1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 #include <linux/mm.h>
46 #include <linux/mempolicy.h>
47
48 #include <linux/compat.h>
49 #include <linux/syscalls.h>
50 #include <linux/kprobes.h>
51 #include <linux/user_namespace.h>
52 #include <linux/time_namespace.h>
53 #include <linux/binfmts.h>
54
55 #include <linux/sched.h>
56 #include <linux/sched/autogroup.h>
57 #include <linux/sched/loadavg.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/mm.h>
60 #include <linux/sched/coredump.h>
61 #include <linux/sched/task.h>
62 #include <linux/sched/cputime.h>
63 #include <linux/rcupdate.h>
64 #include <linux/uidgid.h>
65 #include <linux/cred.h>
66
67 #include <linux/nospec.h>
68
69 #include <linux/kmsg_dump.h>
70 /* Move somewhere else to avoid recompiling? */
71 #include <generated/utsrelease.h>
72
73 #include <linux/uaccess.h>
74 #include <asm/io.h>
75 #include <asm/unistd.h>
76
77 #include "uid16.h"
78
79 #include <trace/hooks/sys.h>
80
81 #ifndef SET_UNALIGN_CTL
82 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
83 #endif
84 #ifndef GET_UNALIGN_CTL
85 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
86 #endif
87 #ifndef SET_FPEMU_CTL
88 # define SET_FPEMU_CTL(a, b) (-EINVAL)
89 #endif
90 #ifndef GET_FPEMU_CTL
91 # define GET_FPEMU_CTL(a, b) (-EINVAL)
92 #endif
93 #ifndef SET_FPEXC_CTL
94 # define SET_FPEXC_CTL(a, b) (-EINVAL)
95 #endif
96 #ifndef GET_FPEXC_CTL
97 # define GET_FPEXC_CTL(a, b) (-EINVAL)
98 #endif
99 #ifndef GET_ENDIAN
100 # define GET_ENDIAN(a, b) (-EINVAL)
101 #endif
102 #ifndef SET_ENDIAN
103 # define SET_ENDIAN(a, b) (-EINVAL)
104 #endif
105 #ifndef GET_TSC_CTL
106 # define GET_TSC_CTL(a) (-EINVAL)
107 #endif
108 #ifndef SET_TSC_CTL
109 # define SET_TSC_CTL(a) (-EINVAL)
110 #endif
111 #ifndef GET_FP_MODE
112 # define GET_FP_MODE(a) (-EINVAL)
113 #endif
114 #ifndef SET_FP_MODE
115 # define SET_FP_MODE(a,b) (-EINVAL)
116 #endif
117 #ifndef SVE_SET_VL
118 # define SVE_SET_VL(a) (-EINVAL)
119 #endif
120 #ifndef SVE_GET_VL
121 # define SVE_GET_VL() (-EINVAL)
122 #endif
123 #ifndef PAC_RESET_KEYS
124 # define PAC_RESET_KEYS(a, b) (-EINVAL)
125 #endif
126 #ifndef PAC_SET_ENABLED_KEYS
127 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
128 #endif
129 #ifndef PAC_GET_ENABLED_KEYS
130 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
131 #endif
132 #ifndef SET_TAGGED_ADDR_CTRL
133 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
134 #endif
135 #ifndef GET_TAGGED_ADDR_CTRL
136 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
137 #endif
138
139 /*
140 * this is where the system-wide overflow UID and GID are defined, for
141 * architectures that now have 32-bit UID/GID but didn't in the past
142 */
143
144 int overflowuid = DEFAULT_OVERFLOWUID;
145 int overflowgid = DEFAULT_OVERFLOWGID;
146
147 EXPORT_SYMBOL(overflowuid);
148 EXPORT_SYMBOL(overflowgid);
149
150 /*
151 * the same as above, but for filesystems which can only store a 16-bit
152 * UID and GID. as such, this is needed on all architectures
153 */
154
155 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
156 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
157
158 EXPORT_SYMBOL(fs_overflowuid);
159 EXPORT_SYMBOL(fs_overflowgid);
160
161 /*
162 * Returns true if current's euid is same as p's uid or euid,
163 * or has CAP_SYS_NICE to p's user_ns.
164 *
165 * Called with rcu_read_lock, creds are safe
166 */
set_one_prio_perm(struct task_struct * p)167 static bool set_one_prio_perm(struct task_struct *p)
168 {
169 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
170
171 if (uid_eq(pcred->uid, cred->euid) ||
172 uid_eq(pcred->euid, cred->euid))
173 return true;
174 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
175 return true;
176 return false;
177 }
178
179 /*
180 * set the priority of a task
181 * - the caller must hold the RCU read lock
182 */
set_one_prio(struct task_struct * p,int niceval,int error)183 static int set_one_prio(struct task_struct *p, int niceval, int error)
184 {
185 int no_nice;
186
187 if (!set_one_prio_perm(p)) {
188 error = -EPERM;
189 goto out;
190 }
191 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
192 error = -EACCES;
193 goto out;
194 }
195 no_nice = security_task_setnice(p, niceval);
196 if (no_nice) {
197 error = no_nice;
198 goto out;
199 }
200 if (error == -ESRCH)
201 error = 0;
202 set_user_nice(p, niceval);
203 out:
204 return error;
205 }
206
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)207 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
208 {
209 struct task_struct *g, *p;
210 struct user_struct *user;
211 const struct cred *cred = current_cred();
212 int error = -EINVAL;
213 struct pid *pgrp;
214 kuid_t uid;
215
216 if (which > PRIO_USER || which < PRIO_PROCESS)
217 goto out;
218
219 /* normalize: avoid signed division (rounding problems) */
220 error = -ESRCH;
221 if (niceval < MIN_NICE)
222 niceval = MIN_NICE;
223 if (niceval > MAX_NICE)
224 niceval = MAX_NICE;
225
226 rcu_read_lock();
227 read_lock(&tasklist_lock);
228 switch (which) {
229 case PRIO_PROCESS:
230 if (who)
231 p = find_task_by_vpid(who);
232 else
233 p = current;
234 if (p)
235 error = set_one_prio(p, niceval, error);
236 break;
237 case PRIO_PGRP:
238 if (who)
239 pgrp = find_vpid(who);
240 else
241 pgrp = task_pgrp(current);
242 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
243 error = set_one_prio(p, niceval, error);
244 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
245 break;
246 case PRIO_USER:
247 uid = make_kuid(cred->user_ns, who);
248 user = cred->user;
249 if (!who)
250 uid = cred->uid;
251 else if (!uid_eq(uid, cred->uid)) {
252 user = find_user(uid);
253 if (!user)
254 goto out_unlock; /* No processes for this user */
255 }
256 do_each_thread(g, p) {
257 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
258 error = set_one_prio(p, niceval, error);
259 } while_each_thread(g, p);
260 if (!uid_eq(uid, cred->uid))
261 free_uid(user); /* For find_user() */
262 break;
263 }
264 out_unlock:
265 read_unlock(&tasklist_lock);
266 rcu_read_unlock();
267 out:
268 return error;
269 }
270
271 /*
272 * Ugh. To avoid negative return values, "getpriority()" will
273 * not return the normal nice-value, but a negated value that
274 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
275 * to stay compatible.
276 */
SYSCALL_DEFINE2(getpriority,int,which,int,who)277 SYSCALL_DEFINE2(getpriority, int, which, int, who)
278 {
279 struct task_struct *g, *p;
280 struct user_struct *user;
281 const struct cred *cred = current_cred();
282 long niceval, retval = -ESRCH;
283 struct pid *pgrp;
284 kuid_t uid;
285
286 if (which > PRIO_USER || which < PRIO_PROCESS)
287 return -EINVAL;
288
289 rcu_read_lock();
290 read_lock(&tasklist_lock);
291 switch (which) {
292 case PRIO_PROCESS:
293 if (who)
294 p = find_task_by_vpid(who);
295 else
296 p = current;
297 if (p) {
298 niceval = nice_to_rlimit(task_nice(p));
299 if (niceval > retval)
300 retval = niceval;
301 }
302 break;
303 case PRIO_PGRP:
304 if (who)
305 pgrp = find_vpid(who);
306 else
307 pgrp = task_pgrp(current);
308 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
309 niceval = nice_to_rlimit(task_nice(p));
310 if (niceval > retval)
311 retval = niceval;
312 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
313 break;
314 case PRIO_USER:
315 uid = make_kuid(cred->user_ns, who);
316 user = cred->user;
317 if (!who)
318 uid = cred->uid;
319 else if (!uid_eq(uid, cred->uid)) {
320 user = find_user(uid);
321 if (!user)
322 goto out_unlock; /* No processes for this user */
323 }
324 do_each_thread(g, p) {
325 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
326 niceval = nice_to_rlimit(task_nice(p));
327 if (niceval > retval)
328 retval = niceval;
329 }
330 } while_each_thread(g, p);
331 if (!uid_eq(uid, cred->uid))
332 free_uid(user); /* for find_user() */
333 break;
334 }
335 out_unlock:
336 read_unlock(&tasklist_lock);
337 rcu_read_unlock();
338
339 return retval;
340 }
341
342 /*
343 * Unprivileged users may change the real gid to the effective gid
344 * or vice versa. (BSD-style)
345 *
346 * If you set the real gid at all, or set the effective gid to a value not
347 * equal to the real gid, then the saved gid is set to the new effective gid.
348 *
349 * This makes it possible for a setgid program to completely drop its
350 * privileges, which is often a useful assertion to make when you are doing
351 * a security audit over a program.
352 *
353 * The general idea is that a program which uses just setregid() will be
354 * 100% compatible with BSD. A program which uses just setgid() will be
355 * 100% compatible with POSIX with saved IDs.
356 *
357 * SMP: There are not races, the GIDs are checked only by filesystem
358 * operations (as far as semantic preservation is concerned).
359 */
360 #ifdef CONFIG_MULTIUSER
__sys_setregid(gid_t rgid,gid_t egid)361 long __sys_setregid(gid_t rgid, gid_t egid)
362 {
363 struct user_namespace *ns = current_user_ns();
364 const struct cred *old;
365 struct cred *new;
366 int retval;
367 kgid_t krgid, kegid;
368
369 krgid = make_kgid(ns, rgid);
370 kegid = make_kgid(ns, egid);
371
372 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
373 return -EINVAL;
374 if ((egid != (gid_t) -1) && !gid_valid(kegid))
375 return -EINVAL;
376
377 new = prepare_creds();
378 if (!new)
379 return -ENOMEM;
380 old = current_cred();
381
382 retval = -EPERM;
383 if (rgid != (gid_t) -1) {
384 if (gid_eq(old->gid, krgid) ||
385 gid_eq(old->egid, krgid) ||
386 ns_capable_setid(old->user_ns, CAP_SETGID))
387 new->gid = krgid;
388 else
389 goto error;
390 }
391 if (egid != (gid_t) -1) {
392 if (gid_eq(old->gid, kegid) ||
393 gid_eq(old->egid, kegid) ||
394 gid_eq(old->sgid, kegid) ||
395 ns_capable_setid(old->user_ns, CAP_SETGID))
396 new->egid = kegid;
397 else
398 goto error;
399 }
400
401 if (rgid != (gid_t) -1 ||
402 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
403 new->sgid = new->egid;
404 new->fsgid = new->egid;
405
406 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
407 if (retval < 0)
408 goto error;
409
410 return commit_creds(new);
411
412 error:
413 abort_creds(new);
414 return retval;
415 }
416
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)417 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
418 {
419 return __sys_setregid(rgid, egid);
420 }
421
422 /*
423 * setgid() is implemented like SysV w/ SAVED_IDS
424 *
425 * SMP: Same implicit races as above.
426 */
__sys_setgid(gid_t gid)427 long __sys_setgid(gid_t gid)
428 {
429 struct user_namespace *ns = current_user_ns();
430 const struct cred *old;
431 struct cred *new;
432 int retval;
433 kgid_t kgid;
434
435 kgid = make_kgid(ns, gid);
436 if (!gid_valid(kgid))
437 return -EINVAL;
438
439 new = prepare_creds();
440 if (!new)
441 return -ENOMEM;
442 old = current_cred();
443
444 retval = -EPERM;
445 if (ns_capable_setid(old->user_ns, CAP_SETGID))
446 new->gid = new->egid = new->sgid = new->fsgid = kgid;
447 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
448 new->egid = new->fsgid = kgid;
449 else
450 goto error;
451
452 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
453 if (retval < 0)
454 goto error;
455
456 return commit_creds(new);
457
458 error:
459 abort_creds(new);
460 return retval;
461 }
462
SYSCALL_DEFINE1(setgid,gid_t,gid)463 SYSCALL_DEFINE1(setgid, gid_t, gid)
464 {
465 return __sys_setgid(gid);
466 }
467
468 /*
469 * change the user struct in a credentials set to match the new UID
470 */
set_user(struct cred * new)471 static int set_user(struct cred *new)
472 {
473 struct user_struct *new_user;
474
475 new_user = alloc_uid(new->uid);
476 if (!new_user)
477 return -EAGAIN;
478
479 /*
480 * We don't fail in case of NPROC limit excess here because too many
481 * poorly written programs don't check set*uid() return code, assuming
482 * it never fails if called by root. We may still enforce NPROC limit
483 * for programs doing set*uid()+execve() by harmlessly deferring the
484 * failure to the execve() stage.
485 */
486 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
487 new_user != INIT_USER)
488 current->flags |= PF_NPROC_EXCEEDED;
489 else
490 current->flags &= ~PF_NPROC_EXCEEDED;
491
492 free_uid(new->user);
493 new->user = new_user;
494 return 0;
495 }
496
497 /*
498 * Unprivileged users may change the real uid to the effective uid
499 * or vice versa. (BSD-style)
500 *
501 * If you set the real uid at all, or set the effective uid to a value not
502 * equal to the real uid, then the saved uid is set to the new effective uid.
503 *
504 * This makes it possible for a setuid program to completely drop its
505 * privileges, which is often a useful assertion to make when you are doing
506 * a security audit over a program.
507 *
508 * The general idea is that a program which uses just setreuid() will be
509 * 100% compatible with BSD. A program which uses just setuid() will be
510 * 100% compatible with POSIX with saved IDs.
511 */
__sys_setreuid(uid_t ruid,uid_t euid)512 long __sys_setreuid(uid_t ruid, uid_t euid)
513 {
514 struct user_namespace *ns = current_user_ns();
515 const struct cred *old;
516 struct cred *new;
517 int retval;
518 kuid_t kruid, keuid;
519
520 kruid = make_kuid(ns, ruid);
521 keuid = make_kuid(ns, euid);
522
523 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
524 return -EINVAL;
525 if ((euid != (uid_t) -1) && !uid_valid(keuid))
526 return -EINVAL;
527
528 new = prepare_creds();
529 if (!new)
530 return -ENOMEM;
531 old = current_cred();
532
533 retval = -EPERM;
534 if (ruid != (uid_t) -1) {
535 new->uid = kruid;
536 if (!uid_eq(old->uid, kruid) &&
537 !uid_eq(old->euid, kruid) &&
538 !ns_capable_setid(old->user_ns, CAP_SETUID))
539 goto error;
540 }
541
542 if (euid != (uid_t) -1) {
543 new->euid = keuid;
544 if (!uid_eq(old->uid, keuid) &&
545 !uid_eq(old->euid, keuid) &&
546 !uid_eq(old->suid, keuid) &&
547 !ns_capable_setid(old->user_ns, CAP_SETUID))
548 goto error;
549 }
550
551 if (!uid_eq(new->uid, old->uid)) {
552 retval = set_user(new);
553 if (retval < 0)
554 goto error;
555 }
556 if (ruid != (uid_t) -1 ||
557 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
558 new->suid = new->euid;
559 new->fsuid = new->euid;
560
561 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
562 if (retval < 0)
563 goto error;
564
565 return commit_creds(new);
566
567 error:
568 abort_creds(new);
569 return retval;
570 }
571
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)572 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
573 {
574 return __sys_setreuid(ruid, euid);
575 }
576
577 /*
578 * setuid() is implemented like SysV with SAVED_IDS
579 *
580 * Note that SAVED_ID's is deficient in that a setuid root program
581 * like sendmail, for example, cannot set its uid to be a normal
582 * user and then switch back, because if you're root, setuid() sets
583 * the saved uid too. If you don't like this, blame the bright people
584 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
585 * will allow a root program to temporarily drop privileges and be able to
586 * regain them by swapping the real and effective uid.
587 */
__sys_setuid(uid_t uid)588 long __sys_setuid(uid_t uid)
589 {
590 struct user_namespace *ns = current_user_ns();
591 const struct cred *old;
592 struct cred *new;
593 int retval;
594 kuid_t kuid;
595
596 kuid = make_kuid(ns, uid);
597 if (!uid_valid(kuid))
598 return -EINVAL;
599
600 new = prepare_creds();
601 if (!new)
602 return -ENOMEM;
603 old = current_cred();
604
605 retval = -EPERM;
606 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
607 new->suid = new->uid = kuid;
608 if (!uid_eq(kuid, old->uid)) {
609 retval = set_user(new);
610 if (retval < 0)
611 goto error;
612 }
613 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
614 goto error;
615 }
616
617 new->fsuid = new->euid = kuid;
618
619 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
620 if (retval < 0)
621 goto error;
622
623 return commit_creds(new);
624
625 error:
626 abort_creds(new);
627 return retval;
628 }
629
SYSCALL_DEFINE1(setuid,uid_t,uid)630 SYSCALL_DEFINE1(setuid, uid_t, uid)
631 {
632 return __sys_setuid(uid);
633 }
634
635
636 /*
637 * This function implements a generic ability to update ruid, euid,
638 * and suid. This allows you to implement the 4.4 compatible seteuid().
639 */
__sys_setresuid(uid_t ruid,uid_t euid,uid_t suid)640 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
641 {
642 struct user_namespace *ns = current_user_ns();
643 const struct cred *old;
644 struct cred *new;
645 int retval;
646 kuid_t kruid, keuid, ksuid;
647
648 kruid = make_kuid(ns, ruid);
649 keuid = make_kuid(ns, euid);
650 ksuid = make_kuid(ns, suid);
651
652 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
653 return -EINVAL;
654
655 if ((euid != (uid_t) -1) && !uid_valid(keuid))
656 return -EINVAL;
657
658 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
659 return -EINVAL;
660
661 new = prepare_creds();
662 if (!new)
663 return -ENOMEM;
664
665 old = current_cred();
666
667 retval = -EPERM;
668 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
669 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
670 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
671 goto error;
672 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
673 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
674 goto error;
675 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
676 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
677 goto error;
678 }
679
680 if (ruid != (uid_t) -1) {
681 new->uid = kruid;
682 if (!uid_eq(kruid, old->uid)) {
683 retval = set_user(new);
684 if (retval < 0)
685 goto error;
686 }
687 }
688 if (euid != (uid_t) -1)
689 new->euid = keuid;
690 if (suid != (uid_t) -1)
691 new->suid = ksuid;
692 new->fsuid = new->euid;
693
694 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
695 if (retval < 0)
696 goto error;
697
698 return commit_creds(new);
699
700 error:
701 abort_creds(new);
702 return retval;
703 }
704
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)705 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
706 {
707 return __sys_setresuid(ruid, euid, suid);
708 }
709
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)710 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
711 {
712 const struct cred *cred = current_cred();
713 int retval;
714 uid_t ruid, euid, suid;
715
716 ruid = from_kuid_munged(cred->user_ns, cred->uid);
717 euid = from_kuid_munged(cred->user_ns, cred->euid);
718 suid = from_kuid_munged(cred->user_ns, cred->suid);
719
720 retval = put_user(ruid, ruidp);
721 if (!retval) {
722 retval = put_user(euid, euidp);
723 if (!retval)
724 return put_user(suid, suidp);
725 }
726 return retval;
727 }
728
729 /*
730 * Same as above, but for rgid, egid, sgid.
731 */
__sys_setresgid(gid_t rgid,gid_t egid,gid_t sgid)732 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
733 {
734 struct user_namespace *ns = current_user_ns();
735 const struct cred *old;
736 struct cred *new;
737 int retval;
738 kgid_t krgid, kegid, ksgid;
739
740 krgid = make_kgid(ns, rgid);
741 kegid = make_kgid(ns, egid);
742 ksgid = make_kgid(ns, sgid);
743
744 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
745 return -EINVAL;
746 if ((egid != (gid_t) -1) && !gid_valid(kegid))
747 return -EINVAL;
748 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
749 return -EINVAL;
750
751 new = prepare_creds();
752 if (!new)
753 return -ENOMEM;
754 old = current_cred();
755
756 retval = -EPERM;
757 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
758 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
759 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
760 goto error;
761 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
762 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
763 goto error;
764 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
765 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
766 goto error;
767 }
768
769 if (rgid != (gid_t) -1)
770 new->gid = krgid;
771 if (egid != (gid_t) -1)
772 new->egid = kegid;
773 if (sgid != (gid_t) -1)
774 new->sgid = ksgid;
775 new->fsgid = new->egid;
776
777 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
778 if (retval < 0)
779 goto error;
780
781 return commit_creds(new);
782
783 error:
784 abort_creds(new);
785 return retval;
786 }
787
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)788 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
789 {
790 return __sys_setresgid(rgid, egid, sgid);
791 }
792
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)793 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
794 {
795 const struct cred *cred = current_cred();
796 int retval;
797 gid_t rgid, egid, sgid;
798
799 rgid = from_kgid_munged(cred->user_ns, cred->gid);
800 egid = from_kgid_munged(cred->user_ns, cred->egid);
801 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
802
803 retval = put_user(rgid, rgidp);
804 if (!retval) {
805 retval = put_user(egid, egidp);
806 if (!retval)
807 retval = put_user(sgid, sgidp);
808 }
809
810 return retval;
811 }
812
813
814 /*
815 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
816 * is used for "access()" and for the NFS daemon (letting nfsd stay at
817 * whatever uid it wants to). It normally shadows "euid", except when
818 * explicitly set by setfsuid() or for access..
819 */
__sys_setfsuid(uid_t uid)820 long __sys_setfsuid(uid_t uid)
821 {
822 const struct cred *old;
823 struct cred *new;
824 uid_t old_fsuid;
825 kuid_t kuid;
826
827 old = current_cred();
828 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
829
830 kuid = make_kuid(old->user_ns, uid);
831 if (!uid_valid(kuid))
832 return old_fsuid;
833
834 new = prepare_creds();
835 if (!new)
836 return old_fsuid;
837
838 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
839 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
840 ns_capable_setid(old->user_ns, CAP_SETUID)) {
841 if (!uid_eq(kuid, old->fsuid)) {
842 new->fsuid = kuid;
843 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
844 goto change_okay;
845 }
846 }
847
848 abort_creds(new);
849 return old_fsuid;
850
851 change_okay:
852 commit_creds(new);
853 return old_fsuid;
854 }
855
SYSCALL_DEFINE1(setfsuid,uid_t,uid)856 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
857 {
858 return __sys_setfsuid(uid);
859 }
860
861 /*
862 * Samma på svenska..
863 */
__sys_setfsgid(gid_t gid)864 long __sys_setfsgid(gid_t gid)
865 {
866 const struct cred *old;
867 struct cred *new;
868 gid_t old_fsgid;
869 kgid_t kgid;
870
871 old = current_cred();
872 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
873
874 kgid = make_kgid(old->user_ns, gid);
875 if (!gid_valid(kgid))
876 return old_fsgid;
877
878 new = prepare_creds();
879 if (!new)
880 return old_fsgid;
881
882 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
883 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
884 ns_capable_setid(old->user_ns, CAP_SETGID)) {
885 if (!gid_eq(kgid, old->fsgid)) {
886 new->fsgid = kgid;
887 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
888 goto change_okay;
889 }
890 }
891
892 abort_creds(new);
893 return old_fsgid;
894
895 change_okay:
896 commit_creds(new);
897 return old_fsgid;
898 }
899
SYSCALL_DEFINE1(setfsgid,gid_t,gid)900 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
901 {
902 return __sys_setfsgid(gid);
903 }
904 #endif /* CONFIG_MULTIUSER */
905
906 /**
907 * sys_getpid - return the thread group id of the current process
908 *
909 * Note, despite the name, this returns the tgid not the pid. The tgid and
910 * the pid are identical unless CLONE_THREAD was specified on clone() in
911 * which case the tgid is the same in all threads of the same group.
912 *
913 * This is SMP safe as current->tgid does not change.
914 */
SYSCALL_DEFINE0(getpid)915 SYSCALL_DEFINE0(getpid)
916 {
917 return task_tgid_vnr(current);
918 }
919
920 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)921 SYSCALL_DEFINE0(gettid)
922 {
923 return task_pid_vnr(current);
924 }
925
926 /*
927 * Accessing ->real_parent is not SMP-safe, it could
928 * change from under us. However, we can use a stale
929 * value of ->real_parent under rcu_read_lock(), see
930 * release_task()->call_rcu(delayed_put_task_struct).
931 */
SYSCALL_DEFINE0(getppid)932 SYSCALL_DEFINE0(getppid)
933 {
934 int pid;
935
936 rcu_read_lock();
937 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
938 rcu_read_unlock();
939
940 return pid;
941 }
942
SYSCALL_DEFINE0(getuid)943 SYSCALL_DEFINE0(getuid)
944 {
945 /* Only we change this so SMP safe */
946 return from_kuid_munged(current_user_ns(), current_uid());
947 }
948
SYSCALL_DEFINE0(geteuid)949 SYSCALL_DEFINE0(geteuid)
950 {
951 /* Only we change this so SMP safe */
952 return from_kuid_munged(current_user_ns(), current_euid());
953 }
954
SYSCALL_DEFINE0(getgid)955 SYSCALL_DEFINE0(getgid)
956 {
957 /* Only we change this so SMP safe */
958 return from_kgid_munged(current_user_ns(), current_gid());
959 }
960
SYSCALL_DEFINE0(getegid)961 SYSCALL_DEFINE0(getegid)
962 {
963 /* Only we change this so SMP safe */
964 return from_kgid_munged(current_user_ns(), current_egid());
965 }
966
do_sys_times(struct tms * tms)967 static void do_sys_times(struct tms *tms)
968 {
969 u64 tgutime, tgstime, cutime, cstime;
970
971 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
972 cutime = current->signal->cutime;
973 cstime = current->signal->cstime;
974 tms->tms_utime = nsec_to_clock_t(tgutime);
975 tms->tms_stime = nsec_to_clock_t(tgstime);
976 tms->tms_cutime = nsec_to_clock_t(cutime);
977 tms->tms_cstime = nsec_to_clock_t(cstime);
978 }
979
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)980 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
981 {
982 if (tbuf) {
983 struct tms tmp;
984
985 do_sys_times(&tmp);
986 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
987 return -EFAULT;
988 }
989 force_successful_syscall_return();
990 return (long) jiffies_64_to_clock_t(get_jiffies_64());
991 }
992
993 #ifdef CONFIG_COMPAT
clock_t_to_compat_clock_t(clock_t x)994 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
995 {
996 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
997 }
998
COMPAT_SYSCALL_DEFINE1(times,struct compat_tms __user *,tbuf)999 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1000 {
1001 if (tbuf) {
1002 struct tms tms;
1003 struct compat_tms tmp;
1004
1005 do_sys_times(&tms);
1006 /* Convert our struct tms to the compat version. */
1007 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1008 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1009 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1010 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1011 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1012 return -EFAULT;
1013 }
1014 force_successful_syscall_return();
1015 return compat_jiffies_to_clock_t(jiffies);
1016 }
1017 #endif
1018
1019 /*
1020 * This needs some heavy checking ...
1021 * I just haven't the stomach for it. I also don't fully
1022 * understand sessions/pgrp etc. Let somebody who does explain it.
1023 *
1024 * OK, I think I have the protection semantics right.... this is really
1025 * only important on a multi-user system anyway, to make sure one user
1026 * can't send a signal to a process owned by another. -TYT, 12/12/91
1027 *
1028 * !PF_FORKNOEXEC check to conform completely to POSIX.
1029 */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1030 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1031 {
1032 struct task_struct *p;
1033 struct task_struct *group_leader = current->group_leader;
1034 struct pid *pgrp;
1035 int err;
1036
1037 if (!pid)
1038 pid = task_pid_vnr(group_leader);
1039 if (!pgid)
1040 pgid = pid;
1041 if (pgid < 0)
1042 return -EINVAL;
1043 rcu_read_lock();
1044
1045 /* From this point forward we keep holding onto the tasklist lock
1046 * so that our parent does not change from under us. -DaveM
1047 */
1048 write_lock_irq(&tasklist_lock);
1049
1050 err = -ESRCH;
1051 p = find_task_by_vpid(pid);
1052 if (!p)
1053 goto out;
1054
1055 err = -EINVAL;
1056 if (!thread_group_leader(p))
1057 goto out;
1058
1059 if (same_thread_group(p->real_parent, group_leader)) {
1060 err = -EPERM;
1061 if (task_session(p) != task_session(group_leader))
1062 goto out;
1063 err = -EACCES;
1064 if (!(p->flags & PF_FORKNOEXEC))
1065 goto out;
1066 } else {
1067 err = -ESRCH;
1068 if (p != group_leader)
1069 goto out;
1070 }
1071
1072 err = -EPERM;
1073 if (p->signal->leader)
1074 goto out;
1075
1076 pgrp = task_pid(p);
1077 if (pgid != pid) {
1078 struct task_struct *g;
1079
1080 pgrp = find_vpid(pgid);
1081 g = pid_task(pgrp, PIDTYPE_PGID);
1082 if (!g || task_session(g) != task_session(group_leader))
1083 goto out;
1084 }
1085
1086 err = security_task_setpgid(p, pgid);
1087 if (err)
1088 goto out;
1089
1090 if (task_pgrp(p) != pgrp)
1091 change_pid(p, PIDTYPE_PGID, pgrp);
1092
1093 err = 0;
1094 out:
1095 /* All paths lead to here, thus we are safe. -DaveM */
1096 write_unlock_irq(&tasklist_lock);
1097 rcu_read_unlock();
1098 return err;
1099 }
1100
do_getpgid(pid_t pid)1101 static int do_getpgid(pid_t pid)
1102 {
1103 struct task_struct *p;
1104 struct pid *grp;
1105 int retval;
1106
1107 rcu_read_lock();
1108 if (!pid)
1109 grp = task_pgrp(current);
1110 else {
1111 retval = -ESRCH;
1112 p = find_task_by_vpid(pid);
1113 if (!p)
1114 goto out;
1115 grp = task_pgrp(p);
1116 if (!grp)
1117 goto out;
1118
1119 retval = security_task_getpgid(p);
1120 if (retval)
1121 goto out;
1122 }
1123 retval = pid_vnr(grp);
1124 out:
1125 rcu_read_unlock();
1126 return retval;
1127 }
1128
SYSCALL_DEFINE1(getpgid,pid_t,pid)1129 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1130 {
1131 return do_getpgid(pid);
1132 }
1133
1134 #ifdef __ARCH_WANT_SYS_GETPGRP
1135
SYSCALL_DEFINE0(getpgrp)1136 SYSCALL_DEFINE0(getpgrp)
1137 {
1138 return do_getpgid(0);
1139 }
1140
1141 #endif
1142
SYSCALL_DEFINE1(getsid,pid_t,pid)1143 SYSCALL_DEFINE1(getsid, pid_t, pid)
1144 {
1145 struct task_struct *p;
1146 struct pid *sid;
1147 int retval;
1148
1149 rcu_read_lock();
1150 if (!pid)
1151 sid = task_session(current);
1152 else {
1153 retval = -ESRCH;
1154 p = find_task_by_vpid(pid);
1155 if (!p)
1156 goto out;
1157 sid = task_session(p);
1158 if (!sid)
1159 goto out;
1160
1161 retval = security_task_getsid(p);
1162 if (retval)
1163 goto out;
1164 }
1165 retval = pid_vnr(sid);
1166 out:
1167 rcu_read_unlock();
1168 return retval;
1169 }
1170
set_special_pids(struct pid * pid)1171 static void set_special_pids(struct pid *pid)
1172 {
1173 struct task_struct *curr = current->group_leader;
1174
1175 if (task_session(curr) != pid)
1176 change_pid(curr, PIDTYPE_SID, pid);
1177
1178 if (task_pgrp(curr) != pid)
1179 change_pid(curr, PIDTYPE_PGID, pid);
1180 }
1181
ksys_setsid(void)1182 int ksys_setsid(void)
1183 {
1184 struct task_struct *group_leader = current->group_leader;
1185 struct pid *sid = task_pid(group_leader);
1186 pid_t session = pid_vnr(sid);
1187 int err = -EPERM;
1188
1189 write_lock_irq(&tasklist_lock);
1190 /* Fail if I am already a session leader */
1191 if (group_leader->signal->leader)
1192 goto out;
1193
1194 /* Fail if a process group id already exists that equals the
1195 * proposed session id.
1196 */
1197 if (pid_task(sid, PIDTYPE_PGID))
1198 goto out;
1199
1200 group_leader->signal->leader = 1;
1201 set_special_pids(sid);
1202
1203 proc_clear_tty(group_leader);
1204
1205 err = session;
1206 out:
1207 write_unlock_irq(&tasklist_lock);
1208 if (err > 0) {
1209 proc_sid_connector(group_leader);
1210 sched_autogroup_create_attach(group_leader);
1211 }
1212 return err;
1213 }
1214
SYSCALL_DEFINE0(setsid)1215 SYSCALL_DEFINE0(setsid)
1216 {
1217 return ksys_setsid();
1218 }
1219
1220 DECLARE_RWSEM(uts_sem);
1221
1222 #ifdef COMPAT_UTS_MACHINE
1223 #define override_architecture(name) \
1224 (personality(current->personality) == PER_LINUX32 && \
1225 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1226 sizeof(COMPAT_UTS_MACHINE)))
1227 #else
1228 #define override_architecture(name) 0
1229 #endif
1230
1231 /*
1232 * Work around broken programs that cannot handle "Linux 3.0".
1233 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1234 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1235 * 2.6.60.
1236 */
override_release(char __user * release,size_t len)1237 static int override_release(char __user *release, size_t len)
1238 {
1239 int ret = 0;
1240
1241 if (current->personality & UNAME26) {
1242 const char *rest = UTS_RELEASE;
1243 char buf[65] = { 0 };
1244 int ndots = 0;
1245 unsigned v;
1246 size_t copy;
1247
1248 while (*rest) {
1249 if (*rest == '.' && ++ndots >= 3)
1250 break;
1251 if (!isdigit(*rest) && *rest != '.')
1252 break;
1253 rest++;
1254 }
1255 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1256 copy = clamp_t(size_t, len, 1, sizeof(buf));
1257 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1258 ret = copy_to_user(release, buf, copy + 1);
1259 }
1260 return ret;
1261 }
1262
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1263 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1264 {
1265 struct new_utsname tmp;
1266
1267 down_read(&uts_sem);
1268 memcpy(&tmp, utsname(), sizeof(tmp));
1269 up_read(&uts_sem);
1270 if (copy_to_user(name, &tmp, sizeof(tmp)))
1271 return -EFAULT;
1272
1273 if (override_release(name->release, sizeof(name->release)))
1274 return -EFAULT;
1275 if (override_architecture(name))
1276 return -EFAULT;
1277 return 0;
1278 }
1279
1280 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1281 /*
1282 * Old cruft
1283 */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1284 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1285 {
1286 struct old_utsname tmp;
1287
1288 if (!name)
1289 return -EFAULT;
1290
1291 down_read(&uts_sem);
1292 memcpy(&tmp, utsname(), sizeof(tmp));
1293 up_read(&uts_sem);
1294 if (copy_to_user(name, &tmp, sizeof(tmp)))
1295 return -EFAULT;
1296
1297 if (override_release(name->release, sizeof(name->release)))
1298 return -EFAULT;
1299 if (override_architecture(name))
1300 return -EFAULT;
1301 return 0;
1302 }
1303
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1304 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1305 {
1306 struct oldold_utsname tmp;
1307
1308 if (!name)
1309 return -EFAULT;
1310
1311 memset(&tmp, 0, sizeof(tmp));
1312
1313 down_read(&uts_sem);
1314 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1315 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1316 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1317 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1318 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1319 up_read(&uts_sem);
1320 if (copy_to_user(name, &tmp, sizeof(tmp)))
1321 return -EFAULT;
1322
1323 if (override_architecture(name))
1324 return -EFAULT;
1325 if (override_release(name->release, sizeof(name->release)))
1326 return -EFAULT;
1327 return 0;
1328 }
1329 #endif
1330
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1331 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1332 {
1333 int errno;
1334 char tmp[__NEW_UTS_LEN];
1335
1336 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1337 return -EPERM;
1338
1339 if (len < 0 || len > __NEW_UTS_LEN)
1340 return -EINVAL;
1341 errno = -EFAULT;
1342 if (!copy_from_user(tmp, name, len)) {
1343 struct new_utsname *u;
1344
1345 down_write(&uts_sem);
1346 u = utsname();
1347 memcpy(u->nodename, tmp, len);
1348 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1349 errno = 0;
1350 uts_proc_notify(UTS_PROC_HOSTNAME);
1351 up_write(&uts_sem);
1352 }
1353 return errno;
1354 }
1355
1356 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1357
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1358 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1359 {
1360 int i;
1361 struct new_utsname *u;
1362 char tmp[__NEW_UTS_LEN + 1];
1363
1364 if (len < 0)
1365 return -EINVAL;
1366 down_read(&uts_sem);
1367 u = utsname();
1368 i = 1 + strlen(u->nodename);
1369 if (i > len)
1370 i = len;
1371 memcpy(tmp, u->nodename, i);
1372 up_read(&uts_sem);
1373 if (copy_to_user(name, tmp, i))
1374 return -EFAULT;
1375 return 0;
1376 }
1377
1378 #endif
1379
1380 /*
1381 * Only setdomainname; getdomainname can be implemented by calling
1382 * uname()
1383 */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1384 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1385 {
1386 int errno;
1387 char tmp[__NEW_UTS_LEN];
1388
1389 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1390 return -EPERM;
1391 if (len < 0 || len > __NEW_UTS_LEN)
1392 return -EINVAL;
1393
1394 errno = -EFAULT;
1395 if (!copy_from_user(tmp, name, len)) {
1396 struct new_utsname *u;
1397
1398 down_write(&uts_sem);
1399 u = utsname();
1400 memcpy(u->domainname, tmp, len);
1401 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1402 errno = 0;
1403 uts_proc_notify(UTS_PROC_DOMAINNAME);
1404 up_write(&uts_sem);
1405 }
1406 return errno;
1407 }
1408
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1409 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1410 {
1411 struct rlimit value;
1412 int ret;
1413
1414 ret = do_prlimit(current, resource, NULL, &value);
1415 if (!ret)
1416 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1417
1418 return ret;
1419 }
1420
1421 #ifdef CONFIG_COMPAT
1422
COMPAT_SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1423 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1424 struct compat_rlimit __user *, rlim)
1425 {
1426 struct rlimit r;
1427 struct compat_rlimit r32;
1428
1429 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1430 return -EFAULT;
1431
1432 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1433 r.rlim_cur = RLIM_INFINITY;
1434 else
1435 r.rlim_cur = r32.rlim_cur;
1436 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1437 r.rlim_max = RLIM_INFINITY;
1438 else
1439 r.rlim_max = r32.rlim_max;
1440 return do_prlimit(current, resource, &r, NULL);
1441 }
1442
COMPAT_SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1443 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1444 struct compat_rlimit __user *, rlim)
1445 {
1446 struct rlimit r;
1447 int ret;
1448
1449 ret = do_prlimit(current, resource, NULL, &r);
1450 if (!ret) {
1451 struct compat_rlimit r32;
1452 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1453 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1454 else
1455 r32.rlim_cur = r.rlim_cur;
1456 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1457 r32.rlim_max = COMPAT_RLIM_INFINITY;
1458 else
1459 r32.rlim_max = r.rlim_max;
1460
1461 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1462 return -EFAULT;
1463 }
1464 return ret;
1465 }
1466
1467 #endif
1468
1469 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1470
1471 /*
1472 * Back compatibility for getrlimit. Needed for some apps.
1473 */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1474 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1475 struct rlimit __user *, rlim)
1476 {
1477 struct rlimit x;
1478 if (resource >= RLIM_NLIMITS)
1479 return -EINVAL;
1480
1481 resource = array_index_nospec(resource, RLIM_NLIMITS);
1482 task_lock(current->group_leader);
1483 x = current->signal->rlim[resource];
1484 task_unlock(current->group_leader);
1485 if (x.rlim_cur > 0x7FFFFFFF)
1486 x.rlim_cur = 0x7FFFFFFF;
1487 if (x.rlim_max > 0x7FFFFFFF)
1488 x.rlim_max = 0x7FFFFFFF;
1489 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1490 }
1491
1492 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1493 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1494 struct compat_rlimit __user *, rlim)
1495 {
1496 struct rlimit r;
1497
1498 if (resource >= RLIM_NLIMITS)
1499 return -EINVAL;
1500
1501 resource = array_index_nospec(resource, RLIM_NLIMITS);
1502 task_lock(current->group_leader);
1503 r = current->signal->rlim[resource];
1504 task_unlock(current->group_leader);
1505 if (r.rlim_cur > 0x7FFFFFFF)
1506 r.rlim_cur = 0x7FFFFFFF;
1507 if (r.rlim_max > 0x7FFFFFFF)
1508 r.rlim_max = 0x7FFFFFFF;
1509
1510 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1511 put_user(r.rlim_max, &rlim->rlim_max))
1512 return -EFAULT;
1513 return 0;
1514 }
1515 #endif
1516
1517 #endif
1518
rlim64_is_infinity(__u64 rlim64)1519 static inline bool rlim64_is_infinity(__u64 rlim64)
1520 {
1521 #if BITS_PER_LONG < 64
1522 return rlim64 >= ULONG_MAX;
1523 #else
1524 return rlim64 == RLIM64_INFINITY;
1525 #endif
1526 }
1527
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1528 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1529 {
1530 if (rlim->rlim_cur == RLIM_INFINITY)
1531 rlim64->rlim_cur = RLIM64_INFINITY;
1532 else
1533 rlim64->rlim_cur = rlim->rlim_cur;
1534 if (rlim->rlim_max == RLIM_INFINITY)
1535 rlim64->rlim_max = RLIM64_INFINITY;
1536 else
1537 rlim64->rlim_max = rlim->rlim_max;
1538 }
1539
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1540 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1541 {
1542 if (rlim64_is_infinity(rlim64->rlim_cur))
1543 rlim->rlim_cur = RLIM_INFINITY;
1544 else
1545 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1546 if (rlim64_is_infinity(rlim64->rlim_max))
1547 rlim->rlim_max = RLIM_INFINITY;
1548 else
1549 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1550 }
1551
1552 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1553 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1554 struct rlimit *new_rlim, struct rlimit *old_rlim)
1555 {
1556 struct rlimit *rlim;
1557 int retval = 0;
1558
1559 if (resource >= RLIM_NLIMITS)
1560 return -EINVAL;
1561 if (new_rlim) {
1562 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1563 return -EINVAL;
1564 if (resource == RLIMIT_NOFILE &&
1565 new_rlim->rlim_max > sysctl_nr_open)
1566 return -EPERM;
1567 }
1568
1569 /* protect tsk->signal and tsk->sighand from disappearing */
1570 read_lock(&tasklist_lock);
1571 if (!tsk->sighand) {
1572 retval = -ESRCH;
1573 goto out;
1574 }
1575
1576 rlim = tsk->signal->rlim + resource;
1577 task_lock(tsk->group_leader);
1578 if (new_rlim) {
1579 /* Keep the capable check against init_user_ns until
1580 cgroups can contain all limits */
1581 if (new_rlim->rlim_max > rlim->rlim_max &&
1582 !capable(CAP_SYS_RESOURCE))
1583 retval = -EPERM;
1584 if (!retval)
1585 retval = security_task_setrlimit(tsk, resource, new_rlim);
1586 }
1587 if (!retval) {
1588 if (old_rlim)
1589 *old_rlim = *rlim;
1590 if (new_rlim)
1591 *rlim = *new_rlim;
1592 }
1593 task_unlock(tsk->group_leader);
1594
1595 /*
1596 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1597 * infite. In case of RLIM_INFINITY the posix CPU timer code
1598 * ignores the rlimit.
1599 */
1600 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1601 new_rlim->rlim_cur != RLIM_INFINITY &&
1602 IS_ENABLED(CONFIG_POSIX_TIMERS))
1603 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1604 out:
1605 read_unlock(&tasklist_lock);
1606 return retval;
1607 }
1608
1609 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task,unsigned int flags)1610 static int check_prlimit_permission(struct task_struct *task,
1611 unsigned int flags)
1612 {
1613 const struct cred *cred = current_cred(), *tcred;
1614 bool id_match;
1615
1616 if (current == task)
1617 return 0;
1618
1619 tcred = __task_cred(task);
1620 id_match = (uid_eq(cred->uid, tcred->euid) &&
1621 uid_eq(cred->uid, tcred->suid) &&
1622 uid_eq(cred->uid, tcred->uid) &&
1623 gid_eq(cred->gid, tcred->egid) &&
1624 gid_eq(cred->gid, tcred->sgid) &&
1625 gid_eq(cred->gid, tcred->gid));
1626 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1627 return -EPERM;
1628
1629 return security_task_prlimit(cred, tcred, flags);
1630 }
1631
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1632 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1633 const struct rlimit64 __user *, new_rlim,
1634 struct rlimit64 __user *, old_rlim)
1635 {
1636 struct rlimit64 old64, new64;
1637 struct rlimit old, new;
1638 struct task_struct *tsk;
1639 unsigned int checkflags = 0;
1640 int ret;
1641
1642 if (old_rlim)
1643 checkflags |= LSM_PRLIMIT_READ;
1644
1645 if (new_rlim) {
1646 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1647 return -EFAULT;
1648 rlim64_to_rlim(&new64, &new);
1649 checkflags |= LSM_PRLIMIT_WRITE;
1650 }
1651
1652 rcu_read_lock();
1653 tsk = pid ? find_task_by_vpid(pid) : current;
1654 if (!tsk) {
1655 rcu_read_unlock();
1656 return -ESRCH;
1657 }
1658 ret = check_prlimit_permission(tsk, checkflags);
1659 if (ret) {
1660 rcu_read_unlock();
1661 return ret;
1662 }
1663 get_task_struct(tsk);
1664 rcu_read_unlock();
1665
1666 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1667 old_rlim ? &old : NULL);
1668
1669 if (!ret && old_rlim) {
1670 rlim_to_rlim64(&old, &old64);
1671 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1672 ret = -EFAULT;
1673 }
1674
1675 put_task_struct(tsk);
1676 return ret;
1677 }
1678
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1679 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1680 {
1681 struct rlimit new_rlim;
1682
1683 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1684 return -EFAULT;
1685 return do_prlimit(current, resource, &new_rlim, NULL);
1686 }
1687
1688 /*
1689 * It would make sense to put struct rusage in the task_struct,
1690 * except that would make the task_struct be *really big*. After
1691 * task_struct gets moved into malloc'ed memory, it would
1692 * make sense to do this. It will make moving the rest of the information
1693 * a lot simpler! (Which we're not doing right now because we're not
1694 * measuring them yet).
1695 *
1696 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1697 * races with threads incrementing their own counters. But since word
1698 * reads are atomic, we either get new values or old values and we don't
1699 * care which for the sums. We always take the siglock to protect reading
1700 * the c* fields from p->signal from races with exit.c updating those
1701 * fields when reaping, so a sample either gets all the additions of a
1702 * given child after it's reaped, or none so this sample is before reaping.
1703 *
1704 * Locking:
1705 * We need to take the siglock for CHILDEREN, SELF and BOTH
1706 * for the cases current multithreaded, non-current single threaded
1707 * non-current multithreaded. Thread traversal is now safe with
1708 * the siglock held.
1709 * Strictly speaking, we donot need to take the siglock if we are current and
1710 * single threaded, as no one else can take our signal_struct away, no one
1711 * else can reap the children to update signal->c* counters, and no one else
1712 * can race with the signal-> fields. If we do not take any lock, the
1713 * signal-> fields could be read out of order while another thread was just
1714 * exiting. So we should place a read memory barrier when we avoid the lock.
1715 * On the writer side, write memory barrier is implied in __exit_signal
1716 * as __exit_signal releases the siglock spinlock after updating the signal->
1717 * fields. But we don't do this yet to keep things simple.
1718 *
1719 */
1720
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1721 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1722 {
1723 r->ru_nvcsw += t->nvcsw;
1724 r->ru_nivcsw += t->nivcsw;
1725 r->ru_minflt += t->min_flt;
1726 r->ru_majflt += t->maj_flt;
1727 r->ru_inblock += task_io_get_inblock(t);
1728 r->ru_oublock += task_io_get_oublock(t);
1729 }
1730
getrusage(struct task_struct * p,int who,struct rusage * r)1731 void getrusage(struct task_struct *p, int who, struct rusage *r)
1732 {
1733 struct task_struct *t;
1734 unsigned long flags;
1735 u64 tgutime, tgstime, utime, stime;
1736 unsigned long maxrss = 0;
1737
1738 memset((char *)r, 0, sizeof (*r));
1739 utime = stime = 0;
1740
1741 if (who == RUSAGE_THREAD) {
1742 task_cputime_adjusted(current, &utime, &stime);
1743 accumulate_thread_rusage(p, r);
1744 maxrss = p->signal->maxrss;
1745 goto out;
1746 }
1747
1748 if (!lock_task_sighand(p, &flags))
1749 return;
1750
1751 switch (who) {
1752 case RUSAGE_BOTH:
1753 case RUSAGE_CHILDREN:
1754 utime = p->signal->cutime;
1755 stime = p->signal->cstime;
1756 r->ru_nvcsw = p->signal->cnvcsw;
1757 r->ru_nivcsw = p->signal->cnivcsw;
1758 r->ru_minflt = p->signal->cmin_flt;
1759 r->ru_majflt = p->signal->cmaj_flt;
1760 r->ru_inblock = p->signal->cinblock;
1761 r->ru_oublock = p->signal->coublock;
1762 maxrss = p->signal->cmaxrss;
1763
1764 if (who == RUSAGE_CHILDREN)
1765 break;
1766 fallthrough;
1767
1768 case RUSAGE_SELF:
1769 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1770 utime += tgutime;
1771 stime += tgstime;
1772 r->ru_nvcsw += p->signal->nvcsw;
1773 r->ru_nivcsw += p->signal->nivcsw;
1774 r->ru_minflt += p->signal->min_flt;
1775 r->ru_majflt += p->signal->maj_flt;
1776 r->ru_inblock += p->signal->inblock;
1777 r->ru_oublock += p->signal->oublock;
1778 if (maxrss < p->signal->maxrss)
1779 maxrss = p->signal->maxrss;
1780 t = p;
1781 do {
1782 accumulate_thread_rusage(t, r);
1783 } while_each_thread(p, t);
1784 break;
1785
1786 default:
1787 BUG();
1788 }
1789 unlock_task_sighand(p, &flags);
1790
1791 out:
1792 r->ru_utime = ns_to_kernel_old_timeval(utime);
1793 r->ru_stime = ns_to_kernel_old_timeval(stime);
1794
1795 if (who != RUSAGE_CHILDREN) {
1796 struct mm_struct *mm = get_task_mm(p);
1797
1798 if (mm) {
1799 setmax_mm_hiwater_rss(&maxrss, mm);
1800 mmput(mm);
1801 }
1802 }
1803 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1804 }
1805
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1806 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1807 {
1808 struct rusage r;
1809
1810 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1811 who != RUSAGE_THREAD)
1812 return -EINVAL;
1813
1814 getrusage(current, who, &r);
1815 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1816 }
1817
1818 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1819 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1820 {
1821 struct rusage r;
1822
1823 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1824 who != RUSAGE_THREAD)
1825 return -EINVAL;
1826
1827 getrusage(current, who, &r);
1828 return put_compat_rusage(&r, ru);
1829 }
1830 #endif
1831
SYSCALL_DEFINE1(umask,int,mask)1832 SYSCALL_DEFINE1(umask, int, mask)
1833 {
1834 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1835 return mask;
1836 }
1837
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1838 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1839 {
1840 struct fd exe;
1841 struct file *old_exe, *exe_file;
1842 struct inode *inode;
1843 int err;
1844
1845 exe = fdget(fd);
1846 if (!exe.file)
1847 return -EBADF;
1848
1849 inode = file_inode(exe.file);
1850
1851 /*
1852 * Because the original mm->exe_file points to executable file, make
1853 * sure that this one is executable as well, to avoid breaking an
1854 * overall picture.
1855 */
1856 err = -EACCES;
1857 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1858 goto exit;
1859
1860 err = inode_permission(inode, MAY_EXEC);
1861 if (err)
1862 goto exit;
1863
1864 /*
1865 * Forbid mm->exe_file change if old file still mapped.
1866 */
1867 exe_file = get_mm_exe_file(mm);
1868 err = -EBUSY;
1869 if (exe_file) {
1870 struct vm_area_struct *vma;
1871
1872 mmap_read_lock(mm);
1873 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1874 if (!vma->vm_file)
1875 continue;
1876 if (path_equal(&vma->vm_file->f_path,
1877 &exe_file->f_path))
1878 goto exit_err;
1879 }
1880
1881 mmap_read_unlock(mm);
1882 fput(exe_file);
1883 }
1884
1885 err = 0;
1886 /* set the new file, lockless */
1887 get_file(exe.file);
1888 old_exe = xchg(&mm->exe_file, exe.file);
1889 if (old_exe)
1890 fput(old_exe);
1891 exit:
1892 fdput(exe);
1893 return err;
1894 exit_err:
1895 mmap_read_unlock(mm);
1896 fput(exe_file);
1897 goto exit;
1898 }
1899
1900 /*
1901 * Check arithmetic relations of passed addresses.
1902 *
1903 * WARNING: we don't require any capability here so be very careful
1904 * in what is allowed for modification from userspace.
1905 */
validate_prctl_map_addr(struct prctl_mm_map * prctl_map)1906 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1907 {
1908 unsigned long mmap_max_addr = TASK_SIZE;
1909 int error = -EINVAL, i;
1910
1911 static const unsigned char offsets[] = {
1912 offsetof(struct prctl_mm_map, start_code),
1913 offsetof(struct prctl_mm_map, end_code),
1914 offsetof(struct prctl_mm_map, start_data),
1915 offsetof(struct prctl_mm_map, end_data),
1916 offsetof(struct prctl_mm_map, start_brk),
1917 offsetof(struct prctl_mm_map, brk),
1918 offsetof(struct prctl_mm_map, start_stack),
1919 offsetof(struct prctl_mm_map, arg_start),
1920 offsetof(struct prctl_mm_map, arg_end),
1921 offsetof(struct prctl_mm_map, env_start),
1922 offsetof(struct prctl_mm_map, env_end),
1923 };
1924
1925 /*
1926 * Make sure the members are not somewhere outside
1927 * of allowed address space.
1928 */
1929 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1930 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1931
1932 if ((unsigned long)val >= mmap_max_addr ||
1933 (unsigned long)val < mmap_min_addr)
1934 goto out;
1935 }
1936
1937 /*
1938 * Make sure the pairs are ordered.
1939 */
1940 #define __prctl_check_order(__m1, __op, __m2) \
1941 ((unsigned long)prctl_map->__m1 __op \
1942 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1943 error = __prctl_check_order(start_code, <, end_code);
1944 error |= __prctl_check_order(start_data,<=, end_data);
1945 error |= __prctl_check_order(start_brk, <=, brk);
1946 error |= __prctl_check_order(arg_start, <=, arg_end);
1947 error |= __prctl_check_order(env_start, <=, env_end);
1948 if (error)
1949 goto out;
1950 #undef __prctl_check_order
1951
1952 error = -EINVAL;
1953
1954 /*
1955 * Neither we should allow to override limits if they set.
1956 */
1957 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1958 prctl_map->start_brk, prctl_map->end_data,
1959 prctl_map->start_data))
1960 goto out;
1961
1962 error = 0;
1963 out:
1964 return error;
1965 }
1966
1967 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)1968 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1969 {
1970 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1971 unsigned long user_auxv[AT_VECTOR_SIZE];
1972 struct mm_struct *mm = current->mm;
1973 int error;
1974
1975 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1976 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1977
1978 if (opt == PR_SET_MM_MAP_SIZE)
1979 return put_user((unsigned int)sizeof(prctl_map),
1980 (unsigned int __user *)addr);
1981
1982 if (data_size != sizeof(prctl_map))
1983 return -EINVAL;
1984
1985 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1986 return -EFAULT;
1987
1988 error = validate_prctl_map_addr(&prctl_map);
1989 if (error)
1990 return error;
1991
1992 if (prctl_map.auxv_size) {
1993 /*
1994 * Someone is trying to cheat the auxv vector.
1995 */
1996 if (!prctl_map.auxv ||
1997 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1998 return -EINVAL;
1999
2000 memset(user_auxv, 0, sizeof(user_auxv));
2001 if (copy_from_user(user_auxv,
2002 (const void __user *)prctl_map.auxv,
2003 prctl_map.auxv_size))
2004 return -EFAULT;
2005
2006 /* Last entry must be AT_NULL as specification requires */
2007 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2008 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2009 }
2010
2011 if (prctl_map.exe_fd != (u32)-1) {
2012 /*
2013 * Check if the current user is checkpoint/restore capable.
2014 * At the time of this writing, it checks for CAP_SYS_ADMIN
2015 * or CAP_CHECKPOINT_RESTORE.
2016 * Note that a user with access to ptrace can masquerade an
2017 * arbitrary program as any executable, even setuid ones.
2018 * This may have implications in the tomoyo subsystem.
2019 */
2020 if (!checkpoint_restore_ns_capable(current_user_ns()))
2021 return -EPERM;
2022
2023 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2024 if (error)
2025 return error;
2026 }
2027
2028 /*
2029 * arg_lock protects concurent updates but we still need mmap_lock for
2030 * read to exclude races with sys_brk.
2031 */
2032 mmap_read_lock(mm);
2033
2034 /*
2035 * We don't validate if these members are pointing to
2036 * real present VMAs because application may have correspond
2037 * VMAs already unmapped and kernel uses these members for statistics
2038 * output in procfs mostly, except
2039 *
2040 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2041 * for VMAs when updating these memvers so anything wrong written
2042 * here cause kernel to swear at userspace program but won't lead
2043 * to any problem in kernel itself
2044 */
2045
2046 spin_lock(&mm->arg_lock);
2047 mm->start_code = prctl_map.start_code;
2048 mm->end_code = prctl_map.end_code;
2049 mm->start_data = prctl_map.start_data;
2050 mm->end_data = prctl_map.end_data;
2051 mm->start_brk = prctl_map.start_brk;
2052 mm->brk = prctl_map.brk;
2053 mm->start_stack = prctl_map.start_stack;
2054 mm->arg_start = prctl_map.arg_start;
2055 mm->arg_end = prctl_map.arg_end;
2056 mm->env_start = prctl_map.env_start;
2057 mm->env_end = prctl_map.env_end;
2058 spin_unlock(&mm->arg_lock);
2059
2060 /*
2061 * Note this update of @saved_auxv is lockless thus
2062 * if someone reads this member in procfs while we're
2063 * updating -- it may get partly updated results. It's
2064 * known and acceptable trade off: we leave it as is to
2065 * not introduce additional locks here making the kernel
2066 * more complex.
2067 */
2068 if (prctl_map.auxv_size)
2069 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2070
2071 mmap_read_unlock(mm);
2072 return 0;
2073 }
2074 #endif /* CONFIG_CHECKPOINT_RESTORE */
2075
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)2076 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2077 unsigned long len)
2078 {
2079 /*
2080 * This doesn't move the auxiliary vector itself since it's pinned to
2081 * mm_struct, but it permits filling the vector with new values. It's
2082 * up to the caller to provide sane values here, otherwise userspace
2083 * tools which use this vector might be unhappy.
2084 */
2085 unsigned long user_auxv[AT_VECTOR_SIZE];
2086
2087 if (len > sizeof(user_auxv))
2088 return -EINVAL;
2089
2090 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2091 return -EFAULT;
2092
2093 /* Make sure the last entry is always AT_NULL */
2094 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2095 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2096
2097 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2098
2099 task_lock(current);
2100 memcpy(mm->saved_auxv, user_auxv, len);
2101 task_unlock(current);
2102
2103 return 0;
2104 }
2105
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)2106 static int prctl_set_mm(int opt, unsigned long addr,
2107 unsigned long arg4, unsigned long arg5)
2108 {
2109 struct mm_struct *mm = current->mm;
2110 struct prctl_mm_map prctl_map = {
2111 .auxv = NULL,
2112 .auxv_size = 0,
2113 .exe_fd = -1,
2114 };
2115 struct vm_area_struct *vma;
2116 int error;
2117
2118 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2119 opt != PR_SET_MM_MAP &&
2120 opt != PR_SET_MM_MAP_SIZE)))
2121 return -EINVAL;
2122
2123 #ifdef CONFIG_CHECKPOINT_RESTORE
2124 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2125 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2126 #endif
2127
2128 if (!capable(CAP_SYS_RESOURCE))
2129 return -EPERM;
2130
2131 if (opt == PR_SET_MM_EXE_FILE)
2132 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2133
2134 if (opt == PR_SET_MM_AUXV)
2135 return prctl_set_auxv(mm, addr, arg4);
2136
2137 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2138 return -EINVAL;
2139
2140 error = -EINVAL;
2141
2142 /*
2143 * arg_lock protects concurent updates of arg boundaries, we need
2144 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2145 * validation.
2146 */
2147 mmap_read_lock(mm);
2148 vma = find_vma(mm, addr);
2149
2150 spin_lock(&mm->arg_lock);
2151 prctl_map.start_code = mm->start_code;
2152 prctl_map.end_code = mm->end_code;
2153 prctl_map.start_data = mm->start_data;
2154 prctl_map.end_data = mm->end_data;
2155 prctl_map.start_brk = mm->start_brk;
2156 prctl_map.brk = mm->brk;
2157 prctl_map.start_stack = mm->start_stack;
2158 prctl_map.arg_start = mm->arg_start;
2159 prctl_map.arg_end = mm->arg_end;
2160 prctl_map.env_start = mm->env_start;
2161 prctl_map.env_end = mm->env_end;
2162
2163 switch (opt) {
2164 case PR_SET_MM_START_CODE:
2165 prctl_map.start_code = addr;
2166 break;
2167 case PR_SET_MM_END_CODE:
2168 prctl_map.end_code = addr;
2169 break;
2170 case PR_SET_MM_START_DATA:
2171 prctl_map.start_data = addr;
2172 break;
2173 case PR_SET_MM_END_DATA:
2174 prctl_map.end_data = addr;
2175 break;
2176 case PR_SET_MM_START_STACK:
2177 prctl_map.start_stack = addr;
2178 break;
2179 case PR_SET_MM_START_BRK:
2180 prctl_map.start_brk = addr;
2181 break;
2182 case PR_SET_MM_BRK:
2183 prctl_map.brk = addr;
2184 break;
2185 case PR_SET_MM_ARG_START:
2186 prctl_map.arg_start = addr;
2187 break;
2188 case PR_SET_MM_ARG_END:
2189 prctl_map.arg_end = addr;
2190 break;
2191 case PR_SET_MM_ENV_START:
2192 prctl_map.env_start = addr;
2193 break;
2194 case PR_SET_MM_ENV_END:
2195 prctl_map.env_end = addr;
2196 break;
2197 default:
2198 goto out;
2199 }
2200
2201 error = validate_prctl_map_addr(&prctl_map);
2202 if (error)
2203 goto out;
2204
2205 switch (opt) {
2206 /*
2207 * If command line arguments and environment
2208 * are placed somewhere else on stack, we can
2209 * set them up here, ARG_START/END to setup
2210 * command line argumets and ENV_START/END
2211 * for environment.
2212 */
2213 case PR_SET_MM_START_STACK:
2214 case PR_SET_MM_ARG_START:
2215 case PR_SET_MM_ARG_END:
2216 case PR_SET_MM_ENV_START:
2217 case PR_SET_MM_ENV_END:
2218 if (!vma) {
2219 error = -EFAULT;
2220 goto out;
2221 }
2222 }
2223
2224 mm->start_code = prctl_map.start_code;
2225 mm->end_code = prctl_map.end_code;
2226 mm->start_data = prctl_map.start_data;
2227 mm->end_data = prctl_map.end_data;
2228 mm->start_brk = prctl_map.start_brk;
2229 mm->brk = prctl_map.brk;
2230 mm->start_stack = prctl_map.start_stack;
2231 mm->arg_start = prctl_map.arg_start;
2232 mm->arg_end = prctl_map.arg_end;
2233 mm->env_start = prctl_map.env_start;
2234 mm->env_end = prctl_map.env_end;
2235
2236 error = 0;
2237 out:
2238 spin_unlock(&mm->arg_lock);
2239 mmap_read_unlock(mm);
2240 return error;
2241 }
2242
2243 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2244 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2245 {
2246 return put_user(me->clear_child_tid, tid_addr);
2247 }
2248 #else
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2249 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2250 {
2251 return -EINVAL;
2252 }
2253 #endif
2254
propagate_has_child_subreaper(struct task_struct * p,void * data)2255 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2256 {
2257 /*
2258 * If task has has_child_subreaper - all its decendants
2259 * already have these flag too and new decendants will
2260 * inherit it on fork, skip them.
2261 *
2262 * If we've found child_reaper - skip descendants in
2263 * it's subtree as they will never get out pidns.
2264 */
2265 if (p->signal->has_child_subreaper ||
2266 is_child_reaper(task_pid(p)))
2267 return 0;
2268
2269 p->signal->has_child_subreaper = 1;
2270 return 1;
2271 }
2272
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2273 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2274 {
2275 return -EINVAL;
2276 }
2277
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2278 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2279 unsigned long ctrl)
2280 {
2281 return -EINVAL;
2282 }
2283
2284 #ifdef CONFIG_MMU
prctl_update_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,const char __user * name_addr)2285 static int prctl_update_vma_anon_name(struct vm_area_struct *vma,
2286 struct vm_area_struct **prev,
2287 unsigned long start, unsigned long end,
2288 const char __user *name_addr)
2289 {
2290 struct mm_struct *mm = vma->vm_mm;
2291 int error = 0;
2292 pgoff_t pgoff;
2293
2294 if (name_addr == vma_get_anon_name(vma)) {
2295 *prev = vma;
2296 goto out;
2297 }
2298
2299 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2300 *prev = vma_merge(mm, *prev, start, end, vma->vm_flags, vma->anon_vma,
2301 vma->vm_file, pgoff, vma_policy(vma),
2302 vma->vm_userfaultfd_ctx, name_addr);
2303 if (*prev) {
2304 vma = *prev;
2305 goto success;
2306 }
2307
2308 *prev = vma;
2309
2310 if (start != vma->vm_start) {
2311 error = split_vma(mm, vma, start, 1);
2312 if (error)
2313 goto out;
2314 }
2315
2316 if (end != vma->vm_end) {
2317 error = split_vma(mm, vma, end, 0);
2318 if (error)
2319 goto out;
2320 }
2321
2322 success:
2323 if (!vma->vm_file)
2324 vma->anon_name = name_addr;
2325
2326 out:
2327 if (error == -ENOMEM)
2328 error = -EAGAIN;
2329 return error;
2330 }
2331
prctl_set_vma_anon_name(unsigned long start,unsigned long end,unsigned long arg)2332 static int prctl_set_vma_anon_name(unsigned long start, unsigned long end,
2333 unsigned long arg)
2334 {
2335 unsigned long tmp;
2336 struct vm_area_struct *vma, *prev;
2337 int unmapped_error = 0;
2338 int error = -EINVAL;
2339
2340 /*
2341 * If the interval [start,end) covers some unmapped address
2342 * ranges, just ignore them, but return -ENOMEM at the end.
2343 * - this matches the handling in madvise.
2344 */
2345 vma = find_vma_prev(current->mm, start, &prev);
2346 if (vma && start > vma->vm_start)
2347 prev = vma;
2348
2349 for (;;) {
2350 /* Still start < end. */
2351 error = -ENOMEM;
2352 if (!vma)
2353 return error;
2354
2355 /* Here start < (end|vma->vm_end). */
2356 if (start < vma->vm_start) {
2357 unmapped_error = -ENOMEM;
2358 start = vma->vm_start;
2359 if (start >= end)
2360 return error;
2361 }
2362
2363 /* Here vma->vm_start <= start < (end|vma->vm_end) */
2364 tmp = vma->vm_end;
2365 if (end < tmp)
2366 tmp = end;
2367
2368 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
2369 error = prctl_update_vma_anon_name(vma, &prev, start, tmp,
2370 (const char __user *)arg);
2371 if (error)
2372 return error;
2373 start = tmp;
2374 if (prev && start < prev->vm_end)
2375 start = prev->vm_end;
2376 error = unmapped_error;
2377 if (start >= end)
2378 return error;
2379 if (prev)
2380 vma = prev->vm_next;
2381 else /* madvise_remove dropped mmap_lock */
2382 vma = find_vma(current->mm, start);
2383 }
2384 }
2385
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long len_in,unsigned long arg)2386 static int prctl_set_vma(unsigned long opt, unsigned long start,
2387 unsigned long len_in, unsigned long arg)
2388 {
2389 struct mm_struct *mm = current->mm;
2390 int error;
2391 unsigned long len;
2392 unsigned long end;
2393
2394 if (start & ~PAGE_MASK)
2395 return -EINVAL;
2396 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
2397
2398 /* Check to see whether len was rounded up from small -ve to zero */
2399 if (len_in && !len)
2400 return -EINVAL;
2401
2402 end = start + len;
2403 if (end < start)
2404 return -EINVAL;
2405
2406 if (end == start)
2407 return 0;
2408
2409 mmap_write_lock(mm);
2410
2411 switch (opt) {
2412 case PR_SET_VMA_ANON_NAME:
2413 error = prctl_set_vma_anon_name(start, end, arg);
2414 break;
2415 default:
2416 error = -EINVAL;
2417 }
2418
2419 mmap_write_unlock(mm);
2420
2421 return error;
2422 }
2423 #else /* CONFIG_MMU */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long len_in,unsigned long arg)2424 static int prctl_set_vma(unsigned long opt, unsigned long start,
2425 unsigned long len_in, unsigned long arg)
2426 {
2427 return -EINVAL;
2428 }
2429 #endif
2430
2431 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2432
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2433 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2434 unsigned long, arg4, unsigned long, arg5)
2435 {
2436 struct task_struct *me = current;
2437 unsigned char comm[sizeof(me->comm)];
2438 long error;
2439
2440 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2441 if (error != -ENOSYS)
2442 return error;
2443
2444 error = 0;
2445 switch (option) {
2446 case PR_SET_PDEATHSIG:
2447 if (!valid_signal(arg2)) {
2448 error = -EINVAL;
2449 break;
2450 }
2451 me->pdeath_signal = arg2;
2452 break;
2453 case PR_GET_PDEATHSIG:
2454 error = put_user(me->pdeath_signal, (int __user *)arg2);
2455 break;
2456 case PR_GET_DUMPABLE:
2457 error = get_dumpable(me->mm);
2458 break;
2459 case PR_SET_DUMPABLE:
2460 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2461 error = -EINVAL;
2462 break;
2463 }
2464 set_dumpable(me->mm, arg2);
2465 break;
2466
2467 case PR_SET_UNALIGN:
2468 error = SET_UNALIGN_CTL(me, arg2);
2469 break;
2470 case PR_GET_UNALIGN:
2471 error = GET_UNALIGN_CTL(me, arg2);
2472 break;
2473 case PR_SET_FPEMU:
2474 error = SET_FPEMU_CTL(me, arg2);
2475 break;
2476 case PR_GET_FPEMU:
2477 error = GET_FPEMU_CTL(me, arg2);
2478 break;
2479 case PR_SET_FPEXC:
2480 error = SET_FPEXC_CTL(me, arg2);
2481 break;
2482 case PR_GET_FPEXC:
2483 error = GET_FPEXC_CTL(me, arg2);
2484 break;
2485 case PR_GET_TIMING:
2486 error = PR_TIMING_STATISTICAL;
2487 break;
2488 case PR_SET_TIMING:
2489 if (arg2 != PR_TIMING_STATISTICAL)
2490 error = -EINVAL;
2491 break;
2492 case PR_SET_NAME:
2493 comm[sizeof(me->comm) - 1] = 0;
2494 if (strncpy_from_user(comm, (char __user *)arg2,
2495 sizeof(me->comm) - 1) < 0)
2496 return -EFAULT;
2497 set_task_comm(me, comm);
2498 proc_comm_connector(me);
2499 break;
2500 case PR_GET_NAME:
2501 get_task_comm(comm, me);
2502 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2503 return -EFAULT;
2504 break;
2505 case PR_GET_ENDIAN:
2506 error = GET_ENDIAN(me, arg2);
2507 break;
2508 case PR_SET_ENDIAN:
2509 error = SET_ENDIAN(me, arg2);
2510 break;
2511 case PR_GET_SECCOMP:
2512 error = prctl_get_seccomp();
2513 break;
2514 case PR_SET_SECCOMP:
2515 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2516 break;
2517 case PR_GET_TSC:
2518 error = GET_TSC_CTL(arg2);
2519 break;
2520 case PR_SET_TSC:
2521 error = SET_TSC_CTL(arg2);
2522 break;
2523 case PR_TASK_PERF_EVENTS_DISABLE:
2524 error = perf_event_task_disable();
2525 break;
2526 case PR_TASK_PERF_EVENTS_ENABLE:
2527 error = perf_event_task_enable();
2528 break;
2529 case PR_GET_TIMERSLACK:
2530 if (current->timer_slack_ns > ULONG_MAX)
2531 error = ULONG_MAX;
2532 else
2533 error = current->timer_slack_ns;
2534 break;
2535 case PR_SET_TIMERSLACK:
2536 if (arg2 <= 0)
2537 current->timer_slack_ns =
2538 current->default_timer_slack_ns;
2539 else
2540 current->timer_slack_ns = arg2;
2541 break;
2542 case PR_MCE_KILL:
2543 if (arg4 | arg5)
2544 return -EINVAL;
2545 switch (arg2) {
2546 case PR_MCE_KILL_CLEAR:
2547 if (arg3 != 0)
2548 return -EINVAL;
2549 current->flags &= ~PF_MCE_PROCESS;
2550 break;
2551 case PR_MCE_KILL_SET:
2552 current->flags |= PF_MCE_PROCESS;
2553 if (arg3 == PR_MCE_KILL_EARLY)
2554 current->flags |= PF_MCE_EARLY;
2555 else if (arg3 == PR_MCE_KILL_LATE)
2556 current->flags &= ~PF_MCE_EARLY;
2557 else if (arg3 == PR_MCE_KILL_DEFAULT)
2558 current->flags &=
2559 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2560 else
2561 return -EINVAL;
2562 break;
2563 default:
2564 return -EINVAL;
2565 }
2566 break;
2567 case PR_MCE_KILL_GET:
2568 if (arg2 | arg3 | arg4 | arg5)
2569 return -EINVAL;
2570 if (current->flags & PF_MCE_PROCESS)
2571 error = (current->flags & PF_MCE_EARLY) ?
2572 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2573 else
2574 error = PR_MCE_KILL_DEFAULT;
2575 break;
2576 case PR_SET_MM:
2577 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2578 break;
2579 case PR_GET_TID_ADDRESS:
2580 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2581 break;
2582 case PR_SET_CHILD_SUBREAPER:
2583 me->signal->is_child_subreaper = !!arg2;
2584 if (!arg2)
2585 break;
2586
2587 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2588 break;
2589 case PR_GET_CHILD_SUBREAPER:
2590 error = put_user(me->signal->is_child_subreaper,
2591 (int __user *)arg2);
2592 break;
2593 case PR_SET_NO_NEW_PRIVS:
2594 if (arg2 != 1 || arg3 || arg4 || arg5)
2595 return -EINVAL;
2596
2597 task_set_no_new_privs(current);
2598 break;
2599 case PR_GET_NO_NEW_PRIVS:
2600 if (arg2 || arg3 || arg4 || arg5)
2601 return -EINVAL;
2602 return task_no_new_privs(current) ? 1 : 0;
2603 case PR_GET_THP_DISABLE:
2604 if (arg2 || arg3 || arg4 || arg5)
2605 return -EINVAL;
2606 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2607 break;
2608 case PR_SET_THP_DISABLE:
2609 if (arg3 || arg4 || arg5)
2610 return -EINVAL;
2611 if (mmap_write_lock_killable(me->mm))
2612 return -EINTR;
2613 if (arg2)
2614 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2615 else
2616 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2617 mmap_write_unlock(me->mm);
2618 break;
2619 case PR_MPX_ENABLE_MANAGEMENT:
2620 case PR_MPX_DISABLE_MANAGEMENT:
2621 /* No longer implemented: */
2622 return -EINVAL;
2623 case PR_SET_FP_MODE:
2624 error = SET_FP_MODE(me, arg2);
2625 break;
2626 case PR_GET_FP_MODE:
2627 error = GET_FP_MODE(me);
2628 break;
2629 case PR_SVE_SET_VL:
2630 error = SVE_SET_VL(arg2);
2631 break;
2632 case PR_SVE_GET_VL:
2633 error = SVE_GET_VL();
2634 break;
2635 case PR_GET_SPECULATION_CTRL:
2636 if (arg3 || arg4 || arg5)
2637 return -EINVAL;
2638 error = arch_prctl_spec_ctrl_get(me, arg2);
2639 break;
2640 case PR_SET_SPECULATION_CTRL:
2641 if (arg4 || arg5)
2642 return -EINVAL;
2643 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2644 break;
2645 case PR_SET_VMA:
2646 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2647 break;
2648 case PR_PAC_RESET_KEYS:
2649 if (arg3 || arg4 || arg5)
2650 return -EINVAL;
2651 error = PAC_RESET_KEYS(me, arg2);
2652 break;
2653 case PR_PAC_SET_ENABLED_KEYS:
2654 if (arg4 || arg5)
2655 return -EINVAL;
2656 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2657 break;
2658 case PR_PAC_GET_ENABLED_KEYS:
2659 if (arg2 || arg3 || arg4 || arg5)
2660 return -EINVAL;
2661 error = PAC_GET_ENABLED_KEYS(me);
2662 break;
2663 case PR_SET_TAGGED_ADDR_CTRL:
2664 if (arg3 || arg4 || arg5)
2665 return -EINVAL;
2666 error = SET_TAGGED_ADDR_CTRL(arg2);
2667 break;
2668 case PR_GET_TAGGED_ADDR_CTRL:
2669 if (arg2 || arg3 || arg4 || arg5)
2670 return -EINVAL;
2671 error = GET_TAGGED_ADDR_CTRL();
2672 break;
2673 case PR_SET_IO_FLUSHER:
2674 if (!capable(CAP_SYS_RESOURCE))
2675 return -EPERM;
2676
2677 if (arg3 || arg4 || arg5)
2678 return -EINVAL;
2679
2680 if (arg2 == 1)
2681 current->flags |= PR_IO_FLUSHER;
2682 else if (!arg2)
2683 current->flags &= ~PR_IO_FLUSHER;
2684 else
2685 return -EINVAL;
2686 break;
2687 case PR_GET_IO_FLUSHER:
2688 if (!capable(CAP_SYS_RESOURCE))
2689 return -EPERM;
2690
2691 if (arg2 || arg3 || arg4 || arg5)
2692 return -EINVAL;
2693
2694 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2695 break;
2696 default:
2697 error = -EINVAL;
2698 break;
2699 }
2700 trace_android_vh_syscall_prctl_finished(option, me);
2701 return error;
2702 }
2703
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2704 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2705 struct getcpu_cache __user *, unused)
2706 {
2707 int err = 0;
2708 int cpu = raw_smp_processor_id();
2709
2710 if (cpup)
2711 err |= put_user(cpu, cpup);
2712 if (nodep)
2713 err |= put_user(cpu_to_node(cpu), nodep);
2714 return err ? -EFAULT : 0;
2715 }
2716
2717 /**
2718 * do_sysinfo - fill in sysinfo struct
2719 * @info: pointer to buffer to fill
2720 */
do_sysinfo(struct sysinfo * info)2721 static int do_sysinfo(struct sysinfo *info)
2722 {
2723 unsigned long mem_total, sav_total;
2724 unsigned int mem_unit, bitcount;
2725 struct timespec64 tp;
2726
2727 memset(info, 0, sizeof(struct sysinfo));
2728
2729 ktime_get_boottime_ts64(&tp);
2730 timens_add_boottime(&tp);
2731 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2732
2733 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2734
2735 info->procs = nr_threads;
2736
2737 si_meminfo(info);
2738 si_swapinfo(info);
2739
2740 /*
2741 * If the sum of all the available memory (i.e. ram + swap)
2742 * is less than can be stored in a 32 bit unsigned long then
2743 * we can be binary compatible with 2.2.x kernels. If not,
2744 * well, in that case 2.2.x was broken anyways...
2745 *
2746 * -Erik Andersen <andersee@debian.org>
2747 */
2748
2749 mem_total = info->totalram + info->totalswap;
2750 if (mem_total < info->totalram || mem_total < info->totalswap)
2751 goto out;
2752 bitcount = 0;
2753 mem_unit = info->mem_unit;
2754 while (mem_unit > 1) {
2755 bitcount++;
2756 mem_unit >>= 1;
2757 sav_total = mem_total;
2758 mem_total <<= 1;
2759 if (mem_total < sav_total)
2760 goto out;
2761 }
2762
2763 /*
2764 * If mem_total did not overflow, multiply all memory values by
2765 * info->mem_unit and set it to 1. This leaves things compatible
2766 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2767 * kernels...
2768 */
2769
2770 info->mem_unit = 1;
2771 info->totalram <<= bitcount;
2772 info->freeram <<= bitcount;
2773 info->sharedram <<= bitcount;
2774 info->bufferram <<= bitcount;
2775 info->totalswap <<= bitcount;
2776 info->freeswap <<= bitcount;
2777 info->totalhigh <<= bitcount;
2778 info->freehigh <<= bitcount;
2779
2780 out:
2781 return 0;
2782 }
2783
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2784 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2785 {
2786 struct sysinfo val;
2787
2788 do_sysinfo(&val);
2789
2790 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2791 return -EFAULT;
2792
2793 return 0;
2794 }
2795
2796 #ifdef CONFIG_COMPAT
2797 struct compat_sysinfo {
2798 s32 uptime;
2799 u32 loads[3];
2800 u32 totalram;
2801 u32 freeram;
2802 u32 sharedram;
2803 u32 bufferram;
2804 u32 totalswap;
2805 u32 freeswap;
2806 u16 procs;
2807 u16 pad;
2808 u32 totalhigh;
2809 u32 freehigh;
2810 u32 mem_unit;
2811 char _f[20-2*sizeof(u32)-sizeof(int)];
2812 };
2813
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2814 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2815 {
2816 struct sysinfo s;
2817 struct compat_sysinfo s_32;
2818
2819 do_sysinfo(&s);
2820
2821 /* Check to see if any memory value is too large for 32-bit and scale
2822 * down if needed
2823 */
2824 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2825 int bitcount = 0;
2826
2827 while (s.mem_unit < PAGE_SIZE) {
2828 s.mem_unit <<= 1;
2829 bitcount++;
2830 }
2831
2832 s.totalram >>= bitcount;
2833 s.freeram >>= bitcount;
2834 s.sharedram >>= bitcount;
2835 s.bufferram >>= bitcount;
2836 s.totalswap >>= bitcount;
2837 s.freeswap >>= bitcount;
2838 s.totalhigh >>= bitcount;
2839 s.freehigh >>= bitcount;
2840 }
2841
2842 memset(&s_32, 0, sizeof(s_32));
2843 s_32.uptime = s.uptime;
2844 s_32.loads[0] = s.loads[0];
2845 s_32.loads[1] = s.loads[1];
2846 s_32.loads[2] = s.loads[2];
2847 s_32.totalram = s.totalram;
2848 s_32.freeram = s.freeram;
2849 s_32.sharedram = s.sharedram;
2850 s_32.bufferram = s.bufferram;
2851 s_32.totalswap = s.totalswap;
2852 s_32.freeswap = s.freeswap;
2853 s_32.procs = s.procs;
2854 s_32.totalhigh = s.totalhigh;
2855 s_32.freehigh = s.freehigh;
2856 s_32.mem_unit = s.mem_unit;
2857 if (copy_to_user(info, &s_32, sizeof(s_32)))
2858 return -EFAULT;
2859 return 0;
2860 }
2861 #endif /* CONFIG_COMPAT */
2862