1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/keyslot-manager.h>
32
33 #define DM_MSG_PREFIX "core"
34
35 /*
36 * Cookies are numeric values sent with CHANGE and REMOVE
37 * uevents while resuming, removing or renaming the device.
38 */
39 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
40 #define DM_COOKIE_LENGTH 24
41
42 static const char *_name = DM_NAME;
43
44 static unsigned int major = 0;
45 static unsigned int _major = 0;
46
47 static DEFINE_IDR(_minor_idr);
48
49 static DEFINE_SPINLOCK(_minor_lock);
50
51 static void do_deferred_remove(struct work_struct *w);
52
53 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
54
55 static struct workqueue_struct *deferred_remove_workqueue;
56
57 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
58 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
59
dm_issue_global_event(void)60 void dm_issue_global_event(void)
61 {
62 atomic_inc(&dm_global_event_nr);
63 wake_up(&dm_global_eventq);
64 }
65
66 /*
67 * One of these is allocated (on-stack) per original bio.
68 */
69 struct clone_info {
70 struct dm_table *map;
71 struct bio *bio;
72 struct dm_io *io;
73 sector_t sector;
74 unsigned sector_count;
75 };
76
77 /*
78 * One of these is allocated per clone bio.
79 */
80 #define DM_TIO_MAGIC 7282014
81 struct dm_target_io {
82 unsigned magic;
83 struct dm_io *io;
84 struct dm_target *ti;
85 unsigned target_bio_nr;
86 unsigned *len_ptr;
87 bool inside_dm_io;
88 struct bio clone;
89 };
90
91 /*
92 * One of these is allocated per original bio.
93 * It contains the first clone used for that original.
94 */
95 #define DM_IO_MAGIC 5191977
96 struct dm_io {
97 unsigned magic;
98 struct mapped_device *md;
99 blk_status_t status;
100 atomic_t io_count;
101 struct bio *orig_bio;
102 unsigned long start_time;
103 spinlock_t endio_lock;
104 struct dm_stats_aux stats_aux;
105 /* last member of dm_target_io is 'struct bio' */
106 struct dm_target_io tio;
107 };
108
dm_per_bio_data(struct bio * bio,size_t data_size)109 void *dm_per_bio_data(struct bio *bio, size_t data_size)
110 {
111 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
112 if (!tio->inside_dm_io)
113 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
114 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
115 }
116 EXPORT_SYMBOL_GPL(dm_per_bio_data);
117
dm_bio_from_per_bio_data(void * data,size_t data_size)118 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
119 {
120 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
121 if (io->magic == DM_IO_MAGIC)
122 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
123 BUG_ON(io->magic != DM_TIO_MAGIC);
124 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
125 }
126 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
127
dm_bio_get_target_bio_nr(const struct bio * bio)128 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
129 {
130 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
131 }
132 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
133
134 #define MINOR_ALLOCED ((void *)-1)
135
136 /*
137 * Bits for the md->flags field.
138 */
139 #define DMF_BLOCK_IO_FOR_SUSPEND 0
140 #define DMF_SUSPENDED 1
141 #define DMF_FROZEN 2
142 #define DMF_FREEING 3
143 #define DMF_DELETING 4
144 #define DMF_NOFLUSH_SUSPENDING 5
145 #define DMF_DEFERRED_REMOVE 6
146 #define DMF_SUSPENDED_INTERNALLY 7
147 #define DMF_POST_SUSPENDING 8
148
149 #define DM_NUMA_NODE NUMA_NO_NODE
150 static int dm_numa_node = DM_NUMA_NODE;
151
152 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
153 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)154 static int get_swap_bios(void)
155 {
156 int latch = READ_ONCE(swap_bios);
157 if (unlikely(latch <= 0))
158 latch = DEFAULT_SWAP_BIOS;
159 return latch;
160 }
161
162 /*
163 * For mempools pre-allocation at the table loading time.
164 */
165 struct dm_md_mempools {
166 struct bio_set bs;
167 struct bio_set io_bs;
168 };
169
170 struct table_device {
171 struct list_head list;
172 refcount_t count;
173 struct dm_dev dm_dev;
174 };
175
176 /*
177 * Bio-based DM's mempools' reserved IOs set by the user.
178 */
179 #define RESERVED_BIO_BASED_IOS 16
180 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
181
__dm_get_module_param_int(int * module_param,int min,int max)182 static int __dm_get_module_param_int(int *module_param, int min, int max)
183 {
184 int param = READ_ONCE(*module_param);
185 int modified_param = 0;
186 bool modified = true;
187
188 if (param < min)
189 modified_param = min;
190 else if (param > max)
191 modified_param = max;
192 else
193 modified = false;
194
195 if (modified) {
196 (void)cmpxchg(module_param, param, modified_param);
197 param = modified_param;
198 }
199
200 return param;
201 }
202
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)203 unsigned __dm_get_module_param(unsigned *module_param,
204 unsigned def, unsigned max)
205 {
206 unsigned param = READ_ONCE(*module_param);
207 unsigned modified_param = 0;
208
209 if (!param)
210 modified_param = def;
211 else if (param > max)
212 modified_param = max;
213
214 if (modified_param) {
215 (void)cmpxchg(module_param, param, modified_param);
216 param = modified_param;
217 }
218
219 return param;
220 }
221
dm_get_reserved_bio_based_ios(void)222 unsigned dm_get_reserved_bio_based_ios(void)
223 {
224 return __dm_get_module_param(&reserved_bio_based_ios,
225 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
226 }
227 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
228
dm_get_numa_node(void)229 static unsigned dm_get_numa_node(void)
230 {
231 return __dm_get_module_param_int(&dm_numa_node,
232 DM_NUMA_NODE, num_online_nodes() - 1);
233 }
234
local_init(void)235 static int __init local_init(void)
236 {
237 int r;
238
239 r = dm_uevent_init();
240 if (r)
241 return r;
242
243 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
244 if (!deferred_remove_workqueue) {
245 r = -ENOMEM;
246 goto out_uevent_exit;
247 }
248
249 _major = major;
250 r = register_blkdev(_major, _name);
251 if (r < 0)
252 goto out_free_workqueue;
253
254 if (!_major)
255 _major = r;
256
257 return 0;
258
259 out_free_workqueue:
260 destroy_workqueue(deferred_remove_workqueue);
261 out_uevent_exit:
262 dm_uevent_exit();
263
264 return r;
265 }
266
local_exit(void)267 static void local_exit(void)
268 {
269 flush_scheduled_work();
270 destroy_workqueue(deferred_remove_workqueue);
271
272 unregister_blkdev(_major, _name);
273 dm_uevent_exit();
274
275 _major = 0;
276
277 DMINFO("cleaned up");
278 }
279
280 static int (*_inits[])(void) __initdata = {
281 local_init,
282 dm_target_init,
283 dm_linear_init,
284 dm_stripe_init,
285 dm_io_init,
286 dm_kcopyd_init,
287 dm_interface_init,
288 dm_statistics_init,
289 };
290
291 static void (*_exits[])(void) = {
292 local_exit,
293 dm_target_exit,
294 dm_linear_exit,
295 dm_stripe_exit,
296 dm_io_exit,
297 dm_kcopyd_exit,
298 dm_interface_exit,
299 dm_statistics_exit,
300 };
301
dm_init(void)302 static int __init dm_init(void)
303 {
304 const int count = ARRAY_SIZE(_inits);
305
306 int r, i;
307
308 for (i = 0; i < count; i++) {
309 r = _inits[i]();
310 if (r)
311 goto bad;
312 }
313
314 return 0;
315
316 bad:
317 while (i--)
318 _exits[i]();
319
320 return r;
321 }
322
dm_exit(void)323 static void __exit dm_exit(void)
324 {
325 int i = ARRAY_SIZE(_exits);
326
327 while (i--)
328 _exits[i]();
329
330 /*
331 * Should be empty by this point.
332 */
333 idr_destroy(&_minor_idr);
334 }
335
336 /*
337 * Block device functions
338 */
dm_deleting_md(struct mapped_device * md)339 int dm_deleting_md(struct mapped_device *md)
340 {
341 return test_bit(DMF_DELETING, &md->flags);
342 }
343
dm_blk_open(struct block_device * bdev,fmode_t mode)344 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
345 {
346 struct mapped_device *md;
347
348 spin_lock(&_minor_lock);
349
350 md = bdev->bd_disk->private_data;
351 if (!md)
352 goto out;
353
354 if (test_bit(DMF_FREEING, &md->flags) ||
355 dm_deleting_md(md)) {
356 md = NULL;
357 goto out;
358 }
359
360 dm_get(md);
361 atomic_inc(&md->open_count);
362 out:
363 spin_unlock(&_minor_lock);
364
365 return md ? 0 : -ENXIO;
366 }
367
dm_blk_close(struct gendisk * disk,fmode_t mode)368 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
369 {
370 struct mapped_device *md;
371
372 spin_lock(&_minor_lock);
373
374 md = disk->private_data;
375 if (WARN_ON(!md))
376 goto out;
377
378 if (atomic_dec_and_test(&md->open_count) &&
379 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
380 queue_work(deferred_remove_workqueue, &deferred_remove_work);
381
382 dm_put(md);
383 out:
384 spin_unlock(&_minor_lock);
385 }
386
dm_open_count(struct mapped_device * md)387 int dm_open_count(struct mapped_device *md)
388 {
389 return atomic_read(&md->open_count);
390 }
391
392 /*
393 * Guarantees nothing is using the device before it's deleted.
394 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)395 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
396 {
397 int r = 0;
398
399 spin_lock(&_minor_lock);
400
401 if (dm_open_count(md)) {
402 r = -EBUSY;
403 if (mark_deferred)
404 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
405 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
406 r = -EEXIST;
407 else
408 set_bit(DMF_DELETING, &md->flags);
409
410 spin_unlock(&_minor_lock);
411
412 return r;
413 }
414
dm_cancel_deferred_remove(struct mapped_device * md)415 int dm_cancel_deferred_remove(struct mapped_device *md)
416 {
417 int r = 0;
418
419 spin_lock(&_minor_lock);
420
421 if (test_bit(DMF_DELETING, &md->flags))
422 r = -EBUSY;
423 else
424 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
425
426 spin_unlock(&_minor_lock);
427
428 return r;
429 }
430
do_deferred_remove(struct work_struct * w)431 static void do_deferred_remove(struct work_struct *w)
432 {
433 dm_deferred_remove();
434 }
435
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
437 {
438 struct mapped_device *md = bdev->bd_disk->private_data;
439
440 return dm_get_geometry(md, geo);
441 }
442
443 #ifdef CONFIG_BLK_DEV_ZONED
dm_report_zones_cb(struct blk_zone * zone,unsigned int idx,void * data)444 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
445 {
446 struct dm_report_zones_args *args = data;
447 sector_t sector_diff = args->tgt->begin - args->start;
448
449 /*
450 * Ignore zones beyond the target range.
451 */
452 if (zone->start >= args->start + args->tgt->len)
453 return 0;
454
455 /*
456 * Remap the start sector and write pointer position of the zone
457 * to match its position in the target range.
458 */
459 zone->start += sector_diff;
460 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
461 if (zone->cond == BLK_ZONE_COND_FULL)
462 zone->wp = zone->start + zone->len;
463 else if (zone->cond == BLK_ZONE_COND_EMPTY)
464 zone->wp = zone->start;
465 else
466 zone->wp += sector_diff;
467 }
468
469 args->next_sector = zone->start + zone->len;
470 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
471 }
472 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
473
dm_blk_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)474 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
475 unsigned int nr_zones, report_zones_cb cb, void *data)
476 {
477 struct mapped_device *md = disk->private_data;
478 struct dm_table *map;
479 int srcu_idx, ret;
480 struct dm_report_zones_args args = {
481 .next_sector = sector,
482 .orig_data = data,
483 .orig_cb = cb,
484 };
485
486 if (dm_suspended_md(md))
487 return -EAGAIN;
488
489 map = dm_get_live_table(md, &srcu_idx);
490 if (!map) {
491 ret = -EIO;
492 goto out;
493 }
494
495 do {
496 struct dm_target *tgt;
497
498 tgt = dm_table_find_target(map, args.next_sector);
499 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
500 ret = -EIO;
501 goto out;
502 }
503
504 args.tgt = tgt;
505 ret = tgt->type->report_zones(tgt, &args,
506 nr_zones - args.zone_idx);
507 if (ret < 0)
508 goto out;
509 } while (args.zone_idx < nr_zones &&
510 args.next_sector < get_capacity(disk));
511
512 ret = args.zone_idx;
513 out:
514 dm_put_live_table(md, srcu_idx);
515 return ret;
516 }
517 #else
518 #define dm_blk_report_zones NULL
519 #endif /* CONFIG_BLK_DEV_ZONED */
520
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)521 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
522 struct block_device **bdev)
523 {
524 struct dm_target *tgt;
525 struct dm_table *map;
526 int r;
527
528 retry:
529 r = -ENOTTY;
530 map = dm_get_live_table(md, srcu_idx);
531 if (!map || !dm_table_get_size(map))
532 return r;
533
534 /* We only support devices that have a single target */
535 if (dm_table_get_num_targets(map) != 1)
536 return r;
537
538 tgt = dm_table_get_target(map, 0);
539 if (!tgt->type->prepare_ioctl)
540 return r;
541
542 if (dm_suspended_md(md))
543 return -EAGAIN;
544
545 r = tgt->type->prepare_ioctl(tgt, bdev);
546 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
547 dm_put_live_table(md, *srcu_idx);
548 msleep(10);
549 goto retry;
550 }
551
552 return r;
553 }
554
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)555 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
556 {
557 dm_put_live_table(md, srcu_idx);
558 }
559
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)560 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
561 unsigned int cmd, unsigned long arg)
562 {
563 struct mapped_device *md = bdev->bd_disk->private_data;
564 int r, srcu_idx;
565
566 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
567 if (r < 0)
568 goto out;
569
570 if (r > 0) {
571 /*
572 * Target determined this ioctl is being issued against a
573 * subset of the parent bdev; require extra privileges.
574 */
575 if (!capable(CAP_SYS_RAWIO)) {
576 DMDEBUG_LIMIT(
577 "%s: sending ioctl %x to DM device without required privilege.",
578 current->comm, cmd);
579 r = -ENOIOCTLCMD;
580 goto out;
581 }
582 }
583
584 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
585 out:
586 dm_unprepare_ioctl(md, srcu_idx);
587 return r;
588 }
589
dm_start_time_ns_from_clone(struct bio * bio)590 u64 dm_start_time_ns_from_clone(struct bio *bio)
591 {
592 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
593 struct dm_io *io = tio->io;
594
595 return jiffies_to_nsecs(io->start_time);
596 }
597 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
598
start_io_acct(struct dm_io * io)599 static void start_io_acct(struct dm_io *io)
600 {
601 struct mapped_device *md = io->md;
602 struct bio *bio = io->orig_bio;
603
604 io->start_time = bio_start_io_acct(bio);
605 if (unlikely(dm_stats_used(&md->stats)))
606 dm_stats_account_io(&md->stats, bio_data_dir(bio),
607 bio->bi_iter.bi_sector, bio_sectors(bio),
608 false, 0, &io->stats_aux);
609 }
610
end_io_acct(struct mapped_device * md,struct bio * bio,unsigned long start_time,struct dm_stats_aux * stats_aux)611 static void end_io_acct(struct mapped_device *md, struct bio *bio,
612 unsigned long start_time, struct dm_stats_aux *stats_aux)
613 {
614 unsigned long duration = jiffies - start_time;
615
616 if (unlikely(dm_stats_used(&md->stats)))
617 dm_stats_account_io(&md->stats, bio_data_dir(bio),
618 bio->bi_iter.bi_sector, bio_sectors(bio),
619 true, duration, stats_aux);
620
621 smp_wmb();
622
623 bio_end_io_acct(bio, start_time);
624
625 /* nudge anyone waiting on suspend queue */
626 if (unlikely(wq_has_sleeper(&md->wait)))
627 wake_up(&md->wait);
628 }
629
alloc_io(struct mapped_device * md,struct bio * bio)630 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
631 {
632 struct dm_io *io;
633 struct dm_target_io *tio;
634 struct bio *clone;
635
636 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
637 if (!clone)
638 return NULL;
639
640 tio = container_of(clone, struct dm_target_io, clone);
641 tio->inside_dm_io = true;
642 tio->io = NULL;
643
644 io = container_of(tio, struct dm_io, tio);
645 io->magic = DM_IO_MAGIC;
646 io->status = 0;
647 atomic_set(&io->io_count, 1);
648 io->orig_bio = bio;
649 io->md = md;
650 spin_lock_init(&io->endio_lock);
651
652 start_io_acct(io);
653
654 return io;
655 }
656
free_io(struct mapped_device * md,struct dm_io * io)657 static void free_io(struct mapped_device *md, struct dm_io *io)
658 {
659 bio_put(&io->tio.clone);
660 }
661
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)662 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
663 unsigned target_bio_nr, gfp_t gfp_mask)
664 {
665 struct dm_target_io *tio;
666
667 if (!ci->io->tio.io) {
668 /* the dm_target_io embedded in ci->io is available */
669 tio = &ci->io->tio;
670 } else {
671 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
672 if (!clone)
673 return NULL;
674
675 tio = container_of(clone, struct dm_target_io, clone);
676 tio->inside_dm_io = false;
677 }
678
679 tio->magic = DM_TIO_MAGIC;
680 tio->io = ci->io;
681 tio->ti = ti;
682 tio->target_bio_nr = target_bio_nr;
683
684 return tio;
685 }
686
free_tio(struct dm_target_io * tio)687 static void free_tio(struct dm_target_io *tio)
688 {
689 if (tio->inside_dm_io)
690 return;
691 bio_put(&tio->clone);
692 }
693
694 /*
695 * Add the bio to the list of deferred io.
696 */
queue_io(struct mapped_device * md,struct bio * bio)697 static void queue_io(struct mapped_device *md, struct bio *bio)
698 {
699 unsigned long flags;
700
701 spin_lock_irqsave(&md->deferred_lock, flags);
702 bio_list_add(&md->deferred, bio);
703 spin_unlock_irqrestore(&md->deferred_lock, flags);
704 queue_work(md->wq, &md->work);
705 }
706
707 /*
708 * Everyone (including functions in this file), should use this
709 * function to access the md->map field, and make sure they call
710 * dm_put_live_table() when finished.
711 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)712 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
713 {
714 *srcu_idx = srcu_read_lock(&md->io_barrier);
715
716 return srcu_dereference(md->map, &md->io_barrier);
717 }
718
dm_put_live_table(struct mapped_device * md,int srcu_idx)719 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
720 {
721 srcu_read_unlock(&md->io_barrier, srcu_idx);
722 }
723
dm_sync_table(struct mapped_device * md)724 void dm_sync_table(struct mapped_device *md)
725 {
726 synchronize_srcu(&md->io_barrier);
727 synchronize_rcu_expedited();
728 }
729
730 /*
731 * A fast alternative to dm_get_live_table/dm_put_live_table.
732 * The caller must not block between these two functions.
733 */
dm_get_live_table_fast(struct mapped_device * md)734 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
735 {
736 rcu_read_lock();
737 return rcu_dereference(md->map);
738 }
739
dm_put_live_table_fast(struct mapped_device * md)740 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
741 {
742 rcu_read_unlock();
743 }
744
745 static char *_dm_claim_ptr = "I belong to device-mapper";
746
747 /*
748 * Open a table device so we can use it as a map destination.
749 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)750 static int open_table_device(struct table_device *td, dev_t dev,
751 struct mapped_device *md)
752 {
753 struct block_device *bdev;
754
755 int r;
756
757 BUG_ON(td->dm_dev.bdev);
758
759 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
760 if (IS_ERR(bdev))
761 return PTR_ERR(bdev);
762
763 r = bd_link_disk_holder(bdev, dm_disk(md));
764 if (r) {
765 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
766 return r;
767 }
768
769 td->dm_dev.bdev = bdev;
770 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
771 return 0;
772 }
773
774 /*
775 * Close a table device that we've been using.
776 */
close_table_device(struct table_device * td,struct mapped_device * md)777 static void close_table_device(struct table_device *td, struct mapped_device *md)
778 {
779 if (!td->dm_dev.bdev)
780 return;
781
782 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
783 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
784 put_dax(td->dm_dev.dax_dev);
785 td->dm_dev.bdev = NULL;
786 td->dm_dev.dax_dev = NULL;
787 }
788
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)789 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
790 fmode_t mode)
791 {
792 struct table_device *td;
793
794 list_for_each_entry(td, l, list)
795 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
796 return td;
797
798 return NULL;
799 }
800
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)801 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
802 struct dm_dev **result)
803 {
804 int r;
805 struct table_device *td;
806
807 mutex_lock(&md->table_devices_lock);
808 td = find_table_device(&md->table_devices, dev, mode);
809 if (!td) {
810 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
811 if (!td) {
812 mutex_unlock(&md->table_devices_lock);
813 return -ENOMEM;
814 }
815
816 td->dm_dev.mode = mode;
817 td->dm_dev.bdev = NULL;
818
819 if ((r = open_table_device(td, dev, md))) {
820 mutex_unlock(&md->table_devices_lock);
821 kfree(td);
822 return r;
823 }
824
825 format_dev_t(td->dm_dev.name, dev);
826
827 refcount_set(&td->count, 1);
828 list_add(&td->list, &md->table_devices);
829 } else {
830 refcount_inc(&td->count);
831 }
832 mutex_unlock(&md->table_devices_lock);
833
834 *result = &td->dm_dev;
835 return 0;
836 }
837 EXPORT_SYMBOL_GPL(dm_get_table_device);
838
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)839 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
840 {
841 struct table_device *td = container_of(d, struct table_device, dm_dev);
842
843 mutex_lock(&md->table_devices_lock);
844 if (refcount_dec_and_test(&td->count)) {
845 close_table_device(td, md);
846 list_del(&td->list);
847 kfree(td);
848 }
849 mutex_unlock(&md->table_devices_lock);
850 }
851 EXPORT_SYMBOL(dm_put_table_device);
852
free_table_devices(struct list_head * devices)853 static void free_table_devices(struct list_head *devices)
854 {
855 struct list_head *tmp, *next;
856
857 list_for_each_safe(tmp, next, devices) {
858 struct table_device *td = list_entry(tmp, struct table_device, list);
859
860 DMWARN("dm_destroy: %s still exists with %d references",
861 td->dm_dev.name, refcount_read(&td->count));
862 kfree(td);
863 }
864 }
865
866 /*
867 * Get the geometry associated with a dm device
868 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)869 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
870 {
871 *geo = md->geometry;
872
873 return 0;
874 }
875
876 /*
877 * Set the geometry of a device.
878 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)879 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
880 {
881 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
882
883 if (geo->start > sz) {
884 DMWARN("Start sector is beyond the geometry limits.");
885 return -EINVAL;
886 }
887
888 md->geometry = *geo;
889
890 return 0;
891 }
892
__noflush_suspending(struct mapped_device * md)893 static int __noflush_suspending(struct mapped_device *md)
894 {
895 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
896 }
897
898 /*
899 * Decrements the number of outstanding ios that a bio has been
900 * cloned into, completing the original io if necc.
901 */
dec_pending(struct dm_io * io,blk_status_t error)902 static void dec_pending(struct dm_io *io, blk_status_t error)
903 {
904 unsigned long flags;
905 blk_status_t io_error;
906 struct bio *bio;
907 struct mapped_device *md = io->md;
908 unsigned long start_time = 0;
909 struct dm_stats_aux stats_aux;
910
911 /* Push-back supersedes any I/O errors */
912 if (unlikely(error)) {
913 spin_lock_irqsave(&io->endio_lock, flags);
914 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
915 io->status = error;
916 spin_unlock_irqrestore(&io->endio_lock, flags);
917 }
918
919 if (atomic_dec_and_test(&io->io_count)) {
920 if (io->status == BLK_STS_DM_REQUEUE) {
921 /*
922 * Target requested pushing back the I/O.
923 */
924 spin_lock_irqsave(&md->deferred_lock, flags);
925 if (__noflush_suspending(md))
926 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
927 bio_list_add_head(&md->deferred, io->orig_bio);
928 else
929 /* noflush suspend was interrupted. */
930 io->status = BLK_STS_IOERR;
931 spin_unlock_irqrestore(&md->deferred_lock, flags);
932 }
933
934 io_error = io->status;
935 bio = io->orig_bio;
936 start_time = io->start_time;
937 stats_aux = io->stats_aux;
938 free_io(md, io);
939 end_io_acct(md, bio, start_time, &stats_aux);
940
941 if (io_error == BLK_STS_DM_REQUEUE)
942 return;
943
944 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
945 /*
946 * Preflush done for flush with data, reissue
947 * without REQ_PREFLUSH.
948 */
949 bio->bi_opf &= ~REQ_PREFLUSH;
950 queue_io(md, bio);
951 } else {
952 /* done with normal IO or empty flush */
953 if (io_error)
954 bio->bi_status = io_error;
955 bio_endio(bio);
956 }
957 }
958 }
959
disable_discard(struct mapped_device * md)960 void disable_discard(struct mapped_device *md)
961 {
962 struct queue_limits *limits = dm_get_queue_limits(md);
963
964 /* device doesn't really support DISCARD, disable it */
965 limits->max_discard_sectors = 0;
966 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
967 }
968
disable_write_same(struct mapped_device * md)969 void disable_write_same(struct mapped_device *md)
970 {
971 struct queue_limits *limits = dm_get_queue_limits(md);
972
973 /* device doesn't really support WRITE SAME, disable it */
974 limits->max_write_same_sectors = 0;
975 }
976
disable_write_zeroes(struct mapped_device * md)977 void disable_write_zeroes(struct mapped_device *md)
978 {
979 struct queue_limits *limits = dm_get_queue_limits(md);
980
981 /* device doesn't really support WRITE ZEROES, disable it */
982 limits->max_write_zeroes_sectors = 0;
983 }
984
swap_bios_limit(struct dm_target * ti,struct bio * bio)985 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
986 {
987 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
988 }
989
clone_endio(struct bio * bio)990 static void clone_endio(struct bio *bio)
991 {
992 blk_status_t error = bio->bi_status;
993 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
994 struct dm_io *io = tio->io;
995 struct mapped_device *md = tio->io->md;
996 dm_endio_fn endio = tio->ti->type->end_io;
997 struct bio *orig_bio = io->orig_bio;
998
999 if (unlikely(error == BLK_STS_TARGET)) {
1000 if (bio_op(bio) == REQ_OP_DISCARD &&
1001 !bio->bi_disk->queue->limits.max_discard_sectors)
1002 disable_discard(md);
1003 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1004 !bio->bi_disk->queue->limits.max_write_same_sectors)
1005 disable_write_same(md);
1006 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1007 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1008 disable_write_zeroes(md);
1009 }
1010
1011 /*
1012 * For zone-append bios get offset in zone of the written
1013 * sector and add that to the original bio sector pos.
1014 */
1015 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1016 sector_t written_sector = bio->bi_iter.bi_sector;
1017 struct request_queue *q = orig_bio->bi_disk->queue;
1018 u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1019
1020 orig_bio->bi_iter.bi_sector += written_sector & mask;
1021 }
1022
1023 if (endio) {
1024 int r = endio(tio->ti, bio, &error);
1025 switch (r) {
1026 case DM_ENDIO_REQUEUE:
1027 error = BLK_STS_DM_REQUEUE;
1028 fallthrough;
1029 case DM_ENDIO_DONE:
1030 break;
1031 case DM_ENDIO_INCOMPLETE:
1032 /* The target will handle the io */
1033 return;
1034 default:
1035 DMWARN("unimplemented target endio return value: %d", r);
1036 BUG();
1037 }
1038 }
1039
1040 if (unlikely(swap_bios_limit(tio->ti, bio))) {
1041 struct mapped_device *md = io->md;
1042 up(&md->swap_bios_semaphore);
1043 }
1044
1045 free_tio(tio);
1046 dec_pending(io, error);
1047 }
1048
1049 /*
1050 * Return maximum size of I/O possible at the supplied sector up to the current
1051 * target boundary.
1052 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1053 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1054 sector_t target_offset)
1055 {
1056 return ti->len - target_offset;
1057 }
1058
max_io_len(struct dm_target * ti,sector_t sector)1059 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1060 {
1061 sector_t target_offset = dm_target_offset(ti, sector);
1062 sector_t len = max_io_len_target_boundary(ti, target_offset);
1063 sector_t max_len;
1064
1065 /*
1066 * Does the target need to split IO even further?
1067 * - varied (per target) IO splitting is a tenet of DM; this
1068 * explains why stacked chunk_sectors based splitting via
1069 * blk_max_size_offset() isn't possible here. So pass in
1070 * ti->max_io_len to override stacked chunk_sectors.
1071 */
1072 if (ti->max_io_len) {
1073 max_len = blk_max_size_offset(ti->table->md->queue,
1074 target_offset, ti->max_io_len);
1075 if (len > max_len)
1076 len = max_len;
1077 }
1078
1079 return len;
1080 }
1081
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1082 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1083 {
1084 if (len > UINT_MAX) {
1085 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1086 (unsigned long long)len, UINT_MAX);
1087 ti->error = "Maximum size of target IO is too large";
1088 return -EINVAL;
1089 }
1090
1091 ti->max_io_len = (uint32_t) len;
1092
1093 return 0;
1094 }
1095 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1096
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1097 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1098 sector_t sector, int *srcu_idx)
1099 __acquires(md->io_barrier)
1100 {
1101 struct dm_table *map;
1102 struct dm_target *ti;
1103
1104 map = dm_get_live_table(md, srcu_idx);
1105 if (!map)
1106 return NULL;
1107
1108 ti = dm_table_find_target(map, sector);
1109 if (!ti)
1110 return NULL;
1111
1112 return ti;
1113 }
1114
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1115 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1116 long nr_pages, void **kaddr, pfn_t *pfn)
1117 {
1118 struct mapped_device *md = dax_get_private(dax_dev);
1119 sector_t sector = pgoff * PAGE_SECTORS;
1120 struct dm_target *ti;
1121 long len, ret = -EIO;
1122 int srcu_idx;
1123
1124 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1125
1126 if (!ti)
1127 goto out;
1128 if (!ti->type->direct_access)
1129 goto out;
1130 len = max_io_len(ti, sector) / PAGE_SECTORS;
1131 if (len < 1)
1132 goto out;
1133 nr_pages = min(len, nr_pages);
1134 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1135
1136 out:
1137 dm_put_live_table(md, srcu_idx);
1138
1139 return ret;
1140 }
1141
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1142 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1143 int blocksize, sector_t start, sector_t len)
1144 {
1145 struct mapped_device *md = dax_get_private(dax_dev);
1146 struct dm_table *map;
1147 bool ret = false;
1148 int srcu_idx;
1149
1150 map = dm_get_live_table(md, &srcu_idx);
1151 if (!map)
1152 goto out;
1153
1154 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1155
1156 out:
1157 dm_put_live_table(md, srcu_idx);
1158
1159 return ret;
1160 }
1161
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1162 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1163 void *addr, size_t bytes, struct iov_iter *i)
1164 {
1165 struct mapped_device *md = dax_get_private(dax_dev);
1166 sector_t sector = pgoff * PAGE_SECTORS;
1167 struct dm_target *ti;
1168 long ret = 0;
1169 int srcu_idx;
1170
1171 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1172
1173 if (!ti)
1174 goto out;
1175 if (!ti->type->dax_copy_from_iter) {
1176 ret = copy_from_iter(addr, bytes, i);
1177 goto out;
1178 }
1179 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1180 out:
1181 dm_put_live_table(md, srcu_idx);
1182
1183 return ret;
1184 }
1185
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1186 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1187 void *addr, size_t bytes, struct iov_iter *i)
1188 {
1189 struct mapped_device *md = dax_get_private(dax_dev);
1190 sector_t sector = pgoff * PAGE_SECTORS;
1191 struct dm_target *ti;
1192 long ret = 0;
1193 int srcu_idx;
1194
1195 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1196
1197 if (!ti)
1198 goto out;
1199 if (!ti->type->dax_copy_to_iter) {
1200 ret = copy_to_iter(addr, bytes, i);
1201 goto out;
1202 }
1203 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1204 out:
1205 dm_put_live_table(md, srcu_idx);
1206
1207 return ret;
1208 }
1209
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1210 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1211 size_t nr_pages)
1212 {
1213 struct mapped_device *md = dax_get_private(dax_dev);
1214 sector_t sector = pgoff * PAGE_SECTORS;
1215 struct dm_target *ti;
1216 int ret = -EIO;
1217 int srcu_idx;
1218
1219 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1220
1221 if (!ti)
1222 goto out;
1223 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1224 /*
1225 * ->zero_page_range() is mandatory dax operation. If we are
1226 * here, something is wrong.
1227 */
1228 goto out;
1229 }
1230 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1231 out:
1232 dm_put_live_table(md, srcu_idx);
1233
1234 return ret;
1235 }
1236
1237 /*
1238 * A target may call dm_accept_partial_bio only from the map routine. It is
1239 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1240 * operations and REQ_OP_ZONE_APPEND (zone append writes).
1241 *
1242 * dm_accept_partial_bio informs the dm that the target only wants to process
1243 * additional n_sectors sectors of the bio and the rest of the data should be
1244 * sent in a next bio.
1245 *
1246 * A diagram that explains the arithmetics:
1247 * +--------------------+---------------+-------+
1248 * | 1 | 2 | 3 |
1249 * +--------------------+---------------+-------+
1250 *
1251 * <-------------- *tio->len_ptr --------------->
1252 * <------- bi_size ------->
1253 * <-- n_sectors -->
1254 *
1255 * Region 1 was already iterated over with bio_advance or similar function.
1256 * (it may be empty if the target doesn't use bio_advance)
1257 * Region 2 is the remaining bio size that the target wants to process.
1258 * (it may be empty if region 1 is non-empty, although there is no reason
1259 * to make it empty)
1260 * The target requires that region 3 is to be sent in the next bio.
1261 *
1262 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1263 * the partially processed part (the sum of regions 1+2) must be the same for all
1264 * copies of the bio.
1265 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1266 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1267 {
1268 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1269 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1270
1271 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1272 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1273 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1274 BUG_ON(bi_size > *tio->len_ptr);
1275 BUG_ON(n_sectors > bi_size);
1276
1277 *tio->len_ptr -= bi_size - n_sectors;
1278 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1279 }
1280 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1281
__set_swap_bios_limit(struct mapped_device * md,int latch)1282 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1283 {
1284 mutex_lock(&md->swap_bios_lock);
1285 while (latch < md->swap_bios) {
1286 cond_resched();
1287 down(&md->swap_bios_semaphore);
1288 md->swap_bios--;
1289 }
1290 while (latch > md->swap_bios) {
1291 cond_resched();
1292 up(&md->swap_bios_semaphore);
1293 md->swap_bios++;
1294 }
1295 mutex_unlock(&md->swap_bios_lock);
1296 }
1297
__map_bio(struct dm_target_io * tio)1298 static blk_qc_t __map_bio(struct dm_target_io *tio)
1299 {
1300 int r;
1301 sector_t sector;
1302 struct bio *clone = &tio->clone;
1303 struct dm_io *io = tio->io;
1304 struct dm_target *ti = tio->ti;
1305 blk_qc_t ret = BLK_QC_T_NONE;
1306
1307 clone->bi_end_io = clone_endio;
1308
1309 /*
1310 * Map the clone. If r == 0 we don't need to do
1311 * anything, the target has assumed ownership of
1312 * this io.
1313 */
1314 atomic_inc(&io->io_count);
1315 sector = clone->bi_iter.bi_sector;
1316
1317 if (unlikely(swap_bios_limit(ti, clone))) {
1318 struct mapped_device *md = io->md;
1319 int latch = get_swap_bios();
1320 if (unlikely(latch != md->swap_bios))
1321 __set_swap_bios_limit(md, latch);
1322 down(&md->swap_bios_semaphore);
1323 }
1324
1325 r = ti->type->map(ti, clone);
1326 switch (r) {
1327 case DM_MAPIO_SUBMITTED:
1328 break;
1329 case DM_MAPIO_REMAPPED:
1330 /* the bio has been remapped so dispatch it */
1331 trace_block_bio_remap(clone->bi_disk->queue, clone,
1332 bio_dev(io->orig_bio), sector);
1333 ret = submit_bio_noacct(clone);
1334 break;
1335 case DM_MAPIO_KILL:
1336 if (unlikely(swap_bios_limit(ti, clone))) {
1337 struct mapped_device *md = io->md;
1338 up(&md->swap_bios_semaphore);
1339 }
1340 free_tio(tio);
1341 dec_pending(io, BLK_STS_IOERR);
1342 break;
1343 case DM_MAPIO_REQUEUE:
1344 if (unlikely(swap_bios_limit(ti, clone))) {
1345 struct mapped_device *md = io->md;
1346 up(&md->swap_bios_semaphore);
1347 }
1348 free_tio(tio);
1349 dec_pending(io, BLK_STS_DM_REQUEUE);
1350 break;
1351 default:
1352 DMWARN("unimplemented target map return value: %d", r);
1353 BUG();
1354 }
1355
1356 return ret;
1357 }
1358
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1359 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1360 {
1361 bio->bi_iter.bi_sector = sector;
1362 bio->bi_iter.bi_size = to_bytes(len);
1363 }
1364
1365 /*
1366 * Creates a bio that consists of range of complete bvecs.
1367 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1368 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1369 sector_t sector, unsigned len)
1370 {
1371 struct bio *clone = &tio->clone;
1372 int r;
1373
1374 __bio_clone_fast(clone, bio);
1375
1376 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1377 if (r < 0)
1378 return r;
1379
1380 if (bio_integrity(bio)) {
1381 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1382 !dm_target_passes_integrity(tio->ti->type))) {
1383 DMWARN("%s: the target %s doesn't support integrity data.",
1384 dm_device_name(tio->io->md),
1385 tio->ti->type->name);
1386 return -EIO;
1387 }
1388
1389 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1390 if (r < 0)
1391 return r;
1392 }
1393
1394 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1395 clone->bi_iter.bi_size = to_bytes(len);
1396
1397 if (bio_integrity(bio))
1398 bio_integrity_trim(clone);
1399
1400 return 0;
1401 }
1402
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1403 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1404 struct dm_target *ti, unsigned num_bios)
1405 {
1406 struct dm_target_io *tio;
1407 int try;
1408
1409 if (!num_bios)
1410 return;
1411
1412 if (num_bios == 1) {
1413 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1414 bio_list_add(blist, &tio->clone);
1415 return;
1416 }
1417
1418 for (try = 0; try < 2; try++) {
1419 int bio_nr;
1420 struct bio *bio;
1421
1422 if (try)
1423 mutex_lock(&ci->io->md->table_devices_lock);
1424 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1425 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1426 if (!tio)
1427 break;
1428
1429 bio_list_add(blist, &tio->clone);
1430 }
1431 if (try)
1432 mutex_unlock(&ci->io->md->table_devices_lock);
1433 if (bio_nr == num_bios)
1434 return;
1435
1436 while ((bio = bio_list_pop(blist))) {
1437 tio = container_of(bio, struct dm_target_io, clone);
1438 free_tio(tio);
1439 }
1440 }
1441 }
1442
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1443 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1444 struct dm_target_io *tio, unsigned *len)
1445 {
1446 struct bio *clone = &tio->clone;
1447
1448 tio->len_ptr = len;
1449
1450 __bio_clone_fast(clone, ci->bio);
1451 if (len)
1452 bio_setup_sector(clone, ci->sector, *len);
1453
1454 return __map_bio(tio);
1455 }
1456
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1457 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1458 unsigned num_bios, unsigned *len)
1459 {
1460 struct bio_list blist = BIO_EMPTY_LIST;
1461 struct bio *bio;
1462 struct dm_target_io *tio;
1463
1464 alloc_multiple_bios(&blist, ci, ti, num_bios);
1465
1466 while ((bio = bio_list_pop(&blist))) {
1467 tio = container_of(bio, struct dm_target_io, clone);
1468 (void) __clone_and_map_simple_bio(ci, tio, len);
1469 }
1470 }
1471
__send_empty_flush(struct clone_info * ci)1472 static int __send_empty_flush(struct clone_info *ci)
1473 {
1474 unsigned target_nr = 0;
1475 struct dm_target *ti;
1476 struct bio flush_bio;
1477
1478 /*
1479 * Use an on-stack bio for this, it's safe since we don't
1480 * need to reference it after submit. It's just used as
1481 * the basis for the clone(s).
1482 */
1483 bio_init(&flush_bio, NULL, 0);
1484 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1485 ci->bio = &flush_bio;
1486 ci->sector_count = 0;
1487
1488 /*
1489 * Empty flush uses a statically initialized bio, as the base for
1490 * cloning. However, blkg association requires that a bdev is
1491 * associated with a gendisk, which doesn't happen until the bdev is
1492 * opened. So, blkg association is done at issue time of the flush
1493 * rather than when the device is created in alloc_dev().
1494 */
1495 bio_set_dev(ci->bio, ci->io->md->bdev);
1496
1497 BUG_ON(bio_has_data(ci->bio));
1498 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1499 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1500
1501 bio_uninit(ci->bio);
1502 return 0;
1503 }
1504
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1505 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1506 sector_t sector, unsigned *len)
1507 {
1508 struct bio *bio = ci->bio;
1509 struct dm_target_io *tio;
1510 int r;
1511
1512 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1513 tio->len_ptr = len;
1514 r = clone_bio(tio, bio, sector, *len);
1515 if (r < 0) {
1516 free_tio(tio);
1517 return r;
1518 }
1519 (void) __map_bio(tio);
1520
1521 return 0;
1522 }
1523
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1524 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1525 unsigned num_bios)
1526 {
1527 unsigned len;
1528
1529 /*
1530 * Even though the device advertised support for this type of
1531 * request, that does not mean every target supports it, and
1532 * reconfiguration might also have changed that since the
1533 * check was performed.
1534 */
1535 if (!num_bios)
1536 return -EOPNOTSUPP;
1537
1538 len = min_t(sector_t, ci->sector_count,
1539 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1540
1541 __send_duplicate_bios(ci, ti, num_bios, &len);
1542
1543 ci->sector += len;
1544 ci->sector_count -= len;
1545
1546 return 0;
1547 }
1548
is_abnormal_io(struct bio * bio)1549 static bool is_abnormal_io(struct bio *bio)
1550 {
1551 bool r = false;
1552
1553 switch (bio_op(bio)) {
1554 case REQ_OP_DISCARD:
1555 case REQ_OP_SECURE_ERASE:
1556 case REQ_OP_WRITE_SAME:
1557 case REQ_OP_WRITE_ZEROES:
1558 r = true;
1559 break;
1560 }
1561
1562 return r;
1563 }
1564
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1565 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1566 int *result)
1567 {
1568 struct bio *bio = ci->bio;
1569 unsigned num_bios = 0;
1570
1571 switch (bio_op(bio)) {
1572 case REQ_OP_DISCARD:
1573 num_bios = ti->num_discard_bios;
1574 break;
1575 case REQ_OP_SECURE_ERASE:
1576 num_bios = ti->num_secure_erase_bios;
1577 break;
1578 case REQ_OP_WRITE_SAME:
1579 num_bios = ti->num_write_same_bios;
1580 break;
1581 case REQ_OP_WRITE_ZEROES:
1582 num_bios = ti->num_write_zeroes_bios;
1583 break;
1584 default:
1585 return false;
1586 }
1587
1588 *result = __send_changing_extent_only(ci, ti, num_bios);
1589 return true;
1590 }
1591
1592 /*
1593 * Select the correct strategy for processing a non-flush bio.
1594 */
__split_and_process_non_flush(struct clone_info * ci)1595 static int __split_and_process_non_flush(struct clone_info *ci)
1596 {
1597 struct dm_target *ti;
1598 unsigned len;
1599 int r;
1600
1601 ti = dm_table_find_target(ci->map, ci->sector);
1602 if (!ti)
1603 return -EIO;
1604
1605 if (__process_abnormal_io(ci, ti, &r))
1606 return r;
1607
1608 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1609
1610 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1611 if (r < 0)
1612 return r;
1613
1614 ci->sector += len;
1615 ci->sector_count -= len;
1616
1617 return 0;
1618 }
1619
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1620 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1621 struct dm_table *map, struct bio *bio)
1622 {
1623 ci->map = map;
1624 ci->io = alloc_io(md, bio);
1625 ci->sector = bio->bi_iter.bi_sector;
1626 }
1627
1628 #define __dm_part_stat_sub(part, field, subnd) \
1629 (part_stat_get(part, field) -= (subnd))
1630
1631 /*
1632 * Entry point to split a bio into clones and submit them to the targets.
1633 */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1634 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1635 struct dm_table *map, struct bio *bio)
1636 {
1637 struct clone_info ci;
1638 blk_qc_t ret = BLK_QC_T_NONE;
1639 int error = 0;
1640
1641 init_clone_info(&ci, md, map, bio);
1642
1643 if (bio->bi_opf & REQ_PREFLUSH) {
1644 error = __send_empty_flush(&ci);
1645 /* dec_pending submits any data associated with flush */
1646 } else if (op_is_zone_mgmt(bio_op(bio))) {
1647 ci.bio = bio;
1648 ci.sector_count = 0;
1649 error = __split_and_process_non_flush(&ci);
1650 } else {
1651 ci.bio = bio;
1652 ci.sector_count = bio_sectors(bio);
1653 while (ci.sector_count && !error) {
1654 error = __split_and_process_non_flush(&ci);
1655 if (current->bio_list && ci.sector_count && !error) {
1656 /*
1657 * Remainder must be passed to submit_bio_noacct()
1658 * so that it gets handled *after* bios already submitted
1659 * have been completely processed.
1660 * We take a clone of the original to store in
1661 * ci.io->orig_bio to be used by end_io_acct() and
1662 * for dec_pending to use for completion handling.
1663 */
1664 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1665 GFP_NOIO, &md->queue->bio_split);
1666 ci.io->orig_bio = b;
1667
1668 /*
1669 * Adjust IO stats for each split, otherwise upon queue
1670 * reentry there will be redundant IO accounting.
1671 * NOTE: this is a stop-gap fix, a proper fix involves
1672 * significant refactoring of DM core's bio splitting
1673 * (by eliminating DM's splitting and just using bio_split)
1674 */
1675 part_stat_lock();
1676 __dm_part_stat_sub(&dm_disk(md)->part0,
1677 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1678 part_stat_unlock();
1679
1680 bio_chain(b, bio);
1681 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1682 ret = submit_bio_noacct(bio);
1683 break;
1684 }
1685 }
1686 }
1687
1688 /* drop the extra reference count */
1689 dec_pending(ci.io, errno_to_blk_status(error));
1690 return ret;
1691 }
1692
dm_submit_bio(struct bio * bio)1693 static blk_qc_t dm_submit_bio(struct bio *bio)
1694 {
1695 struct mapped_device *md = bio->bi_disk->private_data;
1696 blk_qc_t ret = BLK_QC_T_NONE;
1697 int srcu_idx;
1698 struct dm_table *map;
1699
1700 map = dm_get_live_table(md, &srcu_idx);
1701
1702 /* If suspended, or map not yet available, queue this IO for later */
1703 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1704 unlikely(!map)) {
1705 if (bio->bi_opf & REQ_NOWAIT)
1706 bio_wouldblock_error(bio);
1707 else if (bio->bi_opf & REQ_RAHEAD)
1708 bio_io_error(bio);
1709 else
1710 queue_io(md, bio);
1711 goto out;
1712 }
1713
1714 /*
1715 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1716 * otherwise associated queue_limits won't be imposed.
1717 */
1718 if (is_abnormal_io(bio))
1719 blk_queue_split(&bio);
1720
1721 ret = __split_and_process_bio(md, map, bio);
1722 out:
1723 dm_put_live_table(md, srcu_idx);
1724 return ret;
1725 }
1726
1727 /*-----------------------------------------------------------------
1728 * An IDR is used to keep track of allocated minor numbers.
1729 *---------------------------------------------------------------*/
free_minor(int minor)1730 static void free_minor(int minor)
1731 {
1732 spin_lock(&_minor_lock);
1733 idr_remove(&_minor_idr, minor);
1734 spin_unlock(&_minor_lock);
1735 }
1736
1737 /*
1738 * See if the device with a specific minor # is free.
1739 */
specific_minor(int minor)1740 static int specific_minor(int minor)
1741 {
1742 int r;
1743
1744 if (minor >= (1 << MINORBITS))
1745 return -EINVAL;
1746
1747 idr_preload(GFP_KERNEL);
1748 spin_lock(&_minor_lock);
1749
1750 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1751
1752 spin_unlock(&_minor_lock);
1753 idr_preload_end();
1754 if (r < 0)
1755 return r == -ENOSPC ? -EBUSY : r;
1756 return 0;
1757 }
1758
next_free_minor(int * minor)1759 static int next_free_minor(int *minor)
1760 {
1761 int r;
1762
1763 idr_preload(GFP_KERNEL);
1764 spin_lock(&_minor_lock);
1765
1766 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1767
1768 spin_unlock(&_minor_lock);
1769 idr_preload_end();
1770 if (r < 0)
1771 return r;
1772 *minor = r;
1773 return 0;
1774 }
1775
1776 static const struct block_device_operations dm_blk_dops;
1777 static const struct block_device_operations dm_rq_blk_dops;
1778 static const struct dax_operations dm_dax_ops;
1779
1780 static void dm_wq_work(struct work_struct *work);
1781
1782 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_keyslot_manager(struct request_queue * q)1783 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1784 {
1785 dm_destroy_keyslot_manager(q->ksm);
1786 }
1787
1788 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1789
dm_queue_destroy_keyslot_manager(struct request_queue * q)1790 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1791 {
1792 }
1793 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1794
cleanup_mapped_device(struct mapped_device * md)1795 static void cleanup_mapped_device(struct mapped_device *md)
1796 {
1797 if (md->wq)
1798 destroy_workqueue(md->wq);
1799 bioset_exit(&md->bs);
1800 bioset_exit(&md->io_bs);
1801
1802 if (md->dax_dev) {
1803 kill_dax(md->dax_dev);
1804 put_dax(md->dax_dev);
1805 md->dax_dev = NULL;
1806 }
1807
1808 if (md->disk) {
1809 spin_lock(&_minor_lock);
1810 md->disk->private_data = NULL;
1811 spin_unlock(&_minor_lock);
1812 del_gendisk(md->disk);
1813 put_disk(md->disk);
1814 }
1815
1816 if (md->queue) {
1817 dm_queue_destroy_keyslot_manager(md->queue);
1818 blk_cleanup_queue(md->queue);
1819 }
1820
1821 cleanup_srcu_struct(&md->io_barrier);
1822
1823 if (md->bdev) {
1824 bdput(md->bdev);
1825 md->bdev = NULL;
1826 }
1827
1828 mutex_destroy(&md->suspend_lock);
1829 mutex_destroy(&md->type_lock);
1830 mutex_destroy(&md->table_devices_lock);
1831 mutex_destroy(&md->swap_bios_lock);
1832
1833 dm_mq_cleanup_mapped_device(md);
1834 }
1835
1836 /*
1837 * Allocate and initialise a blank device with a given minor.
1838 */
alloc_dev(int minor)1839 static struct mapped_device *alloc_dev(int minor)
1840 {
1841 int r, numa_node_id = dm_get_numa_node();
1842 struct mapped_device *md;
1843 void *old_md;
1844
1845 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1846 if (!md) {
1847 DMWARN("unable to allocate device, out of memory.");
1848 return NULL;
1849 }
1850
1851 if (!try_module_get(THIS_MODULE))
1852 goto bad_module_get;
1853
1854 /* get a minor number for the dev */
1855 if (minor == DM_ANY_MINOR)
1856 r = next_free_minor(&minor);
1857 else
1858 r = specific_minor(minor);
1859 if (r < 0)
1860 goto bad_minor;
1861
1862 r = init_srcu_struct(&md->io_barrier);
1863 if (r < 0)
1864 goto bad_io_barrier;
1865
1866 md->numa_node_id = numa_node_id;
1867 md->init_tio_pdu = false;
1868 md->type = DM_TYPE_NONE;
1869 mutex_init(&md->suspend_lock);
1870 mutex_init(&md->type_lock);
1871 mutex_init(&md->table_devices_lock);
1872 spin_lock_init(&md->deferred_lock);
1873 atomic_set(&md->holders, 1);
1874 atomic_set(&md->open_count, 0);
1875 atomic_set(&md->event_nr, 0);
1876 atomic_set(&md->uevent_seq, 0);
1877 INIT_LIST_HEAD(&md->uevent_list);
1878 INIT_LIST_HEAD(&md->table_devices);
1879 spin_lock_init(&md->uevent_lock);
1880
1881 /*
1882 * default to bio-based until DM table is loaded and md->type
1883 * established. If request-based table is loaded: blk-mq will
1884 * override accordingly.
1885 */
1886 md->queue = blk_alloc_queue(numa_node_id);
1887 if (!md->queue)
1888 goto bad;
1889
1890 md->disk = alloc_disk_node(1, md->numa_node_id);
1891 if (!md->disk)
1892 goto bad;
1893
1894 init_waitqueue_head(&md->wait);
1895 INIT_WORK(&md->work, dm_wq_work);
1896 init_waitqueue_head(&md->eventq);
1897 init_completion(&md->kobj_holder.completion);
1898
1899 md->swap_bios = get_swap_bios();
1900 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1901 mutex_init(&md->swap_bios_lock);
1902
1903 md->disk->major = _major;
1904 md->disk->first_minor = minor;
1905 md->disk->fops = &dm_blk_dops;
1906 md->disk->queue = md->queue;
1907 md->disk->private_data = md;
1908 sprintf(md->disk->disk_name, "dm-%d", minor);
1909
1910 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1911 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1912 &dm_dax_ops, 0);
1913 if (IS_ERR(md->dax_dev)) {
1914 md->dax_dev = NULL;
1915 goto bad;
1916 }
1917 }
1918
1919 add_disk_no_queue_reg(md->disk);
1920 format_dev_t(md->name, MKDEV(_major, minor));
1921
1922 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1923 if (!md->wq)
1924 goto bad;
1925
1926 md->bdev = bdget_disk(md->disk, 0);
1927 if (!md->bdev)
1928 goto bad;
1929
1930 dm_stats_init(&md->stats);
1931
1932 /* Populate the mapping, nobody knows we exist yet */
1933 spin_lock(&_minor_lock);
1934 old_md = idr_replace(&_minor_idr, md, minor);
1935 spin_unlock(&_minor_lock);
1936
1937 BUG_ON(old_md != MINOR_ALLOCED);
1938
1939 return md;
1940
1941 bad:
1942 cleanup_mapped_device(md);
1943 bad_io_barrier:
1944 free_minor(minor);
1945 bad_minor:
1946 module_put(THIS_MODULE);
1947 bad_module_get:
1948 kvfree(md);
1949 return NULL;
1950 }
1951
1952 static void unlock_fs(struct mapped_device *md);
1953
free_dev(struct mapped_device * md)1954 static void free_dev(struct mapped_device *md)
1955 {
1956 int minor = MINOR(disk_devt(md->disk));
1957
1958 unlock_fs(md);
1959
1960 cleanup_mapped_device(md);
1961
1962 free_table_devices(&md->table_devices);
1963 dm_stats_cleanup(&md->stats);
1964 free_minor(minor);
1965
1966 module_put(THIS_MODULE);
1967 kvfree(md);
1968 }
1969
__bind_mempools(struct mapped_device * md,struct dm_table * t)1970 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1971 {
1972 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1973 int ret = 0;
1974
1975 if (dm_table_bio_based(t)) {
1976 /*
1977 * The md may already have mempools that need changing.
1978 * If so, reload bioset because front_pad may have changed
1979 * because a different table was loaded.
1980 */
1981 bioset_exit(&md->bs);
1982 bioset_exit(&md->io_bs);
1983
1984 } else if (bioset_initialized(&md->bs)) {
1985 /*
1986 * There's no need to reload with request-based dm
1987 * because the size of front_pad doesn't change.
1988 * Note for future: If you are to reload bioset,
1989 * prep-ed requests in the queue may refer
1990 * to bio from the old bioset, so you must walk
1991 * through the queue to unprep.
1992 */
1993 goto out;
1994 }
1995
1996 BUG_ON(!p ||
1997 bioset_initialized(&md->bs) ||
1998 bioset_initialized(&md->io_bs));
1999
2000 ret = bioset_init_from_src(&md->bs, &p->bs);
2001 if (ret)
2002 goto out;
2003 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2004 if (ret)
2005 bioset_exit(&md->bs);
2006 out:
2007 /* mempool bind completed, no longer need any mempools in the table */
2008 dm_table_free_md_mempools(t);
2009 return ret;
2010 }
2011
2012 /*
2013 * Bind a table to the device.
2014 */
event_callback(void * context)2015 static void event_callback(void *context)
2016 {
2017 unsigned long flags;
2018 LIST_HEAD(uevents);
2019 struct mapped_device *md = (struct mapped_device *) context;
2020
2021 spin_lock_irqsave(&md->uevent_lock, flags);
2022 list_splice_init(&md->uevent_list, &uevents);
2023 spin_unlock_irqrestore(&md->uevent_lock, flags);
2024
2025 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2026
2027 atomic_inc(&md->event_nr);
2028 wake_up(&md->eventq);
2029 dm_issue_global_event();
2030 }
2031
2032 /*
2033 * Returns old map, which caller must destroy.
2034 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2035 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2036 struct queue_limits *limits)
2037 {
2038 struct dm_table *old_map;
2039 struct request_queue *q = md->queue;
2040 bool request_based = dm_table_request_based(t);
2041 sector_t size;
2042 int ret;
2043
2044 lockdep_assert_held(&md->suspend_lock);
2045
2046 size = dm_table_get_size(t);
2047
2048 /*
2049 * Wipe any geometry if the size of the table changed.
2050 */
2051 if (size != dm_get_size(md))
2052 memset(&md->geometry, 0, sizeof(md->geometry));
2053
2054 set_capacity(md->disk, size);
2055 bd_set_nr_sectors(md->bdev, size);
2056
2057 dm_table_event_callback(t, event_callback, md);
2058
2059 /*
2060 * The queue hasn't been stopped yet, if the old table type wasn't
2061 * for request-based during suspension. So stop it to prevent
2062 * I/O mapping before resume.
2063 * This must be done before setting the queue restrictions,
2064 * because request-based dm may be run just after the setting.
2065 */
2066 if (request_based)
2067 dm_stop_queue(q);
2068
2069 if (request_based) {
2070 /*
2071 * Leverage the fact that request-based DM targets are
2072 * immutable singletons - used to optimize dm_mq_queue_rq.
2073 */
2074 md->immutable_target = dm_table_get_immutable_target(t);
2075 }
2076
2077 ret = __bind_mempools(md, t);
2078 if (ret) {
2079 old_map = ERR_PTR(ret);
2080 goto out;
2081 }
2082
2083 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2084 rcu_assign_pointer(md->map, (void *)t);
2085 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2086
2087 dm_table_set_restrictions(t, q, limits);
2088 if (old_map)
2089 dm_sync_table(md);
2090
2091 out:
2092 return old_map;
2093 }
2094
2095 /*
2096 * Returns unbound table for the caller to free.
2097 */
__unbind(struct mapped_device * md)2098 static struct dm_table *__unbind(struct mapped_device *md)
2099 {
2100 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2101
2102 if (!map)
2103 return NULL;
2104
2105 dm_table_event_callback(map, NULL, NULL);
2106 RCU_INIT_POINTER(md->map, NULL);
2107 dm_sync_table(md);
2108
2109 return map;
2110 }
2111
2112 /*
2113 * Constructor for a new device.
2114 */
dm_create(int minor,struct mapped_device ** result)2115 int dm_create(int minor, struct mapped_device **result)
2116 {
2117 int r;
2118 struct mapped_device *md;
2119
2120 md = alloc_dev(minor);
2121 if (!md)
2122 return -ENXIO;
2123
2124 r = dm_sysfs_init(md);
2125 if (r) {
2126 free_dev(md);
2127 return r;
2128 }
2129
2130 *result = md;
2131 return 0;
2132 }
2133
2134 /*
2135 * Functions to manage md->type.
2136 * All are required to hold md->type_lock.
2137 */
dm_lock_md_type(struct mapped_device * md)2138 void dm_lock_md_type(struct mapped_device *md)
2139 {
2140 mutex_lock(&md->type_lock);
2141 }
2142
dm_unlock_md_type(struct mapped_device * md)2143 void dm_unlock_md_type(struct mapped_device *md)
2144 {
2145 mutex_unlock(&md->type_lock);
2146 }
2147
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2148 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2149 {
2150 BUG_ON(!mutex_is_locked(&md->type_lock));
2151 md->type = type;
2152 }
2153
dm_get_md_type(struct mapped_device * md)2154 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2155 {
2156 return md->type;
2157 }
2158
dm_get_immutable_target_type(struct mapped_device * md)2159 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2160 {
2161 return md->immutable_target_type;
2162 }
2163
2164 /*
2165 * The queue_limits are only valid as long as you have a reference
2166 * count on 'md'.
2167 */
dm_get_queue_limits(struct mapped_device * md)2168 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2169 {
2170 BUG_ON(!atomic_read(&md->holders));
2171 return &md->queue->limits;
2172 }
2173 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2174
2175 /*
2176 * Setup the DM device's queue based on md's type
2177 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2178 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2179 {
2180 int r;
2181 struct queue_limits limits;
2182 enum dm_queue_mode type = dm_get_md_type(md);
2183
2184 switch (type) {
2185 case DM_TYPE_REQUEST_BASED:
2186 md->disk->fops = &dm_rq_blk_dops;
2187 r = dm_mq_init_request_queue(md, t);
2188 if (r) {
2189 DMERR("Cannot initialize queue for request-based dm mapped device");
2190 return r;
2191 }
2192 break;
2193 case DM_TYPE_BIO_BASED:
2194 case DM_TYPE_DAX_BIO_BASED:
2195 break;
2196 case DM_TYPE_NONE:
2197 WARN_ON_ONCE(true);
2198 break;
2199 }
2200
2201 r = dm_calculate_queue_limits(t, &limits);
2202 if (r) {
2203 DMERR("Cannot calculate initial queue limits");
2204 return r;
2205 }
2206 dm_table_set_restrictions(t, md->queue, &limits);
2207 blk_register_queue(md->disk);
2208
2209 return 0;
2210 }
2211
dm_get_md(dev_t dev)2212 struct mapped_device *dm_get_md(dev_t dev)
2213 {
2214 struct mapped_device *md;
2215 unsigned minor = MINOR(dev);
2216
2217 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2218 return NULL;
2219
2220 spin_lock(&_minor_lock);
2221
2222 md = idr_find(&_minor_idr, minor);
2223 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2224 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2225 md = NULL;
2226 goto out;
2227 }
2228 dm_get(md);
2229 out:
2230 spin_unlock(&_minor_lock);
2231
2232 return md;
2233 }
2234 EXPORT_SYMBOL_GPL(dm_get_md);
2235
dm_get_mdptr(struct mapped_device * md)2236 void *dm_get_mdptr(struct mapped_device *md)
2237 {
2238 return md->interface_ptr;
2239 }
2240
dm_set_mdptr(struct mapped_device * md,void * ptr)2241 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2242 {
2243 md->interface_ptr = ptr;
2244 }
2245
dm_get(struct mapped_device * md)2246 void dm_get(struct mapped_device *md)
2247 {
2248 atomic_inc(&md->holders);
2249 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2250 }
2251
dm_hold(struct mapped_device * md)2252 int dm_hold(struct mapped_device *md)
2253 {
2254 spin_lock(&_minor_lock);
2255 if (test_bit(DMF_FREEING, &md->flags)) {
2256 spin_unlock(&_minor_lock);
2257 return -EBUSY;
2258 }
2259 dm_get(md);
2260 spin_unlock(&_minor_lock);
2261 return 0;
2262 }
2263 EXPORT_SYMBOL_GPL(dm_hold);
2264
dm_device_name(struct mapped_device * md)2265 const char *dm_device_name(struct mapped_device *md)
2266 {
2267 return md->name;
2268 }
2269 EXPORT_SYMBOL_GPL(dm_device_name);
2270
__dm_destroy(struct mapped_device * md,bool wait)2271 static void __dm_destroy(struct mapped_device *md, bool wait)
2272 {
2273 struct dm_table *map;
2274 int srcu_idx;
2275
2276 might_sleep();
2277
2278 spin_lock(&_minor_lock);
2279 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2280 set_bit(DMF_FREEING, &md->flags);
2281 spin_unlock(&_minor_lock);
2282
2283 blk_set_queue_dying(md->queue);
2284
2285 /*
2286 * Take suspend_lock so that presuspend and postsuspend methods
2287 * do not race with internal suspend.
2288 */
2289 mutex_lock(&md->suspend_lock);
2290 map = dm_get_live_table(md, &srcu_idx);
2291 if (!dm_suspended_md(md)) {
2292 dm_table_presuspend_targets(map);
2293 set_bit(DMF_SUSPENDED, &md->flags);
2294 set_bit(DMF_POST_SUSPENDING, &md->flags);
2295 dm_table_postsuspend_targets(map);
2296 }
2297 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2298 dm_put_live_table(md, srcu_idx);
2299 mutex_unlock(&md->suspend_lock);
2300
2301 /*
2302 * Rare, but there may be I/O requests still going to complete,
2303 * for example. Wait for all references to disappear.
2304 * No one should increment the reference count of the mapped_device,
2305 * after the mapped_device state becomes DMF_FREEING.
2306 */
2307 if (wait)
2308 while (atomic_read(&md->holders))
2309 msleep(1);
2310 else if (atomic_read(&md->holders))
2311 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2312 dm_device_name(md), atomic_read(&md->holders));
2313
2314 dm_sysfs_exit(md);
2315 dm_table_destroy(__unbind(md));
2316 free_dev(md);
2317 }
2318
dm_destroy(struct mapped_device * md)2319 void dm_destroy(struct mapped_device *md)
2320 {
2321 __dm_destroy(md, true);
2322 }
2323
dm_destroy_immediate(struct mapped_device * md)2324 void dm_destroy_immediate(struct mapped_device *md)
2325 {
2326 __dm_destroy(md, false);
2327 }
2328
dm_put(struct mapped_device * md)2329 void dm_put(struct mapped_device *md)
2330 {
2331 atomic_dec(&md->holders);
2332 }
2333 EXPORT_SYMBOL_GPL(dm_put);
2334
md_in_flight_bios(struct mapped_device * md)2335 static bool md_in_flight_bios(struct mapped_device *md)
2336 {
2337 int cpu;
2338 struct hd_struct *part = &dm_disk(md)->part0;
2339 long sum = 0;
2340
2341 for_each_possible_cpu(cpu) {
2342 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2343 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2344 }
2345
2346 return sum != 0;
2347 }
2348
dm_wait_for_bios_completion(struct mapped_device * md,long task_state)2349 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2350 {
2351 int r = 0;
2352 DEFINE_WAIT(wait);
2353
2354 while (true) {
2355 prepare_to_wait(&md->wait, &wait, task_state);
2356
2357 if (!md_in_flight_bios(md))
2358 break;
2359
2360 if (signal_pending_state(task_state, current)) {
2361 r = -EINTR;
2362 break;
2363 }
2364
2365 io_schedule();
2366 }
2367 finish_wait(&md->wait, &wait);
2368
2369 smp_rmb();
2370
2371 return r;
2372 }
2373
dm_wait_for_completion(struct mapped_device * md,long task_state)2374 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2375 {
2376 int r = 0;
2377
2378 if (!queue_is_mq(md->queue))
2379 return dm_wait_for_bios_completion(md, task_state);
2380
2381 while (true) {
2382 if (!blk_mq_queue_inflight(md->queue))
2383 break;
2384
2385 if (signal_pending_state(task_state, current)) {
2386 r = -EINTR;
2387 break;
2388 }
2389
2390 msleep(5);
2391 }
2392
2393 return r;
2394 }
2395
2396 /*
2397 * Process the deferred bios
2398 */
dm_wq_work(struct work_struct * work)2399 static void dm_wq_work(struct work_struct *work)
2400 {
2401 struct mapped_device *md = container_of(work, struct mapped_device, work);
2402 struct bio *bio;
2403
2404 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2405 spin_lock_irq(&md->deferred_lock);
2406 bio = bio_list_pop(&md->deferred);
2407 spin_unlock_irq(&md->deferred_lock);
2408
2409 if (!bio)
2410 break;
2411
2412 submit_bio_noacct(bio);
2413 }
2414 }
2415
dm_queue_flush(struct mapped_device * md)2416 static void dm_queue_flush(struct mapped_device *md)
2417 {
2418 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2419 smp_mb__after_atomic();
2420 queue_work(md->wq, &md->work);
2421 }
2422
2423 /*
2424 * Swap in a new table, returning the old one for the caller to destroy.
2425 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2426 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2427 {
2428 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2429 struct queue_limits limits;
2430 int r;
2431
2432 mutex_lock(&md->suspend_lock);
2433
2434 /* device must be suspended */
2435 if (!dm_suspended_md(md))
2436 goto out;
2437
2438 /*
2439 * If the new table has no data devices, retain the existing limits.
2440 * This helps multipath with queue_if_no_path if all paths disappear,
2441 * then new I/O is queued based on these limits, and then some paths
2442 * reappear.
2443 */
2444 if (dm_table_has_no_data_devices(table)) {
2445 live_map = dm_get_live_table_fast(md);
2446 if (live_map)
2447 limits = md->queue->limits;
2448 dm_put_live_table_fast(md);
2449 }
2450
2451 if (!live_map) {
2452 r = dm_calculate_queue_limits(table, &limits);
2453 if (r) {
2454 map = ERR_PTR(r);
2455 goto out;
2456 }
2457 }
2458
2459 map = __bind(md, table, &limits);
2460 dm_issue_global_event();
2461
2462 out:
2463 mutex_unlock(&md->suspend_lock);
2464 return map;
2465 }
2466
2467 /*
2468 * Functions to lock and unlock any filesystem running on the
2469 * device.
2470 */
lock_fs(struct mapped_device * md)2471 static int lock_fs(struct mapped_device *md)
2472 {
2473 int r;
2474
2475 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2476
2477 r = freeze_bdev(md->bdev);
2478 if (!r)
2479 set_bit(DMF_FROZEN, &md->flags);
2480 return r;
2481 }
2482
unlock_fs(struct mapped_device * md)2483 static void unlock_fs(struct mapped_device *md)
2484 {
2485 if (!test_bit(DMF_FROZEN, &md->flags))
2486 return;
2487 thaw_bdev(md->bdev);
2488 clear_bit(DMF_FROZEN, &md->flags);
2489 }
2490
2491 /*
2492 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2493 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2494 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2495 *
2496 * If __dm_suspend returns 0, the device is completely quiescent
2497 * now. There is no request-processing activity. All new requests
2498 * are being added to md->deferred list.
2499 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2500 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2501 unsigned suspend_flags, long task_state,
2502 int dmf_suspended_flag)
2503 {
2504 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2505 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2506 int r;
2507
2508 lockdep_assert_held(&md->suspend_lock);
2509
2510 /*
2511 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2512 * This flag is cleared before dm_suspend returns.
2513 */
2514 if (noflush)
2515 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2516 else
2517 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2518
2519 /*
2520 * This gets reverted if there's an error later and the targets
2521 * provide the .presuspend_undo hook.
2522 */
2523 dm_table_presuspend_targets(map);
2524
2525 /*
2526 * Flush I/O to the device.
2527 * Any I/O submitted after lock_fs() may not be flushed.
2528 * noflush takes precedence over do_lockfs.
2529 * (lock_fs() flushes I/Os and waits for them to complete.)
2530 */
2531 if (!noflush && do_lockfs) {
2532 r = lock_fs(md);
2533 if (r) {
2534 dm_table_presuspend_undo_targets(map);
2535 return r;
2536 }
2537 }
2538
2539 /*
2540 * Here we must make sure that no processes are submitting requests
2541 * to target drivers i.e. no one may be executing
2542 * __split_and_process_bio from dm_submit_bio.
2543 *
2544 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2545 * we take the write lock. To prevent any process from reentering
2546 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2547 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2548 * flush_workqueue(md->wq).
2549 */
2550 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2551 if (map)
2552 synchronize_srcu(&md->io_barrier);
2553
2554 /*
2555 * Stop md->queue before flushing md->wq in case request-based
2556 * dm defers requests to md->wq from md->queue.
2557 */
2558 if (dm_request_based(md))
2559 dm_stop_queue(md->queue);
2560
2561 flush_workqueue(md->wq);
2562
2563 /*
2564 * At this point no more requests are entering target request routines.
2565 * We call dm_wait_for_completion to wait for all existing requests
2566 * to finish.
2567 */
2568 r = dm_wait_for_completion(md, task_state);
2569 if (!r)
2570 set_bit(dmf_suspended_flag, &md->flags);
2571
2572 if (noflush)
2573 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2574 if (map)
2575 synchronize_srcu(&md->io_barrier);
2576
2577 /* were we interrupted ? */
2578 if (r < 0) {
2579 dm_queue_flush(md);
2580
2581 if (dm_request_based(md))
2582 dm_start_queue(md->queue);
2583
2584 unlock_fs(md);
2585 dm_table_presuspend_undo_targets(map);
2586 /* pushback list is already flushed, so skip flush */
2587 }
2588
2589 return r;
2590 }
2591
2592 /*
2593 * We need to be able to change a mapping table under a mounted
2594 * filesystem. For example we might want to move some data in
2595 * the background. Before the table can be swapped with
2596 * dm_bind_table, dm_suspend must be called to flush any in
2597 * flight bios and ensure that any further io gets deferred.
2598 */
2599 /*
2600 * Suspend mechanism in request-based dm.
2601 *
2602 * 1. Flush all I/Os by lock_fs() if needed.
2603 * 2. Stop dispatching any I/O by stopping the request_queue.
2604 * 3. Wait for all in-flight I/Os to be completed or requeued.
2605 *
2606 * To abort suspend, start the request_queue.
2607 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2608 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2609 {
2610 struct dm_table *map = NULL;
2611 int r = 0;
2612
2613 retry:
2614 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2615
2616 if (dm_suspended_md(md)) {
2617 r = -EINVAL;
2618 goto out_unlock;
2619 }
2620
2621 if (dm_suspended_internally_md(md)) {
2622 /* already internally suspended, wait for internal resume */
2623 mutex_unlock(&md->suspend_lock);
2624 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2625 if (r)
2626 return r;
2627 goto retry;
2628 }
2629
2630 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2631
2632 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2633 if (r)
2634 goto out_unlock;
2635
2636 set_bit(DMF_POST_SUSPENDING, &md->flags);
2637 dm_table_postsuspend_targets(map);
2638 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2639
2640 out_unlock:
2641 mutex_unlock(&md->suspend_lock);
2642 return r;
2643 }
2644
__dm_resume(struct mapped_device * md,struct dm_table * map)2645 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2646 {
2647 if (map) {
2648 int r = dm_table_resume_targets(map);
2649 if (r)
2650 return r;
2651 }
2652
2653 dm_queue_flush(md);
2654
2655 /*
2656 * Flushing deferred I/Os must be done after targets are resumed
2657 * so that mapping of targets can work correctly.
2658 * Request-based dm is queueing the deferred I/Os in its request_queue.
2659 */
2660 if (dm_request_based(md))
2661 dm_start_queue(md->queue);
2662
2663 unlock_fs(md);
2664
2665 return 0;
2666 }
2667
dm_resume(struct mapped_device * md)2668 int dm_resume(struct mapped_device *md)
2669 {
2670 int r;
2671 struct dm_table *map = NULL;
2672
2673 retry:
2674 r = -EINVAL;
2675 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2676
2677 if (!dm_suspended_md(md))
2678 goto out;
2679
2680 if (dm_suspended_internally_md(md)) {
2681 /* already internally suspended, wait for internal resume */
2682 mutex_unlock(&md->suspend_lock);
2683 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2684 if (r)
2685 return r;
2686 goto retry;
2687 }
2688
2689 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2690 if (!map || !dm_table_get_size(map))
2691 goto out;
2692
2693 r = __dm_resume(md, map);
2694 if (r)
2695 goto out;
2696
2697 clear_bit(DMF_SUSPENDED, &md->flags);
2698 out:
2699 mutex_unlock(&md->suspend_lock);
2700
2701 return r;
2702 }
2703
2704 /*
2705 * Internal suspend/resume works like userspace-driven suspend. It waits
2706 * until all bios finish and prevents issuing new bios to the target drivers.
2707 * It may be used only from the kernel.
2708 */
2709
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2710 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2711 {
2712 struct dm_table *map = NULL;
2713
2714 lockdep_assert_held(&md->suspend_lock);
2715
2716 if (md->internal_suspend_count++)
2717 return; /* nested internal suspend */
2718
2719 if (dm_suspended_md(md)) {
2720 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2721 return; /* nest suspend */
2722 }
2723
2724 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2725
2726 /*
2727 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2728 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2729 * would require changing .presuspend to return an error -- avoid this
2730 * until there is a need for more elaborate variants of internal suspend.
2731 */
2732 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2733 DMF_SUSPENDED_INTERNALLY);
2734
2735 set_bit(DMF_POST_SUSPENDING, &md->flags);
2736 dm_table_postsuspend_targets(map);
2737 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2738 }
2739
__dm_internal_resume(struct mapped_device * md)2740 static void __dm_internal_resume(struct mapped_device *md)
2741 {
2742 BUG_ON(!md->internal_suspend_count);
2743
2744 if (--md->internal_suspend_count)
2745 return; /* resume from nested internal suspend */
2746
2747 if (dm_suspended_md(md))
2748 goto done; /* resume from nested suspend */
2749
2750 /*
2751 * NOTE: existing callers don't need to call dm_table_resume_targets
2752 * (which may fail -- so best to avoid it for now by passing NULL map)
2753 */
2754 (void) __dm_resume(md, NULL);
2755
2756 done:
2757 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2758 smp_mb__after_atomic();
2759 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2760 }
2761
dm_internal_suspend_noflush(struct mapped_device * md)2762 void dm_internal_suspend_noflush(struct mapped_device *md)
2763 {
2764 mutex_lock(&md->suspend_lock);
2765 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2766 mutex_unlock(&md->suspend_lock);
2767 }
2768 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2769
dm_internal_resume(struct mapped_device * md)2770 void dm_internal_resume(struct mapped_device *md)
2771 {
2772 mutex_lock(&md->suspend_lock);
2773 __dm_internal_resume(md);
2774 mutex_unlock(&md->suspend_lock);
2775 }
2776 EXPORT_SYMBOL_GPL(dm_internal_resume);
2777
2778 /*
2779 * Fast variants of internal suspend/resume hold md->suspend_lock,
2780 * which prevents interaction with userspace-driven suspend.
2781 */
2782
dm_internal_suspend_fast(struct mapped_device * md)2783 void dm_internal_suspend_fast(struct mapped_device *md)
2784 {
2785 mutex_lock(&md->suspend_lock);
2786 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2787 return;
2788
2789 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2790 synchronize_srcu(&md->io_barrier);
2791 flush_workqueue(md->wq);
2792 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2793 }
2794 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2795
dm_internal_resume_fast(struct mapped_device * md)2796 void dm_internal_resume_fast(struct mapped_device *md)
2797 {
2798 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2799 goto done;
2800
2801 dm_queue_flush(md);
2802
2803 done:
2804 mutex_unlock(&md->suspend_lock);
2805 }
2806 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2807
2808 /*-----------------------------------------------------------------
2809 * Event notification.
2810 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2811 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2812 unsigned cookie)
2813 {
2814 int r;
2815 unsigned noio_flag;
2816 char udev_cookie[DM_COOKIE_LENGTH];
2817 char *envp[] = { udev_cookie, NULL };
2818
2819 noio_flag = memalloc_noio_save();
2820
2821 if (!cookie)
2822 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2823 else {
2824 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2825 DM_COOKIE_ENV_VAR_NAME, cookie);
2826 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2827 action, envp);
2828 }
2829
2830 memalloc_noio_restore(noio_flag);
2831
2832 return r;
2833 }
2834
dm_next_uevent_seq(struct mapped_device * md)2835 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2836 {
2837 return atomic_add_return(1, &md->uevent_seq);
2838 }
2839
dm_get_event_nr(struct mapped_device * md)2840 uint32_t dm_get_event_nr(struct mapped_device *md)
2841 {
2842 return atomic_read(&md->event_nr);
2843 }
2844
dm_wait_event(struct mapped_device * md,int event_nr)2845 int dm_wait_event(struct mapped_device *md, int event_nr)
2846 {
2847 return wait_event_interruptible(md->eventq,
2848 (event_nr != atomic_read(&md->event_nr)));
2849 }
2850
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2851 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2852 {
2853 unsigned long flags;
2854
2855 spin_lock_irqsave(&md->uevent_lock, flags);
2856 list_add(elist, &md->uevent_list);
2857 spin_unlock_irqrestore(&md->uevent_lock, flags);
2858 }
2859
2860 /*
2861 * The gendisk is only valid as long as you have a reference
2862 * count on 'md'.
2863 */
dm_disk(struct mapped_device * md)2864 struct gendisk *dm_disk(struct mapped_device *md)
2865 {
2866 return md->disk;
2867 }
2868 EXPORT_SYMBOL_GPL(dm_disk);
2869
dm_kobject(struct mapped_device * md)2870 struct kobject *dm_kobject(struct mapped_device *md)
2871 {
2872 return &md->kobj_holder.kobj;
2873 }
2874
dm_get_from_kobject(struct kobject * kobj)2875 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2876 {
2877 struct mapped_device *md;
2878
2879 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2880
2881 spin_lock(&_minor_lock);
2882 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2883 md = NULL;
2884 goto out;
2885 }
2886 dm_get(md);
2887 out:
2888 spin_unlock(&_minor_lock);
2889
2890 return md;
2891 }
2892
dm_suspended_md(struct mapped_device * md)2893 int dm_suspended_md(struct mapped_device *md)
2894 {
2895 return test_bit(DMF_SUSPENDED, &md->flags);
2896 }
2897
dm_post_suspending_md(struct mapped_device * md)2898 static int dm_post_suspending_md(struct mapped_device *md)
2899 {
2900 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2901 }
2902
dm_suspended_internally_md(struct mapped_device * md)2903 int dm_suspended_internally_md(struct mapped_device *md)
2904 {
2905 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2906 }
2907
dm_test_deferred_remove_flag(struct mapped_device * md)2908 int dm_test_deferred_remove_flag(struct mapped_device *md)
2909 {
2910 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2911 }
2912
dm_suspended(struct dm_target * ti)2913 int dm_suspended(struct dm_target *ti)
2914 {
2915 return dm_suspended_md(ti->table->md);
2916 }
2917 EXPORT_SYMBOL_GPL(dm_suspended);
2918
dm_post_suspending(struct dm_target * ti)2919 int dm_post_suspending(struct dm_target *ti)
2920 {
2921 return dm_post_suspending_md(ti->table->md);
2922 }
2923 EXPORT_SYMBOL_GPL(dm_post_suspending);
2924
dm_noflush_suspending(struct dm_target * ti)2925 int dm_noflush_suspending(struct dm_target *ti)
2926 {
2927 return __noflush_suspending(ti->table->md);
2928 }
2929 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2930
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2931 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2932 unsigned integrity, unsigned per_io_data_size,
2933 unsigned min_pool_size)
2934 {
2935 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2936 unsigned int pool_size = 0;
2937 unsigned int front_pad, io_front_pad;
2938 int ret;
2939
2940 if (!pools)
2941 return NULL;
2942
2943 switch (type) {
2944 case DM_TYPE_BIO_BASED:
2945 case DM_TYPE_DAX_BIO_BASED:
2946 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2947 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2948 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2949 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2950 if (ret)
2951 goto out;
2952 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2953 goto out;
2954 break;
2955 case DM_TYPE_REQUEST_BASED:
2956 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2957 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2958 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2959 break;
2960 default:
2961 BUG();
2962 }
2963
2964 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2965 if (ret)
2966 goto out;
2967
2968 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2969 goto out;
2970
2971 return pools;
2972
2973 out:
2974 dm_free_md_mempools(pools);
2975
2976 return NULL;
2977 }
2978
dm_free_md_mempools(struct dm_md_mempools * pools)2979 void dm_free_md_mempools(struct dm_md_mempools *pools)
2980 {
2981 if (!pools)
2982 return;
2983
2984 bioset_exit(&pools->bs);
2985 bioset_exit(&pools->io_bs);
2986
2987 kfree(pools);
2988 }
2989
2990 struct dm_pr {
2991 u64 old_key;
2992 u64 new_key;
2993 u32 flags;
2994 bool fail_early;
2995 };
2996
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2997 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2998 void *data)
2999 {
3000 struct mapped_device *md = bdev->bd_disk->private_data;
3001 struct dm_table *table;
3002 struct dm_target *ti;
3003 int ret = -ENOTTY, srcu_idx;
3004
3005 table = dm_get_live_table(md, &srcu_idx);
3006 if (!table || !dm_table_get_size(table))
3007 goto out;
3008
3009 /* We only support devices that have a single target */
3010 if (dm_table_get_num_targets(table) != 1)
3011 goto out;
3012 ti = dm_table_get_target(table, 0);
3013
3014 if (dm_suspended_md(md)) {
3015 ret = -EAGAIN;
3016 goto out;
3017 }
3018
3019 ret = -EINVAL;
3020 if (!ti->type->iterate_devices)
3021 goto out;
3022
3023 ret = ti->type->iterate_devices(ti, fn, data);
3024 out:
3025 dm_put_live_table(md, srcu_idx);
3026 return ret;
3027 }
3028
3029 /*
3030 * For register / unregister we need to manually call out to every path.
3031 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3032 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3033 sector_t start, sector_t len, void *data)
3034 {
3035 struct dm_pr *pr = data;
3036 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3037
3038 if (!ops || !ops->pr_register)
3039 return -EOPNOTSUPP;
3040 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3041 }
3042
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3043 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3044 u32 flags)
3045 {
3046 struct dm_pr pr = {
3047 .old_key = old_key,
3048 .new_key = new_key,
3049 .flags = flags,
3050 .fail_early = true,
3051 };
3052 int ret;
3053
3054 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3055 if (ret && new_key) {
3056 /* unregister all paths if we failed to register any path */
3057 pr.old_key = new_key;
3058 pr.new_key = 0;
3059 pr.flags = 0;
3060 pr.fail_early = false;
3061 dm_call_pr(bdev, __dm_pr_register, &pr);
3062 }
3063
3064 return ret;
3065 }
3066
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3067 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3068 u32 flags)
3069 {
3070 struct mapped_device *md = bdev->bd_disk->private_data;
3071 const struct pr_ops *ops;
3072 int r, srcu_idx;
3073
3074 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3075 if (r < 0)
3076 goto out;
3077
3078 ops = bdev->bd_disk->fops->pr_ops;
3079 if (ops && ops->pr_reserve)
3080 r = ops->pr_reserve(bdev, key, type, flags);
3081 else
3082 r = -EOPNOTSUPP;
3083 out:
3084 dm_unprepare_ioctl(md, srcu_idx);
3085 return r;
3086 }
3087
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3088 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3089 {
3090 struct mapped_device *md = bdev->bd_disk->private_data;
3091 const struct pr_ops *ops;
3092 int r, srcu_idx;
3093
3094 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3095 if (r < 0)
3096 goto out;
3097
3098 ops = bdev->bd_disk->fops->pr_ops;
3099 if (ops && ops->pr_release)
3100 r = ops->pr_release(bdev, key, type);
3101 else
3102 r = -EOPNOTSUPP;
3103 out:
3104 dm_unprepare_ioctl(md, srcu_idx);
3105 return r;
3106 }
3107
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3108 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3109 enum pr_type type, bool abort)
3110 {
3111 struct mapped_device *md = bdev->bd_disk->private_data;
3112 const struct pr_ops *ops;
3113 int r, srcu_idx;
3114
3115 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3116 if (r < 0)
3117 goto out;
3118
3119 ops = bdev->bd_disk->fops->pr_ops;
3120 if (ops && ops->pr_preempt)
3121 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3122 else
3123 r = -EOPNOTSUPP;
3124 out:
3125 dm_unprepare_ioctl(md, srcu_idx);
3126 return r;
3127 }
3128
dm_pr_clear(struct block_device * bdev,u64 key)3129 static int dm_pr_clear(struct block_device *bdev, u64 key)
3130 {
3131 struct mapped_device *md = bdev->bd_disk->private_data;
3132 const struct pr_ops *ops;
3133 int r, srcu_idx;
3134
3135 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3136 if (r < 0)
3137 goto out;
3138
3139 ops = bdev->bd_disk->fops->pr_ops;
3140 if (ops && ops->pr_clear)
3141 r = ops->pr_clear(bdev, key);
3142 else
3143 r = -EOPNOTSUPP;
3144 out:
3145 dm_unprepare_ioctl(md, srcu_idx);
3146 return r;
3147 }
3148
3149 static const struct pr_ops dm_pr_ops = {
3150 .pr_register = dm_pr_register,
3151 .pr_reserve = dm_pr_reserve,
3152 .pr_release = dm_pr_release,
3153 .pr_preempt = dm_pr_preempt,
3154 .pr_clear = dm_pr_clear,
3155 };
3156
3157 static const struct block_device_operations dm_blk_dops = {
3158 .submit_bio = dm_submit_bio,
3159 .open = dm_blk_open,
3160 .release = dm_blk_close,
3161 .ioctl = dm_blk_ioctl,
3162 .getgeo = dm_blk_getgeo,
3163 .report_zones = dm_blk_report_zones,
3164 .pr_ops = &dm_pr_ops,
3165 .owner = THIS_MODULE
3166 };
3167
3168 static const struct block_device_operations dm_rq_blk_dops = {
3169 .open = dm_blk_open,
3170 .release = dm_blk_close,
3171 .ioctl = dm_blk_ioctl,
3172 .getgeo = dm_blk_getgeo,
3173 .pr_ops = &dm_pr_ops,
3174 .owner = THIS_MODULE
3175 };
3176
3177 static const struct dax_operations dm_dax_ops = {
3178 .direct_access = dm_dax_direct_access,
3179 .dax_supported = dm_dax_supported,
3180 .copy_from_iter = dm_dax_copy_from_iter,
3181 .copy_to_iter = dm_dax_copy_to_iter,
3182 .zero_page_range = dm_dax_zero_page_range,
3183 };
3184
3185 /*
3186 * module hooks
3187 */
3188 module_init(dm_init);
3189 module_exit(dm_exit);
3190
3191 module_param(major, uint, 0);
3192 MODULE_PARM_DESC(major, "The major number of the device mapper");
3193
3194 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3195 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3196
3197 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3198 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3199
3200 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3201 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3202
3203 MODULE_DESCRIPTION(DM_NAME " driver");
3204 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3205 MODULE_LICENSE("GPL");
3206