1 /*
2 *
3 * Clock initialization for OMAP4
4 *
5 * (C) Copyright 2010
6 * Texas Instruments, <www.ti.com>
7 *
8 * Aneesh V <aneesh@ti.com>
9 *
10 * Based on previous work by:
11 * Santosh Shilimkar <santosh.shilimkar@ti.com>
12 * Rajendra Nayak <rnayak@ti.com>
13 *
14 * SPDX-License-Identifier: GPL-2.0+
15 */
16 #include <common.h>
17 #include <i2c.h>
18 #include <asm/omap_common.h>
19 #include <asm/gpio.h>
20 #include <asm/arch/clock.h>
21 #include <asm/arch/sys_proto.h>
22 #include <asm/utils.h>
23 #include <asm/omap_gpio.h>
24 #include <asm/emif.h>
25
26 #ifndef CONFIG_SPL_BUILD
27 /*
28 * printing to console doesn't work unless
29 * this code is executed from SPL
30 */
31 #define printf(fmt, args...)
32 #define puts(s)
33 #endif
34
35 const u32 sys_clk_array[8] = {
36 12000000, /* 12 MHz */
37 20000000, /* 20 MHz */
38 16800000, /* 16.8 MHz */
39 19200000, /* 19.2 MHz */
40 26000000, /* 26 MHz */
41 27000000, /* 27 MHz */
42 38400000, /* 38.4 MHz */
43 };
44
__get_sys_clk_index(void)45 static inline u32 __get_sys_clk_index(void)
46 {
47 s8 ind;
48 /*
49 * For ES1 the ROM code calibration of sys clock is not reliable
50 * due to hw issue. So, use hard-coded value. If this value is not
51 * correct for any board over-ride this function in board file
52 * From ES2.0 onwards you will get this information from
53 * CM_SYS_CLKSEL
54 */
55 if (omap_revision() == OMAP4430_ES1_0)
56 ind = OMAP_SYS_CLK_IND_38_4_MHZ;
57 else {
58 /* SYS_CLKSEL - 1 to match the dpll param array indices */
59 ind = (readl((*prcm)->cm_sys_clksel) &
60 CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1;
61 }
62 return ind;
63 }
64
65 u32 get_sys_clk_index(void)
66 __attribute__ ((weak, alias("__get_sys_clk_index")));
67
get_sys_clk_freq(void)68 u32 get_sys_clk_freq(void)
69 {
70 u8 index = get_sys_clk_index();
71 return sys_clk_array[index];
72 }
73
setup_post_dividers(u32 const base,const struct dpll_params * params)74 void setup_post_dividers(u32 const base, const struct dpll_params *params)
75 {
76 struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
77
78 /* Setup post-dividers */
79 if (params->m2 >= 0)
80 writel(params->m2, &dpll_regs->cm_div_m2_dpll);
81 if (params->m3 >= 0)
82 writel(params->m3, &dpll_regs->cm_div_m3_dpll);
83 if (params->m4_h11 >= 0)
84 writel(params->m4_h11, &dpll_regs->cm_div_m4_h11_dpll);
85 if (params->m5_h12 >= 0)
86 writel(params->m5_h12, &dpll_regs->cm_div_m5_h12_dpll);
87 if (params->m6_h13 >= 0)
88 writel(params->m6_h13, &dpll_regs->cm_div_m6_h13_dpll);
89 if (params->m7_h14 >= 0)
90 writel(params->m7_h14, &dpll_regs->cm_div_m7_h14_dpll);
91 if (params->h21 >= 0)
92 writel(params->h21, &dpll_regs->cm_div_h21_dpll);
93 if (params->h22 >= 0)
94 writel(params->h22, &dpll_regs->cm_div_h22_dpll);
95 if (params->h23 >= 0)
96 writel(params->h23, &dpll_regs->cm_div_h23_dpll);
97 if (params->h24 >= 0)
98 writel(params->h24, &dpll_regs->cm_div_h24_dpll);
99 }
100
do_bypass_dpll(u32 const base)101 static inline void do_bypass_dpll(u32 const base)
102 {
103 struct dpll_regs *dpll_regs = (struct dpll_regs *)base;
104
105 clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
106 CM_CLKMODE_DPLL_DPLL_EN_MASK,
107 DPLL_EN_FAST_RELOCK_BYPASS <<
108 CM_CLKMODE_DPLL_EN_SHIFT);
109 }
110
wait_for_bypass(u32 const base)111 static inline void wait_for_bypass(u32 const base)
112 {
113 struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
114
115 if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll,
116 LDELAY)) {
117 printf("Bypassing DPLL failed %x\n", base);
118 }
119 }
120
do_lock_dpll(u32 const base)121 static inline void do_lock_dpll(u32 const base)
122 {
123 struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
124
125 clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
126 CM_CLKMODE_DPLL_DPLL_EN_MASK,
127 DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT);
128 }
129
wait_for_lock(u32 const base)130 static inline void wait_for_lock(u32 const base)
131 {
132 struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
133
134 if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK,
135 &dpll_regs->cm_idlest_dpll, LDELAY)) {
136 printf("DPLL locking failed for %x\n", base);
137 hang();
138 }
139 }
140
check_for_lock(u32 const base)141 inline u32 check_for_lock(u32 const base)
142 {
143 struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
144 u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK;
145
146 return lock;
147 }
148
get_mpu_dpll_params(struct dplls const * dpll_data)149 const struct dpll_params *get_mpu_dpll_params(struct dplls const *dpll_data)
150 {
151 u32 sysclk_ind = get_sys_clk_index();
152 return &dpll_data->mpu[sysclk_ind];
153 }
154
get_core_dpll_params(struct dplls const * dpll_data)155 const struct dpll_params *get_core_dpll_params(struct dplls const *dpll_data)
156 {
157 u32 sysclk_ind = get_sys_clk_index();
158 return &dpll_data->core[sysclk_ind];
159 }
160
get_per_dpll_params(struct dplls const * dpll_data)161 const struct dpll_params *get_per_dpll_params(struct dplls const *dpll_data)
162 {
163 u32 sysclk_ind = get_sys_clk_index();
164 return &dpll_data->per[sysclk_ind];
165 }
166
get_iva_dpll_params(struct dplls const * dpll_data)167 const struct dpll_params *get_iva_dpll_params(struct dplls const *dpll_data)
168 {
169 u32 sysclk_ind = get_sys_clk_index();
170 return &dpll_data->iva[sysclk_ind];
171 }
172
get_usb_dpll_params(struct dplls const * dpll_data)173 const struct dpll_params *get_usb_dpll_params(struct dplls const *dpll_data)
174 {
175 u32 sysclk_ind = get_sys_clk_index();
176 return &dpll_data->usb[sysclk_ind];
177 }
178
get_abe_dpll_params(struct dplls const * dpll_data)179 const struct dpll_params *get_abe_dpll_params(struct dplls const *dpll_data)
180 {
181 #ifdef CONFIG_SYS_OMAP_ABE_SYSCK
182 u32 sysclk_ind = get_sys_clk_index();
183 return &dpll_data->abe[sysclk_ind];
184 #else
185 return dpll_data->abe;
186 #endif
187 }
188
get_ddr_dpll_params(struct dplls const * dpll_data)189 static const struct dpll_params *get_ddr_dpll_params
190 (struct dplls const *dpll_data)
191 {
192 u32 sysclk_ind = get_sys_clk_index();
193
194 if (!dpll_data->ddr)
195 return NULL;
196 return &dpll_data->ddr[sysclk_ind];
197 }
198
199 #ifdef CONFIG_DRIVER_TI_CPSW
get_gmac_dpll_params(struct dplls const * dpll_data)200 static const struct dpll_params *get_gmac_dpll_params
201 (struct dplls const *dpll_data)
202 {
203 u32 sysclk_ind = get_sys_clk_index();
204
205 if (!dpll_data->gmac)
206 return NULL;
207 return &dpll_data->gmac[sysclk_ind];
208 }
209 #endif
210
do_setup_dpll(u32 const base,const struct dpll_params * params,u8 lock,char * dpll)211 static void do_setup_dpll(u32 const base, const struct dpll_params *params,
212 u8 lock, char *dpll)
213 {
214 u32 temp, M, N;
215 struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
216
217 if (!params)
218 return;
219
220 temp = readl(&dpll_regs->cm_clksel_dpll);
221
222 if (check_for_lock(base)) {
223 /*
224 * The Dpll has already been locked by rom code using CH.
225 * Check if M,N are matching with Ideal nominal opp values.
226 * If matches, skip the rest otherwise relock.
227 */
228 M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT;
229 N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT;
230 if ((M != (params->m)) || (N != (params->n))) {
231 debug("\n %s Dpll locked, but not for ideal M = %d,"
232 "N = %d values, current values are M = %d,"
233 "N= %d" , dpll, params->m, params->n,
234 M, N);
235 } else {
236 /* Dpll locked with ideal values for nominal opps. */
237 debug("\n %s Dpll already locked with ideal"
238 "nominal opp values", dpll);
239
240 bypass_dpll(base);
241 goto setup_post_dividers;
242 }
243 }
244
245 bypass_dpll(base);
246
247 /* Set M & N */
248 temp &= ~CM_CLKSEL_DPLL_M_MASK;
249 temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK;
250
251 temp &= ~CM_CLKSEL_DPLL_N_MASK;
252 temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK;
253
254 writel(temp, &dpll_regs->cm_clksel_dpll);
255
256 setup_post_dividers:
257 setup_post_dividers(base, params);
258
259 /* Lock */
260 if (lock)
261 do_lock_dpll(base);
262
263 /* Wait till the DPLL locks */
264 if (lock)
265 wait_for_lock(base);
266 }
267
omap_ddr_clk(void)268 u32 omap_ddr_clk(void)
269 {
270 u32 ddr_clk, sys_clk_khz, omap_rev, divider;
271 const struct dpll_params *core_dpll_params;
272
273 omap_rev = omap_revision();
274 sys_clk_khz = get_sys_clk_freq() / 1000;
275
276 core_dpll_params = get_core_dpll_params(*dplls_data);
277
278 debug("sys_clk %d\n ", sys_clk_khz * 1000);
279
280 /* Find Core DPLL locked frequency first */
281 ddr_clk = sys_clk_khz * 2 * core_dpll_params->m /
282 (core_dpll_params->n + 1);
283
284 if (omap_rev < OMAP5430_ES1_0) {
285 /*
286 * DDR frequency is PHY_ROOT_CLK/2
287 * PHY_ROOT_CLK = Fdpll/2/M2
288 */
289 divider = 4;
290 } else {
291 /*
292 * DDR frequency is PHY_ROOT_CLK
293 * PHY_ROOT_CLK = Fdpll/2/M2
294 */
295 divider = 2;
296 }
297
298 ddr_clk = ddr_clk / divider / core_dpll_params->m2;
299 ddr_clk *= 1000; /* convert to Hz */
300 debug("ddr_clk %d\n ", ddr_clk);
301
302 return ddr_clk;
303 }
304
305 /*
306 * Lock MPU dpll
307 *
308 * Resulting MPU frequencies:
309 * 4430 ES1.0 : 600 MHz
310 * 4430 ES2.x : 792 MHz (OPP Turbo)
311 * 4460 : 920 MHz (OPP Turbo) - DCC disabled
312 */
configure_mpu_dpll(void)313 void configure_mpu_dpll(void)
314 {
315 const struct dpll_params *params;
316 struct dpll_regs *mpu_dpll_regs;
317 u32 omap_rev;
318 omap_rev = omap_revision();
319
320 /*
321 * DCC and clock divider settings for 4460.
322 * DCC is required, if more than a certain frequency is required.
323 * For, 4460 > 1GHZ.
324 * 5430 > 1.4GHZ.
325 */
326 if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) {
327 mpu_dpll_regs =
328 (struct dpll_regs *)((*prcm)->cm_clkmode_dpll_mpu);
329 bypass_dpll((*prcm)->cm_clkmode_dpll_mpu);
330 clrbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
331 MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK);
332 setbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
333 MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK);
334 clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll,
335 CM_CLKSEL_DCC_EN_MASK);
336 }
337
338 params = get_mpu_dpll_params(*dplls_data);
339
340 do_setup_dpll((*prcm)->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu");
341 debug("MPU DPLL locked\n");
342 }
343
344 #if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \
345 defined(CONFIG_USB_MUSB_OMAP2PLUS)
setup_usb_dpll(void)346 static void setup_usb_dpll(void)
347 {
348 const struct dpll_params *params;
349 u32 sys_clk_khz, sd_div, num, den;
350
351 sys_clk_khz = get_sys_clk_freq() / 1000;
352 /*
353 * USB:
354 * USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction
355 * DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250)
356 * - where CLKINP is sys_clk in MHz
357 * Use CLKINP in KHz and adjust the denominator accordingly so
358 * that we have enough accuracy and at the same time no overflow
359 */
360 params = get_usb_dpll_params(*dplls_data);
361 num = params->m * sys_clk_khz;
362 den = (params->n + 1) * 250 * 1000;
363 num += den - 1;
364 sd_div = num / den;
365 clrsetbits_le32((*prcm)->cm_clksel_dpll_usb,
366 CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK,
367 sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT);
368
369 /* Now setup the dpll with the regular function */
370 do_setup_dpll((*prcm)->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb");
371 }
372 #endif
373
setup_dplls(void)374 static void setup_dplls(void)
375 {
376 u32 temp;
377 const struct dpll_params *params;
378 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
379
380 debug("setup_dplls\n");
381
382 /* CORE dpll */
383 params = get_core_dpll_params(*dplls_data); /* default - safest */
384 /*
385 * Do not lock the core DPLL now. Just set it up.
386 * Core DPLL will be locked after setting up EMIF
387 * using the FREQ_UPDATE method(freq_update_core())
388 */
389 if (emif_sdram_type(readl(&emif->emif_sdram_config)) ==
390 EMIF_SDRAM_TYPE_LPDDR2)
391 do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
392 DPLL_NO_LOCK, "core");
393 else
394 do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
395 DPLL_LOCK, "core");
396 /* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */
397 temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) |
398 (CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) |
399 (CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT);
400 writel(temp, (*prcm)->cm_clksel_core);
401 debug("Core DPLL configured\n");
402
403 /* lock PER dpll */
404 params = get_per_dpll_params(*dplls_data);
405 do_setup_dpll((*prcm)->cm_clkmode_dpll_per,
406 params, DPLL_LOCK, "per");
407 debug("PER DPLL locked\n");
408
409 /* MPU dpll */
410 configure_mpu_dpll();
411
412 #if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \
413 defined(CONFIG_USB_MUSB_OMAP2PLUS)
414 setup_usb_dpll();
415 #endif
416 params = get_ddr_dpll_params(*dplls_data);
417 do_setup_dpll((*prcm)->cm_clkmode_dpll_ddrphy,
418 params, DPLL_LOCK, "ddr");
419
420 #ifdef CONFIG_DRIVER_TI_CPSW
421 params = get_gmac_dpll_params(*dplls_data);
422 do_setup_dpll((*prcm)->cm_clkmode_dpll_gmac, params,
423 DPLL_LOCK, "gmac");
424 #endif
425 }
426
get_offset_code(u32 volt_offset,struct pmic_data * pmic)427 u32 get_offset_code(u32 volt_offset, struct pmic_data *pmic)
428 {
429 u32 offset_code;
430
431 volt_offset -= pmic->base_offset;
432
433 offset_code = (volt_offset + pmic->step - 1) / pmic->step;
434
435 /*
436 * Offset codes 1-6 all give the base voltage in Palmas
437 * Offset code 0 switches OFF the SMPS
438 */
439 return offset_code + pmic->start_code;
440 }
441
do_scale_vcore(u32 vcore_reg,u32 volt_mv,struct pmic_data * pmic)442 void do_scale_vcore(u32 vcore_reg, u32 volt_mv, struct pmic_data *pmic)
443 {
444 u32 offset_code;
445 u32 offset = volt_mv;
446 int ret = 0;
447
448 if (!volt_mv)
449 return;
450
451 pmic->pmic_bus_init();
452 /* See if we can first get the GPIO if needed */
453 if (pmic->gpio_en)
454 ret = gpio_request(pmic->gpio, "PMIC_GPIO");
455
456 if (ret < 0) {
457 printf("%s: gpio %d request failed %d\n", __func__,
458 pmic->gpio, ret);
459 return;
460 }
461
462 /* Pull the GPIO low to select SET0 register, while we program SET1 */
463 if (pmic->gpio_en)
464 gpio_direction_output(pmic->gpio, 0);
465
466 /* convert to uV for better accuracy in the calculations */
467 offset *= 1000;
468
469 offset_code = get_offset_code(offset, pmic);
470
471 debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv,
472 offset_code);
473
474 if (pmic->pmic_write(pmic->i2c_slave_addr, vcore_reg, offset_code))
475 printf("Scaling voltage failed for 0x%x\n", vcore_reg);
476 if (pmic->gpio_en)
477 gpio_direction_output(pmic->gpio, 1);
478 }
479
get_voltrail_opp(int rail_offset)480 int __weak get_voltrail_opp(int rail_offset)
481 {
482 /*
483 * By default return OPP_NOM for all voltage rails.
484 */
485 return OPP_NOM;
486 }
487
optimize_vcore_voltage(struct volts const * v,int opp)488 static u32 optimize_vcore_voltage(struct volts const *v, int opp)
489 {
490 u32 val;
491
492 if (!v->value[opp])
493 return 0;
494 if (!v->efuse.reg[opp])
495 return v->value[opp];
496
497 switch (v->efuse.reg_bits) {
498 case 16:
499 val = readw(v->efuse.reg[opp]);
500 break;
501 case 32:
502 val = readl(v->efuse.reg[opp]);
503 break;
504 default:
505 printf("Error: efuse 0x%08x bits=%d unknown\n",
506 v->efuse.reg[opp], v->efuse.reg_bits);
507 return v->value[opp];
508 }
509
510 if (!val) {
511 printf("Error: efuse 0x%08x bits=%d val=0, using %d\n",
512 v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp]);
513 return v->value[opp];
514 }
515
516 debug("%s:efuse 0x%08x bits=%d Vnom=%d, using efuse value %d\n",
517 __func__, v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp],
518 val);
519 return val;
520 }
521
522 #ifdef CONFIG_IODELAY_RECALIBRATION
recalibrate_iodelay(void)523 void __weak recalibrate_iodelay(void)
524 {
525 }
526 #endif
527
528 /*
529 * Setup the voltages for the main SoC core power domains.
530 * We start with the maximum voltages allowed here, as set in the corresponding
531 * vcores_data struct, and then scale (usually down) to the fused values that
532 * are retrieved from the SoC. The scaling happens only if the efuse.reg fields
533 * are initialised.
534 * Rail grouping is supported for the DRA7xx SoCs only, therefore the code is
535 * compiled conditionally. Note that the new code writes the scaled (or zeroed)
536 * values back to the vcores_data struct for eventual reuse. Zero values mean
537 * that the corresponding rails are not controlled separately, and are not sent
538 * to the PMIC.
539 */
scale_vcores(struct vcores_data const * vcores)540 void scale_vcores(struct vcores_data const *vcores)
541 {
542 int i, opp, j, ol;
543 struct volts *pv = (struct volts *)vcores;
544 struct volts *px;
545
546 for (i=0; i<(sizeof(struct vcores_data)/sizeof(struct volts)); i++) {
547 opp = get_voltrail_opp(i);
548 debug("%d -> ", pv->value[opp]);
549
550 if (pv->value[opp]) {
551 /* Handle non-empty members only */
552 pv->value[opp] = optimize_vcore_voltage(pv, opp);
553 px = (struct volts *)vcores;
554 j = 0;
555 while (px < pv) {
556 /*
557 * Scan already handled non-empty members to see
558 * if we have a group and find the max voltage,
559 * which is set to the first occurance of the
560 * particular SMPS; the other group voltages are
561 * zeroed.
562 */
563 ol = get_voltrail_opp(j);
564 if (px->value[ol] &&
565 (pv->pmic->i2c_slave_addr ==
566 px->pmic->i2c_slave_addr) &&
567 (pv->addr == px->addr)) {
568 /* Same PMIC, same SMPS */
569 if (pv->value[opp] > px->value[ol])
570 px->value[ol] = pv->value[opp];
571
572 pv->value[opp] = 0;
573 }
574 px++;
575 j++;
576 }
577 }
578 debug("%d\n", pv->value[opp]);
579 pv++;
580 }
581
582 opp = get_voltrail_opp(VOLT_CORE);
583 debug("cor: %d\n", vcores->core.value[opp]);
584 do_scale_vcore(vcores->core.addr, vcores->core.value[opp],
585 vcores->core.pmic);
586 /*
587 * IO delay recalibration should be done immediately after
588 * adjusting AVS voltages for VDD_CORE_L.
589 * Respective boards should call __recalibrate_iodelay()
590 * with proper mux, virtual and manual mode configurations.
591 */
592 #ifdef CONFIG_IODELAY_RECALIBRATION
593 recalibrate_iodelay();
594 #endif
595
596 opp = get_voltrail_opp(VOLT_MPU);
597 debug("mpu: %d\n", vcores->mpu.value[opp]);
598 do_scale_vcore(vcores->mpu.addr, vcores->mpu.value[opp],
599 vcores->mpu.pmic);
600 /* Configure MPU ABB LDO after scale */
601 abb_setup(vcores->mpu.efuse.reg[opp],
602 (*ctrl)->control_wkup_ldovbb_mpu_voltage_ctrl,
603 (*prcm)->prm_abbldo_mpu_setup,
604 (*prcm)->prm_abbldo_mpu_ctrl,
605 (*prcm)->prm_irqstatus_mpu_2,
606 vcores->mpu.abb_tx_done_mask,
607 OMAP_ABB_FAST_OPP);
608
609 opp = get_voltrail_opp(VOLT_MM);
610 debug("mm: %d\n", vcores->mm.value[opp]);
611 do_scale_vcore(vcores->mm.addr, vcores->mm.value[opp],
612 vcores->mm.pmic);
613 /* Configure MM ABB LDO after scale */
614 abb_setup(vcores->mm.efuse.reg[opp],
615 (*ctrl)->control_wkup_ldovbb_mm_voltage_ctrl,
616 (*prcm)->prm_abbldo_mm_setup,
617 (*prcm)->prm_abbldo_mm_ctrl,
618 (*prcm)->prm_irqstatus_mpu,
619 vcores->mm.abb_tx_done_mask,
620 OMAP_ABB_FAST_OPP);
621
622 opp = get_voltrail_opp(VOLT_GPU);
623 debug("gpu: %d\n", vcores->gpu.value[opp]);
624 do_scale_vcore(vcores->gpu.addr, vcores->gpu.value[opp],
625 vcores->gpu.pmic);
626 /* Configure GPU ABB LDO after scale */
627 abb_setup(vcores->gpu.efuse.reg[opp],
628 (*ctrl)->control_wkup_ldovbb_gpu_voltage_ctrl,
629 (*prcm)->prm_abbldo_gpu_setup,
630 (*prcm)->prm_abbldo_gpu_ctrl,
631 (*prcm)->prm_irqstatus_mpu,
632 vcores->gpu.abb_tx_done_mask,
633 OMAP_ABB_FAST_OPP);
634
635 opp = get_voltrail_opp(VOLT_EVE);
636 debug("eve: %d\n", vcores->eve.value[opp]);
637 do_scale_vcore(vcores->eve.addr, vcores->eve.value[opp],
638 vcores->eve.pmic);
639 /* Configure EVE ABB LDO after scale */
640 abb_setup(vcores->eve.efuse.reg[opp],
641 (*ctrl)->control_wkup_ldovbb_eve_voltage_ctrl,
642 (*prcm)->prm_abbldo_eve_setup,
643 (*prcm)->prm_abbldo_eve_ctrl,
644 (*prcm)->prm_irqstatus_mpu,
645 vcores->eve.abb_tx_done_mask,
646 OMAP_ABB_FAST_OPP);
647
648 opp = get_voltrail_opp(VOLT_IVA);
649 debug("iva: %d\n", vcores->iva.value[opp]);
650 do_scale_vcore(vcores->iva.addr, vcores->iva.value[opp],
651 vcores->iva.pmic);
652 /* Configure IVA ABB LDO after scale */
653 abb_setup(vcores->iva.efuse.reg[opp],
654 (*ctrl)->control_wkup_ldovbb_iva_voltage_ctrl,
655 (*prcm)->prm_abbldo_iva_setup,
656 (*prcm)->prm_abbldo_iva_ctrl,
657 (*prcm)->prm_irqstatus_mpu,
658 vcores->iva.abb_tx_done_mask,
659 OMAP_ABB_FAST_OPP);
660 }
661
enable_clock_domain(u32 const clkctrl_reg,u32 enable_mode)662 static inline void enable_clock_domain(u32 const clkctrl_reg, u32 enable_mode)
663 {
664 clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
665 enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT);
666 debug("Enable clock domain - %x\n", clkctrl_reg);
667 }
668
disable_clock_domain(u32 const clkctrl_reg)669 static inline void disable_clock_domain(u32 const clkctrl_reg)
670 {
671 clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
672 CD_CLKCTRL_CLKTRCTRL_SW_SLEEP <<
673 CD_CLKCTRL_CLKTRCTRL_SHIFT);
674 debug("Disable clock domain - %x\n", clkctrl_reg);
675 }
676
wait_for_clk_enable(u32 clkctrl_addr)677 static inline void wait_for_clk_enable(u32 clkctrl_addr)
678 {
679 u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED;
680 u32 bound = LDELAY;
681
682 while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) ||
683 (idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) {
684
685 clkctrl = readl(clkctrl_addr);
686 idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
687 MODULE_CLKCTRL_IDLEST_SHIFT;
688 if (--bound == 0) {
689 printf("Clock enable failed for 0x%x idlest 0x%x\n",
690 clkctrl_addr, clkctrl);
691 return;
692 }
693 }
694 }
695
enable_clock_module(u32 const clkctrl_addr,u32 enable_mode,u32 wait_for_enable)696 static inline void enable_clock_module(u32 const clkctrl_addr, u32 enable_mode,
697 u32 wait_for_enable)
698 {
699 clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
700 enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT);
701 debug("Enable clock module - %x\n", clkctrl_addr);
702 if (wait_for_enable)
703 wait_for_clk_enable(clkctrl_addr);
704 }
705
wait_for_clk_disable(u32 clkctrl_addr)706 static inline void wait_for_clk_disable(u32 clkctrl_addr)
707 {
708 u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_FULLY_FUNCTIONAL;
709 u32 bound = LDELAY;
710
711 while ((idlest != MODULE_CLKCTRL_IDLEST_DISABLED)) {
712 clkctrl = readl(clkctrl_addr);
713 idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
714 MODULE_CLKCTRL_IDLEST_SHIFT;
715 if (--bound == 0) {
716 printf("Clock disable failed for 0x%x idlest 0x%x\n",
717 clkctrl_addr, clkctrl);
718 return;
719 }
720 }
721 }
722
disable_clock_module(u32 const clkctrl_addr,u32 wait_for_disable)723 static inline void disable_clock_module(u32 const clkctrl_addr,
724 u32 wait_for_disable)
725 {
726 clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
727 MODULE_CLKCTRL_MODULEMODE_SW_DISABLE <<
728 MODULE_CLKCTRL_MODULEMODE_SHIFT);
729 debug("Disable clock module - %x\n", clkctrl_addr);
730 if (wait_for_disable)
731 wait_for_clk_disable(clkctrl_addr);
732 }
733
freq_update_core(void)734 void freq_update_core(void)
735 {
736 u32 freq_config1 = 0;
737 const struct dpll_params *core_dpll_params;
738 u32 omap_rev = omap_revision();
739
740 core_dpll_params = get_core_dpll_params(*dplls_data);
741 /* Put EMIF clock domain in sw wakeup mode */
742 enable_clock_domain((*prcm)->cm_memif_clkstctrl,
743 CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
744 wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
745 wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
746
747 freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK |
748 SHADOW_FREQ_CONFIG1_DLL_RESET_MASK;
749
750 freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) &
751 SHADOW_FREQ_CONFIG1_DPLL_EN_MASK;
752
753 freq_config1 |= (core_dpll_params->m2 <<
754 SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) &
755 SHADOW_FREQ_CONFIG1_M2_DIV_MASK;
756
757 writel(freq_config1, (*prcm)->cm_shadow_freq_config1);
758 if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0,
759 (u32 *) (*prcm)->cm_shadow_freq_config1, LDELAY)) {
760 puts("FREQ UPDATE procedure failed!!");
761 hang();
762 }
763
764 /*
765 * Putting EMIF in HW_AUTO is seen to be causing issues with
766 * EMIF clocks and the master DLL. Keep EMIF in SW_WKUP
767 * in OMAP5430 ES1.0 silicon
768 */
769 if (omap_rev != OMAP5430_ES1_0) {
770 /* Put EMIF clock domain back in hw auto mode */
771 enable_clock_domain((*prcm)->cm_memif_clkstctrl,
772 CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
773 wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
774 wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
775 }
776 }
777
bypass_dpll(u32 const base)778 void bypass_dpll(u32 const base)
779 {
780 do_bypass_dpll(base);
781 wait_for_bypass(base);
782 }
783
lock_dpll(u32 const base)784 void lock_dpll(u32 const base)
785 {
786 do_lock_dpll(base);
787 wait_for_lock(base);
788 }
789
setup_clocks_for_console(void)790 static void setup_clocks_for_console(void)
791 {
792 /* Do not add any spl_debug prints in this function */
793 clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
794 CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
795 CD_CLKCTRL_CLKTRCTRL_SHIFT);
796
797 /* Enable all UARTs - console will be on one of them */
798 clrsetbits_le32((*prcm)->cm_l4per_uart1_clkctrl,
799 MODULE_CLKCTRL_MODULEMODE_MASK,
800 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
801 MODULE_CLKCTRL_MODULEMODE_SHIFT);
802
803 clrsetbits_le32((*prcm)->cm_l4per_uart2_clkctrl,
804 MODULE_CLKCTRL_MODULEMODE_MASK,
805 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
806 MODULE_CLKCTRL_MODULEMODE_SHIFT);
807
808 clrsetbits_le32((*prcm)->cm_l4per_uart3_clkctrl,
809 MODULE_CLKCTRL_MODULEMODE_MASK,
810 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
811 MODULE_CLKCTRL_MODULEMODE_SHIFT);
812
813 clrsetbits_le32((*prcm)->cm_l4per_uart4_clkctrl,
814 MODULE_CLKCTRL_MODULEMODE_MASK,
815 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
816 MODULE_CLKCTRL_MODULEMODE_SHIFT);
817
818 clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
819 CD_CLKCTRL_CLKTRCTRL_HW_AUTO <<
820 CD_CLKCTRL_CLKTRCTRL_SHIFT);
821 }
822
do_enable_clocks(u32 const * clk_domains,u32 const * clk_modules_hw_auto,u32 const * clk_modules_explicit_en,u8 wait_for_enable)823 void do_enable_clocks(u32 const *clk_domains,
824 u32 const *clk_modules_hw_auto,
825 u32 const *clk_modules_explicit_en,
826 u8 wait_for_enable)
827 {
828 u32 i, max = 100;
829
830 /* Put the clock domains in SW_WKUP mode */
831 for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) {
832 enable_clock_domain(clk_domains[i],
833 CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
834 }
835
836 /* Clock modules that need to be put in HW_AUTO */
837 for (i = 0; (i < max) && clk_modules_hw_auto &&
838 clk_modules_hw_auto[i]; i++) {
839 enable_clock_module(clk_modules_hw_auto[i],
840 MODULE_CLKCTRL_MODULEMODE_HW_AUTO,
841 wait_for_enable);
842 };
843
844 /* Clock modules that need to be put in SW_EXPLICIT_EN mode */
845 for (i = 0; (i < max) && clk_modules_explicit_en &&
846 clk_modules_explicit_en[i]; i++) {
847 enable_clock_module(clk_modules_explicit_en[i],
848 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN,
849 wait_for_enable);
850 };
851
852 /* Put the clock domains in HW_AUTO mode now */
853 for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) {
854 enable_clock_domain(clk_domains[i],
855 CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
856 }
857 }
858
do_disable_clocks(u32 const * clk_domains,u32 const * clk_modules_disable,u8 wait_for_disable)859 void do_disable_clocks(u32 const *clk_domains,
860 u32 const *clk_modules_disable,
861 u8 wait_for_disable)
862 {
863 u32 i, max = 100;
864
865
866 /* Clock modules that need to be put in SW_DISABLE */
867 for (i = 0; (i < max) && clk_modules_disable[i]; i++)
868 disable_clock_module(clk_modules_disable[i],
869 wait_for_disable);
870
871 /* Put the clock domains in SW_SLEEP mode */
872 for (i = 0; (i < max) && clk_domains[i]; i++)
873 disable_clock_domain(clk_domains[i]);
874 }
875
876 /**
877 * setup_early_clocks() - Setup early clocks needed for SoC
878 *
879 * Setup clocks for console, SPL basic initialization clocks and initialize
880 * the timer. This is invoked prior prcm_init.
881 */
setup_early_clocks(void)882 void setup_early_clocks(void)
883 {
884 switch (omap_hw_init_context()) {
885 case OMAP_INIT_CONTEXT_SPL:
886 case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
887 case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
888 setup_clocks_for_console();
889 enable_basic_clocks();
890 timer_init();
891 /* Fall through */
892 }
893 }
894
prcm_init(void)895 void prcm_init(void)
896 {
897 switch (omap_hw_init_context()) {
898 case OMAP_INIT_CONTEXT_SPL:
899 case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
900 case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
901 scale_vcores(*omap_vcores);
902 setup_dplls();
903 setup_warmreset_time();
904 break;
905 default:
906 break;
907 }
908
909 if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context())
910 enable_basic_uboot_clocks();
911 }
912
gpi2c_init(void)913 void gpi2c_init(void)
914 {
915 static int gpi2c = 1;
916
917 if (gpi2c) {
918 i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED,
919 CONFIG_SYS_OMAP24_I2C_SLAVE);
920 gpi2c = 0;
921 }
922 }
923