xref: /OK3568_Linux_fs/kernel/fs/fuse/file.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 #include <linux/fs.h>
22 
fuse_pages_alloc(unsigned int npages,gfp_t flags,struct fuse_page_desc ** desc)23 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
24 				      struct fuse_page_desc **desc)
25 {
26 	struct page **pages;
27 
28 	pages = kzalloc(npages * (sizeof(struct page *) +
29 				  sizeof(struct fuse_page_desc)), flags);
30 	*desc = (void *) (pages + npages);
31 
32 	return pages;
33 }
34 
fuse_send_open(struct fuse_mount * fm,u64 nodeid,struct file * file,int opcode,struct fuse_open_out * outargp)35 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
36 			  int opcode, struct fuse_open_out *outargp)
37 {
38 	struct fuse_open_in inarg;
39 	FUSE_ARGS(args);
40 
41 	memset(&inarg, 0, sizeof(inarg));
42 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
43 	if (!fm->fc->atomic_o_trunc)
44 		inarg.flags &= ~O_TRUNC;
45 	args.opcode = opcode;
46 	args.nodeid = nodeid;
47 	args.in_numargs = 1;
48 	args.in_args[0].size = sizeof(inarg);
49 	args.in_args[0].value = &inarg;
50 	args.out_numargs = 1;
51 	args.out_args[0].size = sizeof(*outargp);
52 	args.out_args[0].value = outargp;
53 
54 	return fuse_simple_request(fm, &args);
55 }
56 
57 struct fuse_release_args {
58 	struct fuse_args args;
59 	struct fuse_release_in inarg;
60 	struct inode *inode;
61 };
62 
fuse_file_alloc(struct fuse_mount * fm)63 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm)
64 {
65 	struct fuse_file *ff;
66 
67 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
68 	if (unlikely(!ff))
69 		return NULL;
70 
71 	ff->fm = fm;
72 	ff->release_args = kzalloc(sizeof(*ff->release_args),
73 				   GFP_KERNEL_ACCOUNT);
74 	if (!ff->release_args) {
75 		kfree(ff);
76 		return NULL;
77 	}
78 
79 	INIT_LIST_HEAD(&ff->write_entry);
80 	mutex_init(&ff->readdir.lock);
81 	refcount_set(&ff->count, 1);
82 	RB_CLEAR_NODE(&ff->polled_node);
83 	init_waitqueue_head(&ff->poll_wait);
84 
85 	ff->kh = atomic64_inc_return(&fm->fc->khctr);
86 
87 	return ff;
88 }
89 
fuse_file_free(struct fuse_file * ff)90 void fuse_file_free(struct fuse_file *ff)
91 {
92 	kfree(ff->release_args);
93 	mutex_destroy(&ff->readdir.lock);
94 	kfree(ff);
95 }
96 
fuse_file_get(struct fuse_file * ff)97 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98 {
99 	refcount_inc(&ff->count);
100 	return ff;
101 }
102 
fuse_release_end(struct fuse_mount * fm,struct fuse_args * args,int error)103 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
104 			     int error)
105 {
106 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
107 
108 	iput(ra->inode);
109 	kfree(ra);
110 }
111 
fuse_file_put(struct fuse_file * ff,bool sync,bool isdir)112 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113 {
114 	if (refcount_dec_and_test(&ff->count)) {
115 		struct fuse_args *args = &ff->release_args->args;
116 
117 		if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) {
118 			/* Do nothing when client does not implement 'open' */
119 			fuse_release_end(ff->fm, args, 0);
120 		} else if (sync) {
121 			fuse_simple_request(ff->fm, args);
122 			fuse_release_end(ff->fm, args, 0);
123 		} else {
124 			args->end = fuse_release_end;
125 			if (fuse_simple_background(ff->fm, args,
126 						   GFP_KERNEL | __GFP_NOFAIL))
127 				fuse_release_end(ff->fm, args, -ENOTCONN);
128 		}
129 		kfree(ff);
130 	}
131 }
132 
fuse_do_open(struct fuse_mount * fm,u64 nodeid,struct file * file,bool isdir)133 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
134 		 bool isdir)
135 {
136 	struct fuse_conn *fc = fm->fc;
137 	struct fuse_file *ff;
138 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
139 
140 	ff = fuse_file_alloc(fm);
141 	if (!ff)
142 		return -ENOMEM;
143 
144 	ff->fh = 0;
145 	/* Default for no-open */
146 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
147 	if (isdir ? !fc->no_opendir : !fc->no_open) {
148 		struct fuse_open_out outarg;
149 		int err;
150 
151 		err = fuse_send_open(fm, nodeid, file, opcode, &outarg);
152 		if (!err) {
153 			ff->fh = outarg.fh;
154 			ff->open_flags = outarg.open_flags;
155 			fuse_passthrough_setup(fc, ff, &outarg);
156 		} else if (err != -ENOSYS) {
157 			fuse_file_free(ff);
158 			return err;
159 		} else {
160 			if (isdir)
161 				fc->no_opendir = 1;
162 			else
163 				fc->no_open = 1;
164 		}
165 	}
166 
167 	if (isdir)
168 		ff->open_flags &= ~FOPEN_DIRECT_IO;
169 
170 	ff->nodeid = nodeid;
171 	file->private_data = ff;
172 
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(fuse_do_open);
176 
fuse_link_write_file(struct file * file)177 static void fuse_link_write_file(struct file *file)
178 {
179 	struct inode *inode = file_inode(file);
180 	struct fuse_inode *fi = get_fuse_inode(inode);
181 	struct fuse_file *ff = file->private_data;
182 	/*
183 	 * file may be written through mmap, so chain it onto the
184 	 * inodes's write_file list
185 	 */
186 	spin_lock(&fi->lock);
187 	if (list_empty(&ff->write_entry))
188 		list_add(&ff->write_entry, &fi->write_files);
189 	spin_unlock(&fi->lock);
190 }
191 
fuse_finish_open(struct inode * inode,struct file * file)192 void fuse_finish_open(struct inode *inode, struct file *file)
193 {
194 	struct fuse_file *ff = file->private_data;
195 	struct fuse_conn *fc = get_fuse_conn(inode);
196 
197 	if (ff->open_flags & FOPEN_STREAM)
198 		stream_open(inode, file);
199 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 		nonseekable_open(inode, file);
201 
202 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
203 		struct fuse_inode *fi = get_fuse_inode(inode);
204 
205 		spin_lock(&fi->lock);
206 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
207 		i_size_write(inode, 0);
208 		spin_unlock(&fi->lock);
209 		truncate_pagecache(inode, 0);
210 		fuse_invalidate_attr(inode);
211 		if (fc->writeback_cache)
212 			file_update_time(file);
213 	} else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) {
214 		invalidate_inode_pages2(inode->i_mapping);
215 	}
216 
217 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
218 		fuse_link_write_file(file);
219 }
220 
fuse_open_common(struct inode * inode,struct file * file,bool isdir)221 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
222 {
223 	struct fuse_mount *fm = get_fuse_mount(inode);
224 	struct fuse_conn *fc = fm->fc;
225 	int err;
226 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
227 			  fc->atomic_o_trunc &&
228 			  fc->writeback_cache;
229 	bool dax_truncate = (file->f_flags & O_TRUNC) &&
230 			  fc->atomic_o_trunc && FUSE_IS_DAX(inode);
231 
232 	if (fuse_is_bad(inode))
233 		return -EIO;
234 
235 	err = generic_file_open(inode, file);
236 	if (err)
237 		return err;
238 
239 	if (is_wb_truncate || dax_truncate) {
240 		inode_lock(inode);
241 		fuse_set_nowrite(inode);
242 	}
243 
244 	if (dax_truncate) {
245 		down_write(&get_fuse_inode(inode)->i_mmap_sem);
246 		err = fuse_dax_break_layouts(inode, 0, 0);
247 		if (err)
248 			goto out;
249 	}
250 
251 	err = fuse_do_open(fm, get_node_id(inode), file, isdir);
252 	if (!err)
253 		fuse_finish_open(inode, file);
254 
255 out:
256 	if (dax_truncate)
257 		up_write(&get_fuse_inode(inode)->i_mmap_sem);
258 
259 	if (is_wb_truncate | dax_truncate) {
260 		fuse_release_nowrite(inode);
261 		inode_unlock(inode);
262 	}
263 
264 	return err;
265 }
266 
fuse_prepare_release(struct fuse_inode * fi,struct fuse_file * ff,int flags,int opcode)267 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
268 				 int flags, int opcode)
269 {
270 	struct fuse_conn *fc = ff->fm->fc;
271 	struct fuse_release_args *ra = ff->release_args;
272 
273 	/* Inode is NULL on error path of fuse_create_open() */
274 	if (likely(fi)) {
275 		spin_lock(&fi->lock);
276 		list_del(&ff->write_entry);
277 		spin_unlock(&fi->lock);
278 	}
279 	spin_lock(&fc->lock);
280 	if (!RB_EMPTY_NODE(&ff->polled_node))
281 		rb_erase(&ff->polled_node, &fc->polled_files);
282 	spin_unlock(&fc->lock);
283 
284 	wake_up_interruptible_all(&ff->poll_wait);
285 
286 	ra->inarg.fh = ff->fh;
287 	ra->inarg.flags = flags;
288 	ra->args.in_numargs = 1;
289 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
290 	ra->args.in_args[0].value = &ra->inarg;
291 	ra->args.opcode = opcode;
292 	ra->args.nodeid = ff->nodeid;
293 	ra->args.force = true;
294 	ra->args.nocreds = true;
295 }
296 
fuse_release_common(struct file * file,bool isdir)297 void fuse_release_common(struct file *file, bool isdir)
298 {
299 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
300 	struct fuse_file *ff = file->private_data;
301 	struct fuse_release_args *ra = ff->release_args;
302 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
303 
304 	fuse_passthrough_release(&ff->passthrough);
305 
306 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
307 
308 	if (ff->flock) {
309 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
310 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc,
311 							  (fl_owner_t) file);
312 	}
313 	/* Hold inode until release is finished */
314 	ra->inode = igrab(file_inode(file));
315 
316 	/*
317 	 * Normally this will send the RELEASE request, however if
318 	 * some asynchronous READ or WRITE requests are outstanding,
319 	 * the sending will be delayed.
320 	 *
321 	 * Make the release synchronous if this is a fuseblk mount,
322 	 * synchronous RELEASE is allowed (and desirable) in this case
323 	 * because the server can be trusted not to screw up.
324 	 */
325 	fuse_file_put(ff, ff->fm->fc->destroy, isdir);
326 }
327 
fuse_open(struct inode * inode,struct file * file)328 static int fuse_open(struct inode *inode, struct file *file)
329 {
330 	return fuse_open_common(inode, file, false);
331 }
332 
fuse_release(struct inode * inode,struct file * file)333 static int fuse_release(struct inode *inode, struct file *file)
334 {
335 	struct fuse_conn *fc = get_fuse_conn(inode);
336 
337 	/* see fuse_vma_close() for !writeback_cache case */
338 	if (fc->writeback_cache)
339 		write_inode_now(inode, 1);
340 
341 	fuse_release_common(file, false);
342 
343 	/* return value is ignored by VFS */
344 	return 0;
345 }
346 
fuse_sync_release(struct fuse_inode * fi,struct fuse_file * ff,int flags)347 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
348 {
349 	WARN_ON(refcount_read(&ff->count) > 1);
350 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
351 	/*
352 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
353 	 * synchronous, we are fine with not doing igrab() here"
354 	 */
355 	fuse_file_put(ff, true, false);
356 }
357 EXPORT_SYMBOL_GPL(fuse_sync_release);
358 
359 /*
360  * Scramble the ID space with XTEA, so that the value of the files_struct
361  * pointer is not exposed to userspace.
362  */
fuse_lock_owner_id(struct fuse_conn * fc,fl_owner_t id)363 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
364 {
365 	u32 *k = fc->scramble_key;
366 	u64 v = (unsigned long) id;
367 	u32 v0 = v;
368 	u32 v1 = v >> 32;
369 	u32 sum = 0;
370 	int i;
371 
372 	for (i = 0; i < 32; i++) {
373 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
374 		sum += 0x9E3779B9;
375 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
376 	}
377 
378 	return (u64) v0 + ((u64) v1 << 32);
379 }
380 
381 struct fuse_writepage_args {
382 	struct fuse_io_args ia;
383 	struct rb_node writepages_entry;
384 	struct list_head queue_entry;
385 	struct fuse_writepage_args *next;
386 	struct inode *inode;
387 };
388 
fuse_find_writeback(struct fuse_inode * fi,pgoff_t idx_from,pgoff_t idx_to)389 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
390 					    pgoff_t idx_from, pgoff_t idx_to)
391 {
392 	struct rb_node *n;
393 
394 	n = fi->writepages.rb_node;
395 
396 	while (n) {
397 		struct fuse_writepage_args *wpa;
398 		pgoff_t curr_index;
399 
400 		wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
401 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
402 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
403 		if (idx_from >= curr_index + wpa->ia.ap.num_pages)
404 			n = n->rb_right;
405 		else if (idx_to < curr_index)
406 			n = n->rb_left;
407 		else
408 			return wpa;
409 	}
410 	return NULL;
411 }
412 
413 /*
414  * Check if any page in a range is under writeback
415  *
416  * This is currently done by walking the list of writepage requests
417  * for the inode, which can be pretty inefficient.
418  */
fuse_range_is_writeback(struct inode * inode,pgoff_t idx_from,pgoff_t idx_to)419 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
420 				   pgoff_t idx_to)
421 {
422 	struct fuse_inode *fi = get_fuse_inode(inode);
423 	bool found;
424 
425 	spin_lock(&fi->lock);
426 	found = fuse_find_writeback(fi, idx_from, idx_to);
427 	spin_unlock(&fi->lock);
428 
429 	return found;
430 }
431 
fuse_page_is_writeback(struct inode * inode,pgoff_t index)432 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
433 {
434 	return fuse_range_is_writeback(inode, index, index);
435 }
436 
437 /*
438  * Wait for page writeback to be completed.
439  *
440  * Since fuse doesn't rely on the VM writeback tracking, this has to
441  * use some other means.
442  */
fuse_wait_on_page_writeback(struct inode * inode,pgoff_t index)443 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
444 {
445 	struct fuse_inode *fi = get_fuse_inode(inode);
446 
447 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
448 }
449 
450 /*
451  * Wait for all pending writepages on the inode to finish.
452  *
453  * This is currently done by blocking further writes with FUSE_NOWRITE
454  * and waiting for all sent writes to complete.
455  *
456  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
457  * could conflict with truncation.
458  */
fuse_sync_writes(struct inode * inode)459 static void fuse_sync_writes(struct inode *inode)
460 {
461 	fuse_set_nowrite(inode);
462 	fuse_release_nowrite(inode);
463 }
464 
fuse_flush(struct file * file,fl_owner_t id)465 static int fuse_flush(struct file *file, fl_owner_t id)
466 {
467 	struct inode *inode = file_inode(file);
468 	struct fuse_mount *fm = get_fuse_mount(inode);
469 	struct fuse_file *ff = file->private_data;
470 	struct fuse_flush_in inarg;
471 	FUSE_ARGS(args);
472 	int err;
473 
474 	if (fuse_is_bad(inode))
475 		return -EIO;
476 
477 	err = write_inode_now(inode, 1);
478 	if (err)
479 		return err;
480 
481 	inode_lock(inode);
482 	fuse_sync_writes(inode);
483 	inode_unlock(inode);
484 
485 	err = filemap_check_errors(file->f_mapping);
486 	if (err)
487 		return err;
488 
489 	err = 0;
490 	if (fm->fc->no_flush)
491 		goto inval_attr_out;
492 
493 	memset(&inarg, 0, sizeof(inarg));
494 	inarg.fh = ff->fh;
495 	inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
496 	args.opcode = FUSE_FLUSH;
497 	args.nodeid = get_node_id(inode);
498 	args.in_numargs = 1;
499 	args.in_args[0].size = sizeof(inarg);
500 	args.in_args[0].value = &inarg;
501 	args.force = true;
502 
503 	err = fuse_simple_request(fm, &args);
504 	if (err == -ENOSYS) {
505 		fm->fc->no_flush = 1;
506 		err = 0;
507 	}
508 
509 inval_attr_out:
510 	/*
511 	 * In memory i_blocks is not maintained by fuse, if writeback cache is
512 	 * enabled, i_blocks from cached attr may not be accurate.
513 	 */
514 	if (!err && fm->fc->writeback_cache)
515 		fuse_invalidate_attr(inode);
516 	return err;
517 }
518 
fuse_fsync_common(struct file * file,loff_t start,loff_t end,int datasync,int opcode)519 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
520 		      int datasync, int opcode)
521 {
522 	struct inode *inode = file->f_mapping->host;
523 	struct fuse_mount *fm = get_fuse_mount(inode);
524 	struct fuse_file *ff = file->private_data;
525 	FUSE_ARGS(args);
526 	struct fuse_fsync_in inarg;
527 
528 	memset(&inarg, 0, sizeof(inarg));
529 	inarg.fh = ff->fh;
530 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
531 	args.opcode = opcode;
532 	args.nodeid = get_node_id(inode);
533 	args.in_numargs = 1;
534 	args.in_args[0].size = sizeof(inarg);
535 	args.in_args[0].value = &inarg;
536 	return fuse_simple_request(fm, &args);
537 }
538 
fuse_fsync(struct file * file,loff_t start,loff_t end,int datasync)539 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
540 		      int datasync)
541 {
542 	struct inode *inode = file->f_mapping->host;
543 	struct fuse_conn *fc = get_fuse_conn(inode);
544 	int err;
545 
546 	if (fuse_is_bad(inode))
547 		return -EIO;
548 
549 	inode_lock(inode);
550 
551 	/*
552 	 * Start writeback against all dirty pages of the inode, then
553 	 * wait for all outstanding writes, before sending the FSYNC
554 	 * request.
555 	 */
556 	err = file_write_and_wait_range(file, start, end);
557 	if (err)
558 		goto out;
559 
560 	fuse_sync_writes(inode);
561 
562 	/*
563 	 * Due to implementation of fuse writeback
564 	 * file_write_and_wait_range() does not catch errors.
565 	 * We have to do this directly after fuse_sync_writes()
566 	 */
567 	err = file_check_and_advance_wb_err(file);
568 	if (err)
569 		goto out;
570 
571 	err = sync_inode_metadata(inode, 1);
572 	if (err)
573 		goto out;
574 
575 	if (fc->no_fsync)
576 		goto out;
577 
578 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
579 	if (err == -ENOSYS) {
580 		fc->no_fsync = 1;
581 		err = 0;
582 	}
583 out:
584 	inode_unlock(inode);
585 
586 	return err;
587 }
588 
fuse_read_args_fill(struct fuse_io_args * ia,struct file * file,loff_t pos,size_t count,int opcode)589 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
590 			 size_t count, int opcode)
591 {
592 	struct fuse_file *ff = file->private_data;
593 	struct fuse_args *args = &ia->ap.args;
594 
595 	ia->read.in.fh = ff->fh;
596 	ia->read.in.offset = pos;
597 	ia->read.in.size = count;
598 	ia->read.in.flags = file->f_flags;
599 	args->opcode = opcode;
600 	args->nodeid = ff->nodeid;
601 	args->in_numargs = 1;
602 	args->in_args[0].size = sizeof(ia->read.in);
603 	args->in_args[0].value = &ia->read.in;
604 	args->out_argvar = true;
605 	args->out_numargs = 1;
606 	args->out_args[0].size = count;
607 }
608 
fuse_release_user_pages(struct fuse_args_pages * ap,bool should_dirty)609 static void fuse_release_user_pages(struct fuse_args_pages *ap,
610 				    bool should_dirty)
611 {
612 	unsigned int i;
613 
614 	for (i = 0; i < ap->num_pages; i++) {
615 		if (should_dirty)
616 			set_page_dirty_lock(ap->pages[i]);
617 		put_page(ap->pages[i]);
618 	}
619 }
620 
fuse_io_release(struct kref * kref)621 static void fuse_io_release(struct kref *kref)
622 {
623 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
624 }
625 
fuse_get_res_by_io(struct fuse_io_priv * io)626 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
627 {
628 	if (io->err)
629 		return io->err;
630 
631 	if (io->bytes >= 0 && io->write)
632 		return -EIO;
633 
634 	return io->bytes < 0 ? io->size : io->bytes;
635 }
636 
637 /**
638  * In case of short read, the caller sets 'pos' to the position of
639  * actual end of fuse request in IO request. Otherwise, if bytes_requested
640  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
641  *
642  * An example:
643  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
644  * both submitted asynchronously. The first of them was ACKed by userspace as
645  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
646  * second request was ACKed as short, e.g. only 1K was read, resulting in
647  * pos == 33K.
648  *
649  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
650  * will be equal to the length of the longest contiguous fragment of
651  * transferred data starting from the beginning of IO request.
652  */
fuse_aio_complete(struct fuse_io_priv * io,int err,ssize_t pos)653 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
654 {
655 	int left;
656 
657 	spin_lock(&io->lock);
658 	if (err)
659 		io->err = io->err ? : err;
660 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
661 		io->bytes = pos;
662 
663 	left = --io->reqs;
664 	if (!left && io->blocking)
665 		complete(io->done);
666 	spin_unlock(&io->lock);
667 
668 	if (!left && !io->blocking) {
669 		ssize_t res = fuse_get_res_by_io(io);
670 
671 		if (res >= 0) {
672 			struct inode *inode = file_inode(io->iocb->ki_filp);
673 			struct fuse_conn *fc = get_fuse_conn(inode);
674 			struct fuse_inode *fi = get_fuse_inode(inode);
675 
676 			spin_lock(&fi->lock);
677 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
678 			spin_unlock(&fi->lock);
679 		}
680 
681 		io->iocb->ki_complete(io->iocb, res, 0);
682 	}
683 
684 	kref_put(&io->refcnt, fuse_io_release);
685 }
686 
fuse_io_alloc(struct fuse_io_priv * io,unsigned int npages)687 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
688 					  unsigned int npages)
689 {
690 	struct fuse_io_args *ia;
691 
692 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
693 	if (ia) {
694 		ia->io = io;
695 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
696 						&ia->ap.descs);
697 		if (!ia->ap.pages) {
698 			kfree(ia);
699 			ia = NULL;
700 		}
701 	}
702 	return ia;
703 }
704 
fuse_io_free(struct fuse_io_args * ia)705 static void fuse_io_free(struct fuse_io_args *ia)
706 {
707 	kfree(ia->ap.pages);
708 	kfree(ia);
709 }
710 
fuse_aio_complete_req(struct fuse_mount * fm,struct fuse_args * args,int err)711 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
712 				  int err)
713 {
714 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
715 	struct fuse_io_priv *io = ia->io;
716 	ssize_t pos = -1;
717 
718 	fuse_release_user_pages(&ia->ap, io->should_dirty);
719 
720 	if (err) {
721 		/* Nothing */
722 	} else if (io->write) {
723 		if (ia->write.out.size > ia->write.in.size) {
724 			err = -EIO;
725 		} else if (ia->write.in.size != ia->write.out.size) {
726 			pos = ia->write.in.offset - io->offset +
727 				ia->write.out.size;
728 		}
729 	} else {
730 		u32 outsize = args->out_args[0].size;
731 
732 		if (ia->read.in.size != outsize)
733 			pos = ia->read.in.offset - io->offset + outsize;
734 	}
735 
736 	fuse_aio_complete(io, err, pos);
737 	fuse_io_free(ia);
738 }
739 
fuse_async_req_send(struct fuse_mount * fm,struct fuse_io_args * ia,size_t num_bytes)740 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
741 				   struct fuse_io_args *ia, size_t num_bytes)
742 {
743 	ssize_t err;
744 	struct fuse_io_priv *io = ia->io;
745 
746 	spin_lock(&io->lock);
747 	kref_get(&io->refcnt);
748 	io->size += num_bytes;
749 	io->reqs++;
750 	spin_unlock(&io->lock);
751 
752 	ia->ap.args.end = fuse_aio_complete_req;
753 	ia->ap.args.may_block = io->should_dirty;
754 	err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
755 	if (err)
756 		fuse_aio_complete_req(fm, &ia->ap.args, err);
757 
758 	return num_bytes;
759 }
760 
fuse_send_read(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)761 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
762 			      fl_owner_t owner)
763 {
764 	struct file *file = ia->io->iocb->ki_filp;
765 	struct fuse_file *ff = file->private_data;
766 	struct fuse_mount *fm = ff->fm;
767 
768 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
769 	if (owner != NULL) {
770 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
771 		ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
772 	}
773 
774 	if (ia->io->async)
775 		return fuse_async_req_send(fm, ia, count);
776 
777 	return fuse_simple_request(fm, &ia->ap.args);
778 }
779 
fuse_read_update_size(struct inode * inode,loff_t size,u64 attr_ver)780 static void fuse_read_update_size(struct inode *inode, loff_t size,
781 				  u64 attr_ver)
782 {
783 	struct fuse_conn *fc = get_fuse_conn(inode);
784 	struct fuse_inode *fi = get_fuse_inode(inode);
785 
786 	spin_lock(&fi->lock);
787 	if (attr_ver == fi->attr_version && size < inode->i_size &&
788 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
789 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
790 		i_size_write(inode, size);
791 	}
792 	spin_unlock(&fi->lock);
793 }
794 
fuse_short_read(struct inode * inode,u64 attr_ver,size_t num_read,struct fuse_args_pages * ap)795 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
796 			    struct fuse_args_pages *ap)
797 {
798 	struct fuse_conn *fc = get_fuse_conn(inode);
799 
800 	if (fc->writeback_cache) {
801 		/*
802 		 * A hole in a file. Some data after the hole are in page cache,
803 		 * but have not reached the client fs yet. So, the hole is not
804 		 * present there.
805 		 */
806 		int i;
807 		int start_idx = num_read >> PAGE_SHIFT;
808 		size_t off = num_read & (PAGE_SIZE - 1);
809 
810 		for (i = start_idx; i < ap->num_pages; i++) {
811 			zero_user_segment(ap->pages[i], off, PAGE_SIZE);
812 			off = 0;
813 		}
814 	} else {
815 		loff_t pos = page_offset(ap->pages[0]) + num_read;
816 		fuse_read_update_size(inode, pos, attr_ver);
817 	}
818 }
819 
fuse_do_readpage(struct file * file,struct page * page)820 static int fuse_do_readpage(struct file *file, struct page *page)
821 {
822 	struct inode *inode = page->mapping->host;
823 	struct fuse_mount *fm = get_fuse_mount(inode);
824 	loff_t pos = page_offset(page);
825 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
826 	struct fuse_io_args ia = {
827 		.ap.args.page_zeroing = true,
828 		.ap.args.out_pages = true,
829 		.ap.num_pages = 1,
830 		.ap.pages = &page,
831 		.ap.descs = &desc,
832 	};
833 	ssize_t res;
834 	u64 attr_ver;
835 
836 	/*
837 	 * Page writeback can extend beyond the lifetime of the
838 	 * page-cache page, so make sure we read a properly synced
839 	 * page.
840 	 */
841 	fuse_wait_on_page_writeback(inode, page->index);
842 
843 	attr_ver = fuse_get_attr_version(fm->fc);
844 
845 	/* Don't overflow end offset */
846 	if (pos + (desc.length - 1) == LLONG_MAX)
847 		desc.length--;
848 
849 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
850 	res = fuse_simple_request(fm, &ia.ap.args);
851 	if (res < 0)
852 		return res;
853 	/*
854 	 * Short read means EOF.  If file size is larger, truncate it
855 	 */
856 	if (res < desc.length)
857 		fuse_short_read(inode, attr_ver, res, &ia.ap);
858 
859 	SetPageUptodate(page);
860 
861 	return 0;
862 }
863 
fuse_readpage(struct file * file,struct page * page)864 static int fuse_readpage(struct file *file, struct page *page)
865 {
866 	struct inode *inode = page->mapping->host;
867 	int err;
868 
869 	err = -EIO;
870 	if (fuse_is_bad(inode))
871 		goto out;
872 
873 	err = fuse_do_readpage(file, page);
874 	fuse_invalidate_atime(inode);
875  out:
876 	unlock_page(page);
877 	return err;
878 }
879 
fuse_readpages_end(struct fuse_mount * fm,struct fuse_args * args,int err)880 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
881 			       int err)
882 {
883 	int i;
884 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
885 	struct fuse_args_pages *ap = &ia->ap;
886 	size_t count = ia->read.in.size;
887 	size_t num_read = args->out_args[0].size;
888 	struct address_space *mapping = NULL;
889 
890 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
891 		mapping = ap->pages[i]->mapping;
892 
893 	if (mapping) {
894 		struct inode *inode = mapping->host;
895 
896 		/*
897 		 * Short read means EOF. If file size is larger, truncate it
898 		 */
899 		if (!err && num_read < count)
900 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
901 
902 		fuse_invalidate_atime(inode);
903 	}
904 
905 	for (i = 0; i < ap->num_pages; i++) {
906 		struct page *page = ap->pages[i];
907 
908 		if (!err)
909 			SetPageUptodate(page);
910 		else
911 			SetPageError(page);
912 		unlock_page(page);
913 		put_page(page);
914 	}
915 	if (ia->ff)
916 		fuse_file_put(ia->ff, false, false);
917 
918 	fuse_io_free(ia);
919 }
920 
fuse_send_readpages(struct fuse_io_args * ia,struct file * file)921 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
922 {
923 	struct fuse_file *ff = file->private_data;
924 	struct fuse_mount *fm = ff->fm;
925 	struct fuse_args_pages *ap = &ia->ap;
926 	loff_t pos = page_offset(ap->pages[0]);
927 	size_t count = ap->num_pages << PAGE_SHIFT;
928 	ssize_t res;
929 	int err;
930 
931 	ap->args.out_pages = true;
932 	ap->args.page_zeroing = true;
933 	ap->args.page_replace = true;
934 
935 	/* Don't overflow end offset */
936 	if (pos + (count - 1) == LLONG_MAX) {
937 		count--;
938 		ap->descs[ap->num_pages - 1].length--;
939 	}
940 	WARN_ON((loff_t) (pos + count) < 0);
941 
942 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
943 	ia->read.attr_ver = fuse_get_attr_version(fm->fc);
944 	if (fm->fc->async_read) {
945 		ia->ff = fuse_file_get(ff);
946 		ap->args.end = fuse_readpages_end;
947 		err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
948 		if (!err)
949 			return;
950 	} else {
951 		res = fuse_simple_request(fm, &ap->args);
952 		err = res < 0 ? res : 0;
953 	}
954 	fuse_readpages_end(fm, &ap->args, err);
955 }
956 
fuse_readahead(struct readahead_control * rac)957 static void fuse_readahead(struct readahead_control *rac)
958 {
959 	struct inode *inode = rac->mapping->host;
960 	struct fuse_conn *fc = get_fuse_conn(inode);
961 	unsigned int i, max_pages, nr_pages = 0;
962 
963 	if (fuse_is_bad(inode))
964 		return;
965 
966 	max_pages = min_t(unsigned int, fc->max_pages,
967 			fc->max_read / PAGE_SIZE);
968 
969 	for (;;) {
970 		struct fuse_io_args *ia;
971 		struct fuse_args_pages *ap;
972 
973 		nr_pages = readahead_count(rac) - nr_pages;
974 		if (nr_pages > max_pages)
975 			nr_pages = max_pages;
976 		if (nr_pages == 0)
977 			break;
978 		ia = fuse_io_alloc(NULL, nr_pages);
979 		if (!ia)
980 			return;
981 		ap = &ia->ap;
982 		nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
983 		for (i = 0; i < nr_pages; i++) {
984 			fuse_wait_on_page_writeback(inode,
985 						    readahead_index(rac) + i);
986 			ap->descs[i].length = PAGE_SIZE;
987 		}
988 		ap->num_pages = nr_pages;
989 		fuse_send_readpages(ia, rac->file);
990 	}
991 }
992 
fuse_cache_read_iter(struct kiocb * iocb,struct iov_iter * to)993 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
994 {
995 	struct inode *inode = iocb->ki_filp->f_mapping->host;
996 	struct fuse_conn *fc = get_fuse_conn(inode);
997 
998 	/*
999 	 * In auto invalidate mode, always update attributes on read.
1000 	 * Otherwise, only update if we attempt to read past EOF (to ensure
1001 	 * i_size is up to date).
1002 	 */
1003 	if (fc->auto_inval_data ||
1004 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1005 		int err;
1006 		err = fuse_update_attributes(inode, iocb->ki_filp);
1007 		if (err)
1008 			return err;
1009 	}
1010 
1011 	return generic_file_read_iter(iocb, to);
1012 }
1013 
fuse_write_args_fill(struct fuse_io_args * ia,struct fuse_file * ff,loff_t pos,size_t count)1014 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1015 				 loff_t pos, size_t count)
1016 {
1017 	struct fuse_args *args = &ia->ap.args;
1018 
1019 	ia->write.in.fh = ff->fh;
1020 	ia->write.in.offset = pos;
1021 	ia->write.in.size = count;
1022 	args->opcode = FUSE_WRITE;
1023 	args->nodeid = ff->nodeid;
1024 	args->in_numargs = 2;
1025 	if (ff->fm->fc->minor < 9)
1026 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1027 	else
1028 		args->in_args[0].size = sizeof(ia->write.in);
1029 	args->in_args[0].value = &ia->write.in;
1030 	args->in_args[1].size = count;
1031 	args->out_numargs = 1;
1032 	args->out_args[0].size = sizeof(ia->write.out);
1033 	args->out_args[0].value = &ia->write.out;
1034 }
1035 
fuse_write_flags(struct kiocb * iocb)1036 static unsigned int fuse_write_flags(struct kiocb *iocb)
1037 {
1038 	unsigned int flags = iocb->ki_filp->f_flags;
1039 
1040 	if (iocb->ki_flags & IOCB_DSYNC)
1041 		flags |= O_DSYNC;
1042 	if (iocb->ki_flags & IOCB_SYNC)
1043 		flags |= O_SYNC;
1044 
1045 	return flags;
1046 }
1047 
fuse_send_write(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)1048 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1049 			       size_t count, fl_owner_t owner)
1050 {
1051 	struct kiocb *iocb = ia->io->iocb;
1052 	struct file *file = iocb->ki_filp;
1053 	struct fuse_file *ff = file->private_data;
1054 	struct fuse_mount *fm = ff->fm;
1055 	struct fuse_write_in *inarg = &ia->write.in;
1056 	ssize_t err;
1057 
1058 	fuse_write_args_fill(ia, ff, pos, count);
1059 	inarg->flags = fuse_write_flags(iocb);
1060 	if (owner != NULL) {
1061 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1062 		inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1063 	}
1064 
1065 	if (ia->io->async)
1066 		return fuse_async_req_send(fm, ia, count);
1067 
1068 	err = fuse_simple_request(fm, &ia->ap.args);
1069 	if (!err && ia->write.out.size > count)
1070 		err = -EIO;
1071 
1072 	return err ?: ia->write.out.size;
1073 }
1074 
fuse_write_update_size(struct inode * inode,loff_t pos)1075 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1076 {
1077 	struct fuse_conn *fc = get_fuse_conn(inode);
1078 	struct fuse_inode *fi = get_fuse_inode(inode);
1079 	bool ret = false;
1080 
1081 	spin_lock(&fi->lock);
1082 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1083 	if (pos > inode->i_size) {
1084 		i_size_write(inode, pos);
1085 		ret = true;
1086 	}
1087 	spin_unlock(&fi->lock);
1088 
1089 	return ret;
1090 }
1091 
fuse_send_write_pages(struct fuse_io_args * ia,struct kiocb * iocb,struct inode * inode,loff_t pos,size_t count)1092 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1093 				     struct kiocb *iocb, struct inode *inode,
1094 				     loff_t pos, size_t count)
1095 {
1096 	struct fuse_args_pages *ap = &ia->ap;
1097 	struct file *file = iocb->ki_filp;
1098 	struct fuse_file *ff = file->private_data;
1099 	struct fuse_mount *fm = ff->fm;
1100 	unsigned int offset, i;
1101 	bool short_write;
1102 	int err;
1103 
1104 	for (i = 0; i < ap->num_pages; i++)
1105 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1106 
1107 	fuse_write_args_fill(ia, ff, pos, count);
1108 	ia->write.in.flags = fuse_write_flags(iocb);
1109 
1110 	err = fuse_simple_request(fm, &ap->args);
1111 	if (!err && ia->write.out.size > count)
1112 		err = -EIO;
1113 
1114 	short_write = ia->write.out.size < count;
1115 	offset = ap->descs[0].offset;
1116 	count = ia->write.out.size;
1117 	for (i = 0; i < ap->num_pages; i++) {
1118 		struct page *page = ap->pages[i];
1119 
1120 		if (err) {
1121 			ClearPageUptodate(page);
1122 		} else {
1123 			if (count >= PAGE_SIZE - offset)
1124 				count -= PAGE_SIZE - offset;
1125 			else {
1126 				if (short_write)
1127 					ClearPageUptodate(page);
1128 				count = 0;
1129 			}
1130 			offset = 0;
1131 		}
1132 		if (ia->write.page_locked && (i == ap->num_pages - 1))
1133 			unlock_page(page);
1134 		put_page(page);
1135 	}
1136 
1137 	return err;
1138 }
1139 
fuse_fill_write_pages(struct fuse_io_args * ia,struct address_space * mapping,struct iov_iter * ii,loff_t pos,unsigned int max_pages)1140 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1141 				     struct address_space *mapping,
1142 				     struct iov_iter *ii, loff_t pos,
1143 				     unsigned int max_pages)
1144 {
1145 	struct fuse_args_pages *ap = &ia->ap;
1146 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1147 	unsigned offset = pos & (PAGE_SIZE - 1);
1148 	size_t count = 0;
1149 	int err;
1150 
1151 	ap->args.in_pages = true;
1152 	ap->descs[0].offset = offset;
1153 
1154 	do {
1155 		size_t tmp;
1156 		struct page *page;
1157 		pgoff_t index = pos >> PAGE_SHIFT;
1158 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1159 				     iov_iter_count(ii));
1160 
1161 		bytes = min_t(size_t, bytes, fc->max_write - count);
1162 
1163  again:
1164 		err = -EFAULT;
1165 		if (iov_iter_fault_in_readable(ii, bytes))
1166 			break;
1167 
1168 		err = -ENOMEM;
1169 		page = grab_cache_page_write_begin(mapping, index, 0);
1170 		if (!page)
1171 			break;
1172 
1173 		if (mapping_writably_mapped(mapping))
1174 			flush_dcache_page(page);
1175 
1176 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1177 		flush_dcache_page(page);
1178 
1179 		iov_iter_advance(ii, tmp);
1180 		if (!tmp) {
1181 			unlock_page(page);
1182 			put_page(page);
1183 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1184 			goto again;
1185 		}
1186 
1187 		err = 0;
1188 		ap->pages[ap->num_pages] = page;
1189 		ap->descs[ap->num_pages].length = tmp;
1190 		ap->num_pages++;
1191 
1192 		count += tmp;
1193 		pos += tmp;
1194 		offset += tmp;
1195 		if (offset == PAGE_SIZE)
1196 			offset = 0;
1197 
1198 		/* If we copied full page, mark it uptodate */
1199 		if (tmp == PAGE_SIZE)
1200 			SetPageUptodate(page);
1201 
1202 		if (PageUptodate(page)) {
1203 			unlock_page(page);
1204 		} else {
1205 			ia->write.page_locked = true;
1206 			break;
1207 		}
1208 		if (!fc->big_writes)
1209 			break;
1210 	} while (iov_iter_count(ii) && count < fc->max_write &&
1211 		 ap->num_pages < max_pages && offset == 0);
1212 
1213 	return count > 0 ? count : err;
1214 }
1215 
fuse_wr_pages(loff_t pos,size_t len,unsigned int max_pages)1216 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1217 				     unsigned int max_pages)
1218 {
1219 	return min_t(unsigned int,
1220 		     ((pos + len - 1) >> PAGE_SHIFT) -
1221 		     (pos >> PAGE_SHIFT) + 1,
1222 		     max_pages);
1223 }
1224 
fuse_perform_write(struct kiocb * iocb,struct address_space * mapping,struct iov_iter * ii,loff_t pos)1225 static ssize_t fuse_perform_write(struct kiocb *iocb,
1226 				  struct address_space *mapping,
1227 				  struct iov_iter *ii, loff_t pos)
1228 {
1229 	struct inode *inode = mapping->host;
1230 	struct fuse_conn *fc = get_fuse_conn(inode);
1231 	struct fuse_inode *fi = get_fuse_inode(inode);
1232 	int err = 0;
1233 	ssize_t res = 0;
1234 
1235 	if (inode->i_size < pos + iov_iter_count(ii))
1236 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1237 
1238 	do {
1239 		ssize_t count;
1240 		struct fuse_io_args ia = {};
1241 		struct fuse_args_pages *ap = &ia.ap;
1242 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1243 						      fc->max_pages);
1244 
1245 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1246 		if (!ap->pages) {
1247 			err = -ENOMEM;
1248 			break;
1249 		}
1250 
1251 		count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1252 		if (count <= 0) {
1253 			err = count;
1254 		} else {
1255 			err = fuse_send_write_pages(&ia, iocb, inode,
1256 						    pos, count);
1257 			if (!err) {
1258 				size_t num_written = ia.write.out.size;
1259 
1260 				res += num_written;
1261 				pos += num_written;
1262 
1263 				/* break out of the loop on short write */
1264 				if (num_written != count)
1265 					err = -EIO;
1266 			}
1267 		}
1268 		kfree(ap->pages);
1269 	} while (!err && iov_iter_count(ii));
1270 
1271 	if (res > 0)
1272 		fuse_write_update_size(inode, pos);
1273 
1274 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1275 	fuse_invalidate_attr(inode);
1276 
1277 	return res > 0 ? res : err;
1278 }
1279 
fuse_cache_write_iter(struct kiocb * iocb,struct iov_iter * from)1280 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1281 {
1282 	struct file *file = iocb->ki_filp;
1283 	struct address_space *mapping = file->f_mapping;
1284 	ssize_t written = 0;
1285 	ssize_t written_buffered = 0;
1286 	struct inode *inode = mapping->host;
1287 	ssize_t err;
1288 	loff_t endbyte = 0;
1289 
1290 	if (get_fuse_conn(inode)->writeback_cache) {
1291 		/* Update size (EOF optimization) and mode (SUID clearing) */
1292 		err = fuse_update_attributes(mapping->host, file);
1293 		if (err)
1294 			return err;
1295 
1296 		return generic_file_write_iter(iocb, from);
1297 	}
1298 
1299 	inode_lock(inode);
1300 
1301 	/* We can write back this queue in page reclaim */
1302 	current->backing_dev_info = inode_to_bdi(inode);
1303 
1304 	err = generic_write_checks(iocb, from);
1305 	if (err <= 0)
1306 		goto out;
1307 
1308 	err = file_remove_privs(file);
1309 	if (err)
1310 		goto out;
1311 
1312 	err = file_update_time(file);
1313 	if (err)
1314 		goto out;
1315 
1316 	if (iocb->ki_flags & IOCB_DIRECT) {
1317 		loff_t pos = iocb->ki_pos;
1318 		written = generic_file_direct_write(iocb, from);
1319 		if (written < 0 || !iov_iter_count(from))
1320 			goto out;
1321 
1322 		pos += written;
1323 
1324 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1325 		if (written_buffered < 0) {
1326 			err = written_buffered;
1327 			goto out;
1328 		}
1329 		endbyte = pos + written_buffered - 1;
1330 
1331 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1332 						   endbyte);
1333 		if (err)
1334 			goto out;
1335 
1336 		invalidate_mapping_pages(file->f_mapping,
1337 					 pos >> PAGE_SHIFT,
1338 					 endbyte >> PAGE_SHIFT);
1339 
1340 		written += written_buffered;
1341 		iocb->ki_pos = pos + written_buffered;
1342 	} else {
1343 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1344 		if (written >= 0)
1345 			iocb->ki_pos += written;
1346 	}
1347 out:
1348 	current->backing_dev_info = NULL;
1349 	inode_unlock(inode);
1350 	if (written > 0)
1351 		written = generic_write_sync(iocb, written);
1352 
1353 	return written ? written : err;
1354 }
1355 
fuse_page_descs_length_init(struct fuse_page_desc * descs,unsigned int index,unsigned int nr_pages)1356 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1357 					       unsigned int index,
1358 					       unsigned int nr_pages)
1359 {
1360 	int i;
1361 
1362 	for (i = index; i < index + nr_pages; i++)
1363 		descs[i].length = PAGE_SIZE - descs[i].offset;
1364 }
1365 
fuse_get_user_addr(const struct iov_iter * ii)1366 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1367 {
1368 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1369 }
1370 
fuse_get_frag_size(const struct iov_iter * ii,size_t max_size)1371 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1372 					size_t max_size)
1373 {
1374 	return min(iov_iter_single_seg_count(ii), max_size);
1375 }
1376 
fuse_get_user_pages(struct fuse_args_pages * ap,struct iov_iter * ii,size_t * nbytesp,int write,unsigned int max_pages)1377 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1378 			       size_t *nbytesp, int write,
1379 			       unsigned int max_pages)
1380 {
1381 	size_t nbytes = 0;  /* # bytes already packed in req */
1382 	ssize_t ret = 0;
1383 
1384 	/* Special case for kernel I/O: can copy directly into the buffer */
1385 	if (iov_iter_is_kvec(ii)) {
1386 		unsigned long user_addr = fuse_get_user_addr(ii);
1387 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1388 
1389 		if (write)
1390 			ap->args.in_args[1].value = (void *) user_addr;
1391 		else
1392 			ap->args.out_args[0].value = (void *) user_addr;
1393 
1394 		iov_iter_advance(ii, frag_size);
1395 		*nbytesp = frag_size;
1396 		return 0;
1397 	}
1398 
1399 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1400 		unsigned npages;
1401 		size_t start;
1402 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1403 					*nbytesp - nbytes,
1404 					max_pages - ap->num_pages,
1405 					&start);
1406 		if (ret < 0)
1407 			break;
1408 
1409 		iov_iter_advance(ii, ret);
1410 		nbytes += ret;
1411 
1412 		ret += start;
1413 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1414 
1415 		ap->descs[ap->num_pages].offset = start;
1416 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1417 
1418 		ap->num_pages += npages;
1419 		ap->descs[ap->num_pages - 1].length -=
1420 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1421 	}
1422 
1423 	ap->args.user_pages = true;
1424 	if (write)
1425 		ap->args.in_pages = true;
1426 	else
1427 		ap->args.out_pages = true;
1428 
1429 	*nbytesp = nbytes;
1430 
1431 	return ret < 0 ? ret : 0;
1432 }
1433 
fuse_direct_io(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos,int flags)1434 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1435 		       loff_t *ppos, int flags)
1436 {
1437 	int write = flags & FUSE_DIO_WRITE;
1438 	int cuse = flags & FUSE_DIO_CUSE;
1439 	struct file *file = io->iocb->ki_filp;
1440 	struct inode *inode = file->f_mapping->host;
1441 	struct fuse_file *ff = file->private_data;
1442 	struct fuse_conn *fc = ff->fm->fc;
1443 	size_t nmax = write ? fc->max_write : fc->max_read;
1444 	loff_t pos = *ppos;
1445 	size_t count = iov_iter_count(iter);
1446 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1447 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1448 	ssize_t res = 0;
1449 	int err = 0;
1450 	struct fuse_io_args *ia;
1451 	unsigned int max_pages;
1452 
1453 	max_pages = iov_iter_npages(iter, fc->max_pages);
1454 	ia = fuse_io_alloc(io, max_pages);
1455 	if (!ia)
1456 		return -ENOMEM;
1457 
1458 	ia->io = io;
1459 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1460 		if (!write)
1461 			inode_lock(inode);
1462 		fuse_sync_writes(inode);
1463 		if (!write)
1464 			inode_unlock(inode);
1465 	}
1466 
1467 	io->should_dirty = !write && iter_is_iovec(iter);
1468 	while (count) {
1469 		ssize_t nres;
1470 		fl_owner_t owner = current->files;
1471 		size_t nbytes = min(count, nmax);
1472 
1473 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1474 					  max_pages);
1475 		if (err && !nbytes)
1476 			break;
1477 
1478 		if (write) {
1479 			if (!capable(CAP_FSETID))
1480 				ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1481 
1482 			nres = fuse_send_write(ia, pos, nbytes, owner);
1483 		} else {
1484 			nres = fuse_send_read(ia, pos, nbytes, owner);
1485 		}
1486 
1487 		if (!io->async || nres < 0) {
1488 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1489 			fuse_io_free(ia);
1490 		}
1491 		ia = NULL;
1492 		if (nres < 0) {
1493 			iov_iter_revert(iter, nbytes);
1494 			err = nres;
1495 			break;
1496 		}
1497 		WARN_ON(nres > nbytes);
1498 
1499 		count -= nres;
1500 		res += nres;
1501 		pos += nres;
1502 		if (nres != nbytes) {
1503 			iov_iter_revert(iter, nbytes - nres);
1504 			break;
1505 		}
1506 		if (count) {
1507 			max_pages = iov_iter_npages(iter, fc->max_pages);
1508 			ia = fuse_io_alloc(io, max_pages);
1509 			if (!ia)
1510 				break;
1511 		}
1512 	}
1513 	if (ia)
1514 		fuse_io_free(ia);
1515 	if (res > 0)
1516 		*ppos = pos;
1517 
1518 	return res > 0 ? res : err;
1519 }
1520 EXPORT_SYMBOL_GPL(fuse_direct_io);
1521 
__fuse_direct_read(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos)1522 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1523 				  struct iov_iter *iter,
1524 				  loff_t *ppos)
1525 {
1526 	ssize_t res;
1527 	struct inode *inode = file_inode(io->iocb->ki_filp);
1528 
1529 	res = fuse_direct_io(io, iter, ppos, 0);
1530 
1531 	fuse_invalidate_atime(inode);
1532 
1533 	return res;
1534 }
1535 
1536 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1537 
fuse_direct_read_iter(struct kiocb * iocb,struct iov_iter * to)1538 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1539 {
1540 	ssize_t res;
1541 
1542 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1543 		res = fuse_direct_IO(iocb, to);
1544 	} else {
1545 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1546 
1547 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1548 	}
1549 
1550 	return res;
1551 }
1552 
fuse_direct_write_iter(struct kiocb * iocb,struct iov_iter * from)1553 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1554 {
1555 	struct inode *inode = file_inode(iocb->ki_filp);
1556 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1557 	ssize_t res;
1558 
1559 	/* Don't allow parallel writes to the same file */
1560 	inode_lock(inode);
1561 	res = generic_write_checks(iocb, from);
1562 	if (res > 0) {
1563 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1564 			res = fuse_direct_IO(iocb, from);
1565 		} else {
1566 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1567 					     FUSE_DIO_WRITE);
1568 		}
1569 	}
1570 	fuse_invalidate_attr(inode);
1571 	if (res > 0)
1572 		fuse_write_update_size(inode, iocb->ki_pos);
1573 	inode_unlock(inode);
1574 
1575 	return res;
1576 }
1577 
fuse_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1578 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1579 {
1580 	struct file *file = iocb->ki_filp;
1581 	struct fuse_file *ff = file->private_data;
1582 	struct inode *inode = file_inode(file);
1583 
1584 	if (fuse_is_bad(inode))
1585 		return -EIO;
1586 
1587 	if (FUSE_IS_DAX(inode))
1588 		return fuse_dax_read_iter(iocb, to);
1589 
1590 	if (ff->passthrough.filp)
1591 		return fuse_passthrough_read_iter(iocb, to);
1592 	else if (!(ff->open_flags & FOPEN_DIRECT_IO))
1593 		return fuse_cache_read_iter(iocb, to);
1594 	else
1595 		return fuse_direct_read_iter(iocb, to);
1596 }
1597 
fuse_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1598 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1599 {
1600 	struct file *file = iocb->ki_filp;
1601 	struct fuse_file *ff = file->private_data;
1602 	struct inode *inode = file_inode(file);
1603 
1604 	if (fuse_is_bad(inode))
1605 		return -EIO;
1606 
1607 	if (FUSE_IS_DAX(inode))
1608 		return fuse_dax_write_iter(iocb, from);
1609 
1610 	if (ff->passthrough.filp)
1611 		return fuse_passthrough_write_iter(iocb, from);
1612 	else if (!(ff->open_flags & FOPEN_DIRECT_IO))
1613 		return fuse_cache_write_iter(iocb, from);
1614 	else
1615 		return fuse_direct_write_iter(iocb, from);
1616 }
1617 
fuse_writepage_free(struct fuse_writepage_args * wpa)1618 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1619 {
1620 	struct fuse_args_pages *ap = &wpa->ia.ap;
1621 	int i;
1622 
1623 	for (i = 0; i < ap->num_pages; i++)
1624 		__free_page(ap->pages[i]);
1625 
1626 	if (wpa->ia.ff)
1627 		fuse_file_put(wpa->ia.ff, false, false);
1628 
1629 	kfree(ap->pages);
1630 	kfree(wpa);
1631 }
1632 
fuse_writepage_finish(struct fuse_mount * fm,struct fuse_writepage_args * wpa)1633 static void fuse_writepage_finish(struct fuse_mount *fm,
1634 				  struct fuse_writepage_args *wpa)
1635 {
1636 	struct fuse_args_pages *ap = &wpa->ia.ap;
1637 	struct inode *inode = wpa->inode;
1638 	struct fuse_inode *fi = get_fuse_inode(inode);
1639 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1640 	int i;
1641 
1642 	for (i = 0; i < ap->num_pages; i++) {
1643 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1644 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1645 		wb_writeout_inc(&bdi->wb);
1646 	}
1647 	wake_up(&fi->page_waitq);
1648 }
1649 
1650 /* Called under fi->lock, may release and reacquire it */
fuse_send_writepage(struct fuse_mount * fm,struct fuse_writepage_args * wpa,loff_t size)1651 static void fuse_send_writepage(struct fuse_mount *fm,
1652 				struct fuse_writepage_args *wpa, loff_t size)
1653 __releases(fi->lock)
1654 __acquires(fi->lock)
1655 {
1656 	struct fuse_writepage_args *aux, *next;
1657 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1658 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1659 	struct fuse_args *args = &wpa->ia.ap.args;
1660 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1661 	int err;
1662 
1663 	fi->writectr++;
1664 	if (inarg->offset + data_size <= size) {
1665 		inarg->size = data_size;
1666 	} else if (inarg->offset < size) {
1667 		inarg->size = size - inarg->offset;
1668 	} else {
1669 		/* Got truncated off completely */
1670 		goto out_free;
1671 	}
1672 
1673 	args->in_args[1].size = inarg->size;
1674 	args->force = true;
1675 	args->nocreds = true;
1676 
1677 	err = fuse_simple_background(fm, args, GFP_ATOMIC);
1678 	if (err == -ENOMEM) {
1679 		spin_unlock(&fi->lock);
1680 		err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1681 		spin_lock(&fi->lock);
1682 	}
1683 
1684 	/* Fails on broken connection only */
1685 	if (unlikely(err))
1686 		goto out_free;
1687 
1688 	return;
1689 
1690  out_free:
1691 	fi->writectr--;
1692 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1693 	fuse_writepage_finish(fm, wpa);
1694 	spin_unlock(&fi->lock);
1695 
1696 	/* After fuse_writepage_finish() aux request list is private */
1697 	for (aux = wpa->next; aux; aux = next) {
1698 		next = aux->next;
1699 		aux->next = NULL;
1700 		fuse_writepage_free(aux);
1701 	}
1702 
1703 	fuse_writepage_free(wpa);
1704 	spin_lock(&fi->lock);
1705 }
1706 
1707 /*
1708  * If fi->writectr is positive (no truncate or fsync going on) send
1709  * all queued writepage requests.
1710  *
1711  * Called with fi->lock
1712  */
fuse_flush_writepages(struct inode * inode)1713 void fuse_flush_writepages(struct inode *inode)
1714 __releases(fi->lock)
1715 __acquires(fi->lock)
1716 {
1717 	struct fuse_mount *fm = get_fuse_mount(inode);
1718 	struct fuse_inode *fi = get_fuse_inode(inode);
1719 	loff_t crop = i_size_read(inode);
1720 	struct fuse_writepage_args *wpa;
1721 
1722 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1723 		wpa = list_entry(fi->queued_writes.next,
1724 				 struct fuse_writepage_args, queue_entry);
1725 		list_del_init(&wpa->queue_entry);
1726 		fuse_send_writepage(fm, wpa, crop);
1727 	}
1728 }
1729 
fuse_insert_writeback(struct rb_root * root,struct fuse_writepage_args * wpa)1730 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1731 						struct fuse_writepage_args *wpa)
1732 {
1733 	pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1734 	pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1735 	struct rb_node **p = &root->rb_node;
1736 	struct rb_node  *parent = NULL;
1737 
1738 	WARN_ON(!wpa->ia.ap.num_pages);
1739 	while (*p) {
1740 		struct fuse_writepage_args *curr;
1741 		pgoff_t curr_index;
1742 
1743 		parent = *p;
1744 		curr = rb_entry(parent, struct fuse_writepage_args,
1745 				writepages_entry);
1746 		WARN_ON(curr->inode != wpa->inode);
1747 		curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1748 
1749 		if (idx_from >= curr_index + curr->ia.ap.num_pages)
1750 			p = &(*p)->rb_right;
1751 		else if (idx_to < curr_index)
1752 			p = &(*p)->rb_left;
1753 		else
1754 			return curr;
1755 	}
1756 
1757 	rb_link_node(&wpa->writepages_entry, parent, p);
1758 	rb_insert_color(&wpa->writepages_entry, root);
1759 	return NULL;
1760 }
1761 
tree_insert(struct rb_root * root,struct fuse_writepage_args * wpa)1762 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1763 {
1764 	WARN_ON(fuse_insert_writeback(root, wpa));
1765 }
1766 
fuse_writepage_end(struct fuse_mount * fm,struct fuse_args * args,int error)1767 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1768 			       int error)
1769 {
1770 	struct fuse_writepage_args *wpa =
1771 		container_of(args, typeof(*wpa), ia.ap.args);
1772 	struct inode *inode = wpa->inode;
1773 	struct fuse_inode *fi = get_fuse_inode(inode);
1774 	struct fuse_conn *fc = get_fuse_conn(inode);
1775 
1776 	mapping_set_error(inode->i_mapping, error);
1777 	/*
1778 	 * A writeback finished and this might have updated mtime/ctime on
1779 	 * server making local mtime/ctime stale.  Hence invalidate attrs.
1780 	 * Do this only if writeback_cache is not enabled.  If writeback_cache
1781 	 * is enabled, we trust local ctime/mtime.
1782 	 */
1783 	if (!fc->writeback_cache)
1784 		fuse_invalidate_attr(inode);
1785 	spin_lock(&fi->lock);
1786 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1787 	while (wpa->next) {
1788 		struct fuse_mount *fm = get_fuse_mount(inode);
1789 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1790 		struct fuse_writepage_args *next = wpa->next;
1791 
1792 		wpa->next = next->next;
1793 		next->next = NULL;
1794 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1795 		tree_insert(&fi->writepages, next);
1796 
1797 		/*
1798 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1799 		 * based on primary request size.
1800 		 *
1801 		 * 1st case (trivial): there are no concurrent activities using
1802 		 * fuse_set/release_nowrite.  Then we're on safe side because
1803 		 * fuse_flush_writepages() would call fuse_send_writepage()
1804 		 * anyway.
1805 		 *
1806 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1807 		 * now for completion of all in-flight requests.  This happens
1808 		 * rarely and no more than once per page, so this should be
1809 		 * okay.
1810 		 *
1811 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1812 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1813 		 * that fuse_set_nowrite returned implies that all in-flight
1814 		 * requests were completed along with all of their secondary
1815 		 * requests.  Further primary requests are blocked by negative
1816 		 * writectr.  Hence there cannot be any in-flight requests and
1817 		 * no invocations of fuse_writepage_end() while we're in
1818 		 * fuse_set_nowrite..fuse_release_nowrite section.
1819 		 */
1820 		fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1821 	}
1822 	fi->writectr--;
1823 	fuse_writepage_finish(fm, wpa);
1824 	spin_unlock(&fi->lock);
1825 	fuse_writepage_free(wpa);
1826 }
1827 
__fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1828 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1829 					       struct fuse_inode *fi)
1830 {
1831 	struct fuse_file *ff = NULL;
1832 
1833 	spin_lock(&fi->lock);
1834 	if (!list_empty(&fi->write_files)) {
1835 		ff = list_entry(fi->write_files.next, struct fuse_file,
1836 				write_entry);
1837 		fuse_file_get(ff);
1838 	}
1839 	spin_unlock(&fi->lock);
1840 
1841 	return ff;
1842 }
1843 
fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1844 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1845 					     struct fuse_inode *fi)
1846 {
1847 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1848 	WARN_ON(!ff);
1849 	return ff;
1850 }
1851 
fuse_write_inode(struct inode * inode,struct writeback_control * wbc)1852 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1853 {
1854 	struct fuse_conn *fc = get_fuse_conn(inode);
1855 	struct fuse_inode *fi = get_fuse_inode(inode);
1856 	struct fuse_file *ff;
1857 	int err;
1858 
1859 	/*
1860 	 * Inode is always written before the last reference is dropped and
1861 	 * hence this should not be reached from reclaim.
1862 	 *
1863 	 * Writing back the inode from reclaim can deadlock if the request
1864 	 * processing itself needs an allocation.  Allocations triggering
1865 	 * reclaim while serving a request can't be prevented, because it can
1866 	 * involve any number of unrelated userspace processes.
1867 	 */
1868 	WARN_ON(wbc->for_reclaim);
1869 
1870 	ff = __fuse_write_file_get(fc, fi);
1871 	err = fuse_flush_times(inode, ff);
1872 	if (ff)
1873 		fuse_file_put(ff, false, false);
1874 
1875 	return err;
1876 }
1877 
fuse_writepage_args_alloc(void)1878 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1879 {
1880 	struct fuse_writepage_args *wpa;
1881 	struct fuse_args_pages *ap;
1882 
1883 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1884 	if (wpa) {
1885 		ap = &wpa->ia.ap;
1886 		ap->num_pages = 0;
1887 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1888 		if (!ap->pages) {
1889 			kfree(wpa);
1890 			wpa = NULL;
1891 		}
1892 	}
1893 	return wpa;
1894 
1895 }
1896 
fuse_writepage_locked(struct page * page)1897 static int fuse_writepage_locked(struct page *page)
1898 {
1899 	struct address_space *mapping = page->mapping;
1900 	struct inode *inode = mapping->host;
1901 	struct fuse_conn *fc = get_fuse_conn(inode);
1902 	struct fuse_inode *fi = get_fuse_inode(inode);
1903 	struct fuse_writepage_args *wpa;
1904 	struct fuse_args_pages *ap;
1905 	struct page *tmp_page;
1906 	int error = -ENOMEM;
1907 
1908 	set_page_writeback(page);
1909 
1910 	wpa = fuse_writepage_args_alloc();
1911 	if (!wpa)
1912 		goto err;
1913 	ap = &wpa->ia.ap;
1914 
1915 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1916 	if (!tmp_page)
1917 		goto err_free;
1918 
1919 	error = -EIO;
1920 	wpa->ia.ff = fuse_write_file_get(fc, fi);
1921 	if (!wpa->ia.ff)
1922 		goto err_nofile;
1923 
1924 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1925 
1926 	copy_highpage(tmp_page, page);
1927 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1928 	wpa->next = NULL;
1929 	ap->args.in_pages = true;
1930 	ap->num_pages = 1;
1931 	ap->pages[0] = tmp_page;
1932 	ap->descs[0].offset = 0;
1933 	ap->descs[0].length = PAGE_SIZE;
1934 	ap->args.end = fuse_writepage_end;
1935 	wpa->inode = inode;
1936 
1937 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1938 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1939 
1940 	spin_lock(&fi->lock);
1941 	tree_insert(&fi->writepages, wpa);
1942 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1943 	fuse_flush_writepages(inode);
1944 	spin_unlock(&fi->lock);
1945 
1946 	end_page_writeback(page);
1947 
1948 	return 0;
1949 
1950 err_nofile:
1951 	__free_page(tmp_page);
1952 err_free:
1953 	kfree(wpa);
1954 err:
1955 	mapping_set_error(page->mapping, error);
1956 	end_page_writeback(page);
1957 	return error;
1958 }
1959 
fuse_writepage(struct page * page,struct writeback_control * wbc)1960 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1961 {
1962 	int err;
1963 
1964 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1965 		/*
1966 		 * ->writepages() should be called for sync() and friends.  We
1967 		 * should only get here on direct reclaim and then we are
1968 		 * allowed to skip a page which is already in flight
1969 		 */
1970 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1971 
1972 		redirty_page_for_writepage(wbc, page);
1973 		unlock_page(page);
1974 		return 0;
1975 	}
1976 
1977 	err = fuse_writepage_locked(page);
1978 	unlock_page(page);
1979 
1980 	return err;
1981 }
1982 
1983 struct fuse_fill_wb_data {
1984 	struct fuse_writepage_args *wpa;
1985 	struct fuse_file *ff;
1986 	struct inode *inode;
1987 	struct page **orig_pages;
1988 	unsigned int max_pages;
1989 };
1990 
fuse_pages_realloc(struct fuse_fill_wb_data * data)1991 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1992 {
1993 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
1994 	struct fuse_conn *fc = get_fuse_conn(data->inode);
1995 	struct page **pages;
1996 	struct fuse_page_desc *descs;
1997 	unsigned int npages = min_t(unsigned int,
1998 				    max_t(unsigned int, data->max_pages * 2,
1999 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
2000 				    fc->max_pages);
2001 	WARN_ON(npages <= data->max_pages);
2002 
2003 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
2004 	if (!pages)
2005 		return false;
2006 
2007 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
2008 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
2009 	kfree(ap->pages);
2010 	ap->pages = pages;
2011 	ap->descs = descs;
2012 	data->max_pages = npages;
2013 
2014 	return true;
2015 }
2016 
fuse_writepages_send(struct fuse_fill_wb_data * data)2017 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2018 {
2019 	struct fuse_writepage_args *wpa = data->wpa;
2020 	struct inode *inode = data->inode;
2021 	struct fuse_inode *fi = get_fuse_inode(inode);
2022 	int num_pages = wpa->ia.ap.num_pages;
2023 	int i;
2024 
2025 	wpa->ia.ff = fuse_file_get(data->ff);
2026 	spin_lock(&fi->lock);
2027 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2028 	fuse_flush_writepages(inode);
2029 	spin_unlock(&fi->lock);
2030 
2031 	for (i = 0; i < num_pages; i++)
2032 		end_page_writeback(data->orig_pages[i]);
2033 }
2034 
2035 /*
2036  * Check under fi->lock if the page is under writeback, and insert it onto the
2037  * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2038  * one already added for a page at this offset.  If there's none, then insert
2039  * this new request onto the auxiliary list, otherwise reuse the existing one by
2040  * swapping the new temp page with the old one.
2041  */
fuse_writepage_add(struct fuse_writepage_args * new_wpa,struct page * page)2042 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2043 			       struct page *page)
2044 {
2045 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2046 	struct fuse_writepage_args *tmp;
2047 	struct fuse_writepage_args *old_wpa;
2048 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2049 
2050 	WARN_ON(new_ap->num_pages != 0);
2051 	new_ap->num_pages = 1;
2052 
2053 	spin_lock(&fi->lock);
2054 	old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2055 	if (!old_wpa) {
2056 		spin_unlock(&fi->lock);
2057 		return true;
2058 	}
2059 
2060 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2061 		pgoff_t curr_index;
2062 
2063 		WARN_ON(tmp->inode != new_wpa->inode);
2064 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2065 		if (curr_index == page->index) {
2066 			WARN_ON(tmp->ia.ap.num_pages != 1);
2067 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2068 			break;
2069 		}
2070 	}
2071 
2072 	if (!tmp) {
2073 		new_wpa->next = old_wpa->next;
2074 		old_wpa->next = new_wpa;
2075 	}
2076 
2077 	spin_unlock(&fi->lock);
2078 
2079 	if (tmp) {
2080 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2081 
2082 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2083 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2084 		wb_writeout_inc(&bdi->wb);
2085 		fuse_writepage_free(new_wpa);
2086 	}
2087 
2088 	return false;
2089 }
2090 
fuse_writepage_need_send(struct fuse_conn * fc,struct page * page,struct fuse_args_pages * ap,struct fuse_fill_wb_data * data)2091 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2092 				     struct fuse_args_pages *ap,
2093 				     struct fuse_fill_wb_data *data)
2094 {
2095 	WARN_ON(!ap->num_pages);
2096 
2097 	/*
2098 	 * Being under writeback is unlikely but possible.  For example direct
2099 	 * read to an mmaped fuse file will set the page dirty twice; once when
2100 	 * the pages are faulted with get_user_pages(), and then after the read
2101 	 * completed.
2102 	 */
2103 	if (fuse_page_is_writeback(data->inode, page->index))
2104 		return true;
2105 
2106 	/* Reached max pages */
2107 	if (ap->num_pages == fc->max_pages)
2108 		return true;
2109 
2110 	/* Reached max write bytes */
2111 	if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2112 		return true;
2113 
2114 	/* Discontinuity */
2115 	if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2116 		return true;
2117 
2118 	/* Need to grow the pages array?  If so, did the expansion fail? */
2119 	if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2120 		return true;
2121 
2122 	return false;
2123 }
2124 
fuse_writepages_fill(struct page * page,struct writeback_control * wbc,void * _data)2125 static int fuse_writepages_fill(struct page *page,
2126 		struct writeback_control *wbc, void *_data)
2127 {
2128 	struct fuse_fill_wb_data *data = _data;
2129 	struct fuse_writepage_args *wpa = data->wpa;
2130 	struct fuse_args_pages *ap = &wpa->ia.ap;
2131 	struct inode *inode = data->inode;
2132 	struct fuse_inode *fi = get_fuse_inode(inode);
2133 	struct fuse_conn *fc = get_fuse_conn(inode);
2134 	struct page *tmp_page;
2135 	int err;
2136 
2137 	if (!data->ff) {
2138 		err = -EIO;
2139 		data->ff = fuse_write_file_get(fc, fi);
2140 		if (!data->ff)
2141 			goto out_unlock;
2142 	}
2143 
2144 	if (wpa && fuse_writepage_need_send(fc, page, ap, data)) {
2145 		fuse_writepages_send(data);
2146 		data->wpa = NULL;
2147 	}
2148 
2149 	err = -ENOMEM;
2150 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2151 	if (!tmp_page)
2152 		goto out_unlock;
2153 
2154 	/*
2155 	 * The page must not be redirtied until the writeout is completed
2156 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2157 	 * there could be more than one temporary page instance for each real
2158 	 * page.
2159 	 *
2160 	 * This is ensured by holding the page lock in page_mkwrite() while
2161 	 * checking fuse_page_is_writeback().  We already hold the page lock
2162 	 * since clear_page_dirty_for_io() and keep it held until we add the
2163 	 * request to the fi->writepages list and increment ap->num_pages.
2164 	 * After this fuse_page_is_writeback() will indicate that the page is
2165 	 * under writeback, so we can release the page lock.
2166 	 */
2167 	if (data->wpa == NULL) {
2168 		err = -ENOMEM;
2169 		wpa = fuse_writepage_args_alloc();
2170 		if (!wpa) {
2171 			__free_page(tmp_page);
2172 			goto out_unlock;
2173 		}
2174 		data->max_pages = 1;
2175 
2176 		ap = &wpa->ia.ap;
2177 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2178 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2179 		wpa->next = NULL;
2180 		ap->args.in_pages = true;
2181 		ap->args.end = fuse_writepage_end;
2182 		ap->num_pages = 0;
2183 		wpa->inode = inode;
2184 	}
2185 	set_page_writeback(page);
2186 
2187 	copy_highpage(tmp_page, page);
2188 	ap->pages[ap->num_pages] = tmp_page;
2189 	ap->descs[ap->num_pages].offset = 0;
2190 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2191 	data->orig_pages[ap->num_pages] = page;
2192 
2193 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2194 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2195 
2196 	err = 0;
2197 	if (data->wpa) {
2198 		/*
2199 		 * Protected by fi->lock against concurrent access by
2200 		 * fuse_page_is_writeback().
2201 		 */
2202 		spin_lock(&fi->lock);
2203 		ap->num_pages++;
2204 		spin_unlock(&fi->lock);
2205 	} else if (fuse_writepage_add(wpa, page)) {
2206 		data->wpa = wpa;
2207 	} else {
2208 		end_page_writeback(page);
2209 	}
2210 out_unlock:
2211 	unlock_page(page);
2212 
2213 	return err;
2214 }
2215 
fuse_writepages(struct address_space * mapping,struct writeback_control * wbc)2216 static int fuse_writepages(struct address_space *mapping,
2217 			   struct writeback_control *wbc)
2218 {
2219 	struct inode *inode = mapping->host;
2220 	struct fuse_conn *fc = get_fuse_conn(inode);
2221 	struct fuse_fill_wb_data data;
2222 	int err;
2223 
2224 	err = -EIO;
2225 	if (fuse_is_bad(inode))
2226 		goto out;
2227 
2228 	data.inode = inode;
2229 	data.wpa = NULL;
2230 	data.ff = NULL;
2231 
2232 	err = -ENOMEM;
2233 	data.orig_pages = kcalloc(fc->max_pages,
2234 				  sizeof(struct page *),
2235 				  GFP_NOFS);
2236 	if (!data.orig_pages)
2237 		goto out;
2238 
2239 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2240 	if (data.wpa) {
2241 		WARN_ON(!data.wpa->ia.ap.num_pages);
2242 		fuse_writepages_send(&data);
2243 	}
2244 	if (data.ff)
2245 		fuse_file_put(data.ff, false, false);
2246 
2247 	kfree(data.orig_pages);
2248 out:
2249 	return err;
2250 }
2251 
2252 /*
2253  * It's worthy to make sure that space is reserved on disk for the write,
2254  * but how to implement it without killing performance need more thinking.
2255  */
fuse_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2256 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2257 		loff_t pos, unsigned len, unsigned flags,
2258 		struct page **pagep, void **fsdata)
2259 {
2260 	pgoff_t index = pos >> PAGE_SHIFT;
2261 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2262 	struct page *page;
2263 	loff_t fsize;
2264 	int err = -ENOMEM;
2265 
2266 	WARN_ON(!fc->writeback_cache);
2267 
2268 	page = grab_cache_page_write_begin(mapping, index, flags);
2269 	if (!page)
2270 		goto error;
2271 
2272 	fuse_wait_on_page_writeback(mapping->host, page->index);
2273 
2274 	if (PageUptodate(page) || len == PAGE_SIZE)
2275 		goto success;
2276 	/*
2277 	 * Check if the start this page comes after the end of file, in which
2278 	 * case the readpage can be optimized away.
2279 	 */
2280 	fsize = i_size_read(mapping->host);
2281 	if (fsize <= (pos & PAGE_MASK)) {
2282 		size_t off = pos & ~PAGE_MASK;
2283 		if (off)
2284 			zero_user_segment(page, 0, off);
2285 		goto success;
2286 	}
2287 	err = fuse_do_readpage(file, page);
2288 	if (err)
2289 		goto cleanup;
2290 success:
2291 	*pagep = page;
2292 	return 0;
2293 
2294 cleanup:
2295 	unlock_page(page);
2296 	put_page(page);
2297 error:
2298 	return err;
2299 }
2300 
fuse_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2301 static int fuse_write_end(struct file *file, struct address_space *mapping,
2302 		loff_t pos, unsigned len, unsigned copied,
2303 		struct page *page, void *fsdata)
2304 {
2305 	struct inode *inode = page->mapping->host;
2306 
2307 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2308 	if (!copied)
2309 		goto unlock;
2310 
2311 	if (!PageUptodate(page)) {
2312 		/* Zero any unwritten bytes at the end of the page */
2313 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2314 		if (endoff)
2315 			zero_user_segment(page, endoff, PAGE_SIZE);
2316 		SetPageUptodate(page);
2317 	}
2318 
2319 	fuse_write_update_size(inode, pos + copied);
2320 	set_page_dirty(page);
2321 
2322 unlock:
2323 	unlock_page(page);
2324 	put_page(page);
2325 
2326 	return copied;
2327 }
2328 
fuse_launder_page(struct page * page)2329 static int fuse_launder_page(struct page *page)
2330 {
2331 	int err = 0;
2332 	if (clear_page_dirty_for_io(page)) {
2333 		struct inode *inode = page->mapping->host;
2334 		err = fuse_writepage_locked(page);
2335 		if (!err)
2336 			fuse_wait_on_page_writeback(inode, page->index);
2337 	}
2338 	return err;
2339 }
2340 
2341 /*
2342  * Write back dirty pages now, because there may not be any suitable
2343  * open files later
2344  */
fuse_vma_close(struct vm_area_struct * vma)2345 static void fuse_vma_close(struct vm_area_struct *vma)
2346 {
2347 	filemap_write_and_wait(vma->vm_file->f_mapping);
2348 }
2349 
2350 /*
2351  * Wait for writeback against this page to complete before allowing it
2352  * to be marked dirty again, and hence written back again, possibly
2353  * before the previous writepage completed.
2354  *
2355  * Block here, instead of in ->writepage(), so that the userspace fs
2356  * can only block processes actually operating on the filesystem.
2357  *
2358  * Otherwise unprivileged userspace fs would be able to block
2359  * unrelated:
2360  *
2361  * - page migration
2362  * - sync(2)
2363  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2364  */
fuse_page_mkwrite(struct vm_fault * vmf)2365 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2366 {
2367 	struct page *page = vmf->page;
2368 	struct inode *inode = file_inode(vmf->vma->vm_file);
2369 
2370 	file_update_time(vmf->vma->vm_file);
2371 	lock_page(page);
2372 	if (page->mapping != inode->i_mapping) {
2373 		unlock_page(page);
2374 		return VM_FAULT_NOPAGE;
2375 	}
2376 
2377 	fuse_wait_on_page_writeback(inode, page->index);
2378 	return VM_FAULT_LOCKED;
2379 }
2380 
2381 static const struct vm_operations_struct fuse_file_vm_ops = {
2382 	.close		= fuse_vma_close,
2383 	.fault		= filemap_fault,
2384 	.map_pages	= filemap_map_pages,
2385 	.page_mkwrite	= fuse_page_mkwrite,
2386 };
2387 
fuse_file_mmap(struct file * file,struct vm_area_struct * vma)2388 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2389 {
2390 	struct fuse_file *ff = file->private_data;
2391 
2392 	/* DAX mmap is superior to direct_io mmap */
2393 	if (FUSE_IS_DAX(file_inode(file)))
2394 		return fuse_dax_mmap(file, vma);
2395 
2396 	if (ff->passthrough.filp)
2397 		return fuse_passthrough_mmap(file, vma);
2398 
2399 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2400 		/* Can't provide the coherency needed for MAP_SHARED */
2401 		if (vma->vm_flags & VM_MAYSHARE)
2402 			return -ENODEV;
2403 
2404 		invalidate_inode_pages2(file->f_mapping);
2405 
2406 		return generic_file_mmap(file, vma);
2407 	}
2408 
2409 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2410 		fuse_link_write_file(file);
2411 
2412 	file_accessed(file);
2413 	vma->vm_ops = &fuse_file_vm_ops;
2414 	return 0;
2415 }
2416 
convert_fuse_file_lock(struct fuse_conn * fc,const struct fuse_file_lock * ffl,struct file_lock * fl)2417 static int convert_fuse_file_lock(struct fuse_conn *fc,
2418 				  const struct fuse_file_lock *ffl,
2419 				  struct file_lock *fl)
2420 {
2421 	switch (ffl->type) {
2422 	case F_UNLCK:
2423 		break;
2424 
2425 	case F_RDLCK:
2426 	case F_WRLCK:
2427 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2428 		    ffl->end < ffl->start)
2429 			return -EIO;
2430 
2431 		fl->fl_start = ffl->start;
2432 		fl->fl_end = ffl->end;
2433 
2434 		/*
2435 		 * Convert pid into init's pid namespace.  The locks API will
2436 		 * translate it into the caller's pid namespace.
2437 		 */
2438 		rcu_read_lock();
2439 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2440 		rcu_read_unlock();
2441 		break;
2442 
2443 	default:
2444 		return -EIO;
2445 	}
2446 	fl->fl_type = ffl->type;
2447 	return 0;
2448 }
2449 
fuse_lk_fill(struct fuse_args * args,struct file * file,const struct file_lock * fl,int opcode,pid_t pid,int flock,struct fuse_lk_in * inarg)2450 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2451 			 const struct file_lock *fl, int opcode, pid_t pid,
2452 			 int flock, struct fuse_lk_in *inarg)
2453 {
2454 	struct inode *inode = file_inode(file);
2455 	struct fuse_conn *fc = get_fuse_conn(inode);
2456 	struct fuse_file *ff = file->private_data;
2457 
2458 	memset(inarg, 0, sizeof(*inarg));
2459 	inarg->fh = ff->fh;
2460 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2461 	inarg->lk.start = fl->fl_start;
2462 	inarg->lk.end = fl->fl_end;
2463 	inarg->lk.type = fl->fl_type;
2464 	inarg->lk.pid = pid;
2465 	if (flock)
2466 		inarg->lk_flags |= FUSE_LK_FLOCK;
2467 	args->opcode = opcode;
2468 	args->nodeid = get_node_id(inode);
2469 	args->in_numargs = 1;
2470 	args->in_args[0].size = sizeof(*inarg);
2471 	args->in_args[0].value = inarg;
2472 }
2473 
fuse_getlk(struct file * file,struct file_lock * fl)2474 static int fuse_getlk(struct file *file, struct file_lock *fl)
2475 {
2476 	struct inode *inode = file_inode(file);
2477 	struct fuse_mount *fm = get_fuse_mount(inode);
2478 	FUSE_ARGS(args);
2479 	struct fuse_lk_in inarg;
2480 	struct fuse_lk_out outarg;
2481 	int err;
2482 
2483 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2484 	args.out_numargs = 1;
2485 	args.out_args[0].size = sizeof(outarg);
2486 	args.out_args[0].value = &outarg;
2487 	err = fuse_simple_request(fm, &args);
2488 	if (!err)
2489 		err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2490 
2491 	return err;
2492 }
2493 
fuse_setlk(struct file * file,struct file_lock * fl,int flock)2494 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2495 {
2496 	struct inode *inode = file_inode(file);
2497 	struct fuse_mount *fm = get_fuse_mount(inode);
2498 	FUSE_ARGS(args);
2499 	struct fuse_lk_in inarg;
2500 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2501 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2502 	pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2503 	int err;
2504 
2505 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2506 		/* NLM needs asynchronous locks, which we don't support yet */
2507 		return -ENOLCK;
2508 	}
2509 
2510 	/* Unlock on close is handled by the flush method */
2511 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2512 		return 0;
2513 
2514 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2515 	err = fuse_simple_request(fm, &args);
2516 
2517 	/* locking is restartable */
2518 	if (err == -EINTR)
2519 		err = -ERESTARTSYS;
2520 
2521 	return err;
2522 }
2523 
fuse_file_lock(struct file * file,int cmd,struct file_lock * fl)2524 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2525 {
2526 	struct inode *inode = file_inode(file);
2527 	struct fuse_conn *fc = get_fuse_conn(inode);
2528 	int err;
2529 
2530 	if (cmd == F_CANCELLK) {
2531 		err = 0;
2532 	} else if (cmd == F_GETLK) {
2533 		if (fc->no_lock) {
2534 			posix_test_lock(file, fl);
2535 			err = 0;
2536 		} else
2537 			err = fuse_getlk(file, fl);
2538 	} else {
2539 		if (fc->no_lock)
2540 			err = posix_lock_file(file, fl, NULL);
2541 		else
2542 			err = fuse_setlk(file, fl, 0);
2543 	}
2544 	return err;
2545 }
2546 
fuse_file_flock(struct file * file,int cmd,struct file_lock * fl)2547 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2548 {
2549 	struct inode *inode = file_inode(file);
2550 	struct fuse_conn *fc = get_fuse_conn(inode);
2551 	int err;
2552 
2553 	if (fc->no_flock) {
2554 		err = locks_lock_file_wait(file, fl);
2555 	} else {
2556 		struct fuse_file *ff = file->private_data;
2557 
2558 		/* emulate flock with POSIX locks */
2559 		ff->flock = true;
2560 		err = fuse_setlk(file, fl, 1);
2561 	}
2562 
2563 	return err;
2564 }
2565 
fuse_bmap(struct address_space * mapping,sector_t block)2566 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2567 {
2568 	struct inode *inode = mapping->host;
2569 	struct fuse_mount *fm = get_fuse_mount(inode);
2570 	FUSE_ARGS(args);
2571 	struct fuse_bmap_in inarg;
2572 	struct fuse_bmap_out outarg;
2573 	int err;
2574 
2575 	if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2576 		return 0;
2577 
2578 	memset(&inarg, 0, sizeof(inarg));
2579 	inarg.block = block;
2580 	inarg.blocksize = inode->i_sb->s_blocksize;
2581 	args.opcode = FUSE_BMAP;
2582 	args.nodeid = get_node_id(inode);
2583 	args.in_numargs = 1;
2584 	args.in_args[0].size = sizeof(inarg);
2585 	args.in_args[0].value = &inarg;
2586 	args.out_numargs = 1;
2587 	args.out_args[0].size = sizeof(outarg);
2588 	args.out_args[0].value = &outarg;
2589 	err = fuse_simple_request(fm, &args);
2590 	if (err == -ENOSYS)
2591 		fm->fc->no_bmap = 1;
2592 
2593 	return err ? 0 : outarg.block;
2594 }
2595 
fuse_lseek(struct file * file,loff_t offset,int whence)2596 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2597 {
2598 	struct inode *inode = file->f_mapping->host;
2599 	struct fuse_mount *fm = get_fuse_mount(inode);
2600 	struct fuse_file *ff = file->private_data;
2601 	FUSE_ARGS(args);
2602 	struct fuse_lseek_in inarg = {
2603 		.fh = ff->fh,
2604 		.offset = offset,
2605 		.whence = whence
2606 	};
2607 	struct fuse_lseek_out outarg;
2608 	int err;
2609 
2610 	if (fm->fc->no_lseek)
2611 		goto fallback;
2612 
2613 	args.opcode = FUSE_LSEEK;
2614 	args.nodeid = ff->nodeid;
2615 	args.in_numargs = 1;
2616 	args.in_args[0].size = sizeof(inarg);
2617 	args.in_args[0].value = &inarg;
2618 	args.out_numargs = 1;
2619 	args.out_args[0].size = sizeof(outarg);
2620 	args.out_args[0].value = &outarg;
2621 	err = fuse_simple_request(fm, &args);
2622 	if (err) {
2623 		if (err == -ENOSYS) {
2624 			fm->fc->no_lseek = 1;
2625 			goto fallback;
2626 		}
2627 		return err;
2628 	}
2629 
2630 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2631 
2632 fallback:
2633 	err = fuse_update_attributes(inode, file);
2634 	if (!err)
2635 		return generic_file_llseek(file, offset, whence);
2636 	else
2637 		return err;
2638 }
2639 
fuse_file_llseek(struct file * file,loff_t offset,int whence)2640 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2641 {
2642 	loff_t retval;
2643 	struct inode *inode = file_inode(file);
2644 
2645 	switch (whence) {
2646 	case SEEK_SET:
2647 	case SEEK_CUR:
2648 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2649 		retval = generic_file_llseek(file, offset, whence);
2650 		break;
2651 	case SEEK_END:
2652 		inode_lock(inode);
2653 		retval = fuse_update_attributes(inode, file);
2654 		if (!retval)
2655 			retval = generic_file_llseek(file, offset, whence);
2656 		inode_unlock(inode);
2657 		break;
2658 	case SEEK_HOLE:
2659 	case SEEK_DATA:
2660 		inode_lock(inode);
2661 		retval = fuse_lseek(file, offset, whence);
2662 		inode_unlock(inode);
2663 		break;
2664 	default:
2665 		retval = -EINVAL;
2666 	}
2667 
2668 	return retval;
2669 }
2670 
2671 /*
2672  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2673  * ABI was defined to be 'struct iovec' which is different on 32bit
2674  * and 64bit.  Fortunately we can determine which structure the server
2675  * used from the size of the reply.
2676  */
fuse_copy_ioctl_iovec_old(struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2677 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2678 				     size_t transferred, unsigned count,
2679 				     bool is_compat)
2680 {
2681 #ifdef CONFIG_COMPAT
2682 	if (count * sizeof(struct compat_iovec) == transferred) {
2683 		struct compat_iovec *ciov = src;
2684 		unsigned i;
2685 
2686 		/*
2687 		 * With this interface a 32bit server cannot support
2688 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2689 		 * requests
2690 		 */
2691 		if (!is_compat)
2692 			return -EINVAL;
2693 
2694 		for (i = 0; i < count; i++) {
2695 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2696 			dst[i].iov_len = ciov[i].iov_len;
2697 		}
2698 		return 0;
2699 	}
2700 #endif
2701 
2702 	if (count * sizeof(struct iovec) != transferred)
2703 		return -EIO;
2704 
2705 	memcpy(dst, src, transferred);
2706 	return 0;
2707 }
2708 
2709 /* Make sure iov_length() won't overflow */
fuse_verify_ioctl_iov(struct fuse_conn * fc,struct iovec * iov,size_t count)2710 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2711 				 size_t count)
2712 {
2713 	size_t n;
2714 	u32 max = fc->max_pages << PAGE_SHIFT;
2715 
2716 	for (n = 0; n < count; n++, iov++) {
2717 		if (iov->iov_len > (size_t) max)
2718 			return -ENOMEM;
2719 		max -= iov->iov_len;
2720 	}
2721 	return 0;
2722 }
2723 
fuse_copy_ioctl_iovec(struct fuse_conn * fc,struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2724 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2725 				 void *src, size_t transferred, unsigned count,
2726 				 bool is_compat)
2727 {
2728 	unsigned i;
2729 	struct fuse_ioctl_iovec *fiov = src;
2730 
2731 	if (fc->minor < 16) {
2732 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2733 						 count, is_compat);
2734 	}
2735 
2736 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2737 		return -EIO;
2738 
2739 	for (i = 0; i < count; i++) {
2740 		/* Did the server supply an inappropriate value? */
2741 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2742 		    fiov[i].len != (unsigned long) fiov[i].len)
2743 			return -EIO;
2744 
2745 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2746 		dst[i].iov_len = (size_t) fiov[i].len;
2747 
2748 #ifdef CONFIG_COMPAT
2749 		if (is_compat &&
2750 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2751 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2752 			return -EIO;
2753 #endif
2754 	}
2755 
2756 	return 0;
2757 }
2758 
2759 
2760 /*
2761  * For ioctls, there is no generic way to determine how much memory
2762  * needs to be read and/or written.  Furthermore, ioctls are allowed
2763  * to dereference the passed pointer, so the parameter requires deep
2764  * copying but FUSE has no idea whatsoever about what to copy in or
2765  * out.
2766  *
2767  * This is solved by allowing FUSE server to retry ioctl with
2768  * necessary in/out iovecs.  Let's assume the ioctl implementation
2769  * needs to read in the following structure.
2770  *
2771  * struct a {
2772  *	char	*buf;
2773  *	size_t	buflen;
2774  * }
2775  *
2776  * On the first callout to FUSE server, inarg->in_size and
2777  * inarg->out_size will be NULL; then, the server completes the ioctl
2778  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2779  * the actual iov array to
2780  *
2781  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2782  *
2783  * which tells FUSE to copy in the requested area and retry the ioctl.
2784  * On the second round, the server has access to the structure and
2785  * from that it can tell what to look for next, so on the invocation,
2786  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2787  *
2788  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2789  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2790  *
2791  * FUSE will copy both struct a and the pointed buffer from the
2792  * process doing the ioctl and retry ioctl with both struct a and the
2793  * buffer.
2794  *
2795  * This time, FUSE server has everything it needs and completes ioctl
2796  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2797  *
2798  * Copying data out works the same way.
2799  *
2800  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2801  * automatically initializes in and out iovs by decoding @cmd with
2802  * _IOC_* macros and the server is not allowed to request RETRY.  This
2803  * limits ioctl data transfers to well-formed ioctls and is the forced
2804  * behavior for all FUSE servers.
2805  */
fuse_do_ioctl(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2806 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2807 		   unsigned int flags)
2808 {
2809 	struct fuse_file *ff = file->private_data;
2810 	struct fuse_mount *fm = ff->fm;
2811 	struct fuse_ioctl_in inarg = {
2812 		.fh = ff->fh,
2813 		.cmd = cmd,
2814 		.arg = arg,
2815 		.flags = flags
2816 	};
2817 	struct fuse_ioctl_out outarg;
2818 	struct iovec *iov_page = NULL;
2819 	struct iovec *in_iov = NULL, *out_iov = NULL;
2820 	unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2821 	size_t in_size, out_size, c;
2822 	ssize_t transferred;
2823 	int err, i;
2824 	struct iov_iter ii;
2825 	struct fuse_args_pages ap = {};
2826 
2827 #if BITS_PER_LONG == 32
2828 	inarg.flags |= FUSE_IOCTL_32BIT;
2829 #else
2830 	if (flags & FUSE_IOCTL_COMPAT) {
2831 		inarg.flags |= FUSE_IOCTL_32BIT;
2832 #ifdef CONFIG_X86_X32
2833 		if (in_x32_syscall())
2834 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2835 #endif
2836 	}
2837 #endif
2838 
2839 	/* assume all the iovs returned by client always fits in a page */
2840 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2841 
2842 	err = -ENOMEM;
2843 	ap.pages = fuse_pages_alloc(fm->fc->max_pages, GFP_KERNEL, &ap.descs);
2844 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2845 	if (!ap.pages || !iov_page)
2846 		goto out;
2847 
2848 	fuse_page_descs_length_init(ap.descs, 0, fm->fc->max_pages);
2849 
2850 	/*
2851 	 * If restricted, initialize IO parameters as encoded in @cmd.
2852 	 * RETRY from server is not allowed.
2853 	 */
2854 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2855 		struct iovec *iov = iov_page;
2856 
2857 		iov->iov_base = (void __user *)arg;
2858 
2859 		switch (cmd) {
2860 		case FS_IOC_GETFLAGS:
2861 		case FS_IOC_SETFLAGS:
2862 			iov->iov_len = sizeof(int);
2863 			break;
2864 		default:
2865 			iov->iov_len = _IOC_SIZE(cmd);
2866 			break;
2867 		}
2868 
2869 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2870 			in_iov = iov;
2871 			in_iovs = 1;
2872 		}
2873 
2874 		if (_IOC_DIR(cmd) & _IOC_READ) {
2875 			out_iov = iov;
2876 			out_iovs = 1;
2877 		}
2878 	}
2879 
2880  retry:
2881 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2882 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2883 
2884 	/*
2885 	 * Out data can be used either for actual out data or iovs,
2886 	 * make sure there always is at least one page.
2887 	 */
2888 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2889 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2890 
2891 	/* make sure there are enough buffer pages and init request with them */
2892 	err = -ENOMEM;
2893 	if (max_pages > fm->fc->max_pages)
2894 		goto out;
2895 	while (ap.num_pages < max_pages) {
2896 		ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2897 		if (!ap.pages[ap.num_pages])
2898 			goto out;
2899 		ap.num_pages++;
2900 	}
2901 
2902 
2903 	/* okay, let's send it to the client */
2904 	ap.args.opcode = FUSE_IOCTL;
2905 	ap.args.nodeid = ff->nodeid;
2906 	ap.args.in_numargs = 1;
2907 	ap.args.in_args[0].size = sizeof(inarg);
2908 	ap.args.in_args[0].value = &inarg;
2909 	if (in_size) {
2910 		ap.args.in_numargs++;
2911 		ap.args.in_args[1].size = in_size;
2912 		ap.args.in_pages = true;
2913 
2914 		err = -EFAULT;
2915 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2916 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2917 			c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2918 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2919 				goto out;
2920 		}
2921 	}
2922 
2923 	ap.args.out_numargs = 2;
2924 	ap.args.out_args[0].size = sizeof(outarg);
2925 	ap.args.out_args[0].value = &outarg;
2926 	ap.args.out_args[1].size = out_size;
2927 	ap.args.out_pages = true;
2928 	ap.args.out_argvar = true;
2929 
2930 	transferred = fuse_simple_request(fm, &ap.args);
2931 	err = transferred;
2932 	if (transferred < 0)
2933 		goto out;
2934 
2935 	/* did it ask for retry? */
2936 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2937 		void *vaddr;
2938 
2939 		/* no retry if in restricted mode */
2940 		err = -EIO;
2941 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2942 			goto out;
2943 
2944 		in_iovs = outarg.in_iovs;
2945 		out_iovs = outarg.out_iovs;
2946 
2947 		/*
2948 		 * Make sure things are in boundary, separate checks
2949 		 * are to protect against overflow.
2950 		 */
2951 		err = -ENOMEM;
2952 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2953 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2954 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2955 			goto out;
2956 
2957 		vaddr = kmap_atomic(ap.pages[0]);
2958 		err = fuse_copy_ioctl_iovec(fm->fc, iov_page, vaddr,
2959 					    transferred, in_iovs + out_iovs,
2960 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2961 		kunmap_atomic(vaddr);
2962 		if (err)
2963 			goto out;
2964 
2965 		in_iov = iov_page;
2966 		out_iov = in_iov + in_iovs;
2967 
2968 		err = fuse_verify_ioctl_iov(fm->fc, in_iov, in_iovs);
2969 		if (err)
2970 			goto out;
2971 
2972 		err = fuse_verify_ioctl_iov(fm->fc, out_iov, out_iovs);
2973 		if (err)
2974 			goto out;
2975 
2976 		goto retry;
2977 	}
2978 
2979 	err = -EIO;
2980 	if (transferred > inarg.out_size)
2981 		goto out;
2982 
2983 	err = -EFAULT;
2984 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2985 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2986 		c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2987 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2988 			goto out;
2989 	}
2990 	err = 0;
2991  out:
2992 	free_page((unsigned long) iov_page);
2993 	while (ap.num_pages)
2994 		__free_page(ap.pages[--ap.num_pages]);
2995 	kfree(ap.pages);
2996 
2997 	return err ? err : outarg.result;
2998 }
2999 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
3000 
fuse_ioctl_common(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)3001 long fuse_ioctl_common(struct file *file, unsigned int cmd,
3002 		       unsigned long arg, unsigned int flags)
3003 {
3004 	struct inode *inode = file_inode(file);
3005 	struct fuse_conn *fc = get_fuse_conn(inode);
3006 
3007 	if (!fuse_allow_current_process(fc))
3008 		return -EACCES;
3009 
3010 	if (fuse_is_bad(inode))
3011 		return -EIO;
3012 
3013 	return fuse_do_ioctl(file, cmd, arg, flags);
3014 }
3015 
fuse_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3016 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
3017 			    unsigned long arg)
3018 {
3019 	return fuse_ioctl_common(file, cmd, arg, 0);
3020 }
3021 
fuse_file_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3022 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
3023 				   unsigned long arg)
3024 {
3025 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
3026 }
3027 
3028 /*
3029  * All files which have been polled are linked to RB tree
3030  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
3031  * find the matching one.
3032  */
fuse_find_polled_node(struct fuse_conn * fc,u64 kh,struct rb_node ** parent_out)3033 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
3034 					      struct rb_node **parent_out)
3035 {
3036 	struct rb_node **link = &fc->polled_files.rb_node;
3037 	struct rb_node *last = NULL;
3038 
3039 	while (*link) {
3040 		struct fuse_file *ff;
3041 
3042 		last = *link;
3043 		ff = rb_entry(last, struct fuse_file, polled_node);
3044 
3045 		if (kh < ff->kh)
3046 			link = &last->rb_left;
3047 		else if (kh > ff->kh)
3048 			link = &last->rb_right;
3049 		else
3050 			return link;
3051 	}
3052 
3053 	if (parent_out)
3054 		*parent_out = last;
3055 	return link;
3056 }
3057 
3058 /*
3059  * The file is about to be polled.  Make sure it's on the polled_files
3060  * RB tree.  Note that files once added to the polled_files tree are
3061  * not removed before the file is released.  This is because a file
3062  * polled once is likely to be polled again.
3063  */
fuse_register_polled_file(struct fuse_conn * fc,struct fuse_file * ff)3064 static void fuse_register_polled_file(struct fuse_conn *fc,
3065 				      struct fuse_file *ff)
3066 {
3067 	spin_lock(&fc->lock);
3068 	if (RB_EMPTY_NODE(&ff->polled_node)) {
3069 		struct rb_node **link, *parent;
3070 
3071 		link = fuse_find_polled_node(fc, ff->kh, &parent);
3072 		BUG_ON(*link);
3073 		rb_link_node(&ff->polled_node, parent, link);
3074 		rb_insert_color(&ff->polled_node, &fc->polled_files);
3075 	}
3076 	spin_unlock(&fc->lock);
3077 }
3078 
fuse_file_poll(struct file * file,poll_table * wait)3079 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
3080 {
3081 	struct fuse_file *ff = file->private_data;
3082 	struct fuse_mount *fm = ff->fm;
3083 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
3084 	struct fuse_poll_out outarg;
3085 	FUSE_ARGS(args);
3086 	int err;
3087 
3088 	if (fm->fc->no_poll)
3089 		return DEFAULT_POLLMASK;
3090 
3091 	poll_wait(file, &ff->poll_wait, wait);
3092 	inarg.events = mangle_poll(poll_requested_events(wait));
3093 
3094 	/*
3095 	 * Ask for notification iff there's someone waiting for it.
3096 	 * The client may ignore the flag and always notify.
3097 	 */
3098 	if (waitqueue_active(&ff->poll_wait)) {
3099 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
3100 		fuse_register_polled_file(fm->fc, ff);
3101 	}
3102 
3103 	args.opcode = FUSE_POLL;
3104 	args.nodeid = ff->nodeid;
3105 	args.in_numargs = 1;
3106 	args.in_args[0].size = sizeof(inarg);
3107 	args.in_args[0].value = &inarg;
3108 	args.out_numargs = 1;
3109 	args.out_args[0].size = sizeof(outarg);
3110 	args.out_args[0].value = &outarg;
3111 	err = fuse_simple_request(fm, &args);
3112 
3113 	if (!err)
3114 		return demangle_poll(outarg.revents);
3115 	if (err == -ENOSYS) {
3116 		fm->fc->no_poll = 1;
3117 		return DEFAULT_POLLMASK;
3118 	}
3119 	return EPOLLERR;
3120 }
3121 EXPORT_SYMBOL_GPL(fuse_file_poll);
3122 
3123 /*
3124  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3125  * wakes up the poll waiters.
3126  */
fuse_notify_poll_wakeup(struct fuse_conn * fc,struct fuse_notify_poll_wakeup_out * outarg)3127 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3128 			    struct fuse_notify_poll_wakeup_out *outarg)
3129 {
3130 	u64 kh = outarg->kh;
3131 	struct rb_node **link;
3132 
3133 	spin_lock(&fc->lock);
3134 
3135 	link = fuse_find_polled_node(fc, kh, NULL);
3136 	if (*link) {
3137 		struct fuse_file *ff;
3138 
3139 		ff = rb_entry(*link, struct fuse_file, polled_node);
3140 		wake_up_interruptible_sync(&ff->poll_wait);
3141 	}
3142 
3143 	spin_unlock(&fc->lock);
3144 	return 0;
3145 }
3146 
fuse_do_truncate(struct file * file)3147 static void fuse_do_truncate(struct file *file)
3148 {
3149 	struct inode *inode = file->f_mapping->host;
3150 	struct iattr attr;
3151 
3152 	attr.ia_valid = ATTR_SIZE;
3153 	attr.ia_size = i_size_read(inode);
3154 
3155 	attr.ia_file = file;
3156 	attr.ia_valid |= ATTR_FILE;
3157 
3158 	fuse_do_setattr(file_dentry(file), &attr, file);
3159 }
3160 
fuse_round_up(struct fuse_conn * fc,loff_t off)3161 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3162 {
3163 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3164 }
3165 
3166 static ssize_t
fuse_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3167 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3168 {
3169 	DECLARE_COMPLETION_ONSTACK(wait);
3170 	ssize_t ret = 0;
3171 	struct file *file = iocb->ki_filp;
3172 	struct fuse_file *ff = file->private_data;
3173 	loff_t pos = 0;
3174 	struct inode *inode;
3175 	loff_t i_size;
3176 	size_t count = iov_iter_count(iter), shortened = 0;
3177 	loff_t offset = iocb->ki_pos;
3178 	struct fuse_io_priv *io;
3179 
3180 	pos = offset;
3181 	inode = file->f_mapping->host;
3182 	i_size = i_size_read(inode);
3183 
3184 	if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3185 		return 0;
3186 
3187 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3188 	if (!io)
3189 		return -ENOMEM;
3190 	spin_lock_init(&io->lock);
3191 	kref_init(&io->refcnt);
3192 	io->reqs = 1;
3193 	io->bytes = -1;
3194 	io->size = 0;
3195 	io->offset = offset;
3196 	io->write = (iov_iter_rw(iter) == WRITE);
3197 	io->err = 0;
3198 	/*
3199 	 * By default, we want to optimize all I/Os with async request
3200 	 * submission to the client filesystem if supported.
3201 	 */
3202 	io->async = ff->fm->fc->async_dio;
3203 	io->iocb = iocb;
3204 	io->blocking = is_sync_kiocb(iocb);
3205 
3206 	/* optimization for short read */
3207 	if (io->async && !io->write && offset + count > i_size) {
3208 		iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
3209 		shortened = count - iov_iter_count(iter);
3210 		count -= shortened;
3211 	}
3212 
3213 	/*
3214 	 * We cannot asynchronously extend the size of a file.
3215 	 * In such case the aio will behave exactly like sync io.
3216 	 */
3217 	if ((offset + count > i_size) && io->write)
3218 		io->blocking = true;
3219 
3220 	if (io->async && io->blocking) {
3221 		/*
3222 		 * Additional reference to keep io around after
3223 		 * calling fuse_aio_complete()
3224 		 */
3225 		kref_get(&io->refcnt);
3226 		io->done = &wait;
3227 	}
3228 
3229 	if (iov_iter_rw(iter) == WRITE) {
3230 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3231 		fuse_invalidate_attr(inode);
3232 	} else {
3233 		ret = __fuse_direct_read(io, iter, &pos);
3234 	}
3235 	iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3236 
3237 	if (io->async) {
3238 		bool blocking = io->blocking;
3239 
3240 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3241 
3242 		/* we have a non-extending, async request, so return */
3243 		if (!blocking)
3244 			return -EIOCBQUEUED;
3245 
3246 		wait_for_completion(&wait);
3247 		ret = fuse_get_res_by_io(io);
3248 	}
3249 
3250 	kref_put(&io->refcnt, fuse_io_release);
3251 
3252 	if (iov_iter_rw(iter) == WRITE) {
3253 		if (ret > 0)
3254 			fuse_write_update_size(inode, pos);
3255 		else if (ret < 0 && offset + count > i_size)
3256 			fuse_do_truncate(file);
3257 	}
3258 
3259 	return ret;
3260 }
3261 
fuse_writeback_range(struct inode * inode,loff_t start,loff_t end)3262 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3263 {
3264 	int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
3265 
3266 	if (!err)
3267 		fuse_sync_writes(inode);
3268 
3269 	return err;
3270 }
3271 
fuse_file_fallocate(struct file * file,int mode,loff_t offset,loff_t length)3272 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3273 				loff_t length)
3274 {
3275 	struct fuse_file *ff = file->private_data;
3276 	struct inode *inode = file_inode(file);
3277 	struct fuse_inode *fi = get_fuse_inode(inode);
3278 	struct fuse_mount *fm = ff->fm;
3279 	FUSE_ARGS(args);
3280 	struct fuse_fallocate_in inarg = {
3281 		.fh = ff->fh,
3282 		.offset = offset,
3283 		.length = length,
3284 		.mode = mode
3285 	};
3286 	int err;
3287 	bool block_faults = FUSE_IS_DAX(inode) &&
3288 		(!(mode & FALLOC_FL_KEEP_SIZE) ||
3289 		 (mode & FALLOC_FL_PUNCH_HOLE));
3290 
3291 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3292 		return -EOPNOTSUPP;
3293 
3294 	if (fm->fc->no_fallocate)
3295 		return -EOPNOTSUPP;
3296 
3297 	inode_lock(inode);
3298 	if (block_faults) {
3299 		down_write(&fi->i_mmap_sem);
3300 		err = fuse_dax_break_layouts(inode, 0, 0);
3301 		if (err)
3302 			goto out;
3303 	}
3304 
3305 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3306 		loff_t endbyte = offset + length - 1;
3307 
3308 		err = fuse_writeback_range(inode, offset, endbyte);
3309 		if (err)
3310 			goto out;
3311 	}
3312 
3313 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3314 	    offset + length > i_size_read(inode)) {
3315 		err = inode_newsize_ok(inode, offset + length);
3316 		if (err)
3317 			goto out;
3318 	}
3319 
3320 	err = file_modified(file);
3321 	if (err)
3322 		goto out;
3323 
3324 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3325 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3326 
3327 	args.opcode = FUSE_FALLOCATE;
3328 	args.nodeid = ff->nodeid;
3329 	args.in_numargs = 1;
3330 	args.in_args[0].size = sizeof(inarg);
3331 	args.in_args[0].value = &inarg;
3332 	err = fuse_simple_request(fm, &args);
3333 	if (err == -ENOSYS) {
3334 		fm->fc->no_fallocate = 1;
3335 		err = -EOPNOTSUPP;
3336 	}
3337 	if (err)
3338 		goto out;
3339 
3340 	/* we could have extended the file */
3341 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3342 		bool changed = fuse_write_update_size(inode, offset + length);
3343 
3344 		if (changed && fm->fc->writeback_cache)
3345 			file_update_time(file);
3346 	}
3347 
3348 	if (mode & FALLOC_FL_PUNCH_HOLE)
3349 		truncate_pagecache_range(inode, offset, offset + length - 1);
3350 
3351 	fuse_invalidate_attr(inode);
3352 
3353 out:
3354 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3355 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3356 
3357 	if (block_faults)
3358 		up_write(&fi->i_mmap_sem);
3359 
3360 	inode_unlock(inode);
3361 
3362 	fuse_flush_time_update(inode);
3363 
3364 	return err;
3365 }
3366 
__fuse_copy_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len,unsigned int flags)3367 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3368 				      struct file *file_out, loff_t pos_out,
3369 				      size_t len, unsigned int flags)
3370 {
3371 	struct fuse_file *ff_in = file_in->private_data;
3372 	struct fuse_file *ff_out = file_out->private_data;
3373 	struct inode *inode_in = file_inode(file_in);
3374 	struct inode *inode_out = file_inode(file_out);
3375 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3376 	struct fuse_mount *fm = ff_in->fm;
3377 	struct fuse_conn *fc = fm->fc;
3378 	FUSE_ARGS(args);
3379 	struct fuse_copy_file_range_in inarg = {
3380 		.fh_in = ff_in->fh,
3381 		.off_in = pos_in,
3382 		.nodeid_out = ff_out->nodeid,
3383 		.fh_out = ff_out->fh,
3384 		.off_out = pos_out,
3385 		.len = len,
3386 		.flags = flags
3387 	};
3388 	struct fuse_write_out outarg;
3389 	ssize_t err;
3390 	/* mark unstable when write-back is not used, and file_out gets
3391 	 * extended */
3392 	bool is_unstable = (!fc->writeback_cache) &&
3393 			   ((pos_out + len) > inode_out->i_size);
3394 
3395 	if (fc->no_copy_file_range)
3396 		return -EOPNOTSUPP;
3397 
3398 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3399 		return -EXDEV;
3400 
3401 	inode_lock(inode_in);
3402 	err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3403 	inode_unlock(inode_in);
3404 	if (err)
3405 		return err;
3406 
3407 	inode_lock(inode_out);
3408 
3409 	err = file_modified(file_out);
3410 	if (err)
3411 		goto out;
3412 
3413 	/*
3414 	 * Write out dirty pages in the destination file before sending the COPY
3415 	 * request to userspace.  After the request is completed, truncate off
3416 	 * pages (including partial ones) from the cache that have been copied,
3417 	 * since these contain stale data at that point.
3418 	 *
3419 	 * This should be mostly correct, but if the COPY writes to partial
3420 	 * pages (at the start or end) and the parts not covered by the COPY are
3421 	 * written through a memory map after calling fuse_writeback_range(),
3422 	 * then these partial page modifications will be lost on truncation.
3423 	 *
3424 	 * It is unlikely that someone would rely on such mixed style
3425 	 * modifications.  Yet this does give less guarantees than if the
3426 	 * copying was performed with write(2).
3427 	 *
3428 	 * To fix this a i_mmap_sem style lock could be used to prevent new
3429 	 * faults while the copy is ongoing.
3430 	 */
3431 	err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3432 	if (err)
3433 		goto out;
3434 
3435 	if (is_unstable)
3436 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3437 
3438 	args.opcode = FUSE_COPY_FILE_RANGE;
3439 	args.nodeid = ff_in->nodeid;
3440 	args.in_numargs = 1;
3441 	args.in_args[0].size = sizeof(inarg);
3442 	args.in_args[0].value = &inarg;
3443 	args.out_numargs = 1;
3444 	args.out_args[0].size = sizeof(outarg);
3445 	args.out_args[0].value = &outarg;
3446 	err = fuse_simple_request(fm, &args);
3447 	if (err == -ENOSYS) {
3448 		fc->no_copy_file_range = 1;
3449 		err = -EOPNOTSUPP;
3450 	}
3451 	if (err)
3452 		goto out;
3453 
3454 	truncate_inode_pages_range(inode_out->i_mapping,
3455 				   ALIGN_DOWN(pos_out, PAGE_SIZE),
3456 				   ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3457 
3458 	if (fc->writeback_cache) {
3459 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3460 		file_update_time(file_out);
3461 	}
3462 
3463 	fuse_invalidate_attr(inode_out);
3464 
3465 	err = outarg.size;
3466 out:
3467 	if (is_unstable)
3468 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3469 
3470 	inode_unlock(inode_out);
3471 	file_accessed(file_in);
3472 
3473 	fuse_flush_time_update(inode_out);
3474 
3475 	return err;
3476 }
3477 
fuse_copy_file_range(struct file * src_file,loff_t src_off,struct file * dst_file,loff_t dst_off,size_t len,unsigned int flags)3478 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3479 				    struct file *dst_file, loff_t dst_off,
3480 				    size_t len, unsigned int flags)
3481 {
3482 	ssize_t ret;
3483 
3484 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3485 				     len, flags);
3486 
3487 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3488 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3489 					      dst_off, len, flags);
3490 	return ret;
3491 }
3492 
3493 static const struct file_operations fuse_file_operations = {
3494 	.llseek		= fuse_file_llseek,
3495 	.read_iter	= fuse_file_read_iter,
3496 	.write_iter	= fuse_file_write_iter,
3497 	.mmap		= fuse_file_mmap,
3498 	.open		= fuse_open,
3499 	.flush		= fuse_flush,
3500 	.release	= fuse_release,
3501 	.fsync		= fuse_fsync,
3502 	.lock		= fuse_file_lock,
3503 	.get_unmapped_area = thp_get_unmapped_area,
3504 	.flock		= fuse_file_flock,
3505 	.splice_read	= generic_file_splice_read,
3506 	.splice_write	= iter_file_splice_write,
3507 	.unlocked_ioctl	= fuse_file_ioctl,
3508 	.compat_ioctl	= fuse_file_compat_ioctl,
3509 	.poll		= fuse_file_poll,
3510 	.fallocate	= fuse_file_fallocate,
3511 	.copy_file_range = fuse_copy_file_range,
3512 };
3513 
3514 static const struct address_space_operations fuse_file_aops  = {
3515 	.readpage	= fuse_readpage,
3516 	.readahead	= fuse_readahead,
3517 	.writepage	= fuse_writepage,
3518 	.writepages	= fuse_writepages,
3519 	.launder_page	= fuse_launder_page,
3520 	.set_page_dirty	= __set_page_dirty_nobuffers,
3521 	.bmap		= fuse_bmap,
3522 	.direct_IO	= fuse_direct_IO,
3523 	.write_begin	= fuse_write_begin,
3524 	.write_end	= fuse_write_end,
3525 };
3526 
fuse_init_file_inode(struct inode * inode)3527 void fuse_init_file_inode(struct inode *inode)
3528 {
3529 	struct fuse_inode *fi = get_fuse_inode(inode);
3530 
3531 	inode->i_fop = &fuse_file_operations;
3532 	inode->i_data.a_ops = &fuse_file_aops;
3533 
3534 	INIT_LIST_HEAD(&fi->write_files);
3535 	INIT_LIST_HEAD(&fi->queued_writes);
3536 	fi->writectr = 0;
3537 	init_waitqueue_head(&fi->page_waitq);
3538 	fi->writepages = RB_ROOT;
3539 
3540 	if (IS_ENABLED(CONFIG_FUSE_DAX))
3541 		fuse_dax_inode_init(inode);
3542 }
3543