xref: /OK3568_Linux_fs/kernel/fs/gfs2/bmap.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
gfs2_unstuffer_page(struct gfs2_inode * ip,struct buffer_head * dibh,u64 block,struct page * page)55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 	int release = 0;
60 
61 	if (!page || page->index) {
62 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
63 		if (!page)
64 			return -ENOMEM;
65 		release = 1;
66 	}
67 
68 	if (!PageUptodate(page)) {
69 		void *kaddr = kmap(page);
70 		u64 dsize = i_size_read(inode);
71 
72 		if (dsize > gfs2_max_stuffed_size(ip))
73 			dsize = gfs2_max_stuffed_size(ip);
74 
75 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
76 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
77 		kunmap(page);
78 
79 		SetPageUptodate(page);
80 	}
81 
82 	if (gfs2_is_jdata(ip)) {
83 		struct buffer_head *bh;
84 
85 		if (!page_has_buffers(page))
86 			create_empty_buffers(page, BIT(inode->i_blkbits),
87 					     BIT(BH_Uptodate));
88 
89 		bh = page_buffers(page);
90 		if (!buffer_mapped(bh))
91 			map_bh(bh, inode->i_sb, block);
92 
93 		set_buffer_uptodate(bh);
94 		gfs2_trans_add_data(ip->i_gl, bh);
95 	} else {
96 		set_page_dirty(page);
97 		gfs2_ordered_add_inode(ip);
98 	}
99 
100 	if (release) {
101 		unlock_page(page);
102 		put_page(page);
103 	}
104 
105 	return 0;
106 }
107 
108 /**
109  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
110  * @ip: The GFS2 inode to unstuff
111  * @page: The (optional) page. This is looked up if the @page is NULL
112  *
113  * This routine unstuffs a dinode and returns it to a "normal" state such
114  * that the height can be grown in the traditional way.
115  *
116  * Returns: errno
117  */
118 
gfs2_unstuff_dinode(struct gfs2_inode * ip,struct page * page)119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
120 {
121 	struct buffer_head *bh, *dibh;
122 	struct gfs2_dinode *di;
123 	u64 block = 0;
124 	int isdir = gfs2_is_dir(ip);
125 	int error;
126 
127 	down_write(&ip->i_rw_mutex);
128 
129 	error = gfs2_meta_inode_buffer(ip, &dibh);
130 	if (error)
131 		goto out;
132 
133 	if (i_size_read(&ip->i_inode)) {
134 		/* Get a free block, fill it with the stuffed data,
135 		   and write it out to disk */
136 
137 		unsigned int n = 1;
138 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
139 		if (error)
140 			goto out_brelse;
141 		if (isdir) {
142 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
143 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
144 			if (error)
145 				goto out_brelse;
146 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
147 					      dibh, sizeof(struct gfs2_dinode));
148 			brelse(bh);
149 		} else {
150 			error = gfs2_unstuffer_page(ip, dibh, block, page);
151 			if (error)
152 				goto out_brelse;
153 		}
154 	}
155 
156 	/*  Set up the pointer to the new block  */
157 
158 	gfs2_trans_add_meta(ip->i_gl, dibh);
159 	di = (struct gfs2_dinode *)dibh->b_data;
160 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
161 
162 	if (i_size_read(&ip->i_inode)) {
163 		*(__be64 *)(di + 1) = cpu_to_be64(block);
164 		gfs2_add_inode_blocks(&ip->i_inode, 1);
165 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
166 	}
167 
168 	ip->i_height = 1;
169 	di->di_height = cpu_to_be16(1);
170 
171 out_brelse:
172 	brelse(dibh);
173 out:
174 	up_write(&ip->i_rw_mutex);
175 	return error;
176 }
177 
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
find_metapath(const struct gfs2_sbd * sdp,u64 block,struct metapath * mp,unsigned int height)238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
metapath_branch_start(const struct metapath * mp)248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
metaptr1(unsigned int height,const struct metapath * mp)260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
metapointer(unsigned int height,const struct metapath * mp)278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
metaend(unsigned int height,const struct metapath * mp)284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
clone_metapath(struct metapath * clone,struct metapath * mp)290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
gfs2_metapath_ra(struct gfs2_glock * gl,__be64 * start,__be64 * end)299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
__fillup_metapath(struct gfs2_inode * ip,struct metapath * mp,unsigned int x,unsigned int h)324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
lookup_metapath(struct gfs2_inode * ip,struct metapath * mp)359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
fillup_metapath(struct gfs2_inode * ip,struct metapath * mp,int h)375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
metapath_to_block(struct gfs2_sbd * sdp,struct metapath * mp)393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
release_metapath(struct metapath * mp)406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @limit: Max extent length to return
423  * @eob: Set to 1 if we hit "end of block"
424  *
425  * Returns: The length of the extent (minimum of one block)
426  */
427 
gfs2_extent_length(struct buffer_head * bh,__be64 * ptr,size_t limit,int * eob)428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
429 {
430 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
431 	const __be64 *first = ptr;
432 	u64 d = be64_to_cpu(*ptr);
433 
434 	*eob = 0;
435 	do {
436 		ptr++;
437 		if (ptr >= end)
438 			break;
439 		d++;
440 	} while(be64_to_cpu(*ptr) == d);
441 	if (ptr >= end)
442 		*eob = 1;
443 	return ptr - first;
444 }
445 
446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
447 
448 /*
449  * gfs2_metadata_walker - walk an indirect block
450  * @mp: Metapath to indirect block
451  * @ptrs: Number of pointers to look at
452  *
453  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
454  * indirect block to follow.
455  */
456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
457 						   unsigned int ptrs);
458 
459 /*
460  * gfs2_walk_metadata - walk a tree of indirect blocks
461  * @inode: The inode
462  * @mp: Starting point of walk
463  * @max_len: Maximum number of blocks to walk
464  * @walker: Called during the walk
465  *
466  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
467  * past the end of metadata, and a negative error code otherwise.
468  */
469 
gfs2_walk_metadata(struct inode * inode,struct metapath * mp,u64 max_len,gfs2_metadata_walker walker)470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
471 		u64 max_len, gfs2_metadata_walker walker)
472 {
473 	struct gfs2_inode *ip = GFS2_I(inode);
474 	struct gfs2_sbd *sdp = GFS2_SB(inode);
475 	u64 factor = 1;
476 	unsigned int hgt;
477 	int ret;
478 
479 	/*
480 	 * The walk starts in the lowest allocated indirect block, which may be
481 	 * before the position indicated by @mp.  Adjust @max_len accordingly
482 	 * to avoid a short walk.
483 	 */
484 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
485 		max_len += mp->mp_list[hgt] * factor;
486 		mp->mp_list[hgt] = 0;
487 		factor *= sdp->sd_inptrs;
488 	}
489 
490 	for (;;) {
491 		u16 start = mp->mp_list[hgt];
492 		enum walker_status status;
493 		unsigned int ptrs;
494 		u64 len;
495 
496 		/* Walk indirect block. */
497 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
498 		len = ptrs * factor;
499 		if (len > max_len)
500 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
501 		status = walker(mp, ptrs);
502 		switch (status) {
503 		case WALK_STOP:
504 			return 1;
505 		case WALK_FOLLOW:
506 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
507 			ptrs = mp->mp_list[hgt] - start;
508 			len = ptrs * factor;
509 			break;
510 		case WALK_CONTINUE:
511 			break;
512 		}
513 		if (len >= max_len)
514 			break;
515 		max_len -= len;
516 		if (status == WALK_FOLLOW)
517 			goto fill_up_metapath;
518 
519 lower_metapath:
520 		/* Decrease height of metapath. */
521 		brelse(mp->mp_bh[hgt]);
522 		mp->mp_bh[hgt] = NULL;
523 		mp->mp_list[hgt] = 0;
524 		if (!hgt)
525 			break;
526 		hgt--;
527 		factor *= sdp->sd_inptrs;
528 
529 		/* Advance in metadata tree. */
530 		(mp->mp_list[hgt])++;
531 		if (hgt) {
532 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
533 				goto lower_metapath;
534 		} else {
535 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
536 				break;
537 		}
538 
539 fill_up_metapath:
540 		/* Increase height of metapath. */
541 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
542 		if (ret < 0)
543 			return ret;
544 		hgt += ret;
545 		for (; ret; ret--)
546 			do_div(factor, sdp->sd_inptrs);
547 		mp->mp_aheight = hgt + 1;
548 	}
549 	return 0;
550 }
551 
gfs2_hole_walker(struct metapath * mp,unsigned int ptrs)552 static enum walker_status gfs2_hole_walker(struct metapath *mp,
553 					   unsigned int ptrs)
554 {
555 	const __be64 *start, *ptr, *end;
556 	unsigned int hgt;
557 
558 	hgt = mp->mp_aheight - 1;
559 	start = metapointer(hgt, mp);
560 	end = start + ptrs;
561 
562 	for (ptr = start; ptr < end; ptr++) {
563 		if (*ptr) {
564 			mp->mp_list[hgt] += ptr - start;
565 			if (mp->mp_aheight == mp->mp_fheight)
566 				return WALK_STOP;
567 			return WALK_FOLLOW;
568 		}
569 	}
570 	return WALK_CONTINUE;
571 }
572 
573 /**
574  * gfs2_hole_size - figure out the size of a hole
575  * @inode: The inode
576  * @lblock: The logical starting block number
577  * @len: How far to look (in blocks)
578  * @mp: The metapath at lblock
579  * @iomap: The iomap to store the hole size in
580  *
581  * This function modifies @mp.
582  *
583  * Returns: errno on error
584  */
gfs2_hole_size(struct inode * inode,sector_t lblock,u64 len,struct metapath * mp,struct iomap * iomap)585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
586 			  struct metapath *mp, struct iomap *iomap)
587 {
588 	struct metapath clone;
589 	u64 hole_size;
590 	int ret;
591 
592 	clone_metapath(&clone, mp);
593 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
594 	if (ret < 0)
595 		goto out;
596 
597 	if (ret == 1)
598 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
599 	else
600 		hole_size = len;
601 	iomap->length = hole_size << inode->i_blkbits;
602 	ret = 0;
603 
604 out:
605 	release_metapath(&clone);
606 	return ret;
607 }
608 
gfs2_indirect_init(struct metapath * mp,struct gfs2_glock * gl,unsigned int i,unsigned offset,u64 bn)609 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
610 					 struct gfs2_glock *gl, unsigned int i,
611 					 unsigned offset, u64 bn)
612 {
613 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
614 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
615 				 sizeof(struct gfs2_dinode)));
616 	BUG_ON(i < 1);
617 	BUG_ON(mp->mp_bh[i] != NULL);
618 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
619 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
620 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
621 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
622 	ptr += offset;
623 	*ptr = cpu_to_be64(bn);
624 	return ptr;
625 }
626 
627 enum alloc_state {
628 	ALLOC_DATA = 0,
629 	ALLOC_GROW_DEPTH = 1,
630 	ALLOC_GROW_HEIGHT = 2,
631 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
632 };
633 
634 /**
635  * gfs2_iomap_alloc - Build a metadata tree of the requested height
636  * @inode: The GFS2 inode
637  * @iomap: The iomap structure
638  * @mp: The metapath, with proper height information calculated
639  *
640  * In this routine we may have to alloc:
641  *   i) Indirect blocks to grow the metadata tree height
642  *  ii) Indirect blocks to fill in lower part of the metadata tree
643  * iii) Data blocks
644  *
645  * This function is called after gfs2_iomap_get, which works out the
646  * total number of blocks which we need via gfs2_alloc_size.
647  *
648  * We then do the actual allocation asking for an extent at a time (if
649  * enough contiguous free blocks are available, there will only be one
650  * allocation request per call) and uses the state machine to initialise
651  * the blocks in order.
652  *
653  * Right now, this function will allocate at most one indirect block
654  * worth of data -- with a default block size of 4K, that's slightly
655  * less than 2M.  If this limitation is ever removed to allow huge
656  * allocations, we would probably still want to limit the iomap size we
657  * return to avoid stalling other tasks during huge writes; the next
658  * iomap iteration would then find the blocks already allocated.
659  *
660  * Returns: errno on error
661  */
662 
gfs2_iomap_alloc(struct inode * inode,struct iomap * iomap,struct metapath * mp)663 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
664 			    struct metapath *mp)
665 {
666 	struct gfs2_inode *ip = GFS2_I(inode);
667 	struct gfs2_sbd *sdp = GFS2_SB(inode);
668 	struct buffer_head *dibh = mp->mp_bh[0];
669 	u64 bn;
670 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
671 	size_t dblks = iomap->length >> inode->i_blkbits;
672 	const unsigned end_of_metadata = mp->mp_fheight - 1;
673 	int ret;
674 	enum alloc_state state;
675 	__be64 *ptr;
676 	__be64 zero_bn = 0;
677 
678 	BUG_ON(mp->mp_aheight < 1);
679 	BUG_ON(dibh == NULL);
680 	BUG_ON(dblks < 1);
681 
682 	gfs2_trans_add_meta(ip->i_gl, dibh);
683 
684 	down_write(&ip->i_rw_mutex);
685 
686 	if (mp->mp_fheight == mp->mp_aheight) {
687 		/* Bottom indirect block exists */
688 		state = ALLOC_DATA;
689 	} else {
690 		/* Need to allocate indirect blocks */
691 		if (mp->mp_fheight == ip->i_height) {
692 			/* Writing into existing tree, extend tree down */
693 			iblks = mp->mp_fheight - mp->mp_aheight;
694 			state = ALLOC_GROW_DEPTH;
695 		} else {
696 			/* Building up tree height */
697 			state = ALLOC_GROW_HEIGHT;
698 			iblks = mp->mp_fheight - ip->i_height;
699 			branch_start = metapath_branch_start(mp);
700 			iblks += (mp->mp_fheight - branch_start);
701 		}
702 	}
703 
704 	/* start of the second part of the function (state machine) */
705 
706 	blks = dblks + iblks;
707 	i = mp->mp_aheight;
708 	do {
709 		n = blks - alloced;
710 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
711 		if (ret)
712 			goto out;
713 		alloced += n;
714 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
715 			gfs2_trans_remove_revoke(sdp, bn, n);
716 		switch (state) {
717 		/* Growing height of tree */
718 		case ALLOC_GROW_HEIGHT:
719 			if (i == 1) {
720 				ptr = (__be64 *)(dibh->b_data +
721 						 sizeof(struct gfs2_dinode));
722 				zero_bn = *ptr;
723 			}
724 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
725 			     i++, n--)
726 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
727 			if (i - 1 == mp->mp_fheight - ip->i_height) {
728 				i--;
729 				gfs2_buffer_copy_tail(mp->mp_bh[i],
730 						sizeof(struct gfs2_meta_header),
731 						dibh, sizeof(struct gfs2_dinode));
732 				gfs2_buffer_clear_tail(dibh,
733 						sizeof(struct gfs2_dinode) +
734 						sizeof(__be64));
735 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
736 					sizeof(struct gfs2_meta_header));
737 				*ptr = zero_bn;
738 				state = ALLOC_GROW_DEPTH;
739 				for(i = branch_start; i < mp->mp_fheight; i++) {
740 					if (mp->mp_bh[i] == NULL)
741 						break;
742 					brelse(mp->mp_bh[i]);
743 					mp->mp_bh[i] = NULL;
744 				}
745 				i = branch_start;
746 			}
747 			if (n == 0)
748 				break;
749 			fallthrough;	/* To branching from existing tree */
750 		case ALLOC_GROW_DEPTH:
751 			if (i > 1 && i < mp->mp_fheight)
752 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
753 			for (; i < mp->mp_fheight && n > 0; i++, n--)
754 				gfs2_indirect_init(mp, ip->i_gl, i,
755 						   mp->mp_list[i-1], bn++);
756 			if (i == mp->mp_fheight)
757 				state = ALLOC_DATA;
758 			if (n == 0)
759 				break;
760 			fallthrough;	/* To tree complete, adding data blocks */
761 		case ALLOC_DATA:
762 			BUG_ON(n > dblks);
763 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
764 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
765 			dblks = n;
766 			ptr = metapointer(end_of_metadata, mp);
767 			iomap->addr = bn << inode->i_blkbits;
768 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
769 			while (n-- > 0)
770 				*ptr++ = cpu_to_be64(bn++);
771 			break;
772 		}
773 	} while (iomap->addr == IOMAP_NULL_ADDR);
774 
775 	iomap->type = IOMAP_MAPPED;
776 	iomap->length = (u64)dblks << inode->i_blkbits;
777 	ip->i_height = mp->mp_fheight;
778 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
779 	gfs2_dinode_out(ip, dibh->b_data);
780 out:
781 	up_write(&ip->i_rw_mutex);
782 	return ret;
783 }
784 
785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
786 
787 /**
788  * gfs2_alloc_size - Compute the maximum allocation size
789  * @inode: The inode
790  * @mp: The metapath
791  * @size: Requested size in blocks
792  *
793  * Compute the maximum size of the next allocation at @mp.
794  *
795  * Returns: size in blocks
796  */
gfs2_alloc_size(struct inode * inode,struct metapath * mp,u64 size)797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
798 {
799 	struct gfs2_inode *ip = GFS2_I(inode);
800 	struct gfs2_sbd *sdp = GFS2_SB(inode);
801 	const __be64 *first, *ptr, *end;
802 
803 	/*
804 	 * For writes to stuffed files, this function is called twice via
805 	 * gfs2_iomap_get, before and after unstuffing. The size we return the
806 	 * first time needs to be large enough to get the reservation and
807 	 * allocation sizes right.  The size we return the second time must
808 	 * be exact or else gfs2_iomap_alloc won't do the right thing.
809 	 */
810 
811 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
812 		unsigned int maxsize = mp->mp_fheight > 1 ?
813 			sdp->sd_inptrs : sdp->sd_diptrs;
814 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
815 		if (size > maxsize)
816 			size = maxsize;
817 		return size;
818 	}
819 
820 	first = metapointer(ip->i_height - 1, mp);
821 	end = metaend(ip->i_height - 1, mp);
822 	if (end - first > size)
823 		end = first + size;
824 	for (ptr = first; ptr < end; ptr++) {
825 		if (*ptr)
826 			break;
827 	}
828 	return ptr - first;
829 }
830 
831 /**
832  * gfs2_iomap_get - Map blocks from an inode to disk blocks
833  * @inode: The inode
834  * @pos: Starting position in bytes
835  * @length: Length to map, in bytes
836  * @flags: iomap flags
837  * @iomap: The iomap structure
838  * @mp: The metapath
839  *
840  * Returns: errno
841  */
gfs2_iomap_get(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct metapath * mp)842 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
843 			  unsigned flags, struct iomap *iomap,
844 			  struct metapath *mp)
845 {
846 	struct gfs2_inode *ip = GFS2_I(inode);
847 	struct gfs2_sbd *sdp = GFS2_SB(inode);
848 	loff_t size = i_size_read(inode);
849 	__be64 *ptr;
850 	sector_t lblock;
851 	sector_t lblock_stop;
852 	int ret;
853 	int eob;
854 	u64 len;
855 	struct buffer_head *dibh = NULL, *bh;
856 	u8 height;
857 
858 	if (!length)
859 		return -EINVAL;
860 
861 	down_read(&ip->i_rw_mutex);
862 
863 	ret = gfs2_meta_inode_buffer(ip, &dibh);
864 	if (ret)
865 		goto unlock;
866 	mp->mp_bh[0] = dibh;
867 
868 	if (gfs2_is_stuffed(ip)) {
869 		if (flags & IOMAP_WRITE) {
870 			loff_t max_size = gfs2_max_stuffed_size(ip);
871 
872 			if (pos + length > max_size)
873 				goto unstuff;
874 			iomap->length = max_size;
875 		} else {
876 			if (pos >= size) {
877 				if (flags & IOMAP_REPORT) {
878 					ret = -ENOENT;
879 					goto unlock;
880 				} else {
881 					iomap->offset = pos;
882 					iomap->length = length;
883 					goto hole_found;
884 				}
885 			}
886 			iomap->length = size;
887 		}
888 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
889 			      sizeof(struct gfs2_dinode);
890 		iomap->type = IOMAP_INLINE;
891 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
892 		goto out;
893 	}
894 
895 unstuff:
896 	lblock = pos >> inode->i_blkbits;
897 	iomap->offset = lblock << inode->i_blkbits;
898 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
899 	len = lblock_stop - lblock + 1;
900 	iomap->length = len << inode->i_blkbits;
901 
902 	height = ip->i_height;
903 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
904 		height++;
905 	find_metapath(sdp, lblock, mp, height);
906 	if (height > ip->i_height || gfs2_is_stuffed(ip))
907 		goto do_alloc;
908 
909 	ret = lookup_metapath(ip, mp);
910 	if (ret)
911 		goto unlock;
912 
913 	if (mp->mp_aheight != ip->i_height)
914 		goto do_alloc;
915 
916 	ptr = metapointer(ip->i_height - 1, mp);
917 	if (*ptr == 0)
918 		goto do_alloc;
919 
920 	bh = mp->mp_bh[ip->i_height - 1];
921 	len = gfs2_extent_length(bh, ptr, len, &eob);
922 
923 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
924 	iomap->length = len << inode->i_blkbits;
925 	iomap->type = IOMAP_MAPPED;
926 	iomap->flags |= IOMAP_F_MERGED;
927 	if (eob)
928 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
929 
930 out:
931 	iomap->bdev = inode->i_sb->s_bdev;
932 unlock:
933 	up_read(&ip->i_rw_mutex);
934 	return ret;
935 
936 do_alloc:
937 	if (flags & IOMAP_REPORT) {
938 		if (pos >= size)
939 			ret = -ENOENT;
940 		else if (height == ip->i_height)
941 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
942 		else
943 			iomap->length = size - iomap->offset;
944 	} else if (flags & IOMAP_WRITE) {
945 		u64 alloc_size;
946 
947 		if (flags & IOMAP_DIRECT)
948 			goto out;  /* (see gfs2_file_direct_write) */
949 
950 		len = gfs2_alloc_size(inode, mp, len);
951 		alloc_size = len << inode->i_blkbits;
952 		if (alloc_size < iomap->length)
953 			iomap->length = alloc_size;
954 	} else {
955 		if (pos < size && height == ip->i_height)
956 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
957 	}
958 hole_found:
959 	iomap->addr = IOMAP_NULL_ADDR;
960 	iomap->type = IOMAP_HOLE;
961 	goto out;
962 }
963 
964 /**
965  * gfs2_lblk_to_dblk - convert logical block to disk block
966  * @inode: the inode of the file we're mapping
967  * @lblock: the block relative to the start of the file
968  * @dblock: the returned dblock, if no error
969  *
970  * This function maps a single block from a file logical block (relative to
971  * the start of the file) to a file system absolute block using iomap.
972  *
973  * Returns: the absolute file system block, or an error
974  */
gfs2_lblk_to_dblk(struct inode * inode,u32 lblock,u64 * dblock)975 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock)
976 {
977 	struct iomap iomap = { };
978 	struct metapath mp = { .mp_aheight = 1, };
979 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
980 	int ret;
981 
982 	ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp);
983 	release_metapath(&mp);
984 	if (ret == 0)
985 		*dblock = iomap.addr >> inode->i_blkbits;
986 
987 	return ret;
988 }
989 
gfs2_write_lock(struct inode * inode)990 static int gfs2_write_lock(struct inode *inode)
991 {
992 	struct gfs2_inode *ip = GFS2_I(inode);
993 	struct gfs2_sbd *sdp = GFS2_SB(inode);
994 	int error;
995 
996 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
997 	error = gfs2_glock_nq(&ip->i_gh);
998 	if (error)
999 		goto out_uninit;
1000 	if (&ip->i_inode == sdp->sd_rindex) {
1001 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1002 
1003 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1004 					   GL_NOCACHE, &m_ip->i_gh);
1005 		if (error)
1006 			goto out_unlock;
1007 	}
1008 	return 0;
1009 
1010 out_unlock:
1011 	gfs2_glock_dq(&ip->i_gh);
1012 out_uninit:
1013 	gfs2_holder_uninit(&ip->i_gh);
1014 	return error;
1015 }
1016 
gfs2_write_unlock(struct inode * inode)1017 static void gfs2_write_unlock(struct inode *inode)
1018 {
1019 	struct gfs2_inode *ip = GFS2_I(inode);
1020 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1021 
1022 	if (&ip->i_inode == sdp->sd_rindex) {
1023 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1024 
1025 		gfs2_glock_dq_uninit(&m_ip->i_gh);
1026 	}
1027 	gfs2_glock_dq_uninit(&ip->i_gh);
1028 }
1029 
gfs2_iomap_page_prepare(struct inode * inode,loff_t pos,unsigned len,struct iomap * iomap)1030 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
1031 				   unsigned len, struct iomap *iomap)
1032 {
1033 	unsigned int blockmask = i_blocksize(inode) - 1;
1034 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1035 	unsigned int blocks;
1036 
1037 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
1038 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
1039 }
1040 
gfs2_iomap_page_done(struct inode * inode,loff_t pos,unsigned copied,struct page * page,struct iomap * iomap)1041 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
1042 				 unsigned copied, struct page *page,
1043 				 struct iomap *iomap)
1044 {
1045 	struct gfs2_trans *tr = current->journal_info;
1046 	struct gfs2_inode *ip = GFS2_I(inode);
1047 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1048 
1049 	if (page && !gfs2_is_stuffed(ip))
1050 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
1051 
1052 	if (tr->tr_num_buf_new)
1053 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1054 
1055 	gfs2_trans_end(sdp);
1056 }
1057 
1058 static const struct iomap_page_ops gfs2_iomap_page_ops = {
1059 	.page_prepare = gfs2_iomap_page_prepare,
1060 	.page_done = gfs2_iomap_page_done,
1061 };
1062 
gfs2_iomap_begin_write(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct metapath * mp)1063 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1064 				  loff_t length, unsigned flags,
1065 				  struct iomap *iomap,
1066 				  struct metapath *mp)
1067 {
1068 	struct gfs2_inode *ip = GFS2_I(inode);
1069 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1070 	bool unstuff;
1071 	int ret;
1072 
1073 	unstuff = gfs2_is_stuffed(ip) &&
1074 		  pos + length > gfs2_max_stuffed_size(ip);
1075 
1076 	if (unstuff || iomap->type == IOMAP_HOLE) {
1077 		unsigned int data_blocks, ind_blocks;
1078 		struct gfs2_alloc_parms ap = {};
1079 		unsigned int rblocks;
1080 		struct gfs2_trans *tr;
1081 
1082 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1083 				       &ind_blocks);
1084 		ap.target = data_blocks + ind_blocks;
1085 		ret = gfs2_quota_lock_check(ip, &ap);
1086 		if (ret)
1087 			return ret;
1088 
1089 		ret = gfs2_inplace_reserve(ip, &ap);
1090 		if (ret)
1091 			goto out_qunlock;
1092 
1093 		rblocks = RES_DINODE + ind_blocks;
1094 		if (gfs2_is_jdata(ip))
1095 			rblocks += data_blocks;
1096 		if (ind_blocks || data_blocks)
1097 			rblocks += RES_STATFS + RES_QUOTA;
1098 		if (inode == sdp->sd_rindex)
1099 			rblocks += 2 * RES_STATFS;
1100 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1101 
1102 		ret = gfs2_trans_begin(sdp, rblocks,
1103 				       iomap->length >> inode->i_blkbits);
1104 		if (ret)
1105 			goto out_trans_fail;
1106 
1107 		if (unstuff) {
1108 			ret = gfs2_unstuff_dinode(ip, NULL);
1109 			if (ret)
1110 				goto out_trans_end;
1111 			release_metapath(mp);
1112 			ret = gfs2_iomap_get(inode, iomap->offset,
1113 					     iomap->length, flags, iomap, mp);
1114 			if (ret)
1115 				goto out_trans_end;
1116 		}
1117 
1118 		if (iomap->type == IOMAP_HOLE) {
1119 			ret = gfs2_iomap_alloc(inode, iomap, mp);
1120 			if (ret) {
1121 				gfs2_trans_end(sdp);
1122 				gfs2_inplace_release(ip);
1123 				punch_hole(ip, iomap->offset, iomap->length);
1124 				goto out_qunlock;
1125 			}
1126 		}
1127 
1128 		tr = current->journal_info;
1129 		if (tr->tr_num_buf_new)
1130 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1131 
1132 		gfs2_trans_end(sdp);
1133 	}
1134 
1135 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1136 		iomap->page_ops = &gfs2_iomap_page_ops;
1137 	return 0;
1138 
1139 out_trans_end:
1140 	gfs2_trans_end(sdp);
1141 out_trans_fail:
1142 	gfs2_inplace_release(ip);
1143 out_qunlock:
1144 	gfs2_quota_unlock(ip);
1145 	return ret;
1146 }
1147 
gfs2_iomap_need_write_lock(unsigned flags)1148 static inline bool gfs2_iomap_need_write_lock(unsigned flags)
1149 {
1150 	return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT);
1151 }
1152 
gfs2_iomap_begin(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1153 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1154 			    unsigned flags, struct iomap *iomap,
1155 			    struct iomap *srcmap)
1156 {
1157 	struct gfs2_inode *ip = GFS2_I(inode);
1158 	struct metapath mp = { .mp_aheight = 1, };
1159 	int ret;
1160 
1161 	if (gfs2_is_jdata(ip))
1162 		iomap->flags |= IOMAP_F_BUFFER_HEAD;
1163 
1164 	trace_gfs2_iomap_start(ip, pos, length, flags);
1165 	if (gfs2_iomap_need_write_lock(flags)) {
1166 		ret = gfs2_write_lock(inode);
1167 		if (ret)
1168 			goto out;
1169 	}
1170 
1171 	ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1172 	if (ret)
1173 		goto out_unlock;
1174 
1175 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1176 	case IOMAP_WRITE:
1177 		if (flags & IOMAP_DIRECT) {
1178 			/*
1179 			 * Silently fall back to buffered I/O for stuffed files
1180 			 * or if we've got a hole (see gfs2_file_direct_write).
1181 			 */
1182 			if (iomap->type != IOMAP_MAPPED)
1183 				ret = -ENOTBLK;
1184 			goto out_unlock;
1185 		}
1186 		break;
1187 	case IOMAP_ZERO:
1188 		if (iomap->type == IOMAP_HOLE)
1189 			goto out_unlock;
1190 		break;
1191 	default:
1192 		goto out_unlock;
1193 	}
1194 
1195 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1196 
1197 out_unlock:
1198 	if (ret && gfs2_iomap_need_write_lock(flags))
1199 		gfs2_write_unlock(inode);
1200 	release_metapath(&mp);
1201 out:
1202 	trace_gfs2_iomap_end(ip, iomap, ret);
1203 	return ret;
1204 }
1205 
gfs2_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1206 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1207 			  ssize_t written, unsigned flags, struct iomap *iomap)
1208 {
1209 	struct gfs2_inode *ip = GFS2_I(inode);
1210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1211 
1212 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1213 	case IOMAP_WRITE:
1214 		if (flags & IOMAP_DIRECT)
1215 			return 0;
1216 		break;
1217 	case IOMAP_ZERO:
1218 		 if (iomap->type == IOMAP_HOLE)
1219 			 return 0;
1220 		 break;
1221 	default:
1222 		 return 0;
1223 	}
1224 
1225 	if (!gfs2_is_stuffed(ip))
1226 		gfs2_ordered_add_inode(ip);
1227 
1228 	if (inode == sdp->sd_rindex)
1229 		adjust_fs_space(inode);
1230 
1231 	gfs2_inplace_release(ip);
1232 
1233 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1234 		gfs2_quota_unlock(ip);
1235 
1236 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1237 		/* Deallocate blocks that were just allocated. */
1238 		loff_t hstart = round_up(pos + written, i_blocksize(inode));
1239 		loff_t hend = iomap->offset + iomap->length;
1240 
1241 		if (hstart < hend) {
1242 			truncate_pagecache_range(inode, hstart, hend - 1);
1243 			punch_hole(ip, hstart, hend - hstart);
1244 		}
1245 	}
1246 
1247 	if (unlikely(!written))
1248 		goto out_unlock;
1249 
1250 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1251 		mark_inode_dirty(inode);
1252 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1253 
1254 out_unlock:
1255 	if (gfs2_iomap_need_write_lock(flags))
1256 		gfs2_write_unlock(inode);
1257 	return 0;
1258 }
1259 
1260 const struct iomap_ops gfs2_iomap_ops = {
1261 	.iomap_begin = gfs2_iomap_begin,
1262 	.iomap_end = gfs2_iomap_end,
1263 };
1264 
1265 /**
1266  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1267  * @inode: The inode
1268  * @lblock: The logical block number
1269  * @bh_map: The bh to be mapped
1270  * @create: True if its ok to alloc blocks to satify the request
1271  *
1272  * The size of the requested mapping is defined in bh_map->b_size.
1273  *
1274  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1275  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1276  * bh_map->b_size to indicate the size of the mapping when @lblock and
1277  * successive blocks are mapped, up to the requested size.
1278  *
1279  * Sets buffer_boundary() if a read of metadata will be required
1280  * before the next block can be mapped. Sets buffer_new() if new
1281  * blocks were allocated.
1282  *
1283  * Returns: errno
1284  */
1285 
gfs2_block_map(struct inode * inode,sector_t lblock,struct buffer_head * bh_map,int create)1286 int gfs2_block_map(struct inode *inode, sector_t lblock,
1287 		   struct buffer_head *bh_map, int create)
1288 {
1289 	struct gfs2_inode *ip = GFS2_I(inode);
1290 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1291 	loff_t length = bh_map->b_size;
1292 	struct metapath mp = { .mp_aheight = 1, };
1293 	struct iomap iomap = { };
1294 	int flags = create ? IOMAP_WRITE : 0;
1295 	int ret;
1296 
1297 	clear_buffer_mapped(bh_map);
1298 	clear_buffer_new(bh_map);
1299 	clear_buffer_boundary(bh_map);
1300 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1301 
1302 	ret = gfs2_iomap_get(inode, pos, length, flags, &iomap, &mp);
1303 	if (create && !ret && iomap.type == IOMAP_HOLE)
1304 		ret = gfs2_iomap_alloc(inode, &iomap, &mp);
1305 	release_metapath(&mp);
1306 	if (ret)
1307 		goto out;
1308 
1309 	if (iomap.length > bh_map->b_size) {
1310 		iomap.length = bh_map->b_size;
1311 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1312 	}
1313 	if (iomap.addr != IOMAP_NULL_ADDR)
1314 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1315 	bh_map->b_size = iomap.length;
1316 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1317 		set_buffer_boundary(bh_map);
1318 	if (iomap.flags & IOMAP_F_NEW)
1319 		set_buffer_new(bh_map);
1320 
1321 out:
1322 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1323 	return ret;
1324 }
1325 
1326 /*
1327  * Deprecated: do not use in new code
1328  */
gfs2_extent_map(struct inode * inode,u64 lblock,int * new,u64 * dblock,unsigned * extlen)1329 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1330 {
1331 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1332 	int ret;
1333 	int create = *new;
1334 
1335 	BUG_ON(!extlen);
1336 	BUG_ON(!dblock);
1337 	BUG_ON(!new);
1338 
1339 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1340 	ret = gfs2_block_map(inode, lblock, &bh, create);
1341 	*extlen = bh.b_size >> inode->i_blkbits;
1342 	*dblock = bh.b_blocknr;
1343 	if (buffer_new(&bh))
1344 		*new = 1;
1345 	else
1346 		*new = 0;
1347 	return ret;
1348 }
1349 
1350 /*
1351  * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1352  * uses iomap write to perform its actions, which begin their own transactions
1353  * (iomap_begin, page_prepare, etc.)
1354  */
gfs2_block_zero_range(struct inode * inode,loff_t from,unsigned int length)1355 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1356 				 unsigned int length)
1357 {
1358 	BUG_ON(current->journal_info);
1359 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1360 }
1361 
1362 #define GFS2_JTRUNC_REVOKES 8192
1363 
1364 /**
1365  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1366  * @inode: The inode being truncated
1367  * @oldsize: The original (larger) size
1368  * @newsize: The new smaller size
1369  *
1370  * With jdata files, we have to journal a revoke for each block which is
1371  * truncated. As a result, we need to split this into separate transactions
1372  * if the number of pages being truncated gets too large.
1373  */
1374 
gfs2_journaled_truncate(struct inode * inode,u64 oldsize,u64 newsize)1375 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1376 {
1377 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1378 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1379 	u64 chunk;
1380 	int error;
1381 
1382 	while (oldsize != newsize) {
1383 		struct gfs2_trans *tr;
1384 		unsigned int offs;
1385 
1386 		chunk = oldsize - newsize;
1387 		if (chunk > max_chunk)
1388 			chunk = max_chunk;
1389 
1390 		offs = oldsize & ~PAGE_MASK;
1391 		if (offs && chunk > PAGE_SIZE)
1392 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1393 
1394 		truncate_pagecache(inode, oldsize - chunk);
1395 		oldsize -= chunk;
1396 
1397 		tr = current->journal_info;
1398 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1399 			continue;
1400 
1401 		gfs2_trans_end(sdp);
1402 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1403 		if (error)
1404 			return error;
1405 	}
1406 
1407 	return 0;
1408 }
1409 
trunc_start(struct inode * inode,u64 newsize)1410 static int trunc_start(struct inode *inode, u64 newsize)
1411 {
1412 	struct gfs2_inode *ip = GFS2_I(inode);
1413 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1414 	struct buffer_head *dibh = NULL;
1415 	int journaled = gfs2_is_jdata(ip);
1416 	u64 oldsize = inode->i_size;
1417 	int error;
1418 
1419 	if (!gfs2_is_stuffed(ip)) {
1420 		unsigned int blocksize = i_blocksize(inode);
1421 		unsigned int offs = newsize & (blocksize - 1);
1422 		if (offs) {
1423 			error = gfs2_block_zero_range(inode, newsize,
1424 						      blocksize - offs);
1425 			if (error)
1426 				return error;
1427 		}
1428 	}
1429 	if (journaled)
1430 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1431 	else
1432 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1433 	if (error)
1434 		return error;
1435 
1436 	error = gfs2_meta_inode_buffer(ip, &dibh);
1437 	if (error)
1438 		goto out;
1439 
1440 	gfs2_trans_add_meta(ip->i_gl, dibh);
1441 
1442 	if (gfs2_is_stuffed(ip))
1443 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1444 	else
1445 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1446 
1447 	i_size_write(inode, newsize);
1448 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1449 	gfs2_dinode_out(ip, dibh->b_data);
1450 
1451 	if (journaled)
1452 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1453 	else
1454 		truncate_pagecache(inode, newsize);
1455 
1456 out:
1457 	brelse(dibh);
1458 	if (current->journal_info)
1459 		gfs2_trans_end(sdp);
1460 	return error;
1461 }
1462 
gfs2_iomap_get_alloc(struct inode * inode,loff_t pos,loff_t length,struct iomap * iomap)1463 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1464 			 struct iomap *iomap)
1465 {
1466 	struct metapath mp = { .mp_aheight = 1, };
1467 	int ret;
1468 
1469 	ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1470 	if (!ret && iomap->type == IOMAP_HOLE)
1471 		ret = gfs2_iomap_alloc(inode, iomap, &mp);
1472 	release_metapath(&mp);
1473 	return ret;
1474 }
1475 
1476 /**
1477  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1478  * @ip: inode
1479  * @rg_gh: holder of resource group glock
1480  * @bh: buffer head to sweep
1481  * @start: starting point in bh
1482  * @end: end point in bh
1483  * @meta: true if bh points to metadata (rather than data)
1484  * @btotal: place to keep count of total blocks freed
1485  *
1486  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1487  * free, and free them all. However, we do it one rgrp at a time. If this
1488  * block has references to multiple rgrps, we break it into individual
1489  * transactions. This allows other processes to use the rgrps while we're
1490  * focused on a single one, for better concurrency / performance.
1491  * At every transaction boundary, we rewrite the inode into the journal.
1492  * That way the bitmaps are kept consistent with the inode and we can recover
1493  * if we're interrupted by power-outages.
1494  *
1495  * Returns: 0, or return code if an error occurred.
1496  *          *btotal has the total number of blocks freed
1497  */
sweep_bh_for_rgrps(struct gfs2_inode * ip,struct gfs2_holder * rd_gh,struct buffer_head * bh,__be64 * start,__be64 * end,bool meta,u32 * btotal)1498 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1499 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1500 			      bool meta, u32 *btotal)
1501 {
1502 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1503 	struct gfs2_rgrpd *rgd;
1504 	struct gfs2_trans *tr;
1505 	__be64 *p;
1506 	int blks_outside_rgrp;
1507 	u64 bn, bstart, isize_blks;
1508 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1509 	int ret = 0;
1510 	bool buf_in_tr = false; /* buffer was added to transaction */
1511 
1512 more_rgrps:
1513 	rgd = NULL;
1514 	if (gfs2_holder_initialized(rd_gh)) {
1515 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1516 		gfs2_assert_withdraw(sdp,
1517 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1518 	}
1519 	blks_outside_rgrp = 0;
1520 	bstart = 0;
1521 	blen = 0;
1522 
1523 	for (p = start; p < end; p++) {
1524 		if (!*p)
1525 			continue;
1526 		bn = be64_to_cpu(*p);
1527 
1528 		if (rgd) {
1529 			if (!rgrp_contains_block(rgd, bn)) {
1530 				blks_outside_rgrp++;
1531 				continue;
1532 			}
1533 		} else {
1534 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1535 			if (unlikely(!rgd)) {
1536 				ret = -EIO;
1537 				goto out;
1538 			}
1539 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1540 						 0, rd_gh);
1541 			if (ret)
1542 				goto out;
1543 
1544 			/* Must be done with the rgrp glock held: */
1545 			if (gfs2_rs_active(&ip->i_res) &&
1546 			    rgd == ip->i_res.rs_rbm.rgd)
1547 				gfs2_rs_deltree(&ip->i_res);
1548 		}
1549 
1550 		/* The size of our transactions will be unknown until we
1551 		   actually process all the metadata blocks that relate to
1552 		   the rgrp. So we estimate. We know it can't be more than
1553 		   the dinode's i_blocks and we don't want to exceed the
1554 		   journal flush threshold, sd_log_thresh2. */
1555 		if (current->journal_info == NULL) {
1556 			unsigned int jblocks_rqsted, revokes;
1557 
1558 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1559 				RES_INDIRECT;
1560 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1561 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1562 				jblocks_rqsted +=
1563 					atomic_read(&sdp->sd_log_thresh2);
1564 			else
1565 				jblocks_rqsted += isize_blks;
1566 			revokes = jblocks_rqsted;
1567 			if (meta)
1568 				revokes += end - start;
1569 			else if (ip->i_depth)
1570 				revokes += sdp->sd_inptrs;
1571 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1572 			if (ret)
1573 				goto out_unlock;
1574 			down_write(&ip->i_rw_mutex);
1575 		}
1576 		/* check if we will exceed the transaction blocks requested */
1577 		tr = current->journal_info;
1578 		if (tr->tr_num_buf_new + RES_STATFS +
1579 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1580 			/* We set blks_outside_rgrp to ensure the loop will
1581 			   be repeated for the same rgrp, but with a new
1582 			   transaction. */
1583 			blks_outside_rgrp++;
1584 			/* This next part is tricky. If the buffer was added
1585 			   to the transaction, we've already set some block
1586 			   pointers to 0, so we better follow through and free
1587 			   them, or we will introduce corruption (so break).
1588 			   This may be impossible, or at least rare, but I
1589 			   decided to cover the case regardless.
1590 
1591 			   If the buffer was not added to the transaction
1592 			   (this call), doing so would exceed our transaction
1593 			   size, so we need to end the transaction and start a
1594 			   new one (so goto). */
1595 
1596 			if (buf_in_tr)
1597 				break;
1598 			goto out_unlock;
1599 		}
1600 
1601 		gfs2_trans_add_meta(ip->i_gl, bh);
1602 		buf_in_tr = true;
1603 		*p = 0;
1604 		if (bstart + blen == bn) {
1605 			blen++;
1606 			continue;
1607 		}
1608 		if (bstart) {
1609 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1610 			(*btotal) += blen;
1611 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1612 		}
1613 		bstart = bn;
1614 		blen = 1;
1615 	}
1616 	if (bstart) {
1617 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1618 		(*btotal) += blen;
1619 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1620 	}
1621 out_unlock:
1622 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1623 					    outside the rgrp we just processed,
1624 					    do it all over again. */
1625 		if (current->journal_info) {
1626 			struct buffer_head *dibh;
1627 
1628 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1629 			if (ret)
1630 				goto out;
1631 
1632 			/* Every transaction boundary, we rewrite the dinode
1633 			   to keep its di_blocks current in case of failure. */
1634 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1635 				current_time(&ip->i_inode);
1636 			gfs2_trans_add_meta(ip->i_gl, dibh);
1637 			gfs2_dinode_out(ip, dibh->b_data);
1638 			brelse(dibh);
1639 			up_write(&ip->i_rw_mutex);
1640 			gfs2_trans_end(sdp);
1641 			buf_in_tr = false;
1642 		}
1643 		gfs2_glock_dq_uninit(rd_gh);
1644 		cond_resched();
1645 		goto more_rgrps;
1646 	}
1647 out:
1648 	return ret;
1649 }
1650 
mp_eq_to_hgt(struct metapath * mp,__u16 * list,unsigned int h)1651 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1652 {
1653 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1654 		return false;
1655 	return true;
1656 }
1657 
1658 /**
1659  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1660  * @mp: starting metapath
1661  * @h: desired height to search
1662  *
1663  * Assumes the metapath is valid (with buffers) out to height h.
1664  * Returns: true if a non-null pointer was found in the metapath buffer
1665  *          false if all remaining pointers are NULL in the buffer
1666  */
find_nonnull_ptr(struct gfs2_sbd * sdp,struct metapath * mp,unsigned int h,__u16 * end_list,unsigned int end_aligned)1667 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1668 			     unsigned int h,
1669 			     __u16 *end_list, unsigned int end_aligned)
1670 {
1671 	struct buffer_head *bh = mp->mp_bh[h];
1672 	__be64 *first, *ptr, *end;
1673 
1674 	first = metaptr1(h, mp);
1675 	ptr = first + mp->mp_list[h];
1676 	end = (__be64 *)(bh->b_data + bh->b_size);
1677 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1678 		bool keep_end = h < end_aligned;
1679 		end = first + end_list[h] + keep_end;
1680 	}
1681 
1682 	while (ptr < end) {
1683 		if (*ptr) { /* if we have a non-null pointer */
1684 			mp->mp_list[h] = ptr - first;
1685 			h++;
1686 			if (h < GFS2_MAX_META_HEIGHT)
1687 				mp->mp_list[h] = 0;
1688 			return true;
1689 		}
1690 		ptr++;
1691 	}
1692 	return false;
1693 }
1694 
1695 enum dealloc_states {
1696 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1697 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1698 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1699 	DEALLOC_DONE = 3,       /* process complete */
1700 };
1701 
1702 static inline void
metapointer_range(struct metapath * mp,int height,__u16 * start_list,unsigned int start_aligned,__u16 * end_list,unsigned int end_aligned,__be64 ** start,__be64 ** end)1703 metapointer_range(struct metapath *mp, int height,
1704 		  __u16 *start_list, unsigned int start_aligned,
1705 		  __u16 *end_list, unsigned int end_aligned,
1706 		  __be64 **start, __be64 **end)
1707 {
1708 	struct buffer_head *bh = mp->mp_bh[height];
1709 	__be64 *first;
1710 
1711 	first = metaptr1(height, mp);
1712 	*start = first;
1713 	if (mp_eq_to_hgt(mp, start_list, height)) {
1714 		bool keep_start = height < start_aligned;
1715 		*start = first + start_list[height] + keep_start;
1716 	}
1717 	*end = (__be64 *)(bh->b_data + bh->b_size);
1718 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1719 		bool keep_end = height < end_aligned;
1720 		*end = first + end_list[height] + keep_end;
1721 	}
1722 }
1723 
walk_done(struct gfs2_sbd * sdp,struct metapath * mp,int height,__u16 * end_list,unsigned int end_aligned)1724 static inline bool walk_done(struct gfs2_sbd *sdp,
1725 			     struct metapath *mp, int height,
1726 			     __u16 *end_list, unsigned int end_aligned)
1727 {
1728 	__u16 end;
1729 
1730 	if (end_list) {
1731 		bool keep_end = height < end_aligned;
1732 		if (!mp_eq_to_hgt(mp, end_list, height))
1733 			return false;
1734 		end = end_list[height] + keep_end;
1735 	} else
1736 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1737 	return mp->mp_list[height] >= end;
1738 }
1739 
1740 /**
1741  * punch_hole - deallocate blocks in a file
1742  * @ip: inode to truncate
1743  * @offset: the start of the hole
1744  * @length: the size of the hole (or 0 for truncate)
1745  *
1746  * Punch a hole into a file or truncate a file at a given position.  This
1747  * function operates in whole blocks (@offset and @length are rounded
1748  * accordingly); partially filled blocks must be cleared otherwise.
1749  *
1750  * This function works from the bottom up, and from the right to the left. In
1751  * other words, it strips off the highest layer (data) before stripping any of
1752  * the metadata. Doing it this way is best in case the operation is interrupted
1753  * by power failure, etc.  The dinode is rewritten in every transaction to
1754  * guarantee integrity.
1755  */
punch_hole(struct gfs2_inode * ip,u64 offset,u64 length)1756 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1757 {
1758 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1759 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1760 	struct metapath mp = {};
1761 	struct buffer_head *dibh, *bh;
1762 	struct gfs2_holder rd_gh;
1763 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1764 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1765 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1766 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1767 	unsigned int start_aligned, end_aligned;
1768 	unsigned int strip_h = ip->i_height - 1;
1769 	u32 btotal = 0;
1770 	int ret, state;
1771 	int mp_h; /* metapath buffers are read in to this height */
1772 	u64 prev_bnr = 0;
1773 	__be64 *start, *end;
1774 
1775 	if (offset >= maxsize) {
1776 		/*
1777 		 * The starting point lies beyond the allocated meta-data;
1778 		 * there are no blocks do deallocate.
1779 		 */
1780 		return 0;
1781 	}
1782 
1783 	/*
1784 	 * The start position of the hole is defined by lblock, start_list, and
1785 	 * start_aligned.  The end position of the hole is defined by lend,
1786 	 * end_list, and end_aligned.
1787 	 *
1788 	 * start_aligned and end_aligned define down to which height the start
1789 	 * and end positions are aligned to the metadata tree (i.e., the
1790 	 * position is a multiple of the metadata granularity at the height
1791 	 * above).  This determines at which heights additional meta pointers
1792 	 * needs to be preserved for the remaining data.
1793 	 */
1794 
1795 	if (length) {
1796 		u64 end_offset = offset + length;
1797 		u64 lend;
1798 
1799 		/*
1800 		 * Clip the end at the maximum file size for the given height:
1801 		 * that's how far the metadata goes; files bigger than that
1802 		 * will have additional layers of indirection.
1803 		 */
1804 		if (end_offset > maxsize)
1805 			end_offset = maxsize;
1806 		lend = end_offset >> bsize_shift;
1807 
1808 		if (lblock >= lend)
1809 			return 0;
1810 
1811 		find_metapath(sdp, lend, &mp, ip->i_height);
1812 		end_list = __end_list;
1813 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1814 
1815 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1816 			if (end_list[mp_h])
1817 				break;
1818 		}
1819 		end_aligned = mp_h;
1820 	}
1821 
1822 	find_metapath(sdp, lblock, &mp, ip->i_height);
1823 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1824 
1825 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1826 		if (start_list[mp_h])
1827 			break;
1828 	}
1829 	start_aligned = mp_h;
1830 
1831 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1832 	if (ret)
1833 		return ret;
1834 
1835 	mp.mp_bh[0] = dibh;
1836 	ret = lookup_metapath(ip, &mp);
1837 	if (ret)
1838 		goto out_metapath;
1839 
1840 	/* issue read-ahead on metadata */
1841 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1842 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1843 				  end_list, end_aligned, &start, &end);
1844 		gfs2_metapath_ra(ip->i_gl, start, end);
1845 	}
1846 
1847 	if (mp.mp_aheight == ip->i_height)
1848 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1849 	else
1850 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1851 
1852 	ret = gfs2_rindex_update(sdp);
1853 	if (ret)
1854 		goto out_metapath;
1855 
1856 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1857 	if (ret)
1858 		goto out_metapath;
1859 	gfs2_holder_mark_uninitialized(&rd_gh);
1860 
1861 	mp_h = strip_h;
1862 
1863 	while (state != DEALLOC_DONE) {
1864 		switch (state) {
1865 		/* Truncate a full metapath at the given strip height.
1866 		 * Note that strip_h == mp_h in order to be in this state. */
1867 		case DEALLOC_MP_FULL:
1868 			bh = mp.mp_bh[mp_h];
1869 			gfs2_assert_withdraw(sdp, bh);
1870 			if (gfs2_assert_withdraw(sdp,
1871 						 prev_bnr != bh->b_blocknr)) {
1872 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1873 					 "s_h:%u, mp_h:%u\n",
1874 				       (unsigned long long)ip->i_no_addr,
1875 				       prev_bnr, ip->i_height, strip_h, mp_h);
1876 			}
1877 			prev_bnr = bh->b_blocknr;
1878 
1879 			if (gfs2_metatype_check(sdp, bh,
1880 						(mp_h ? GFS2_METATYPE_IN :
1881 							GFS2_METATYPE_DI))) {
1882 				ret = -EIO;
1883 				goto out;
1884 			}
1885 
1886 			/*
1887 			 * Below, passing end_aligned as 0 gives us the
1888 			 * metapointer range excluding the end point: the end
1889 			 * point is the first metapath we must not deallocate!
1890 			 */
1891 
1892 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1893 					  end_list, 0 /* end_aligned */,
1894 					  &start, &end);
1895 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1896 						 start, end,
1897 						 mp_h != ip->i_height - 1,
1898 						 &btotal);
1899 
1900 			/* If we hit an error or just swept dinode buffer,
1901 			   just exit. */
1902 			if (ret || !mp_h) {
1903 				state = DEALLOC_DONE;
1904 				break;
1905 			}
1906 			state = DEALLOC_MP_LOWER;
1907 			break;
1908 
1909 		/* lower the metapath strip height */
1910 		case DEALLOC_MP_LOWER:
1911 			/* We're done with the current buffer, so release it,
1912 			   unless it's the dinode buffer. Then back up to the
1913 			   previous pointer. */
1914 			if (mp_h) {
1915 				brelse(mp.mp_bh[mp_h]);
1916 				mp.mp_bh[mp_h] = NULL;
1917 			}
1918 			/* If we can't get any lower in height, we've stripped
1919 			   off all we can. Next step is to back up and start
1920 			   stripping the previous level of metadata. */
1921 			if (mp_h == 0) {
1922 				strip_h--;
1923 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1924 				mp_h = strip_h;
1925 				state = DEALLOC_FILL_MP;
1926 				break;
1927 			}
1928 			mp.mp_list[mp_h] = 0;
1929 			mp_h--; /* search one metadata height down */
1930 			mp.mp_list[mp_h]++;
1931 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1932 				break;
1933 			/* Here we've found a part of the metapath that is not
1934 			 * allocated. We need to search at that height for the
1935 			 * next non-null pointer. */
1936 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1937 				state = DEALLOC_FILL_MP;
1938 				mp_h++;
1939 			}
1940 			/* No more non-null pointers at this height. Back up
1941 			   to the previous height and try again. */
1942 			break; /* loop around in the same state */
1943 
1944 		/* Fill the metapath with buffers to the given height. */
1945 		case DEALLOC_FILL_MP:
1946 			/* Fill the buffers out to the current height. */
1947 			ret = fillup_metapath(ip, &mp, mp_h);
1948 			if (ret < 0)
1949 				goto out;
1950 
1951 			/* On the first pass, issue read-ahead on metadata. */
1952 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1953 				unsigned int height = mp.mp_aheight - 1;
1954 
1955 				/* No read-ahead for data blocks. */
1956 				if (mp.mp_aheight - 1 == strip_h)
1957 					height--;
1958 
1959 				for (; height >= mp.mp_aheight - ret; height--) {
1960 					metapointer_range(&mp, height,
1961 							  start_list, start_aligned,
1962 							  end_list, end_aligned,
1963 							  &start, &end);
1964 					gfs2_metapath_ra(ip->i_gl, start, end);
1965 				}
1966 			}
1967 
1968 			/* If buffers found for the entire strip height */
1969 			if (mp.mp_aheight - 1 == strip_h) {
1970 				state = DEALLOC_MP_FULL;
1971 				break;
1972 			}
1973 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1974 				mp_h = mp.mp_aheight - 1;
1975 
1976 			/* If we find a non-null block pointer, crawl a bit
1977 			   higher up in the metapath and try again, otherwise
1978 			   we need to look lower for a new starting point. */
1979 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1980 				mp_h++;
1981 			else
1982 				state = DEALLOC_MP_LOWER;
1983 			break;
1984 		}
1985 	}
1986 
1987 	if (btotal) {
1988 		if (current->journal_info == NULL) {
1989 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1990 					       RES_QUOTA, 0);
1991 			if (ret)
1992 				goto out;
1993 			down_write(&ip->i_rw_mutex);
1994 		}
1995 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1996 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1997 				  ip->i_inode.i_gid);
1998 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1999 		gfs2_trans_add_meta(ip->i_gl, dibh);
2000 		gfs2_dinode_out(ip, dibh->b_data);
2001 		up_write(&ip->i_rw_mutex);
2002 		gfs2_trans_end(sdp);
2003 	}
2004 
2005 out:
2006 	if (gfs2_holder_initialized(&rd_gh))
2007 		gfs2_glock_dq_uninit(&rd_gh);
2008 	if (current->journal_info) {
2009 		up_write(&ip->i_rw_mutex);
2010 		gfs2_trans_end(sdp);
2011 		cond_resched();
2012 	}
2013 	gfs2_quota_unhold(ip);
2014 out_metapath:
2015 	release_metapath(&mp);
2016 	return ret;
2017 }
2018 
trunc_end(struct gfs2_inode * ip)2019 static int trunc_end(struct gfs2_inode *ip)
2020 {
2021 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2022 	struct buffer_head *dibh;
2023 	int error;
2024 
2025 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2026 	if (error)
2027 		return error;
2028 
2029 	down_write(&ip->i_rw_mutex);
2030 
2031 	error = gfs2_meta_inode_buffer(ip, &dibh);
2032 	if (error)
2033 		goto out;
2034 
2035 	if (!i_size_read(&ip->i_inode)) {
2036 		ip->i_height = 0;
2037 		ip->i_goal = ip->i_no_addr;
2038 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2039 		gfs2_ordered_del_inode(ip);
2040 	}
2041 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2042 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2043 
2044 	gfs2_trans_add_meta(ip->i_gl, dibh);
2045 	gfs2_dinode_out(ip, dibh->b_data);
2046 	brelse(dibh);
2047 
2048 out:
2049 	up_write(&ip->i_rw_mutex);
2050 	gfs2_trans_end(sdp);
2051 	return error;
2052 }
2053 
2054 /**
2055  * do_shrink - make a file smaller
2056  * @inode: the inode
2057  * @newsize: the size to make the file
2058  *
2059  * Called with an exclusive lock on @inode. The @size must
2060  * be equal to or smaller than the current inode size.
2061  *
2062  * Returns: errno
2063  */
2064 
do_shrink(struct inode * inode,u64 newsize)2065 static int do_shrink(struct inode *inode, u64 newsize)
2066 {
2067 	struct gfs2_inode *ip = GFS2_I(inode);
2068 	int error;
2069 
2070 	error = trunc_start(inode, newsize);
2071 	if (error < 0)
2072 		return error;
2073 	if (gfs2_is_stuffed(ip))
2074 		return 0;
2075 
2076 	error = punch_hole(ip, newsize, 0);
2077 	if (error == 0)
2078 		error = trunc_end(ip);
2079 
2080 	return error;
2081 }
2082 
gfs2_trim_blocks(struct inode * inode)2083 void gfs2_trim_blocks(struct inode *inode)
2084 {
2085 	int ret;
2086 
2087 	ret = do_shrink(inode, inode->i_size);
2088 	WARN_ON(ret != 0);
2089 }
2090 
2091 /**
2092  * do_grow - Touch and update inode size
2093  * @inode: The inode
2094  * @size: The new size
2095  *
2096  * This function updates the timestamps on the inode and
2097  * may also increase the size of the inode. This function
2098  * must not be called with @size any smaller than the current
2099  * inode size.
2100  *
2101  * Although it is not strictly required to unstuff files here,
2102  * earlier versions of GFS2 have a bug in the stuffed file reading
2103  * code which will result in a buffer overrun if the size is larger
2104  * than the max stuffed file size. In order to prevent this from
2105  * occurring, such files are unstuffed, but in other cases we can
2106  * just update the inode size directly.
2107  *
2108  * Returns: 0 on success, or -ve on error
2109  */
2110 
do_grow(struct inode * inode,u64 size)2111 static int do_grow(struct inode *inode, u64 size)
2112 {
2113 	struct gfs2_inode *ip = GFS2_I(inode);
2114 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2115 	struct gfs2_alloc_parms ap = { .target = 1, };
2116 	struct buffer_head *dibh;
2117 	int error;
2118 	int unstuff = 0;
2119 
2120 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2121 		error = gfs2_quota_lock_check(ip, &ap);
2122 		if (error)
2123 			return error;
2124 
2125 		error = gfs2_inplace_reserve(ip, &ap);
2126 		if (error)
2127 			goto do_grow_qunlock;
2128 		unstuff = 1;
2129 	}
2130 
2131 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2132 				 (unstuff &&
2133 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2134 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2135 				  0 : RES_QUOTA), 0);
2136 	if (error)
2137 		goto do_grow_release;
2138 
2139 	if (unstuff) {
2140 		error = gfs2_unstuff_dinode(ip, NULL);
2141 		if (error)
2142 			goto do_end_trans;
2143 	}
2144 
2145 	error = gfs2_meta_inode_buffer(ip, &dibh);
2146 	if (error)
2147 		goto do_end_trans;
2148 
2149 	truncate_setsize(inode, size);
2150 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2151 	gfs2_trans_add_meta(ip->i_gl, dibh);
2152 	gfs2_dinode_out(ip, dibh->b_data);
2153 	brelse(dibh);
2154 
2155 do_end_trans:
2156 	gfs2_trans_end(sdp);
2157 do_grow_release:
2158 	if (unstuff) {
2159 		gfs2_inplace_release(ip);
2160 do_grow_qunlock:
2161 		gfs2_quota_unlock(ip);
2162 	}
2163 	return error;
2164 }
2165 
2166 /**
2167  * gfs2_setattr_size - make a file a given size
2168  * @inode: the inode
2169  * @newsize: the size to make the file
2170  *
2171  * The file size can grow, shrink, or stay the same size. This
2172  * is called holding i_rwsem and an exclusive glock on the inode
2173  * in question.
2174  *
2175  * Returns: errno
2176  */
2177 
gfs2_setattr_size(struct inode * inode,u64 newsize)2178 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2179 {
2180 	struct gfs2_inode *ip = GFS2_I(inode);
2181 	int ret;
2182 
2183 	BUG_ON(!S_ISREG(inode->i_mode));
2184 
2185 	ret = inode_newsize_ok(inode, newsize);
2186 	if (ret)
2187 		return ret;
2188 
2189 	inode_dio_wait(inode);
2190 
2191 	ret = gfs2_qa_get(ip);
2192 	if (ret)
2193 		goto out;
2194 
2195 	if (newsize >= inode->i_size) {
2196 		ret = do_grow(inode, newsize);
2197 		goto out;
2198 	}
2199 
2200 	ret = do_shrink(inode, newsize);
2201 out:
2202 	gfs2_rs_delete(ip);
2203 	gfs2_qa_put(ip);
2204 	return ret;
2205 }
2206 
gfs2_truncatei_resume(struct gfs2_inode * ip)2207 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2208 {
2209 	int error;
2210 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2211 	if (!error)
2212 		error = trunc_end(ip);
2213 	return error;
2214 }
2215 
gfs2_file_dealloc(struct gfs2_inode * ip)2216 int gfs2_file_dealloc(struct gfs2_inode *ip)
2217 {
2218 	return punch_hole(ip, 0, 0);
2219 }
2220 
2221 /**
2222  * gfs2_free_journal_extents - Free cached journal bmap info
2223  * @jd: The journal
2224  *
2225  */
2226 
gfs2_free_journal_extents(struct gfs2_jdesc * jd)2227 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2228 {
2229 	struct gfs2_journal_extent *jext;
2230 
2231 	while(!list_empty(&jd->extent_list)) {
2232 		jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2233 		list_del(&jext->list);
2234 		kfree(jext);
2235 	}
2236 }
2237 
2238 /**
2239  * gfs2_add_jextent - Add or merge a new extent to extent cache
2240  * @jd: The journal descriptor
2241  * @lblock: The logical block at start of new extent
2242  * @dblock: The physical block at start of new extent
2243  * @blocks: Size of extent in fs blocks
2244  *
2245  * Returns: 0 on success or -ENOMEM
2246  */
2247 
gfs2_add_jextent(struct gfs2_jdesc * jd,u64 lblock,u64 dblock,u64 blocks)2248 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2249 {
2250 	struct gfs2_journal_extent *jext;
2251 
2252 	if (!list_empty(&jd->extent_list)) {
2253 		jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2254 		if ((jext->dblock + jext->blocks) == dblock) {
2255 			jext->blocks += blocks;
2256 			return 0;
2257 		}
2258 	}
2259 
2260 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2261 	if (jext == NULL)
2262 		return -ENOMEM;
2263 	jext->dblock = dblock;
2264 	jext->lblock = lblock;
2265 	jext->blocks = blocks;
2266 	list_add_tail(&jext->list, &jd->extent_list);
2267 	jd->nr_extents++;
2268 	return 0;
2269 }
2270 
2271 /**
2272  * gfs2_map_journal_extents - Cache journal bmap info
2273  * @sdp: The super block
2274  * @jd: The journal to map
2275  *
2276  * Create a reusable "extent" mapping from all logical
2277  * blocks to all physical blocks for the given journal.  This will save
2278  * us time when writing journal blocks.  Most journals will have only one
2279  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2280  * arranges the journal blocks sequentially to maximize performance.
2281  * So the extent would map the first block for the entire file length.
2282  * However, gfs2_jadd can happen while file activity is happening, so
2283  * those journals may not be sequential.  Less likely is the case where
2284  * the users created their own journals by mounting the metafs and
2285  * laying it out.  But it's still possible.  These journals might have
2286  * several extents.
2287  *
2288  * Returns: 0 on success, or error on failure
2289  */
2290 
gfs2_map_journal_extents(struct gfs2_sbd * sdp,struct gfs2_jdesc * jd)2291 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2292 {
2293 	u64 lblock = 0;
2294 	u64 lblock_stop;
2295 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2296 	struct buffer_head bh;
2297 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2298 	u64 size;
2299 	int rc;
2300 	ktime_t start, end;
2301 
2302 	start = ktime_get();
2303 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2304 	size = (lblock_stop - lblock) << shift;
2305 	jd->nr_extents = 0;
2306 	WARN_ON(!list_empty(&jd->extent_list));
2307 
2308 	do {
2309 		bh.b_state = 0;
2310 		bh.b_blocknr = 0;
2311 		bh.b_size = size;
2312 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2313 		if (rc || !buffer_mapped(&bh))
2314 			goto fail;
2315 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2316 		if (rc)
2317 			goto fail;
2318 		size -= bh.b_size;
2319 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2320 	} while(size > 0);
2321 
2322 	end = ktime_get();
2323 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2324 		jd->nr_extents, ktime_ms_delta(end, start));
2325 	return 0;
2326 
2327 fail:
2328 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2329 		rc, jd->jd_jid,
2330 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2331 		jd->nr_extents);
2332 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2333 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2334 		bh.b_state, (unsigned long long)bh.b_size);
2335 	gfs2_free_journal_extents(jd);
2336 	return rc;
2337 }
2338 
2339 /**
2340  * gfs2_write_alloc_required - figure out if a write will require an allocation
2341  * @ip: the file being written to
2342  * @offset: the offset to write to
2343  * @len: the number of bytes being written
2344  *
2345  * Returns: 1 if an alloc is required, 0 otherwise
2346  */
2347 
gfs2_write_alloc_required(struct gfs2_inode * ip,u64 offset,unsigned int len)2348 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2349 			      unsigned int len)
2350 {
2351 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2352 	struct buffer_head bh;
2353 	unsigned int shift;
2354 	u64 lblock, lblock_stop, size;
2355 	u64 end_of_file;
2356 
2357 	if (!len)
2358 		return 0;
2359 
2360 	if (gfs2_is_stuffed(ip)) {
2361 		if (offset + len > gfs2_max_stuffed_size(ip))
2362 			return 1;
2363 		return 0;
2364 	}
2365 
2366 	shift = sdp->sd_sb.sb_bsize_shift;
2367 	BUG_ON(gfs2_is_dir(ip));
2368 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2369 	lblock = offset >> shift;
2370 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2371 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2372 		return 1;
2373 
2374 	size = (lblock_stop - lblock) << shift;
2375 	do {
2376 		bh.b_state = 0;
2377 		bh.b_size = size;
2378 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2379 		if (!buffer_mapped(&bh))
2380 			return 1;
2381 		size -= bh.b_size;
2382 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2383 	} while(size > 0);
2384 
2385 	return 0;
2386 }
2387 
stuffed_zero_range(struct inode * inode,loff_t offset,loff_t length)2388 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2389 {
2390 	struct gfs2_inode *ip = GFS2_I(inode);
2391 	struct buffer_head *dibh;
2392 	int error;
2393 
2394 	if (offset >= inode->i_size)
2395 		return 0;
2396 	if (offset + length > inode->i_size)
2397 		length = inode->i_size - offset;
2398 
2399 	error = gfs2_meta_inode_buffer(ip, &dibh);
2400 	if (error)
2401 		return error;
2402 	gfs2_trans_add_meta(ip->i_gl, dibh);
2403 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2404 	       length);
2405 	brelse(dibh);
2406 	return 0;
2407 }
2408 
gfs2_journaled_truncate_range(struct inode * inode,loff_t offset,loff_t length)2409 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2410 					 loff_t length)
2411 {
2412 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2413 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2414 	int error;
2415 
2416 	while (length) {
2417 		struct gfs2_trans *tr;
2418 		loff_t chunk;
2419 		unsigned int offs;
2420 
2421 		chunk = length;
2422 		if (chunk > max_chunk)
2423 			chunk = max_chunk;
2424 
2425 		offs = offset & ~PAGE_MASK;
2426 		if (offs && chunk > PAGE_SIZE)
2427 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2428 
2429 		truncate_pagecache_range(inode, offset, chunk);
2430 		offset += chunk;
2431 		length -= chunk;
2432 
2433 		tr = current->journal_info;
2434 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2435 			continue;
2436 
2437 		gfs2_trans_end(sdp);
2438 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2439 		if (error)
2440 			return error;
2441 	}
2442 	return 0;
2443 }
2444 
__gfs2_punch_hole(struct file * file,loff_t offset,loff_t length)2445 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2446 {
2447 	struct inode *inode = file_inode(file);
2448 	struct gfs2_inode *ip = GFS2_I(inode);
2449 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2450 	unsigned int blocksize = i_blocksize(inode);
2451 	loff_t start, end;
2452 	int error;
2453 
2454 	if (!gfs2_is_stuffed(ip)) {
2455 		unsigned int start_off, end_len;
2456 
2457 		start_off = offset & (blocksize - 1);
2458 		end_len = (offset + length) & (blocksize - 1);
2459 		if (start_off) {
2460 			unsigned int len = length;
2461 			if (length > blocksize - start_off)
2462 				len = blocksize - start_off;
2463 			error = gfs2_block_zero_range(inode, offset, len);
2464 			if (error)
2465 				goto out;
2466 			if (start_off + length < blocksize)
2467 				end_len = 0;
2468 		}
2469 		if (end_len) {
2470 			error = gfs2_block_zero_range(inode,
2471 				offset + length - end_len, end_len);
2472 			if (error)
2473 				goto out;
2474 		}
2475 	}
2476 
2477 	start = round_down(offset, blocksize);
2478 	end = round_up(offset + length, blocksize) - 1;
2479 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2480 	if (error)
2481 		return error;
2482 
2483 	if (gfs2_is_jdata(ip))
2484 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2485 					 GFS2_JTRUNC_REVOKES);
2486 	else
2487 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2488 	if (error)
2489 		return error;
2490 
2491 	if (gfs2_is_stuffed(ip)) {
2492 		error = stuffed_zero_range(inode, offset, length);
2493 		if (error)
2494 			goto out;
2495 	}
2496 
2497 	if (gfs2_is_jdata(ip)) {
2498 		BUG_ON(!current->journal_info);
2499 		gfs2_journaled_truncate_range(inode, offset, length);
2500 	} else
2501 		truncate_pagecache_range(inode, offset, offset + length - 1);
2502 
2503 	file_update_time(file);
2504 	mark_inode_dirty(inode);
2505 
2506 	if (current->journal_info)
2507 		gfs2_trans_end(sdp);
2508 
2509 	if (!gfs2_is_stuffed(ip))
2510 		error = punch_hole(ip, offset, length);
2511 
2512 out:
2513 	if (current->journal_info)
2514 		gfs2_trans_end(sdp);
2515 	return error;
2516 }
2517 
gfs2_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)2518 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2519 		loff_t offset)
2520 {
2521 	struct metapath mp = { .mp_aheight = 1, };
2522 	int ret;
2523 
2524 	if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2525 		return -EIO;
2526 
2527 	if (offset >= wpc->iomap.offset &&
2528 	    offset < wpc->iomap.offset + wpc->iomap.length)
2529 		return 0;
2530 
2531 	memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2532 	ret = gfs2_iomap_get(inode, offset, INT_MAX, 0, &wpc->iomap, &mp);
2533 	release_metapath(&mp);
2534 	return ret;
2535 }
2536 
2537 const struct iomap_writeback_ops gfs2_writeback_ops = {
2538 	.map_blocks		= gfs2_map_blocks,
2539 };
2540