xref: /OK3568_Linux_fs/kernel/fs/f2fs/checkpoint.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22 
23 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
24 
25 static struct kmem_cache *ino_entry_slab;
26 struct kmem_cache *f2fs_inode_entry_slab;
27 
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io,unsigned char reason)28 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
29 						unsigned char reason)
30 {
31 	f2fs_build_fault_attr(sbi, 0, 0);
32 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
33 	if (!end_io) {
34 		f2fs_flush_merged_writes(sbi);
35 
36 		f2fs_handle_stop(sbi, reason);
37 	}
38 }
39 
40 /*
41  * We guarantee no failure on the returned page.
42  */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)43 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
44 {
45 	struct address_space *mapping = META_MAPPING(sbi);
46 	struct page *page;
47 repeat:
48 	page = f2fs_grab_cache_page(mapping, index, false);
49 	if (!page) {
50 		cond_resched();
51 		goto repeat;
52 	}
53 	f2fs_wait_on_page_writeback(page, META, true, true);
54 	if (!PageUptodate(page))
55 		SetPageUptodate(page);
56 	return page;
57 }
58 
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 							bool is_meta)
61 {
62 	struct address_space *mapping = META_MAPPING(sbi);
63 	struct page *page;
64 	struct f2fs_io_info fio = {
65 		.sbi = sbi,
66 		.type = META,
67 		.op = REQ_OP_READ,
68 		.op_flags = REQ_META | REQ_PRIO,
69 		.old_blkaddr = index,
70 		.new_blkaddr = index,
71 		.encrypted_page = NULL,
72 		.is_por = !is_meta,
73 	};
74 	int err;
75 
76 	if (unlikely(!is_meta))
77 		fio.op_flags &= ~REQ_META;
78 repeat:
79 	page = f2fs_grab_cache_page(mapping, index, false);
80 	if (!page) {
81 		cond_resched();
82 		goto repeat;
83 	}
84 	if (PageUptodate(page))
85 		goto out;
86 
87 	fio.page = page;
88 
89 	err = f2fs_submit_page_bio(&fio);
90 	if (err) {
91 		f2fs_put_page(page, 1);
92 		return ERR_PTR(err);
93 	}
94 
95 	f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
96 
97 	lock_page(page);
98 	if (unlikely(page->mapping != mapping)) {
99 		f2fs_put_page(page, 1);
100 		goto repeat;
101 	}
102 
103 	if (unlikely(!PageUptodate(page))) {
104 		f2fs_put_page(page, 1);
105 		return ERR_PTR(-EIO);
106 	}
107 out:
108 	return page;
109 }
110 
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)111 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
112 {
113 	return __get_meta_page(sbi, index, true);
114 }
115 
f2fs_get_meta_page_retry(struct f2fs_sb_info * sbi,pgoff_t index)116 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
117 {
118 	struct page *page;
119 	int count = 0;
120 
121 retry:
122 	page = __get_meta_page(sbi, index, true);
123 	if (IS_ERR(page)) {
124 		if (PTR_ERR(page) == -EIO &&
125 				++count <= DEFAULT_RETRY_IO_COUNT)
126 			goto retry;
127 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
128 	}
129 	return page;
130 }
131 
132 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)133 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
134 {
135 	return __get_meta_page(sbi, index, false);
136 }
137 
__is_bitmap_valid(struct f2fs_sb_info * sbi,block_t blkaddr,int type)138 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
139 							int type)
140 {
141 	struct seg_entry *se;
142 	unsigned int segno, offset;
143 	bool exist;
144 
145 	if (type == DATA_GENERIC)
146 		return true;
147 
148 	segno = GET_SEGNO(sbi, blkaddr);
149 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
150 	se = get_seg_entry(sbi, segno);
151 
152 	exist = f2fs_test_bit(offset, se->cur_valid_map);
153 	if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
154 		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
155 			 blkaddr, exist);
156 		set_sbi_flag(sbi, SBI_NEED_FSCK);
157 		return exist;
158 	}
159 
160 	if (!exist && type == DATA_GENERIC_ENHANCE) {
161 		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
162 			 blkaddr, exist);
163 		set_sbi_flag(sbi, SBI_NEED_FSCK);
164 		dump_stack();
165 	}
166 	return exist;
167 }
168 
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)169 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
170 					block_t blkaddr, int type)
171 {
172 	switch (type) {
173 	case META_NAT:
174 		break;
175 	case META_SIT:
176 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
177 			return false;
178 		break;
179 	case META_SSA:
180 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
181 			blkaddr < SM_I(sbi)->ssa_blkaddr))
182 			return false;
183 		break;
184 	case META_CP:
185 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
186 			blkaddr < __start_cp_addr(sbi)))
187 			return false;
188 		break;
189 	case META_POR:
190 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
191 			blkaddr < MAIN_BLKADDR(sbi)))
192 			return false;
193 		break;
194 	case DATA_GENERIC:
195 	case DATA_GENERIC_ENHANCE:
196 	case DATA_GENERIC_ENHANCE_READ:
197 	case DATA_GENERIC_ENHANCE_UPDATE:
198 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
199 				blkaddr < MAIN_BLKADDR(sbi))) {
200 			f2fs_warn(sbi, "access invalid blkaddr:%u",
201 				  blkaddr);
202 			set_sbi_flag(sbi, SBI_NEED_FSCK);
203 			dump_stack();
204 			return false;
205 		} else {
206 			return __is_bitmap_valid(sbi, blkaddr, type);
207 		}
208 		break;
209 	case META_GENERIC:
210 		if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
211 			blkaddr >= MAIN_BLKADDR(sbi)))
212 			return false;
213 		break;
214 	default:
215 		BUG();
216 	}
217 
218 	return true;
219 }
220 
221 /*
222  * Readahead CP/NAT/SIT/SSA/POR pages
223  */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)224 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
225 							int type, bool sync)
226 {
227 	struct page *page;
228 	block_t blkno = start;
229 	struct f2fs_io_info fio = {
230 		.sbi = sbi,
231 		.type = META,
232 		.op = REQ_OP_READ,
233 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
234 		.encrypted_page = NULL,
235 		.in_list = false,
236 		.is_por = (type == META_POR),
237 	};
238 	struct blk_plug plug;
239 	int err;
240 
241 	if (unlikely(type == META_POR))
242 		fio.op_flags &= ~REQ_META;
243 
244 	blk_start_plug(&plug);
245 	for (; nrpages-- > 0; blkno++) {
246 
247 		if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
248 			goto out;
249 
250 		switch (type) {
251 		case META_NAT:
252 			if (unlikely(blkno >=
253 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
254 				blkno = 0;
255 			/* get nat block addr */
256 			fio.new_blkaddr = current_nat_addr(sbi,
257 					blkno * NAT_ENTRY_PER_BLOCK);
258 			break;
259 		case META_SIT:
260 			if (unlikely(blkno >= TOTAL_SEGS(sbi)))
261 				goto out;
262 			/* get sit block addr */
263 			fio.new_blkaddr = current_sit_addr(sbi,
264 					blkno * SIT_ENTRY_PER_BLOCK);
265 			break;
266 		case META_SSA:
267 		case META_CP:
268 		case META_POR:
269 			fio.new_blkaddr = blkno;
270 			break;
271 		default:
272 			BUG();
273 		}
274 
275 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
276 						fio.new_blkaddr, false);
277 		if (!page)
278 			continue;
279 		if (PageUptodate(page)) {
280 			f2fs_put_page(page, 1);
281 			continue;
282 		}
283 
284 		fio.page = page;
285 		err = f2fs_submit_page_bio(&fio);
286 		f2fs_put_page(page, err ? 1 : 0);
287 
288 		if (!err)
289 			f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
290 	}
291 out:
292 	blk_finish_plug(&plug);
293 	return blkno - start;
294 }
295 
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index)296 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
297 {
298 	struct page *page;
299 	bool readahead = false;
300 
301 	page = find_get_page(META_MAPPING(sbi), index);
302 	if (!page || !PageUptodate(page))
303 		readahead = true;
304 	f2fs_put_page(page, 0);
305 
306 	if (readahead)
307 		f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
308 }
309 
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)310 static int __f2fs_write_meta_page(struct page *page,
311 				struct writeback_control *wbc,
312 				enum iostat_type io_type)
313 {
314 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
315 
316 	trace_f2fs_writepage(page, META);
317 
318 	if (unlikely(f2fs_cp_error(sbi)))
319 		goto redirty_out;
320 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
321 		goto redirty_out;
322 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
323 		goto redirty_out;
324 
325 	f2fs_do_write_meta_page(sbi, page, io_type);
326 	dec_page_count(sbi, F2FS_DIRTY_META);
327 
328 	if (wbc->for_reclaim)
329 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
330 
331 	unlock_page(page);
332 
333 	if (unlikely(f2fs_cp_error(sbi)))
334 		f2fs_submit_merged_write(sbi, META);
335 
336 	return 0;
337 
338 redirty_out:
339 	redirty_page_for_writepage(wbc, page);
340 	return AOP_WRITEPAGE_ACTIVATE;
341 }
342 
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)343 static int f2fs_write_meta_page(struct page *page,
344 				struct writeback_control *wbc)
345 {
346 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
347 }
348 
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)349 static int f2fs_write_meta_pages(struct address_space *mapping,
350 				struct writeback_control *wbc)
351 {
352 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
353 	long diff, written;
354 
355 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
356 		goto skip_write;
357 
358 	/* collect a number of dirty meta pages and write together */
359 	if (wbc->sync_mode != WB_SYNC_ALL &&
360 			get_pages(sbi, F2FS_DIRTY_META) <
361 					nr_pages_to_skip(sbi, META))
362 		goto skip_write;
363 
364 	/* if locked failed, cp will flush dirty pages instead */
365 	if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
366 		goto skip_write;
367 
368 	trace_f2fs_writepages(mapping->host, wbc, META);
369 	diff = nr_pages_to_write(sbi, META, wbc);
370 	written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
371 	f2fs_up_write(&sbi->cp_global_sem);
372 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
373 	return 0;
374 
375 skip_write:
376 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
377 	trace_f2fs_writepages(mapping->host, wbc, META);
378 	return 0;
379 }
380 
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)381 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
382 				long nr_to_write, enum iostat_type io_type)
383 {
384 	struct address_space *mapping = META_MAPPING(sbi);
385 	pgoff_t index = 0, prev = ULONG_MAX;
386 	struct pagevec pvec;
387 	long nwritten = 0;
388 	int nr_pages;
389 	struct writeback_control wbc = {
390 		.for_reclaim = 0,
391 	};
392 	struct blk_plug plug;
393 
394 	pagevec_init(&pvec);
395 
396 	blk_start_plug(&plug);
397 
398 	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
399 				PAGECACHE_TAG_DIRTY))) {
400 		int i;
401 
402 		for (i = 0; i < nr_pages; i++) {
403 			struct page *page = pvec.pages[i];
404 
405 			if (prev == ULONG_MAX)
406 				prev = page->index - 1;
407 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
408 				pagevec_release(&pvec);
409 				goto stop;
410 			}
411 
412 			lock_page(page);
413 
414 			if (unlikely(page->mapping != mapping)) {
415 continue_unlock:
416 				unlock_page(page);
417 				continue;
418 			}
419 			if (!PageDirty(page)) {
420 				/* someone wrote it for us */
421 				goto continue_unlock;
422 			}
423 
424 			f2fs_wait_on_page_writeback(page, META, true, true);
425 
426 			if (!clear_page_dirty_for_io(page))
427 				goto continue_unlock;
428 
429 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
430 				unlock_page(page);
431 				break;
432 			}
433 			nwritten++;
434 			prev = page->index;
435 			if (unlikely(nwritten >= nr_to_write))
436 				break;
437 		}
438 		pagevec_release(&pvec);
439 		cond_resched();
440 	}
441 stop:
442 	if (nwritten)
443 		f2fs_submit_merged_write(sbi, type);
444 
445 	blk_finish_plug(&plug);
446 
447 	return nwritten;
448 }
449 
f2fs_set_meta_page_dirty(struct page * page)450 static int f2fs_set_meta_page_dirty(struct page *page)
451 {
452 	trace_f2fs_set_page_dirty(page, META);
453 
454 	if (!PageUptodate(page))
455 		SetPageUptodate(page);
456 	if (!PageDirty(page)) {
457 		__set_page_dirty_nobuffers(page);
458 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
459 		set_page_private_reference(page);
460 		return 1;
461 	}
462 	return 0;
463 }
464 
465 const struct address_space_operations f2fs_meta_aops = {
466 	.writepage	= f2fs_write_meta_page,
467 	.writepages	= f2fs_write_meta_pages,
468 	.set_page_dirty	= f2fs_set_meta_page_dirty,
469 	.invalidatepage = f2fs_invalidate_page,
470 	.releasepage	= f2fs_release_page,
471 #ifdef CONFIG_MIGRATION
472 	.migratepage    = f2fs_migrate_page,
473 #endif
474 };
475 
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)476 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
477 						unsigned int devidx, int type)
478 {
479 	struct inode_management *im = &sbi->im[type];
480 	struct ino_entry *e, *tmp;
481 
482 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
483 
484 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
485 
486 	spin_lock(&im->ino_lock);
487 	e = radix_tree_lookup(&im->ino_root, ino);
488 	if (!e) {
489 		e = tmp;
490 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
491 			f2fs_bug_on(sbi, 1);
492 
493 		memset(e, 0, sizeof(struct ino_entry));
494 		e->ino = ino;
495 
496 		list_add_tail(&e->list, &im->ino_list);
497 		if (type != ORPHAN_INO)
498 			im->ino_num++;
499 	}
500 
501 	if (type == FLUSH_INO)
502 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
503 
504 	spin_unlock(&im->ino_lock);
505 	radix_tree_preload_end();
506 
507 	if (e != tmp)
508 		kmem_cache_free(ino_entry_slab, tmp);
509 }
510 
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)511 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
512 {
513 	struct inode_management *im = &sbi->im[type];
514 	struct ino_entry *e;
515 
516 	spin_lock(&im->ino_lock);
517 	e = radix_tree_lookup(&im->ino_root, ino);
518 	if (e) {
519 		list_del(&e->list);
520 		radix_tree_delete(&im->ino_root, ino);
521 		im->ino_num--;
522 		spin_unlock(&im->ino_lock);
523 		kmem_cache_free(ino_entry_slab, e);
524 		return;
525 	}
526 	spin_unlock(&im->ino_lock);
527 }
528 
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)529 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
530 {
531 	/* add new dirty ino entry into list */
532 	__add_ino_entry(sbi, ino, 0, type);
533 }
534 
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)535 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
536 {
537 	/* remove dirty ino entry from list */
538 	__remove_ino_entry(sbi, ino, type);
539 }
540 
541 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)542 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
543 {
544 	struct inode_management *im = &sbi->im[mode];
545 	struct ino_entry *e;
546 
547 	spin_lock(&im->ino_lock);
548 	e = radix_tree_lookup(&im->ino_root, ino);
549 	spin_unlock(&im->ino_lock);
550 	return e ? true : false;
551 }
552 
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)553 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
554 {
555 	struct ino_entry *e, *tmp;
556 	int i;
557 
558 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
559 		struct inode_management *im = &sbi->im[i];
560 
561 		spin_lock(&im->ino_lock);
562 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
563 			list_del(&e->list);
564 			radix_tree_delete(&im->ino_root, e->ino);
565 			kmem_cache_free(ino_entry_slab, e);
566 			im->ino_num--;
567 		}
568 		spin_unlock(&im->ino_lock);
569 	}
570 }
571 
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)572 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
573 					unsigned int devidx, int type)
574 {
575 	__add_ino_entry(sbi, ino, devidx, type);
576 }
577 
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)578 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
579 					unsigned int devidx, int type)
580 {
581 	struct inode_management *im = &sbi->im[type];
582 	struct ino_entry *e;
583 	bool is_dirty = false;
584 
585 	spin_lock(&im->ino_lock);
586 	e = radix_tree_lookup(&im->ino_root, ino);
587 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
588 		is_dirty = true;
589 	spin_unlock(&im->ino_lock);
590 	return is_dirty;
591 }
592 
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)593 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
594 {
595 	struct inode_management *im = &sbi->im[ORPHAN_INO];
596 	int err = 0;
597 
598 	spin_lock(&im->ino_lock);
599 
600 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
601 		spin_unlock(&im->ino_lock);
602 		f2fs_show_injection_info(sbi, FAULT_ORPHAN);
603 		return -ENOSPC;
604 	}
605 
606 	if (unlikely(im->ino_num >= sbi->max_orphans))
607 		err = -ENOSPC;
608 	else
609 		im->ino_num++;
610 	spin_unlock(&im->ino_lock);
611 
612 	return err;
613 }
614 
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)615 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
616 {
617 	struct inode_management *im = &sbi->im[ORPHAN_INO];
618 
619 	spin_lock(&im->ino_lock);
620 	f2fs_bug_on(sbi, im->ino_num == 0);
621 	im->ino_num--;
622 	spin_unlock(&im->ino_lock);
623 }
624 
f2fs_add_orphan_inode(struct inode * inode)625 void f2fs_add_orphan_inode(struct inode *inode)
626 {
627 	/* add new orphan ino entry into list */
628 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
629 	f2fs_update_inode_page(inode);
630 }
631 
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)632 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
633 {
634 	/* remove orphan entry from orphan list */
635 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
636 }
637 
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)638 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
639 {
640 	struct inode *inode;
641 	struct node_info ni;
642 	int err;
643 
644 	inode = f2fs_iget_retry(sbi->sb, ino);
645 	if (IS_ERR(inode)) {
646 		/*
647 		 * there should be a bug that we can't find the entry
648 		 * to orphan inode.
649 		 */
650 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
651 		return PTR_ERR(inode);
652 	}
653 
654 	err = dquot_initialize(inode);
655 	if (err) {
656 		iput(inode);
657 		goto err_out;
658 	}
659 
660 	clear_nlink(inode);
661 
662 	/* truncate all the data during iput */
663 	iput(inode);
664 
665 	err = f2fs_get_node_info(sbi, ino, &ni, false);
666 	if (err)
667 		goto err_out;
668 
669 	/* ENOMEM was fully retried in f2fs_evict_inode. */
670 	if (ni.blk_addr != NULL_ADDR) {
671 		err = -EIO;
672 		goto err_out;
673 	}
674 	return 0;
675 
676 err_out:
677 	set_sbi_flag(sbi, SBI_NEED_FSCK);
678 	f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
679 		  __func__, ino);
680 	return err;
681 }
682 
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)683 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
684 {
685 	block_t start_blk, orphan_blocks, i, j;
686 	unsigned int s_flags = sbi->sb->s_flags;
687 	int err = 0;
688 #ifdef CONFIG_QUOTA
689 	int quota_enabled;
690 #endif
691 
692 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
693 		return 0;
694 
695 	if (bdev_read_only(sbi->sb->s_bdev)) {
696 		f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
697 		return 0;
698 	}
699 
700 	if (s_flags & SB_RDONLY) {
701 		f2fs_info(sbi, "orphan cleanup on readonly fs");
702 		sbi->sb->s_flags &= ~SB_RDONLY;
703 	}
704 
705 #ifdef CONFIG_QUOTA
706 	/* Needed for iput() to work correctly and not trash data */
707 	sbi->sb->s_flags |= SB_ACTIVE;
708 
709 	/*
710 	 * Turn on quotas which were not enabled for read-only mounts if
711 	 * filesystem has quota feature, so that they are updated correctly.
712 	 */
713 	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
714 #endif
715 
716 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
717 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
718 
719 	f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
720 
721 	for (i = 0; i < orphan_blocks; i++) {
722 		struct page *page;
723 		struct f2fs_orphan_block *orphan_blk;
724 
725 		page = f2fs_get_meta_page(sbi, start_blk + i);
726 		if (IS_ERR(page)) {
727 			err = PTR_ERR(page);
728 			goto out;
729 		}
730 
731 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
732 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
733 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
734 
735 			err = recover_orphan_inode(sbi, ino);
736 			if (err) {
737 				f2fs_put_page(page, 1);
738 				goto out;
739 			}
740 		}
741 		f2fs_put_page(page, 1);
742 	}
743 	/* clear Orphan Flag */
744 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
745 out:
746 	set_sbi_flag(sbi, SBI_IS_RECOVERED);
747 
748 #ifdef CONFIG_QUOTA
749 	/* Turn quotas off */
750 	if (quota_enabled)
751 		f2fs_quota_off_umount(sbi->sb);
752 #endif
753 	sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
754 
755 	return err;
756 }
757 
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)758 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
759 {
760 	struct list_head *head;
761 	struct f2fs_orphan_block *orphan_blk = NULL;
762 	unsigned int nentries = 0;
763 	unsigned short index = 1;
764 	unsigned short orphan_blocks;
765 	struct page *page = NULL;
766 	struct ino_entry *orphan = NULL;
767 	struct inode_management *im = &sbi->im[ORPHAN_INO];
768 
769 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
770 
771 	/*
772 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
773 	 * orphan inode operations are covered under f2fs_lock_op().
774 	 * And, spin_lock should be avoided due to page operations below.
775 	 */
776 	head = &im->ino_list;
777 
778 	/* loop for each orphan inode entry and write them in Jornal block */
779 	list_for_each_entry(orphan, head, list) {
780 		if (!page) {
781 			page = f2fs_grab_meta_page(sbi, start_blk++);
782 			orphan_blk =
783 				(struct f2fs_orphan_block *)page_address(page);
784 			memset(orphan_blk, 0, sizeof(*orphan_blk));
785 		}
786 
787 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
788 
789 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
790 			/*
791 			 * an orphan block is full of 1020 entries,
792 			 * then we need to flush current orphan blocks
793 			 * and bring another one in memory
794 			 */
795 			orphan_blk->blk_addr = cpu_to_le16(index);
796 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
797 			orphan_blk->entry_count = cpu_to_le32(nentries);
798 			set_page_dirty(page);
799 			f2fs_put_page(page, 1);
800 			index++;
801 			nentries = 0;
802 			page = NULL;
803 		}
804 	}
805 
806 	if (page) {
807 		orphan_blk->blk_addr = cpu_to_le16(index);
808 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
809 		orphan_blk->entry_count = cpu_to_le32(nentries);
810 		set_page_dirty(page);
811 		f2fs_put_page(page, 1);
812 	}
813 }
814 
f2fs_checkpoint_chksum(struct f2fs_sb_info * sbi,struct f2fs_checkpoint * ckpt)815 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
816 						struct f2fs_checkpoint *ckpt)
817 {
818 	unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
819 	__u32 chksum;
820 
821 	chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
822 	if (chksum_ofs < CP_CHKSUM_OFFSET) {
823 		chksum_ofs += sizeof(chksum);
824 		chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
825 						F2FS_BLKSIZE - chksum_ofs);
826 	}
827 	return chksum;
828 }
829 
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)830 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
831 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
832 		unsigned long long *version)
833 {
834 	size_t crc_offset = 0;
835 	__u32 crc;
836 
837 	*cp_page = f2fs_get_meta_page(sbi, cp_addr);
838 	if (IS_ERR(*cp_page))
839 		return PTR_ERR(*cp_page);
840 
841 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
842 
843 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
844 	if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
845 			crc_offset > CP_CHKSUM_OFFSET) {
846 		f2fs_put_page(*cp_page, 1);
847 		f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
848 		return -EINVAL;
849 	}
850 
851 	crc = f2fs_checkpoint_chksum(sbi, *cp_block);
852 	if (crc != cur_cp_crc(*cp_block)) {
853 		f2fs_put_page(*cp_page, 1);
854 		f2fs_warn(sbi, "invalid crc value");
855 		return -EINVAL;
856 	}
857 
858 	*version = cur_cp_version(*cp_block);
859 	return 0;
860 }
861 
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)862 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
863 				block_t cp_addr, unsigned long long *version)
864 {
865 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
866 	struct f2fs_checkpoint *cp_block = NULL;
867 	unsigned long long cur_version = 0, pre_version = 0;
868 	unsigned int cp_blocks;
869 	int err;
870 
871 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
872 					&cp_page_1, version);
873 	if (err)
874 		return NULL;
875 
876 	cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
877 
878 	if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
879 		f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
880 			  le32_to_cpu(cp_block->cp_pack_total_block_count));
881 		goto invalid_cp;
882 	}
883 	pre_version = *version;
884 
885 	cp_addr += cp_blocks - 1;
886 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
887 					&cp_page_2, version);
888 	if (err)
889 		goto invalid_cp;
890 	cur_version = *version;
891 
892 	if (cur_version == pre_version) {
893 		*version = cur_version;
894 		f2fs_put_page(cp_page_2, 1);
895 		return cp_page_1;
896 	}
897 	f2fs_put_page(cp_page_2, 1);
898 invalid_cp:
899 	f2fs_put_page(cp_page_1, 1);
900 	return NULL;
901 }
902 
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)903 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
904 {
905 	struct f2fs_checkpoint *cp_block;
906 	struct f2fs_super_block *fsb = sbi->raw_super;
907 	struct page *cp1, *cp2, *cur_page;
908 	unsigned long blk_size = sbi->blocksize;
909 	unsigned long long cp1_version = 0, cp2_version = 0;
910 	unsigned long long cp_start_blk_no;
911 	unsigned int cp_blks = 1 + __cp_payload(sbi);
912 	block_t cp_blk_no;
913 	int i;
914 	int err;
915 
916 	sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
917 				  GFP_KERNEL);
918 	if (!sbi->ckpt)
919 		return -ENOMEM;
920 	/*
921 	 * Finding out valid cp block involves read both
922 	 * sets( cp pack 1 and cp pack 2)
923 	 */
924 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
925 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
926 
927 	/* The second checkpoint pack should start at the next segment */
928 	cp_start_blk_no += ((unsigned long long)1) <<
929 				le32_to_cpu(fsb->log_blocks_per_seg);
930 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
931 
932 	if (cp1 && cp2) {
933 		if (ver_after(cp2_version, cp1_version))
934 			cur_page = cp2;
935 		else
936 			cur_page = cp1;
937 	} else if (cp1) {
938 		cur_page = cp1;
939 	} else if (cp2) {
940 		cur_page = cp2;
941 	} else {
942 		err = -EFSCORRUPTED;
943 		goto fail_no_cp;
944 	}
945 
946 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
947 	memcpy(sbi->ckpt, cp_block, blk_size);
948 
949 	if (cur_page == cp1)
950 		sbi->cur_cp_pack = 1;
951 	else
952 		sbi->cur_cp_pack = 2;
953 
954 	/* Sanity checking of checkpoint */
955 	if (f2fs_sanity_check_ckpt(sbi)) {
956 		err = -EFSCORRUPTED;
957 		goto free_fail_no_cp;
958 	}
959 
960 	if (cp_blks <= 1)
961 		goto done;
962 
963 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
964 	if (cur_page == cp2)
965 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
966 
967 	for (i = 1; i < cp_blks; i++) {
968 		void *sit_bitmap_ptr;
969 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
970 
971 		cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
972 		if (IS_ERR(cur_page)) {
973 			err = PTR_ERR(cur_page);
974 			goto free_fail_no_cp;
975 		}
976 		sit_bitmap_ptr = page_address(cur_page);
977 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
978 		f2fs_put_page(cur_page, 1);
979 	}
980 done:
981 	f2fs_put_page(cp1, 1);
982 	f2fs_put_page(cp2, 1);
983 	return 0;
984 
985 free_fail_no_cp:
986 	f2fs_put_page(cp1, 1);
987 	f2fs_put_page(cp2, 1);
988 fail_no_cp:
989 	kvfree(sbi->ckpt);
990 	return err;
991 }
992 
__add_dirty_inode(struct inode * inode,enum inode_type type)993 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
994 {
995 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
996 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
997 
998 	if (is_inode_flag_set(inode, flag))
999 		return;
1000 
1001 	set_inode_flag(inode, flag);
1002 	if (!f2fs_is_volatile_file(inode))
1003 		list_add_tail(&F2FS_I(inode)->dirty_list,
1004 						&sbi->inode_list[type]);
1005 	stat_inc_dirty_inode(sbi, type);
1006 }
1007 
__remove_dirty_inode(struct inode * inode,enum inode_type type)1008 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1009 {
1010 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1011 
1012 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1013 		return;
1014 
1015 	list_del_init(&F2FS_I(inode)->dirty_list);
1016 	clear_inode_flag(inode, flag);
1017 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1018 }
1019 
f2fs_update_dirty_page(struct inode * inode,struct page * page)1020 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1021 {
1022 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1023 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1024 
1025 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1026 			!S_ISLNK(inode->i_mode))
1027 		return;
1028 
1029 	spin_lock(&sbi->inode_lock[type]);
1030 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1031 		__add_dirty_inode(inode, type);
1032 	inode_inc_dirty_pages(inode);
1033 	spin_unlock(&sbi->inode_lock[type]);
1034 
1035 	set_page_private_reference(page);
1036 }
1037 
f2fs_remove_dirty_inode(struct inode * inode)1038 void f2fs_remove_dirty_inode(struct inode *inode)
1039 {
1040 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1041 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1042 
1043 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1044 			!S_ISLNK(inode->i_mode))
1045 		return;
1046 
1047 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1048 		return;
1049 
1050 	spin_lock(&sbi->inode_lock[type]);
1051 	__remove_dirty_inode(inode, type);
1052 	spin_unlock(&sbi->inode_lock[type]);
1053 }
1054 
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type,bool from_cp)1055 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1056 						bool from_cp)
1057 {
1058 	struct list_head *head;
1059 	struct inode *inode;
1060 	struct f2fs_inode_info *fi;
1061 	bool is_dir = (type == DIR_INODE);
1062 	unsigned long ino = 0;
1063 
1064 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1065 				get_pages(sbi, is_dir ?
1066 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1067 retry:
1068 	if (unlikely(f2fs_cp_error(sbi))) {
1069 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1070 				get_pages(sbi, is_dir ?
1071 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1072 		return -EIO;
1073 	}
1074 
1075 	spin_lock(&sbi->inode_lock[type]);
1076 
1077 	head = &sbi->inode_list[type];
1078 	if (list_empty(head)) {
1079 		spin_unlock(&sbi->inode_lock[type]);
1080 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1081 				get_pages(sbi, is_dir ?
1082 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1083 		return 0;
1084 	}
1085 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1086 	inode = igrab(&fi->vfs_inode);
1087 	spin_unlock(&sbi->inode_lock[type]);
1088 	if (inode) {
1089 		unsigned long cur_ino = inode->i_ino;
1090 
1091 		if (from_cp)
1092 			F2FS_I(inode)->cp_task = current;
1093 		F2FS_I(inode)->wb_task = current;
1094 
1095 		filemap_fdatawrite(inode->i_mapping);
1096 
1097 		F2FS_I(inode)->wb_task = NULL;
1098 		if (from_cp)
1099 			F2FS_I(inode)->cp_task = NULL;
1100 
1101 		iput(inode);
1102 		/* We need to give cpu to another writers. */
1103 		if (ino == cur_ino)
1104 			cond_resched();
1105 		else
1106 			ino = cur_ino;
1107 	} else {
1108 		/*
1109 		 * We should submit bio, since it exists several
1110 		 * wribacking dentry pages in the freeing inode.
1111 		 */
1112 		f2fs_submit_merged_write(sbi, DATA);
1113 		cond_resched();
1114 	}
1115 	goto retry;
1116 }
1117 
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1118 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1119 {
1120 	struct list_head *head = &sbi->inode_list[DIRTY_META];
1121 	struct inode *inode;
1122 	struct f2fs_inode_info *fi;
1123 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1124 
1125 	while (total--) {
1126 		if (unlikely(f2fs_cp_error(sbi)))
1127 			return -EIO;
1128 
1129 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1130 		if (list_empty(head)) {
1131 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1132 			return 0;
1133 		}
1134 		fi = list_first_entry(head, struct f2fs_inode_info,
1135 							gdirty_list);
1136 		inode = igrab(&fi->vfs_inode);
1137 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1138 		if (inode) {
1139 			sync_inode_metadata(inode, 0);
1140 
1141 			/* it's on eviction */
1142 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1143 				f2fs_update_inode_page(inode);
1144 			iput(inode);
1145 		}
1146 	}
1147 	return 0;
1148 }
1149 
__prepare_cp_block(struct f2fs_sb_info * sbi)1150 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1151 {
1152 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1153 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1154 	nid_t last_nid = nm_i->next_scan_nid;
1155 
1156 	next_free_nid(sbi, &last_nid);
1157 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1158 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1159 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1160 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1161 }
1162 
__need_flush_quota(struct f2fs_sb_info * sbi)1163 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1164 {
1165 	bool ret = false;
1166 
1167 	if (!is_journalled_quota(sbi))
1168 		return false;
1169 
1170 	if (!f2fs_down_write_trylock(&sbi->quota_sem))
1171 		return true;
1172 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1173 		ret = false;
1174 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1175 		ret = false;
1176 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1177 		clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1178 		ret = true;
1179 	} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1180 		ret = true;
1181 	}
1182 	f2fs_up_write(&sbi->quota_sem);
1183 	return ret;
1184 }
1185 
1186 /*
1187  * Freeze all the FS-operations for checkpoint.
1188  */
block_operations(struct f2fs_sb_info * sbi)1189 static int block_operations(struct f2fs_sb_info *sbi)
1190 {
1191 	struct writeback_control wbc = {
1192 		.sync_mode = WB_SYNC_ALL,
1193 		.nr_to_write = LONG_MAX,
1194 		.for_reclaim = 0,
1195 	};
1196 	int err = 0, cnt = 0;
1197 
1198 	/*
1199 	 * Let's flush inline_data in dirty node pages.
1200 	 */
1201 	f2fs_flush_inline_data(sbi);
1202 
1203 retry_flush_quotas:
1204 	f2fs_lock_all(sbi);
1205 	if (__need_flush_quota(sbi)) {
1206 		int locked;
1207 
1208 		if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1209 			set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1210 			set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1211 			goto retry_flush_dents;
1212 		}
1213 		f2fs_unlock_all(sbi);
1214 
1215 		/* only failed during mount/umount/freeze/quotactl */
1216 		locked = down_read_trylock(&sbi->sb->s_umount);
1217 		f2fs_quota_sync(sbi->sb, -1);
1218 		if (locked)
1219 			up_read(&sbi->sb->s_umount);
1220 		cond_resched();
1221 		goto retry_flush_quotas;
1222 	}
1223 
1224 retry_flush_dents:
1225 	/* write all the dirty dentry pages */
1226 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1227 		f2fs_unlock_all(sbi);
1228 		err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1229 		if (err)
1230 			return err;
1231 		cond_resched();
1232 		goto retry_flush_quotas;
1233 	}
1234 
1235 	/*
1236 	 * POR: we should ensure that there are no dirty node pages
1237 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1238 	 */
1239 	f2fs_down_write(&sbi->node_change);
1240 
1241 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1242 		f2fs_up_write(&sbi->node_change);
1243 		f2fs_unlock_all(sbi);
1244 		err = f2fs_sync_inode_meta(sbi);
1245 		if (err)
1246 			return err;
1247 		cond_resched();
1248 		goto retry_flush_quotas;
1249 	}
1250 
1251 retry_flush_nodes:
1252 	f2fs_down_write(&sbi->node_write);
1253 
1254 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1255 		f2fs_up_write(&sbi->node_write);
1256 		atomic_inc(&sbi->wb_sync_req[NODE]);
1257 		err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1258 		atomic_dec(&sbi->wb_sync_req[NODE]);
1259 		if (err) {
1260 			f2fs_up_write(&sbi->node_change);
1261 			f2fs_unlock_all(sbi);
1262 			return err;
1263 		}
1264 		cond_resched();
1265 		goto retry_flush_nodes;
1266 	}
1267 
1268 	/*
1269 	 * sbi->node_change is used only for AIO write_begin path which produces
1270 	 * dirty node blocks and some checkpoint values by block allocation.
1271 	 */
1272 	__prepare_cp_block(sbi);
1273 	f2fs_up_write(&sbi->node_change);
1274 	return err;
1275 }
1276 
unblock_operations(struct f2fs_sb_info * sbi)1277 static void unblock_operations(struct f2fs_sb_info *sbi)
1278 {
1279 	f2fs_up_write(&sbi->node_write);
1280 	f2fs_unlock_all(sbi);
1281 }
1282 
f2fs_wait_on_all_pages(struct f2fs_sb_info * sbi,int type)1283 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1284 {
1285 	DEFINE_WAIT(wait);
1286 
1287 	for (;;) {
1288 		if (!get_pages(sbi, type))
1289 			break;
1290 
1291 		if (unlikely(f2fs_cp_error(sbi)))
1292 			break;
1293 
1294 		if (type == F2FS_DIRTY_META)
1295 			f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1296 							FS_CP_META_IO);
1297 		else if (type == F2FS_WB_CP_DATA)
1298 			f2fs_submit_merged_write(sbi, DATA);
1299 
1300 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1301 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1302 	}
1303 	finish_wait(&sbi->cp_wait, &wait);
1304 }
1305 
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1306 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1307 {
1308 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1309 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1310 	unsigned long flags;
1311 
1312 	spin_lock_irqsave(&sbi->cp_lock, flags);
1313 
1314 	if ((cpc->reason & CP_UMOUNT) &&
1315 			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1316 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1317 		disable_nat_bits(sbi, false);
1318 
1319 	if (cpc->reason & CP_TRIMMED)
1320 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1321 	else
1322 		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1323 
1324 	if (cpc->reason & CP_UMOUNT)
1325 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1326 	else
1327 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1328 
1329 	if (cpc->reason & CP_FASTBOOT)
1330 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1331 	else
1332 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1333 
1334 	if (orphan_num)
1335 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1336 	else
1337 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1338 
1339 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1340 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1341 
1342 	if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1343 		__set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1344 	else
1345 		__clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1346 
1347 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1348 		__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1349 	else
1350 		__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1351 
1352 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1353 		__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1354 	else
1355 		__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1356 
1357 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1358 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1359 	else
1360 		__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1361 
1362 	if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1363 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1364 
1365 	/* set this flag to activate crc|cp_ver for recovery */
1366 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1367 	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1368 
1369 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1370 }
1371 
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1372 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1373 	void *src, block_t blk_addr)
1374 {
1375 	struct writeback_control wbc = {
1376 		.for_reclaim = 0,
1377 	};
1378 
1379 	/*
1380 	 * pagevec_lookup_tag and lock_page again will take
1381 	 * some extra time. Therefore, f2fs_update_meta_pages and
1382 	 * f2fs_sync_meta_pages are combined in this function.
1383 	 */
1384 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1385 	int err;
1386 
1387 	f2fs_wait_on_page_writeback(page, META, true, true);
1388 
1389 	memcpy(page_address(page), src, PAGE_SIZE);
1390 
1391 	set_page_dirty(page);
1392 	if (unlikely(!clear_page_dirty_for_io(page)))
1393 		f2fs_bug_on(sbi, 1);
1394 
1395 	/* writeout cp pack 2 page */
1396 	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1397 	if (unlikely(err && f2fs_cp_error(sbi))) {
1398 		f2fs_put_page(page, 1);
1399 		return;
1400 	}
1401 
1402 	f2fs_bug_on(sbi, err);
1403 	f2fs_put_page(page, 0);
1404 
1405 	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1406 	f2fs_submit_merged_write(sbi, META_FLUSH);
1407 }
1408 
get_sectors_written(struct block_device * bdev)1409 static inline u64 get_sectors_written(struct block_device *bdev)
1410 {
1411 	return (u64)part_stat_read(bdev->bd_part, sectors[STAT_WRITE]);
1412 }
1413 
f2fs_get_sectors_written(struct f2fs_sb_info * sbi)1414 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1415 {
1416 	if (f2fs_is_multi_device(sbi)) {
1417 		u64 sectors = 0;
1418 		int i;
1419 
1420 		for (i = 0; i < sbi->s_ndevs; i++)
1421 			sectors += get_sectors_written(FDEV(i).bdev);
1422 
1423 		return sectors;
1424 	}
1425 
1426 	return get_sectors_written(sbi->sb->s_bdev);
1427 }
1428 
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1429 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1430 {
1431 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1432 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1433 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1434 	block_t start_blk;
1435 	unsigned int data_sum_blocks, orphan_blocks;
1436 	__u32 crc32 = 0;
1437 	int i;
1438 	int cp_payload_blks = __cp_payload(sbi);
1439 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1440 	u64 kbytes_written;
1441 	int err;
1442 
1443 	/* Flush all the NAT/SIT pages */
1444 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1445 
1446 	/* start to update checkpoint, cp ver is already updated previously */
1447 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1448 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1449 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1450 		ckpt->cur_node_segno[i] =
1451 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1452 		ckpt->cur_node_blkoff[i] =
1453 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1454 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1455 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1456 	}
1457 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1458 		ckpt->cur_data_segno[i] =
1459 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1460 		ckpt->cur_data_blkoff[i] =
1461 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1462 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1463 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1464 	}
1465 
1466 	/* 2 cp + n data seg summary + orphan inode blocks */
1467 	data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1468 	spin_lock_irqsave(&sbi->cp_lock, flags);
1469 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1470 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1471 	else
1472 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1473 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1474 
1475 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1476 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1477 			orphan_blocks);
1478 
1479 	if (__remain_node_summaries(cpc->reason))
1480 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1481 				cp_payload_blks + data_sum_blocks +
1482 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1483 	else
1484 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1485 				cp_payload_blks + data_sum_blocks +
1486 				orphan_blocks);
1487 
1488 	/* update ckpt flag for checkpoint */
1489 	update_ckpt_flags(sbi, cpc);
1490 
1491 	/* update SIT/NAT bitmap */
1492 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1493 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1494 
1495 	crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1496 	*((__le32 *)((unsigned char *)ckpt +
1497 				le32_to_cpu(ckpt->checksum_offset)))
1498 				= cpu_to_le32(crc32);
1499 
1500 	start_blk = __start_cp_next_addr(sbi);
1501 
1502 	/* write nat bits */
1503 	if (enabled_nat_bits(sbi, cpc)) {
1504 		__u64 cp_ver = cur_cp_version(ckpt);
1505 		block_t blk;
1506 
1507 		cp_ver |= ((__u64)crc32 << 32);
1508 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1509 
1510 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1511 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1512 			f2fs_update_meta_page(sbi, nm_i->nat_bits +
1513 					(i << F2FS_BLKSIZE_BITS), blk + i);
1514 	}
1515 
1516 	/* write out checkpoint buffer at block 0 */
1517 	f2fs_update_meta_page(sbi, ckpt, start_blk++);
1518 
1519 	for (i = 1; i < 1 + cp_payload_blks; i++)
1520 		f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1521 							start_blk++);
1522 
1523 	if (orphan_num) {
1524 		write_orphan_inodes(sbi, start_blk);
1525 		start_blk += orphan_blocks;
1526 	}
1527 
1528 	f2fs_write_data_summaries(sbi, start_blk);
1529 	start_blk += data_sum_blocks;
1530 
1531 	/* Record write statistics in the hot node summary */
1532 	kbytes_written = sbi->kbytes_written;
1533 	kbytes_written += (f2fs_get_sectors_written(sbi) -
1534 				sbi->sectors_written_start) >> 1;
1535 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1536 
1537 	if (__remain_node_summaries(cpc->reason)) {
1538 		f2fs_write_node_summaries(sbi, start_blk);
1539 		start_blk += NR_CURSEG_NODE_TYPE;
1540 	}
1541 
1542 	/* update user_block_counts */
1543 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1544 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1545 
1546 	/* Here, we have one bio having CP pack except cp pack 2 page */
1547 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1548 	/* Wait for all dirty meta pages to be submitted for IO */
1549 	f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1550 
1551 	/* wait for previous submitted meta pages writeback */
1552 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1553 
1554 	/* flush all device cache */
1555 	err = f2fs_flush_device_cache(sbi);
1556 	if (err)
1557 		return err;
1558 
1559 	/* barrier and flush checkpoint cp pack 2 page if it can */
1560 	commit_checkpoint(sbi, ckpt, start_blk);
1561 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1562 
1563 	/*
1564 	 * invalidate intermediate page cache borrowed from meta inode which are
1565 	 * used for migration of encrypted, verity or compressed inode's blocks.
1566 	 */
1567 	if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1568 		f2fs_sb_has_compression(sbi))
1569 		invalidate_mapping_pages(META_MAPPING(sbi),
1570 				MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1571 
1572 	f2fs_release_ino_entry(sbi, false);
1573 
1574 	f2fs_reset_fsync_node_info(sbi);
1575 
1576 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1577 	clear_sbi_flag(sbi, SBI_NEED_CP);
1578 	clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1579 
1580 	spin_lock(&sbi->stat_lock);
1581 	sbi->unusable_block_count = 0;
1582 	spin_unlock(&sbi->stat_lock);
1583 
1584 	__set_cp_next_pack(sbi);
1585 
1586 	/*
1587 	 * redirty superblock if metadata like node page or inode cache is
1588 	 * updated during writing checkpoint.
1589 	 */
1590 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1591 			get_pages(sbi, F2FS_DIRTY_IMETA))
1592 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1593 
1594 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1595 
1596 	return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1597 }
1598 
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1599 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1600 {
1601 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1602 	unsigned long long ckpt_ver;
1603 	int err = 0;
1604 
1605 	if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1606 		return -EROFS;
1607 
1608 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1609 		if (cpc->reason != CP_PAUSE)
1610 			return 0;
1611 		f2fs_warn(sbi, "Start checkpoint disabled!");
1612 	}
1613 	if (cpc->reason != CP_RESIZE)
1614 		f2fs_down_write(&sbi->cp_global_sem);
1615 
1616 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1617 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1618 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1619 		goto out;
1620 	if (unlikely(f2fs_cp_error(sbi))) {
1621 		err = -EIO;
1622 		goto out;
1623 	}
1624 
1625 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1626 
1627 	err = block_operations(sbi);
1628 	if (err)
1629 		goto out;
1630 
1631 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1632 
1633 	f2fs_flush_merged_writes(sbi);
1634 
1635 	/* this is the case of multiple fstrims without any changes */
1636 	if (cpc->reason & CP_DISCARD) {
1637 		if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1638 			unblock_operations(sbi);
1639 			goto out;
1640 		}
1641 
1642 		if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1643 				SIT_I(sbi)->dirty_sentries == 0 &&
1644 				prefree_segments(sbi) == 0) {
1645 			f2fs_flush_sit_entries(sbi, cpc);
1646 			f2fs_clear_prefree_segments(sbi, cpc);
1647 			unblock_operations(sbi);
1648 			goto out;
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * update checkpoint pack index
1654 	 * Increase the version number so that
1655 	 * SIT entries and seg summaries are written at correct place
1656 	 */
1657 	ckpt_ver = cur_cp_version(ckpt);
1658 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1659 
1660 	/* write cached NAT/SIT entries to NAT/SIT area */
1661 	err = f2fs_flush_nat_entries(sbi, cpc);
1662 	if (err)
1663 		goto stop;
1664 
1665 	f2fs_flush_sit_entries(sbi, cpc);
1666 
1667 	/* save inmem log status */
1668 	f2fs_save_inmem_curseg(sbi);
1669 
1670 	err = do_checkpoint(sbi, cpc);
1671 	if (err)
1672 		f2fs_release_discard_addrs(sbi);
1673 	else
1674 		f2fs_clear_prefree_segments(sbi, cpc);
1675 
1676 	f2fs_restore_inmem_curseg(sbi);
1677 stop:
1678 	unblock_operations(sbi);
1679 	stat_inc_cp_count(sbi->stat_info);
1680 
1681 	if (cpc->reason & CP_RECOVERY)
1682 		f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1683 
1684 	/* update CP_TIME to trigger checkpoint periodically */
1685 	f2fs_update_time(sbi, CP_TIME);
1686 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1687 out:
1688 	if (cpc->reason != CP_RESIZE)
1689 		f2fs_up_write(&sbi->cp_global_sem);
1690 	return err;
1691 }
1692 
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1693 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1694 {
1695 	int i;
1696 
1697 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1698 		struct inode_management *im = &sbi->im[i];
1699 
1700 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1701 		spin_lock_init(&im->ino_lock);
1702 		INIT_LIST_HEAD(&im->ino_list);
1703 		im->ino_num = 0;
1704 	}
1705 
1706 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1707 			NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1708 				F2FS_ORPHANS_PER_BLOCK;
1709 }
1710 
f2fs_create_checkpoint_caches(void)1711 int __init f2fs_create_checkpoint_caches(void)
1712 {
1713 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1714 			sizeof(struct ino_entry));
1715 	if (!ino_entry_slab)
1716 		return -ENOMEM;
1717 	f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1718 			sizeof(struct inode_entry));
1719 	if (!f2fs_inode_entry_slab) {
1720 		kmem_cache_destroy(ino_entry_slab);
1721 		return -ENOMEM;
1722 	}
1723 	return 0;
1724 }
1725 
f2fs_destroy_checkpoint_caches(void)1726 void f2fs_destroy_checkpoint_caches(void)
1727 {
1728 	kmem_cache_destroy(ino_entry_slab);
1729 	kmem_cache_destroy(f2fs_inode_entry_slab);
1730 }
1731 
__write_checkpoint_sync(struct f2fs_sb_info * sbi)1732 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1733 {
1734 	struct cp_control cpc = { .reason = CP_SYNC, };
1735 	int err;
1736 
1737 	f2fs_down_write(&sbi->gc_lock);
1738 	err = f2fs_write_checkpoint(sbi, &cpc);
1739 	f2fs_up_write(&sbi->gc_lock);
1740 
1741 	return err;
1742 }
1743 
__checkpoint_and_complete_reqs(struct f2fs_sb_info * sbi)1744 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1745 {
1746 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1747 	struct ckpt_req *req, *next;
1748 	struct llist_node *dispatch_list;
1749 	u64 sum_diff = 0, diff, count = 0;
1750 	int ret;
1751 
1752 	dispatch_list = llist_del_all(&cprc->issue_list);
1753 	if (!dispatch_list)
1754 		return;
1755 	dispatch_list = llist_reverse_order(dispatch_list);
1756 
1757 	ret = __write_checkpoint_sync(sbi);
1758 	atomic_inc(&cprc->issued_ckpt);
1759 
1760 	llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1761 		diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1762 		req->ret = ret;
1763 		complete(&req->wait);
1764 
1765 		sum_diff += diff;
1766 		count++;
1767 	}
1768 	atomic_sub(count, &cprc->queued_ckpt);
1769 	atomic_add(count, &cprc->total_ckpt);
1770 
1771 	spin_lock(&cprc->stat_lock);
1772 	cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1773 	if (cprc->peak_time < cprc->cur_time)
1774 		cprc->peak_time = cprc->cur_time;
1775 	spin_unlock(&cprc->stat_lock);
1776 }
1777 
issue_checkpoint_thread(void * data)1778 static int issue_checkpoint_thread(void *data)
1779 {
1780 	struct f2fs_sb_info *sbi = data;
1781 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1782 	wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1783 repeat:
1784 	if (kthread_should_stop())
1785 		return 0;
1786 
1787 	if (!llist_empty(&cprc->issue_list))
1788 		__checkpoint_and_complete_reqs(sbi);
1789 
1790 	wait_event_interruptible(*q,
1791 		kthread_should_stop() || !llist_empty(&cprc->issue_list));
1792 	goto repeat;
1793 }
1794 
flush_remained_ckpt_reqs(struct f2fs_sb_info * sbi,struct ckpt_req * wait_req)1795 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1796 		struct ckpt_req *wait_req)
1797 {
1798 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1799 
1800 	if (!llist_empty(&cprc->issue_list)) {
1801 		__checkpoint_and_complete_reqs(sbi);
1802 	} else {
1803 		/* already dispatched by issue_checkpoint_thread */
1804 		if (wait_req)
1805 			wait_for_completion(&wait_req->wait);
1806 	}
1807 }
1808 
init_ckpt_req(struct ckpt_req * req)1809 static void init_ckpt_req(struct ckpt_req *req)
1810 {
1811 	memset(req, 0, sizeof(struct ckpt_req));
1812 
1813 	init_completion(&req->wait);
1814 	req->queue_time = ktime_get();
1815 }
1816 
f2fs_issue_checkpoint(struct f2fs_sb_info * sbi)1817 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1818 {
1819 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1820 	struct ckpt_req req;
1821 	struct cp_control cpc;
1822 
1823 	cpc.reason = __get_cp_reason(sbi);
1824 	if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1825 		int ret;
1826 
1827 		f2fs_down_write(&sbi->gc_lock);
1828 		ret = f2fs_write_checkpoint(sbi, &cpc);
1829 		f2fs_up_write(&sbi->gc_lock);
1830 
1831 		return ret;
1832 	}
1833 
1834 	if (!cprc->f2fs_issue_ckpt)
1835 		return __write_checkpoint_sync(sbi);
1836 
1837 	init_ckpt_req(&req);
1838 
1839 	llist_add(&req.llnode, &cprc->issue_list);
1840 	atomic_inc(&cprc->queued_ckpt);
1841 
1842 	/*
1843 	 * update issue_list before we wake up issue_checkpoint thread,
1844 	 * this smp_mb() pairs with another barrier in ___wait_event(),
1845 	 * see more details in comments of waitqueue_active().
1846 	 */
1847 	smp_mb();
1848 
1849 	if (waitqueue_active(&cprc->ckpt_wait_queue))
1850 		wake_up(&cprc->ckpt_wait_queue);
1851 
1852 	if (cprc->f2fs_issue_ckpt)
1853 		wait_for_completion(&req.wait);
1854 	else
1855 		flush_remained_ckpt_reqs(sbi, &req);
1856 
1857 	return req.ret;
1858 }
1859 
f2fs_start_ckpt_thread(struct f2fs_sb_info * sbi)1860 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1861 {
1862 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1863 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1864 
1865 	if (cprc->f2fs_issue_ckpt)
1866 		return 0;
1867 
1868 	cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1869 			"f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1870 	if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1871 		cprc->f2fs_issue_ckpt = NULL;
1872 		return -ENOMEM;
1873 	}
1874 
1875 	set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1876 
1877 	return 0;
1878 }
1879 
f2fs_stop_ckpt_thread(struct f2fs_sb_info * sbi)1880 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1881 {
1882 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1883 	struct task_struct *ckpt_task;
1884 
1885 	if (!cprc->f2fs_issue_ckpt)
1886 		return;
1887 
1888 	ckpt_task = cprc->f2fs_issue_ckpt;
1889 	cprc->f2fs_issue_ckpt = NULL;
1890 	kthread_stop(ckpt_task);
1891 
1892 	f2fs_flush_ckpt_thread(sbi);
1893 }
1894 
f2fs_flush_ckpt_thread(struct f2fs_sb_info * sbi)1895 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1896 {
1897 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1898 
1899 	flush_remained_ckpt_reqs(sbi, NULL);
1900 
1901 	/* Let's wait for the previous dispatched checkpoint. */
1902 	while (atomic_read(&cprc->queued_ckpt))
1903 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1904 }
1905 
f2fs_init_ckpt_req_control(struct f2fs_sb_info * sbi)1906 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1907 {
1908 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1909 
1910 	atomic_set(&cprc->issued_ckpt, 0);
1911 	atomic_set(&cprc->total_ckpt, 0);
1912 	atomic_set(&cprc->queued_ckpt, 0);
1913 	cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1914 	init_waitqueue_head(&cprc->ckpt_wait_queue);
1915 	init_llist_head(&cprc->issue_list);
1916 	spin_lock_init(&cprc->stat_lock);
1917 }
1918