xref: /OK3568_Linux_fs/kernel/arch/x86/mm/init.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
13 #include <asm/init.h>
14 #include <asm/page.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h>		/* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27 #include <asm/text-patching.h>
28 #include <asm/memtype.h>
29 
30 /*
31  * We need to define the tracepoints somewhere, and tlb.c
32  * is only compied when SMP=y.
33  */
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/tlb.h>
36 
37 #include "mm_internal.h"
38 
39 /*
40  * Tables translating between page_cache_type_t and pte encoding.
41  *
42  * The default values are defined statically as minimal supported mode;
43  * WC and WT fall back to UC-.  pat_init() updates these values to support
44  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
45  * for the details.  Note, __early_ioremap() used during early boot-time
46  * takes pgprot_t (pte encoding) and does not use these tables.
47  *
48  *   Index into __cachemode2pte_tbl[] is the cachemode.
49  *
50  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52  */
53 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
55 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
56 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
57 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
60 };
61 
cachemode2protval(enum page_cache_mode pcm)62 unsigned long cachemode2protval(enum page_cache_mode pcm)
63 {
64 	if (likely(pcm == 0))
65 		return 0;
66 	return __cachemode2pte_tbl[pcm];
67 }
68 EXPORT_SYMBOL(cachemode2protval);
69 
70 static uint8_t __pte2cachemode_tbl[8] = {
71 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
72 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
73 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
75 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
79 };
80 
81 /*
82  * Check that the write-protect PAT entry is set for write-protect.
83  * To do this without making assumptions how PAT has been set up (Xen has
84  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
85  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
86  * bits will select a cache mode of WP or better), and then translate the
87  * protection bits back into the cache mode using __pte2cm_idx() and the
88  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
89  */
x86_has_pat_wp(void)90 bool x86_has_pat_wp(void)
91 {
92 	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
93 
94 	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
95 }
96 
pgprot2cachemode(pgprot_t pgprot)97 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
98 {
99 	unsigned long masked;
100 
101 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
102 	if (likely(masked == 0))
103 		return 0;
104 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
105 }
106 
107 static unsigned long __initdata pgt_buf_start;
108 static unsigned long __initdata pgt_buf_end;
109 static unsigned long __initdata pgt_buf_top;
110 
111 static unsigned long min_pfn_mapped;
112 
113 static bool __initdata can_use_brk_pgt = true;
114 
115 /*
116  * Provide a run-time mean of disabling ZONE_DMA32 if it is enabled via
117  * CONFIG_ZONE_DMA32.
118  */
119 static bool disable_dma32 __ro_after_init;
120 
121 /*
122  * Pages returned are already directly mapped.
123  *
124  * Changing that is likely to break Xen, see commit:
125  *
126  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
127  *
128  * for detailed information.
129  */
alloc_low_pages(unsigned int num)130 __ref void *alloc_low_pages(unsigned int num)
131 {
132 	unsigned long pfn;
133 	int i;
134 
135 	if (after_bootmem) {
136 		unsigned int order;
137 
138 		order = get_order((unsigned long)num << PAGE_SHIFT);
139 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
140 	}
141 
142 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
143 		unsigned long ret = 0;
144 
145 		if (min_pfn_mapped < max_pfn_mapped) {
146 			ret = memblock_find_in_range(
147 					min_pfn_mapped << PAGE_SHIFT,
148 					max_pfn_mapped << PAGE_SHIFT,
149 					PAGE_SIZE * num , PAGE_SIZE);
150 		}
151 		if (ret)
152 			memblock_reserve(ret, PAGE_SIZE * num);
153 		else if (can_use_brk_pgt)
154 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
155 
156 		if (!ret)
157 			panic("alloc_low_pages: can not alloc memory");
158 
159 		pfn = ret >> PAGE_SHIFT;
160 	} else {
161 		pfn = pgt_buf_end;
162 		pgt_buf_end += num;
163 	}
164 
165 	for (i = 0; i < num; i++) {
166 		void *adr;
167 
168 		adr = __va((pfn + i) << PAGE_SHIFT);
169 		clear_page(adr);
170 	}
171 
172 	return __va(pfn << PAGE_SHIFT);
173 }
174 
175 /*
176  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
177  * With KASLR memory randomization, depending on the machine e820 memory
178  * and the PUD alignment. We may need twice more pages when KASLR memory
179  * randomization is enabled.
180  */
181 #ifndef CONFIG_RANDOMIZE_MEMORY
182 #define INIT_PGD_PAGE_COUNT      6
183 #else
184 #define INIT_PGD_PAGE_COUNT      12
185 #endif
186 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
187 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)188 void  __init early_alloc_pgt_buf(void)
189 {
190 	unsigned long tables = INIT_PGT_BUF_SIZE;
191 	phys_addr_t base;
192 
193 	base = __pa(extend_brk(tables, PAGE_SIZE));
194 
195 	pgt_buf_start = base >> PAGE_SHIFT;
196 	pgt_buf_end = pgt_buf_start;
197 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
198 }
199 
200 int after_bootmem;
201 
202 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
203 
204 struct map_range {
205 	unsigned long start;
206 	unsigned long end;
207 	unsigned page_size_mask;
208 };
209 
210 static int page_size_mask;
211 
212 /*
213  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
214  * enable and PPro Global page enable), so that any CPU's that boot
215  * up after us can get the correct flags. Invoked on the boot CPU.
216  */
cr4_set_bits_and_update_boot(unsigned long mask)217 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
218 {
219 	mmu_cr4_features |= mask;
220 	if (trampoline_cr4_features)
221 		*trampoline_cr4_features = mmu_cr4_features;
222 	cr4_set_bits(mask);
223 }
224 
probe_page_size_mask(void)225 static void __init probe_page_size_mask(void)
226 {
227 	/*
228 	 * For pagealloc debugging, identity mapping will use small pages.
229 	 * This will simplify cpa(), which otherwise needs to support splitting
230 	 * large pages into small in interrupt context, etc.
231 	 */
232 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
233 		page_size_mask |= 1 << PG_LEVEL_2M;
234 	else
235 		direct_gbpages = 0;
236 
237 	/* Enable PSE if available */
238 	if (boot_cpu_has(X86_FEATURE_PSE))
239 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
240 
241 	/* Enable PGE if available */
242 	__supported_pte_mask &= ~_PAGE_GLOBAL;
243 	if (boot_cpu_has(X86_FEATURE_PGE)) {
244 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
245 		__supported_pte_mask |= _PAGE_GLOBAL;
246 	}
247 
248 	/* By the default is everything supported: */
249 	__default_kernel_pte_mask = __supported_pte_mask;
250 	/* Except when with PTI where the kernel is mostly non-Global: */
251 	if (cpu_feature_enabled(X86_FEATURE_PTI))
252 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
253 
254 	/* Enable 1 GB linear kernel mappings if available: */
255 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
256 		printk(KERN_INFO "Using GB pages for direct mapping\n");
257 		page_size_mask |= 1 << PG_LEVEL_1G;
258 	} else {
259 		direct_gbpages = 0;
260 	}
261 }
262 
setup_pcid(void)263 static void setup_pcid(void)
264 {
265 	if (!IS_ENABLED(CONFIG_X86_64))
266 		return;
267 
268 	if (!boot_cpu_has(X86_FEATURE_PCID))
269 		return;
270 
271 	if (boot_cpu_has(X86_FEATURE_PGE)) {
272 		/*
273 		 * This can't be cr4_set_bits_and_update_boot() -- the
274 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
275 		 * do any good anyway.  Despite the name,
276 		 * cr4_set_bits_and_update_boot() doesn't actually cause
277 		 * the bits in question to remain set all the way through
278 		 * the secondary boot asm.
279 		 *
280 		 * Instead, we brute-force it and set CR4.PCIDE manually in
281 		 * start_secondary().
282 		 */
283 		cr4_set_bits(X86_CR4_PCIDE);
284 
285 		/*
286 		 * INVPCID's single-context modes (2/3) only work if we set
287 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
288 		 * on systems that have X86_CR4_PCIDE clear, or that have
289 		 * no INVPCID support at all.
290 		 */
291 		if (boot_cpu_has(X86_FEATURE_INVPCID))
292 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
293 	} else {
294 		/*
295 		 * flush_tlb_all(), as currently implemented, won't work if
296 		 * PCID is on but PGE is not.  Since that combination
297 		 * doesn't exist on real hardware, there's no reason to try
298 		 * to fully support it, but it's polite to avoid corrupting
299 		 * data if we're on an improperly configured VM.
300 		 */
301 		setup_clear_cpu_cap(X86_FEATURE_PCID);
302 	}
303 }
304 
305 #ifdef CONFIG_X86_32
306 #define NR_RANGE_MR 3
307 #else /* CONFIG_X86_64 */
308 #define NR_RANGE_MR 5
309 #endif
310 
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)311 static int __meminit save_mr(struct map_range *mr, int nr_range,
312 			     unsigned long start_pfn, unsigned long end_pfn,
313 			     unsigned long page_size_mask)
314 {
315 	if (start_pfn < end_pfn) {
316 		if (nr_range >= NR_RANGE_MR)
317 			panic("run out of range for init_memory_mapping\n");
318 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
319 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
320 		mr[nr_range].page_size_mask = page_size_mask;
321 		nr_range++;
322 	}
323 
324 	return nr_range;
325 }
326 
327 /*
328  * adjust the page_size_mask for small range to go with
329  *	big page size instead small one if nearby are ram too.
330  */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)331 static void __ref adjust_range_page_size_mask(struct map_range *mr,
332 							 int nr_range)
333 {
334 	int i;
335 
336 	for (i = 0; i < nr_range; i++) {
337 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
338 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
339 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
340 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
341 
342 #ifdef CONFIG_X86_32
343 			if ((end >> PAGE_SHIFT) > max_low_pfn)
344 				continue;
345 #endif
346 
347 			if (memblock_is_region_memory(start, end - start))
348 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
349 		}
350 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
351 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
352 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
353 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
354 
355 			if (memblock_is_region_memory(start, end - start))
356 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
357 		}
358 	}
359 }
360 
page_size_string(struct map_range * mr)361 static const char *page_size_string(struct map_range *mr)
362 {
363 	static const char str_1g[] = "1G";
364 	static const char str_2m[] = "2M";
365 	static const char str_4m[] = "4M";
366 	static const char str_4k[] = "4k";
367 
368 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
369 		return str_1g;
370 	/*
371 	 * 32-bit without PAE has a 4M large page size.
372 	 * PG_LEVEL_2M is misnamed, but we can at least
373 	 * print out the right size in the string.
374 	 */
375 	if (IS_ENABLED(CONFIG_X86_32) &&
376 	    !IS_ENABLED(CONFIG_X86_PAE) &&
377 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
378 		return str_4m;
379 
380 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
381 		return str_2m;
382 
383 	return str_4k;
384 }
385 
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)386 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
387 				     unsigned long start,
388 				     unsigned long end)
389 {
390 	unsigned long start_pfn, end_pfn, limit_pfn;
391 	unsigned long pfn;
392 	int i;
393 
394 	limit_pfn = PFN_DOWN(end);
395 
396 	/* head if not big page alignment ? */
397 	pfn = start_pfn = PFN_DOWN(start);
398 #ifdef CONFIG_X86_32
399 	/*
400 	 * Don't use a large page for the first 2/4MB of memory
401 	 * because there are often fixed size MTRRs in there
402 	 * and overlapping MTRRs into large pages can cause
403 	 * slowdowns.
404 	 */
405 	if (pfn == 0)
406 		end_pfn = PFN_DOWN(PMD_SIZE);
407 	else
408 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
409 #else /* CONFIG_X86_64 */
410 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
411 #endif
412 	if (end_pfn > limit_pfn)
413 		end_pfn = limit_pfn;
414 	if (start_pfn < end_pfn) {
415 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
416 		pfn = end_pfn;
417 	}
418 
419 	/* big page (2M) range */
420 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
421 #ifdef CONFIG_X86_32
422 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
423 #else /* CONFIG_X86_64 */
424 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
425 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
426 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
427 #endif
428 
429 	if (start_pfn < end_pfn) {
430 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
431 				page_size_mask & (1<<PG_LEVEL_2M));
432 		pfn = end_pfn;
433 	}
434 
435 #ifdef CONFIG_X86_64
436 	/* big page (1G) range */
437 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
438 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
439 	if (start_pfn < end_pfn) {
440 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
441 				page_size_mask &
442 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
443 		pfn = end_pfn;
444 	}
445 
446 	/* tail is not big page (1G) alignment */
447 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
448 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
449 	if (start_pfn < end_pfn) {
450 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
451 				page_size_mask & (1<<PG_LEVEL_2M));
452 		pfn = end_pfn;
453 	}
454 #endif
455 
456 	/* tail is not big page (2M) alignment */
457 	start_pfn = pfn;
458 	end_pfn = limit_pfn;
459 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
460 
461 	if (!after_bootmem)
462 		adjust_range_page_size_mask(mr, nr_range);
463 
464 	/* try to merge same page size and continuous */
465 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
466 		unsigned long old_start;
467 		if (mr[i].end != mr[i+1].start ||
468 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
469 			continue;
470 		/* move it */
471 		old_start = mr[i].start;
472 		memmove(&mr[i], &mr[i+1],
473 			(nr_range - 1 - i) * sizeof(struct map_range));
474 		mr[i--].start = old_start;
475 		nr_range--;
476 	}
477 
478 	for (i = 0; i < nr_range; i++)
479 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
480 				mr[i].start, mr[i].end - 1,
481 				page_size_string(&mr[i]));
482 
483 	return nr_range;
484 }
485 
486 struct range pfn_mapped[E820_MAX_ENTRIES];
487 int nr_pfn_mapped;
488 
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)489 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
490 {
491 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
492 					     nr_pfn_mapped, start_pfn, end_pfn);
493 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
494 
495 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
496 
497 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
498 		max_low_pfn_mapped = max(max_low_pfn_mapped,
499 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
500 }
501 
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)502 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
503 {
504 	int i;
505 
506 	for (i = 0; i < nr_pfn_mapped; i++)
507 		if ((start_pfn >= pfn_mapped[i].start) &&
508 		    (end_pfn <= pfn_mapped[i].end))
509 			return true;
510 
511 	return false;
512 }
513 
514 /*
515  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
516  * This runs before bootmem is initialized and gets pages directly from
517  * the physical memory. To access them they are temporarily mapped.
518  */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)519 unsigned long __ref init_memory_mapping(unsigned long start,
520 					unsigned long end, pgprot_t prot)
521 {
522 	struct map_range mr[NR_RANGE_MR];
523 	unsigned long ret = 0;
524 	int nr_range, i;
525 
526 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
527 	       start, end - 1);
528 
529 	memset(mr, 0, sizeof(mr));
530 	nr_range = split_mem_range(mr, 0, start, end);
531 
532 	for (i = 0; i < nr_range; i++)
533 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
534 						   mr[i].page_size_mask,
535 						   prot);
536 
537 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
538 
539 	return ret >> PAGE_SHIFT;
540 }
541 
542 /*
543  * We need to iterate through the E820 memory map and create direct mappings
544  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
545  * create direct mappings for all pfns from [0 to max_low_pfn) and
546  * [4GB to max_pfn) because of possible memory holes in high addresses
547  * that cannot be marked as UC by fixed/variable range MTRRs.
548  * Depending on the alignment of E820 ranges, this may possibly result
549  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
550  *
551  * init_mem_mapping() calls init_range_memory_mapping() with big range.
552  * That range would have hole in the middle or ends, and only ram parts
553  * will be mapped in init_range_memory_mapping().
554  */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)555 static unsigned long __init init_range_memory_mapping(
556 					   unsigned long r_start,
557 					   unsigned long r_end)
558 {
559 	unsigned long start_pfn, end_pfn;
560 	unsigned long mapped_ram_size = 0;
561 	int i;
562 
563 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
564 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
565 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
566 		if (start >= end)
567 			continue;
568 
569 		/*
570 		 * if it is overlapping with brk pgt, we need to
571 		 * alloc pgt buf from memblock instead.
572 		 */
573 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
574 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
575 		init_memory_mapping(start, end, PAGE_KERNEL);
576 		mapped_ram_size += end - start;
577 		can_use_brk_pgt = true;
578 	}
579 
580 	return mapped_ram_size;
581 }
582 
get_new_step_size(unsigned long step_size)583 static unsigned long __init get_new_step_size(unsigned long step_size)
584 {
585 	/*
586 	 * Initial mapped size is PMD_SIZE (2M).
587 	 * We can not set step_size to be PUD_SIZE (1G) yet.
588 	 * In worse case, when we cross the 1G boundary, and
589 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
590 	 * to map 1G range with PTE. Hence we use one less than the
591 	 * difference of page table level shifts.
592 	 *
593 	 * Don't need to worry about overflow in the top-down case, on 32bit,
594 	 * when step_size is 0, round_down() returns 0 for start, and that
595 	 * turns it into 0x100000000ULL.
596 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
597 	 * needs to be taken into consideration by the code below.
598 	 */
599 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
600 }
601 
602 /**
603  * memory_map_top_down - Map [map_start, map_end) top down
604  * @map_start: start address of the target memory range
605  * @map_end: end address of the target memory range
606  *
607  * This function will setup direct mapping for memory range
608  * [map_start, map_end) in top-down. That said, the page tables
609  * will be allocated at the end of the memory, and we map the
610  * memory in top-down.
611  */
memory_map_top_down(unsigned long map_start,unsigned long map_end)612 static void __init memory_map_top_down(unsigned long map_start,
613 				       unsigned long map_end)
614 {
615 	unsigned long real_end, start, last_start;
616 	unsigned long step_size;
617 	unsigned long addr;
618 	unsigned long mapped_ram_size = 0;
619 
620 	/* xen has big range in reserved near end of ram, skip it at first.*/
621 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
622 	real_end = addr + PMD_SIZE;
623 
624 	/* step_size need to be small so pgt_buf from BRK could cover it */
625 	step_size = PMD_SIZE;
626 	max_pfn_mapped = 0; /* will get exact value next */
627 	min_pfn_mapped = real_end >> PAGE_SHIFT;
628 	last_start = start = real_end;
629 
630 	/*
631 	 * We start from the top (end of memory) and go to the bottom.
632 	 * The memblock_find_in_range() gets us a block of RAM from the
633 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
634 	 * for page table.
635 	 */
636 	while (last_start > map_start) {
637 		if (last_start > step_size) {
638 			start = round_down(last_start - 1, step_size);
639 			if (start < map_start)
640 				start = map_start;
641 		} else
642 			start = map_start;
643 		mapped_ram_size += init_range_memory_mapping(start,
644 							last_start);
645 		last_start = start;
646 		min_pfn_mapped = last_start >> PAGE_SHIFT;
647 		if (mapped_ram_size >= step_size)
648 			step_size = get_new_step_size(step_size);
649 	}
650 
651 	if (real_end < map_end)
652 		init_range_memory_mapping(real_end, map_end);
653 }
654 
655 /**
656  * memory_map_bottom_up - Map [map_start, map_end) bottom up
657  * @map_start: start address of the target memory range
658  * @map_end: end address of the target memory range
659  *
660  * This function will setup direct mapping for memory range
661  * [map_start, map_end) in bottom-up. Since we have limited the
662  * bottom-up allocation above the kernel, the page tables will
663  * be allocated just above the kernel and we map the memory
664  * in [map_start, map_end) in bottom-up.
665  */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)666 static void __init memory_map_bottom_up(unsigned long map_start,
667 					unsigned long map_end)
668 {
669 	unsigned long next, start;
670 	unsigned long mapped_ram_size = 0;
671 	/* step_size need to be small so pgt_buf from BRK could cover it */
672 	unsigned long step_size = PMD_SIZE;
673 
674 	start = map_start;
675 	min_pfn_mapped = start >> PAGE_SHIFT;
676 
677 	/*
678 	 * We start from the bottom (@map_start) and go to the top (@map_end).
679 	 * The memblock_find_in_range() gets us a block of RAM from the
680 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
681 	 * for page table.
682 	 */
683 	while (start < map_end) {
684 		if (step_size && map_end - start > step_size) {
685 			next = round_up(start + 1, step_size);
686 			if (next > map_end)
687 				next = map_end;
688 		} else {
689 			next = map_end;
690 		}
691 
692 		mapped_ram_size += init_range_memory_mapping(start, next);
693 		start = next;
694 
695 		if (mapped_ram_size >= step_size)
696 			step_size = get_new_step_size(step_size);
697 	}
698 }
699 
700 /*
701  * The real mode trampoline, which is required for bootstrapping CPUs
702  * occupies only a small area under the low 1MB.  See reserve_real_mode()
703  * for details.
704  *
705  * If KASLR is disabled the first PGD entry of the direct mapping is copied
706  * to map the real mode trampoline.
707  *
708  * If KASLR is enabled, copy only the PUD which covers the low 1MB
709  * area. This limits the randomization granularity to 1GB for both 4-level
710  * and 5-level paging.
711  */
init_trampoline(void)712 static void __init init_trampoline(void)
713 {
714 #ifdef CONFIG_X86_64
715 	if (!kaslr_memory_enabled())
716 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
717 	else
718 		init_trampoline_kaslr();
719 #endif
720 }
721 
init_mem_mapping(void)722 void __init init_mem_mapping(void)
723 {
724 	unsigned long end;
725 
726 	pti_check_boottime_disable();
727 	probe_page_size_mask();
728 	setup_pcid();
729 
730 #ifdef CONFIG_X86_64
731 	end = max_pfn << PAGE_SHIFT;
732 #else
733 	end = max_low_pfn << PAGE_SHIFT;
734 #endif
735 
736 	/* the ISA range is always mapped regardless of memory holes */
737 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
738 
739 	/* Init the trampoline, possibly with KASLR memory offset */
740 	init_trampoline();
741 
742 	/*
743 	 * If the allocation is in bottom-up direction, we setup direct mapping
744 	 * in bottom-up, otherwise we setup direct mapping in top-down.
745 	 */
746 	if (memblock_bottom_up()) {
747 		unsigned long kernel_end = __pa_symbol(_end);
748 
749 		/*
750 		 * we need two separate calls here. This is because we want to
751 		 * allocate page tables above the kernel. So we first map
752 		 * [kernel_end, end) to make memory above the kernel be mapped
753 		 * as soon as possible. And then use page tables allocated above
754 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
755 		 */
756 		memory_map_bottom_up(kernel_end, end);
757 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
758 	} else {
759 		memory_map_top_down(ISA_END_ADDRESS, end);
760 	}
761 
762 #ifdef CONFIG_X86_64
763 	if (max_pfn > max_low_pfn) {
764 		/* can we preseve max_low_pfn ?*/
765 		max_low_pfn = max_pfn;
766 	}
767 #else
768 	early_ioremap_page_table_range_init();
769 #endif
770 
771 	load_cr3(swapper_pg_dir);
772 	__flush_tlb_all();
773 
774 	x86_init.hyper.init_mem_mapping();
775 
776 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
777 }
778 
779 /*
780  * Initialize an mm_struct to be used during poking and a pointer to be used
781  * during patching.
782  */
poking_init(void)783 void __init poking_init(void)
784 {
785 	spinlock_t *ptl;
786 	pte_t *ptep;
787 
788 	poking_mm = copy_init_mm();
789 	BUG_ON(!poking_mm);
790 
791 	/*
792 	 * Randomize the poking address, but make sure that the following page
793 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
794 	 * and adjust the address if the PMD ends after the first one.
795 	 */
796 	poking_addr = TASK_UNMAPPED_BASE;
797 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
798 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
799 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
800 
801 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
802 		poking_addr += PAGE_SIZE;
803 
804 	/*
805 	 * We need to trigger the allocation of the page-tables that will be
806 	 * needed for poking now. Later, poking may be performed in an atomic
807 	 * section, which might cause allocation to fail.
808 	 */
809 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
810 	BUG_ON(!ptep);
811 	pte_unmap_unlock(ptep, ptl);
812 }
813 
814 /*
815  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
816  * is valid. The argument is a physical page number.
817  *
818  * On x86, access has to be given to the first megabyte of RAM because that
819  * area traditionally contains BIOS code and data regions used by X, dosemu,
820  * and similar apps. Since they map the entire memory range, the whole range
821  * must be allowed (for mapping), but any areas that would otherwise be
822  * disallowed are flagged as being "zero filled" instead of rejected.
823  * Access has to be given to non-kernel-ram areas as well, these contain the
824  * PCI mmio resources as well as potential bios/acpi data regions.
825  */
devmem_is_allowed(unsigned long pagenr)826 int devmem_is_allowed(unsigned long pagenr)
827 {
828 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
829 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
830 			!= REGION_DISJOINT) {
831 		/*
832 		 * For disallowed memory regions in the low 1MB range,
833 		 * request that the page be shown as all zeros.
834 		 */
835 		if (pagenr < 256)
836 			return 2;
837 
838 		return 0;
839 	}
840 
841 	/*
842 	 * This must follow RAM test, since System RAM is considered a
843 	 * restricted resource under CONFIG_STRICT_IOMEM.
844 	 */
845 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
846 		/* Low 1MB bypasses iomem restrictions. */
847 		if (pagenr < 256)
848 			return 1;
849 
850 		return 0;
851 	}
852 
853 	return 1;
854 }
855 
free_init_pages(const char * what,unsigned long begin,unsigned long end)856 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
857 {
858 	unsigned long begin_aligned, end_aligned;
859 
860 	/* Make sure boundaries are page aligned */
861 	begin_aligned = PAGE_ALIGN(begin);
862 	end_aligned   = end & PAGE_MASK;
863 
864 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
865 		begin = begin_aligned;
866 		end   = end_aligned;
867 	}
868 
869 	if (begin >= end)
870 		return;
871 
872 	/*
873 	 * If debugging page accesses then do not free this memory but
874 	 * mark them not present - any buggy init-section access will
875 	 * create a kernel page fault:
876 	 */
877 	if (debug_pagealloc_enabled()) {
878 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
879 			begin, end - 1);
880 		/*
881 		 * Inform kmemleak about the hole in the memory since the
882 		 * corresponding pages will be unmapped.
883 		 */
884 		kmemleak_free_part((void *)begin, end - begin);
885 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
886 	} else {
887 		/*
888 		 * We just marked the kernel text read only above, now that
889 		 * we are going to free part of that, we need to make that
890 		 * writeable and non-executable first.
891 		 */
892 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
893 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
894 
895 		free_reserved_area((void *)begin, (void *)end,
896 				   POISON_FREE_INITMEM, what);
897 	}
898 }
899 
900 /*
901  * begin/end can be in the direct map or the "high kernel mapping"
902  * used for the kernel image only.  free_init_pages() will do the
903  * right thing for either kind of address.
904  */
free_kernel_image_pages(const char * what,void * begin,void * end)905 void free_kernel_image_pages(const char *what, void *begin, void *end)
906 {
907 	unsigned long begin_ul = (unsigned long)begin;
908 	unsigned long end_ul = (unsigned long)end;
909 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
910 
911 	free_init_pages(what, begin_ul, end_ul);
912 
913 	/*
914 	 * PTI maps some of the kernel into userspace.  For performance,
915 	 * this includes some kernel areas that do not contain secrets.
916 	 * Those areas might be adjacent to the parts of the kernel image
917 	 * being freed, which may contain secrets.  Remove the "high kernel
918 	 * image mapping" for these freed areas, ensuring they are not even
919 	 * potentially vulnerable to Meltdown regardless of the specific
920 	 * optimizations PTI is currently using.
921 	 *
922 	 * The "noalias" prevents unmapping the direct map alias which is
923 	 * needed to access the freed pages.
924 	 *
925 	 * This is only valid for 64bit kernels. 32bit has only one mapping
926 	 * which can't be treated in this way for obvious reasons.
927 	 */
928 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
929 		set_memory_np_noalias(begin_ul, len_pages);
930 }
931 
free_initmem(void)932 void __ref free_initmem(void)
933 {
934 	e820__reallocate_tables();
935 
936 	mem_encrypt_free_decrypted_mem();
937 
938 	free_kernel_image_pages("unused kernel image (initmem)",
939 				&__init_begin, &__init_end);
940 }
941 
942 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)943 void __init free_initrd_mem(unsigned long start, unsigned long end)
944 {
945 	/*
946 	 * end could be not aligned, and We can not align that,
947 	 * decompresser could be confused by aligned initrd_end
948 	 * We already reserve the end partial page before in
949 	 *   - i386_start_kernel()
950 	 *   - x86_64_start_kernel()
951 	 *   - relocate_initrd()
952 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
953 	 */
954 	free_init_pages("initrd", start, PAGE_ALIGN(end));
955 }
956 #endif
957 
958 /*
959  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
960  * and pass it to the MM layer - to help it set zone watermarks more
961  * accurately.
962  *
963  * Done on 64-bit systems only for the time being, although 32-bit systems
964  * might benefit from this as well.
965  */
memblock_find_dma_reserve(void)966 void __init memblock_find_dma_reserve(void)
967 {
968 #ifdef CONFIG_X86_64
969 	u64 nr_pages = 0, nr_free_pages = 0;
970 	unsigned long start_pfn, end_pfn;
971 	phys_addr_t start_addr, end_addr;
972 	int i;
973 	u64 u;
974 
975 	/*
976 	 * Iterate over all memory ranges (free and reserved ones alike),
977 	 * to calculate the total number of pages in the first 16 MB of RAM:
978 	 */
979 	nr_pages = 0;
980 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
981 		start_pfn = min(start_pfn, MAX_DMA_PFN);
982 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
983 
984 		nr_pages += end_pfn - start_pfn;
985 	}
986 
987 	/*
988 	 * Iterate over free memory ranges to calculate the number of free
989 	 * pages in the DMA zone, while not counting potential partial
990 	 * pages at the beginning or the end of the range:
991 	 */
992 	nr_free_pages = 0;
993 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
994 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
995 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
996 
997 		if (start_pfn < end_pfn)
998 			nr_free_pages += end_pfn - start_pfn;
999 	}
1000 
1001 	set_dma_reserve(nr_pages - nr_free_pages);
1002 #endif
1003 }
1004 
zone_sizes_init(void)1005 void __init zone_sizes_init(void)
1006 {
1007 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1008 
1009 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1010 
1011 #ifdef CONFIG_ZONE_DMA
1012 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1013 #endif
1014 #ifdef CONFIG_ZONE_DMA32
1015 	max_zone_pfns[ZONE_DMA32]	= disable_dma32 ? 0 : min(MAX_DMA32_PFN, max_low_pfn);
1016 #endif
1017 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1018 #ifdef CONFIG_HIGHMEM
1019 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1020 #endif
1021 
1022 	free_area_init(max_zone_pfns);
1023 }
1024 
early_disable_dma32(char * buf)1025 static int __init early_disable_dma32(char *buf)
1026 {
1027 	if (!buf)
1028 		return -EINVAL;
1029 
1030 	if (!strcmp(buf, "on"))
1031 		disable_dma32 = true;
1032 
1033 	return 0;
1034 }
1035 early_param("disable_dma32", early_disable_dma32);
1036 
1037 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1038 	.loaded_mm = &init_mm,
1039 	.next_asid = 1,
1040 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1041 };
1042 
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1043 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1044 {
1045 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1046 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1047 
1048 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1049 	__pte2cachemode_tbl[entry] = cache;
1050 }
1051 
1052 #ifdef CONFIG_SWAP
max_swapfile_size(void)1053 unsigned long max_swapfile_size(void)
1054 {
1055 	unsigned long pages;
1056 
1057 	pages = generic_max_swapfile_size();
1058 
1059 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1060 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1061 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1062 		/*
1063 		 * We encode swap offsets also with 3 bits below those for pfn
1064 		 * which makes the usable limit higher.
1065 		 */
1066 #if CONFIG_PGTABLE_LEVELS > 2
1067 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1068 #endif
1069 		pages = min_t(unsigned long long, l1tf_limit, pages);
1070 	}
1071 	return pages;
1072 }
1073 #endif
1074