
1229 }
1230
1231 /**
1232 * is_pte_valid(): validates a single Partition Table Entry
1233 * @gpt_entry - Pointer to a single Partition Table Entry
1234 *
1235 * Description: returns 1 if valid, 0 on error.
1236 */
is_pte_valid(gpt_entry * pte)1237 static int is_pte_valid(gpt_entry * pte)
1238 {
1239 efi_guid_t unused_guid;
1240
1241 if (!pte) {
1242 printf("%s: Invalid Argument(s)\n", __func__);
1243 return 0;
1244 }
1245
1246 /* Only one validation for now:
1247 * The GUID Partition Type != Unused Entry (ALL-ZERO)
1248 */
1249 memset(unused_guid.b, 0, sizeof(unused_guid.b));
1250
1251 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
1252 sizeof(unused_guid.b)) == 0) {
1253
1254 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
1255 (unsigned int)(uintptr_t)pte);
1256
1257 return 0;
1258 } else {
1259 return 1;
1260 }
1261 }
1262
1263 /*
1264 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
1265 * check EFI first, since a DOS partition is often used as a 'protective MBR'
1266 * with EFI.
1267 */
1268 U_BOOT_PART_TYPE(a_efi) = {
1269 .name = "EFI",
1270 .part_type = PART_TYPE_EFI,
1271 .max_entries = GPT_ENTRY_NUMBERS,
1272 .get_info = part_get_info_ptr(part_get_info_efi),
1273 .print = part_print_ptr(part_print_efi),
1274 .test = part_test_efi,
1275 };
1276 #endif
1277