1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3 * Copyright (c) 2016-2022, Linaro Limited
4 * Copyright (c) 2014, STMicroelectronics International N.V.
5 * Copyright (c) 2020-2021, Arm Limited
6 */
7
8 #include <platform_config.h>
9
10 #include <arm.h>
11 #include <assert.h>
12 #include <config.h>
13 #include <io.h>
14 #include <keep.h>
15 #include <kernel/asan.h>
16 #include <kernel/boot.h>
17 #include <kernel/interrupt.h>
18 #include <kernel/linker.h>
19 #include <kernel/lockdep.h>
20 #include <kernel/misc.h>
21 #include <kernel/panic.h>
22 #include <kernel/spinlock.h>
23 #include <kernel/spmc_sp_handler.h>
24 #include <kernel/tee_ta_manager.h>
25 #include <kernel/thread.h>
26 #include <kernel/thread_private.h>
27 #include <kernel/user_access.h>
28 #include <kernel/user_mode_ctx.h>
29 #include <kernel/virtualization.h>
30 #include <mm/core_memprot.h>
31 #include <mm/mobj.h>
32 #include <mm/tee_mm.h>
33 #include <mm/tee_pager.h>
34 #include <mm/vm.h>
35 #include <sm/sm.h>
36 #include <smccc.h>
37 #include <trace.h>
38 #include <util.h>
39
40 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
41 static vaddr_t thread_user_kcode_va __nex_bss;
42 long thread_user_kcode_offset __nex_bss;
43 static size_t thread_user_kcode_size __nex_bss;
44 #endif
45
46 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
47 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
48 long thread_user_kdata_sp_offset __nex_bss;
49 static uint8_t thread_user_kdata_page[
50 ROUNDUP(sizeof(struct thread_core_local) * CFG_TEE_CORE_NB_CORE,
51 SMALL_PAGE_SIZE)]
52 __aligned(SMALL_PAGE_SIZE)
53 #ifndef CFG_NS_VIRTUALIZATION
54 __section(".nozi.kdata_page");
55 #else
56 __section(".nex_nozi.kdata_page");
57 #endif
58 #endif
59
60 #ifdef ARM32
thread_get_exceptions(void)61 uint32_t __nostackcheck thread_get_exceptions(void)
62 {
63 uint32_t cpsr = read_cpsr();
64
65 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
66 }
67
thread_set_exceptions(uint32_t exceptions)68 void __nostackcheck thread_set_exceptions(uint32_t exceptions)
69 {
70 uint32_t cpsr = read_cpsr();
71
72 /* Foreign interrupts must not be unmasked while holding a spinlock */
73 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
74 assert_have_no_spinlock();
75
76 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
77 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
78
79 barrier();
80 write_cpsr(cpsr);
81 barrier();
82 }
83 #endif /*ARM32*/
84
85 #ifdef ARM64
thread_get_exceptions(void)86 uint32_t __nostackcheck thread_get_exceptions(void)
87 {
88 uint32_t daif = read_daif();
89
90 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
91 }
92
thread_set_exceptions(uint32_t exceptions)93 void __nostackcheck thread_set_exceptions(uint32_t exceptions)
94 {
95 uint32_t daif = read_daif();
96
97 /* Foreign interrupts must not be unmasked while holding a spinlock */
98 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
99 assert_have_no_spinlock();
100
101 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
102 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
103
104 barrier();
105 write_daif(daif);
106 barrier();
107 }
108 #endif /*ARM64*/
109
thread_mask_exceptions(uint32_t exceptions)110 uint32_t __nostackcheck thread_mask_exceptions(uint32_t exceptions)
111 {
112 uint32_t state = thread_get_exceptions();
113
114 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
115 return state;
116 }
117
thread_unmask_exceptions(uint32_t state)118 void __nostackcheck thread_unmask_exceptions(uint32_t state)
119 {
120 thread_set_exceptions(state & THREAD_EXCP_ALL);
121 }
122
thread_lazy_save_ns_vfp(void)123 static void thread_lazy_save_ns_vfp(void)
124 {
125 #ifdef CFG_WITH_VFP
126 struct thread_ctx *thr = threads + thread_get_id();
127
128 thr->vfp_state.ns_saved = false;
129 vfp_lazy_save_state_init(&thr->vfp_state.ns);
130 #endif /*CFG_WITH_VFP*/
131 }
132
thread_lazy_restore_ns_vfp(void)133 static void thread_lazy_restore_ns_vfp(void)
134 {
135 #ifdef CFG_WITH_VFP
136 struct thread_ctx *thr = threads + thread_get_id();
137 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
138
139 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
140
141 if (tuv && tuv->lazy_saved && !tuv->saved) {
142 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
143 tuv->saved = true;
144 }
145
146 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
147 thr->vfp_state.ns_saved = false;
148 #endif /*CFG_WITH_VFP*/
149 }
150
151 #ifdef ARM32
init_regs(struct thread_ctx * thread,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5,uint32_t a6,uint32_t a7,void * pc)152 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
153 uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
154 uint32_t a6, uint32_t a7, void *pc)
155 {
156 thread->regs.pc = (uint32_t)pc;
157
158 /*
159 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
160 * Asynchronous abort and unmasked native interrupts.
161 */
162 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
163 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A |
164 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT);
165 /* Enable thumb mode if it's a thumb instruction */
166 if (thread->regs.pc & 1)
167 thread->regs.cpsr |= CPSR_T;
168 /* Reinitialize stack pointer */
169 thread->regs.svc_sp = thread->stack_va_end;
170
171 /*
172 * Copy arguments into context. This will make the
173 * arguments appear in r0-r7 when thread is started.
174 */
175 thread->regs.r0 = a0;
176 thread->regs.r1 = a1;
177 thread->regs.r2 = a2;
178 thread->regs.r3 = a3;
179 thread->regs.r4 = a4;
180 thread->regs.r5 = a5;
181 thread->regs.r6 = a6;
182 thread->regs.r7 = a7;
183 }
184 #endif /*ARM32*/
185
186 #ifdef ARM64
init_regs(struct thread_ctx * thread,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5,uint32_t a6,uint32_t a7,void * pc)187 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
188 uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
189 uint32_t a6, uint32_t a7, void *pc)
190 {
191 thread->regs.pc = (uint64_t)pc;
192
193 /*
194 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
195 * Asynchronous abort and unmasked native interrupts.
196 */
197 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
198 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT);
199 /* Reinitialize stack pointer */
200 thread->regs.sp = thread->stack_va_end;
201
202 /*
203 * Copy arguments into context. This will make the
204 * arguments appear in x0-x7 when thread is started.
205 */
206 thread->regs.x[0] = a0;
207 thread->regs.x[1] = a1;
208 thread->regs.x[2] = a2;
209 thread->regs.x[3] = a3;
210 thread->regs.x[4] = a4;
211 thread->regs.x[5] = a5;
212 thread->regs.x[6] = a6;
213 thread->regs.x[7] = a7;
214
215 /* Set up frame pointer as per the Aarch64 AAPCS */
216 thread->regs.x[29] = 0;
217 }
218 #endif /*ARM64*/
219
__thread_alloc_and_run(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5,uint32_t a6,uint32_t a7,void * pc,uint32_t flags)220 static void __thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2,
221 uint32_t a3, uint32_t a4, uint32_t a5,
222 uint32_t a6, uint32_t a7,
223 void *pc, uint32_t flags)
224 {
225 struct thread_core_local *l = thread_get_core_local();
226 bool found_thread = false;
227 size_t n = 0;
228
229 assert(l->curr_thread == THREAD_ID_INVALID);
230
231 thread_lock_global();
232
233 for (n = 0; n < CFG_NUM_THREADS; n++) {
234 if (threads[n].state == THREAD_STATE_FREE) {
235 threads[n].state = THREAD_STATE_ACTIVE;
236 found_thread = true;
237 break;
238 }
239 }
240
241 thread_unlock_global();
242
243 if (!found_thread)
244 return;
245
246 l->curr_thread = n;
247
248 threads[n].flags = flags;
249 init_regs(threads + n, a0, a1, a2, a3, a4, a5, a6, a7, pc);
250 #ifdef CFG_CORE_PAUTH
251 /*
252 * Copy the APIA key into the registers to be restored with
253 * thread_resume().
254 */
255 threads[n].regs.apiakey_hi = threads[n].keys.apia_hi;
256 threads[n].regs.apiakey_lo = threads[n].keys.apia_lo;
257 #endif
258
259 thread_lazy_save_ns_vfp();
260
261 l->flags &= ~THREAD_CLF_TMP;
262 thread_resume(&threads[n].regs);
263 /*NOTREACHED*/
264 panic();
265 }
266
thread_alloc_and_run(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5)267 void thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
268 uint32_t a4, uint32_t a5)
269 {
270 __thread_alloc_and_run(a0, a1, a2, a3, a4, a5, 0, 0,
271 thread_std_smc_entry, 0);
272 }
273
274 #ifdef CFG_SECURE_PARTITION
thread_sp_alloc_and_run(struct thread_smc_args * args __maybe_unused)275 void thread_sp_alloc_and_run(struct thread_smc_args *args __maybe_unused)
276 {
277 __thread_alloc_and_run(args->a0, args->a1, args->a2, args->a3, args->a4,
278 args->a5, args->a6, args->a7,
279 spmc_sp_thread_entry, THREAD_FLAGS_FFA_ONLY);
280 }
281 #endif
282
283 #ifdef ARM32
copy_a0_to_a3(struct thread_ctx_regs * regs,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)284 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
285 uint32_t a1, uint32_t a2, uint32_t a3)
286 {
287 /*
288 * Update returned values from RPC, values will appear in
289 * r0-r3 when thread is resumed.
290 */
291 regs->r0 = a0;
292 regs->r1 = a1;
293 regs->r2 = a2;
294 regs->r3 = a3;
295 }
296 #endif /*ARM32*/
297
298 #ifdef ARM64
copy_a0_to_a3(struct thread_ctx_regs * regs,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)299 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
300 uint32_t a1, uint32_t a2, uint32_t a3)
301 {
302 /*
303 * Update returned values from RPC, values will appear in
304 * x0-x3 when thread is resumed.
305 */
306 regs->x[0] = a0;
307 regs->x[1] = a1;
308 regs->x[2] = a2;
309 regs->x[3] = a3;
310 }
311 #endif /*ARM64*/
312
313 #ifdef ARM32
is_from_user(uint32_t cpsr)314 static bool is_from_user(uint32_t cpsr)
315 {
316 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
317 }
318 #endif
319
320 #ifdef ARM64
is_from_user(uint32_t cpsr)321 static bool is_from_user(uint32_t cpsr)
322 {
323 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
324 return true;
325 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
326 SPSR_64_MODE_EL0)
327 return true;
328 return false;
329 }
330 #endif
331
332 #ifdef CFG_SYSCALL_FTRACE
ftrace_suspend(void)333 static void __noprof ftrace_suspend(void)
334 {
335 struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
336 TEE_Result res = TEE_SUCCESS;
337
338 if (s && s->fbuf) {
339 res = vm_check_access_rights(to_user_mode_ctx(s->ctx),
340 TEE_MEMORY_ACCESS_WRITE |
341 TEE_MEMORY_ACCESS_ANY_OWNER,
342 (uaddr_t)s->fbuf,
343 sizeof(*s->fbuf));
344 if (!res)
345 s->fbuf->syscall_trace_suspended = true;
346 }
347 }
348
ftrace_resume(void)349 static void __noprof ftrace_resume(void)
350 {
351 struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
352 TEE_Result res = TEE_SUCCESS;
353
354 if (s && s->fbuf) {
355 res = vm_check_access_rights(to_user_mode_ctx(s->ctx),
356 TEE_MEMORY_ACCESS_WRITE |
357 TEE_MEMORY_ACCESS_ANY_OWNER,
358 (uaddr_t)s->fbuf,
359 sizeof(*s->fbuf));
360 if (!res)
361 s->fbuf->syscall_trace_suspended = false;
362 }
363 }
364 #else
ftrace_suspend(void)365 static void __noprof ftrace_suspend(void)
366 {
367 }
368
ftrace_resume(void)369 static void __noprof ftrace_resume(void)
370 {
371 }
372 #endif
373
is_user_mode(struct thread_ctx_regs * regs)374 static bool is_user_mode(struct thread_ctx_regs *regs)
375 {
376 return is_from_user((uint32_t)regs->cpsr);
377 }
378
thread_resume_from_rpc(uint32_t thread_id,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)379 void thread_resume_from_rpc(uint32_t thread_id, uint32_t a0, uint32_t a1,
380 uint32_t a2, uint32_t a3)
381 {
382 size_t n = thread_id;
383 struct thread_core_local *l = thread_get_core_local();
384 bool found_thread = false;
385
386 assert(l->curr_thread == THREAD_ID_INVALID);
387
388 thread_lock_global();
389
390 if (n < CFG_NUM_THREADS && threads[n].state == THREAD_STATE_SUSPENDED) {
391 threads[n].state = THREAD_STATE_ACTIVE;
392 found_thread = true;
393 }
394
395 thread_unlock_global();
396
397 if (!found_thread)
398 return;
399
400 l->curr_thread = n;
401
402 if (threads[n].have_user_map) {
403 core_mmu_set_user_map(&threads[n].user_map);
404 if (threads[n].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
405 tee_ta_ftrace_update_times_resume();
406 }
407
408 if (is_user_mode(&threads[n].regs))
409 tee_ta_update_session_utime_resume();
410
411 /*
412 * Return from RPC to request service of a foreign interrupt must not
413 * get parameters from non-secure world.
414 */
415 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
416 copy_a0_to_a3(&threads[n].regs, a0, a1, a2, a3);
417 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
418 }
419
420 thread_lazy_save_ns_vfp();
421
422 if (threads[n].have_user_map)
423 ftrace_resume();
424
425 l->flags &= ~THREAD_CLF_TMP;
426 thread_resume(&threads[n].regs);
427 /*NOTREACHED*/
428 panic();
429 }
430
431 #ifdef ARM64
spsr_from_pstate(void)432 static uint64_t spsr_from_pstate(void)
433 {
434 uint64_t spsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 0);
435
436 spsr |= read_daif();
437 if (IS_ENABLED(CFG_PAN) && feat_pan_implemented() && read_pan())
438 spsr |= SPSR_64_PAN;
439
440 return spsr;
441 }
442
__thread_rpc(uint32_t rv[THREAD_RPC_NUM_ARGS])443 void __thread_rpc(uint32_t rv[THREAD_RPC_NUM_ARGS])
444 {
445 thread_rpc_spsr(rv, spsr_from_pstate());
446 }
447
thread_get_saved_thread_sp(void)448 vaddr_t thread_get_saved_thread_sp(void)
449 {
450 struct thread_core_local *l = thread_get_core_local();
451 int ct = l->curr_thread;
452
453 assert(ct != THREAD_ID_INVALID);
454 return threads[ct].kern_sp;
455 }
456 #endif /*ARM64*/
457
458 #ifdef ARM32
thread_is_in_normal_mode(void)459 bool __noprof thread_is_in_normal_mode(void)
460 {
461 return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC;
462 }
463 #endif
464
thread_state_free(void)465 void thread_state_free(void)
466 {
467 struct thread_core_local *l = thread_get_core_local();
468 int ct = l->curr_thread;
469
470 assert(ct != THREAD_ID_INVALID);
471
472 thread_lazy_restore_ns_vfp();
473 tee_pager_release_phys(
474 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE),
475 STACK_THREAD_SIZE);
476
477 thread_lock_global();
478
479 assert(threads[ct].state == THREAD_STATE_ACTIVE);
480 threads[ct].state = THREAD_STATE_FREE;
481 threads[ct].flags = 0;
482 l->curr_thread = THREAD_ID_INVALID;
483
484 if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
485 virt_unset_guest();
486 thread_unlock_global();
487 }
488
489 #ifdef CFG_WITH_PAGER
release_unused_kernel_stack(struct thread_ctx * thr,uint32_t cpsr __maybe_unused)490 static void release_unused_kernel_stack(struct thread_ctx *thr,
491 uint32_t cpsr __maybe_unused)
492 {
493 #ifdef ARM64
494 /*
495 * If we're from user mode then thr->regs.sp is the saved user
496 * stack pointer and thr->kern_sp holds the last kernel stack
497 * pointer. But if we're from kernel mode then thr->kern_sp isn't
498 * up to date so we need to read from thr->regs.sp instead.
499 */
500 vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp;
501 #else
502 vaddr_t sp = thr->regs.svc_sp;
503 #endif
504 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE;
505 size_t len = sp - base;
506
507 tee_pager_release_phys((void *)base, len);
508 }
509 #else
release_unused_kernel_stack(struct thread_ctx * thr __unused,uint32_t cpsr __unused)510 static void release_unused_kernel_stack(struct thread_ctx *thr __unused,
511 uint32_t cpsr __unused)
512 {
513 }
514 #endif
515
thread_state_suspend(uint32_t flags,uint32_t cpsr,vaddr_t pc)516 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
517 {
518 struct thread_core_local *l = thread_get_core_local();
519 int ct = l->curr_thread;
520
521 assert(ct != THREAD_ID_INVALID);
522
523 if (core_mmu_user_mapping_is_active())
524 ftrace_suspend();
525
526 thread_check_canaries();
527
528 release_unused_kernel_stack(threads + ct, cpsr);
529
530 if (is_from_user(cpsr)) {
531 thread_user_save_vfp();
532 tee_ta_update_session_utime_suspend();
533 tee_ta_gprof_sample_pc(pc);
534 }
535 thread_lazy_restore_ns_vfp();
536
537 thread_lock_global();
538
539 assert(threads[ct].state == THREAD_STATE_ACTIVE);
540 threads[ct].flags |= flags;
541 threads[ct].regs.cpsr = cpsr;
542 threads[ct].regs.pc = pc;
543 threads[ct].state = THREAD_STATE_SUSPENDED;
544
545 threads[ct].have_user_map = core_mmu_user_mapping_is_active();
546 if (threads[ct].have_user_map) {
547 if (threads[ct].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
548 tee_ta_ftrace_update_times_suspend();
549 core_mmu_get_user_map(&threads[ct].user_map);
550 core_mmu_set_user_map(NULL);
551 }
552
553 if (IS_ENABLED(CFG_SECURE_PARTITION)) {
554 struct ts_session *ts_sess =
555 TAILQ_FIRST(&threads[ct].tsd.sess_stack);
556
557 spmc_sp_set_to_preempted(ts_sess);
558 }
559
560 l->curr_thread = THREAD_ID_INVALID;
561
562 if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
563 virt_unset_guest();
564
565 thread_unlock_global();
566
567 return ct;
568 }
569
570 static void __maybe_unused
set_core_local_kcode_offset(struct thread_core_local * cls,long offset)571 set_core_local_kcode_offset(struct thread_core_local *cls, long offset)
572 {
573 size_t n = 0;
574
575 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++)
576 cls[n].kcode_offset = offset;
577 }
578
init_user_kcode(void)579 static void init_user_kcode(void)
580 {
581 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
582 vaddr_t v = (vaddr_t)thread_excp_vect;
583 vaddr_t ve = (vaddr_t)thread_excp_vect_end;
584
585 thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE);
586 ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE);
587 thread_user_kcode_size = ve - thread_user_kcode_va;
588
589 core_mmu_get_user_va_range(&v, NULL);
590 thread_user_kcode_offset = thread_user_kcode_va - v;
591
592 set_core_local_kcode_offset(thread_core_local,
593 thread_user_kcode_offset);
594 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
595 set_core_local_kcode_offset((void *)thread_user_kdata_page,
596 thread_user_kcode_offset);
597 /*
598 * When transitioning to EL0 subtract SP with this much to point to
599 * this special kdata page instead. SP is restored by add this much
600 * while transitioning back to EL1.
601 */
602 v += thread_user_kcode_size;
603 thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v;
604 #endif
605 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/
606 }
607
thread_init_primary(void)608 void thread_init_primary(void)
609 {
610 init_user_kcode();
611 }
612
get_midr_implementer(uint32_t midr)613 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr)
614 {
615 return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK;
616 }
617
get_midr_primary_part(uint32_t midr)618 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr)
619 {
620 return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) &
621 MIDR_PRIMARY_PART_NUM_MASK;
622 }
623
get_midr_variant(uint32_t midr)624 static uint32_t __maybe_unused get_midr_variant(uint32_t midr)
625 {
626 return (midr >> MIDR_VARIANT_SHIFT) & MIDR_VARIANT_MASK;
627 }
628
get_midr_revision(uint32_t midr)629 static uint32_t __maybe_unused get_midr_revision(uint32_t midr)
630 {
631 return (midr >> MIDR_REVISION_SHIFT) & MIDR_REVISION_MASK;
632 }
633
634 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
635 #ifdef ARM64
probe_workaround_available(uint32_t wa_id)636 static bool probe_workaround_available(uint32_t wa_id)
637 {
638 int32_t r;
639
640 r = thread_smc(SMCCC_VERSION, 0, 0, 0);
641 if (r < 0)
642 return false;
643 if (r < 0x10001) /* compare with version 1.1 */
644 return false;
645
646 /* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */
647 r = thread_smc(SMCCC_ARCH_FEATURES, wa_id, 0, 0);
648 return r >= 0;
649 }
650
select_vector_wa_spectre_v2(void)651 static vaddr_t __maybe_unused select_vector_wa_spectre_v2(void)
652 {
653 if (probe_workaround_available(SMCCC_ARCH_WORKAROUND_1)) {
654 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available",
655 SMCCC_ARCH_WORKAROUND_1);
656 DMSG("SMC Workaround for CVE-2017-5715 used");
657 return (vaddr_t)thread_excp_vect_wa_spectre_v2;
658 }
659
660 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable",
661 SMCCC_ARCH_WORKAROUND_1);
662 DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)");
663 return (vaddr_t)thread_excp_vect;
664 }
665 #else
select_vector_wa_spectre_v2(void)666 static vaddr_t __maybe_unused select_vector_wa_spectre_v2(void)
667 {
668 return (vaddr_t)thread_excp_vect_wa_spectre_v2;
669 }
670 #endif
671 #endif
672
673 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
select_vector_wa_spectre_bhb(uint8_t loop_count __maybe_unused)674 static vaddr_t select_vector_wa_spectre_bhb(uint8_t loop_count __maybe_unused)
675 {
676 /*
677 * Spectre-BHB has only been analyzed for AArch64 so far. For
678 * AArch32 fall back to the Spectre-V2 workaround which is likely
679 * to work even if perhaps a bit more expensive than a more
680 * optimized workaround.
681 */
682 #ifdef ARM64
683 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
684 struct thread_core_local *cl = (void *)thread_user_kdata_page;
685
686 cl[get_core_pos()].bhb_loop_count = loop_count;
687 #endif
688 thread_get_core_local()->bhb_loop_count = loop_count;
689
690 DMSG("Spectre-BHB CVE-2022-23960 workaround enabled with \"K\" = %u",
691 loop_count);
692
693 return (vaddr_t)thread_excp_vect_wa_spectre_bhb;
694 #else
695 return select_vector_wa_spectre_v2();
696 #endif
697 }
698 #endif
699
get_excp_vect(void)700 static vaddr_t get_excp_vect(void)
701 {
702 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
703 uint32_t midr = read_midr();
704 uint8_t vers = 0;
705
706 if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM)
707 return (vaddr_t)thread_excp_vect;
708 /*
709 * Variant rx, Revision py, for instance
710 * Variant 2 Revision 0 = r2p0 = 0x20
711 */
712 vers = (get_midr_variant(midr) << 4) | get_midr_revision(midr);
713
714 /*
715 * Spectre-V2 (CVE-2017-5715) software workarounds covers what's
716 * needed for Spectre-BHB (CVE-2022-23960) too. The workaround for
717 * Spectre-V2 is more expensive than the one for Spectre-BHB so if
718 * possible select the workaround for Spectre-BHB.
719 */
720 switch (get_midr_primary_part(midr)) {
721 #ifdef ARM32
722 /* Spectre-V2 */
723 case CORTEX_A8_PART_NUM:
724 case CORTEX_A9_PART_NUM:
725 case CORTEX_A17_PART_NUM:
726 #endif
727 /* Spectre-V2 */
728 case CORTEX_A57_PART_NUM:
729 case CORTEX_A73_PART_NUM:
730 case CORTEX_A75_PART_NUM:
731 return select_vector_wa_spectre_v2();
732 #ifdef ARM32
733 /* Spectre-V2 */
734 case CORTEX_A15_PART_NUM:
735 return (vaddr_t)thread_excp_vect_wa_a15_spectre_v2;
736 #endif
737 /*
738 * Spectre-V2 for vers < r1p0
739 * Spectre-BHB for vers >= r1p0
740 */
741 case CORTEX_A72_PART_NUM:
742 if (vers < 0x10)
743 return select_vector_wa_spectre_v2();
744 return select_vector_wa_spectre_bhb(8);
745
746 /*
747 * Doing the more safe but expensive Spectre-V2 workaround for CPUs
748 * still being researched on the best mitigation sequence.
749 */
750 case CORTEX_A65_PART_NUM:
751 case CORTEX_A65AE_PART_NUM:
752 case NEOVERSE_E1_PART_NUM:
753 return select_vector_wa_spectre_v2();
754
755 /* Spectre-BHB */
756 case CORTEX_A76_PART_NUM:
757 case CORTEX_A76AE_PART_NUM:
758 case CORTEX_A77_PART_NUM:
759 return select_vector_wa_spectre_bhb(24);
760 case CORTEX_A78_PART_NUM:
761 case CORTEX_A78AE_PART_NUM:
762 case CORTEX_A78C_PART_NUM:
763 case CORTEX_A710_PART_NUM:
764 case CORTEX_X1_PART_NUM:
765 case CORTEX_X2_PART_NUM:
766 return select_vector_wa_spectre_bhb(32);
767 case NEOVERSE_N1_PART_NUM:
768 return select_vector_wa_spectre_bhb(24);
769 case NEOVERSE_N2_PART_NUM:
770 case NEOVERSE_V1_PART_NUM:
771 return select_vector_wa_spectre_bhb(32);
772
773 default:
774 return (vaddr_t)thread_excp_vect;
775 }
776 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/
777
778 return (vaddr_t)thread_excp_vect;
779 }
780
thread_init_per_cpu(void)781 void thread_init_per_cpu(void)
782 {
783 thread_init_vbar(get_excp_vect());
784
785 #ifdef CFG_FTRACE_SUPPORT
786 /*
787 * Enable accesses to frequency register and physical counter
788 * register in EL0/PL0 required for timestamping during
789 * function tracing.
790 */
791 write_cntkctl(read_cntkctl() | CNTKCTL_PL0PCTEN);
792 #endif
793 }
794
795 #ifdef CFG_WITH_VFP
thread_kernel_enable_vfp(void)796 uint32_t thread_kernel_enable_vfp(void)
797 {
798 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
799 struct thread_ctx *thr = threads + thread_get_id();
800 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
801
802 assert(!vfp_is_enabled());
803
804 if (!thr->vfp_state.ns_saved) {
805 vfp_lazy_save_state_final(&thr->vfp_state.ns,
806 true /*force_save*/);
807 thr->vfp_state.ns_saved = true;
808 } else if (thr->vfp_state.sec_lazy_saved &&
809 !thr->vfp_state.sec_saved) {
810 /*
811 * This happens when we're handling an abort while the
812 * thread was using the VFP state.
813 */
814 vfp_lazy_save_state_final(&thr->vfp_state.sec,
815 false /*!force_save*/);
816 thr->vfp_state.sec_saved = true;
817 } else if (tuv && tuv->lazy_saved && !tuv->saved) {
818 /*
819 * This can happen either during syscall or abort
820 * processing (while processing a syscall).
821 */
822 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
823 tuv->saved = true;
824 }
825
826 vfp_enable();
827 return exceptions;
828 }
829
thread_kernel_disable_vfp(uint32_t state)830 void thread_kernel_disable_vfp(uint32_t state)
831 {
832 uint32_t exceptions;
833
834 assert(vfp_is_enabled());
835
836 vfp_disable();
837 exceptions = thread_get_exceptions();
838 assert(exceptions & THREAD_EXCP_FOREIGN_INTR);
839 exceptions &= ~THREAD_EXCP_FOREIGN_INTR;
840 exceptions |= state & THREAD_EXCP_FOREIGN_INTR;
841 thread_set_exceptions(exceptions);
842 }
843
thread_kernel_save_vfp(void)844 void thread_kernel_save_vfp(void)
845 {
846 struct thread_ctx *thr = threads + thread_get_id();
847
848 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
849 if (vfp_is_enabled()) {
850 vfp_lazy_save_state_init(&thr->vfp_state.sec);
851 thr->vfp_state.sec_lazy_saved = true;
852 }
853 }
854
thread_kernel_restore_vfp(void)855 void thread_kernel_restore_vfp(void)
856 {
857 struct thread_ctx *thr = threads + thread_get_id();
858
859 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
860 assert(!vfp_is_enabled());
861 if (thr->vfp_state.sec_lazy_saved) {
862 vfp_lazy_restore_state(&thr->vfp_state.sec,
863 thr->vfp_state.sec_saved);
864 thr->vfp_state.sec_saved = false;
865 thr->vfp_state.sec_lazy_saved = false;
866 }
867 }
868
thread_user_enable_vfp(struct thread_user_vfp_state * uvfp)869 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
870 {
871 struct thread_ctx *thr = threads + thread_get_id();
872 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
873
874 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
875 assert(!vfp_is_enabled());
876
877 if (!thr->vfp_state.ns_saved) {
878 vfp_lazy_save_state_final(&thr->vfp_state.ns,
879 true /*force_save*/);
880 thr->vfp_state.ns_saved = true;
881 } else if (tuv && uvfp != tuv) {
882 if (tuv->lazy_saved && !tuv->saved) {
883 vfp_lazy_save_state_final(&tuv->vfp,
884 false /*!force_save*/);
885 tuv->saved = true;
886 }
887 }
888
889 if (uvfp->lazy_saved)
890 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
891 uvfp->lazy_saved = false;
892 uvfp->saved = false;
893
894 thr->vfp_state.uvfp = uvfp;
895 vfp_enable();
896 }
897
thread_user_save_vfp(void)898 void thread_user_save_vfp(void)
899 {
900 struct thread_ctx *thr = threads + thread_get_id();
901 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
902
903 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
904 if (!vfp_is_enabled())
905 return;
906
907 assert(tuv && !tuv->lazy_saved && !tuv->saved);
908 vfp_lazy_save_state_init(&tuv->vfp);
909 tuv->lazy_saved = true;
910 }
911
thread_user_clear_vfp(struct user_mode_ctx * uctx)912 void thread_user_clear_vfp(struct user_mode_ctx *uctx)
913 {
914 struct thread_user_vfp_state *uvfp = &uctx->vfp;
915 struct thread_ctx *thr = threads + thread_get_id();
916
917 if (uvfp == thr->vfp_state.uvfp)
918 thr->vfp_state.uvfp = NULL;
919 uvfp->lazy_saved = false;
920 uvfp->saved = false;
921 }
922 #endif /*CFG_WITH_VFP*/
923
924 #ifdef ARM32
get_spsr(bool is_32bit,unsigned long entry_func,uint32_t * spsr)925 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
926 {
927 uint32_t s;
928
929 if (!is_32bit)
930 return false;
931
932 s = read_cpsr();
933 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
934 s |= CPSR_MODE_USR;
935 if (entry_func & 1)
936 s |= CPSR_T;
937 *spsr = s;
938 return true;
939 }
940 #endif
941
942 #ifdef ARM64
get_spsr(bool is_32bit,unsigned long entry_func,uint32_t * spsr)943 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
944 {
945 uint32_t s;
946
947 if (is_32bit) {
948 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
949 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
950 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
951 } else {
952 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
953 }
954
955 *spsr = s;
956 return true;
957 }
958 #endif
959
set_ctx_regs(struct thread_ctx_regs * regs,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long user_sp,unsigned long entry_func,uint32_t spsr,struct thread_pauth_keys * keys __maybe_unused)960 static void set_ctx_regs(struct thread_ctx_regs *regs, unsigned long a0,
961 unsigned long a1, unsigned long a2, unsigned long a3,
962 unsigned long user_sp, unsigned long entry_func,
963 uint32_t spsr,
964 struct thread_pauth_keys *keys __maybe_unused)
965 {
966 /*
967 * First clear all registers to avoid leaking information from
968 * other TAs or even the Core itself.
969 */
970 *regs = (struct thread_ctx_regs){ };
971 #ifdef ARM32
972 regs->r0 = a0;
973 regs->r1 = a1;
974 regs->r2 = a2;
975 regs->r3 = a3;
976 regs->usr_sp = user_sp;
977 regs->pc = entry_func;
978 regs->cpsr = spsr;
979 #endif
980 #ifdef ARM64
981 regs->x[0] = a0;
982 regs->x[1] = a1;
983 regs->x[2] = a2;
984 regs->x[3] = a3;
985 regs->pc = entry_func;
986 regs->cpsr = spsr;
987 regs->x[13] = user_sp; /* Used when running TA in Aarch32 */
988 regs->sp = user_sp; /* Used when running TA in Aarch64 */
989 #ifdef CFG_TA_PAUTH
990 assert(keys);
991 regs->apiakey_hi = keys->apia_hi;
992 regs->apiakey_lo = keys->apia_lo;
993 #endif
994 /* Set frame pointer (user stack can't be unwound past this point) */
995 regs->x[29] = 0;
996 #endif
997 }
998
thread_get_pauth_keys(void)999 static struct thread_pauth_keys *thread_get_pauth_keys(void)
1000 {
1001 #if defined(CFG_TA_PAUTH)
1002 struct ts_session *s = ts_get_current_session();
1003
1004 if (is_user_ta_ctx(s->ctx)) {
1005 struct user_ta_ctx *utc = to_user_ta_ctx(s->ctx);
1006
1007 return &utc->uctx.keys;
1008 } else if (is_sp_ctx(s->ctx)) {
1009 struct sp_ctx *spc = to_sp_ctx(s->ctx);
1010
1011 return &spc->uctx.keys;
1012 }
1013
1014 panic("[abort] Only user TAs and SPs support PAUTH keys");
1015 #else
1016 return NULL;
1017 #endif
1018 }
1019
thread_enter_user_mode(unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long user_sp,unsigned long entry_func,bool is_32bit,uint32_t * exit_status0,uint32_t * exit_status1)1020 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
1021 unsigned long a2, unsigned long a3, unsigned long user_sp,
1022 unsigned long entry_func, bool is_32bit,
1023 uint32_t *exit_status0, uint32_t *exit_status1)
1024 {
1025 uint32_t spsr = 0;
1026 uint32_t exceptions = 0;
1027 uint32_t rc = 0;
1028 struct thread_ctx_regs *regs = NULL;
1029 struct thread_pauth_keys *keys = NULL;
1030
1031 tee_ta_update_session_utime_resume();
1032
1033 keys = thread_get_pauth_keys();
1034
1035 /* Derive SPSR from current CPSR/PSTATE readout. */
1036 if (!get_spsr(is_32bit, entry_func, &spsr)) {
1037 *exit_status0 = 1; /* panic */
1038 *exit_status1 = 0xbadbadba;
1039 return 0;
1040 }
1041
1042 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1043 /*
1044 * We're using the per thread location of saved context registers
1045 * for temporary storage. Now that exceptions are masked they will
1046 * not be used for any thing else until they are eventually
1047 * unmasked when user mode has been entered.
1048 */
1049 regs = thread_get_ctx_regs();
1050 set_ctx_regs(regs, a0, a1, a2, a3, user_sp, entry_func, spsr, keys);
1051 rc = __thread_enter_user_mode(regs, exit_status0, exit_status1);
1052 thread_unmask_exceptions(exceptions);
1053 return rc;
1054 }
1055
1056 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
thread_get_user_kcode(struct mobj ** mobj,size_t * offset,vaddr_t * va,size_t * sz)1057 void thread_get_user_kcode(struct mobj **mobj, size_t *offset,
1058 vaddr_t *va, size_t *sz)
1059 {
1060 core_mmu_get_user_va_range(va, NULL);
1061 *mobj = mobj_tee_ram_rx;
1062 *sz = thread_user_kcode_size;
1063 *offset = thread_user_kcode_va - (vaddr_t)mobj_get_va(*mobj, 0, *sz);
1064 }
1065 #endif
1066
1067 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
1068 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
thread_get_user_kdata(struct mobj ** mobj,size_t * offset,vaddr_t * va,size_t * sz)1069 void thread_get_user_kdata(struct mobj **mobj, size_t *offset,
1070 vaddr_t *va, size_t *sz)
1071 {
1072 vaddr_t v;
1073
1074 core_mmu_get_user_va_range(&v, NULL);
1075 *va = v + thread_user_kcode_size;
1076 *mobj = mobj_tee_ram_rw;
1077 *sz = sizeof(thread_user_kdata_page);
1078 *offset = (vaddr_t)thread_user_kdata_page -
1079 (vaddr_t)mobj_get_va(*mobj, 0, *sz);
1080 }
1081 #endif
1082
setup_unwind_user_mode(struct thread_scall_regs * regs)1083 static void setup_unwind_user_mode(struct thread_scall_regs *regs)
1084 {
1085 #ifdef ARM32
1086 regs->lr = (uintptr_t)thread_unwind_user_mode;
1087 regs->spsr = read_cpsr();
1088 #endif
1089 #ifdef ARM64
1090 regs->elr = (uintptr_t)thread_unwind_user_mode;
1091 regs->spsr = spsr_from_pstate();
1092 /*
1093 * Regs is the value of stack pointer before calling the SVC
1094 * handler. By the addition matches for the reserved space at the
1095 * beginning of el0_sync_svc(). This prepares the stack when
1096 * returning to thread_unwind_user_mode instead of a normal
1097 * exception return.
1098 */
1099 regs->sp_el0 = (uint64_t)(regs + 1);
1100 #endif
1101 }
1102
gprof_set_status(struct ts_session * s __maybe_unused,enum ts_gprof_status status __maybe_unused)1103 static void gprof_set_status(struct ts_session *s __maybe_unused,
1104 enum ts_gprof_status status __maybe_unused)
1105 {
1106 #ifdef CFG_TA_GPROF_SUPPORT
1107 if (s->ctx->ops->gprof_set_status)
1108 s->ctx->ops->gprof_set_status(status);
1109 #endif
1110 }
1111
1112 /*
1113 * Note: this function is weak just to make it possible to exclude it from
1114 * the unpaged area.
1115 */
thread_scall_handler(struct thread_scall_regs * regs)1116 void __weak thread_scall_handler(struct thread_scall_regs *regs)
1117 {
1118 struct ts_session *sess = NULL;
1119 uint32_t state = 0;
1120
1121 /* Enable native interrupts */
1122 state = thread_get_exceptions();
1123 thread_unmask_exceptions(state & ~THREAD_EXCP_NATIVE_INTR);
1124
1125 thread_user_save_vfp();
1126
1127 sess = ts_get_current_session();
1128 /*
1129 * User mode service has just entered kernel mode, suspend gprof
1130 * collection until we're about to switch back again.
1131 */
1132 gprof_set_status(sess, TS_GPROF_SUSPEND);
1133
1134 /* Restore foreign interrupts which are disabled on exception entry */
1135 thread_restore_foreign_intr();
1136
1137 assert(sess && sess->handle_scall);
1138 if (sess->handle_scall(regs)) {
1139 /* We're about to switch back to user mode */
1140 gprof_set_status(sess, TS_GPROF_RESUME);
1141 } else {
1142 /* We're returning from __thread_enter_user_mode() */
1143 setup_unwind_user_mode(regs);
1144 }
1145 }
1146
1147 #ifdef CFG_WITH_ARM_TRUSTED_FW
1148 /*
1149 * These five functions are __weak to allow platforms to override them if
1150 * needed.
1151 */
thread_cpu_off_handler(unsigned long a0 __unused,unsigned long a1 __unused)1152 unsigned long __weak thread_cpu_off_handler(unsigned long a0 __unused,
1153 unsigned long a1 __unused)
1154 {
1155 return 0;
1156 }
1157 DECLARE_KEEP_PAGER(thread_cpu_off_handler);
1158
thread_cpu_suspend_handler(unsigned long a0 __unused,unsigned long a1 __unused)1159 unsigned long __weak thread_cpu_suspend_handler(unsigned long a0 __unused,
1160 unsigned long a1 __unused)
1161 {
1162 return 0;
1163 }
1164 DECLARE_KEEP_PAGER(thread_cpu_suspend_handler);
1165
thread_cpu_resume_handler(unsigned long a0 __unused,unsigned long a1 __unused)1166 unsigned long __weak thread_cpu_resume_handler(unsigned long a0 __unused,
1167 unsigned long a1 __unused)
1168 {
1169 return 0;
1170 }
1171 DECLARE_KEEP_PAGER(thread_cpu_resume_handler);
1172
thread_system_off_handler(unsigned long a0 __unused,unsigned long a1 __unused)1173 unsigned long __weak thread_system_off_handler(unsigned long a0 __unused,
1174 unsigned long a1 __unused)
1175 {
1176 return 0;
1177 }
1178 DECLARE_KEEP_PAGER(thread_system_off_handler);
1179
thread_system_reset_handler(unsigned long a0 __unused,unsigned long a1 __unused)1180 unsigned long __weak thread_system_reset_handler(unsigned long a0 __unused,
1181 unsigned long a1 __unused)
1182 {
1183 return 0;
1184 }
1185 DECLARE_KEEP_PAGER(thread_system_reset_handler);
1186 #endif /*CFG_WITH_ARM_TRUSTED_FW*/
1187
1188 #ifdef CFG_CORE_WORKAROUND_ARM_NMFI
interrupt_main_handler(void)1189 void __noreturn interrupt_main_handler(void)
1190 {
1191 /*
1192 * Note: overrides the default implementation of this function so that
1193 * if there would be another handler defined there would be duplicate
1194 * symbol error during linking.
1195 */
1196 panic("Secure interrupt received but it is not supported");
1197 }
1198 #endif
1199