1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "gc.h"
32 #include <trace/events/f2fs.h>
33 #include <uapi/linux/f2fs.h>
34
f2fs_filemap_fault(struct vm_fault * vmf)35 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
36 {
37 struct inode *inode = file_inode(vmf->vma->vm_file);
38 vm_fault_t ret;
39
40 f2fs_down_read(&F2FS_I(inode)->i_mmap_sem);
41 ret = filemap_fault(vmf);
42 f2fs_up_read(&F2FS_I(inode)->i_mmap_sem);
43
44 if (!ret)
45 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
46 F2FS_BLKSIZE);
47
48 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
49
50 return ret;
51 }
52
f2fs_vm_page_mkwrite(struct vm_fault * vmf)53 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
54 {
55 struct page *page = vmf->page;
56 struct inode *inode = file_inode(vmf->vma->vm_file);
57 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
58 struct dnode_of_data dn;
59 bool need_alloc = true;
60 int err = 0;
61
62 if (unlikely(IS_IMMUTABLE(inode)))
63 return VM_FAULT_SIGBUS;
64
65 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
66 return VM_FAULT_SIGBUS;
67
68 if (unlikely(f2fs_cp_error(sbi))) {
69 err = -EIO;
70 goto err;
71 }
72
73 if (!f2fs_is_checkpoint_ready(sbi)) {
74 err = -ENOSPC;
75 goto err;
76 }
77
78 err = f2fs_convert_inline_inode(inode);
79 if (err)
80 goto err;
81
82 #ifdef CONFIG_F2FS_FS_COMPRESSION
83 if (f2fs_compressed_file(inode)) {
84 int ret = f2fs_is_compressed_cluster(inode, page->index);
85
86 if (ret < 0) {
87 err = ret;
88 goto err;
89 } else if (ret) {
90 need_alloc = false;
91 }
92 }
93 #endif
94 /* should do out of any locked page */
95 if (need_alloc)
96 f2fs_balance_fs(sbi, true);
97
98 sb_start_pagefault(inode->i_sb);
99
100 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
101
102 file_update_time(vmf->vma->vm_file);
103 f2fs_down_read(&F2FS_I(inode)->i_mmap_sem);
104 lock_page(page);
105 if (unlikely(page->mapping != inode->i_mapping ||
106 page_offset(page) > i_size_read(inode) ||
107 !PageUptodate(page))) {
108 unlock_page(page);
109 err = -EFAULT;
110 goto out_sem;
111 }
112
113 if (need_alloc) {
114 /* block allocation */
115 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
116 set_new_dnode(&dn, inode, NULL, NULL, 0);
117 err = f2fs_get_block(&dn, page->index);
118 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
119 }
120
121 #ifdef CONFIG_F2FS_FS_COMPRESSION
122 if (!need_alloc) {
123 set_new_dnode(&dn, inode, NULL, NULL, 0);
124 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
125 f2fs_put_dnode(&dn);
126 }
127 #endif
128 if (err) {
129 unlock_page(page);
130 goto out_sem;
131 }
132
133 f2fs_wait_on_page_writeback(page, DATA, false, true);
134
135 /* wait for GCed page writeback via META_MAPPING */
136 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
137
138 /*
139 * check to see if the page is mapped already (no holes)
140 */
141 if (PageMappedToDisk(page))
142 goto out_sem;
143
144 /* page is wholly or partially inside EOF */
145 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
146 i_size_read(inode)) {
147 loff_t offset;
148
149 offset = i_size_read(inode) & ~PAGE_MASK;
150 zero_user_segment(page, offset, PAGE_SIZE);
151 }
152 set_page_dirty(page);
153 if (!PageUptodate(page))
154 SetPageUptodate(page);
155
156 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
157 f2fs_update_time(sbi, REQ_TIME);
158
159 trace_f2fs_vm_page_mkwrite(page, DATA);
160 out_sem:
161 f2fs_up_read(&F2FS_I(inode)->i_mmap_sem);
162
163 sb_end_pagefault(inode->i_sb);
164 err:
165 return block_page_mkwrite_return(err);
166 }
167
168 static const struct vm_operations_struct f2fs_file_vm_ops = {
169 .fault = f2fs_filemap_fault,
170 .map_pages = filemap_map_pages,
171 .page_mkwrite = f2fs_vm_page_mkwrite,
172 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
173 .allow_speculation = filemap_allow_speculation,
174 #endif
175 };
176
get_parent_ino(struct inode * inode,nid_t * pino)177 static int get_parent_ino(struct inode *inode, nid_t *pino)
178 {
179 struct dentry *dentry;
180
181 /*
182 * Make sure to get the non-deleted alias. The alias associated with
183 * the open file descriptor being fsync()'ed may be deleted already.
184 */
185 dentry = d_find_alias(inode);
186 if (!dentry)
187 return 0;
188
189 *pino = parent_ino(dentry);
190 dput(dentry);
191 return 1;
192 }
193
need_do_checkpoint(struct inode * inode)194 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
195 {
196 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
197 enum cp_reason_type cp_reason = CP_NO_NEEDED;
198
199 if (!S_ISREG(inode->i_mode))
200 cp_reason = CP_NON_REGULAR;
201 else if (f2fs_compressed_file(inode))
202 cp_reason = CP_COMPRESSED;
203 else if (inode->i_nlink != 1)
204 cp_reason = CP_HARDLINK;
205 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
206 cp_reason = CP_SB_NEED_CP;
207 else if (file_wrong_pino(inode))
208 cp_reason = CP_WRONG_PINO;
209 else if (!f2fs_space_for_roll_forward(sbi))
210 cp_reason = CP_NO_SPC_ROLL;
211 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
212 cp_reason = CP_NODE_NEED_CP;
213 else if (test_opt(sbi, FASTBOOT))
214 cp_reason = CP_FASTBOOT_MODE;
215 else if (F2FS_OPTION(sbi).active_logs == 2)
216 cp_reason = CP_SPEC_LOG_NUM;
217 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
218 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
219 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
220 TRANS_DIR_INO))
221 cp_reason = CP_RECOVER_DIR;
222
223 return cp_reason;
224 }
225
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)226 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
227 {
228 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
229 bool ret = false;
230 /* But we need to avoid that there are some inode updates */
231 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
232 ret = true;
233 f2fs_put_page(i, 0);
234 return ret;
235 }
236
try_to_fix_pino(struct inode * inode)237 static void try_to_fix_pino(struct inode *inode)
238 {
239 struct f2fs_inode_info *fi = F2FS_I(inode);
240 nid_t pino;
241
242 f2fs_down_write(&fi->i_sem);
243 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
244 get_parent_ino(inode, &pino)) {
245 f2fs_i_pino_write(inode, pino);
246 file_got_pino(inode);
247 }
248 f2fs_up_write(&fi->i_sem);
249 }
250
f2fs_update_fsync_count(struct f2fs_sb_info * sbi,unsigned int npages)251 static bool f2fs_update_fsync_count(struct f2fs_sb_info *sbi,
252 unsigned int npages)
253 {
254 struct sysinfo val;
255 unsigned long avail_ram;
256
257 si_meminfo(&val);
258
259 /* only uses low memory */
260 avail_ram = val.totalram - val.totalhigh;
261 avail_ram = (avail_ram * DEF_RAM_THRESHOLD) / 100;
262
263 if ((atomic_read(&sbi->no_cp_fsync_pages) + npages) > avail_ram)
264 return false;
265
266 atomic_add(npages, &sbi->no_cp_fsync_pages);
267 return true;
268 }
269
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)270 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
271 int datasync, bool atomic)
272 {
273 struct inode *inode = file->f_mapping->host;
274 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
275 nid_t ino = inode->i_ino;
276 int ret = 0;
277 unsigned int npages = 0;
278 enum cp_reason_type cp_reason = 0;
279 struct writeback_control wbc = {
280 .sync_mode = WB_SYNC_ALL,
281 .nr_to_write = LONG_MAX,
282 .for_reclaim = 0,
283 };
284 unsigned int seq_id = 0;
285
286 if (unlikely(f2fs_readonly(inode->i_sb)))
287 return 0;
288
289 trace_f2fs_sync_file_enter(inode);
290
291 if (S_ISDIR(inode->i_mode))
292 goto go_write;
293
294 /* if fdatasync is triggered, let's do in-place-update */
295 npages = get_dirty_pages(inode);
296 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
297 set_inode_flag(inode, FI_NEED_IPU);
298 ret = file_write_and_wait_range(file, start, end);
299 clear_inode_flag(inode, FI_NEED_IPU);
300
301 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
302 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
303 return ret;
304 }
305
306 /* if the inode is dirty, let's recover all the time */
307 if (!f2fs_skip_inode_update(inode, datasync)) {
308 f2fs_write_inode(inode, NULL);
309 goto go_write;
310 }
311
312 /*
313 * if there is no written data, don't waste time to write recovery info.
314 */
315 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
316 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
317
318 /* it may call write_inode just prior to fsync */
319 if (need_inode_page_update(sbi, ino))
320 goto go_write;
321
322 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
323 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
324 goto flush_out;
325 goto out;
326 }
327 go_write:
328 /*
329 * Both of fdatasync() and fsync() are able to be recovered from
330 * sudden-power-off.
331 */
332 f2fs_down_read(&F2FS_I(inode)->i_sem);
333 cp_reason = need_do_checkpoint(inode);
334 f2fs_up_read(&F2FS_I(inode)->i_sem);
335
336 if (cp_reason || !f2fs_update_fsync_count(sbi, npages)) {
337 /* all the dirty node pages should be flushed for POR */
338 ret = f2fs_sync_fs(inode->i_sb, 1);
339
340 /*
341 * We've secured consistency through sync_fs. Following pino
342 * will be used only for fsynced inodes after checkpoint.
343 */
344 try_to_fix_pino(inode);
345 clear_inode_flag(inode, FI_APPEND_WRITE);
346 clear_inode_flag(inode, FI_UPDATE_WRITE);
347 goto out;
348 }
349 sync_nodes:
350 atomic_inc(&sbi->wb_sync_req[NODE]);
351 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
352 atomic_dec(&sbi->wb_sync_req[NODE]);
353 if (ret)
354 goto out;
355
356 /* if cp_error was enabled, we should avoid infinite loop */
357 if (unlikely(f2fs_cp_error(sbi))) {
358 ret = -EIO;
359 goto out;
360 }
361
362 if (f2fs_need_inode_block_update(sbi, ino)) {
363 f2fs_mark_inode_dirty_sync(inode, true);
364 f2fs_write_inode(inode, NULL);
365 goto sync_nodes;
366 }
367
368 /*
369 * If it's atomic_write, it's just fine to keep write ordering. So
370 * here we don't need to wait for node write completion, since we use
371 * node chain which serializes node blocks. If one of node writes are
372 * reordered, we can see simply broken chain, resulting in stopping
373 * roll-forward recovery. It means we'll recover all or none node blocks
374 * given fsync mark.
375 */
376 if (!atomic) {
377 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
378 if (ret)
379 goto out;
380 }
381
382 /* once recovery info is written, don't need to tack this */
383 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
384 clear_inode_flag(inode, FI_APPEND_WRITE);
385 flush_out:
386 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
387 ret = f2fs_issue_flush(sbi, inode->i_ino);
388 if (!ret) {
389 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
390 clear_inode_flag(inode, FI_UPDATE_WRITE);
391 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
392 }
393 f2fs_update_time(sbi, REQ_TIME);
394 out:
395 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
396 return ret;
397 }
398
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)399 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
400 {
401 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
402 return -EIO;
403 return f2fs_do_sync_file(file, start, end, datasync, false);
404 }
405
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)406 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
407 pgoff_t index, int whence)
408 {
409 switch (whence) {
410 case SEEK_DATA:
411 if (__is_valid_data_blkaddr(blkaddr))
412 return true;
413 if (blkaddr == NEW_ADDR &&
414 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
415 return true;
416 break;
417 case SEEK_HOLE:
418 if (blkaddr == NULL_ADDR)
419 return true;
420 break;
421 }
422 return false;
423 }
424
f2fs_seek_block(struct file * file,loff_t offset,int whence)425 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
426 {
427 struct inode *inode = file->f_mapping->host;
428 loff_t maxbytes = inode->i_sb->s_maxbytes;
429 struct dnode_of_data dn;
430 pgoff_t pgofs, end_offset;
431 loff_t data_ofs = offset;
432 loff_t isize;
433 int err = 0;
434
435 inode_lock(inode);
436
437 isize = i_size_read(inode);
438 if (offset >= isize)
439 goto fail;
440
441 /* handle inline data case */
442 if (f2fs_has_inline_data(inode)) {
443 if (whence == SEEK_HOLE) {
444 data_ofs = isize;
445 goto found;
446 } else if (whence == SEEK_DATA) {
447 data_ofs = offset;
448 goto found;
449 }
450 }
451
452 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
453
454 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
455 set_new_dnode(&dn, inode, NULL, NULL, 0);
456 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
457 if (err && err != -ENOENT) {
458 goto fail;
459 } else if (err == -ENOENT) {
460 /* direct node does not exists */
461 if (whence == SEEK_DATA) {
462 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
463 continue;
464 } else {
465 goto found;
466 }
467 }
468
469 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
470
471 /* find data/hole in dnode block */
472 for (; dn.ofs_in_node < end_offset;
473 dn.ofs_in_node++, pgofs++,
474 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
475 block_t blkaddr;
476
477 blkaddr = f2fs_data_blkaddr(&dn);
478
479 if (__is_valid_data_blkaddr(blkaddr) &&
480 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
481 blkaddr, DATA_GENERIC_ENHANCE)) {
482 f2fs_put_dnode(&dn);
483 goto fail;
484 }
485
486 if (__found_offset(file->f_mapping, blkaddr,
487 pgofs, whence)) {
488 f2fs_put_dnode(&dn);
489 goto found;
490 }
491 }
492 f2fs_put_dnode(&dn);
493 }
494
495 if (whence == SEEK_DATA)
496 goto fail;
497 found:
498 if (whence == SEEK_HOLE && data_ofs > isize)
499 data_ofs = isize;
500 inode_unlock(inode);
501 return vfs_setpos(file, data_ofs, maxbytes);
502 fail:
503 inode_unlock(inode);
504 return -ENXIO;
505 }
506
f2fs_llseek(struct file * file,loff_t offset,int whence)507 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
508 {
509 struct inode *inode = file->f_mapping->host;
510 loff_t maxbytes = inode->i_sb->s_maxbytes;
511
512 if (f2fs_compressed_file(inode))
513 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
514
515 switch (whence) {
516 case SEEK_SET:
517 case SEEK_CUR:
518 case SEEK_END:
519 return generic_file_llseek_size(file, offset, whence,
520 maxbytes, i_size_read(inode));
521 case SEEK_DATA:
522 case SEEK_HOLE:
523 if (offset < 0)
524 return -ENXIO;
525 return f2fs_seek_block(file, offset, whence);
526 }
527
528 return -EINVAL;
529 }
530
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)531 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
532 {
533 struct inode *inode = file_inode(file);
534
535 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
536 return -EIO;
537
538 if (!f2fs_is_compress_backend_ready(inode))
539 return -EOPNOTSUPP;
540
541 file_accessed(file);
542 vma->vm_ops = &f2fs_file_vm_ops;
543 set_inode_flag(inode, FI_MMAP_FILE);
544 return 0;
545 }
546
f2fs_file_open(struct inode * inode,struct file * filp)547 static int f2fs_file_open(struct inode *inode, struct file *filp)
548 {
549 int err = fscrypt_file_open(inode, filp);
550
551 if (err)
552 return err;
553
554 if (!f2fs_is_compress_backend_ready(inode))
555 return -EOPNOTSUPP;
556
557 err = fsverity_file_open(inode, filp);
558 if (err)
559 return err;
560
561 filp->f_mode |= FMODE_NOWAIT;
562
563 return dquot_file_open(inode, filp);
564 }
565
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)566 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
567 {
568 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
569 struct f2fs_node *raw_node;
570 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
571 __le32 *addr;
572 int base = 0;
573 bool compressed_cluster = false;
574 int cluster_index = 0, valid_blocks = 0;
575 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
576 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
577
578 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
579 base = get_extra_isize(dn->inode);
580
581 raw_node = F2FS_NODE(dn->node_page);
582 addr = blkaddr_in_node(raw_node) + base + ofs;
583
584 /* Assumption: truncateion starts with cluster */
585 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
586 block_t blkaddr = le32_to_cpu(*addr);
587
588 if (f2fs_compressed_file(dn->inode) &&
589 !(cluster_index & (cluster_size - 1))) {
590 if (compressed_cluster)
591 f2fs_i_compr_blocks_update(dn->inode,
592 valid_blocks, false);
593 compressed_cluster = (blkaddr == COMPRESS_ADDR);
594 valid_blocks = 0;
595 }
596
597 if (blkaddr == NULL_ADDR)
598 continue;
599
600 dn->data_blkaddr = NULL_ADDR;
601 f2fs_set_data_blkaddr(dn);
602
603 if (__is_valid_data_blkaddr(blkaddr)) {
604 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
605 DATA_GENERIC_ENHANCE))
606 continue;
607 if (compressed_cluster)
608 valid_blocks++;
609 }
610
611 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
612 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
613
614 f2fs_invalidate_blocks(sbi, blkaddr);
615
616 if (!released || blkaddr != COMPRESS_ADDR)
617 nr_free++;
618 }
619
620 if (compressed_cluster)
621 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
622
623 if (nr_free) {
624 pgoff_t fofs;
625 /*
626 * once we invalidate valid blkaddr in range [ofs, ofs + count],
627 * we will invalidate all blkaddr in the whole range.
628 */
629 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
630 dn->inode) + ofs;
631 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
632 f2fs_update_age_extent_cache_range(dn, fofs, nr_free);
633 dec_valid_block_count(sbi, dn->inode, nr_free);
634 }
635 dn->ofs_in_node = ofs;
636
637 f2fs_update_time(sbi, REQ_TIME);
638 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
639 dn->ofs_in_node, nr_free);
640 }
641
f2fs_truncate_data_blocks(struct dnode_of_data * dn)642 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
643 {
644 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
645 }
646
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)647 static int truncate_partial_data_page(struct inode *inode, u64 from,
648 bool cache_only)
649 {
650 loff_t offset = from & (PAGE_SIZE - 1);
651 pgoff_t index = from >> PAGE_SHIFT;
652 struct address_space *mapping = inode->i_mapping;
653 struct page *page;
654
655 if (!offset && !cache_only)
656 return 0;
657
658 if (cache_only) {
659 page = find_lock_page(mapping, index);
660 if (page && PageUptodate(page))
661 goto truncate_out;
662 f2fs_put_page(page, 1);
663 return 0;
664 }
665
666 page = f2fs_get_lock_data_page(inode, index, true);
667 if (IS_ERR(page))
668 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
669 truncate_out:
670 f2fs_wait_on_page_writeback(page, DATA, true, true);
671 zero_user(page, offset, PAGE_SIZE - offset);
672
673 /* An encrypted inode should have a key and truncate the last page. */
674 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
675 if (!cache_only)
676 set_page_dirty(page);
677 f2fs_put_page(page, 1);
678 return 0;
679 }
680
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)681 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
682 {
683 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
684 struct dnode_of_data dn;
685 pgoff_t free_from;
686 int count = 0, err = 0;
687 struct page *ipage;
688 bool truncate_page = false;
689
690 trace_f2fs_truncate_blocks_enter(inode, from);
691
692 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
693
694 if (free_from >= max_file_blocks(inode))
695 goto free_partial;
696
697 if (lock)
698 f2fs_lock_op(sbi);
699
700 ipage = f2fs_get_node_page(sbi, inode->i_ino);
701 if (IS_ERR(ipage)) {
702 err = PTR_ERR(ipage);
703 goto out;
704 }
705
706 if (f2fs_has_inline_data(inode)) {
707 f2fs_truncate_inline_inode(inode, ipage, from);
708 f2fs_put_page(ipage, 1);
709 truncate_page = true;
710 goto out;
711 }
712
713 set_new_dnode(&dn, inode, ipage, NULL, 0);
714 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
715 if (err) {
716 if (err == -ENOENT)
717 goto free_next;
718 goto out;
719 }
720
721 count = ADDRS_PER_PAGE(dn.node_page, inode);
722
723 count -= dn.ofs_in_node;
724 f2fs_bug_on(sbi, count < 0);
725
726 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
727 f2fs_truncate_data_blocks_range(&dn, count);
728 free_from += count;
729 }
730
731 f2fs_put_dnode(&dn);
732 free_next:
733 err = f2fs_truncate_inode_blocks(inode, free_from);
734 out:
735 if (lock)
736 f2fs_unlock_op(sbi);
737 free_partial:
738 /* lastly zero out the first data page */
739 if (!err)
740 err = truncate_partial_data_page(inode, from, truncate_page);
741
742 trace_f2fs_truncate_blocks_exit(inode, err);
743 return err;
744 }
745
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)746 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
747 {
748 u64 free_from = from;
749 int err;
750
751 #ifdef CONFIG_F2FS_FS_COMPRESSION
752 /*
753 * for compressed file, only support cluster size
754 * aligned truncation.
755 */
756 if (f2fs_compressed_file(inode))
757 free_from = round_up(from,
758 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
759 #endif
760
761 err = f2fs_do_truncate_blocks(inode, free_from, lock);
762 if (err)
763 return err;
764
765 #ifdef CONFIG_F2FS_FS_COMPRESSION
766 if (from != free_from) {
767 err = f2fs_truncate_partial_cluster(inode, from, lock);
768 if (err)
769 return err;
770 }
771 #endif
772
773 return 0;
774 }
775
f2fs_truncate(struct inode * inode)776 int f2fs_truncate(struct inode *inode)
777 {
778 int err;
779
780 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
781 return -EIO;
782
783 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
784 S_ISLNK(inode->i_mode)))
785 return 0;
786
787 trace_f2fs_truncate(inode);
788
789 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
790 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
791 return -EIO;
792 }
793
794 err = dquot_initialize(inode);
795 if (err)
796 return err;
797
798 /* we should check inline_data size */
799 if (!f2fs_may_inline_data(inode)) {
800 err = f2fs_convert_inline_inode(inode);
801 if (err)
802 return err;
803 }
804
805 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
806 if (err)
807 return err;
808
809 inode->i_mtime = inode->i_ctime = current_time(inode);
810 f2fs_mark_inode_dirty_sync(inode, false);
811 return 0;
812 }
813
f2fs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)814 int f2fs_getattr(const struct path *path, struct kstat *stat,
815 u32 request_mask, unsigned int query_flags)
816 {
817 struct inode *inode = d_inode(path->dentry);
818 struct f2fs_inode_info *fi = F2FS_I(inode);
819 struct f2fs_inode *ri;
820 unsigned int flags;
821
822 if (f2fs_has_extra_attr(inode) &&
823 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
824 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
825 stat->result_mask |= STATX_BTIME;
826 stat->btime.tv_sec = fi->i_crtime.tv_sec;
827 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
828 }
829
830 flags = fi->i_flags;
831 if (flags & F2FS_COMPR_FL)
832 stat->attributes |= STATX_ATTR_COMPRESSED;
833 if (flags & F2FS_APPEND_FL)
834 stat->attributes |= STATX_ATTR_APPEND;
835 if (IS_ENCRYPTED(inode))
836 stat->attributes |= STATX_ATTR_ENCRYPTED;
837 if (flags & F2FS_IMMUTABLE_FL)
838 stat->attributes |= STATX_ATTR_IMMUTABLE;
839 if (flags & F2FS_NODUMP_FL)
840 stat->attributes |= STATX_ATTR_NODUMP;
841 if (IS_VERITY(inode))
842 stat->attributes |= STATX_ATTR_VERITY;
843
844 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
845 STATX_ATTR_APPEND |
846 STATX_ATTR_ENCRYPTED |
847 STATX_ATTR_IMMUTABLE |
848 STATX_ATTR_NODUMP |
849 STATX_ATTR_VERITY);
850
851 generic_fillattr(inode, stat);
852
853 /* we need to show initial sectors used for inline_data/dentries */
854 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
855 f2fs_has_inline_dentry(inode))
856 stat->blocks += (stat->size + 511) >> 9;
857
858 return 0;
859 }
860
861 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct inode * inode,const struct iattr * attr)862 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
863 {
864 unsigned int ia_valid = attr->ia_valid;
865
866 if (ia_valid & ATTR_UID)
867 inode->i_uid = attr->ia_uid;
868 if (ia_valid & ATTR_GID)
869 inode->i_gid = attr->ia_gid;
870 if (ia_valid & ATTR_ATIME)
871 inode->i_atime = attr->ia_atime;
872 if (ia_valid & ATTR_MTIME)
873 inode->i_mtime = attr->ia_mtime;
874 if (ia_valid & ATTR_CTIME)
875 inode->i_ctime = attr->ia_ctime;
876 if (ia_valid & ATTR_MODE) {
877 umode_t mode = attr->ia_mode;
878
879 if (!in_group_p(inode->i_gid) &&
880 !capable_wrt_inode_uidgid(inode, CAP_FSETID))
881 mode &= ~S_ISGID;
882 set_acl_inode(inode, mode);
883 }
884 }
885 #else
886 #define __setattr_copy setattr_copy
887 #endif
888
f2fs_setattr(struct dentry * dentry,struct iattr * attr)889 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
890 {
891 struct inode *inode = d_inode(dentry);
892 int err;
893
894 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
895 return -EIO;
896
897 if (unlikely(IS_IMMUTABLE(inode)))
898 return -EPERM;
899
900 if (unlikely(IS_APPEND(inode) &&
901 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
902 ATTR_GID | ATTR_TIMES_SET))))
903 return -EPERM;
904
905 if ((attr->ia_valid & ATTR_SIZE) &&
906 !f2fs_is_compress_backend_ready(inode))
907 return -EOPNOTSUPP;
908
909 err = setattr_prepare(dentry, attr);
910 if (err)
911 return err;
912
913 err = fscrypt_prepare_setattr(dentry, attr);
914 if (err)
915 return err;
916
917 err = fsverity_prepare_setattr(dentry, attr);
918 if (err)
919 return err;
920
921 if (is_quota_modification(inode, attr)) {
922 err = dquot_initialize(inode);
923 if (err)
924 return err;
925 }
926 if ((attr->ia_valid & ATTR_UID &&
927 !uid_eq(attr->ia_uid, inode->i_uid)) ||
928 (attr->ia_valid & ATTR_GID &&
929 !gid_eq(attr->ia_gid, inode->i_gid))) {
930 f2fs_lock_op(F2FS_I_SB(inode));
931 err = dquot_transfer(inode, attr);
932 if (err) {
933 set_sbi_flag(F2FS_I_SB(inode),
934 SBI_QUOTA_NEED_REPAIR);
935 f2fs_unlock_op(F2FS_I_SB(inode));
936 return err;
937 }
938 /*
939 * update uid/gid under lock_op(), so that dquot and inode can
940 * be updated atomically.
941 */
942 if (attr->ia_valid & ATTR_UID)
943 inode->i_uid = attr->ia_uid;
944 if (attr->ia_valid & ATTR_GID)
945 inode->i_gid = attr->ia_gid;
946 f2fs_mark_inode_dirty_sync(inode, true);
947 f2fs_unlock_op(F2FS_I_SB(inode));
948 }
949
950 if (attr->ia_valid & ATTR_SIZE) {
951 loff_t old_size = i_size_read(inode);
952
953 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
954 /*
955 * should convert inline inode before i_size_write to
956 * keep smaller than inline_data size with inline flag.
957 */
958 err = f2fs_convert_inline_inode(inode);
959 if (err)
960 return err;
961 }
962
963 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
964 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
965
966 truncate_setsize(inode, attr->ia_size);
967
968 if (attr->ia_size <= old_size)
969 err = f2fs_truncate(inode);
970 /*
971 * do not trim all blocks after i_size if target size is
972 * larger than i_size.
973 */
974 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
975 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
976 if (err)
977 return err;
978
979 spin_lock(&F2FS_I(inode)->i_size_lock);
980 inode->i_mtime = inode->i_ctime = current_time(inode);
981 F2FS_I(inode)->last_disk_size = i_size_read(inode);
982 spin_unlock(&F2FS_I(inode)->i_size_lock);
983 }
984
985 __setattr_copy(inode, attr);
986
987 if (attr->ia_valid & ATTR_MODE) {
988 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
989
990 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
991 if (!err)
992 inode->i_mode = F2FS_I(inode)->i_acl_mode;
993 clear_inode_flag(inode, FI_ACL_MODE);
994 }
995 }
996
997 /* file size may changed here */
998 f2fs_mark_inode_dirty_sync(inode, true);
999
1000 /* inode change will produce dirty node pages flushed by checkpoint */
1001 f2fs_balance_fs(F2FS_I_SB(inode), true);
1002
1003 return err;
1004 }
1005
1006 const struct inode_operations f2fs_file_inode_operations = {
1007 .getattr = f2fs_getattr,
1008 .setattr = f2fs_setattr,
1009 .get_acl = f2fs_get_acl,
1010 .set_acl = f2fs_set_acl,
1011 .listxattr = f2fs_listxattr,
1012 .fiemap = f2fs_fiemap,
1013 };
1014
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1015 static int fill_zero(struct inode *inode, pgoff_t index,
1016 loff_t start, loff_t len)
1017 {
1018 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1019 struct page *page;
1020
1021 if (!len)
1022 return 0;
1023
1024 f2fs_balance_fs(sbi, true);
1025
1026 f2fs_lock_op(sbi);
1027 page = f2fs_get_new_data_page(inode, NULL, index, false);
1028 f2fs_unlock_op(sbi);
1029
1030 if (IS_ERR(page))
1031 return PTR_ERR(page);
1032
1033 f2fs_wait_on_page_writeback(page, DATA, true, true);
1034 zero_user(page, start, len);
1035 set_page_dirty(page);
1036 f2fs_put_page(page, 1);
1037 return 0;
1038 }
1039
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1040 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1041 {
1042 int err;
1043
1044 while (pg_start < pg_end) {
1045 struct dnode_of_data dn;
1046 pgoff_t end_offset, count;
1047
1048 set_new_dnode(&dn, inode, NULL, NULL, 0);
1049 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1050 if (err) {
1051 if (err == -ENOENT) {
1052 pg_start = f2fs_get_next_page_offset(&dn,
1053 pg_start);
1054 continue;
1055 }
1056 return err;
1057 }
1058
1059 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1060 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1061
1062 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1063
1064 f2fs_truncate_data_blocks_range(&dn, count);
1065 f2fs_put_dnode(&dn);
1066
1067 pg_start += count;
1068 }
1069 return 0;
1070 }
1071
punch_hole(struct inode * inode,loff_t offset,loff_t len)1072 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1073 {
1074 pgoff_t pg_start, pg_end;
1075 loff_t off_start, off_end;
1076 int ret;
1077
1078 ret = f2fs_convert_inline_inode(inode);
1079 if (ret)
1080 return ret;
1081
1082 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1083 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1084
1085 off_start = offset & (PAGE_SIZE - 1);
1086 off_end = (offset + len) & (PAGE_SIZE - 1);
1087
1088 if (pg_start == pg_end) {
1089 ret = fill_zero(inode, pg_start, off_start,
1090 off_end - off_start);
1091 if (ret)
1092 return ret;
1093 } else {
1094 if (off_start) {
1095 ret = fill_zero(inode, pg_start++, off_start,
1096 PAGE_SIZE - off_start);
1097 if (ret)
1098 return ret;
1099 }
1100 if (off_end) {
1101 ret = fill_zero(inode, pg_end, 0, off_end);
1102 if (ret)
1103 return ret;
1104 }
1105
1106 if (pg_start < pg_end) {
1107 loff_t blk_start, blk_end;
1108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1109
1110 f2fs_balance_fs(sbi, true);
1111
1112 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1113 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1114
1115 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1116 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
1117
1118 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1119
1120 f2fs_lock_op(sbi);
1121 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1122 f2fs_unlock_op(sbi);
1123
1124 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
1125 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1126 }
1127 }
1128
1129 return ret;
1130 }
1131
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1132 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1133 int *do_replace, pgoff_t off, pgoff_t len)
1134 {
1135 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136 struct dnode_of_data dn;
1137 int ret, done, i;
1138
1139 next_dnode:
1140 set_new_dnode(&dn, inode, NULL, NULL, 0);
1141 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1142 if (ret && ret != -ENOENT) {
1143 return ret;
1144 } else if (ret == -ENOENT) {
1145 if (dn.max_level == 0)
1146 return -ENOENT;
1147 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1148 dn.ofs_in_node, len);
1149 blkaddr += done;
1150 do_replace += done;
1151 goto next;
1152 }
1153
1154 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1155 dn.ofs_in_node, len);
1156 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1157 *blkaddr = f2fs_data_blkaddr(&dn);
1158
1159 if (__is_valid_data_blkaddr(*blkaddr) &&
1160 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1161 DATA_GENERIC_ENHANCE)) {
1162 f2fs_put_dnode(&dn);
1163 return -EFSCORRUPTED;
1164 }
1165
1166 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1167
1168 if (f2fs_lfs_mode(sbi)) {
1169 f2fs_put_dnode(&dn);
1170 return -EOPNOTSUPP;
1171 }
1172
1173 /* do not invalidate this block address */
1174 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1175 *do_replace = 1;
1176 }
1177 }
1178 f2fs_put_dnode(&dn);
1179 next:
1180 len -= done;
1181 off += done;
1182 if (len)
1183 goto next_dnode;
1184 return 0;
1185 }
1186
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1187 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1188 int *do_replace, pgoff_t off, int len)
1189 {
1190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1191 struct dnode_of_data dn;
1192 int ret, i;
1193
1194 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1195 if (*do_replace == 0)
1196 continue;
1197
1198 set_new_dnode(&dn, inode, NULL, NULL, 0);
1199 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1200 if (ret) {
1201 dec_valid_block_count(sbi, inode, 1);
1202 f2fs_invalidate_blocks(sbi, *blkaddr);
1203 } else {
1204 f2fs_update_data_blkaddr(&dn, *blkaddr);
1205 }
1206 f2fs_put_dnode(&dn);
1207 }
1208 return 0;
1209 }
1210
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1211 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1212 block_t *blkaddr, int *do_replace,
1213 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1214 {
1215 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1216 pgoff_t i = 0;
1217 int ret;
1218
1219 while (i < len) {
1220 if (blkaddr[i] == NULL_ADDR && !full) {
1221 i++;
1222 continue;
1223 }
1224
1225 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1226 struct dnode_of_data dn;
1227 struct node_info ni;
1228 size_t new_size;
1229 pgoff_t ilen;
1230
1231 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1232 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1233 if (ret)
1234 return ret;
1235
1236 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1237 if (ret) {
1238 f2fs_put_dnode(&dn);
1239 return ret;
1240 }
1241
1242 ilen = min((pgoff_t)
1243 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1244 dn.ofs_in_node, len - i);
1245 do {
1246 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1247 f2fs_truncate_data_blocks_range(&dn, 1);
1248
1249 if (do_replace[i]) {
1250 f2fs_i_blocks_write(src_inode,
1251 1, false, false);
1252 f2fs_i_blocks_write(dst_inode,
1253 1, true, false);
1254 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1255 blkaddr[i], ni.version, true, false);
1256
1257 do_replace[i] = 0;
1258 }
1259 dn.ofs_in_node++;
1260 i++;
1261 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1262 if (dst_inode->i_size < new_size)
1263 f2fs_i_size_write(dst_inode, new_size);
1264 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1265
1266 f2fs_put_dnode(&dn);
1267 } else {
1268 struct page *psrc, *pdst;
1269
1270 psrc = f2fs_get_lock_data_page(src_inode,
1271 src + i, true);
1272 if (IS_ERR(psrc))
1273 return PTR_ERR(psrc);
1274 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1275 true);
1276 if (IS_ERR(pdst)) {
1277 f2fs_put_page(psrc, 1);
1278 return PTR_ERR(pdst);
1279 }
1280 f2fs_copy_page(psrc, pdst);
1281 set_page_dirty(pdst);
1282 f2fs_put_page(pdst, 1);
1283 f2fs_put_page(psrc, 1);
1284
1285 ret = f2fs_truncate_hole(src_inode,
1286 src + i, src + i + 1);
1287 if (ret)
1288 return ret;
1289 i++;
1290 }
1291 }
1292 return 0;
1293 }
1294
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1295 static int __exchange_data_block(struct inode *src_inode,
1296 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1297 pgoff_t len, bool full)
1298 {
1299 block_t *src_blkaddr;
1300 int *do_replace;
1301 pgoff_t olen;
1302 int ret;
1303
1304 while (len) {
1305 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1306
1307 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1308 array_size(olen, sizeof(block_t)),
1309 GFP_NOFS);
1310 if (!src_blkaddr)
1311 return -ENOMEM;
1312
1313 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1314 array_size(olen, sizeof(int)),
1315 GFP_NOFS);
1316 if (!do_replace) {
1317 kvfree(src_blkaddr);
1318 return -ENOMEM;
1319 }
1320
1321 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1322 do_replace, src, olen);
1323 if (ret)
1324 goto roll_back;
1325
1326 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1327 do_replace, src, dst, olen, full);
1328 if (ret)
1329 goto roll_back;
1330
1331 src += olen;
1332 dst += olen;
1333 len -= olen;
1334
1335 kvfree(src_blkaddr);
1336 kvfree(do_replace);
1337 }
1338 return 0;
1339
1340 roll_back:
1341 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1342 kvfree(src_blkaddr);
1343 kvfree(do_replace);
1344 return ret;
1345 }
1346
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1347 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1348 {
1349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1350 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1351 pgoff_t start = offset >> PAGE_SHIFT;
1352 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1353 int ret;
1354
1355 f2fs_balance_fs(sbi, true);
1356
1357 /* avoid gc operation during block exchange */
1358 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1359 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
1360
1361 f2fs_lock_op(sbi);
1362 f2fs_drop_extent_tree(inode);
1363 truncate_pagecache(inode, offset);
1364 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1365 f2fs_unlock_op(sbi);
1366
1367 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
1368 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1369 return ret;
1370 }
1371
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1372 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1373 {
1374 loff_t new_size;
1375 int ret;
1376
1377 if (offset + len >= i_size_read(inode))
1378 return -EINVAL;
1379
1380 /* collapse range should be aligned to block size of f2fs. */
1381 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1382 return -EINVAL;
1383
1384 ret = f2fs_convert_inline_inode(inode);
1385 if (ret)
1386 return ret;
1387
1388 /* write out all dirty pages from offset */
1389 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1390 if (ret)
1391 return ret;
1392
1393 ret = f2fs_do_collapse(inode, offset, len);
1394 if (ret)
1395 return ret;
1396
1397 /* write out all moved pages, if possible */
1398 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
1399 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1400 truncate_pagecache(inode, offset);
1401
1402 new_size = i_size_read(inode) - len;
1403 ret = f2fs_truncate_blocks(inode, new_size, true);
1404 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
1405 if (!ret)
1406 f2fs_i_size_write(inode, new_size);
1407 return ret;
1408 }
1409
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1410 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1411 pgoff_t end)
1412 {
1413 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1414 pgoff_t index = start;
1415 unsigned int ofs_in_node = dn->ofs_in_node;
1416 blkcnt_t count = 0;
1417 int ret;
1418
1419 for (; index < end; index++, dn->ofs_in_node++) {
1420 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1421 count++;
1422 }
1423
1424 dn->ofs_in_node = ofs_in_node;
1425 ret = f2fs_reserve_new_blocks(dn, count);
1426 if (ret)
1427 return ret;
1428
1429 dn->ofs_in_node = ofs_in_node;
1430 for (index = start; index < end; index++, dn->ofs_in_node++) {
1431 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1432 /*
1433 * f2fs_reserve_new_blocks will not guarantee entire block
1434 * allocation.
1435 */
1436 if (dn->data_blkaddr == NULL_ADDR) {
1437 ret = -ENOSPC;
1438 break;
1439 }
1440
1441 if (dn->data_blkaddr == NEW_ADDR)
1442 continue;
1443
1444 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1445 DATA_GENERIC_ENHANCE)) {
1446 ret = -EFSCORRUPTED;
1447 break;
1448 }
1449
1450 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1451 dn->data_blkaddr = NEW_ADDR;
1452 f2fs_set_data_blkaddr(dn);
1453 }
1454
1455 f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1456
1457 return ret;
1458 }
1459
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1460 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1461 int mode)
1462 {
1463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1464 struct address_space *mapping = inode->i_mapping;
1465 pgoff_t index, pg_start, pg_end;
1466 loff_t new_size = i_size_read(inode);
1467 loff_t off_start, off_end;
1468 int ret = 0;
1469
1470 ret = inode_newsize_ok(inode, (len + offset));
1471 if (ret)
1472 return ret;
1473
1474 ret = f2fs_convert_inline_inode(inode);
1475 if (ret)
1476 return ret;
1477
1478 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1479 if (ret)
1480 return ret;
1481
1482 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1483 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1484
1485 off_start = offset & (PAGE_SIZE - 1);
1486 off_end = (offset + len) & (PAGE_SIZE - 1);
1487
1488 if (pg_start == pg_end) {
1489 ret = fill_zero(inode, pg_start, off_start,
1490 off_end - off_start);
1491 if (ret)
1492 return ret;
1493
1494 new_size = max_t(loff_t, new_size, offset + len);
1495 } else {
1496 if (off_start) {
1497 ret = fill_zero(inode, pg_start++, off_start,
1498 PAGE_SIZE - off_start);
1499 if (ret)
1500 return ret;
1501
1502 new_size = max_t(loff_t, new_size,
1503 (loff_t)pg_start << PAGE_SHIFT);
1504 }
1505
1506 for (index = pg_start; index < pg_end;) {
1507 struct dnode_of_data dn;
1508 unsigned int end_offset;
1509 pgoff_t end;
1510
1511 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1512 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
1513
1514 truncate_pagecache_range(inode,
1515 (loff_t)index << PAGE_SHIFT,
1516 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1517
1518 f2fs_lock_op(sbi);
1519
1520 set_new_dnode(&dn, inode, NULL, NULL, 0);
1521 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1522 if (ret) {
1523 f2fs_unlock_op(sbi);
1524 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
1525 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1526 goto out;
1527 }
1528
1529 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1530 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1531
1532 ret = f2fs_do_zero_range(&dn, index, end);
1533 f2fs_put_dnode(&dn);
1534
1535 f2fs_unlock_op(sbi);
1536 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
1537 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1538
1539 f2fs_balance_fs(sbi, dn.node_changed);
1540
1541 if (ret)
1542 goto out;
1543
1544 index = end;
1545 new_size = max_t(loff_t, new_size,
1546 (loff_t)index << PAGE_SHIFT);
1547 }
1548
1549 if (off_end) {
1550 ret = fill_zero(inode, pg_end, 0, off_end);
1551 if (ret)
1552 goto out;
1553
1554 new_size = max_t(loff_t, new_size, offset + len);
1555 }
1556 }
1557
1558 out:
1559 if (new_size > i_size_read(inode)) {
1560 if (mode & FALLOC_FL_KEEP_SIZE)
1561 file_set_keep_isize(inode);
1562 else
1563 f2fs_i_size_write(inode, new_size);
1564 }
1565 return ret;
1566 }
1567
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1568 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1569 {
1570 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1571 pgoff_t nr, pg_start, pg_end, delta, idx;
1572 loff_t new_size;
1573 int ret = 0;
1574
1575 new_size = i_size_read(inode) + len;
1576 ret = inode_newsize_ok(inode, new_size);
1577 if (ret)
1578 return ret;
1579
1580 if (offset >= i_size_read(inode))
1581 return -EINVAL;
1582
1583 /* insert range should be aligned to block size of f2fs. */
1584 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1585 return -EINVAL;
1586
1587 ret = f2fs_convert_inline_inode(inode);
1588 if (ret)
1589 return ret;
1590
1591 f2fs_balance_fs(sbi, true);
1592
1593 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
1594 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1595 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
1596 if (ret)
1597 return ret;
1598
1599 /* write out all dirty pages from offset */
1600 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1601 if (ret)
1602 return ret;
1603
1604 pg_start = offset >> PAGE_SHIFT;
1605 pg_end = (offset + len) >> PAGE_SHIFT;
1606 delta = pg_end - pg_start;
1607 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1608
1609 /* avoid gc operation during block exchange */
1610 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1611 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
1612 truncate_pagecache(inode, offset);
1613
1614 while (!ret && idx > pg_start) {
1615 nr = idx - pg_start;
1616 if (nr > delta)
1617 nr = delta;
1618 idx -= nr;
1619
1620 f2fs_lock_op(sbi);
1621 f2fs_drop_extent_tree(inode);
1622
1623 ret = __exchange_data_block(inode, inode, idx,
1624 idx + delta, nr, false);
1625 f2fs_unlock_op(sbi);
1626 }
1627 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
1628 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1629
1630 /* write out all moved pages, if possible */
1631 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
1632 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1633 truncate_pagecache(inode, offset);
1634 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
1635
1636 if (!ret)
1637 f2fs_i_size_write(inode, new_size);
1638 return ret;
1639 }
1640
expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1641 static int expand_inode_data(struct inode *inode, loff_t offset,
1642 loff_t len, int mode)
1643 {
1644 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1645 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1646 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1647 .m_may_create = true };
1648 pgoff_t pg_start, pg_end;
1649 loff_t new_size = i_size_read(inode);
1650 loff_t off_end;
1651 block_t expanded = 0;
1652 int err;
1653
1654 err = inode_newsize_ok(inode, (len + offset));
1655 if (err)
1656 return err;
1657
1658 err = f2fs_convert_inline_inode(inode);
1659 if (err)
1660 return err;
1661
1662 f2fs_balance_fs(sbi, true);
1663
1664 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1665 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1666 off_end = (offset + len) & (PAGE_SIZE - 1);
1667
1668 map.m_lblk = pg_start;
1669 map.m_len = pg_end - pg_start;
1670 if (off_end)
1671 map.m_len++;
1672
1673 if (!map.m_len)
1674 return 0;
1675
1676 if (f2fs_is_pinned_file(inode)) {
1677 block_t sec_blks = BLKS_PER_SEC(sbi);
1678 block_t sec_len = roundup(map.m_len, sec_blks);
1679
1680 map.m_len = sec_blks;
1681 next_alloc:
1682 if (has_not_enough_free_secs(sbi, 0,
1683 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1684 f2fs_down_write(&sbi->gc_lock);
1685 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1686 if (err && err != -ENODATA && err != -EAGAIN)
1687 goto out_err;
1688 }
1689
1690 f2fs_down_write(&sbi->pin_sem);
1691
1692 f2fs_lock_op(sbi);
1693 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1694 f2fs_unlock_op(sbi);
1695
1696 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1697 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1698
1699 f2fs_up_write(&sbi->pin_sem);
1700
1701 expanded += map.m_len;
1702 sec_len -= map.m_len;
1703 map.m_lblk += map.m_len;
1704 if (!err && sec_len)
1705 goto next_alloc;
1706
1707 map.m_len = expanded;
1708 } else {
1709 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1710 expanded = map.m_len;
1711 }
1712 out_err:
1713 if (err) {
1714 pgoff_t last_off;
1715
1716 if (!expanded)
1717 return err;
1718
1719 last_off = pg_start + expanded - 1;
1720
1721 /* update new size to the failed position */
1722 new_size = (last_off == pg_end) ? offset + len :
1723 (loff_t)(last_off + 1) << PAGE_SHIFT;
1724 } else {
1725 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1726 }
1727
1728 if (new_size > i_size_read(inode)) {
1729 if (mode & FALLOC_FL_KEEP_SIZE)
1730 file_set_keep_isize(inode);
1731 else
1732 f2fs_i_size_write(inode, new_size);
1733 }
1734
1735 return err;
1736 }
1737
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1738 static long f2fs_fallocate(struct file *file, int mode,
1739 loff_t offset, loff_t len)
1740 {
1741 struct inode *inode = file_inode(file);
1742 long ret = 0;
1743
1744 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1745 return -EIO;
1746 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1747 return -ENOSPC;
1748 if (!f2fs_is_compress_backend_ready(inode))
1749 return -EOPNOTSUPP;
1750
1751 /* f2fs only support ->fallocate for regular file */
1752 if (!S_ISREG(inode->i_mode))
1753 return -EINVAL;
1754
1755 if (IS_ENCRYPTED(inode) &&
1756 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1757 return -EOPNOTSUPP;
1758
1759 if (f2fs_compressed_file(inode) &&
1760 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1761 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1762 return -EOPNOTSUPP;
1763
1764 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1765 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1766 FALLOC_FL_INSERT_RANGE))
1767 return -EOPNOTSUPP;
1768
1769 inode_lock(inode);
1770
1771 ret = file_modified(file);
1772 if (ret)
1773 goto out;
1774
1775 if (mode & FALLOC_FL_PUNCH_HOLE) {
1776 if (offset >= inode->i_size)
1777 goto out;
1778
1779 ret = punch_hole(inode, offset, len);
1780 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1781 ret = f2fs_collapse_range(inode, offset, len);
1782 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1783 ret = f2fs_zero_range(inode, offset, len, mode);
1784 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1785 ret = f2fs_insert_range(inode, offset, len);
1786 } else {
1787 ret = expand_inode_data(inode, offset, len, mode);
1788 }
1789
1790 if (!ret) {
1791 inode->i_mtime = inode->i_ctime = current_time(inode);
1792 f2fs_mark_inode_dirty_sync(inode, false);
1793 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1794 }
1795
1796 out:
1797 inode_unlock(inode);
1798
1799 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1800 return ret;
1801 }
1802
f2fs_release_file(struct inode * inode,struct file * filp)1803 static int f2fs_release_file(struct inode *inode, struct file *filp)
1804 {
1805 /*
1806 * f2fs_relase_file is called at every close calls. So we should
1807 * not drop any inmemory pages by close called by other process.
1808 */
1809 if (!(filp->f_mode & FMODE_WRITE) ||
1810 atomic_read(&inode->i_writecount) != 1)
1811 return 0;
1812
1813 /* some remained atomic pages should discarded */
1814 if (f2fs_is_atomic_file(inode))
1815 f2fs_drop_inmem_pages(inode);
1816 if (f2fs_is_volatile_file(inode)) {
1817 set_inode_flag(inode, FI_DROP_CACHE);
1818 filemap_fdatawrite(inode->i_mapping);
1819 clear_inode_flag(inode, FI_DROP_CACHE);
1820 clear_inode_flag(inode, FI_VOLATILE_FILE);
1821 stat_dec_volatile_write(inode);
1822 }
1823 return 0;
1824 }
1825
f2fs_file_flush(struct file * file,fl_owner_t id)1826 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1827 {
1828 struct inode *inode = file_inode(file);
1829
1830 /*
1831 * If the process doing a transaction is crashed, we should do
1832 * roll-back. Otherwise, other reader/write can see corrupted database
1833 * until all the writers close its file. Since this should be done
1834 * before dropping file lock, it needs to do in ->flush.
1835 */
1836 if (f2fs_is_atomic_file(inode) &&
1837 F2FS_I(inode)->inmem_task == current)
1838 f2fs_drop_inmem_pages(inode);
1839 return 0;
1840 }
1841
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1842 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1843 {
1844 struct f2fs_inode_info *fi = F2FS_I(inode);
1845 u32 masked_flags = fi->i_flags & mask;
1846
1847 /* mask can be shrunk by flags_valid selector */
1848 iflags &= mask;
1849
1850 /* Is it quota file? Do not allow user to mess with it */
1851 if (IS_NOQUOTA(inode))
1852 return -EPERM;
1853
1854 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1855 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1856 return -EOPNOTSUPP;
1857 if (!f2fs_empty_dir(inode))
1858 return -ENOTEMPTY;
1859 }
1860
1861 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1862 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1863 return -EOPNOTSUPP;
1864 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1865 return -EINVAL;
1866 }
1867
1868 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1869 if (masked_flags & F2FS_COMPR_FL) {
1870 if (!f2fs_disable_compressed_file(inode))
1871 return -EINVAL;
1872 } else {
1873 if (!f2fs_may_compress(inode))
1874 return -EINVAL;
1875 if (S_ISREG(inode->i_mode) && inode->i_size)
1876 return -EINVAL;
1877 if (set_compress_context(inode))
1878 return -EOPNOTSUPP;
1879 }
1880 }
1881
1882 fi->i_flags = iflags | (fi->i_flags & ~mask);
1883 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1884 (fi->i_flags & F2FS_NOCOMP_FL));
1885
1886 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1887 set_inode_flag(inode, FI_PROJ_INHERIT);
1888 else
1889 clear_inode_flag(inode, FI_PROJ_INHERIT);
1890
1891 inode->i_ctime = current_time(inode);
1892 f2fs_set_inode_flags(inode);
1893 f2fs_mark_inode_dirty_sync(inode, true);
1894 return 0;
1895 }
1896
1897 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1898
1899 /*
1900 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1901 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1902 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1903 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1904 */
1905
1906 static const struct {
1907 u32 iflag;
1908 u32 fsflag;
1909 } f2fs_fsflags_map[] = {
1910 { F2FS_COMPR_FL, FS_COMPR_FL },
1911 { F2FS_SYNC_FL, FS_SYNC_FL },
1912 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1913 { F2FS_APPEND_FL, FS_APPEND_FL },
1914 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1915 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1916 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1917 { F2FS_INDEX_FL, FS_INDEX_FL },
1918 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1919 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1920 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1921 };
1922
1923 #define F2FS_GETTABLE_FS_FL ( \
1924 FS_COMPR_FL | \
1925 FS_SYNC_FL | \
1926 FS_IMMUTABLE_FL | \
1927 FS_APPEND_FL | \
1928 FS_NODUMP_FL | \
1929 FS_NOATIME_FL | \
1930 FS_NOCOMP_FL | \
1931 FS_INDEX_FL | \
1932 FS_DIRSYNC_FL | \
1933 FS_PROJINHERIT_FL | \
1934 FS_ENCRYPT_FL | \
1935 FS_INLINE_DATA_FL | \
1936 FS_NOCOW_FL | \
1937 FS_VERITY_FL | \
1938 FS_CASEFOLD_FL)
1939
1940 #define F2FS_SETTABLE_FS_FL ( \
1941 FS_COMPR_FL | \
1942 FS_SYNC_FL | \
1943 FS_IMMUTABLE_FL | \
1944 FS_APPEND_FL | \
1945 FS_NODUMP_FL | \
1946 FS_NOATIME_FL | \
1947 FS_NOCOMP_FL | \
1948 FS_DIRSYNC_FL | \
1949 FS_PROJINHERIT_FL | \
1950 FS_CASEFOLD_FL)
1951
1952 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)1953 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1954 {
1955 u32 fsflags = 0;
1956 int i;
1957
1958 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1959 if (iflags & f2fs_fsflags_map[i].iflag)
1960 fsflags |= f2fs_fsflags_map[i].fsflag;
1961
1962 return fsflags;
1963 }
1964
1965 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)1966 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1967 {
1968 u32 iflags = 0;
1969 int i;
1970
1971 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1972 if (fsflags & f2fs_fsflags_map[i].fsflag)
1973 iflags |= f2fs_fsflags_map[i].iflag;
1974
1975 return iflags;
1976 }
1977
f2fs_ioc_getflags(struct file * filp,unsigned long arg)1978 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1979 {
1980 struct inode *inode = file_inode(filp);
1981 struct f2fs_inode_info *fi = F2FS_I(inode);
1982 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1983
1984 if (IS_ENCRYPTED(inode))
1985 fsflags |= FS_ENCRYPT_FL;
1986 if (IS_VERITY(inode))
1987 fsflags |= FS_VERITY_FL;
1988 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1989 fsflags |= FS_INLINE_DATA_FL;
1990 if (is_inode_flag_set(inode, FI_PIN_FILE))
1991 fsflags |= FS_NOCOW_FL;
1992
1993 fsflags &= F2FS_GETTABLE_FS_FL;
1994
1995 return put_user(fsflags, (int __user *)arg);
1996 }
1997
f2fs_ioc_setflags(struct file * filp,unsigned long arg)1998 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1999 {
2000 struct inode *inode = file_inode(filp);
2001 struct f2fs_inode_info *fi = F2FS_I(inode);
2002 u32 fsflags, old_fsflags;
2003 u32 iflags;
2004 int ret;
2005
2006 if (!inode_owner_or_capable(inode))
2007 return -EACCES;
2008
2009 if (get_user(fsflags, (int __user *)arg))
2010 return -EFAULT;
2011
2012 if (fsflags & ~F2FS_GETTABLE_FS_FL)
2013 return -EOPNOTSUPP;
2014 fsflags &= F2FS_SETTABLE_FS_FL;
2015
2016 iflags = f2fs_fsflags_to_iflags(fsflags);
2017 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
2018 return -EOPNOTSUPP;
2019
2020 ret = mnt_want_write_file(filp);
2021 if (ret)
2022 return ret;
2023
2024 inode_lock(inode);
2025
2026 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
2027 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
2028 if (ret)
2029 goto out;
2030
2031 ret = f2fs_setflags_common(inode, iflags,
2032 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
2033 out:
2034 inode_unlock(inode);
2035 mnt_drop_write_file(filp);
2036 return ret;
2037 }
2038
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2039 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2040 {
2041 struct inode *inode = file_inode(filp);
2042
2043 return put_user(inode->i_generation, (int __user *)arg);
2044 }
2045
f2fs_ioc_start_atomic_write(struct file * filp)2046 static int f2fs_ioc_start_atomic_write(struct file *filp)
2047 {
2048 struct inode *inode = file_inode(filp);
2049 struct f2fs_inode_info *fi = F2FS_I(inode);
2050 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2051 int ret;
2052
2053 if (!inode_owner_or_capable(inode))
2054 return -EACCES;
2055
2056 if (!S_ISREG(inode->i_mode))
2057 return -EINVAL;
2058
2059 if (filp->f_flags & O_DIRECT)
2060 return -EINVAL;
2061
2062 ret = mnt_want_write_file(filp);
2063 if (ret)
2064 return ret;
2065
2066 inode_lock(inode);
2067
2068 if (!f2fs_disable_compressed_file(inode)) {
2069 ret = -EINVAL;
2070 goto out;
2071 }
2072
2073 if (f2fs_is_atomic_file(inode)) {
2074 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2075 ret = -EINVAL;
2076 goto out;
2077 }
2078
2079 ret = f2fs_convert_inline_inode(inode);
2080 if (ret)
2081 goto out;
2082
2083 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2084
2085 /*
2086 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2087 * f2fs_is_atomic_file.
2088 */
2089 if (get_dirty_pages(inode))
2090 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2091 inode->i_ino, get_dirty_pages(inode));
2092 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2093 if (ret) {
2094 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2095 goto out;
2096 }
2097
2098 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2099 if (list_empty(&fi->inmem_ilist))
2100 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2101 sbi->atomic_files++;
2102 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2103
2104 /* add inode in inmem_list first and set atomic_file */
2105 set_inode_flag(inode, FI_ATOMIC_FILE);
2106 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2107 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2108
2109 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2110 F2FS_I(inode)->inmem_task = current;
2111 stat_update_max_atomic_write(inode);
2112 out:
2113 inode_unlock(inode);
2114 mnt_drop_write_file(filp);
2115 return ret;
2116 }
2117
f2fs_ioc_commit_atomic_write(struct file * filp)2118 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2119 {
2120 struct inode *inode = file_inode(filp);
2121 int ret;
2122
2123 if (!inode_owner_or_capable(inode))
2124 return -EACCES;
2125
2126 ret = mnt_want_write_file(filp);
2127 if (ret)
2128 return ret;
2129
2130 f2fs_balance_fs(F2FS_I_SB(inode), true);
2131
2132 inode_lock(inode);
2133
2134 if (f2fs_is_volatile_file(inode)) {
2135 ret = -EINVAL;
2136 goto err_out;
2137 }
2138
2139 if (f2fs_is_atomic_file(inode)) {
2140 ret = f2fs_commit_inmem_pages(inode);
2141 if (ret)
2142 goto err_out;
2143
2144 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2145 if (!ret)
2146 f2fs_drop_inmem_pages(inode);
2147 } else {
2148 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2149 }
2150 err_out:
2151 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2152 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2153 ret = -EINVAL;
2154 }
2155 inode_unlock(inode);
2156 mnt_drop_write_file(filp);
2157 return ret;
2158 }
2159
f2fs_ioc_start_volatile_write(struct file * filp)2160 static int f2fs_ioc_start_volatile_write(struct file *filp)
2161 {
2162 struct inode *inode = file_inode(filp);
2163 int ret;
2164
2165 if (!inode_owner_or_capable(inode))
2166 return -EACCES;
2167
2168 if (!S_ISREG(inode->i_mode))
2169 return -EINVAL;
2170
2171 ret = mnt_want_write_file(filp);
2172 if (ret)
2173 return ret;
2174
2175 inode_lock(inode);
2176
2177 if (f2fs_is_volatile_file(inode))
2178 goto out;
2179
2180 ret = f2fs_convert_inline_inode(inode);
2181 if (ret)
2182 goto out;
2183
2184 stat_inc_volatile_write(inode);
2185 stat_update_max_volatile_write(inode);
2186
2187 set_inode_flag(inode, FI_VOLATILE_FILE);
2188 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2189 out:
2190 inode_unlock(inode);
2191 mnt_drop_write_file(filp);
2192 return ret;
2193 }
2194
f2fs_ioc_release_volatile_write(struct file * filp)2195 static int f2fs_ioc_release_volatile_write(struct file *filp)
2196 {
2197 struct inode *inode = file_inode(filp);
2198 int ret;
2199
2200 if (!inode_owner_or_capable(inode))
2201 return -EACCES;
2202
2203 ret = mnt_want_write_file(filp);
2204 if (ret)
2205 return ret;
2206
2207 inode_lock(inode);
2208
2209 if (!f2fs_is_volatile_file(inode))
2210 goto out;
2211
2212 if (!f2fs_is_first_block_written(inode)) {
2213 ret = truncate_partial_data_page(inode, 0, true);
2214 goto out;
2215 }
2216
2217 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2218 out:
2219 inode_unlock(inode);
2220 mnt_drop_write_file(filp);
2221 return ret;
2222 }
2223
f2fs_ioc_abort_volatile_write(struct file * filp)2224 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2225 {
2226 struct inode *inode = file_inode(filp);
2227 int ret;
2228
2229 if (!inode_owner_or_capable(inode))
2230 return -EACCES;
2231
2232 ret = mnt_want_write_file(filp);
2233 if (ret)
2234 return ret;
2235
2236 inode_lock(inode);
2237
2238 if (f2fs_is_atomic_file(inode))
2239 f2fs_drop_inmem_pages(inode);
2240 if (f2fs_is_volatile_file(inode)) {
2241 clear_inode_flag(inode, FI_VOLATILE_FILE);
2242 stat_dec_volatile_write(inode);
2243 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2244 }
2245
2246 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2247
2248 inode_unlock(inode);
2249
2250 mnt_drop_write_file(filp);
2251 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2252 return ret;
2253 }
2254
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2255 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2256 {
2257 struct inode *inode = file_inode(filp);
2258 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2259 struct super_block *sb = sbi->sb;
2260 __u32 in;
2261 int ret = 0;
2262
2263 if (!capable(CAP_SYS_ADMIN))
2264 return -EPERM;
2265
2266 if (get_user(in, (__u32 __user *)arg))
2267 return -EFAULT;
2268
2269 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2270 ret = mnt_want_write_file(filp);
2271 if (ret) {
2272 if (ret == -EROFS) {
2273 ret = 0;
2274 f2fs_stop_checkpoint(sbi, false,
2275 STOP_CP_REASON_SHUTDOWN);
2276 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2277 trace_f2fs_shutdown(sbi, in, ret);
2278 }
2279 return ret;
2280 }
2281 }
2282
2283 switch (in) {
2284 case F2FS_GOING_DOWN_FULLSYNC:
2285 ret = freeze_bdev(sb->s_bdev);
2286 if (ret)
2287 goto out;
2288 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2289 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2290 thaw_bdev(sb->s_bdev);
2291 break;
2292 case F2FS_GOING_DOWN_METASYNC:
2293 /* do checkpoint only */
2294 ret = f2fs_sync_fs(sb, 1);
2295 if (ret)
2296 goto out;
2297 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2298 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2299 break;
2300 case F2FS_GOING_DOWN_NOSYNC:
2301 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2302 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2303 break;
2304 case F2FS_GOING_DOWN_METAFLUSH:
2305 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2306 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2307 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2308 break;
2309 case F2FS_GOING_DOWN_NEED_FSCK:
2310 set_sbi_flag(sbi, SBI_NEED_FSCK);
2311 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2312 set_sbi_flag(sbi, SBI_IS_DIRTY);
2313 /* do checkpoint only */
2314 ret = f2fs_sync_fs(sb, 1);
2315 goto out;
2316 default:
2317 ret = -EINVAL;
2318 goto out;
2319 }
2320
2321 f2fs_stop_gc_thread(sbi);
2322 f2fs_stop_discard_thread(sbi);
2323
2324 f2fs_drop_discard_cmd(sbi);
2325 clear_opt(sbi, DISCARD);
2326
2327 f2fs_update_time(sbi, REQ_TIME);
2328 out:
2329 if (in != F2FS_GOING_DOWN_FULLSYNC)
2330 mnt_drop_write_file(filp);
2331
2332 trace_f2fs_shutdown(sbi, in, ret);
2333
2334 return ret;
2335 }
2336
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2337 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2338 {
2339 struct inode *inode = file_inode(filp);
2340 struct super_block *sb = inode->i_sb;
2341 struct request_queue *q = bdev_get_queue(sb->s_bdev);
2342 struct fstrim_range range;
2343 int ret;
2344
2345 if (!capable(CAP_SYS_ADMIN))
2346 return -EPERM;
2347
2348 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2349 return -EOPNOTSUPP;
2350
2351 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2352 sizeof(range)))
2353 return -EFAULT;
2354
2355 ret = mnt_want_write_file(filp);
2356 if (ret)
2357 return ret;
2358
2359 range.minlen = max((unsigned int)range.minlen,
2360 q->limits.discard_granularity);
2361 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2362 mnt_drop_write_file(filp);
2363 if (ret < 0)
2364 return ret;
2365
2366 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2367 sizeof(range)))
2368 return -EFAULT;
2369 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2370 return 0;
2371 }
2372
uuid_is_nonzero(__u8 u[16])2373 static bool uuid_is_nonzero(__u8 u[16])
2374 {
2375 int i;
2376
2377 for (i = 0; i < 16; i++)
2378 if (u[i])
2379 return true;
2380 return false;
2381 }
2382
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2383 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2384 {
2385 struct inode *inode = file_inode(filp);
2386
2387 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2388 return -EOPNOTSUPP;
2389
2390 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2391
2392 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2393 }
2394
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2395 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2396 {
2397 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2398 return -EOPNOTSUPP;
2399 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2400 }
2401
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2402 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2403 {
2404 struct inode *inode = file_inode(filp);
2405 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2406 int err;
2407
2408 if (!f2fs_sb_has_encrypt(sbi))
2409 return -EOPNOTSUPP;
2410
2411 err = mnt_want_write_file(filp);
2412 if (err)
2413 return err;
2414
2415 f2fs_down_write(&sbi->sb_lock);
2416
2417 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2418 goto got_it;
2419
2420 /* update superblock with uuid */
2421 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2422
2423 err = f2fs_commit_super(sbi, false);
2424 if (err) {
2425 /* undo new data */
2426 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2427 goto out_err;
2428 }
2429 got_it:
2430 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2431 16))
2432 err = -EFAULT;
2433 out_err:
2434 f2fs_up_write(&sbi->sb_lock);
2435 mnt_drop_write_file(filp);
2436 return err;
2437 }
2438
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2439 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2440 unsigned long arg)
2441 {
2442 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2443 return -EOPNOTSUPP;
2444
2445 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2446 }
2447
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2448 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2449 {
2450 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2451 return -EOPNOTSUPP;
2452
2453 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2454 }
2455
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2456 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2457 {
2458 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2459 return -EOPNOTSUPP;
2460
2461 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2462 }
2463
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2464 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2465 unsigned long arg)
2466 {
2467 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2468 return -EOPNOTSUPP;
2469
2470 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2471 }
2472
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2473 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2474 unsigned long arg)
2475 {
2476 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2477 return -EOPNOTSUPP;
2478
2479 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2480 }
2481
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2482 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2483 {
2484 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2485 return -EOPNOTSUPP;
2486
2487 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2488 }
2489
f2fs_ioc_gc(struct file * filp,unsigned long arg)2490 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2491 {
2492 struct inode *inode = file_inode(filp);
2493 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2494 __u32 sync;
2495 int ret;
2496
2497 if (!capable(CAP_SYS_ADMIN))
2498 return -EPERM;
2499
2500 if (get_user(sync, (__u32 __user *)arg))
2501 return -EFAULT;
2502
2503 if (f2fs_readonly(sbi->sb))
2504 return -EROFS;
2505
2506 ret = mnt_want_write_file(filp);
2507 if (ret)
2508 return ret;
2509
2510 if (!sync) {
2511 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2512 ret = -EBUSY;
2513 goto out;
2514 }
2515 } else {
2516 f2fs_down_write(&sbi->gc_lock);
2517 }
2518
2519 ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2520 out:
2521 mnt_drop_write_file(filp);
2522 return ret;
2523 }
2524
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2525 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2526 {
2527 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2528 u64 end;
2529 int ret;
2530
2531 if (!capable(CAP_SYS_ADMIN))
2532 return -EPERM;
2533 if (f2fs_readonly(sbi->sb))
2534 return -EROFS;
2535
2536 end = range->start + range->len;
2537 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2538 end >= MAX_BLKADDR(sbi))
2539 return -EINVAL;
2540
2541 ret = mnt_want_write_file(filp);
2542 if (ret)
2543 return ret;
2544
2545 do_more:
2546 if (!range->sync) {
2547 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2548 ret = -EBUSY;
2549 goto out;
2550 }
2551 } else {
2552 f2fs_down_write(&sbi->gc_lock);
2553 }
2554
2555 ret = f2fs_gc(sbi, range->sync, true, false,
2556 GET_SEGNO(sbi, range->start));
2557 if (ret) {
2558 if (ret == -EBUSY)
2559 ret = -EAGAIN;
2560 goto out;
2561 }
2562 range->start += BLKS_PER_SEC(sbi);
2563 if (range->start <= end)
2564 goto do_more;
2565 out:
2566 mnt_drop_write_file(filp);
2567 return ret;
2568 }
2569
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2570 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2571 {
2572 struct f2fs_gc_range range;
2573
2574 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2575 sizeof(range)))
2576 return -EFAULT;
2577 return __f2fs_ioc_gc_range(filp, &range);
2578 }
2579
f2fs_ioc_write_checkpoint(struct file * filp,unsigned long arg)2580 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2581 {
2582 struct inode *inode = file_inode(filp);
2583 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2584 int ret;
2585
2586 if (!capable(CAP_SYS_ADMIN))
2587 return -EPERM;
2588
2589 if (f2fs_readonly(sbi->sb))
2590 return -EROFS;
2591
2592 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2593 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2594 return -EINVAL;
2595 }
2596
2597 ret = mnt_want_write_file(filp);
2598 if (ret)
2599 return ret;
2600
2601 ret = f2fs_sync_fs(sbi->sb, 1);
2602
2603 mnt_drop_write_file(filp);
2604 return ret;
2605 }
2606
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2607 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2608 struct file *filp,
2609 struct f2fs_defragment *range)
2610 {
2611 struct inode *inode = file_inode(filp);
2612 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2613 .m_seg_type = NO_CHECK_TYPE,
2614 .m_may_create = false };
2615 struct extent_info ei = {};
2616 pgoff_t pg_start, pg_end, next_pgofs;
2617 unsigned int blk_per_seg = sbi->blocks_per_seg;
2618 unsigned int total = 0, sec_num;
2619 block_t blk_end = 0;
2620 bool fragmented = false;
2621 int err;
2622
2623 pg_start = range->start >> PAGE_SHIFT;
2624 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2625
2626 f2fs_balance_fs(sbi, true);
2627
2628 inode_lock(inode);
2629
2630 /* if in-place-update policy is enabled, don't waste time here */
2631 set_inode_flag(inode, FI_OPU_WRITE);
2632 if (f2fs_should_update_inplace(inode, NULL)) {
2633 err = -EINVAL;
2634 goto out;
2635 }
2636
2637 /* writeback all dirty pages in the range */
2638 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2639 range->start + range->len - 1);
2640 if (err)
2641 goto out;
2642
2643 /*
2644 * lookup mapping info in extent cache, skip defragmenting if physical
2645 * block addresses are continuous.
2646 */
2647 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2648 if (ei.fofs + ei.len >= pg_end)
2649 goto out;
2650 }
2651
2652 map.m_lblk = pg_start;
2653 map.m_next_pgofs = &next_pgofs;
2654
2655 /*
2656 * lookup mapping info in dnode page cache, skip defragmenting if all
2657 * physical block addresses are continuous even if there are hole(s)
2658 * in logical blocks.
2659 */
2660 while (map.m_lblk < pg_end) {
2661 map.m_len = pg_end - map.m_lblk;
2662 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2663 if (err)
2664 goto out;
2665
2666 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2667 map.m_lblk = next_pgofs;
2668 continue;
2669 }
2670
2671 if (blk_end && blk_end != map.m_pblk)
2672 fragmented = true;
2673
2674 /* record total count of block that we're going to move */
2675 total += map.m_len;
2676
2677 blk_end = map.m_pblk + map.m_len;
2678
2679 map.m_lblk += map.m_len;
2680 }
2681
2682 if (!fragmented) {
2683 total = 0;
2684 goto out;
2685 }
2686
2687 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2688
2689 /*
2690 * make sure there are enough free section for LFS allocation, this can
2691 * avoid defragment running in SSR mode when free section are allocated
2692 * intensively
2693 */
2694 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2695 err = -EAGAIN;
2696 goto out;
2697 }
2698
2699 map.m_lblk = pg_start;
2700 map.m_len = pg_end - pg_start;
2701 total = 0;
2702
2703 while (map.m_lblk < pg_end) {
2704 pgoff_t idx;
2705 int cnt = 0;
2706
2707 do_map:
2708 map.m_len = pg_end - map.m_lblk;
2709 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2710 if (err)
2711 goto clear_out;
2712
2713 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2714 map.m_lblk = next_pgofs;
2715 goto check;
2716 }
2717
2718 set_inode_flag(inode, FI_SKIP_WRITES);
2719
2720 idx = map.m_lblk;
2721 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2722 struct page *page;
2723
2724 page = f2fs_get_lock_data_page(inode, idx, true);
2725 if (IS_ERR(page)) {
2726 err = PTR_ERR(page);
2727 goto clear_out;
2728 }
2729
2730 set_page_dirty(page);
2731 f2fs_put_page(page, 1);
2732
2733 idx++;
2734 cnt++;
2735 total++;
2736 }
2737
2738 map.m_lblk = idx;
2739 check:
2740 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2741 goto do_map;
2742
2743 clear_inode_flag(inode, FI_SKIP_WRITES);
2744
2745 err = filemap_fdatawrite(inode->i_mapping);
2746 if (err)
2747 goto out;
2748 }
2749 clear_out:
2750 clear_inode_flag(inode, FI_SKIP_WRITES);
2751 out:
2752 clear_inode_flag(inode, FI_OPU_WRITE);
2753 inode_unlock(inode);
2754 if (!err)
2755 range->len = (u64)total << PAGE_SHIFT;
2756 return err;
2757 }
2758
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2759 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2760 {
2761 struct inode *inode = file_inode(filp);
2762 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2763 struct f2fs_defragment range;
2764 int err;
2765
2766 if (!capable(CAP_SYS_ADMIN))
2767 return -EPERM;
2768
2769 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2770 return -EINVAL;
2771
2772 if (f2fs_readonly(sbi->sb))
2773 return -EROFS;
2774
2775 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2776 sizeof(range)))
2777 return -EFAULT;
2778
2779 /* verify alignment of offset & size */
2780 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2781 return -EINVAL;
2782
2783 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2784 max_file_blocks(inode)))
2785 return -EINVAL;
2786
2787 err = mnt_want_write_file(filp);
2788 if (err)
2789 return err;
2790
2791 err = f2fs_defragment_range(sbi, filp, &range);
2792 mnt_drop_write_file(filp);
2793
2794 f2fs_update_time(sbi, REQ_TIME);
2795 if (err < 0)
2796 return err;
2797
2798 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2799 sizeof(range)))
2800 return -EFAULT;
2801
2802 return 0;
2803 }
2804
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2805 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2806 struct file *file_out, loff_t pos_out, size_t len)
2807 {
2808 struct inode *src = file_inode(file_in);
2809 struct inode *dst = file_inode(file_out);
2810 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2811 size_t olen = len, dst_max_i_size = 0;
2812 size_t dst_osize;
2813 int ret;
2814
2815 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2816 src->i_sb != dst->i_sb)
2817 return -EXDEV;
2818
2819 if (unlikely(f2fs_readonly(src->i_sb)))
2820 return -EROFS;
2821
2822 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2823 return -EINVAL;
2824
2825 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2826 return -EOPNOTSUPP;
2827
2828 if (pos_out < 0 || pos_in < 0)
2829 return -EINVAL;
2830
2831 if (src == dst) {
2832 if (pos_in == pos_out)
2833 return 0;
2834 if (pos_out > pos_in && pos_out < pos_in + len)
2835 return -EINVAL;
2836 }
2837
2838 inode_lock(src);
2839 if (src != dst) {
2840 ret = -EBUSY;
2841 if (!inode_trylock(dst))
2842 goto out;
2843 }
2844
2845 ret = -EINVAL;
2846 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2847 goto out_unlock;
2848 if (len == 0)
2849 olen = len = src->i_size - pos_in;
2850 if (pos_in + len == src->i_size)
2851 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2852 if (len == 0) {
2853 ret = 0;
2854 goto out_unlock;
2855 }
2856
2857 dst_osize = dst->i_size;
2858 if (pos_out + olen > dst->i_size)
2859 dst_max_i_size = pos_out + olen;
2860
2861 /* verify the end result is block aligned */
2862 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2863 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2864 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2865 goto out_unlock;
2866
2867 ret = f2fs_convert_inline_inode(src);
2868 if (ret)
2869 goto out_unlock;
2870
2871 ret = f2fs_convert_inline_inode(dst);
2872 if (ret)
2873 goto out_unlock;
2874
2875 /* write out all dirty pages from offset */
2876 ret = filemap_write_and_wait_range(src->i_mapping,
2877 pos_in, pos_in + len);
2878 if (ret)
2879 goto out_unlock;
2880
2881 ret = filemap_write_and_wait_range(dst->i_mapping,
2882 pos_out, pos_out + len);
2883 if (ret)
2884 goto out_unlock;
2885
2886 f2fs_balance_fs(sbi, true);
2887
2888 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2889 if (src != dst) {
2890 ret = -EBUSY;
2891 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2892 goto out_src;
2893 }
2894
2895 f2fs_lock_op(sbi);
2896 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2897 pos_out >> F2FS_BLKSIZE_BITS,
2898 len >> F2FS_BLKSIZE_BITS, false);
2899
2900 if (!ret) {
2901 if (dst_max_i_size)
2902 f2fs_i_size_write(dst, dst_max_i_size);
2903 else if (dst_osize != dst->i_size)
2904 f2fs_i_size_write(dst, dst_osize);
2905 }
2906 f2fs_unlock_op(sbi);
2907
2908 if (src != dst)
2909 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2910 out_src:
2911 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2912 out_unlock:
2913 if (src != dst)
2914 inode_unlock(dst);
2915 out:
2916 inode_unlock(src);
2917 return ret;
2918 }
2919
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)2920 static int __f2fs_ioc_move_range(struct file *filp,
2921 struct f2fs_move_range *range)
2922 {
2923 struct fd dst;
2924 int err;
2925
2926 if (!(filp->f_mode & FMODE_READ) ||
2927 !(filp->f_mode & FMODE_WRITE))
2928 return -EBADF;
2929
2930 dst = fdget(range->dst_fd);
2931 if (!dst.file)
2932 return -EBADF;
2933
2934 if (!(dst.file->f_mode & FMODE_WRITE)) {
2935 err = -EBADF;
2936 goto err_out;
2937 }
2938
2939 err = mnt_want_write_file(filp);
2940 if (err)
2941 goto err_out;
2942
2943 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2944 range->pos_out, range->len);
2945
2946 mnt_drop_write_file(filp);
2947 err_out:
2948 fdput(dst);
2949 return err;
2950 }
2951
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2952 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2953 {
2954 struct f2fs_move_range range;
2955
2956 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2957 sizeof(range)))
2958 return -EFAULT;
2959 return __f2fs_ioc_move_range(filp, &range);
2960 }
2961
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2962 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2963 {
2964 struct inode *inode = file_inode(filp);
2965 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2966 struct sit_info *sm = SIT_I(sbi);
2967 unsigned int start_segno = 0, end_segno = 0;
2968 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2969 struct f2fs_flush_device range;
2970 int ret;
2971
2972 if (!capable(CAP_SYS_ADMIN))
2973 return -EPERM;
2974
2975 if (f2fs_readonly(sbi->sb))
2976 return -EROFS;
2977
2978 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2979 return -EINVAL;
2980
2981 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2982 sizeof(range)))
2983 return -EFAULT;
2984
2985 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2986 __is_large_section(sbi)) {
2987 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2988 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2989 return -EINVAL;
2990 }
2991
2992 ret = mnt_want_write_file(filp);
2993 if (ret)
2994 return ret;
2995
2996 if (range.dev_num != 0)
2997 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2998 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2999
3000 start_segno = sm->last_victim[FLUSH_DEVICE];
3001 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3002 start_segno = dev_start_segno;
3003 end_segno = min(start_segno + range.segments, dev_end_segno);
3004
3005 while (start_segno < end_segno) {
3006 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3007 ret = -EBUSY;
3008 goto out;
3009 }
3010 sm->last_victim[GC_CB] = end_segno + 1;
3011 sm->last_victim[GC_GREEDY] = end_segno + 1;
3012 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3013 ret = f2fs_gc(sbi, true, true, true, start_segno);
3014 if (ret == -EAGAIN)
3015 ret = 0;
3016 else if (ret < 0)
3017 break;
3018 start_segno++;
3019 }
3020 out:
3021 mnt_drop_write_file(filp);
3022 return ret;
3023 }
3024
f2fs_ioc_get_features(struct file * filp,unsigned long arg)3025 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3026 {
3027 struct inode *inode = file_inode(filp);
3028 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3029
3030 /* Must validate to set it with SQLite behavior in Android. */
3031 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3032
3033 return put_user(sb_feature, (u32 __user *)arg);
3034 }
3035
3036 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3037 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3038 {
3039 struct dquot *transfer_to[MAXQUOTAS] = {};
3040 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3041 struct super_block *sb = sbi->sb;
3042 int err = 0;
3043
3044 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3045 if (!IS_ERR(transfer_to[PRJQUOTA])) {
3046 err = __dquot_transfer(inode, transfer_to);
3047 if (err)
3048 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3049 dqput(transfer_to[PRJQUOTA]);
3050 }
3051 return err;
3052 }
3053
f2fs_ioc_setproject(struct file * filp,__u32 projid)3054 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3055 {
3056 struct inode *inode = file_inode(filp);
3057 struct f2fs_inode_info *fi = F2FS_I(inode);
3058 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3059 struct page *ipage;
3060 kprojid_t kprojid;
3061 int err;
3062
3063 if (!f2fs_sb_has_project_quota(sbi)) {
3064 if (projid != F2FS_DEF_PROJID)
3065 return -EOPNOTSUPP;
3066 else
3067 return 0;
3068 }
3069
3070 if (!f2fs_has_extra_attr(inode))
3071 return -EOPNOTSUPP;
3072
3073 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3074
3075 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3076 return 0;
3077
3078 err = -EPERM;
3079 /* Is it quota file? Do not allow user to mess with it */
3080 if (IS_NOQUOTA(inode))
3081 return err;
3082
3083 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3084 if (IS_ERR(ipage))
3085 return PTR_ERR(ipage);
3086
3087 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3088 i_projid)) {
3089 err = -EOVERFLOW;
3090 f2fs_put_page(ipage, 1);
3091 return err;
3092 }
3093 f2fs_put_page(ipage, 1);
3094
3095 err = dquot_initialize(inode);
3096 if (err)
3097 return err;
3098
3099 f2fs_lock_op(sbi);
3100 err = f2fs_transfer_project_quota(inode, kprojid);
3101 if (err)
3102 goto out_unlock;
3103
3104 F2FS_I(inode)->i_projid = kprojid;
3105 inode->i_ctime = current_time(inode);
3106 f2fs_mark_inode_dirty_sync(inode, true);
3107 out_unlock:
3108 f2fs_unlock_op(sbi);
3109 return err;
3110 }
3111 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3112 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3113 {
3114 return 0;
3115 }
3116
f2fs_ioc_setproject(struct file * filp,__u32 projid)3117 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3118 {
3119 if (projid != F2FS_DEF_PROJID)
3120 return -EOPNOTSUPP;
3121 return 0;
3122 }
3123 #endif
3124
3125 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
3126
3127 /*
3128 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
3129 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
3130 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
3131 */
3132
3133 static const struct {
3134 u32 iflag;
3135 u32 xflag;
3136 } f2fs_xflags_map[] = {
3137 { F2FS_SYNC_FL, FS_XFLAG_SYNC },
3138 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE },
3139 { F2FS_APPEND_FL, FS_XFLAG_APPEND },
3140 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP },
3141 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME },
3142 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT },
3143 };
3144
3145 #define F2FS_SUPPORTED_XFLAGS ( \
3146 FS_XFLAG_SYNC | \
3147 FS_XFLAG_IMMUTABLE | \
3148 FS_XFLAG_APPEND | \
3149 FS_XFLAG_NODUMP | \
3150 FS_XFLAG_NOATIME | \
3151 FS_XFLAG_PROJINHERIT)
3152
3153 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
f2fs_iflags_to_xflags(u32 iflags)3154 static inline u32 f2fs_iflags_to_xflags(u32 iflags)
3155 {
3156 u32 xflags = 0;
3157 int i;
3158
3159 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3160 if (iflags & f2fs_xflags_map[i].iflag)
3161 xflags |= f2fs_xflags_map[i].xflag;
3162
3163 return xflags;
3164 }
3165
3166 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
f2fs_xflags_to_iflags(u32 xflags)3167 static inline u32 f2fs_xflags_to_iflags(u32 xflags)
3168 {
3169 u32 iflags = 0;
3170 int i;
3171
3172 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3173 if (xflags & f2fs_xflags_map[i].xflag)
3174 iflags |= f2fs_xflags_map[i].iflag;
3175
3176 return iflags;
3177 }
3178
f2fs_fill_fsxattr(struct inode * inode,struct fsxattr * fa)3179 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
3180 {
3181 struct f2fs_inode_info *fi = F2FS_I(inode);
3182
3183 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
3184
3185 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3186 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3187 }
3188
f2fs_ioc_fsgetxattr(struct file * filp,unsigned long arg)3189 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
3190 {
3191 struct inode *inode = file_inode(filp);
3192 struct fsxattr fa;
3193
3194 f2fs_fill_fsxattr(inode, &fa);
3195
3196 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
3197 return -EFAULT;
3198 return 0;
3199 }
3200
f2fs_ioc_fssetxattr(struct file * filp,unsigned long arg)3201 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
3202 {
3203 struct inode *inode = file_inode(filp);
3204 struct fsxattr fa, old_fa;
3205 u32 iflags;
3206 int err;
3207
3208 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
3209 return -EFAULT;
3210
3211 /* Make sure caller has proper permission */
3212 if (!inode_owner_or_capable(inode))
3213 return -EACCES;
3214
3215 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
3216 return -EOPNOTSUPP;
3217
3218 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
3219 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3220 return -EOPNOTSUPP;
3221
3222 err = mnt_want_write_file(filp);
3223 if (err)
3224 return err;
3225
3226 inode_lock(inode);
3227
3228 f2fs_fill_fsxattr(inode, &old_fa);
3229 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
3230 if (err)
3231 goto out;
3232
3233 err = f2fs_setflags_common(inode, iflags,
3234 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
3235 if (err)
3236 goto out;
3237
3238 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3239 out:
3240 inode_unlock(inode);
3241 mnt_drop_write_file(filp);
3242 return err;
3243 }
3244
f2fs_pin_file_control(struct inode * inode,bool inc)3245 int f2fs_pin_file_control(struct inode *inode, bool inc)
3246 {
3247 struct f2fs_inode_info *fi = F2FS_I(inode);
3248 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3249
3250 /* Use i_gc_failures for normal file as a risk signal. */
3251 if (inc)
3252 f2fs_i_gc_failures_write(inode,
3253 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3254
3255 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3256 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3257 __func__, inode->i_ino,
3258 fi->i_gc_failures[GC_FAILURE_PIN]);
3259 clear_inode_flag(inode, FI_PIN_FILE);
3260 return -EAGAIN;
3261 }
3262 return 0;
3263 }
3264
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3265 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3266 {
3267 struct inode *inode = file_inode(filp);
3268 __u32 pin;
3269 int ret = 0;
3270
3271 if (get_user(pin, (__u32 __user *)arg))
3272 return -EFAULT;
3273
3274 if (!S_ISREG(inode->i_mode))
3275 return -EINVAL;
3276
3277 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3278 return -EROFS;
3279
3280 ret = mnt_want_write_file(filp);
3281 if (ret)
3282 return ret;
3283
3284 inode_lock(inode);
3285
3286 if (!pin) {
3287 clear_inode_flag(inode, FI_PIN_FILE);
3288 f2fs_i_gc_failures_write(inode, 0);
3289 goto done;
3290 }
3291
3292 if (f2fs_should_update_outplace(inode, NULL)) {
3293 ret = -EINVAL;
3294 goto out;
3295 }
3296
3297 if (f2fs_pin_file_control(inode, false)) {
3298 ret = -EAGAIN;
3299 goto out;
3300 }
3301
3302 ret = f2fs_convert_inline_inode(inode);
3303 if (ret)
3304 goto out;
3305
3306 if (!f2fs_disable_compressed_file(inode)) {
3307 ret = -EOPNOTSUPP;
3308 goto out;
3309 }
3310
3311 set_inode_flag(inode, FI_PIN_FILE);
3312 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3313 done:
3314 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3315 out:
3316 inode_unlock(inode);
3317 mnt_drop_write_file(filp);
3318 return ret;
3319 }
3320
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3321 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3322 {
3323 struct inode *inode = file_inode(filp);
3324 __u32 pin = 0;
3325
3326 if (is_inode_flag_set(inode, FI_PIN_FILE))
3327 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3328 return put_user(pin, (u32 __user *)arg);
3329 }
3330
f2fs_precache_extents(struct inode * inode)3331 int f2fs_precache_extents(struct inode *inode)
3332 {
3333 struct f2fs_inode_info *fi = F2FS_I(inode);
3334 struct f2fs_map_blocks map;
3335 pgoff_t m_next_extent;
3336 loff_t end;
3337 int err;
3338
3339 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3340 return -EOPNOTSUPP;
3341
3342 map.m_lblk = 0;
3343 map.m_next_pgofs = NULL;
3344 map.m_next_extent = &m_next_extent;
3345 map.m_seg_type = NO_CHECK_TYPE;
3346 map.m_may_create = false;
3347 end = max_file_blocks(inode);
3348
3349 while (map.m_lblk < end) {
3350 map.m_len = end - map.m_lblk;
3351
3352 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3353 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3354 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3355 if (err)
3356 return err;
3357
3358 map.m_lblk = m_next_extent;
3359 }
3360
3361 return 0;
3362 }
3363
f2fs_ioc_precache_extents(struct file * filp,unsigned long arg)3364 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3365 {
3366 return f2fs_precache_extents(file_inode(filp));
3367 }
3368
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3369 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3370 {
3371 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3372 __u64 block_count;
3373
3374 if (!capable(CAP_SYS_ADMIN))
3375 return -EPERM;
3376
3377 if (f2fs_readonly(sbi->sb))
3378 return -EROFS;
3379
3380 if (copy_from_user(&block_count, (void __user *)arg,
3381 sizeof(block_count)))
3382 return -EFAULT;
3383
3384 return f2fs_resize_fs(sbi, block_count);
3385 }
3386
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3387 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3388 {
3389 struct inode *inode = file_inode(filp);
3390
3391 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3392
3393 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3394 f2fs_warn(F2FS_I_SB(inode),
3395 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3396 inode->i_ino);
3397 return -EOPNOTSUPP;
3398 }
3399
3400 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3401 }
3402
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3403 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3404 {
3405 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3406 return -EOPNOTSUPP;
3407
3408 return fsverity_ioctl_measure(filp, (void __user *)arg);
3409 }
3410
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3411 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3412 {
3413 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3414 return -EOPNOTSUPP;
3415
3416 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3417 }
3418
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3419 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3420 {
3421 struct inode *inode = file_inode(filp);
3422 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3423 char *vbuf;
3424 int count;
3425 int err = 0;
3426
3427 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3428 if (!vbuf)
3429 return -ENOMEM;
3430
3431 f2fs_down_read(&sbi->sb_lock);
3432 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3433 ARRAY_SIZE(sbi->raw_super->volume_name),
3434 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3435 f2fs_up_read(&sbi->sb_lock);
3436
3437 if (copy_to_user((char __user *)arg, vbuf,
3438 min(FSLABEL_MAX, count)))
3439 err = -EFAULT;
3440
3441 kfree(vbuf);
3442 return err;
3443 }
3444
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3445 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3446 {
3447 struct inode *inode = file_inode(filp);
3448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3449 char *vbuf;
3450 int err = 0;
3451
3452 if (!capable(CAP_SYS_ADMIN))
3453 return -EPERM;
3454
3455 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3456 if (IS_ERR(vbuf))
3457 return PTR_ERR(vbuf);
3458
3459 err = mnt_want_write_file(filp);
3460 if (err)
3461 goto out;
3462
3463 f2fs_down_write(&sbi->sb_lock);
3464
3465 memset(sbi->raw_super->volume_name, 0,
3466 sizeof(sbi->raw_super->volume_name));
3467 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3468 sbi->raw_super->volume_name,
3469 ARRAY_SIZE(sbi->raw_super->volume_name));
3470
3471 err = f2fs_commit_super(sbi, false);
3472
3473 f2fs_up_write(&sbi->sb_lock);
3474
3475 mnt_drop_write_file(filp);
3476 out:
3477 kfree(vbuf);
3478 return err;
3479 }
3480
f2fs_get_compress_blocks(struct file * filp,unsigned long arg)3481 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3482 {
3483 struct inode *inode = file_inode(filp);
3484 __u64 blocks;
3485
3486 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3487 return -EOPNOTSUPP;
3488
3489 if (!f2fs_compressed_file(inode))
3490 return -EINVAL;
3491
3492 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3493 return put_user(blocks, (u64 __user *)arg);
3494 }
3495
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3496 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3497 {
3498 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3499 unsigned int released_blocks = 0;
3500 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3501 block_t blkaddr;
3502 int i;
3503
3504 for (i = 0; i < count; i++) {
3505 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3506 dn->ofs_in_node + i);
3507
3508 if (!__is_valid_data_blkaddr(blkaddr))
3509 continue;
3510 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3511 DATA_GENERIC_ENHANCE)))
3512 return -EFSCORRUPTED;
3513 }
3514
3515 while (count) {
3516 int compr_blocks = 0;
3517
3518 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3519 blkaddr = f2fs_data_blkaddr(dn);
3520
3521 if (i == 0) {
3522 if (blkaddr == COMPRESS_ADDR)
3523 continue;
3524 dn->ofs_in_node += cluster_size;
3525 goto next;
3526 }
3527
3528 if (__is_valid_data_blkaddr(blkaddr))
3529 compr_blocks++;
3530
3531 if (blkaddr != NEW_ADDR)
3532 continue;
3533
3534 dn->data_blkaddr = NULL_ADDR;
3535 f2fs_set_data_blkaddr(dn);
3536 }
3537
3538 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3539 dec_valid_block_count(sbi, dn->inode,
3540 cluster_size - compr_blocks);
3541
3542 released_blocks += cluster_size - compr_blocks;
3543 next:
3544 count -= cluster_size;
3545 }
3546
3547 return released_blocks;
3548 }
3549
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3550 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3551 {
3552 struct inode *inode = file_inode(filp);
3553 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3554 pgoff_t page_idx = 0, last_idx;
3555 unsigned int released_blocks = 0;
3556 int ret;
3557 int writecount;
3558
3559 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3560 return -EOPNOTSUPP;
3561
3562 if (!f2fs_compressed_file(inode))
3563 return -EINVAL;
3564
3565 if (f2fs_readonly(sbi->sb))
3566 return -EROFS;
3567
3568 ret = mnt_want_write_file(filp);
3569 if (ret)
3570 return ret;
3571
3572 f2fs_balance_fs(F2FS_I_SB(inode), true);
3573
3574 inode_lock(inode);
3575
3576 writecount = atomic_read(&inode->i_writecount);
3577 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3578 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3579 ret = -EBUSY;
3580 goto out;
3581 }
3582
3583 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3584 ret = -EINVAL;
3585 goto out;
3586 }
3587
3588 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3589 if (ret)
3590 goto out;
3591
3592 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3593 inode->i_ctime = current_time(inode);
3594 f2fs_mark_inode_dirty_sync(inode, true);
3595
3596 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3597 goto out;
3598
3599 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3600 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
3601
3602 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3603
3604 while (page_idx < last_idx) {
3605 struct dnode_of_data dn;
3606 pgoff_t end_offset, count;
3607
3608 set_new_dnode(&dn, inode, NULL, NULL, 0);
3609 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3610 if (ret) {
3611 if (ret == -ENOENT) {
3612 page_idx = f2fs_get_next_page_offset(&dn,
3613 page_idx);
3614 ret = 0;
3615 continue;
3616 }
3617 break;
3618 }
3619
3620 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3621 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3622 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3623
3624 ret = release_compress_blocks(&dn, count);
3625
3626 f2fs_put_dnode(&dn);
3627
3628 if (ret < 0)
3629 break;
3630
3631 page_idx += count;
3632 released_blocks += ret;
3633 }
3634
3635 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
3636 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3637 out:
3638 inode_unlock(inode);
3639
3640 mnt_drop_write_file(filp);
3641
3642 if (ret >= 0) {
3643 ret = put_user(released_blocks, (u64 __user *)arg);
3644 } else if (released_blocks &&
3645 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3646 set_sbi_flag(sbi, SBI_NEED_FSCK);
3647 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3648 "iblocks=%llu, released=%u, compr_blocks=%u, "
3649 "run fsck to fix.",
3650 __func__, inode->i_ino, inode->i_blocks,
3651 released_blocks,
3652 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3653 }
3654
3655 return ret;
3656 }
3657
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3658 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3659 {
3660 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3661 unsigned int reserved_blocks = 0;
3662 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3663 block_t blkaddr;
3664 int i;
3665
3666 for (i = 0; i < count; i++) {
3667 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3668 dn->ofs_in_node + i);
3669
3670 if (!__is_valid_data_blkaddr(blkaddr))
3671 continue;
3672 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3673 DATA_GENERIC_ENHANCE)))
3674 return -EFSCORRUPTED;
3675 }
3676
3677 while (count) {
3678 int compr_blocks = 0;
3679 blkcnt_t reserved;
3680 int ret;
3681
3682 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3683 blkaddr = f2fs_data_blkaddr(dn);
3684
3685 if (i == 0) {
3686 if (blkaddr == COMPRESS_ADDR)
3687 continue;
3688 dn->ofs_in_node += cluster_size;
3689 goto next;
3690 }
3691
3692 if (__is_valid_data_blkaddr(blkaddr)) {
3693 compr_blocks++;
3694 continue;
3695 }
3696
3697 dn->data_blkaddr = NEW_ADDR;
3698 f2fs_set_data_blkaddr(dn);
3699 }
3700
3701 reserved = cluster_size - compr_blocks;
3702 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3703 if (ret)
3704 return ret;
3705
3706 if (reserved != cluster_size - compr_blocks)
3707 return -ENOSPC;
3708
3709 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3710
3711 reserved_blocks += reserved;
3712 next:
3713 count -= cluster_size;
3714 }
3715
3716 return reserved_blocks;
3717 }
3718
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3719 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3720 {
3721 struct inode *inode = file_inode(filp);
3722 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3723 pgoff_t page_idx = 0, last_idx;
3724 unsigned int reserved_blocks = 0;
3725 int ret;
3726
3727 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3728 return -EOPNOTSUPP;
3729
3730 if (!f2fs_compressed_file(inode))
3731 return -EINVAL;
3732
3733 if (f2fs_readonly(sbi->sb))
3734 return -EROFS;
3735
3736 ret = mnt_want_write_file(filp);
3737 if (ret)
3738 return ret;
3739
3740 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3741 goto out;
3742
3743 f2fs_balance_fs(F2FS_I_SB(inode), true);
3744
3745 inode_lock(inode);
3746
3747 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3748 ret = -EINVAL;
3749 goto unlock_inode;
3750 }
3751
3752 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3753 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
3754
3755 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3756
3757 while (page_idx < last_idx) {
3758 struct dnode_of_data dn;
3759 pgoff_t end_offset, count;
3760
3761 set_new_dnode(&dn, inode, NULL, NULL, 0);
3762 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3763 if (ret) {
3764 if (ret == -ENOENT) {
3765 page_idx = f2fs_get_next_page_offset(&dn,
3766 page_idx);
3767 ret = 0;
3768 continue;
3769 }
3770 break;
3771 }
3772
3773 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3774 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3775 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3776
3777 ret = reserve_compress_blocks(&dn, count);
3778
3779 f2fs_put_dnode(&dn);
3780
3781 if (ret < 0)
3782 break;
3783
3784 page_idx += count;
3785 reserved_blocks += ret;
3786 }
3787
3788 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
3789 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3790
3791 if (ret >= 0) {
3792 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3793 inode->i_ctime = current_time(inode);
3794 f2fs_mark_inode_dirty_sync(inode, true);
3795 }
3796 unlock_inode:
3797 inode_unlock(inode);
3798 out:
3799 mnt_drop_write_file(filp);
3800
3801 if (ret >= 0) {
3802 ret = put_user(reserved_blocks, (u64 __user *)arg);
3803 } else if (reserved_blocks &&
3804 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3805 set_sbi_flag(sbi, SBI_NEED_FSCK);
3806 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3807 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3808 "run fsck to fix.",
3809 __func__, inode->i_ino, inode->i_blocks,
3810 reserved_blocks,
3811 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3812 }
3813
3814 return ret;
3815 }
3816
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3817 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3818 pgoff_t off, block_t block, block_t len, u32 flags)
3819 {
3820 struct request_queue *q = bdev_get_queue(bdev);
3821 sector_t sector = SECTOR_FROM_BLOCK(block);
3822 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3823 int ret = 0;
3824
3825 if (!q)
3826 return -ENXIO;
3827
3828 if (flags & F2FS_TRIM_FILE_DISCARD)
3829 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3830 blk_queue_secure_erase(q) ?
3831 BLKDEV_DISCARD_SECURE : 0);
3832
3833 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3834 if (IS_ENCRYPTED(inode))
3835 ret = fscrypt_zeroout_range(inode, off, block, len);
3836 else
3837 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3838 GFP_NOFS, 0);
3839 }
3840
3841 return ret;
3842 }
3843
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3844 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3845 {
3846 struct inode *inode = file_inode(filp);
3847 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3848 struct address_space *mapping = inode->i_mapping;
3849 struct block_device *prev_bdev = NULL;
3850 struct f2fs_sectrim_range range;
3851 pgoff_t index, pg_end, prev_index = 0;
3852 block_t prev_block = 0, len = 0;
3853 loff_t end_addr;
3854 bool to_end = false;
3855 int ret = 0;
3856
3857 if (!(filp->f_mode & FMODE_WRITE))
3858 return -EBADF;
3859
3860 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3861 sizeof(range)))
3862 return -EFAULT;
3863
3864 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3865 !S_ISREG(inode->i_mode))
3866 return -EINVAL;
3867
3868 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3869 !f2fs_hw_support_discard(sbi)) ||
3870 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3871 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3872 return -EOPNOTSUPP;
3873
3874 file_start_write(filp);
3875 inode_lock(inode);
3876
3877 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3878 range.start >= inode->i_size) {
3879 ret = -EINVAL;
3880 goto err;
3881 }
3882
3883 if (range.len == 0)
3884 goto err;
3885
3886 if (inode->i_size - range.start > range.len) {
3887 end_addr = range.start + range.len;
3888 } else {
3889 end_addr = range.len == (u64)-1 ?
3890 sbi->sb->s_maxbytes : inode->i_size;
3891 to_end = true;
3892 }
3893
3894 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3895 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3896 ret = -EINVAL;
3897 goto err;
3898 }
3899
3900 index = F2FS_BYTES_TO_BLK(range.start);
3901 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3902
3903 ret = f2fs_convert_inline_inode(inode);
3904 if (ret)
3905 goto err;
3906
3907 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3908 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
3909
3910 ret = filemap_write_and_wait_range(mapping, range.start,
3911 to_end ? LLONG_MAX : end_addr - 1);
3912 if (ret)
3913 goto out;
3914
3915 truncate_inode_pages_range(mapping, range.start,
3916 to_end ? -1 : end_addr - 1);
3917
3918 while (index < pg_end) {
3919 struct dnode_of_data dn;
3920 pgoff_t end_offset, count;
3921 int i;
3922
3923 set_new_dnode(&dn, inode, NULL, NULL, 0);
3924 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3925 if (ret) {
3926 if (ret == -ENOENT) {
3927 index = f2fs_get_next_page_offset(&dn, index);
3928 continue;
3929 }
3930 goto out;
3931 }
3932
3933 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3934 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3935 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3936 struct block_device *cur_bdev;
3937 block_t blkaddr = f2fs_data_blkaddr(&dn);
3938
3939 if (!__is_valid_data_blkaddr(blkaddr))
3940 continue;
3941
3942 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3943 DATA_GENERIC_ENHANCE)) {
3944 ret = -EFSCORRUPTED;
3945 f2fs_put_dnode(&dn);
3946 goto out;
3947 }
3948
3949 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3950 if (f2fs_is_multi_device(sbi)) {
3951 int di = f2fs_target_device_index(sbi, blkaddr);
3952
3953 blkaddr -= FDEV(di).start_blk;
3954 }
3955
3956 if (len) {
3957 if (prev_bdev == cur_bdev &&
3958 index == prev_index + len &&
3959 blkaddr == prev_block + len) {
3960 len++;
3961 } else {
3962 ret = f2fs_secure_erase(prev_bdev,
3963 inode, prev_index, prev_block,
3964 len, range.flags);
3965 if (ret) {
3966 f2fs_put_dnode(&dn);
3967 goto out;
3968 }
3969
3970 len = 0;
3971 }
3972 }
3973
3974 if (!len) {
3975 prev_bdev = cur_bdev;
3976 prev_index = index;
3977 prev_block = blkaddr;
3978 len = 1;
3979 }
3980 }
3981
3982 f2fs_put_dnode(&dn);
3983
3984 if (fatal_signal_pending(current)) {
3985 ret = -EINTR;
3986 goto out;
3987 }
3988 cond_resched();
3989 }
3990
3991 if (len)
3992 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3993 prev_block, len, range.flags);
3994 out:
3995 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
3996 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3997 err:
3998 inode_unlock(inode);
3999 file_end_write(filp);
4000
4001 return ret;
4002 }
4003
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)4004 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4005 {
4006 struct inode *inode = file_inode(filp);
4007 struct f2fs_comp_option option;
4008
4009 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4010 return -EOPNOTSUPP;
4011
4012 inode_lock_shared(inode);
4013
4014 if (!f2fs_compressed_file(inode)) {
4015 inode_unlock_shared(inode);
4016 return -ENODATA;
4017 }
4018
4019 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4020 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4021
4022 inode_unlock_shared(inode);
4023
4024 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4025 sizeof(option)))
4026 return -EFAULT;
4027
4028 return 0;
4029 }
4030
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)4031 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4032 {
4033 struct inode *inode = file_inode(filp);
4034 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4035 struct f2fs_comp_option option;
4036 int ret = 0;
4037
4038 if (!f2fs_sb_has_compression(sbi))
4039 return -EOPNOTSUPP;
4040
4041 if (!(filp->f_mode & FMODE_WRITE))
4042 return -EBADF;
4043
4044 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4045 sizeof(option)))
4046 return -EFAULT;
4047
4048 if (!f2fs_compressed_file(inode) ||
4049 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4050 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4051 option.algorithm >= COMPRESS_MAX)
4052 return -EINVAL;
4053
4054 file_start_write(filp);
4055 inode_lock(inode);
4056
4057 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4058 ret = -EBUSY;
4059 goto out;
4060 }
4061
4062 if (inode->i_size != 0) {
4063 ret = -EFBIG;
4064 goto out;
4065 }
4066
4067 F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4068 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4069 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
4070 f2fs_mark_inode_dirty_sync(inode, true);
4071
4072 if (!f2fs_is_compress_backend_ready(inode))
4073 f2fs_warn(sbi, "compression algorithm is successfully set, "
4074 "but current kernel doesn't support this algorithm.");
4075 out:
4076 inode_unlock(inode);
4077 file_end_write(filp);
4078
4079 return ret;
4080 }
4081
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)4082 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4083 {
4084 DEFINE_READAHEAD(ractl, NULL, inode->i_mapping, page_idx);
4085 struct address_space *mapping = inode->i_mapping;
4086 struct page *page;
4087 pgoff_t redirty_idx = page_idx;
4088 int i, page_len = 0, ret = 0;
4089
4090 page_cache_ra_unbounded(&ractl, len, 0);
4091
4092 for (i = 0; i < len; i++, page_idx++) {
4093 page = read_cache_page(mapping, page_idx, NULL, NULL);
4094 if (IS_ERR(page)) {
4095 ret = PTR_ERR(page);
4096 break;
4097 }
4098 page_len++;
4099 }
4100
4101 for (i = 0; i < page_len; i++, redirty_idx++) {
4102 page = find_lock_page(mapping, redirty_idx);
4103 if (!page) {
4104 ret = -ENOMEM;
4105 break;
4106 }
4107 set_page_dirty(page);
4108 f2fs_put_page(page, 1);
4109 f2fs_put_page(page, 0);
4110 }
4111
4112 return ret;
4113 }
4114
f2fs_ioc_decompress_file(struct file * filp,unsigned long arg)4115 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
4116 {
4117 struct inode *inode = file_inode(filp);
4118 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4119 struct f2fs_inode_info *fi = F2FS_I(inode);
4120 pgoff_t page_idx = 0, last_idx;
4121 unsigned int blk_per_seg = sbi->blocks_per_seg;
4122 int cluster_size = F2FS_I(inode)->i_cluster_size;
4123 int count, ret;
4124
4125 if (!f2fs_sb_has_compression(sbi) ||
4126 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4127 return -EOPNOTSUPP;
4128
4129 if (!(filp->f_mode & FMODE_WRITE))
4130 return -EBADF;
4131
4132 if (!f2fs_compressed_file(inode))
4133 return -EINVAL;
4134
4135 f2fs_balance_fs(F2FS_I_SB(inode), true);
4136
4137 file_start_write(filp);
4138 inode_lock(inode);
4139
4140 if (!f2fs_is_compress_backend_ready(inode)) {
4141 ret = -EOPNOTSUPP;
4142 goto out;
4143 }
4144
4145 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4146 ret = -EINVAL;
4147 goto out;
4148 }
4149
4150 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4151 if (ret)
4152 goto out;
4153
4154 if (!atomic_read(&fi->i_compr_blocks))
4155 goto out;
4156
4157 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4158
4159 count = last_idx - page_idx;
4160 while (count) {
4161 int len = min(cluster_size, count);
4162
4163 ret = redirty_blocks(inode, page_idx, len);
4164 if (ret < 0)
4165 break;
4166
4167 if (get_dirty_pages(inode) >= blk_per_seg)
4168 filemap_fdatawrite(inode->i_mapping);
4169
4170 count -= len;
4171 page_idx += len;
4172 }
4173
4174 if (!ret)
4175 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4176 LLONG_MAX);
4177
4178 if (ret)
4179 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4180 __func__, ret);
4181 out:
4182 inode_unlock(inode);
4183 file_end_write(filp);
4184
4185 return ret;
4186 }
4187
f2fs_ioc_compress_file(struct file * filp,unsigned long arg)4188 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4189 {
4190 struct inode *inode = file_inode(filp);
4191 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4192 pgoff_t page_idx = 0, last_idx;
4193 unsigned int blk_per_seg = sbi->blocks_per_seg;
4194 int cluster_size = F2FS_I(inode)->i_cluster_size;
4195 int count, ret;
4196
4197 if (!f2fs_sb_has_compression(sbi) ||
4198 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4199 return -EOPNOTSUPP;
4200
4201 if (!(filp->f_mode & FMODE_WRITE))
4202 return -EBADF;
4203
4204 if (!f2fs_compressed_file(inode))
4205 return -EINVAL;
4206
4207 f2fs_balance_fs(F2FS_I_SB(inode), true);
4208
4209 file_start_write(filp);
4210 inode_lock(inode);
4211
4212 if (!f2fs_is_compress_backend_ready(inode)) {
4213 ret = -EOPNOTSUPP;
4214 goto out;
4215 }
4216
4217 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4218 ret = -EINVAL;
4219 goto out;
4220 }
4221
4222 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4223 if (ret)
4224 goto out;
4225
4226 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4227
4228 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4229
4230 count = last_idx - page_idx;
4231 while (count) {
4232 int len = min(cluster_size, count);
4233
4234 ret = redirty_blocks(inode, page_idx, len);
4235 if (ret < 0)
4236 break;
4237
4238 if (get_dirty_pages(inode) >= blk_per_seg)
4239 filemap_fdatawrite(inode->i_mapping);
4240
4241 count -= len;
4242 page_idx += len;
4243 }
4244
4245 if (!ret)
4246 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4247 LLONG_MAX);
4248
4249 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4250
4251 if (ret)
4252 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4253 __func__, ret);
4254 out:
4255 inode_unlock(inode);
4256 file_end_write(filp);
4257
4258 return ret;
4259 }
4260
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4261 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4262 {
4263 switch (cmd) {
4264 case FS_IOC_GETFLAGS:
4265 return f2fs_ioc_getflags(filp, arg);
4266 case FS_IOC_SETFLAGS:
4267 return f2fs_ioc_setflags(filp, arg);
4268 case FS_IOC_GETVERSION:
4269 return f2fs_ioc_getversion(filp, arg);
4270 case F2FS_IOC_START_ATOMIC_WRITE:
4271 return f2fs_ioc_start_atomic_write(filp);
4272 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4273 return f2fs_ioc_commit_atomic_write(filp);
4274 case F2FS_IOC_START_VOLATILE_WRITE:
4275 return f2fs_ioc_start_volatile_write(filp);
4276 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4277 return f2fs_ioc_release_volatile_write(filp);
4278 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4279 return f2fs_ioc_abort_volatile_write(filp);
4280 case F2FS_IOC_SHUTDOWN:
4281 return f2fs_ioc_shutdown(filp, arg);
4282 case FITRIM:
4283 return f2fs_ioc_fitrim(filp, arg);
4284 case FS_IOC_SET_ENCRYPTION_POLICY:
4285 return f2fs_ioc_set_encryption_policy(filp, arg);
4286 case FS_IOC_GET_ENCRYPTION_POLICY:
4287 return f2fs_ioc_get_encryption_policy(filp, arg);
4288 case FS_IOC_GET_ENCRYPTION_PWSALT:
4289 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4290 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4291 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4292 case FS_IOC_ADD_ENCRYPTION_KEY:
4293 return f2fs_ioc_add_encryption_key(filp, arg);
4294 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4295 return f2fs_ioc_remove_encryption_key(filp, arg);
4296 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4297 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4298 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4299 return f2fs_ioc_get_encryption_key_status(filp, arg);
4300 case FS_IOC_GET_ENCRYPTION_NONCE:
4301 return f2fs_ioc_get_encryption_nonce(filp, arg);
4302 case F2FS_IOC_GARBAGE_COLLECT:
4303 return f2fs_ioc_gc(filp, arg);
4304 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4305 return f2fs_ioc_gc_range(filp, arg);
4306 case F2FS_IOC_WRITE_CHECKPOINT:
4307 return f2fs_ioc_write_checkpoint(filp, arg);
4308 case F2FS_IOC_DEFRAGMENT:
4309 return f2fs_ioc_defragment(filp, arg);
4310 case F2FS_IOC_MOVE_RANGE:
4311 return f2fs_ioc_move_range(filp, arg);
4312 case F2FS_IOC_FLUSH_DEVICE:
4313 return f2fs_ioc_flush_device(filp, arg);
4314 case F2FS_IOC_GET_FEATURES:
4315 return f2fs_ioc_get_features(filp, arg);
4316 case FS_IOC_FSGETXATTR:
4317 return f2fs_ioc_fsgetxattr(filp, arg);
4318 case FS_IOC_FSSETXATTR:
4319 return f2fs_ioc_fssetxattr(filp, arg);
4320 case F2FS_IOC_GET_PIN_FILE:
4321 return f2fs_ioc_get_pin_file(filp, arg);
4322 case F2FS_IOC_SET_PIN_FILE:
4323 return f2fs_ioc_set_pin_file(filp, arg);
4324 case F2FS_IOC_PRECACHE_EXTENTS:
4325 return f2fs_ioc_precache_extents(filp, arg);
4326 case F2FS_IOC_RESIZE_FS:
4327 return f2fs_ioc_resize_fs(filp, arg);
4328 case FS_IOC_ENABLE_VERITY:
4329 return f2fs_ioc_enable_verity(filp, arg);
4330 case FS_IOC_MEASURE_VERITY:
4331 return f2fs_ioc_measure_verity(filp, arg);
4332 case FS_IOC_READ_VERITY_METADATA:
4333 return f2fs_ioc_read_verity_metadata(filp, arg);
4334 case FS_IOC_GETFSLABEL:
4335 return f2fs_ioc_getfslabel(filp, arg);
4336 case FS_IOC_SETFSLABEL:
4337 return f2fs_ioc_setfslabel(filp, arg);
4338 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4339 return f2fs_get_compress_blocks(filp, arg);
4340 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4341 return f2fs_release_compress_blocks(filp, arg);
4342 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4343 return f2fs_reserve_compress_blocks(filp, arg);
4344 case F2FS_IOC_SEC_TRIM_FILE:
4345 return f2fs_sec_trim_file(filp, arg);
4346 case F2FS_IOC_GET_COMPRESS_OPTION:
4347 return f2fs_ioc_get_compress_option(filp, arg);
4348 case F2FS_IOC_SET_COMPRESS_OPTION:
4349 return f2fs_ioc_set_compress_option(filp, arg);
4350 case F2FS_IOC_DECOMPRESS_FILE:
4351 return f2fs_ioc_decompress_file(filp, arg);
4352 case F2FS_IOC_COMPRESS_FILE:
4353 return f2fs_ioc_compress_file(filp, arg);
4354 default:
4355 return -ENOTTY;
4356 }
4357 }
4358
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4359 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4360 {
4361 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4362 return -EIO;
4363 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4364 return -ENOSPC;
4365
4366 return __f2fs_ioctl(filp, cmd, arg);
4367 }
4368
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)4369 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4370 {
4371 struct file *file = iocb->ki_filp;
4372 struct inode *inode = file_inode(file);
4373 int ret;
4374
4375 if (!f2fs_is_compress_backend_ready(inode))
4376 return -EOPNOTSUPP;
4377
4378 ret = generic_file_read_iter(iocb, iter);
4379
4380 if (ret > 0)
4381 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4382
4383 return ret;
4384 }
4385
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4386 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4387 {
4388 struct file *file = iocb->ki_filp;
4389 struct inode *inode = file_inode(file);
4390 ssize_t ret;
4391
4392 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4393 ret = -EIO;
4394 goto out;
4395 }
4396
4397 if (!f2fs_is_compress_backend_ready(inode)) {
4398 ret = -EOPNOTSUPP;
4399 goto out;
4400 }
4401
4402 if (iocb->ki_flags & IOCB_NOWAIT) {
4403 if (!inode_trylock(inode)) {
4404 ret = -EAGAIN;
4405 goto out;
4406 }
4407 } else {
4408 inode_lock(inode);
4409 }
4410
4411 if (unlikely(IS_IMMUTABLE(inode))) {
4412 ret = -EPERM;
4413 goto unlock;
4414 }
4415
4416 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4417 ret = -EPERM;
4418 goto unlock;
4419 }
4420
4421 ret = generic_write_checks(iocb, from);
4422 if (ret > 0) {
4423 bool preallocated = false;
4424 size_t target_size = 0;
4425 int err;
4426
4427 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
4428 set_inode_flag(inode, FI_NO_PREALLOC);
4429
4430 if ((iocb->ki_flags & IOCB_NOWAIT)) {
4431 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4432 iov_iter_count(from)) ||
4433 f2fs_has_inline_data(inode) ||
4434 f2fs_force_buffered_io(inode, iocb, from)) {
4435 clear_inode_flag(inode, FI_NO_PREALLOC);
4436 inode_unlock(inode);
4437 ret = -EAGAIN;
4438 goto out;
4439 }
4440 goto write;
4441 }
4442
4443 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4444 goto write;
4445
4446 if (iocb->ki_flags & IOCB_DIRECT) {
4447 /*
4448 * Convert inline data for Direct I/O before entering
4449 * f2fs_direct_IO().
4450 */
4451 err = f2fs_convert_inline_inode(inode);
4452 if (err)
4453 goto out_err;
4454 /*
4455 * If force_buffere_io() is true, we have to allocate
4456 * blocks all the time, since f2fs_direct_IO will fall
4457 * back to buffered IO.
4458 */
4459 if (!f2fs_force_buffered_io(inode, iocb, from) &&
4460 allow_outplace_dio(inode, iocb, from))
4461 goto write;
4462 }
4463 preallocated = true;
4464 target_size = iocb->ki_pos + iov_iter_count(from);
4465
4466 err = f2fs_preallocate_blocks(iocb, from);
4467 if (err) {
4468 out_err:
4469 clear_inode_flag(inode, FI_NO_PREALLOC);
4470 inode_unlock(inode);
4471 ret = err;
4472 goto out;
4473 }
4474 write:
4475 ret = __generic_file_write_iter(iocb, from);
4476 clear_inode_flag(inode, FI_NO_PREALLOC);
4477
4478 /* if we couldn't write data, we should deallocate blocks. */
4479 if (preallocated && i_size_read(inode) < target_size) {
4480 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4481 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
4482 f2fs_truncate(inode);
4483 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
4484 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4485 }
4486
4487 if (ret > 0)
4488 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4489 }
4490 unlock:
4491 inode_unlock(inode);
4492 out:
4493 trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4494 iov_iter_count(from), ret);
4495 if (ret > 0)
4496 ret = generic_write_sync(iocb, ret);
4497 return ret;
4498 }
4499
4500 #ifdef CONFIG_COMPAT
4501 struct compat_f2fs_gc_range {
4502 u32 sync;
4503 compat_u64 start;
4504 compat_u64 len;
4505 };
4506 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
4507 struct compat_f2fs_gc_range)
4508
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)4509 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4510 {
4511 struct compat_f2fs_gc_range __user *urange;
4512 struct f2fs_gc_range range;
4513 int err;
4514
4515 urange = compat_ptr(arg);
4516 err = get_user(range.sync, &urange->sync);
4517 err |= get_user(range.start, &urange->start);
4518 err |= get_user(range.len, &urange->len);
4519 if (err)
4520 return -EFAULT;
4521
4522 return __f2fs_ioc_gc_range(file, &range);
4523 }
4524
4525 struct compat_f2fs_move_range {
4526 u32 dst_fd;
4527 compat_u64 pos_in;
4528 compat_u64 pos_out;
4529 compat_u64 len;
4530 };
4531 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
4532 struct compat_f2fs_move_range)
4533
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)4534 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4535 {
4536 struct compat_f2fs_move_range __user *urange;
4537 struct f2fs_move_range range;
4538 int err;
4539
4540 urange = compat_ptr(arg);
4541 err = get_user(range.dst_fd, &urange->dst_fd);
4542 err |= get_user(range.pos_in, &urange->pos_in);
4543 err |= get_user(range.pos_out, &urange->pos_out);
4544 err |= get_user(range.len, &urange->len);
4545 if (err)
4546 return -EFAULT;
4547
4548 return __f2fs_ioc_move_range(file, &range);
4549 }
4550
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4551 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4552 {
4553 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4554 return -EIO;
4555 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4556 return -ENOSPC;
4557
4558 switch (cmd) {
4559 case FS_IOC32_GETFLAGS:
4560 cmd = FS_IOC_GETFLAGS;
4561 break;
4562 case FS_IOC32_SETFLAGS:
4563 cmd = FS_IOC_SETFLAGS;
4564 break;
4565 case FS_IOC32_GETVERSION:
4566 cmd = FS_IOC_GETVERSION;
4567 break;
4568 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4569 return f2fs_compat_ioc_gc_range(file, arg);
4570 case F2FS_IOC32_MOVE_RANGE:
4571 return f2fs_compat_ioc_move_range(file, arg);
4572 case F2FS_IOC_START_ATOMIC_WRITE:
4573 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4574 case F2FS_IOC_START_VOLATILE_WRITE:
4575 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4576 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4577 case F2FS_IOC_SHUTDOWN:
4578 case FITRIM:
4579 case FS_IOC_SET_ENCRYPTION_POLICY:
4580 case FS_IOC_GET_ENCRYPTION_PWSALT:
4581 case FS_IOC_GET_ENCRYPTION_POLICY:
4582 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4583 case FS_IOC_ADD_ENCRYPTION_KEY:
4584 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4585 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4586 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4587 case FS_IOC_GET_ENCRYPTION_NONCE:
4588 case F2FS_IOC_GARBAGE_COLLECT:
4589 case F2FS_IOC_WRITE_CHECKPOINT:
4590 case F2FS_IOC_DEFRAGMENT:
4591 case F2FS_IOC_FLUSH_DEVICE:
4592 case F2FS_IOC_GET_FEATURES:
4593 case FS_IOC_FSGETXATTR:
4594 case FS_IOC_FSSETXATTR:
4595 case F2FS_IOC_GET_PIN_FILE:
4596 case F2FS_IOC_SET_PIN_FILE:
4597 case F2FS_IOC_PRECACHE_EXTENTS:
4598 case F2FS_IOC_RESIZE_FS:
4599 case FS_IOC_ENABLE_VERITY:
4600 case FS_IOC_MEASURE_VERITY:
4601 case FS_IOC_READ_VERITY_METADATA:
4602 case FS_IOC_GETFSLABEL:
4603 case FS_IOC_SETFSLABEL:
4604 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4605 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4606 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4607 case F2FS_IOC_SEC_TRIM_FILE:
4608 case F2FS_IOC_GET_COMPRESS_OPTION:
4609 case F2FS_IOC_SET_COMPRESS_OPTION:
4610 case F2FS_IOC_DECOMPRESS_FILE:
4611 case F2FS_IOC_COMPRESS_FILE:
4612 break;
4613 default:
4614 return -ENOIOCTLCMD;
4615 }
4616 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4617 }
4618 #endif
4619
4620 const struct file_operations f2fs_file_operations = {
4621 .llseek = f2fs_llseek,
4622 .read_iter = f2fs_file_read_iter,
4623 .write_iter = f2fs_file_write_iter,
4624 .open = f2fs_file_open,
4625 .release = f2fs_release_file,
4626 .mmap = f2fs_file_mmap,
4627 .flush = f2fs_file_flush,
4628 .fsync = f2fs_sync_file,
4629 .fallocate = f2fs_fallocate,
4630 .unlocked_ioctl = f2fs_ioctl,
4631 #ifdef CONFIG_COMPAT
4632 .compat_ioctl = f2fs_compat_ioctl,
4633 #endif
4634 .splice_read = generic_file_splice_read,
4635 .splice_write = iter_file_splice_write,
4636 };
4637