xref: /OK3568_Linux_fs/kernel/drivers/block/drbd/drbd_main.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13 
14 
15  */
16 
17 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44 
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51 
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57 
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59 	      "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66 
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70 
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85 
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92 
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103 
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110 
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;	/* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120 
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125 	 member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 spinlock_t   drbd_pp_lock;
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131 
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133 
134 static const struct block_device_operations drbd_ops = {
135 	.owner		= THIS_MODULE,
136 	.submit_bio	= drbd_submit_bio,
137 	.open		= drbd_open,
138 	.release	= drbd_release,
139 };
140 
bio_alloc_drbd(gfp_t gfp_mask)141 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
142 {
143 	struct bio *bio;
144 
145 	if (!bioset_initialized(&drbd_md_io_bio_set))
146 		return bio_alloc(gfp_mask, 1);
147 
148 	bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set);
149 	if (!bio)
150 		return NULL;
151 	return bio;
152 }
153 
154 #ifdef __CHECKER__
155 /* When checking with sparse, and this is an inline function, sparse will
156    give tons of false positives. When this is a real functions sparse works.
157  */
_get_ldev_if_state(struct drbd_device * device,enum drbd_disk_state mins)158 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
159 {
160 	int io_allowed;
161 
162 	atomic_inc(&device->local_cnt);
163 	io_allowed = (device->state.disk >= mins);
164 	if (!io_allowed) {
165 		if (atomic_dec_and_test(&device->local_cnt))
166 			wake_up(&device->misc_wait);
167 	}
168 	return io_allowed;
169 }
170 
171 #endif
172 
173 /**
174  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
175  * @connection:	DRBD connection.
176  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
177  * @set_size:	Expected number of requests before that barrier.
178  *
179  * In case the passed barrier_nr or set_size does not match the oldest
180  * epoch of not yet barrier-acked requests, this function will cause a
181  * termination of the connection.
182  */
tl_release(struct drbd_connection * connection,unsigned int barrier_nr,unsigned int set_size)183 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
184 		unsigned int set_size)
185 {
186 	struct drbd_request *r;
187 	struct drbd_request *req = NULL, *tmp = NULL;
188 	int expect_epoch = 0;
189 	int expect_size = 0;
190 
191 	spin_lock_irq(&connection->resource->req_lock);
192 
193 	/* find oldest not yet barrier-acked write request,
194 	 * count writes in its epoch. */
195 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
196 		const unsigned s = r->rq_state;
197 		if (!req) {
198 			if (!(s & RQ_WRITE))
199 				continue;
200 			if (!(s & RQ_NET_MASK))
201 				continue;
202 			if (s & RQ_NET_DONE)
203 				continue;
204 			req = r;
205 			expect_epoch = req->epoch;
206 			expect_size ++;
207 		} else {
208 			if (r->epoch != expect_epoch)
209 				break;
210 			if (!(s & RQ_WRITE))
211 				continue;
212 			/* if (s & RQ_DONE): not expected */
213 			/* if (!(s & RQ_NET_MASK)): not expected */
214 			expect_size++;
215 		}
216 	}
217 
218 	/* first some paranoia code */
219 	if (req == NULL) {
220 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
221 			 barrier_nr);
222 		goto bail;
223 	}
224 	if (expect_epoch != barrier_nr) {
225 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
226 			 barrier_nr, expect_epoch);
227 		goto bail;
228 	}
229 
230 	if (expect_size != set_size) {
231 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
232 			 barrier_nr, set_size, expect_size);
233 		goto bail;
234 	}
235 
236 	/* Clean up list of requests processed during current epoch. */
237 	/* this extra list walk restart is paranoia,
238 	 * to catch requests being barrier-acked "unexpectedly".
239 	 * It usually should find the same req again, or some READ preceding it. */
240 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
241 		if (req->epoch == expect_epoch) {
242 			tmp = req;
243 			break;
244 		}
245 	req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
246 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
247 		if (req->epoch != expect_epoch)
248 			break;
249 		_req_mod(req, BARRIER_ACKED);
250 	}
251 	spin_unlock_irq(&connection->resource->req_lock);
252 
253 	return;
254 
255 bail:
256 	spin_unlock_irq(&connection->resource->req_lock);
257 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
258 }
259 
260 
261 /**
262  * _tl_restart() - Walks the transfer log, and applies an action to all requests
263  * @connection:	DRBD connection to operate on.
264  * @what:       The action/event to perform with all request objects
265  *
266  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
267  * RESTART_FROZEN_DISK_IO.
268  */
269 /* must hold resource->req_lock */
_tl_restart(struct drbd_connection * connection,enum drbd_req_event what)270 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
271 {
272 	struct drbd_request *req, *r;
273 
274 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
275 		_req_mod(req, what);
276 }
277 
tl_restart(struct drbd_connection * connection,enum drbd_req_event what)278 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
279 {
280 	spin_lock_irq(&connection->resource->req_lock);
281 	_tl_restart(connection, what);
282 	spin_unlock_irq(&connection->resource->req_lock);
283 }
284 
285 /**
286  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
287  * @device:	DRBD device.
288  *
289  * This is called after the connection to the peer was lost. The storage covered
290  * by the requests on the transfer gets marked as our of sync. Called from the
291  * receiver thread and the worker thread.
292  */
tl_clear(struct drbd_connection * connection)293 void tl_clear(struct drbd_connection *connection)
294 {
295 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
296 }
297 
298 /**
299  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
300  * @device:	DRBD device.
301  */
tl_abort_disk_io(struct drbd_device * device)302 void tl_abort_disk_io(struct drbd_device *device)
303 {
304 	struct drbd_connection *connection = first_peer_device(device)->connection;
305 	struct drbd_request *req, *r;
306 
307 	spin_lock_irq(&connection->resource->req_lock);
308 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
309 		if (!(req->rq_state & RQ_LOCAL_PENDING))
310 			continue;
311 		if (req->device != device)
312 			continue;
313 		_req_mod(req, ABORT_DISK_IO);
314 	}
315 	spin_unlock_irq(&connection->resource->req_lock);
316 }
317 
drbd_thread_setup(void * arg)318 static int drbd_thread_setup(void *arg)
319 {
320 	struct drbd_thread *thi = (struct drbd_thread *) arg;
321 	struct drbd_resource *resource = thi->resource;
322 	unsigned long flags;
323 	int retval;
324 
325 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
326 		 thi->name[0],
327 		 resource->name);
328 
329 	allow_kernel_signal(DRBD_SIGKILL);
330 	allow_kernel_signal(SIGXCPU);
331 restart:
332 	retval = thi->function(thi);
333 
334 	spin_lock_irqsave(&thi->t_lock, flags);
335 
336 	/* if the receiver has been "EXITING", the last thing it did
337 	 * was set the conn state to "StandAlone",
338 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
339 	 * and receiver thread will be "started".
340 	 * drbd_thread_start needs to set "RESTARTING" in that case.
341 	 * t_state check and assignment needs to be within the same spinlock,
342 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
343 	 * or thread_start see NONE, and can proceed as normal.
344 	 */
345 
346 	if (thi->t_state == RESTARTING) {
347 		drbd_info(resource, "Restarting %s thread\n", thi->name);
348 		thi->t_state = RUNNING;
349 		spin_unlock_irqrestore(&thi->t_lock, flags);
350 		goto restart;
351 	}
352 
353 	thi->task = NULL;
354 	thi->t_state = NONE;
355 	smp_mb();
356 	complete_all(&thi->stop);
357 	spin_unlock_irqrestore(&thi->t_lock, flags);
358 
359 	drbd_info(resource, "Terminating %s\n", current->comm);
360 
361 	/* Release mod reference taken when thread was started */
362 
363 	if (thi->connection)
364 		kref_put(&thi->connection->kref, drbd_destroy_connection);
365 	kref_put(&resource->kref, drbd_destroy_resource);
366 	module_put(THIS_MODULE);
367 	return retval;
368 }
369 
drbd_thread_init(struct drbd_resource * resource,struct drbd_thread * thi,int (* func)(struct drbd_thread *),const char * name)370 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
371 			     int (*func) (struct drbd_thread *), const char *name)
372 {
373 	spin_lock_init(&thi->t_lock);
374 	thi->task    = NULL;
375 	thi->t_state = NONE;
376 	thi->function = func;
377 	thi->resource = resource;
378 	thi->connection = NULL;
379 	thi->name = name;
380 }
381 
drbd_thread_start(struct drbd_thread * thi)382 int drbd_thread_start(struct drbd_thread *thi)
383 {
384 	struct drbd_resource *resource = thi->resource;
385 	struct task_struct *nt;
386 	unsigned long flags;
387 
388 	/* is used from state engine doing drbd_thread_stop_nowait,
389 	 * while holding the req lock irqsave */
390 	spin_lock_irqsave(&thi->t_lock, flags);
391 
392 	switch (thi->t_state) {
393 	case NONE:
394 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
395 			 thi->name, current->comm, current->pid);
396 
397 		/* Get ref on module for thread - this is released when thread exits */
398 		if (!try_module_get(THIS_MODULE)) {
399 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
400 			spin_unlock_irqrestore(&thi->t_lock, flags);
401 			return false;
402 		}
403 
404 		kref_get(&resource->kref);
405 		if (thi->connection)
406 			kref_get(&thi->connection->kref);
407 
408 		init_completion(&thi->stop);
409 		thi->reset_cpu_mask = 1;
410 		thi->t_state = RUNNING;
411 		spin_unlock_irqrestore(&thi->t_lock, flags);
412 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
413 
414 		nt = kthread_create(drbd_thread_setup, (void *) thi,
415 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
416 
417 		if (IS_ERR(nt)) {
418 			drbd_err(resource, "Couldn't start thread\n");
419 
420 			if (thi->connection)
421 				kref_put(&thi->connection->kref, drbd_destroy_connection);
422 			kref_put(&resource->kref, drbd_destroy_resource);
423 			module_put(THIS_MODULE);
424 			return false;
425 		}
426 		spin_lock_irqsave(&thi->t_lock, flags);
427 		thi->task = nt;
428 		thi->t_state = RUNNING;
429 		spin_unlock_irqrestore(&thi->t_lock, flags);
430 		wake_up_process(nt);
431 		break;
432 	case EXITING:
433 		thi->t_state = RESTARTING;
434 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
435 				thi->name, current->comm, current->pid);
436 		fallthrough;
437 	case RUNNING:
438 	case RESTARTING:
439 	default:
440 		spin_unlock_irqrestore(&thi->t_lock, flags);
441 		break;
442 	}
443 
444 	return true;
445 }
446 
447 
_drbd_thread_stop(struct drbd_thread * thi,int restart,int wait)448 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
449 {
450 	unsigned long flags;
451 
452 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
453 
454 	/* may be called from state engine, holding the req lock irqsave */
455 	spin_lock_irqsave(&thi->t_lock, flags);
456 
457 	if (thi->t_state == NONE) {
458 		spin_unlock_irqrestore(&thi->t_lock, flags);
459 		if (restart)
460 			drbd_thread_start(thi);
461 		return;
462 	}
463 
464 	if (thi->t_state != ns) {
465 		if (thi->task == NULL) {
466 			spin_unlock_irqrestore(&thi->t_lock, flags);
467 			return;
468 		}
469 
470 		thi->t_state = ns;
471 		smp_mb();
472 		init_completion(&thi->stop);
473 		if (thi->task != current)
474 			send_sig(DRBD_SIGKILL, thi->task, 1);
475 	}
476 
477 	spin_unlock_irqrestore(&thi->t_lock, flags);
478 
479 	if (wait)
480 		wait_for_completion(&thi->stop);
481 }
482 
conn_lowest_minor(struct drbd_connection * connection)483 int conn_lowest_minor(struct drbd_connection *connection)
484 {
485 	struct drbd_peer_device *peer_device;
486 	int vnr = 0, minor = -1;
487 
488 	rcu_read_lock();
489 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
490 	if (peer_device)
491 		minor = device_to_minor(peer_device->device);
492 	rcu_read_unlock();
493 
494 	return minor;
495 }
496 
497 #ifdef CONFIG_SMP
498 /**
499  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
500  *
501  * Forces all threads of a resource onto the same CPU. This is beneficial for
502  * DRBD's performance. May be overwritten by user's configuration.
503  */
drbd_calc_cpu_mask(cpumask_var_t * cpu_mask)504 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
505 {
506 	unsigned int *resources_per_cpu, min_index = ~0;
507 
508 	resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
509 				    GFP_KERNEL);
510 	if (resources_per_cpu) {
511 		struct drbd_resource *resource;
512 		unsigned int cpu, min = ~0;
513 
514 		rcu_read_lock();
515 		for_each_resource_rcu(resource, &drbd_resources) {
516 			for_each_cpu(cpu, resource->cpu_mask)
517 				resources_per_cpu[cpu]++;
518 		}
519 		rcu_read_unlock();
520 		for_each_online_cpu(cpu) {
521 			if (resources_per_cpu[cpu] < min) {
522 				min = resources_per_cpu[cpu];
523 				min_index = cpu;
524 			}
525 		}
526 		kfree(resources_per_cpu);
527 	}
528 	if (min_index == ~0) {
529 		cpumask_setall(*cpu_mask);
530 		return;
531 	}
532 	cpumask_set_cpu(min_index, *cpu_mask);
533 }
534 
535 /**
536  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
537  * @device:	DRBD device.
538  * @thi:	drbd_thread object
539  *
540  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
541  * prematurely.
542  */
drbd_thread_current_set_cpu(struct drbd_thread * thi)543 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
544 {
545 	struct drbd_resource *resource = thi->resource;
546 	struct task_struct *p = current;
547 
548 	if (!thi->reset_cpu_mask)
549 		return;
550 	thi->reset_cpu_mask = 0;
551 	set_cpus_allowed_ptr(p, resource->cpu_mask);
552 }
553 #else
554 #define drbd_calc_cpu_mask(A) ({})
555 #endif
556 
557 /**
558  * drbd_header_size  -  size of a packet header
559  *
560  * The header size is a multiple of 8, so any payload following the header is
561  * word aligned on 64-bit architectures.  (The bitmap send and receive code
562  * relies on this.)
563  */
drbd_header_size(struct drbd_connection * connection)564 unsigned int drbd_header_size(struct drbd_connection *connection)
565 {
566 	if (connection->agreed_pro_version >= 100) {
567 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
568 		return sizeof(struct p_header100);
569 	} else {
570 		BUILD_BUG_ON(sizeof(struct p_header80) !=
571 			     sizeof(struct p_header95));
572 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
573 		return sizeof(struct p_header80);
574 	}
575 }
576 
prepare_header80(struct p_header80 * h,enum drbd_packet cmd,int size)577 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
578 {
579 	h->magic   = cpu_to_be32(DRBD_MAGIC);
580 	h->command = cpu_to_be16(cmd);
581 	h->length  = cpu_to_be16(size);
582 	return sizeof(struct p_header80);
583 }
584 
prepare_header95(struct p_header95 * h,enum drbd_packet cmd,int size)585 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
586 {
587 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
588 	h->command = cpu_to_be16(cmd);
589 	h->length = cpu_to_be32(size);
590 	return sizeof(struct p_header95);
591 }
592 
prepare_header100(struct p_header100 * h,enum drbd_packet cmd,int size,int vnr)593 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
594 				      int size, int vnr)
595 {
596 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
597 	h->volume = cpu_to_be16(vnr);
598 	h->command = cpu_to_be16(cmd);
599 	h->length = cpu_to_be32(size);
600 	h->pad = 0;
601 	return sizeof(struct p_header100);
602 }
603 
prepare_header(struct drbd_connection * connection,int vnr,void * buffer,enum drbd_packet cmd,int size)604 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
605 				   void *buffer, enum drbd_packet cmd, int size)
606 {
607 	if (connection->agreed_pro_version >= 100)
608 		return prepare_header100(buffer, cmd, size, vnr);
609 	else if (connection->agreed_pro_version >= 95 &&
610 		 size > DRBD_MAX_SIZE_H80_PACKET)
611 		return prepare_header95(buffer, cmd, size);
612 	else
613 		return prepare_header80(buffer, cmd, size);
614 }
615 
__conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)616 static void *__conn_prepare_command(struct drbd_connection *connection,
617 				    struct drbd_socket *sock)
618 {
619 	if (!sock->socket)
620 		return NULL;
621 	return sock->sbuf + drbd_header_size(connection);
622 }
623 
conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)624 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
625 {
626 	void *p;
627 
628 	mutex_lock(&sock->mutex);
629 	p = __conn_prepare_command(connection, sock);
630 	if (!p)
631 		mutex_unlock(&sock->mutex);
632 
633 	return p;
634 }
635 
drbd_prepare_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock)636 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
637 {
638 	return conn_prepare_command(peer_device->connection, sock);
639 }
640 
__send_command(struct drbd_connection * connection,int vnr,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)641 static int __send_command(struct drbd_connection *connection, int vnr,
642 			  struct drbd_socket *sock, enum drbd_packet cmd,
643 			  unsigned int header_size, void *data,
644 			  unsigned int size)
645 {
646 	int msg_flags;
647 	int err;
648 
649 	/*
650 	 * Called with @data == NULL and the size of the data blocks in @size
651 	 * for commands that send data blocks.  For those commands, omit the
652 	 * MSG_MORE flag: this will increase the likelihood that data blocks
653 	 * which are page aligned on the sender will end up page aligned on the
654 	 * receiver.
655 	 */
656 	msg_flags = data ? MSG_MORE : 0;
657 
658 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
659 				      header_size + size);
660 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
661 			    msg_flags);
662 	if (data && !err)
663 		err = drbd_send_all(connection, sock->socket, data, size, 0);
664 	/* DRBD protocol "pings" are latency critical.
665 	 * This is supposed to trigger tcp_push_pending_frames() */
666 	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
667 		tcp_sock_set_nodelay(sock->socket->sk);
668 
669 	return err;
670 }
671 
__conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)672 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
673 			       enum drbd_packet cmd, unsigned int header_size,
674 			       void *data, unsigned int size)
675 {
676 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
677 }
678 
conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)679 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
680 		      enum drbd_packet cmd, unsigned int header_size,
681 		      void *data, unsigned int size)
682 {
683 	int err;
684 
685 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
686 	mutex_unlock(&sock->mutex);
687 	return err;
688 }
689 
drbd_send_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)690 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
691 		      enum drbd_packet cmd, unsigned int header_size,
692 		      void *data, unsigned int size)
693 {
694 	int err;
695 
696 	err = __send_command(peer_device->connection, peer_device->device->vnr,
697 			     sock, cmd, header_size, data, size);
698 	mutex_unlock(&sock->mutex);
699 	return err;
700 }
701 
drbd_send_ping(struct drbd_connection * connection)702 int drbd_send_ping(struct drbd_connection *connection)
703 {
704 	struct drbd_socket *sock;
705 
706 	sock = &connection->meta;
707 	if (!conn_prepare_command(connection, sock))
708 		return -EIO;
709 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
710 }
711 
drbd_send_ping_ack(struct drbd_connection * connection)712 int drbd_send_ping_ack(struct drbd_connection *connection)
713 {
714 	struct drbd_socket *sock;
715 
716 	sock = &connection->meta;
717 	if (!conn_prepare_command(connection, sock))
718 		return -EIO;
719 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
720 }
721 
drbd_send_sync_param(struct drbd_peer_device * peer_device)722 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
723 {
724 	struct drbd_socket *sock;
725 	struct p_rs_param_95 *p;
726 	int size;
727 	const int apv = peer_device->connection->agreed_pro_version;
728 	enum drbd_packet cmd;
729 	struct net_conf *nc;
730 	struct disk_conf *dc;
731 
732 	sock = &peer_device->connection->data;
733 	p = drbd_prepare_command(peer_device, sock);
734 	if (!p)
735 		return -EIO;
736 
737 	rcu_read_lock();
738 	nc = rcu_dereference(peer_device->connection->net_conf);
739 
740 	size = apv <= 87 ? sizeof(struct p_rs_param)
741 		: apv == 88 ? sizeof(struct p_rs_param)
742 			+ strlen(nc->verify_alg) + 1
743 		: apv <= 94 ? sizeof(struct p_rs_param_89)
744 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
745 
746 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
747 
748 	/* initialize verify_alg and csums_alg */
749 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
750 
751 	if (get_ldev(peer_device->device)) {
752 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
753 		p->resync_rate = cpu_to_be32(dc->resync_rate);
754 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
755 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
756 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
757 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
758 		put_ldev(peer_device->device);
759 	} else {
760 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
761 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
762 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
763 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
764 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
765 	}
766 
767 	if (apv >= 88)
768 		strcpy(p->verify_alg, nc->verify_alg);
769 	if (apv >= 89)
770 		strcpy(p->csums_alg, nc->csums_alg);
771 	rcu_read_unlock();
772 
773 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
774 }
775 
__drbd_send_protocol(struct drbd_connection * connection,enum drbd_packet cmd)776 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
777 {
778 	struct drbd_socket *sock;
779 	struct p_protocol *p;
780 	struct net_conf *nc;
781 	int size, cf;
782 
783 	sock = &connection->data;
784 	p = __conn_prepare_command(connection, sock);
785 	if (!p)
786 		return -EIO;
787 
788 	rcu_read_lock();
789 	nc = rcu_dereference(connection->net_conf);
790 
791 	if (nc->tentative && connection->agreed_pro_version < 92) {
792 		rcu_read_unlock();
793 		drbd_err(connection, "--dry-run is not supported by peer");
794 		return -EOPNOTSUPP;
795 	}
796 
797 	size = sizeof(*p);
798 	if (connection->agreed_pro_version >= 87)
799 		size += strlen(nc->integrity_alg) + 1;
800 
801 	p->protocol      = cpu_to_be32(nc->wire_protocol);
802 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
803 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
804 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
805 	p->two_primaries = cpu_to_be32(nc->two_primaries);
806 	cf = 0;
807 	if (nc->discard_my_data)
808 		cf |= CF_DISCARD_MY_DATA;
809 	if (nc->tentative)
810 		cf |= CF_DRY_RUN;
811 	p->conn_flags    = cpu_to_be32(cf);
812 
813 	if (connection->agreed_pro_version >= 87)
814 		strcpy(p->integrity_alg, nc->integrity_alg);
815 	rcu_read_unlock();
816 
817 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
818 }
819 
drbd_send_protocol(struct drbd_connection * connection)820 int drbd_send_protocol(struct drbd_connection *connection)
821 {
822 	int err;
823 
824 	mutex_lock(&connection->data.mutex);
825 	err = __drbd_send_protocol(connection, P_PROTOCOL);
826 	mutex_unlock(&connection->data.mutex);
827 
828 	return err;
829 }
830 
_drbd_send_uuids(struct drbd_peer_device * peer_device,u64 uuid_flags)831 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
832 {
833 	struct drbd_device *device = peer_device->device;
834 	struct drbd_socket *sock;
835 	struct p_uuids *p;
836 	int i;
837 
838 	if (!get_ldev_if_state(device, D_NEGOTIATING))
839 		return 0;
840 
841 	sock = &peer_device->connection->data;
842 	p = drbd_prepare_command(peer_device, sock);
843 	if (!p) {
844 		put_ldev(device);
845 		return -EIO;
846 	}
847 	spin_lock_irq(&device->ldev->md.uuid_lock);
848 	for (i = UI_CURRENT; i < UI_SIZE; i++)
849 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
850 	spin_unlock_irq(&device->ldev->md.uuid_lock);
851 
852 	device->comm_bm_set = drbd_bm_total_weight(device);
853 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
854 	rcu_read_lock();
855 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
856 	rcu_read_unlock();
857 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
858 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
859 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
860 
861 	put_ldev(device);
862 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
863 }
864 
drbd_send_uuids(struct drbd_peer_device * peer_device)865 int drbd_send_uuids(struct drbd_peer_device *peer_device)
866 {
867 	return _drbd_send_uuids(peer_device, 0);
868 }
869 
drbd_send_uuids_skip_initial_sync(struct drbd_peer_device * peer_device)870 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
871 {
872 	return _drbd_send_uuids(peer_device, 8);
873 }
874 
drbd_print_uuids(struct drbd_device * device,const char * text)875 void drbd_print_uuids(struct drbd_device *device, const char *text)
876 {
877 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
878 		u64 *uuid = device->ldev->md.uuid;
879 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
880 		     text,
881 		     (unsigned long long)uuid[UI_CURRENT],
882 		     (unsigned long long)uuid[UI_BITMAP],
883 		     (unsigned long long)uuid[UI_HISTORY_START],
884 		     (unsigned long long)uuid[UI_HISTORY_END]);
885 		put_ldev(device);
886 	} else {
887 		drbd_info(device, "%s effective data uuid: %016llX\n",
888 				text,
889 				(unsigned long long)device->ed_uuid);
890 	}
891 }
892 
drbd_gen_and_send_sync_uuid(struct drbd_peer_device * peer_device)893 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
894 {
895 	struct drbd_device *device = peer_device->device;
896 	struct drbd_socket *sock;
897 	struct p_rs_uuid *p;
898 	u64 uuid;
899 
900 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
901 
902 	uuid = device->ldev->md.uuid[UI_BITMAP];
903 	if (uuid && uuid != UUID_JUST_CREATED)
904 		uuid = uuid + UUID_NEW_BM_OFFSET;
905 	else
906 		get_random_bytes(&uuid, sizeof(u64));
907 	drbd_uuid_set(device, UI_BITMAP, uuid);
908 	drbd_print_uuids(device, "updated sync UUID");
909 	drbd_md_sync(device);
910 
911 	sock = &peer_device->connection->data;
912 	p = drbd_prepare_command(peer_device, sock);
913 	if (p) {
914 		p->uuid = cpu_to_be64(uuid);
915 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
916 	}
917 }
918 
919 /* communicated if (agreed_features & DRBD_FF_WSAME) */
920 static void
assign_p_sizes_qlim(struct drbd_device * device,struct p_sizes * p,struct request_queue * q)921 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
922 					struct request_queue *q)
923 {
924 	if (q) {
925 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
926 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
927 		p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
928 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
929 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
930 		p->qlim->discard_enabled = blk_queue_discard(q);
931 		p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
932 	} else {
933 		q = device->rq_queue;
934 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
935 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
936 		p->qlim->alignment_offset = 0;
937 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
938 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
939 		p->qlim->discard_enabled = 0;
940 		p->qlim->write_same_capable = 0;
941 	}
942 }
943 
drbd_send_sizes(struct drbd_peer_device * peer_device,int trigger_reply,enum dds_flags flags)944 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
945 {
946 	struct drbd_device *device = peer_device->device;
947 	struct drbd_socket *sock;
948 	struct p_sizes *p;
949 	sector_t d_size, u_size;
950 	int q_order_type;
951 	unsigned int max_bio_size;
952 	unsigned int packet_size;
953 
954 	sock = &peer_device->connection->data;
955 	p = drbd_prepare_command(peer_device, sock);
956 	if (!p)
957 		return -EIO;
958 
959 	packet_size = sizeof(*p);
960 	if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
961 		packet_size += sizeof(p->qlim[0]);
962 
963 	memset(p, 0, packet_size);
964 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
965 		struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
966 		d_size = drbd_get_max_capacity(device->ldev);
967 		rcu_read_lock();
968 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
969 		rcu_read_unlock();
970 		q_order_type = drbd_queue_order_type(device);
971 		max_bio_size = queue_max_hw_sectors(q) << 9;
972 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
973 		assign_p_sizes_qlim(device, p, q);
974 		put_ldev(device);
975 	} else {
976 		d_size = 0;
977 		u_size = 0;
978 		q_order_type = QUEUE_ORDERED_NONE;
979 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
980 		assign_p_sizes_qlim(device, p, NULL);
981 	}
982 
983 	if (peer_device->connection->agreed_pro_version <= 94)
984 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
985 	else if (peer_device->connection->agreed_pro_version < 100)
986 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
987 
988 	p->d_size = cpu_to_be64(d_size);
989 	p->u_size = cpu_to_be64(u_size);
990 	if (trigger_reply)
991 		p->c_size = 0;
992 	else
993 		p->c_size = cpu_to_be64(get_capacity(device->vdisk));
994 	p->max_bio_size = cpu_to_be32(max_bio_size);
995 	p->queue_order_type = cpu_to_be16(q_order_type);
996 	p->dds_flags = cpu_to_be16(flags);
997 
998 	return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
999 }
1000 
1001 /**
1002  * drbd_send_current_state() - Sends the drbd state to the peer
1003  * @peer_device:	DRBD peer device.
1004  */
drbd_send_current_state(struct drbd_peer_device * peer_device)1005 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1006 {
1007 	struct drbd_socket *sock;
1008 	struct p_state *p;
1009 
1010 	sock = &peer_device->connection->data;
1011 	p = drbd_prepare_command(peer_device, sock);
1012 	if (!p)
1013 		return -EIO;
1014 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1015 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1016 }
1017 
1018 /**
1019  * drbd_send_state() - After a state change, sends the new state to the peer
1020  * @peer_device:      DRBD peer device.
1021  * @state:     the state to send, not necessarily the current state.
1022  *
1023  * Each state change queues an "after_state_ch" work, which will eventually
1024  * send the resulting new state to the peer. If more state changes happen
1025  * between queuing and processing of the after_state_ch work, we still
1026  * want to send each intermediary state in the order it occurred.
1027  */
drbd_send_state(struct drbd_peer_device * peer_device,union drbd_state state)1028 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1029 {
1030 	struct drbd_socket *sock;
1031 	struct p_state *p;
1032 
1033 	sock = &peer_device->connection->data;
1034 	p = drbd_prepare_command(peer_device, sock);
1035 	if (!p)
1036 		return -EIO;
1037 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1038 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1039 }
1040 
drbd_send_state_req(struct drbd_peer_device * peer_device,union drbd_state mask,union drbd_state val)1041 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1042 {
1043 	struct drbd_socket *sock;
1044 	struct p_req_state *p;
1045 
1046 	sock = &peer_device->connection->data;
1047 	p = drbd_prepare_command(peer_device, sock);
1048 	if (!p)
1049 		return -EIO;
1050 	p->mask = cpu_to_be32(mask.i);
1051 	p->val = cpu_to_be32(val.i);
1052 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1053 }
1054 
conn_send_state_req(struct drbd_connection * connection,union drbd_state mask,union drbd_state val)1055 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1056 {
1057 	enum drbd_packet cmd;
1058 	struct drbd_socket *sock;
1059 	struct p_req_state *p;
1060 
1061 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1062 	sock = &connection->data;
1063 	p = conn_prepare_command(connection, sock);
1064 	if (!p)
1065 		return -EIO;
1066 	p->mask = cpu_to_be32(mask.i);
1067 	p->val = cpu_to_be32(val.i);
1068 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1069 }
1070 
drbd_send_sr_reply(struct drbd_peer_device * peer_device,enum drbd_state_rv retcode)1071 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1072 {
1073 	struct drbd_socket *sock;
1074 	struct p_req_state_reply *p;
1075 
1076 	sock = &peer_device->connection->meta;
1077 	p = drbd_prepare_command(peer_device, sock);
1078 	if (p) {
1079 		p->retcode = cpu_to_be32(retcode);
1080 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1081 	}
1082 }
1083 
conn_send_sr_reply(struct drbd_connection * connection,enum drbd_state_rv retcode)1084 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1085 {
1086 	struct drbd_socket *sock;
1087 	struct p_req_state_reply *p;
1088 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1089 
1090 	sock = &connection->meta;
1091 	p = conn_prepare_command(connection, sock);
1092 	if (p) {
1093 		p->retcode = cpu_to_be32(retcode);
1094 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1095 	}
1096 }
1097 
dcbp_set_code(struct p_compressed_bm * p,enum drbd_bitmap_code code)1098 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1099 {
1100 	BUG_ON(code & ~0xf);
1101 	p->encoding = (p->encoding & ~0xf) | code;
1102 }
1103 
dcbp_set_start(struct p_compressed_bm * p,int set)1104 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1105 {
1106 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1107 }
1108 
dcbp_set_pad_bits(struct p_compressed_bm * p,int n)1109 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1110 {
1111 	BUG_ON(n & ~0x7);
1112 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1113 }
1114 
fill_bitmap_rle_bits(struct drbd_device * device,struct p_compressed_bm * p,unsigned int size,struct bm_xfer_ctx * c)1115 static int fill_bitmap_rle_bits(struct drbd_device *device,
1116 			 struct p_compressed_bm *p,
1117 			 unsigned int size,
1118 			 struct bm_xfer_ctx *c)
1119 {
1120 	struct bitstream bs;
1121 	unsigned long plain_bits;
1122 	unsigned long tmp;
1123 	unsigned long rl;
1124 	unsigned len;
1125 	unsigned toggle;
1126 	int bits, use_rle;
1127 
1128 	/* may we use this feature? */
1129 	rcu_read_lock();
1130 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1131 	rcu_read_unlock();
1132 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1133 		return 0;
1134 
1135 	if (c->bit_offset >= c->bm_bits)
1136 		return 0; /* nothing to do. */
1137 
1138 	/* use at most thus many bytes */
1139 	bitstream_init(&bs, p->code, size, 0);
1140 	memset(p->code, 0, size);
1141 	/* plain bits covered in this code string */
1142 	plain_bits = 0;
1143 
1144 	/* p->encoding & 0x80 stores whether the first run length is set.
1145 	 * bit offset is implicit.
1146 	 * start with toggle == 2 to be able to tell the first iteration */
1147 	toggle = 2;
1148 
1149 	/* see how much plain bits we can stuff into one packet
1150 	 * using RLE and VLI. */
1151 	do {
1152 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1153 				    : _drbd_bm_find_next(device, c->bit_offset);
1154 		if (tmp == -1UL)
1155 			tmp = c->bm_bits;
1156 		rl = tmp - c->bit_offset;
1157 
1158 		if (toggle == 2) { /* first iteration */
1159 			if (rl == 0) {
1160 				/* the first checked bit was set,
1161 				 * store start value, */
1162 				dcbp_set_start(p, 1);
1163 				/* but skip encoding of zero run length */
1164 				toggle = !toggle;
1165 				continue;
1166 			}
1167 			dcbp_set_start(p, 0);
1168 		}
1169 
1170 		/* paranoia: catch zero runlength.
1171 		 * can only happen if bitmap is modified while we scan it. */
1172 		if (rl == 0) {
1173 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1174 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1175 			return -1;
1176 		}
1177 
1178 		bits = vli_encode_bits(&bs, rl);
1179 		if (bits == -ENOBUFS) /* buffer full */
1180 			break;
1181 		if (bits <= 0) {
1182 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1183 			return 0;
1184 		}
1185 
1186 		toggle = !toggle;
1187 		plain_bits += rl;
1188 		c->bit_offset = tmp;
1189 	} while (c->bit_offset < c->bm_bits);
1190 
1191 	len = bs.cur.b - p->code + !!bs.cur.bit;
1192 
1193 	if (plain_bits < (len << 3)) {
1194 		/* incompressible with this method.
1195 		 * we need to rewind both word and bit position. */
1196 		c->bit_offset -= plain_bits;
1197 		bm_xfer_ctx_bit_to_word_offset(c);
1198 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1199 		return 0;
1200 	}
1201 
1202 	/* RLE + VLI was able to compress it just fine.
1203 	 * update c->word_offset. */
1204 	bm_xfer_ctx_bit_to_word_offset(c);
1205 
1206 	/* store pad_bits */
1207 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1208 
1209 	return len;
1210 }
1211 
1212 /**
1213  * send_bitmap_rle_or_plain
1214  *
1215  * Return 0 when done, 1 when another iteration is needed, and a negative error
1216  * code upon failure.
1217  */
1218 static int
send_bitmap_rle_or_plain(struct drbd_device * device,struct bm_xfer_ctx * c)1219 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1220 {
1221 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1222 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1223 	struct p_compressed_bm *p = sock->sbuf + header_size;
1224 	int len, err;
1225 
1226 	len = fill_bitmap_rle_bits(device, p,
1227 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1228 	if (len < 0)
1229 		return -EIO;
1230 
1231 	if (len) {
1232 		dcbp_set_code(p, RLE_VLI_Bits);
1233 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1234 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1235 				     NULL, 0);
1236 		c->packets[0]++;
1237 		c->bytes[0] += header_size + sizeof(*p) + len;
1238 
1239 		if (c->bit_offset >= c->bm_bits)
1240 			len = 0; /* DONE */
1241 	} else {
1242 		/* was not compressible.
1243 		 * send a buffer full of plain text bits instead. */
1244 		unsigned int data_size;
1245 		unsigned long num_words;
1246 		unsigned long *p = sock->sbuf + header_size;
1247 
1248 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1249 		num_words = min_t(size_t, data_size / sizeof(*p),
1250 				  c->bm_words - c->word_offset);
1251 		len = num_words * sizeof(*p);
1252 		if (len)
1253 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1254 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1255 		c->word_offset += num_words;
1256 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1257 
1258 		c->packets[1]++;
1259 		c->bytes[1] += header_size + len;
1260 
1261 		if (c->bit_offset > c->bm_bits)
1262 			c->bit_offset = c->bm_bits;
1263 	}
1264 	if (!err) {
1265 		if (len == 0) {
1266 			INFO_bm_xfer_stats(device, "send", c);
1267 			return 0;
1268 		} else
1269 			return 1;
1270 	}
1271 	return -EIO;
1272 }
1273 
1274 /* See the comment at receive_bitmap() */
_drbd_send_bitmap(struct drbd_device * device)1275 static int _drbd_send_bitmap(struct drbd_device *device)
1276 {
1277 	struct bm_xfer_ctx c;
1278 	int err;
1279 
1280 	if (!expect(device->bitmap))
1281 		return false;
1282 
1283 	if (get_ldev(device)) {
1284 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1285 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1286 			drbd_bm_set_all(device);
1287 			if (drbd_bm_write(device)) {
1288 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1289 				 * but otherwise process as per normal - need to tell other
1290 				 * side that a full resync is required! */
1291 				drbd_err(device, "Failed to write bitmap to disk!\n");
1292 			} else {
1293 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1294 				drbd_md_sync(device);
1295 			}
1296 		}
1297 		put_ldev(device);
1298 	}
1299 
1300 	c = (struct bm_xfer_ctx) {
1301 		.bm_bits = drbd_bm_bits(device),
1302 		.bm_words = drbd_bm_words(device),
1303 	};
1304 
1305 	do {
1306 		err = send_bitmap_rle_or_plain(device, &c);
1307 	} while (err > 0);
1308 
1309 	return err == 0;
1310 }
1311 
drbd_send_bitmap(struct drbd_device * device)1312 int drbd_send_bitmap(struct drbd_device *device)
1313 {
1314 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1315 	int err = -1;
1316 
1317 	mutex_lock(&sock->mutex);
1318 	if (sock->socket)
1319 		err = !_drbd_send_bitmap(device);
1320 	mutex_unlock(&sock->mutex);
1321 	return err;
1322 }
1323 
drbd_send_b_ack(struct drbd_connection * connection,u32 barrier_nr,u32 set_size)1324 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1325 {
1326 	struct drbd_socket *sock;
1327 	struct p_barrier_ack *p;
1328 
1329 	if (connection->cstate < C_WF_REPORT_PARAMS)
1330 		return;
1331 
1332 	sock = &connection->meta;
1333 	p = conn_prepare_command(connection, sock);
1334 	if (!p)
1335 		return;
1336 	p->barrier = barrier_nr;
1337 	p->set_size = cpu_to_be32(set_size);
1338 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1339 }
1340 
1341 /**
1342  * _drbd_send_ack() - Sends an ack packet
1343  * @device:	DRBD device.
1344  * @cmd:	Packet command code.
1345  * @sector:	sector, needs to be in big endian byte order
1346  * @blksize:	size in byte, needs to be in big endian byte order
1347  * @block_id:	Id, big endian byte order
1348  */
_drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,u64 sector,u32 blksize,u64 block_id)1349 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1350 			  u64 sector, u32 blksize, u64 block_id)
1351 {
1352 	struct drbd_socket *sock;
1353 	struct p_block_ack *p;
1354 
1355 	if (peer_device->device->state.conn < C_CONNECTED)
1356 		return -EIO;
1357 
1358 	sock = &peer_device->connection->meta;
1359 	p = drbd_prepare_command(peer_device, sock);
1360 	if (!p)
1361 		return -EIO;
1362 	p->sector = sector;
1363 	p->block_id = block_id;
1364 	p->blksize = blksize;
1365 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1366 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1367 }
1368 
1369 /* dp->sector and dp->block_id already/still in network byte order,
1370  * data_size is payload size according to dp->head,
1371  * and may need to be corrected for digest size. */
drbd_send_ack_dp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_data * dp,int data_size)1372 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1373 		      struct p_data *dp, int data_size)
1374 {
1375 	if (peer_device->connection->peer_integrity_tfm)
1376 		data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1377 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1378 		       dp->block_id);
1379 }
1380 
drbd_send_ack_rp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_block_req * rp)1381 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1382 		      struct p_block_req *rp)
1383 {
1384 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1385 }
1386 
1387 /**
1388  * drbd_send_ack() - Sends an ack packet
1389  * @device:	DRBD device
1390  * @cmd:	packet command code
1391  * @peer_req:	peer request
1392  */
drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1393 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1394 		  struct drbd_peer_request *peer_req)
1395 {
1396 	return _drbd_send_ack(peer_device, cmd,
1397 			      cpu_to_be64(peer_req->i.sector),
1398 			      cpu_to_be32(peer_req->i.size),
1399 			      peer_req->block_id);
1400 }
1401 
1402 /* This function misuses the block_id field to signal if the blocks
1403  * are is sync or not. */
drbd_send_ack_ex(struct drbd_peer_device * peer_device,enum drbd_packet cmd,sector_t sector,int blksize,u64 block_id)1404 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1405 		     sector_t sector, int blksize, u64 block_id)
1406 {
1407 	return _drbd_send_ack(peer_device, cmd,
1408 			      cpu_to_be64(sector),
1409 			      cpu_to_be32(blksize),
1410 			      cpu_to_be64(block_id));
1411 }
1412 
drbd_send_rs_deallocated(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1413 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1414 			     struct drbd_peer_request *peer_req)
1415 {
1416 	struct drbd_socket *sock;
1417 	struct p_block_desc *p;
1418 
1419 	sock = &peer_device->connection->data;
1420 	p = drbd_prepare_command(peer_device, sock);
1421 	if (!p)
1422 		return -EIO;
1423 	p->sector = cpu_to_be64(peer_req->i.sector);
1424 	p->blksize = cpu_to_be32(peer_req->i.size);
1425 	p->pad = 0;
1426 	return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1427 }
1428 
drbd_send_drequest(struct drbd_peer_device * peer_device,int cmd,sector_t sector,int size,u64 block_id)1429 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1430 		       sector_t sector, int size, u64 block_id)
1431 {
1432 	struct drbd_socket *sock;
1433 	struct p_block_req *p;
1434 
1435 	sock = &peer_device->connection->data;
1436 	p = drbd_prepare_command(peer_device, sock);
1437 	if (!p)
1438 		return -EIO;
1439 	p->sector = cpu_to_be64(sector);
1440 	p->block_id = block_id;
1441 	p->blksize = cpu_to_be32(size);
1442 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1443 }
1444 
drbd_send_drequest_csum(struct drbd_peer_device * peer_device,sector_t sector,int size,void * digest,int digest_size,enum drbd_packet cmd)1445 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1446 			    void *digest, int digest_size, enum drbd_packet cmd)
1447 {
1448 	struct drbd_socket *sock;
1449 	struct p_block_req *p;
1450 
1451 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1452 
1453 	sock = &peer_device->connection->data;
1454 	p = drbd_prepare_command(peer_device, sock);
1455 	if (!p)
1456 		return -EIO;
1457 	p->sector = cpu_to_be64(sector);
1458 	p->block_id = ID_SYNCER /* unused */;
1459 	p->blksize = cpu_to_be32(size);
1460 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1461 }
1462 
drbd_send_ov_request(struct drbd_peer_device * peer_device,sector_t sector,int size)1463 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1464 {
1465 	struct drbd_socket *sock;
1466 	struct p_block_req *p;
1467 
1468 	sock = &peer_device->connection->data;
1469 	p = drbd_prepare_command(peer_device, sock);
1470 	if (!p)
1471 		return -EIO;
1472 	p->sector = cpu_to_be64(sector);
1473 	p->block_id = ID_SYNCER /* unused */;
1474 	p->blksize = cpu_to_be32(size);
1475 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1476 }
1477 
1478 /* called on sndtimeo
1479  * returns false if we should retry,
1480  * true if we think connection is dead
1481  */
we_should_drop_the_connection(struct drbd_connection * connection,struct socket * sock)1482 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1483 {
1484 	int drop_it;
1485 	/* long elapsed = (long)(jiffies - device->last_received); */
1486 
1487 	drop_it =   connection->meta.socket == sock
1488 		|| !connection->ack_receiver.task
1489 		|| get_t_state(&connection->ack_receiver) != RUNNING
1490 		|| connection->cstate < C_WF_REPORT_PARAMS;
1491 
1492 	if (drop_it)
1493 		return true;
1494 
1495 	drop_it = !--connection->ko_count;
1496 	if (!drop_it) {
1497 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1498 			 current->comm, current->pid, connection->ko_count);
1499 		request_ping(connection);
1500 	}
1501 
1502 	return drop_it; /* && (device->state == R_PRIMARY) */;
1503 }
1504 
drbd_update_congested(struct drbd_connection * connection)1505 static void drbd_update_congested(struct drbd_connection *connection)
1506 {
1507 	struct sock *sk = connection->data.socket->sk;
1508 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1509 		set_bit(NET_CONGESTED, &connection->flags);
1510 }
1511 
1512 /* The idea of sendpage seems to be to put some kind of reference
1513  * to the page into the skb, and to hand it over to the NIC. In
1514  * this process get_page() gets called.
1515  *
1516  * As soon as the page was really sent over the network put_page()
1517  * gets called by some part of the network layer. [ NIC driver? ]
1518  *
1519  * [ get_page() / put_page() increment/decrement the count. If count
1520  *   reaches 0 the page will be freed. ]
1521  *
1522  * This works nicely with pages from FSs.
1523  * But this means that in protocol A we might signal IO completion too early!
1524  *
1525  * In order not to corrupt data during a resync we must make sure
1526  * that we do not reuse our own buffer pages (EEs) to early, therefore
1527  * we have the net_ee list.
1528  *
1529  * XFS seems to have problems, still, it submits pages with page_count == 0!
1530  * As a workaround, we disable sendpage on pages
1531  * with page_count == 0 or PageSlab.
1532  */
_drbd_no_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1533 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1534 			      int offset, size_t size, unsigned msg_flags)
1535 {
1536 	struct socket *socket;
1537 	void *addr;
1538 	int err;
1539 
1540 	socket = peer_device->connection->data.socket;
1541 	addr = kmap(page) + offset;
1542 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1543 	kunmap(page);
1544 	if (!err)
1545 		peer_device->device->send_cnt += size >> 9;
1546 	return err;
1547 }
1548 
_drbd_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1549 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1550 		    int offset, size_t size, unsigned msg_flags)
1551 {
1552 	struct socket *socket = peer_device->connection->data.socket;
1553 	int len = size;
1554 	int err = -EIO;
1555 
1556 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1557 	 * page_count of 0 and/or have PageSlab() set.
1558 	 * we cannot use send_page for those, as that does get_page();
1559 	 * put_page(); and would cause either a VM_BUG directly, or
1560 	 * __page_cache_release a page that would actually still be referenced
1561 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1562 	if (drbd_disable_sendpage || !sendpage_ok(page))
1563 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1564 
1565 	msg_flags |= MSG_NOSIGNAL;
1566 	drbd_update_congested(peer_device->connection);
1567 	do {
1568 		int sent;
1569 
1570 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1571 		if (sent <= 0) {
1572 			if (sent == -EAGAIN) {
1573 				if (we_should_drop_the_connection(peer_device->connection, socket))
1574 					break;
1575 				continue;
1576 			}
1577 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1578 			     __func__, (int)size, len, sent);
1579 			if (sent < 0)
1580 				err = sent;
1581 			break;
1582 		}
1583 		len    -= sent;
1584 		offset += sent;
1585 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1586 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1587 
1588 	if (len == 0) {
1589 		err = 0;
1590 		peer_device->device->send_cnt += size >> 9;
1591 	}
1592 	return err;
1593 }
1594 
_drbd_send_bio(struct drbd_peer_device * peer_device,struct bio * bio)1595 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1596 {
1597 	struct bio_vec bvec;
1598 	struct bvec_iter iter;
1599 
1600 	/* hint all but last page with MSG_MORE */
1601 	bio_for_each_segment(bvec, bio, iter) {
1602 		int err;
1603 
1604 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1605 					 bvec.bv_offset, bvec.bv_len,
1606 					 bio_iter_last(bvec, iter)
1607 					 ? 0 : MSG_MORE);
1608 		if (err)
1609 			return err;
1610 		/* REQ_OP_WRITE_SAME has only one segment */
1611 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1612 			break;
1613 	}
1614 	return 0;
1615 }
1616 
_drbd_send_zc_bio(struct drbd_peer_device * peer_device,struct bio * bio)1617 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1618 {
1619 	struct bio_vec bvec;
1620 	struct bvec_iter iter;
1621 
1622 	/* hint all but last page with MSG_MORE */
1623 	bio_for_each_segment(bvec, bio, iter) {
1624 		int err;
1625 
1626 		err = _drbd_send_page(peer_device, bvec.bv_page,
1627 				      bvec.bv_offset, bvec.bv_len,
1628 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1629 		if (err)
1630 			return err;
1631 		/* REQ_OP_WRITE_SAME has only one segment */
1632 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1633 			break;
1634 	}
1635 	return 0;
1636 }
1637 
_drbd_send_zc_ee(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1638 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1639 			    struct drbd_peer_request *peer_req)
1640 {
1641 	struct page *page = peer_req->pages;
1642 	unsigned len = peer_req->i.size;
1643 	int err;
1644 
1645 	/* hint all but last page with MSG_MORE */
1646 	page_chain_for_each(page) {
1647 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1648 
1649 		err = _drbd_send_page(peer_device, page, 0, l,
1650 				      page_chain_next(page) ? MSG_MORE : 0);
1651 		if (err)
1652 			return err;
1653 		len -= l;
1654 	}
1655 	return 0;
1656 }
1657 
bio_flags_to_wire(struct drbd_connection * connection,struct bio * bio)1658 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1659 			     struct bio *bio)
1660 {
1661 	if (connection->agreed_pro_version >= 95)
1662 		return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1663 			(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1664 			(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1665 			(bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1666 			(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1667 			(bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1668 			  ((connection->agreed_features & DRBD_FF_WZEROES) ?
1669 			   (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1670 			   : DP_DISCARD)
1671 			: 0);
1672 	else
1673 		return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1674 }
1675 
1676 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1677  * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1678  */
drbd_send_dblock(struct drbd_peer_device * peer_device,struct drbd_request * req)1679 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1680 {
1681 	struct drbd_device *device = peer_device->device;
1682 	struct drbd_socket *sock;
1683 	struct p_data *p;
1684 	struct p_wsame *wsame = NULL;
1685 	void *digest_out;
1686 	unsigned int dp_flags = 0;
1687 	int digest_size;
1688 	int err;
1689 
1690 	sock = &peer_device->connection->data;
1691 	p = drbd_prepare_command(peer_device, sock);
1692 	digest_size = peer_device->connection->integrity_tfm ?
1693 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1694 
1695 	if (!p)
1696 		return -EIO;
1697 	p->sector = cpu_to_be64(req->i.sector);
1698 	p->block_id = (unsigned long)req;
1699 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1700 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1701 	if (device->state.conn >= C_SYNC_SOURCE &&
1702 	    device->state.conn <= C_PAUSED_SYNC_T)
1703 		dp_flags |= DP_MAY_SET_IN_SYNC;
1704 	if (peer_device->connection->agreed_pro_version >= 100) {
1705 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1706 			dp_flags |= DP_SEND_RECEIVE_ACK;
1707 		/* During resync, request an explicit write ack,
1708 		 * even in protocol != C */
1709 		if (req->rq_state & RQ_EXP_WRITE_ACK
1710 		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1711 			dp_flags |= DP_SEND_WRITE_ACK;
1712 	}
1713 	p->dp_flags = cpu_to_be32(dp_flags);
1714 
1715 	if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1716 		enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1717 		struct p_trim *t = (struct p_trim*)p;
1718 		t->size = cpu_to_be32(req->i.size);
1719 		err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1720 		goto out;
1721 	}
1722 	if (dp_flags & DP_WSAME) {
1723 		/* this will only work if DRBD_FF_WSAME is set AND the
1724 		 * handshake agreed that all nodes and backend devices are
1725 		 * WRITE_SAME capable and agree on logical_block_size */
1726 		wsame = (struct p_wsame*)p;
1727 		digest_out = wsame + 1;
1728 		wsame->size = cpu_to_be32(req->i.size);
1729 	} else
1730 		digest_out = p + 1;
1731 
1732 	/* our digest is still only over the payload.
1733 	 * TRIM does not carry any payload. */
1734 	if (digest_size)
1735 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1736 	if (wsame) {
1737 		err =
1738 		    __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1739 				   sizeof(*wsame) + digest_size, NULL,
1740 				   bio_iovec(req->master_bio).bv_len);
1741 	} else
1742 		err =
1743 		    __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1744 				   sizeof(*p) + digest_size, NULL, req->i.size);
1745 	if (!err) {
1746 		/* For protocol A, we have to memcpy the payload into
1747 		 * socket buffers, as we may complete right away
1748 		 * as soon as we handed it over to tcp, at which point the data
1749 		 * pages may become invalid.
1750 		 *
1751 		 * For data-integrity enabled, we copy it as well, so we can be
1752 		 * sure that even if the bio pages may still be modified, it
1753 		 * won't change the data on the wire, thus if the digest checks
1754 		 * out ok after sending on this side, but does not fit on the
1755 		 * receiving side, we sure have detected corruption elsewhere.
1756 		 */
1757 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1758 			err = _drbd_send_bio(peer_device, req->master_bio);
1759 		else
1760 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1761 
1762 		/* double check digest, sometimes buffers have been modified in flight. */
1763 		if (digest_size > 0 && digest_size <= 64) {
1764 			/* 64 byte, 512 bit, is the largest digest size
1765 			 * currently supported in kernel crypto. */
1766 			unsigned char digest[64];
1767 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1768 			if (memcmp(p + 1, digest, digest_size)) {
1769 				drbd_warn(device,
1770 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1771 					(unsigned long long)req->i.sector, req->i.size);
1772 			}
1773 		} /* else if (digest_size > 64) {
1774 		     ... Be noisy about digest too large ...
1775 		} */
1776 	}
1777 out:
1778 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1779 
1780 	return err;
1781 }
1782 
1783 /* answer packet, used to send data back for read requests:
1784  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1785  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1786  */
drbd_send_block(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1787 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1788 		    struct drbd_peer_request *peer_req)
1789 {
1790 	struct drbd_device *device = peer_device->device;
1791 	struct drbd_socket *sock;
1792 	struct p_data *p;
1793 	int err;
1794 	int digest_size;
1795 
1796 	sock = &peer_device->connection->data;
1797 	p = drbd_prepare_command(peer_device, sock);
1798 
1799 	digest_size = peer_device->connection->integrity_tfm ?
1800 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1801 
1802 	if (!p)
1803 		return -EIO;
1804 	p->sector = cpu_to_be64(peer_req->i.sector);
1805 	p->block_id = peer_req->block_id;
1806 	p->seq_num = 0;  /* unused */
1807 	p->dp_flags = 0;
1808 	if (digest_size)
1809 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1810 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1811 	if (!err)
1812 		err = _drbd_send_zc_ee(peer_device, peer_req);
1813 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1814 
1815 	return err;
1816 }
1817 
drbd_send_out_of_sync(struct drbd_peer_device * peer_device,struct drbd_request * req)1818 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1819 {
1820 	struct drbd_socket *sock;
1821 	struct p_block_desc *p;
1822 
1823 	sock = &peer_device->connection->data;
1824 	p = drbd_prepare_command(peer_device, sock);
1825 	if (!p)
1826 		return -EIO;
1827 	p->sector = cpu_to_be64(req->i.sector);
1828 	p->blksize = cpu_to_be32(req->i.size);
1829 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1830 }
1831 
1832 /*
1833   drbd_send distinguishes two cases:
1834 
1835   Packets sent via the data socket "sock"
1836   and packets sent via the meta data socket "msock"
1837 
1838 		    sock                      msock
1839   -----------------+-------------------------+------------------------------
1840   timeout           conf.timeout / 2          conf.timeout / 2
1841   timeout action    send a ping via msock     Abort communication
1842 					      and close all sockets
1843 */
1844 
1845 /*
1846  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1847  */
drbd_send(struct drbd_connection * connection,struct socket * sock,void * buf,size_t size,unsigned msg_flags)1848 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1849 	      void *buf, size_t size, unsigned msg_flags)
1850 {
1851 	struct kvec iov = {.iov_base = buf, .iov_len = size};
1852 	struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1853 	int rv, sent = 0;
1854 
1855 	if (!sock)
1856 		return -EBADR;
1857 
1858 	/* THINK  if (signal_pending) return ... ? */
1859 
1860 	iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1861 
1862 	if (sock == connection->data.socket) {
1863 		rcu_read_lock();
1864 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1865 		rcu_read_unlock();
1866 		drbd_update_congested(connection);
1867 	}
1868 	do {
1869 		rv = sock_sendmsg(sock, &msg);
1870 		if (rv == -EAGAIN) {
1871 			if (we_should_drop_the_connection(connection, sock))
1872 				break;
1873 			else
1874 				continue;
1875 		}
1876 		if (rv == -EINTR) {
1877 			flush_signals(current);
1878 			rv = 0;
1879 		}
1880 		if (rv < 0)
1881 			break;
1882 		sent += rv;
1883 	} while (sent < size);
1884 
1885 	if (sock == connection->data.socket)
1886 		clear_bit(NET_CONGESTED, &connection->flags);
1887 
1888 	if (rv <= 0) {
1889 		if (rv != -EAGAIN) {
1890 			drbd_err(connection, "%s_sendmsg returned %d\n",
1891 				 sock == connection->meta.socket ? "msock" : "sock",
1892 				 rv);
1893 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1894 		} else
1895 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1896 	}
1897 
1898 	return sent;
1899 }
1900 
1901 /**
1902  * drbd_send_all  -  Send an entire buffer
1903  *
1904  * Returns 0 upon success and a negative error value otherwise.
1905  */
drbd_send_all(struct drbd_connection * connection,struct socket * sock,void * buffer,size_t size,unsigned msg_flags)1906 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1907 		  size_t size, unsigned msg_flags)
1908 {
1909 	int err;
1910 
1911 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1912 	if (err < 0)
1913 		return err;
1914 	if (err != size)
1915 		return -EIO;
1916 	return 0;
1917 }
1918 
drbd_open(struct block_device * bdev,fmode_t mode)1919 static int drbd_open(struct block_device *bdev, fmode_t mode)
1920 {
1921 	struct drbd_device *device = bdev->bd_disk->private_data;
1922 	unsigned long flags;
1923 	int rv = 0;
1924 
1925 	mutex_lock(&drbd_main_mutex);
1926 	spin_lock_irqsave(&device->resource->req_lock, flags);
1927 	/* to have a stable device->state.role
1928 	 * and no race with updating open_cnt */
1929 
1930 	if (device->state.role != R_PRIMARY) {
1931 		if (mode & FMODE_WRITE)
1932 			rv = -EROFS;
1933 		else if (!drbd_allow_oos)
1934 			rv = -EMEDIUMTYPE;
1935 	}
1936 
1937 	if (!rv)
1938 		device->open_cnt++;
1939 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1940 	mutex_unlock(&drbd_main_mutex);
1941 
1942 	return rv;
1943 }
1944 
drbd_release(struct gendisk * gd,fmode_t mode)1945 static void drbd_release(struct gendisk *gd, fmode_t mode)
1946 {
1947 	struct drbd_device *device = gd->private_data;
1948 	mutex_lock(&drbd_main_mutex);
1949 	device->open_cnt--;
1950 	mutex_unlock(&drbd_main_mutex);
1951 }
1952 
1953 /* need to hold resource->req_lock */
drbd_queue_unplug(struct drbd_device * device)1954 void drbd_queue_unplug(struct drbd_device *device)
1955 {
1956 	if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1957 		D_ASSERT(device, device->state.role == R_PRIMARY);
1958 		if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1959 			drbd_queue_work_if_unqueued(
1960 				&first_peer_device(device)->connection->sender_work,
1961 				&device->unplug_work);
1962 		}
1963 	}
1964 }
1965 
drbd_set_defaults(struct drbd_device * device)1966 static void drbd_set_defaults(struct drbd_device *device)
1967 {
1968 	/* Beware! The actual layout differs
1969 	 * between big endian and little endian */
1970 	device->state = (union drbd_dev_state) {
1971 		{ .role = R_SECONDARY,
1972 		  .peer = R_UNKNOWN,
1973 		  .conn = C_STANDALONE,
1974 		  .disk = D_DISKLESS,
1975 		  .pdsk = D_UNKNOWN,
1976 		} };
1977 }
1978 
drbd_init_set_defaults(struct drbd_device * device)1979 void drbd_init_set_defaults(struct drbd_device *device)
1980 {
1981 	/* the memset(,0,) did most of this.
1982 	 * note: only assignments, no allocation in here */
1983 
1984 	drbd_set_defaults(device);
1985 
1986 	atomic_set(&device->ap_bio_cnt, 0);
1987 	atomic_set(&device->ap_actlog_cnt, 0);
1988 	atomic_set(&device->ap_pending_cnt, 0);
1989 	atomic_set(&device->rs_pending_cnt, 0);
1990 	atomic_set(&device->unacked_cnt, 0);
1991 	atomic_set(&device->local_cnt, 0);
1992 	atomic_set(&device->pp_in_use_by_net, 0);
1993 	atomic_set(&device->rs_sect_in, 0);
1994 	atomic_set(&device->rs_sect_ev, 0);
1995 	atomic_set(&device->ap_in_flight, 0);
1996 	atomic_set(&device->md_io.in_use, 0);
1997 
1998 	mutex_init(&device->own_state_mutex);
1999 	device->state_mutex = &device->own_state_mutex;
2000 
2001 	spin_lock_init(&device->al_lock);
2002 	spin_lock_init(&device->peer_seq_lock);
2003 
2004 	INIT_LIST_HEAD(&device->active_ee);
2005 	INIT_LIST_HEAD(&device->sync_ee);
2006 	INIT_LIST_HEAD(&device->done_ee);
2007 	INIT_LIST_HEAD(&device->read_ee);
2008 	INIT_LIST_HEAD(&device->net_ee);
2009 	INIT_LIST_HEAD(&device->resync_reads);
2010 	INIT_LIST_HEAD(&device->resync_work.list);
2011 	INIT_LIST_HEAD(&device->unplug_work.list);
2012 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
2013 	INIT_LIST_HEAD(&device->pending_master_completion[0]);
2014 	INIT_LIST_HEAD(&device->pending_master_completion[1]);
2015 	INIT_LIST_HEAD(&device->pending_completion[0]);
2016 	INIT_LIST_HEAD(&device->pending_completion[1]);
2017 
2018 	device->resync_work.cb  = w_resync_timer;
2019 	device->unplug_work.cb  = w_send_write_hint;
2020 	device->bm_io_work.w.cb = w_bitmap_io;
2021 
2022 	timer_setup(&device->resync_timer, resync_timer_fn, 0);
2023 	timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2024 	timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2025 	timer_setup(&device->request_timer, request_timer_fn, 0);
2026 
2027 	init_waitqueue_head(&device->misc_wait);
2028 	init_waitqueue_head(&device->state_wait);
2029 	init_waitqueue_head(&device->ee_wait);
2030 	init_waitqueue_head(&device->al_wait);
2031 	init_waitqueue_head(&device->seq_wait);
2032 
2033 	device->resync_wenr = LC_FREE;
2034 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2035 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2036 }
2037 
drbd_set_my_capacity(struct drbd_device * device,sector_t size)2038 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2039 {
2040 	char ppb[10];
2041 
2042 	set_capacity(device->vdisk, size);
2043 	revalidate_disk_size(device->vdisk, false);
2044 
2045 	drbd_info(device, "size = %s (%llu KB)\n",
2046 		ppsize(ppb, size>>1), (unsigned long long)size>>1);
2047 }
2048 
drbd_device_cleanup(struct drbd_device * device)2049 void drbd_device_cleanup(struct drbd_device *device)
2050 {
2051 	int i;
2052 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
2053 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2054 				first_peer_device(device)->connection->receiver.t_state);
2055 
2056 	device->al_writ_cnt  =
2057 	device->bm_writ_cnt  =
2058 	device->read_cnt     =
2059 	device->recv_cnt     =
2060 	device->send_cnt     =
2061 	device->writ_cnt     =
2062 	device->p_size       =
2063 	device->rs_start     =
2064 	device->rs_total     =
2065 	device->rs_failed    = 0;
2066 	device->rs_last_events = 0;
2067 	device->rs_last_sect_ev = 0;
2068 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2069 		device->rs_mark_left[i] = 0;
2070 		device->rs_mark_time[i] = 0;
2071 	}
2072 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2073 
2074 	set_capacity(device->vdisk, 0);
2075 	revalidate_disk_size(device->vdisk, false);
2076 	if (device->bitmap) {
2077 		/* maybe never allocated. */
2078 		drbd_bm_resize(device, 0, 1);
2079 		drbd_bm_cleanup(device);
2080 	}
2081 
2082 	drbd_backing_dev_free(device, device->ldev);
2083 	device->ldev = NULL;
2084 
2085 	clear_bit(AL_SUSPENDED, &device->flags);
2086 
2087 	D_ASSERT(device, list_empty(&device->active_ee));
2088 	D_ASSERT(device, list_empty(&device->sync_ee));
2089 	D_ASSERT(device, list_empty(&device->done_ee));
2090 	D_ASSERT(device, list_empty(&device->read_ee));
2091 	D_ASSERT(device, list_empty(&device->net_ee));
2092 	D_ASSERT(device, list_empty(&device->resync_reads));
2093 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2094 	D_ASSERT(device, list_empty(&device->resync_work.list));
2095 	D_ASSERT(device, list_empty(&device->unplug_work.list));
2096 
2097 	drbd_set_defaults(device);
2098 }
2099 
2100 
drbd_destroy_mempools(void)2101 static void drbd_destroy_mempools(void)
2102 {
2103 	struct page *page;
2104 
2105 	while (drbd_pp_pool) {
2106 		page = drbd_pp_pool;
2107 		drbd_pp_pool = (struct page *)page_private(page);
2108 		__free_page(page);
2109 		drbd_pp_vacant--;
2110 	}
2111 
2112 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2113 
2114 	bioset_exit(&drbd_io_bio_set);
2115 	bioset_exit(&drbd_md_io_bio_set);
2116 	mempool_exit(&drbd_md_io_page_pool);
2117 	mempool_exit(&drbd_ee_mempool);
2118 	mempool_exit(&drbd_request_mempool);
2119 	kmem_cache_destroy(drbd_ee_cache);
2120 	kmem_cache_destroy(drbd_request_cache);
2121 	kmem_cache_destroy(drbd_bm_ext_cache);
2122 	kmem_cache_destroy(drbd_al_ext_cache);
2123 
2124 	drbd_ee_cache        = NULL;
2125 	drbd_request_cache   = NULL;
2126 	drbd_bm_ext_cache    = NULL;
2127 	drbd_al_ext_cache    = NULL;
2128 
2129 	return;
2130 }
2131 
drbd_create_mempools(void)2132 static int drbd_create_mempools(void)
2133 {
2134 	struct page *page;
2135 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2136 	int i, ret;
2137 
2138 	/* caches */
2139 	drbd_request_cache = kmem_cache_create(
2140 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2141 	if (drbd_request_cache == NULL)
2142 		goto Enomem;
2143 
2144 	drbd_ee_cache = kmem_cache_create(
2145 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2146 	if (drbd_ee_cache == NULL)
2147 		goto Enomem;
2148 
2149 	drbd_bm_ext_cache = kmem_cache_create(
2150 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2151 	if (drbd_bm_ext_cache == NULL)
2152 		goto Enomem;
2153 
2154 	drbd_al_ext_cache = kmem_cache_create(
2155 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2156 	if (drbd_al_ext_cache == NULL)
2157 		goto Enomem;
2158 
2159 	/* mempools */
2160 	ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2161 	if (ret)
2162 		goto Enomem;
2163 
2164 	ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2165 			  BIOSET_NEED_BVECS);
2166 	if (ret)
2167 		goto Enomem;
2168 
2169 	ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2170 	if (ret)
2171 		goto Enomem;
2172 
2173 	ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2174 				     drbd_request_cache);
2175 	if (ret)
2176 		goto Enomem;
2177 
2178 	ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2179 	if (ret)
2180 		goto Enomem;
2181 
2182 	/* drbd's page pool */
2183 	spin_lock_init(&drbd_pp_lock);
2184 
2185 	for (i = 0; i < number; i++) {
2186 		page = alloc_page(GFP_HIGHUSER);
2187 		if (!page)
2188 			goto Enomem;
2189 		set_page_private(page, (unsigned long)drbd_pp_pool);
2190 		drbd_pp_pool = page;
2191 	}
2192 	drbd_pp_vacant = number;
2193 
2194 	return 0;
2195 
2196 Enomem:
2197 	drbd_destroy_mempools(); /* in case we allocated some */
2198 	return -ENOMEM;
2199 }
2200 
drbd_release_all_peer_reqs(struct drbd_device * device)2201 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2202 {
2203 	int rr;
2204 
2205 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2206 	if (rr)
2207 		drbd_err(device, "%d EEs in active list found!\n", rr);
2208 
2209 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2210 	if (rr)
2211 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2212 
2213 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2214 	if (rr)
2215 		drbd_err(device, "%d EEs in read list found!\n", rr);
2216 
2217 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2218 	if (rr)
2219 		drbd_err(device, "%d EEs in done list found!\n", rr);
2220 
2221 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2222 	if (rr)
2223 		drbd_err(device, "%d EEs in net list found!\n", rr);
2224 }
2225 
2226 /* caution. no locking. */
drbd_destroy_device(struct kref * kref)2227 void drbd_destroy_device(struct kref *kref)
2228 {
2229 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2230 	struct drbd_resource *resource = device->resource;
2231 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2232 
2233 	del_timer_sync(&device->request_timer);
2234 
2235 	/* paranoia asserts */
2236 	D_ASSERT(device, device->open_cnt == 0);
2237 	/* end paranoia asserts */
2238 
2239 	/* cleanup stuff that may have been allocated during
2240 	 * device (re-)configuration or state changes */
2241 
2242 	drbd_backing_dev_free(device, device->ldev);
2243 	device->ldev = NULL;
2244 
2245 	drbd_release_all_peer_reqs(device);
2246 
2247 	lc_destroy(device->act_log);
2248 	lc_destroy(device->resync);
2249 
2250 	kfree(device->p_uuid);
2251 	/* device->p_uuid = NULL; */
2252 
2253 	if (device->bitmap) /* should no longer be there. */
2254 		drbd_bm_cleanup(device);
2255 	__free_page(device->md_io.page);
2256 	put_disk(device->vdisk);
2257 	blk_cleanup_queue(device->rq_queue);
2258 	kfree(device->rs_plan_s);
2259 
2260 	/* not for_each_connection(connection, resource):
2261 	 * those may have been cleaned up and disassociated already.
2262 	 */
2263 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2264 		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2265 		kfree(peer_device);
2266 	}
2267 	memset(device, 0xfd, sizeof(*device));
2268 	kfree(device);
2269 	kref_put(&resource->kref, drbd_destroy_resource);
2270 }
2271 
2272 /* One global retry thread, if we need to push back some bio and have it
2273  * reinserted through our make request function.
2274  */
2275 static struct retry_worker {
2276 	struct workqueue_struct *wq;
2277 	struct work_struct worker;
2278 
2279 	spinlock_t lock;
2280 	struct list_head writes;
2281 } retry;
2282 
do_retry(struct work_struct * ws)2283 static void do_retry(struct work_struct *ws)
2284 {
2285 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2286 	LIST_HEAD(writes);
2287 	struct drbd_request *req, *tmp;
2288 
2289 	spin_lock_irq(&retry->lock);
2290 	list_splice_init(&retry->writes, &writes);
2291 	spin_unlock_irq(&retry->lock);
2292 
2293 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2294 		struct drbd_device *device = req->device;
2295 		struct bio *bio = req->master_bio;
2296 		unsigned long start_jif = req->start_jif;
2297 		bool expected;
2298 
2299 		expected =
2300 			expect(atomic_read(&req->completion_ref) == 0) &&
2301 			expect(req->rq_state & RQ_POSTPONED) &&
2302 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2303 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2304 
2305 		if (!expected)
2306 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2307 				req, atomic_read(&req->completion_ref),
2308 				req->rq_state);
2309 
2310 		/* We still need to put one kref associated with the
2311 		 * "completion_ref" going zero in the code path that queued it
2312 		 * here.  The request object may still be referenced by a
2313 		 * frozen local req->private_bio, in case we force-detached.
2314 		 */
2315 		kref_put(&req->kref, drbd_req_destroy);
2316 
2317 		/* A single suspended or otherwise blocking device may stall
2318 		 * all others as well.  Fortunately, this code path is to
2319 		 * recover from a situation that "should not happen":
2320 		 * concurrent writes in multi-primary setup.
2321 		 * In a "normal" lifecycle, this workqueue is supposed to be
2322 		 * destroyed without ever doing anything.
2323 		 * If it turns out to be an issue anyways, we can do per
2324 		 * resource (replication group) or per device (minor) retry
2325 		 * workqueues instead.
2326 		 */
2327 
2328 		/* We are not just doing submit_bio_noacct(),
2329 		 * as we want to keep the start_time information. */
2330 		inc_ap_bio(device);
2331 		__drbd_make_request(device, bio, start_jif);
2332 	}
2333 }
2334 
2335 /* called via drbd_req_put_completion_ref(),
2336  * holds resource->req_lock */
drbd_restart_request(struct drbd_request * req)2337 void drbd_restart_request(struct drbd_request *req)
2338 {
2339 	unsigned long flags;
2340 	spin_lock_irqsave(&retry.lock, flags);
2341 	list_move_tail(&req->tl_requests, &retry.writes);
2342 	spin_unlock_irqrestore(&retry.lock, flags);
2343 
2344 	/* Drop the extra reference that would otherwise
2345 	 * have been dropped by complete_master_bio.
2346 	 * do_retry() needs to grab a new one. */
2347 	dec_ap_bio(req->device);
2348 
2349 	queue_work(retry.wq, &retry.worker);
2350 }
2351 
drbd_destroy_resource(struct kref * kref)2352 void drbd_destroy_resource(struct kref *kref)
2353 {
2354 	struct drbd_resource *resource =
2355 		container_of(kref, struct drbd_resource, kref);
2356 
2357 	idr_destroy(&resource->devices);
2358 	free_cpumask_var(resource->cpu_mask);
2359 	kfree(resource->name);
2360 	memset(resource, 0xf2, sizeof(*resource));
2361 	kfree(resource);
2362 }
2363 
drbd_free_resource(struct drbd_resource * resource)2364 void drbd_free_resource(struct drbd_resource *resource)
2365 {
2366 	struct drbd_connection *connection, *tmp;
2367 
2368 	for_each_connection_safe(connection, tmp, resource) {
2369 		list_del(&connection->connections);
2370 		drbd_debugfs_connection_cleanup(connection);
2371 		kref_put(&connection->kref, drbd_destroy_connection);
2372 	}
2373 	drbd_debugfs_resource_cleanup(resource);
2374 	kref_put(&resource->kref, drbd_destroy_resource);
2375 }
2376 
drbd_cleanup(void)2377 static void drbd_cleanup(void)
2378 {
2379 	unsigned int i;
2380 	struct drbd_device *device;
2381 	struct drbd_resource *resource, *tmp;
2382 
2383 	/* first remove proc,
2384 	 * drbdsetup uses it's presence to detect
2385 	 * whether DRBD is loaded.
2386 	 * If we would get stuck in proc removal,
2387 	 * but have netlink already deregistered,
2388 	 * some drbdsetup commands may wait forever
2389 	 * for an answer.
2390 	 */
2391 	if (drbd_proc)
2392 		remove_proc_entry("drbd", NULL);
2393 
2394 	if (retry.wq)
2395 		destroy_workqueue(retry.wq);
2396 
2397 	drbd_genl_unregister();
2398 
2399 	idr_for_each_entry(&drbd_devices, device, i)
2400 		drbd_delete_device(device);
2401 
2402 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2403 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2404 		list_del(&resource->resources);
2405 		drbd_free_resource(resource);
2406 	}
2407 
2408 	drbd_debugfs_cleanup();
2409 
2410 	drbd_destroy_mempools();
2411 	unregister_blkdev(DRBD_MAJOR, "drbd");
2412 
2413 	idr_destroy(&drbd_devices);
2414 
2415 	pr_info("module cleanup done.\n");
2416 }
2417 
drbd_init_workqueue(struct drbd_work_queue * wq)2418 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2419 {
2420 	spin_lock_init(&wq->q_lock);
2421 	INIT_LIST_HEAD(&wq->q);
2422 	init_waitqueue_head(&wq->q_wait);
2423 }
2424 
2425 struct completion_work {
2426 	struct drbd_work w;
2427 	struct completion done;
2428 };
2429 
w_complete(struct drbd_work * w,int cancel)2430 static int w_complete(struct drbd_work *w, int cancel)
2431 {
2432 	struct completion_work *completion_work =
2433 		container_of(w, struct completion_work, w);
2434 
2435 	complete(&completion_work->done);
2436 	return 0;
2437 }
2438 
drbd_flush_workqueue(struct drbd_work_queue * work_queue)2439 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2440 {
2441 	struct completion_work completion_work;
2442 
2443 	completion_work.w.cb = w_complete;
2444 	init_completion(&completion_work.done);
2445 	drbd_queue_work(work_queue, &completion_work.w);
2446 	wait_for_completion(&completion_work.done);
2447 }
2448 
drbd_find_resource(const char * name)2449 struct drbd_resource *drbd_find_resource(const char *name)
2450 {
2451 	struct drbd_resource *resource;
2452 
2453 	if (!name || !name[0])
2454 		return NULL;
2455 
2456 	rcu_read_lock();
2457 	for_each_resource_rcu(resource, &drbd_resources) {
2458 		if (!strcmp(resource->name, name)) {
2459 			kref_get(&resource->kref);
2460 			goto found;
2461 		}
2462 	}
2463 	resource = NULL;
2464 found:
2465 	rcu_read_unlock();
2466 	return resource;
2467 }
2468 
conn_get_by_addrs(void * my_addr,int my_addr_len,void * peer_addr,int peer_addr_len)2469 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2470 				     void *peer_addr, int peer_addr_len)
2471 {
2472 	struct drbd_resource *resource;
2473 	struct drbd_connection *connection;
2474 
2475 	rcu_read_lock();
2476 	for_each_resource_rcu(resource, &drbd_resources) {
2477 		for_each_connection_rcu(connection, resource) {
2478 			if (connection->my_addr_len == my_addr_len &&
2479 			    connection->peer_addr_len == peer_addr_len &&
2480 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2481 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2482 				kref_get(&connection->kref);
2483 				goto found;
2484 			}
2485 		}
2486 	}
2487 	connection = NULL;
2488 found:
2489 	rcu_read_unlock();
2490 	return connection;
2491 }
2492 
drbd_alloc_socket(struct drbd_socket * socket)2493 static int drbd_alloc_socket(struct drbd_socket *socket)
2494 {
2495 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2496 	if (!socket->rbuf)
2497 		return -ENOMEM;
2498 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2499 	if (!socket->sbuf)
2500 		return -ENOMEM;
2501 	return 0;
2502 }
2503 
drbd_free_socket(struct drbd_socket * socket)2504 static void drbd_free_socket(struct drbd_socket *socket)
2505 {
2506 	free_page((unsigned long) socket->sbuf);
2507 	free_page((unsigned long) socket->rbuf);
2508 }
2509 
conn_free_crypto(struct drbd_connection * connection)2510 void conn_free_crypto(struct drbd_connection *connection)
2511 {
2512 	drbd_free_sock(connection);
2513 
2514 	crypto_free_shash(connection->csums_tfm);
2515 	crypto_free_shash(connection->verify_tfm);
2516 	crypto_free_shash(connection->cram_hmac_tfm);
2517 	crypto_free_shash(connection->integrity_tfm);
2518 	crypto_free_shash(connection->peer_integrity_tfm);
2519 	kfree(connection->int_dig_in);
2520 	kfree(connection->int_dig_vv);
2521 
2522 	connection->csums_tfm = NULL;
2523 	connection->verify_tfm = NULL;
2524 	connection->cram_hmac_tfm = NULL;
2525 	connection->integrity_tfm = NULL;
2526 	connection->peer_integrity_tfm = NULL;
2527 	connection->int_dig_in = NULL;
2528 	connection->int_dig_vv = NULL;
2529 }
2530 
set_resource_options(struct drbd_resource * resource,struct res_opts * res_opts)2531 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2532 {
2533 	struct drbd_connection *connection;
2534 	cpumask_var_t new_cpu_mask;
2535 	int err;
2536 
2537 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2538 		return -ENOMEM;
2539 
2540 	/* silently ignore cpu mask on UP kernel */
2541 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2542 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2543 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2544 		if (err == -EOVERFLOW) {
2545 			/* So what. mask it out. */
2546 			cpumask_var_t tmp_cpu_mask;
2547 			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2548 				cpumask_setall(tmp_cpu_mask);
2549 				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2550 				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2551 					res_opts->cpu_mask,
2552 					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2553 					nr_cpu_ids);
2554 				free_cpumask_var(tmp_cpu_mask);
2555 				err = 0;
2556 			}
2557 		}
2558 		if (err) {
2559 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2560 			/* retcode = ERR_CPU_MASK_PARSE; */
2561 			goto fail;
2562 		}
2563 	}
2564 	resource->res_opts = *res_opts;
2565 	if (cpumask_empty(new_cpu_mask))
2566 		drbd_calc_cpu_mask(&new_cpu_mask);
2567 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2568 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2569 		for_each_connection_rcu(connection, resource) {
2570 			connection->receiver.reset_cpu_mask = 1;
2571 			connection->ack_receiver.reset_cpu_mask = 1;
2572 			connection->worker.reset_cpu_mask = 1;
2573 		}
2574 	}
2575 	err = 0;
2576 
2577 fail:
2578 	free_cpumask_var(new_cpu_mask);
2579 	return err;
2580 
2581 }
2582 
drbd_create_resource(const char * name)2583 struct drbd_resource *drbd_create_resource(const char *name)
2584 {
2585 	struct drbd_resource *resource;
2586 
2587 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2588 	if (!resource)
2589 		goto fail;
2590 	resource->name = kstrdup(name, GFP_KERNEL);
2591 	if (!resource->name)
2592 		goto fail_free_resource;
2593 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2594 		goto fail_free_name;
2595 	kref_init(&resource->kref);
2596 	idr_init(&resource->devices);
2597 	INIT_LIST_HEAD(&resource->connections);
2598 	resource->write_ordering = WO_BDEV_FLUSH;
2599 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2600 	mutex_init(&resource->conf_update);
2601 	mutex_init(&resource->adm_mutex);
2602 	spin_lock_init(&resource->req_lock);
2603 	drbd_debugfs_resource_add(resource);
2604 	return resource;
2605 
2606 fail_free_name:
2607 	kfree(resource->name);
2608 fail_free_resource:
2609 	kfree(resource);
2610 fail:
2611 	return NULL;
2612 }
2613 
2614 /* caller must be under adm_mutex */
conn_create(const char * name,struct res_opts * res_opts)2615 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2616 {
2617 	struct drbd_resource *resource;
2618 	struct drbd_connection *connection;
2619 
2620 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2621 	if (!connection)
2622 		return NULL;
2623 
2624 	if (drbd_alloc_socket(&connection->data))
2625 		goto fail;
2626 	if (drbd_alloc_socket(&connection->meta))
2627 		goto fail;
2628 
2629 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2630 	if (!connection->current_epoch)
2631 		goto fail;
2632 
2633 	INIT_LIST_HEAD(&connection->transfer_log);
2634 
2635 	INIT_LIST_HEAD(&connection->current_epoch->list);
2636 	connection->epochs = 1;
2637 	spin_lock_init(&connection->epoch_lock);
2638 
2639 	connection->send.seen_any_write_yet = false;
2640 	connection->send.current_epoch_nr = 0;
2641 	connection->send.current_epoch_writes = 0;
2642 
2643 	resource = drbd_create_resource(name);
2644 	if (!resource)
2645 		goto fail;
2646 
2647 	connection->cstate = C_STANDALONE;
2648 	mutex_init(&connection->cstate_mutex);
2649 	init_waitqueue_head(&connection->ping_wait);
2650 	idr_init(&connection->peer_devices);
2651 
2652 	drbd_init_workqueue(&connection->sender_work);
2653 	mutex_init(&connection->data.mutex);
2654 	mutex_init(&connection->meta.mutex);
2655 
2656 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2657 	connection->receiver.connection = connection;
2658 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2659 	connection->worker.connection = connection;
2660 	drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2661 	connection->ack_receiver.connection = connection;
2662 
2663 	kref_init(&connection->kref);
2664 
2665 	connection->resource = resource;
2666 
2667 	if (set_resource_options(resource, res_opts))
2668 		goto fail_resource;
2669 
2670 	kref_get(&resource->kref);
2671 	list_add_tail_rcu(&connection->connections, &resource->connections);
2672 	drbd_debugfs_connection_add(connection);
2673 	return connection;
2674 
2675 fail_resource:
2676 	list_del(&resource->resources);
2677 	drbd_free_resource(resource);
2678 fail:
2679 	kfree(connection->current_epoch);
2680 	drbd_free_socket(&connection->meta);
2681 	drbd_free_socket(&connection->data);
2682 	kfree(connection);
2683 	return NULL;
2684 }
2685 
drbd_destroy_connection(struct kref * kref)2686 void drbd_destroy_connection(struct kref *kref)
2687 {
2688 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2689 	struct drbd_resource *resource = connection->resource;
2690 
2691 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2692 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2693 	kfree(connection->current_epoch);
2694 
2695 	idr_destroy(&connection->peer_devices);
2696 
2697 	drbd_free_socket(&connection->meta);
2698 	drbd_free_socket(&connection->data);
2699 	kfree(connection->int_dig_in);
2700 	kfree(connection->int_dig_vv);
2701 	memset(connection, 0xfc, sizeof(*connection));
2702 	kfree(connection);
2703 	kref_put(&resource->kref, drbd_destroy_resource);
2704 }
2705 
init_submitter(struct drbd_device * device)2706 static int init_submitter(struct drbd_device *device)
2707 {
2708 	/* opencoded create_singlethread_workqueue(),
2709 	 * to be able to say "drbd%d", ..., minor */
2710 	device->submit.wq =
2711 		alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2712 	if (!device->submit.wq)
2713 		return -ENOMEM;
2714 
2715 	INIT_WORK(&device->submit.worker, do_submit);
2716 	INIT_LIST_HEAD(&device->submit.writes);
2717 	return 0;
2718 }
2719 
drbd_create_device(struct drbd_config_context * adm_ctx,unsigned int minor)2720 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2721 {
2722 	struct drbd_resource *resource = adm_ctx->resource;
2723 	struct drbd_connection *connection, *n;
2724 	struct drbd_device *device;
2725 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2726 	struct gendisk *disk;
2727 	struct request_queue *q;
2728 	int id;
2729 	int vnr = adm_ctx->volume;
2730 	enum drbd_ret_code err = ERR_NOMEM;
2731 
2732 	device = minor_to_device(minor);
2733 	if (device)
2734 		return ERR_MINOR_OR_VOLUME_EXISTS;
2735 
2736 	/* GFP_KERNEL, we are outside of all write-out paths */
2737 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2738 	if (!device)
2739 		return ERR_NOMEM;
2740 	kref_init(&device->kref);
2741 
2742 	kref_get(&resource->kref);
2743 	device->resource = resource;
2744 	device->minor = minor;
2745 	device->vnr = vnr;
2746 
2747 	drbd_init_set_defaults(device);
2748 
2749 	q = blk_alloc_queue(NUMA_NO_NODE);
2750 	if (!q)
2751 		goto out_no_q;
2752 	device->rq_queue = q;
2753 
2754 	disk = alloc_disk(1);
2755 	if (!disk)
2756 		goto out_no_disk;
2757 	device->vdisk = disk;
2758 
2759 	set_disk_ro(disk, true);
2760 
2761 	disk->queue = q;
2762 	disk->major = DRBD_MAJOR;
2763 	disk->first_minor = minor;
2764 	disk->fops = &drbd_ops;
2765 	sprintf(disk->disk_name, "drbd%d", minor);
2766 	disk->private_data = device;
2767 
2768 	blk_queue_write_cache(q, true, true);
2769 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2770 	   This triggers a max_bio_size message upon first attach or connect */
2771 	blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2772 
2773 	device->md_io.page = alloc_page(GFP_KERNEL);
2774 	if (!device->md_io.page)
2775 		goto out_no_io_page;
2776 
2777 	if (drbd_bm_init(device))
2778 		goto out_no_bitmap;
2779 	device->read_requests = RB_ROOT;
2780 	device->write_requests = RB_ROOT;
2781 
2782 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2783 	if (id < 0) {
2784 		if (id == -ENOSPC)
2785 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2786 		goto out_no_minor_idr;
2787 	}
2788 	kref_get(&device->kref);
2789 
2790 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2791 	if (id < 0) {
2792 		if (id == -ENOSPC)
2793 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2794 		goto out_idr_remove_minor;
2795 	}
2796 	kref_get(&device->kref);
2797 
2798 	INIT_LIST_HEAD(&device->peer_devices);
2799 	INIT_LIST_HEAD(&device->pending_bitmap_io);
2800 	for_each_connection(connection, resource) {
2801 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2802 		if (!peer_device)
2803 			goto out_idr_remove_from_resource;
2804 		peer_device->connection = connection;
2805 		peer_device->device = device;
2806 
2807 		list_add(&peer_device->peer_devices, &device->peer_devices);
2808 		kref_get(&device->kref);
2809 
2810 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2811 		if (id < 0) {
2812 			if (id == -ENOSPC)
2813 				err = ERR_INVALID_REQUEST;
2814 			goto out_idr_remove_from_resource;
2815 		}
2816 		kref_get(&connection->kref);
2817 		INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2818 	}
2819 
2820 	if (init_submitter(device)) {
2821 		err = ERR_NOMEM;
2822 		goto out_idr_remove_vol;
2823 	}
2824 
2825 	add_disk(disk);
2826 
2827 	/* inherit the connection state */
2828 	device->state.conn = first_connection(resource)->cstate;
2829 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2830 		for_each_peer_device(peer_device, device)
2831 			drbd_connected(peer_device);
2832 	}
2833 	/* move to create_peer_device() */
2834 	for_each_peer_device(peer_device, device)
2835 		drbd_debugfs_peer_device_add(peer_device);
2836 	drbd_debugfs_device_add(device);
2837 	return NO_ERROR;
2838 
2839 out_idr_remove_vol:
2840 	idr_remove(&connection->peer_devices, vnr);
2841 out_idr_remove_from_resource:
2842 	for_each_connection_safe(connection, n, resource) {
2843 		peer_device = idr_remove(&connection->peer_devices, vnr);
2844 		if (peer_device)
2845 			kref_put(&connection->kref, drbd_destroy_connection);
2846 	}
2847 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2848 		list_del(&peer_device->peer_devices);
2849 		kfree(peer_device);
2850 	}
2851 	idr_remove(&resource->devices, vnr);
2852 out_idr_remove_minor:
2853 	idr_remove(&drbd_devices, minor);
2854 	synchronize_rcu();
2855 out_no_minor_idr:
2856 	drbd_bm_cleanup(device);
2857 out_no_bitmap:
2858 	__free_page(device->md_io.page);
2859 out_no_io_page:
2860 	put_disk(disk);
2861 out_no_disk:
2862 	blk_cleanup_queue(q);
2863 out_no_q:
2864 	kref_put(&resource->kref, drbd_destroy_resource);
2865 	kfree(device);
2866 	return err;
2867 }
2868 
drbd_delete_device(struct drbd_device * device)2869 void drbd_delete_device(struct drbd_device *device)
2870 {
2871 	struct drbd_resource *resource = device->resource;
2872 	struct drbd_connection *connection;
2873 	struct drbd_peer_device *peer_device;
2874 
2875 	/* move to free_peer_device() */
2876 	for_each_peer_device(peer_device, device)
2877 		drbd_debugfs_peer_device_cleanup(peer_device);
2878 	drbd_debugfs_device_cleanup(device);
2879 	for_each_connection(connection, resource) {
2880 		idr_remove(&connection->peer_devices, device->vnr);
2881 		kref_put(&device->kref, drbd_destroy_device);
2882 	}
2883 	idr_remove(&resource->devices, device->vnr);
2884 	kref_put(&device->kref, drbd_destroy_device);
2885 	idr_remove(&drbd_devices, device_to_minor(device));
2886 	kref_put(&device->kref, drbd_destroy_device);
2887 	del_gendisk(device->vdisk);
2888 	synchronize_rcu();
2889 	kref_put(&device->kref, drbd_destroy_device);
2890 }
2891 
drbd_init(void)2892 static int __init drbd_init(void)
2893 {
2894 	int err;
2895 
2896 	if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2897 		pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2898 #ifdef MODULE
2899 		return -EINVAL;
2900 #else
2901 		drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2902 #endif
2903 	}
2904 
2905 	err = register_blkdev(DRBD_MAJOR, "drbd");
2906 	if (err) {
2907 		pr_err("unable to register block device major %d\n",
2908 		       DRBD_MAJOR);
2909 		return err;
2910 	}
2911 
2912 	/*
2913 	 * allocate all necessary structs
2914 	 */
2915 	init_waitqueue_head(&drbd_pp_wait);
2916 
2917 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2918 	idr_init(&drbd_devices);
2919 
2920 	mutex_init(&resources_mutex);
2921 	INIT_LIST_HEAD(&drbd_resources);
2922 
2923 	err = drbd_genl_register();
2924 	if (err) {
2925 		pr_err("unable to register generic netlink family\n");
2926 		goto fail;
2927 	}
2928 
2929 	err = drbd_create_mempools();
2930 	if (err)
2931 		goto fail;
2932 
2933 	err = -ENOMEM;
2934 	drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2935 	if (!drbd_proc)	{
2936 		pr_err("unable to register proc file\n");
2937 		goto fail;
2938 	}
2939 
2940 	retry.wq = create_singlethread_workqueue("drbd-reissue");
2941 	if (!retry.wq) {
2942 		pr_err("unable to create retry workqueue\n");
2943 		goto fail;
2944 	}
2945 	INIT_WORK(&retry.worker, do_retry);
2946 	spin_lock_init(&retry.lock);
2947 	INIT_LIST_HEAD(&retry.writes);
2948 
2949 	drbd_debugfs_init();
2950 
2951 	pr_info("initialized. "
2952 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2953 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2954 	pr_info("%s\n", drbd_buildtag());
2955 	pr_info("registered as block device major %d\n", DRBD_MAJOR);
2956 	return 0; /* Success! */
2957 
2958 fail:
2959 	drbd_cleanup();
2960 	if (err == -ENOMEM)
2961 		pr_err("ran out of memory\n");
2962 	else
2963 		pr_err("initialization failure\n");
2964 	return err;
2965 }
2966 
drbd_free_one_sock(struct drbd_socket * ds)2967 static void drbd_free_one_sock(struct drbd_socket *ds)
2968 {
2969 	struct socket *s;
2970 	mutex_lock(&ds->mutex);
2971 	s = ds->socket;
2972 	ds->socket = NULL;
2973 	mutex_unlock(&ds->mutex);
2974 	if (s) {
2975 		/* so debugfs does not need to mutex_lock() */
2976 		synchronize_rcu();
2977 		kernel_sock_shutdown(s, SHUT_RDWR);
2978 		sock_release(s);
2979 	}
2980 }
2981 
drbd_free_sock(struct drbd_connection * connection)2982 void drbd_free_sock(struct drbd_connection *connection)
2983 {
2984 	if (connection->data.socket)
2985 		drbd_free_one_sock(&connection->data);
2986 	if (connection->meta.socket)
2987 		drbd_free_one_sock(&connection->meta);
2988 }
2989 
2990 /* meta data management */
2991 
conn_md_sync(struct drbd_connection * connection)2992 void conn_md_sync(struct drbd_connection *connection)
2993 {
2994 	struct drbd_peer_device *peer_device;
2995 	int vnr;
2996 
2997 	rcu_read_lock();
2998 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2999 		struct drbd_device *device = peer_device->device;
3000 
3001 		kref_get(&device->kref);
3002 		rcu_read_unlock();
3003 		drbd_md_sync(device);
3004 		kref_put(&device->kref, drbd_destroy_device);
3005 		rcu_read_lock();
3006 	}
3007 	rcu_read_unlock();
3008 }
3009 
3010 /* aligned 4kByte */
3011 struct meta_data_on_disk {
3012 	u64 la_size_sect;      /* last agreed size. */
3013 	u64 uuid[UI_SIZE];   /* UUIDs. */
3014 	u64 device_uuid;
3015 	u64 reserved_u64_1;
3016 	u32 flags;             /* MDF */
3017 	u32 magic;
3018 	u32 md_size_sect;
3019 	u32 al_offset;         /* offset to this block */
3020 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3021 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3022 	u32 bm_offset;         /* offset to the bitmap, from here */
3023 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3024 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3025 
3026 	/* see al_tr_number_to_on_disk_sector() */
3027 	u32 al_stripes;
3028 	u32 al_stripe_size_4k;
3029 
3030 	u8 reserved_u8[4096 - (7*8 + 10*4)];
3031 } __packed;
3032 
3033 
3034 
drbd_md_write(struct drbd_device * device,void * b)3035 void drbd_md_write(struct drbd_device *device, void *b)
3036 {
3037 	struct meta_data_on_disk *buffer = b;
3038 	sector_t sector;
3039 	int i;
3040 
3041 	memset(buffer, 0, sizeof(*buffer));
3042 
3043 	buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3044 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3045 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3046 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3047 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3048 
3049 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3050 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3051 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3052 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3053 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3054 
3055 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3056 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3057 
3058 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3059 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3060 
3061 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3062 	sector = device->ldev->md.md_offset;
3063 
3064 	if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3065 		/* this was a try anyways ... */
3066 		drbd_err(device, "meta data update failed!\n");
3067 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3068 	}
3069 }
3070 
3071 /**
3072  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3073  * @device:	DRBD device.
3074  */
drbd_md_sync(struct drbd_device * device)3075 void drbd_md_sync(struct drbd_device *device)
3076 {
3077 	struct meta_data_on_disk *buffer;
3078 
3079 	/* Don't accidentally change the DRBD meta data layout. */
3080 	BUILD_BUG_ON(UI_SIZE != 4);
3081 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3082 
3083 	del_timer(&device->md_sync_timer);
3084 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3085 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3086 		return;
3087 
3088 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3089 	 * metadata even if we detach due to a disk failure! */
3090 	if (!get_ldev_if_state(device, D_FAILED))
3091 		return;
3092 
3093 	buffer = drbd_md_get_buffer(device, __func__);
3094 	if (!buffer)
3095 		goto out;
3096 
3097 	drbd_md_write(device, buffer);
3098 
3099 	/* Update device->ldev->md.la_size_sect,
3100 	 * since we updated it on metadata. */
3101 	device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3102 
3103 	drbd_md_put_buffer(device);
3104 out:
3105 	put_ldev(device);
3106 }
3107 
check_activity_log_stripe_size(struct drbd_device * device,struct meta_data_on_disk * on_disk,struct drbd_md * in_core)3108 static int check_activity_log_stripe_size(struct drbd_device *device,
3109 		struct meta_data_on_disk *on_disk,
3110 		struct drbd_md *in_core)
3111 {
3112 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3113 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3114 	u64 al_size_4k;
3115 
3116 	/* both not set: default to old fixed size activity log */
3117 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3118 		al_stripes = 1;
3119 		al_stripe_size_4k = MD_32kB_SECT/8;
3120 	}
3121 
3122 	/* some paranoia plausibility checks */
3123 
3124 	/* we need both values to be set */
3125 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3126 		goto err;
3127 
3128 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3129 
3130 	/* Upper limit of activity log area, to avoid potential overflow
3131 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3132 	 * than 72 * 4k blocks total only increases the amount of history,
3133 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3134 	if (al_size_4k > (16 * 1024 * 1024/4))
3135 		goto err;
3136 
3137 	/* Lower limit: we need at least 8 transaction slots (32kB)
3138 	 * to not break existing setups */
3139 	if (al_size_4k < MD_32kB_SECT/8)
3140 		goto err;
3141 
3142 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3143 	in_core->al_stripes = al_stripes;
3144 	in_core->al_size_4k = al_size_4k;
3145 
3146 	return 0;
3147 err:
3148 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3149 			al_stripes, al_stripe_size_4k);
3150 	return -EINVAL;
3151 }
3152 
check_offsets_and_sizes(struct drbd_device * device,struct drbd_backing_dev * bdev)3153 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3154 {
3155 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3156 	struct drbd_md *in_core = &bdev->md;
3157 	s32 on_disk_al_sect;
3158 	s32 on_disk_bm_sect;
3159 
3160 	/* The on-disk size of the activity log, calculated from offsets, and
3161 	 * the size of the activity log calculated from the stripe settings,
3162 	 * should match.
3163 	 * Though we could relax this a bit: it is ok, if the striped activity log
3164 	 * fits in the available on-disk activity log size.
3165 	 * Right now, that would break how resize is implemented.
3166 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3167 	 * of possible unused padding space in the on disk layout. */
3168 	if (in_core->al_offset < 0) {
3169 		if (in_core->bm_offset > in_core->al_offset)
3170 			goto err;
3171 		on_disk_al_sect = -in_core->al_offset;
3172 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3173 	} else {
3174 		if (in_core->al_offset != MD_4kB_SECT)
3175 			goto err;
3176 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3177 			goto err;
3178 
3179 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3180 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3181 	}
3182 
3183 	/* old fixed size meta data is exactly that: fixed. */
3184 	if (in_core->meta_dev_idx >= 0) {
3185 		if (in_core->md_size_sect != MD_128MB_SECT
3186 		||  in_core->al_offset != MD_4kB_SECT
3187 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3188 		||  in_core->al_stripes != 1
3189 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3190 			goto err;
3191 	}
3192 
3193 	if (capacity < in_core->md_size_sect)
3194 		goto err;
3195 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3196 		goto err;
3197 
3198 	/* should be aligned, and at least 32k */
3199 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3200 		goto err;
3201 
3202 	/* should fit (for now: exactly) into the available on-disk space;
3203 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3204 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3205 		goto err;
3206 
3207 	/* again, should be aligned */
3208 	if (in_core->bm_offset & 7)
3209 		goto err;
3210 
3211 	/* FIXME check for device grow with flex external meta data? */
3212 
3213 	/* can the available bitmap space cover the last agreed device size? */
3214 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3215 		goto err;
3216 
3217 	return 0;
3218 
3219 err:
3220 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3221 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3222 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3223 			in_core->meta_dev_idx,
3224 			in_core->al_stripes, in_core->al_stripe_size_4k,
3225 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3226 			(unsigned long long)in_core->la_size_sect,
3227 			(unsigned long long)capacity);
3228 
3229 	return -EINVAL;
3230 }
3231 
3232 
3233 /**
3234  * drbd_md_read() - Reads in the meta data super block
3235  * @device:	DRBD device.
3236  * @bdev:	Device from which the meta data should be read in.
3237  *
3238  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3239  * something goes wrong.
3240  *
3241  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3242  * even before @bdev is assigned to @device->ldev.
3243  */
drbd_md_read(struct drbd_device * device,struct drbd_backing_dev * bdev)3244 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3245 {
3246 	struct meta_data_on_disk *buffer;
3247 	u32 magic, flags;
3248 	int i, rv = NO_ERROR;
3249 
3250 	if (device->state.disk != D_DISKLESS)
3251 		return ERR_DISK_CONFIGURED;
3252 
3253 	buffer = drbd_md_get_buffer(device, __func__);
3254 	if (!buffer)
3255 		return ERR_NOMEM;
3256 
3257 	/* First, figure out where our meta data superblock is located,
3258 	 * and read it. */
3259 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3260 	bdev->md.md_offset = drbd_md_ss(bdev);
3261 	/* Even for (flexible or indexed) external meta data,
3262 	 * initially restrict us to the 4k superblock for now.
3263 	 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3264 	bdev->md.md_size_sect = 8;
3265 
3266 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3267 				 REQ_OP_READ)) {
3268 		/* NOTE: can't do normal error processing here as this is
3269 		   called BEFORE disk is attached */
3270 		drbd_err(device, "Error while reading metadata.\n");
3271 		rv = ERR_IO_MD_DISK;
3272 		goto err;
3273 	}
3274 
3275 	magic = be32_to_cpu(buffer->magic);
3276 	flags = be32_to_cpu(buffer->flags);
3277 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3278 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3279 			/* btw: that's Activity Log clean, not "all" clean. */
3280 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3281 		rv = ERR_MD_UNCLEAN;
3282 		goto err;
3283 	}
3284 
3285 	rv = ERR_MD_INVALID;
3286 	if (magic != DRBD_MD_MAGIC_08) {
3287 		if (magic == DRBD_MD_MAGIC_07)
3288 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3289 		else
3290 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3291 		goto err;
3292 	}
3293 
3294 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3295 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3296 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3297 		goto err;
3298 	}
3299 
3300 
3301 	/* convert to in_core endian */
3302 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3303 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3304 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3305 	bdev->md.flags = be32_to_cpu(buffer->flags);
3306 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3307 
3308 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3309 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3310 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3311 
3312 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3313 		goto err;
3314 	if (check_offsets_and_sizes(device, bdev))
3315 		goto err;
3316 
3317 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3318 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3319 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3320 		goto err;
3321 	}
3322 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3323 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3324 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3325 		goto err;
3326 	}
3327 
3328 	rv = NO_ERROR;
3329 
3330 	spin_lock_irq(&device->resource->req_lock);
3331 	if (device->state.conn < C_CONNECTED) {
3332 		unsigned int peer;
3333 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3334 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3335 		device->peer_max_bio_size = peer;
3336 	}
3337 	spin_unlock_irq(&device->resource->req_lock);
3338 
3339  err:
3340 	drbd_md_put_buffer(device);
3341 
3342 	return rv;
3343 }
3344 
3345 /**
3346  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3347  * @device:	DRBD device.
3348  *
3349  * Call this function if you change anything that should be written to
3350  * the meta-data super block. This function sets MD_DIRTY, and starts a
3351  * timer that ensures that within five seconds you have to call drbd_md_sync().
3352  */
drbd_md_mark_dirty(struct drbd_device * device)3353 void drbd_md_mark_dirty(struct drbd_device *device)
3354 {
3355 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3356 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3357 }
3358 
drbd_uuid_move_history(struct drbd_device * device)3359 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3360 {
3361 	int i;
3362 
3363 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3364 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3365 }
3366 
__drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3367 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3368 {
3369 	if (idx == UI_CURRENT) {
3370 		if (device->state.role == R_PRIMARY)
3371 			val |= 1;
3372 		else
3373 			val &= ~((u64)1);
3374 
3375 		drbd_set_ed_uuid(device, val);
3376 	}
3377 
3378 	device->ldev->md.uuid[idx] = val;
3379 	drbd_md_mark_dirty(device);
3380 }
3381 
_drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3382 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3383 {
3384 	unsigned long flags;
3385 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3386 	__drbd_uuid_set(device, idx, val);
3387 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3388 }
3389 
drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3390 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3391 {
3392 	unsigned long flags;
3393 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3394 	if (device->ldev->md.uuid[idx]) {
3395 		drbd_uuid_move_history(device);
3396 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3397 	}
3398 	__drbd_uuid_set(device, idx, val);
3399 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3400 }
3401 
3402 /**
3403  * drbd_uuid_new_current() - Creates a new current UUID
3404  * @device:	DRBD device.
3405  *
3406  * Creates a new current UUID, and rotates the old current UUID into
3407  * the bitmap slot. Causes an incremental resync upon next connect.
3408  */
drbd_uuid_new_current(struct drbd_device * device)3409 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3410 {
3411 	u64 val;
3412 	unsigned long long bm_uuid;
3413 
3414 	get_random_bytes(&val, sizeof(u64));
3415 
3416 	spin_lock_irq(&device->ldev->md.uuid_lock);
3417 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3418 
3419 	if (bm_uuid)
3420 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3421 
3422 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3423 	__drbd_uuid_set(device, UI_CURRENT, val);
3424 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3425 
3426 	drbd_print_uuids(device, "new current UUID");
3427 	/* get it to stable storage _now_ */
3428 	drbd_md_sync(device);
3429 }
3430 
drbd_uuid_set_bm(struct drbd_device * device,u64 val)3431 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3432 {
3433 	unsigned long flags;
3434 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3435 		return;
3436 
3437 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3438 	if (val == 0) {
3439 		drbd_uuid_move_history(device);
3440 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3441 		device->ldev->md.uuid[UI_BITMAP] = 0;
3442 	} else {
3443 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3444 		if (bm_uuid)
3445 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3446 
3447 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3448 	}
3449 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3450 
3451 	drbd_md_mark_dirty(device);
3452 }
3453 
3454 /**
3455  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3456  * @device:	DRBD device.
3457  *
3458  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3459  */
drbd_bmio_set_n_write(struct drbd_device * device)3460 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3461 {
3462 	int rv = -EIO;
3463 
3464 	drbd_md_set_flag(device, MDF_FULL_SYNC);
3465 	drbd_md_sync(device);
3466 	drbd_bm_set_all(device);
3467 
3468 	rv = drbd_bm_write(device);
3469 
3470 	if (!rv) {
3471 		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3472 		drbd_md_sync(device);
3473 	}
3474 
3475 	return rv;
3476 }
3477 
3478 /**
3479  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3480  * @device:	DRBD device.
3481  *
3482  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3483  */
drbd_bmio_clear_n_write(struct drbd_device * device)3484 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3485 {
3486 	drbd_resume_al(device);
3487 	drbd_bm_clear_all(device);
3488 	return drbd_bm_write(device);
3489 }
3490 
w_bitmap_io(struct drbd_work * w,int unused)3491 static int w_bitmap_io(struct drbd_work *w, int unused)
3492 {
3493 	struct drbd_device *device =
3494 		container_of(w, struct drbd_device, bm_io_work.w);
3495 	struct bm_io_work *work = &device->bm_io_work;
3496 	int rv = -EIO;
3497 
3498 	if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3499 		int cnt = atomic_read(&device->ap_bio_cnt);
3500 		if (cnt)
3501 			drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3502 					cnt, work->why);
3503 	}
3504 
3505 	if (get_ldev(device)) {
3506 		drbd_bm_lock(device, work->why, work->flags);
3507 		rv = work->io_fn(device);
3508 		drbd_bm_unlock(device);
3509 		put_ldev(device);
3510 	}
3511 
3512 	clear_bit_unlock(BITMAP_IO, &device->flags);
3513 	wake_up(&device->misc_wait);
3514 
3515 	if (work->done)
3516 		work->done(device, rv);
3517 
3518 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3519 	work->why = NULL;
3520 	work->flags = 0;
3521 
3522 	return 0;
3523 }
3524 
3525 /**
3526  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3527  * @device:	DRBD device.
3528  * @io_fn:	IO callback to be called when bitmap IO is possible
3529  * @done:	callback to be called after the bitmap IO was performed
3530  * @why:	Descriptive text of the reason for doing the IO
3531  *
3532  * While IO on the bitmap happens we freeze application IO thus we ensure
3533  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3534  * called from worker context. It MUST NOT be used while a previous such
3535  * work is still pending!
3536  *
3537  * Its worker function encloses the call of io_fn() by get_ldev() and
3538  * put_ldev().
3539  */
drbd_queue_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *),void (* done)(struct drbd_device *,int),char * why,enum bm_flag flags)3540 void drbd_queue_bitmap_io(struct drbd_device *device,
3541 			  int (*io_fn)(struct drbd_device *),
3542 			  void (*done)(struct drbd_device *, int),
3543 			  char *why, enum bm_flag flags)
3544 {
3545 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3546 
3547 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3548 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3549 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3550 	if (device->bm_io_work.why)
3551 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3552 			why, device->bm_io_work.why);
3553 
3554 	device->bm_io_work.io_fn = io_fn;
3555 	device->bm_io_work.done = done;
3556 	device->bm_io_work.why = why;
3557 	device->bm_io_work.flags = flags;
3558 
3559 	spin_lock_irq(&device->resource->req_lock);
3560 	set_bit(BITMAP_IO, &device->flags);
3561 	/* don't wait for pending application IO if the caller indicates that
3562 	 * application IO does not conflict anyways. */
3563 	if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3564 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3565 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3566 					&device->bm_io_work.w);
3567 	}
3568 	spin_unlock_irq(&device->resource->req_lock);
3569 }
3570 
3571 /**
3572  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3573  * @device:	DRBD device.
3574  * @io_fn:	IO callback to be called when bitmap IO is possible
3575  * @why:	Descriptive text of the reason for doing the IO
3576  *
3577  * freezes application IO while that the actual IO operations runs. This
3578  * functions MAY NOT be called from worker context.
3579  */
drbd_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *),char * why,enum bm_flag flags)3580 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3581 		char *why, enum bm_flag flags)
3582 {
3583 	/* Only suspend io, if some operation is supposed to be locked out */
3584 	const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3585 	int rv;
3586 
3587 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3588 
3589 	if (do_suspend_io)
3590 		drbd_suspend_io(device);
3591 
3592 	drbd_bm_lock(device, why, flags);
3593 	rv = io_fn(device);
3594 	drbd_bm_unlock(device);
3595 
3596 	if (do_suspend_io)
3597 		drbd_resume_io(device);
3598 
3599 	return rv;
3600 }
3601 
drbd_md_set_flag(struct drbd_device * device,int flag)3602 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3603 {
3604 	if ((device->ldev->md.flags & flag) != flag) {
3605 		drbd_md_mark_dirty(device);
3606 		device->ldev->md.flags |= flag;
3607 	}
3608 }
3609 
drbd_md_clear_flag(struct drbd_device * device,int flag)3610 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3611 {
3612 	if ((device->ldev->md.flags & flag) != 0) {
3613 		drbd_md_mark_dirty(device);
3614 		device->ldev->md.flags &= ~flag;
3615 	}
3616 }
drbd_md_test_flag(struct drbd_backing_dev * bdev,int flag)3617 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3618 {
3619 	return (bdev->md.flags & flag) != 0;
3620 }
3621 
md_sync_timer_fn(struct timer_list * t)3622 static void md_sync_timer_fn(struct timer_list *t)
3623 {
3624 	struct drbd_device *device = from_timer(device, t, md_sync_timer);
3625 	drbd_device_post_work(device, MD_SYNC);
3626 }
3627 
cmdname(enum drbd_packet cmd)3628 const char *cmdname(enum drbd_packet cmd)
3629 {
3630 	/* THINK may need to become several global tables
3631 	 * when we want to support more than
3632 	 * one PRO_VERSION */
3633 	static const char *cmdnames[] = {
3634 
3635 		[P_DATA]	        = "Data",
3636 		[P_DATA_REPLY]	        = "DataReply",
3637 		[P_RS_DATA_REPLY]	= "RSDataReply",
3638 		[P_BARRIER]	        = "Barrier",
3639 		[P_BITMAP]	        = "ReportBitMap",
3640 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3641 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3642 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3643 		[P_DATA_REQUEST]	= "DataRequest",
3644 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3645 		[P_SYNC_PARAM]	        = "SyncParam",
3646 		[P_PROTOCOL]            = "ReportProtocol",
3647 		[P_UUIDS]	        = "ReportUUIDs",
3648 		[P_SIZES]	        = "ReportSizes",
3649 		[P_STATE]	        = "ReportState",
3650 		[P_SYNC_UUID]           = "ReportSyncUUID",
3651 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3652 		[P_AUTH_RESPONSE]	= "AuthResponse",
3653 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3654 		[P_PING]		= "Ping",
3655 		[P_PING_ACK]	        = "PingAck",
3656 		[P_RECV_ACK]	        = "RecvAck",
3657 		[P_WRITE_ACK]	        = "WriteAck",
3658 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3659 		[P_SUPERSEDED]          = "Superseded",
3660 		[P_NEG_ACK]	        = "NegAck",
3661 		[P_NEG_DREPLY]	        = "NegDReply",
3662 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3663 		[P_BARRIER_ACK]	        = "BarrierAck",
3664 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3665 		[P_OV_REQUEST]          = "OVRequest",
3666 		[P_OV_REPLY]            = "OVReply",
3667 		[P_OV_RESULT]           = "OVResult",
3668 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3669 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3670 		[P_SYNC_PARAM89]	= "SyncParam89",
3671 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3672 		[P_DELAY_PROBE]         = "DelayProbe",
3673 		[P_OUT_OF_SYNC]		= "OutOfSync",
3674 		[P_RS_CANCEL]		= "RSCancel",
3675 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3676 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3677 		[P_RETRY_WRITE]		= "retry_write",
3678 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3679 		[P_TRIM]	        = "Trim",
3680 		[P_RS_THIN_REQ]         = "rs_thin_req",
3681 		[P_RS_DEALLOCATED]      = "rs_deallocated",
3682 		[P_WSAME]	        = "WriteSame",
3683 		[P_ZEROES]		= "Zeroes",
3684 
3685 		/* enum drbd_packet, but not commands - obsoleted flags:
3686 		 *	P_MAY_IGNORE
3687 		 *	P_MAX_OPT_CMD
3688 		 */
3689 	};
3690 
3691 	/* too big for the array: 0xfffX */
3692 	if (cmd == P_INITIAL_META)
3693 		return "InitialMeta";
3694 	if (cmd == P_INITIAL_DATA)
3695 		return "InitialData";
3696 	if (cmd == P_CONNECTION_FEATURES)
3697 		return "ConnectionFeatures";
3698 	if (cmd >= ARRAY_SIZE(cmdnames))
3699 		return "Unknown";
3700 	return cmdnames[cmd];
3701 }
3702 
3703 /**
3704  * drbd_wait_misc  -  wait for a request to make progress
3705  * @device:	device associated with the request
3706  * @i:		the struct drbd_interval embedded in struct drbd_request or
3707  *		struct drbd_peer_request
3708  */
drbd_wait_misc(struct drbd_device * device,struct drbd_interval * i)3709 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3710 {
3711 	struct net_conf *nc;
3712 	DEFINE_WAIT(wait);
3713 	long timeout;
3714 
3715 	rcu_read_lock();
3716 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3717 	if (!nc) {
3718 		rcu_read_unlock();
3719 		return -ETIMEDOUT;
3720 	}
3721 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3722 	rcu_read_unlock();
3723 
3724 	/* Indicate to wake up device->misc_wait on progress.  */
3725 	i->waiting = true;
3726 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3727 	spin_unlock_irq(&device->resource->req_lock);
3728 	timeout = schedule_timeout(timeout);
3729 	finish_wait(&device->misc_wait, &wait);
3730 	spin_lock_irq(&device->resource->req_lock);
3731 	if (!timeout || device->state.conn < C_CONNECTED)
3732 		return -ETIMEDOUT;
3733 	if (signal_pending(current))
3734 		return -ERESTARTSYS;
3735 	return 0;
3736 }
3737 
lock_all_resources(void)3738 void lock_all_resources(void)
3739 {
3740 	struct drbd_resource *resource;
3741 	int __maybe_unused i = 0;
3742 
3743 	mutex_lock(&resources_mutex);
3744 	local_irq_disable();
3745 	for_each_resource(resource, &drbd_resources)
3746 		spin_lock_nested(&resource->req_lock, i++);
3747 }
3748 
unlock_all_resources(void)3749 void unlock_all_resources(void)
3750 {
3751 	struct drbd_resource *resource;
3752 
3753 	for_each_resource(resource, &drbd_resources)
3754 		spin_unlock(&resource->req_lock);
3755 	local_irq_enable();
3756 	mutex_unlock(&resources_mutex);
3757 }
3758 
3759 #ifdef CONFIG_DRBD_FAULT_INJECTION
3760 /* Fault insertion support including random number generator shamelessly
3761  * stolen from kernel/rcutorture.c */
3762 struct fault_random_state {
3763 	unsigned long state;
3764 	unsigned long count;
3765 };
3766 
3767 #define FAULT_RANDOM_MULT 39916801  /* prime */
3768 #define FAULT_RANDOM_ADD	479001701 /* prime */
3769 #define FAULT_RANDOM_REFRESH 10000
3770 
3771 /*
3772  * Crude but fast random-number generator.  Uses a linear congruential
3773  * generator, with occasional help from get_random_bytes().
3774  */
3775 static unsigned long
_drbd_fault_random(struct fault_random_state * rsp)3776 _drbd_fault_random(struct fault_random_state *rsp)
3777 {
3778 	long refresh;
3779 
3780 	if (!rsp->count--) {
3781 		get_random_bytes(&refresh, sizeof(refresh));
3782 		rsp->state += refresh;
3783 		rsp->count = FAULT_RANDOM_REFRESH;
3784 	}
3785 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3786 	return swahw32(rsp->state);
3787 }
3788 
3789 static char *
_drbd_fault_str(unsigned int type)3790 _drbd_fault_str(unsigned int type) {
3791 	static char *_faults[] = {
3792 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3793 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3794 		[DRBD_FAULT_RS_WR] = "Resync write",
3795 		[DRBD_FAULT_RS_RD] = "Resync read",
3796 		[DRBD_FAULT_DT_WR] = "Data write",
3797 		[DRBD_FAULT_DT_RD] = "Data read",
3798 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3799 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3800 		[DRBD_FAULT_AL_EE] = "EE allocation",
3801 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3802 	};
3803 
3804 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3805 }
3806 
3807 unsigned int
_drbd_insert_fault(struct drbd_device * device,unsigned int type)3808 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3809 {
3810 	static struct fault_random_state rrs = {0, 0};
3811 
3812 	unsigned int ret = (
3813 		(drbd_fault_devs == 0 ||
3814 			((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3815 		(((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3816 
3817 	if (ret) {
3818 		drbd_fault_count++;
3819 
3820 		if (__ratelimit(&drbd_ratelimit_state))
3821 			drbd_warn(device, "***Simulating %s failure\n",
3822 				_drbd_fault_str(type));
3823 	}
3824 
3825 	return ret;
3826 }
3827 #endif
3828 
drbd_buildtag(void)3829 const char *drbd_buildtag(void)
3830 {
3831 	/* DRBD built from external sources has here a reference to the
3832 	   git hash of the source code. */
3833 
3834 	static char buildtag[38] = "\0uilt-in";
3835 
3836 	if (buildtag[0] == 0) {
3837 #ifdef MODULE
3838 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3839 #else
3840 		buildtag[0] = 'b';
3841 #endif
3842 	}
3843 
3844 	return buildtag;
3845 }
3846 
3847 module_init(drbd_init)
3848 module_exit(drbd_cleanup)
3849 
3850 EXPORT_SYMBOL(drbd_conn_str);
3851 EXPORT_SYMBOL(drbd_role_str);
3852 EXPORT_SYMBOL(drbd_disk_str);
3853 EXPORT_SYMBOL(drbd_set_st_err_str);
3854