xref: /OK3568_Linux_fs/kernel/block/mq-deadline-main.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler,
4  *  for the blk-mq scheduling framework
5  *
6  *  Copyright (C) 2016 Jens Axboe <axboe@kernel.dk>
7  */
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/elevator.h>
13 #include <linux/bio.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/compiler.h>
18 #include <linux/rbtree.h>
19 #include <linux/sbitmap.h>
20 
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-debugfs.h"
24 #include "blk-mq-tag.h"
25 #include "blk-mq-sched.h"
26 #include "mq-deadline-cgroup.h"
27 
28 /*
29  * See Documentation/block/deadline-iosched.rst
30  */
31 static const int read_expire = HZ / 2;  /* max time before a read is submitted. */
32 static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
33 /*
34  * Time after which to dispatch lower priority requests even if higher
35  * priority requests are pending.
36  */
37 static const int aging_expire = 10 * HZ;
38 static const int writes_starved = 2;    /* max times reads can starve a write */
39 static const int fifo_batch = 16;       /* # of sequential requests treated as one
40 				     by the above parameters. For throughput. */
41 
42 enum dd_data_dir {
43 	DD_READ		= READ,
44 	DD_WRITE	= WRITE,
45 };
46 
47 enum { DD_DIR_COUNT = 2 };
48 
49 enum dd_prio {
50 	DD_RT_PRIO	= 0,
51 	DD_BE_PRIO	= 1,
52 	DD_IDLE_PRIO	= 2,
53 	DD_PRIO_MAX	= 2,
54 };
55 
56 enum { DD_PRIO_COUNT = 3 };
57 
58 /* I/O statistics for all I/O priorities (enum dd_prio). */
59 struct io_stats {
60 	struct io_stats_per_prio stats[DD_PRIO_COUNT];
61 };
62 
63 /*
64  * Deadline scheduler data per I/O priority (enum dd_prio). Requests are
65  * present on both sort_list[] and fifo_list[].
66  */
67 struct dd_per_prio {
68 	struct list_head dispatch;
69 	struct rb_root sort_list[DD_DIR_COUNT];
70 	struct list_head fifo_list[DD_DIR_COUNT];
71 	/* Next request in FIFO order. Read, write or both are NULL. */
72 	struct request *next_rq[DD_DIR_COUNT];
73 };
74 
75 struct deadline_data {
76 	/*
77 	 * run time data
78 	 */
79 
80 	/* Request queue that owns this data structure. */
81 	struct request_queue *queue;
82 
83 	struct dd_per_prio per_prio[DD_PRIO_COUNT];
84 
85 	/* Data direction of latest dispatched request. */
86 	enum dd_data_dir last_dir;
87 	unsigned int batching;		/* number of sequential requests made */
88 	unsigned int starved;		/* times reads have starved writes */
89 
90 	struct io_stats __percpu *stats;
91 
92 	/*
93 	 * settings that change how the i/o scheduler behaves
94 	 */
95 	int fifo_expire[DD_DIR_COUNT];
96 	int fifo_batch;
97 	int writes_starved;
98 	int front_merges;
99 	u32 async_depth;
100 	int aging_expire;
101 
102 	spinlock_t lock;
103 	spinlock_t zone_lock;
104 };
105 
106 /* Count one event of type 'event_type' and with I/O priority 'prio' */
107 #define dd_count(dd, event_type, prio) do {				\
108 	struct io_stats *io_stats = get_cpu_ptr((dd)->stats);		\
109 									\
110 	BUILD_BUG_ON(!__same_type((dd), struct deadline_data *));	\
111 	BUILD_BUG_ON(!__same_type((prio), enum dd_prio));		\
112 	local_inc(&io_stats->stats[(prio)].event_type);			\
113 	put_cpu_ptr(io_stats);						\
114 } while (0)
115 
116 /*
117  * Returns the total number of dd_count(dd, event_type, prio) calls across all
118  * CPUs. No locking or barriers since it is fine if the returned sum is slightly
119  * outdated.
120  */
121 #define dd_sum(dd, event_type, prio) ({					\
122 	unsigned int cpu;						\
123 	u32 sum = 0;							\
124 									\
125 	BUILD_BUG_ON(!__same_type((dd), struct deadline_data *));	\
126 	BUILD_BUG_ON(!__same_type((prio), enum dd_prio));		\
127 	for_each_present_cpu(cpu)					\
128 		sum += local_read(&per_cpu_ptr((dd)->stats, cpu)->	\
129 				  stats[(prio)].event_type);		\
130 	sum;								\
131 })
132 
133 /* Maps an I/O priority class to a deadline scheduler priority. */
134 static const enum dd_prio ioprio_class_to_prio[] = {
135 	[IOPRIO_CLASS_NONE]	= DD_BE_PRIO,
136 	[IOPRIO_CLASS_RT]	= DD_RT_PRIO,
137 	[IOPRIO_CLASS_BE]	= DD_BE_PRIO,
138 	[IOPRIO_CLASS_IDLE]	= DD_IDLE_PRIO,
139 };
140 
141 static inline struct rb_root *
deadline_rb_root(struct dd_per_prio * per_prio,struct request * rq)142 deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq)
143 {
144 	return &per_prio->sort_list[rq_data_dir(rq)];
145 }
146 
147 /*
148  * Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a
149  * request.
150  */
dd_rq_ioclass(struct request * rq)151 static u8 dd_rq_ioclass(struct request *rq)
152 {
153 	return IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
154 }
155 
156 /*
157  * get the request after `rq' in sector-sorted order
158  */
159 static inline struct request *
deadline_latter_request(struct request * rq)160 deadline_latter_request(struct request *rq)
161 {
162 	struct rb_node *node = rb_next(&rq->rb_node);
163 
164 	if (node)
165 		return rb_entry_rq(node);
166 
167 	return NULL;
168 }
169 
170 static void
deadline_add_rq_rb(struct dd_per_prio * per_prio,struct request * rq)171 deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
172 {
173 	struct rb_root *root = deadline_rb_root(per_prio, rq);
174 
175 	elv_rb_add(root, rq);
176 }
177 
178 static inline void
deadline_del_rq_rb(struct dd_per_prio * per_prio,struct request * rq)179 deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
180 {
181 	const enum dd_data_dir data_dir = rq_data_dir(rq);
182 
183 	if (per_prio->next_rq[data_dir] == rq)
184 		per_prio->next_rq[data_dir] = deadline_latter_request(rq);
185 
186 	elv_rb_del(deadline_rb_root(per_prio, rq), rq);
187 }
188 
189 /*
190  * remove rq from rbtree and fifo.
191  */
deadline_remove_request(struct request_queue * q,struct dd_per_prio * per_prio,struct request * rq)192 static void deadline_remove_request(struct request_queue *q,
193 				    struct dd_per_prio *per_prio,
194 				    struct request *rq)
195 {
196 	list_del_init(&rq->queuelist);
197 
198 	/*
199 	 * We might not be on the rbtree, if we are doing an insert merge
200 	 */
201 	if (!RB_EMPTY_NODE(&rq->rb_node))
202 		deadline_del_rq_rb(per_prio, rq);
203 
204 	elv_rqhash_del(q, rq);
205 	if (q->last_merge == rq)
206 		q->last_merge = NULL;
207 }
208 
dd_request_merged(struct request_queue * q,struct request * req,enum elv_merge type)209 static void dd_request_merged(struct request_queue *q, struct request *req,
210 			      enum elv_merge type)
211 {
212 	struct deadline_data *dd = q->elevator->elevator_data;
213 	const u8 ioprio_class = dd_rq_ioclass(req);
214 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
215 	struct dd_per_prio *per_prio = &dd->per_prio[prio];
216 
217 	/*
218 	 * if the merge was a front merge, we need to reposition request
219 	 */
220 	if (type == ELEVATOR_FRONT_MERGE) {
221 		elv_rb_del(deadline_rb_root(per_prio, req), req);
222 		deadline_add_rq_rb(per_prio, req);
223 	}
224 }
225 
226 /*
227  * Callback function that is invoked after @next has been merged into @req.
228  */
dd_merged_requests(struct request_queue * q,struct request * req,struct request * next)229 static void dd_merged_requests(struct request_queue *q, struct request *req,
230 			       struct request *next)
231 {
232 	struct deadline_data *dd = q->elevator->elevator_data;
233 	const u8 ioprio_class = dd_rq_ioclass(next);
234 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
235 	struct dd_blkcg *blkcg = next->elv.priv[0];
236 
237 	dd_count(dd, merged, prio);
238 	ddcg_count(blkcg, merged, ioprio_class);
239 
240 	/*
241 	 * if next expires before rq, assign its expire time to rq
242 	 * and move into next position (next will be deleted) in fifo
243 	 */
244 	if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
245 		if (time_before((unsigned long)next->fifo_time,
246 				(unsigned long)req->fifo_time)) {
247 			list_move(&req->queuelist, &next->queuelist);
248 			req->fifo_time = next->fifo_time;
249 		}
250 	}
251 
252 	/*
253 	 * kill knowledge of next, this one is a goner
254 	 */
255 	deadline_remove_request(q, &dd->per_prio[prio], next);
256 }
257 
258 /*
259  * move an entry to dispatch queue
260  */
261 static void
deadline_move_request(struct deadline_data * dd,struct dd_per_prio * per_prio,struct request * rq)262 deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
263 		      struct request *rq)
264 {
265 	const enum dd_data_dir data_dir = rq_data_dir(rq);
266 
267 	per_prio->next_rq[data_dir] = deadline_latter_request(rq);
268 
269 	/*
270 	 * take it off the sort and fifo list
271 	 */
272 	deadline_remove_request(rq->q, per_prio, rq);
273 }
274 
275 /* Number of requests queued for a given priority level. */
dd_queued(struct deadline_data * dd,enum dd_prio prio)276 static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio)
277 {
278 	return dd_sum(dd, inserted, prio) - dd_sum(dd, completed, prio);
279 }
280 
281 /*
282  * deadline_check_fifo returns 0 if there are no expired requests on the fifo,
283  * 1 otherwise. Requires !list_empty(&dd->fifo_list[data_dir])
284  */
deadline_check_fifo(struct dd_per_prio * per_prio,enum dd_data_dir data_dir)285 static inline int deadline_check_fifo(struct dd_per_prio *per_prio,
286 				      enum dd_data_dir data_dir)
287 {
288 	struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
289 
290 	/*
291 	 * rq is expired!
292 	 */
293 	if (time_after_eq(jiffies, (unsigned long)rq->fifo_time))
294 		return 1;
295 
296 	return 0;
297 }
298 
299 /*
300  * For the specified data direction, return the next request to
301  * dispatch using arrival ordered lists.
302  */
303 static struct request *
deadline_fifo_request(struct deadline_data * dd,struct dd_per_prio * per_prio,enum dd_data_dir data_dir)304 deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
305 		      enum dd_data_dir data_dir)
306 {
307 	struct request *rq;
308 	unsigned long flags;
309 
310 	if (list_empty(&per_prio->fifo_list[data_dir]))
311 		return NULL;
312 
313 	rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
314 	if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
315 		return rq;
316 
317 	/*
318 	 * Look for a write request that can be dispatched, that is one with
319 	 * an unlocked target zone.
320 	 */
321 	spin_lock_irqsave(&dd->zone_lock, flags);
322 	list_for_each_entry(rq, &per_prio->fifo_list[DD_WRITE], queuelist) {
323 		if (blk_req_can_dispatch_to_zone(rq))
324 			goto out;
325 	}
326 	rq = NULL;
327 out:
328 	spin_unlock_irqrestore(&dd->zone_lock, flags);
329 
330 	return rq;
331 }
332 
333 /*
334  * For the specified data direction, return the next request to
335  * dispatch using sector position sorted lists.
336  */
337 static struct request *
deadline_next_request(struct deadline_data * dd,struct dd_per_prio * per_prio,enum dd_data_dir data_dir)338 deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
339 		      enum dd_data_dir data_dir)
340 {
341 	struct request *rq;
342 	unsigned long flags;
343 
344 	rq = per_prio->next_rq[data_dir];
345 	if (!rq)
346 		return NULL;
347 
348 	if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
349 		return rq;
350 
351 	/*
352 	 * Look for a write request that can be dispatched, that is one with
353 	 * an unlocked target zone.
354 	 */
355 	spin_lock_irqsave(&dd->zone_lock, flags);
356 	while (rq) {
357 		if (blk_req_can_dispatch_to_zone(rq))
358 			break;
359 		rq = deadline_latter_request(rq);
360 	}
361 	spin_unlock_irqrestore(&dd->zone_lock, flags);
362 
363 	return rq;
364 }
365 
366 /*
367  * deadline_dispatch_requests selects the best request according to
368  * read/write expire, fifo_batch, etc and with a start time <= @latest.
369  */
__dd_dispatch_request(struct deadline_data * dd,struct dd_per_prio * per_prio,u64 latest_start_ns)370 static struct request *__dd_dispatch_request(struct deadline_data *dd,
371 					     struct dd_per_prio *per_prio,
372 					     u64 latest_start_ns)
373 {
374 	struct request *rq, *next_rq;
375 	enum dd_data_dir data_dir;
376 	struct dd_blkcg *blkcg;
377 	enum dd_prio prio;
378 	u8 ioprio_class;
379 
380 	lockdep_assert_held(&dd->lock);
381 
382 	if (!list_empty(&per_prio->dispatch)) {
383 		rq = list_first_entry(&per_prio->dispatch, struct request,
384 				      queuelist);
385 		if (rq->start_time_ns > latest_start_ns)
386 			return NULL;
387 		list_del_init(&rq->queuelist);
388 		goto done;
389 	}
390 
391 	/*
392 	 * batches are currently reads XOR writes
393 	 */
394 	rq = deadline_next_request(dd, per_prio, dd->last_dir);
395 	if (rq && dd->batching < dd->fifo_batch)
396 		/* we have a next request are still entitled to batch */
397 		goto dispatch_request;
398 
399 	/*
400 	 * at this point we are not running a batch. select the appropriate
401 	 * data direction (read / write)
402 	 */
403 
404 	if (!list_empty(&per_prio->fifo_list[DD_READ])) {
405 		BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ]));
406 
407 		if (deadline_fifo_request(dd, per_prio, DD_WRITE) &&
408 		    (dd->starved++ >= dd->writes_starved))
409 			goto dispatch_writes;
410 
411 		data_dir = DD_READ;
412 
413 		goto dispatch_find_request;
414 	}
415 
416 	/*
417 	 * there are either no reads or writes have been starved
418 	 */
419 
420 	if (!list_empty(&per_prio->fifo_list[DD_WRITE])) {
421 dispatch_writes:
422 		BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE]));
423 
424 		dd->starved = 0;
425 
426 		data_dir = DD_WRITE;
427 
428 		goto dispatch_find_request;
429 	}
430 
431 	return NULL;
432 
433 dispatch_find_request:
434 	/*
435 	 * we are not running a batch, find best request for selected data_dir
436 	 */
437 	next_rq = deadline_next_request(dd, per_prio, data_dir);
438 	if (deadline_check_fifo(per_prio, data_dir) || !next_rq) {
439 		/*
440 		 * A deadline has expired, the last request was in the other
441 		 * direction, or we have run out of higher-sectored requests.
442 		 * Start again from the request with the earliest expiry time.
443 		 */
444 		rq = deadline_fifo_request(dd, per_prio, data_dir);
445 	} else {
446 		/*
447 		 * The last req was the same dir and we have a next request in
448 		 * sort order. No expired requests so continue on from here.
449 		 */
450 		rq = next_rq;
451 	}
452 
453 	/*
454 	 * For a zoned block device, if we only have writes queued and none of
455 	 * them can be dispatched, rq will be NULL.
456 	 */
457 	if (!rq)
458 		return NULL;
459 
460 	dd->last_dir = data_dir;
461 	dd->batching = 0;
462 
463 dispatch_request:
464 	if (rq->start_time_ns > latest_start_ns)
465 		return NULL;
466 	/*
467 	 * rq is the selected appropriate request.
468 	 */
469 	dd->batching++;
470 	deadline_move_request(dd, per_prio, rq);
471 done:
472 	ioprio_class = dd_rq_ioclass(rq);
473 	prio = ioprio_class_to_prio[ioprio_class];
474 	dd_count(dd, dispatched, prio);
475 	blkcg = rq->elv.priv[0];
476 	ddcg_count(blkcg, dispatched, ioprio_class);
477 	/*
478 	 * If the request needs its target zone locked, do it.
479 	 */
480 	blk_req_zone_write_lock(rq);
481 	rq->rq_flags |= RQF_STARTED;
482 	return rq;
483 }
484 
485 /*
486  * Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests().
487  *
488  * One confusing aspect here is that we get called for a specific
489  * hardware queue, but we may return a request that is for a
490  * different hardware queue. This is because mq-deadline has shared
491  * state for all hardware queues, in terms of sorting, FIFOs, etc.
492  */
dd_dispatch_request(struct blk_mq_hw_ctx * hctx)493 static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx)
494 {
495 	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
496 	const u64 now_ns = ktime_get_ns();
497 	struct request *rq = NULL;
498 	enum dd_prio prio;
499 
500 	spin_lock(&dd->lock);
501 	/*
502 	 * Start with dispatching requests whose deadline expired more than
503 	 * aging_expire jiffies ago.
504 	 */
505 	for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) {
506 		rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now_ns -
507 					   jiffies_to_nsecs(dd->aging_expire));
508 		if (rq)
509 			goto unlock;
510 	}
511 	/*
512 	 * Next, dispatch requests in priority order. Ignore lower priority
513 	 * requests if any higher priority requests are pending.
514 	 */
515 	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
516 		rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now_ns);
517 		if (rq || dd_queued(dd, prio))
518 			break;
519 	}
520 
521 unlock:
522 	spin_unlock(&dd->lock);
523 
524 	return rq;
525 }
526 
527 /*
528  * Called by __blk_mq_alloc_request(). The shallow_depth value set by this
529  * function is used by __blk_mq_get_tag().
530  */
dd_limit_depth(unsigned int op,struct blk_mq_alloc_data * data)531 static void dd_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
532 {
533 	struct deadline_data *dd = data->q->elevator->elevator_data;
534 
535 	/* Do not throttle synchronous reads. */
536 	if (op_is_sync(op) && !op_is_write(op))
537 		return;
538 
539 	/*
540 	 * Throttle asynchronous requests and writes such that these requests
541 	 * do not block the allocation of synchronous requests.
542 	 */
543 	data->shallow_depth = dd->async_depth;
544 }
545 
546 /* Called by blk_mq_update_nr_requests(). */
dd_depth_updated(struct blk_mq_hw_ctx * hctx)547 static void dd_depth_updated(struct blk_mq_hw_ctx *hctx)
548 {
549 	struct request_queue *q = hctx->queue;
550 	struct deadline_data *dd = q->elevator->elevator_data;
551 	struct blk_mq_tags *tags = hctx->sched_tags;
552 
553 	dd->async_depth = max(1UL, 3 * q->nr_requests / 4);
554 
555 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, dd->async_depth);
556 }
557 
558 /* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */
dd_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)559 static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
560 {
561 	dd_depth_updated(hctx);
562 	return 0;
563 }
564 
dd_exit_sched(struct elevator_queue * e)565 static void dd_exit_sched(struct elevator_queue *e)
566 {
567 	struct deadline_data *dd = e->elevator_data;
568 	enum dd_prio prio;
569 
570 	dd_deactivate_policy(dd->queue);
571 
572 	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
573 		struct dd_per_prio *per_prio = &dd->per_prio[prio];
574 
575 		WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ]));
576 		WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE]));
577 	}
578 
579 	free_percpu(dd->stats);
580 
581 	kfree(dd);
582 }
583 
584 /*
585  * Initialize elevator private data (deadline_data) and associate with blkcg.
586  */
dd_init_sched(struct request_queue * q,struct elevator_type * e)587 static int dd_init_sched(struct request_queue *q, struct elevator_type *e)
588 {
589 	struct deadline_data *dd;
590 	struct elevator_queue *eq;
591 	enum dd_prio prio;
592 	int ret = -ENOMEM;
593 
594 	/*
595 	 * Initialization would be very tricky if the queue is not frozen,
596 	 * hence the warning statement below.
597 	 */
598 	WARN_ON_ONCE(!percpu_ref_is_zero(&q->q_usage_counter));
599 
600 	eq = elevator_alloc(q, e);
601 	if (!eq)
602 		return ret;
603 
604 	dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node);
605 	if (!dd)
606 		goto put_eq;
607 
608 	eq->elevator_data = dd;
609 
610 	dd->stats = alloc_percpu_gfp(typeof(*dd->stats),
611 				     GFP_KERNEL | __GFP_ZERO);
612 	if (!dd->stats)
613 		goto free_dd;
614 
615 	dd->queue = q;
616 
617 	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
618 		struct dd_per_prio *per_prio = &dd->per_prio[prio];
619 
620 		INIT_LIST_HEAD(&per_prio->dispatch);
621 		INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]);
622 		INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]);
623 		per_prio->sort_list[DD_READ] = RB_ROOT;
624 		per_prio->sort_list[DD_WRITE] = RB_ROOT;
625 	}
626 	dd->fifo_expire[DD_READ] = read_expire;
627 	dd->fifo_expire[DD_WRITE] = write_expire;
628 	dd->writes_starved = writes_starved;
629 	dd->front_merges = 1;
630 	dd->last_dir = DD_WRITE;
631 	dd->fifo_batch = fifo_batch;
632 	dd->aging_expire = aging_expire;
633 	spin_lock_init(&dd->lock);
634 	spin_lock_init(&dd->zone_lock);
635 
636 	ret = dd_activate_policy(q);
637 	if (ret)
638 		goto free_stats;
639 
640 	ret = 0;
641 	q->elevator = eq;
642 	return 0;
643 
644 free_stats:
645 	free_percpu(dd->stats);
646 
647 free_dd:
648 	kfree(dd);
649 
650 put_eq:
651 	kobject_put(&eq->kobj);
652 	return ret;
653 }
654 
655 /*
656  * Try to merge @bio into an existing request. If @bio has been merged into
657  * an existing request, store the pointer to that request into *@rq.
658  */
dd_request_merge(struct request_queue * q,struct request ** rq,struct bio * bio)659 static int dd_request_merge(struct request_queue *q, struct request **rq,
660 			    struct bio *bio)
661 {
662 	struct deadline_data *dd = q->elevator->elevator_data;
663 	const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
664 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
665 	struct dd_per_prio *per_prio = &dd->per_prio[prio];
666 	sector_t sector = bio_end_sector(bio);
667 	struct request *__rq;
668 
669 	if (!dd->front_merges)
670 		return ELEVATOR_NO_MERGE;
671 
672 	__rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector);
673 	if (__rq) {
674 		BUG_ON(sector != blk_rq_pos(__rq));
675 
676 		if (elv_bio_merge_ok(__rq, bio)) {
677 			*rq = __rq;
678 			if (blk_discard_mergable(__rq))
679 				return ELEVATOR_DISCARD_MERGE;
680 			return ELEVATOR_FRONT_MERGE;
681 		}
682 	}
683 
684 	return ELEVATOR_NO_MERGE;
685 }
686 
687 /*
688  * Attempt to merge a bio into an existing request. This function is called
689  * before @bio is associated with a request.
690  */
dd_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)691 static bool dd_bio_merge(struct request_queue *q, struct bio *bio,
692 		unsigned int nr_segs)
693 {
694 	struct deadline_data *dd = q->elevator->elevator_data;
695 	struct request *free = NULL;
696 	bool ret;
697 
698 	spin_lock(&dd->lock);
699 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
700 	spin_unlock(&dd->lock);
701 
702 	if (free)
703 		blk_mq_free_request(free);
704 
705 	return ret;
706 }
707 
708 /*
709  * add rq to rbtree and fifo
710  */
dd_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)711 static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
712 			      bool at_head)
713 {
714 	struct request_queue *q = hctx->queue;
715 	struct deadline_data *dd = q->elevator->elevator_data;
716 	const enum dd_data_dir data_dir = rq_data_dir(rq);
717 	u16 ioprio = req_get_ioprio(rq);
718 	u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio);
719 	struct dd_per_prio *per_prio;
720 	enum dd_prio prio;
721 	struct dd_blkcg *blkcg;
722 
723 	lockdep_assert_held(&dd->lock);
724 
725 	/*
726 	 * This may be a requeue of a write request that has locked its
727 	 * target zone. If it is the case, this releases the zone lock.
728 	 */
729 	blk_req_zone_write_unlock(rq);
730 
731 	/*
732 	 * If a block cgroup has been associated with the submitter and if an
733 	 * I/O priority has been set in the associated block cgroup, use the
734 	 * lowest of the cgroup priority and the request priority for the
735 	 * request. If no priority has been set in the request, use the cgroup
736 	 * priority.
737 	 */
738 	prio = ioprio_class_to_prio[ioprio_class];
739 	dd_count(dd, inserted, prio);
740 	blkcg = dd_blkcg_from_bio(rq->bio);
741 	ddcg_count(blkcg, inserted, ioprio_class);
742 	rq->elv.priv[0] = blkcg;
743 
744 	if (blk_mq_sched_try_insert_merge(q, rq))
745 		return;
746 
747 	blk_mq_sched_request_inserted(rq);
748 
749 	per_prio = &dd->per_prio[prio];
750 	if (at_head) {
751 		list_add(&rq->queuelist, &per_prio->dispatch);
752 		rq->fifo_time = jiffies;
753 	} else {
754 		deadline_add_rq_rb(per_prio, rq);
755 
756 		if (rq_mergeable(rq)) {
757 			elv_rqhash_add(q, rq);
758 			if (!q->last_merge)
759 				q->last_merge = rq;
760 		}
761 
762 		/*
763 		 * set expire time and add to fifo list
764 		 */
765 		rq->fifo_time = jiffies + dd->fifo_expire[data_dir];
766 		list_add_tail(&rq->queuelist, &per_prio->fifo_list[data_dir]);
767 	}
768 }
769 
770 /*
771  * Called from blk_mq_sched_insert_request() or blk_mq_sched_insert_requests().
772  */
dd_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * list,bool at_head)773 static void dd_insert_requests(struct blk_mq_hw_ctx *hctx,
774 			       struct list_head *list, bool at_head)
775 {
776 	struct request_queue *q = hctx->queue;
777 	struct deadline_data *dd = q->elevator->elevator_data;
778 
779 	spin_lock(&dd->lock);
780 	while (!list_empty(list)) {
781 		struct request *rq;
782 
783 		rq = list_first_entry(list, struct request, queuelist);
784 		list_del_init(&rq->queuelist);
785 		dd_insert_request(hctx, rq, at_head);
786 	}
787 	spin_unlock(&dd->lock);
788 }
789 
790 /* Callback from inside blk_mq_rq_ctx_init(). */
dd_prepare_request(struct request * rq)791 static void dd_prepare_request(struct request *rq)
792 {
793 	rq->elv.priv[0] = NULL;
794 }
795 
796 /*
797  * Callback from inside blk_mq_free_request().
798  *
799  * For zoned block devices, write unlock the target zone of
800  * completed write requests. Do this while holding the zone lock
801  * spinlock so that the zone is never unlocked while deadline_fifo_request()
802  * or deadline_next_request() are executing. This function is called for
803  * all requests, whether or not these requests complete successfully.
804  *
805  * For a zoned block device, __dd_dispatch_request() may have stopped
806  * dispatching requests if all the queued requests are write requests directed
807  * at zones that are already locked due to on-going write requests. To ensure
808  * write request dispatch progress in this case, mark the queue as needing a
809  * restart to ensure that the queue is run again after completion of the
810  * request and zones being unlocked.
811  */
dd_finish_request(struct request * rq)812 static void dd_finish_request(struct request *rq)
813 {
814 	struct request_queue *q = rq->q;
815 	struct deadline_data *dd = q->elevator->elevator_data;
816 	struct dd_blkcg *blkcg = rq->elv.priv[0];
817 	const u8 ioprio_class = dd_rq_ioclass(rq);
818 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
819 	struct dd_per_prio *per_prio = &dd->per_prio[prio];
820 
821 	dd_count(dd, completed, prio);
822 	ddcg_count(blkcg, completed, ioprio_class);
823 
824 	if (blk_queue_is_zoned(q)) {
825 		unsigned long flags;
826 
827 		spin_lock_irqsave(&dd->zone_lock, flags);
828 		blk_req_zone_write_unlock(rq);
829 		if (!list_empty(&per_prio->fifo_list[DD_WRITE]))
830 			blk_mq_sched_mark_restart_hctx(rq->mq_hctx);
831 		spin_unlock_irqrestore(&dd->zone_lock, flags);
832 	}
833 }
834 
dd_has_work_for_prio(struct dd_per_prio * per_prio)835 static bool dd_has_work_for_prio(struct dd_per_prio *per_prio)
836 {
837 	return !list_empty_careful(&per_prio->dispatch) ||
838 		!list_empty_careful(&per_prio->fifo_list[DD_READ]) ||
839 		!list_empty_careful(&per_prio->fifo_list[DD_WRITE]);
840 }
841 
dd_has_work(struct blk_mq_hw_ctx * hctx)842 static bool dd_has_work(struct blk_mq_hw_ctx *hctx)
843 {
844 	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
845 	enum dd_prio prio;
846 
847 	for (prio = 0; prio <= DD_PRIO_MAX; prio++)
848 		if (dd_has_work_for_prio(&dd->per_prio[prio]))
849 			return true;
850 
851 	return false;
852 }
853 
854 /*
855  * sysfs parts below
856  */
857 #define SHOW_INT(__FUNC, __VAR)						\
858 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
859 {									\
860 	struct deadline_data *dd = e->elevator_data;			\
861 									\
862 	return sysfs_emit(page, "%d\n", __VAR);				\
863 }
864 #define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR))
865 SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]);
866 SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]);
867 SHOW_JIFFIES(deadline_aging_expire_show, dd->aging_expire);
868 SHOW_INT(deadline_writes_starved_show, dd->writes_starved);
869 SHOW_INT(deadline_front_merges_show, dd->front_merges);
870 SHOW_INT(deadline_async_depth_show, dd->async_depth);
871 SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch);
872 #undef SHOW_INT
873 #undef SHOW_JIFFIES
874 
875 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
876 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
877 {									\
878 	struct deadline_data *dd = e->elevator_data;			\
879 	int __data, __ret;						\
880 									\
881 	__ret = kstrtoint(page, 0, &__data);				\
882 	if (__ret < 0)							\
883 		return __ret;						\
884 	if (__data < (MIN))						\
885 		__data = (MIN);						\
886 	else if (__data > (MAX))					\
887 		__data = (MAX);						\
888 	*(__PTR) = __CONV(__data);					\
889 	return count;							\
890 }
891 #define STORE_INT(__FUNC, __PTR, MIN, MAX)				\
892 	STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, )
893 #define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX)				\
894 	STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies)
895 STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX);
896 STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX);
897 STORE_JIFFIES(deadline_aging_expire_store, &dd->aging_expire, 0, INT_MAX);
898 STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX);
899 STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1);
900 STORE_INT(deadline_async_depth_store, &dd->async_depth, 1, INT_MAX);
901 STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX);
902 #undef STORE_FUNCTION
903 #undef STORE_INT
904 #undef STORE_JIFFIES
905 
906 #define DD_ATTR(name) \
907 	__ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store)
908 
909 static struct elv_fs_entry deadline_attrs[] = {
910 	DD_ATTR(read_expire),
911 	DD_ATTR(write_expire),
912 	DD_ATTR(writes_starved),
913 	DD_ATTR(front_merges),
914 	DD_ATTR(async_depth),
915 	DD_ATTR(fifo_batch),
916 	DD_ATTR(aging_expire),
917 	__ATTR_NULL
918 };
919 
920 #ifdef CONFIG_BLK_DEBUG_FS
921 #define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name)		\
922 static void *deadline_##name##_fifo_start(struct seq_file *m,		\
923 					  loff_t *pos)			\
924 	__acquires(&dd->lock)						\
925 {									\
926 	struct request_queue *q = m->private;				\
927 	struct deadline_data *dd = q->elevator->elevator_data;		\
928 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
929 									\
930 	spin_lock(&dd->lock);						\
931 	return seq_list_start(&per_prio->fifo_list[data_dir], *pos);	\
932 }									\
933 									\
934 static void *deadline_##name##_fifo_next(struct seq_file *m, void *v,	\
935 					 loff_t *pos)			\
936 {									\
937 	struct request_queue *q = m->private;				\
938 	struct deadline_data *dd = q->elevator->elevator_data;		\
939 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
940 									\
941 	return seq_list_next(v, &per_prio->fifo_list[data_dir], pos);	\
942 }									\
943 									\
944 static void deadline_##name##_fifo_stop(struct seq_file *m, void *v)	\
945 	__releases(&dd->lock)						\
946 {									\
947 	struct request_queue *q = m->private;				\
948 	struct deadline_data *dd = q->elevator->elevator_data;		\
949 									\
950 	spin_unlock(&dd->lock);						\
951 }									\
952 									\
953 static const struct seq_operations deadline_##name##_fifo_seq_ops = {	\
954 	.start	= deadline_##name##_fifo_start,				\
955 	.next	= deadline_##name##_fifo_next,				\
956 	.stop	= deadline_##name##_fifo_stop,				\
957 	.show	= blk_mq_debugfs_rq_show,				\
958 };									\
959 									\
960 static int deadline_##name##_next_rq_show(void *data,			\
961 					  struct seq_file *m)		\
962 {									\
963 	struct request_queue *q = data;					\
964 	struct deadline_data *dd = q->elevator->elevator_data;		\
965 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
966 	struct request *rq = per_prio->next_rq[data_dir];		\
967 									\
968 	if (rq)								\
969 		__blk_mq_debugfs_rq_show(m, rq);			\
970 	return 0;							\
971 }
972 
973 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0);
974 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0);
975 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1);
976 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1);
977 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2);
978 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2);
979 #undef DEADLINE_DEBUGFS_DDIR_ATTRS
980 
deadline_batching_show(void * data,struct seq_file * m)981 static int deadline_batching_show(void *data, struct seq_file *m)
982 {
983 	struct request_queue *q = data;
984 	struct deadline_data *dd = q->elevator->elevator_data;
985 
986 	seq_printf(m, "%u\n", dd->batching);
987 	return 0;
988 }
989 
deadline_starved_show(void * data,struct seq_file * m)990 static int deadline_starved_show(void *data, struct seq_file *m)
991 {
992 	struct request_queue *q = data;
993 	struct deadline_data *dd = q->elevator->elevator_data;
994 
995 	seq_printf(m, "%u\n", dd->starved);
996 	return 0;
997 }
998 
dd_async_depth_show(void * data,struct seq_file * m)999 static int dd_async_depth_show(void *data, struct seq_file *m)
1000 {
1001 	struct request_queue *q = data;
1002 	struct deadline_data *dd = q->elevator->elevator_data;
1003 
1004 	seq_printf(m, "%u\n", dd->async_depth);
1005 	return 0;
1006 }
1007 
dd_queued_show(void * data,struct seq_file * m)1008 static int dd_queued_show(void *data, struct seq_file *m)
1009 {
1010 	struct request_queue *q = data;
1011 	struct deadline_data *dd = q->elevator->elevator_data;
1012 
1013 	seq_printf(m, "%u %u %u\n", dd_queued(dd, DD_RT_PRIO),
1014 		   dd_queued(dd, DD_BE_PRIO),
1015 		   dd_queued(dd, DD_IDLE_PRIO));
1016 	return 0;
1017 }
1018 
1019 /* Number of requests owned by the block driver for a given priority. */
dd_owned_by_driver(struct deadline_data * dd,enum dd_prio prio)1020 static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio)
1021 {
1022 	return dd_sum(dd, dispatched, prio) + dd_sum(dd, merged, prio)
1023 		- dd_sum(dd, completed, prio);
1024 }
1025 
dd_owned_by_driver_show(void * data,struct seq_file * m)1026 static int dd_owned_by_driver_show(void *data, struct seq_file *m)
1027 {
1028 	struct request_queue *q = data;
1029 	struct deadline_data *dd = q->elevator->elevator_data;
1030 
1031 	seq_printf(m, "%u %u %u\n", dd_owned_by_driver(dd, DD_RT_PRIO),
1032 		   dd_owned_by_driver(dd, DD_BE_PRIO),
1033 		   dd_owned_by_driver(dd, DD_IDLE_PRIO));
1034 	return 0;
1035 }
1036 
1037 #define DEADLINE_DISPATCH_ATTR(prio)					\
1038 static void *deadline_dispatch##prio##_start(struct seq_file *m,	\
1039 					     loff_t *pos)		\
1040 	__acquires(&dd->lock)						\
1041 {									\
1042 	struct request_queue *q = m->private;				\
1043 	struct deadline_data *dd = q->elevator->elevator_data;		\
1044 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1045 									\
1046 	spin_lock(&dd->lock);						\
1047 	return seq_list_start(&per_prio->dispatch, *pos);		\
1048 }									\
1049 									\
1050 static void *deadline_dispatch##prio##_next(struct seq_file *m,		\
1051 					    void *v, loff_t *pos)	\
1052 {									\
1053 	struct request_queue *q = m->private;				\
1054 	struct deadline_data *dd = q->elevator->elevator_data;		\
1055 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1056 									\
1057 	return seq_list_next(v, &per_prio->dispatch, pos);		\
1058 }									\
1059 									\
1060 static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v)	\
1061 	__releases(&dd->lock)						\
1062 {									\
1063 	struct request_queue *q = m->private;				\
1064 	struct deadline_data *dd = q->elevator->elevator_data;		\
1065 									\
1066 	spin_unlock(&dd->lock);						\
1067 }									\
1068 									\
1069 static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \
1070 	.start	= deadline_dispatch##prio##_start,			\
1071 	.next	= deadline_dispatch##prio##_next,			\
1072 	.stop	= deadline_dispatch##prio##_stop,			\
1073 	.show	= blk_mq_debugfs_rq_show,				\
1074 }
1075 
1076 DEADLINE_DISPATCH_ATTR(0);
1077 DEADLINE_DISPATCH_ATTR(1);
1078 DEADLINE_DISPATCH_ATTR(2);
1079 #undef DEADLINE_DISPATCH_ATTR
1080 
1081 #define DEADLINE_QUEUE_DDIR_ATTRS(name)					\
1082 	{#name "_fifo_list", 0400,					\
1083 			.seq_ops = &deadline_##name##_fifo_seq_ops}
1084 #define DEADLINE_NEXT_RQ_ATTR(name)					\
1085 	{#name "_next_rq", 0400, deadline_##name##_next_rq_show}
1086 static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = {
1087 	DEADLINE_QUEUE_DDIR_ATTRS(read0),
1088 	DEADLINE_QUEUE_DDIR_ATTRS(write0),
1089 	DEADLINE_QUEUE_DDIR_ATTRS(read1),
1090 	DEADLINE_QUEUE_DDIR_ATTRS(write1),
1091 	DEADLINE_QUEUE_DDIR_ATTRS(read2),
1092 	DEADLINE_QUEUE_DDIR_ATTRS(write2),
1093 	DEADLINE_NEXT_RQ_ATTR(read0),
1094 	DEADLINE_NEXT_RQ_ATTR(write0),
1095 	DEADLINE_NEXT_RQ_ATTR(read1),
1096 	DEADLINE_NEXT_RQ_ATTR(write1),
1097 	DEADLINE_NEXT_RQ_ATTR(read2),
1098 	DEADLINE_NEXT_RQ_ATTR(write2),
1099 	{"batching", 0400, deadline_batching_show},
1100 	{"starved", 0400, deadline_starved_show},
1101 	{"async_depth", 0400, dd_async_depth_show},
1102 	{"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops},
1103 	{"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops},
1104 	{"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops},
1105 	{"owned_by_driver", 0400, dd_owned_by_driver_show},
1106 	{"queued", 0400, dd_queued_show},
1107 	{},
1108 };
1109 #undef DEADLINE_QUEUE_DDIR_ATTRS
1110 #endif
1111 
1112 static struct elevator_type mq_deadline = {
1113 	.ops = {
1114 		.depth_updated		= dd_depth_updated,
1115 		.limit_depth		= dd_limit_depth,
1116 		.insert_requests	= dd_insert_requests,
1117 		.dispatch_request	= dd_dispatch_request,
1118 		.prepare_request	= dd_prepare_request,
1119 		.finish_request		= dd_finish_request,
1120 		.next_request		= elv_rb_latter_request,
1121 		.former_request		= elv_rb_former_request,
1122 		.bio_merge		= dd_bio_merge,
1123 		.request_merge		= dd_request_merge,
1124 		.requests_merged	= dd_merged_requests,
1125 		.request_merged		= dd_request_merged,
1126 		.has_work		= dd_has_work,
1127 		.init_sched		= dd_init_sched,
1128 		.exit_sched		= dd_exit_sched,
1129 		.init_hctx		= dd_init_hctx,
1130 	},
1131 
1132 #ifdef CONFIG_BLK_DEBUG_FS
1133 	.queue_debugfs_attrs = deadline_queue_debugfs_attrs,
1134 #endif
1135 	.elevator_attrs = deadline_attrs,
1136 	.elevator_name = "mq-deadline",
1137 	.elevator_alias = "deadline",
1138 	.elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE,
1139 	.elevator_owner = THIS_MODULE,
1140 };
1141 MODULE_ALIAS("mq-deadline-iosched");
1142 
deadline_init(void)1143 static int __init deadline_init(void)
1144 {
1145 	int ret;
1146 
1147 	ret = elv_register(&mq_deadline);
1148 	if (ret)
1149 		goto out;
1150 	ret = dd_blkcg_init();
1151 	if (ret)
1152 		goto unreg;
1153 
1154 out:
1155 	return ret;
1156 
1157 unreg:
1158 	elv_unregister(&mq_deadline);
1159 	goto out;
1160 }
1161 
deadline_exit(void)1162 static void __exit deadline_exit(void)
1163 {
1164 	dd_blkcg_exit();
1165 	elv_unregister(&mq_deadline);
1166 }
1167 
1168 module_init(deadline_init);
1169 module_exit(deadline_exit);
1170 
1171 MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche");
1172 MODULE_LICENSE("GPL");
1173 MODULE_DESCRIPTION("MQ deadline IO scheduler");
1174