xref: /OK3568_Linux_fs/kernel/block/keyslot-manager.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /**
7  * DOC: The Keyslot Manager
8  *
9  * Many devices with inline encryption support have a limited number of "slots"
10  * into which encryption contexts may be programmed, and requests can be tagged
11  * with a slot number to specify the key to use for en/decryption.
12  *
13  * As the number of slots is limited, and programming keys is expensive on
14  * many inline encryption hardware, we don't want to program the same key into
15  * multiple slots - if multiple requests are using the same key, we want to
16  * program just one slot with that key and use that slot for all requests.
17  *
18  * The keyslot manager manages these keyslots appropriately, and also acts as
19  * an abstraction between the inline encryption hardware and the upper layers.
20  *
21  * Lower layer devices will set up a keyslot manager in their request queue
22  * and tell it how to perform device specific operations like programming/
23  * evicting keys from keyslots.
24  *
25  * Upper layers will call blk_ksm_get_slot_for_key() to program a
26  * key into some slot in the inline encryption hardware.
27  */
28 
29 #define pr_fmt(fmt) "blk-crypto: " fmt
30 
31 #include <linux/keyslot-manager.h>
32 #include <linux/device.h>
33 #include <linux/atomic.h>
34 #include <linux/mutex.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/wait.h>
37 #include <linux/blkdev.h>
38 
39 struct blk_ksm_keyslot {
40 	atomic_t slot_refs;
41 	struct list_head idle_slot_node;
42 	struct hlist_node hash_node;
43 	const struct blk_crypto_key *key;
44 	struct blk_keyslot_manager *ksm;
45 };
46 
blk_ksm_hw_enter(struct blk_keyslot_manager * ksm)47 static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm)
48 {
49 	/*
50 	 * Calling into the driver requires ksm->lock held and the device
51 	 * resumed.  But we must resume the device first, since that can acquire
52 	 * and release ksm->lock via blk_ksm_reprogram_all_keys().
53 	 */
54 	if (ksm->dev)
55 		pm_runtime_get_sync(ksm->dev);
56 	down_write(&ksm->lock);
57 }
58 
blk_ksm_hw_exit(struct blk_keyslot_manager * ksm)59 static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm)
60 {
61 	up_write(&ksm->lock);
62 	if (ksm->dev)
63 		pm_runtime_put_sync(ksm->dev);
64 }
65 
blk_ksm_is_passthrough(struct blk_keyslot_manager * ksm)66 static inline bool blk_ksm_is_passthrough(struct blk_keyslot_manager *ksm)
67 {
68 	return ksm->num_slots == 0;
69 }
70 
71 /**
72  * blk_ksm_init() - Initialize a keyslot manager
73  * @ksm: The keyslot_manager to initialize.
74  * @num_slots: The number of key slots to manage.
75  *
76  * Allocate memory for keyslots and initialize a keyslot manager. Called by
77  * e.g. storage drivers to set up a keyslot manager in their request_queue.
78  *
79  * Return: 0 on success, or else a negative error code.
80  */
blk_ksm_init(struct blk_keyslot_manager * ksm,unsigned int num_slots)81 int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots)
82 {
83 	unsigned int slot;
84 	unsigned int i;
85 	unsigned int slot_hashtable_size;
86 
87 	memset(ksm, 0, sizeof(*ksm));
88 
89 	if (num_slots == 0)
90 		return -EINVAL;
91 
92 	ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL);
93 	if (!ksm->slots)
94 		return -ENOMEM;
95 
96 	ksm->num_slots = num_slots;
97 
98 	init_rwsem(&ksm->lock);
99 
100 	init_waitqueue_head(&ksm->idle_slots_wait_queue);
101 	INIT_LIST_HEAD(&ksm->idle_slots);
102 
103 	for (slot = 0; slot < num_slots; slot++) {
104 		ksm->slots[slot].ksm = ksm;
105 		list_add_tail(&ksm->slots[slot].idle_slot_node,
106 			      &ksm->idle_slots);
107 	}
108 
109 	spin_lock_init(&ksm->idle_slots_lock);
110 
111 	slot_hashtable_size = roundup_pow_of_two(num_slots);
112 	/*
113 	 * hash_ptr() assumes bits != 0, so ensure the hash table has at least 2
114 	 * buckets.  This only makes a difference when there is only 1 keyslot.
115 	 */
116 	if (slot_hashtable_size < 2)
117 		slot_hashtable_size = 2;
118 
119 	ksm->log_slot_ht_size = ilog2(slot_hashtable_size);
120 	ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size,
121 					     sizeof(ksm->slot_hashtable[0]),
122 					     GFP_KERNEL);
123 	if (!ksm->slot_hashtable)
124 		goto err_destroy_ksm;
125 	for (i = 0; i < slot_hashtable_size; i++)
126 		INIT_HLIST_HEAD(&ksm->slot_hashtable[i]);
127 
128 	return 0;
129 
130 err_destroy_ksm:
131 	blk_ksm_destroy(ksm);
132 	return -ENOMEM;
133 }
134 EXPORT_SYMBOL_GPL(blk_ksm_init);
135 
blk_ksm_destroy_callback(void * ksm)136 static void blk_ksm_destroy_callback(void *ksm)
137 {
138 	blk_ksm_destroy(ksm);
139 }
140 
141 /**
142  * devm_blk_ksm_init() - Resource-managed blk_ksm_init()
143  * @dev: The device which owns the blk_keyslot_manager.
144  * @ksm: The blk_keyslot_manager to initialize.
145  * @num_slots: The number of key slots to manage.
146  *
147  * Like blk_ksm_init(), but causes blk_ksm_destroy() to be called automatically
148  * on driver detach.
149  *
150  * Return: 0 on success, or else a negative error code.
151  */
devm_blk_ksm_init(struct device * dev,struct blk_keyslot_manager * ksm,unsigned int num_slots)152 int devm_blk_ksm_init(struct device *dev, struct blk_keyslot_manager *ksm,
153 		      unsigned int num_slots)
154 {
155 	int err = blk_ksm_init(ksm, num_slots);
156 
157 	if (err)
158 		return err;
159 
160 	return devm_add_action_or_reset(dev, blk_ksm_destroy_callback, ksm);
161 }
162 EXPORT_SYMBOL_GPL(devm_blk_ksm_init);
163 
164 static inline struct hlist_head *
blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key)165 blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm,
166 			    const struct blk_crypto_key *key)
167 {
168 	return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)];
169 }
170 
blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot * slot)171 static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot)
172 {
173 	struct blk_keyslot_manager *ksm = slot->ksm;
174 	unsigned long flags;
175 
176 	spin_lock_irqsave(&ksm->idle_slots_lock, flags);
177 	list_del(&slot->idle_slot_node);
178 	spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
179 }
180 
blk_ksm_find_keyslot(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key)181 static struct blk_ksm_keyslot *blk_ksm_find_keyslot(
182 					struct blk_keyslot_manager *ksm,
183 					const struct blk_crypto_key *key)
184 {
185 	const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key);
186 	struct blk_ksm_keyslot *slotp;
187 
188 	hlist_for_each_entry(slotp, head, hash_node) {
189 		if (slotp->key == key)
190 			return slotp;
191 	}
192 	return NULL;
193 }
194 
blk_ksm_find_and_grab_keyslot(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key)195 static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot(
196 					struct blk_keyslot_manager *ksm,
197 					const struct blk_crypto_key *key)
198 {
199 	struct blk_ksm_keyslot *slot;
200 
201 	slot = blk_ksm_find_keyslot(ksm, key);
202 	if (!slot)
203 		return NULL;
204 	if (atomic_inc_return(&slot->slot_refs) == 1) {
205 		/* Took first reference to this slot; remove it from LRU list */
206 		blk_ksm_remove_slot_from_lru_list(slot);
207 	}
208 	return slot;
209 }
210 
blk_ksm_get_slot_idx(struct blk_ksm_keyslot * slot)211 unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot)
212 {
213 	return slot - slot->ksm->slots;
214 }
215 EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx);
216 
217 /**
218  * blk_ksm_get_slot_for_key() - Program a key into a keyslot.
219  * @ksm: The keyslot manager to program the key into.
220  * @key: Pointer to the key object to program, including the raw key, crypto
221  *	 mode, and data unit size.
222  * @slot_ptr: A pointer to return the pointer of the allocated keyslot.
223  *
224  * Get a keyslot that's been programmed with the specified key.  If one already
225  * exists, return it with incremented refcount.  Otherwise, wait for a keyslot
226  * to become idle and program it.
227  *
228  * Context: Process context. Takes and releases ksm->lock.
229  * Return: BLK_STS_OK on success (and keyslot is set to the pointer of the
230  *	   allocated keyslot), or some other blk_status_t otherwise (and
231  *	   keyslot is set to NULL).
232  */
blk_ksm_get_slot_for_key(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key,struct blk_ksm_keyslot ** slot_ptr)233 blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm,
234 				      const struct blk_crypto_key *key,
235 				      struct blk_ksm_keyslot **slot_ptr)
236 {
237 	struct blk_ksm_keyslot *slot;
238 	int slot_idx;
239 	int err;
240 
241 	*slot_ptr = NULL;
242 
243 	if (blk_ksm_is_passthrough(ksm))
244 		return BLK_STS_OK;
245 
246 	down_read(&ksm->lock);
247 	slot = blk_ksm_find_and_grab_keyslot(ksm, key);
248 	up_read(&ksm->lock);
249 	if (slot)
250 		goto success;
251 
252 	for (;;) {
253 		blk_ksm_hw_enter(ksm);
254 		slot = blk_ksm_find_and_grab_keyslot(ksm, key);
255 		if (slot) {
256 			blk_ksm_hw_exit(ksm);
257 			goto success;
258 		}
259 
260 		/*
261 		 * If we're here, that means there wasn't a slot that was
262 		 * already programmed with the key. So try to program it.
263 		 */
264 		if (!list_empty(&ksm->idle_slots))
265 			break;
266 
267 		blk_ksm_hw_exit(ksm);
268 		wait_event(ksm->idle_slots_wait_queue,
269 			   !list_empty(&ksm->idle_slots));
270 	}
271 
272 	slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot,
273 				idle_slot_node);
274 	slot_idx = blk_ksm_get_slot_idx(slot);
275 
276 	err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx);
277 	if (err) {
278 		wake_up(&ksm->idle_slots_wait_queue);
279 		blk_ksm_hw_exit(ksm);
280 		return errno_to_blk_status(err);
281 	}
282 
283 	/* Move this slot to the hash list for the new key. */
284 	if (slot->key)
285 		hlist_del(&slot->hash_node);
286 	slot->key = key;
287 	hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key));
288 
289 	atomic_set(&slot->slot_refs, 1);
290 
291 	blk_ksm_remove_slot_from_lru_list(slot);
292 
293 	blk_ksm_hw_exit(ksm);
294 success:
295 	*slot_ptr = slot;
296 	return BLK_STS_OK;
297 }
298 
299 /**
300  * blk_ksm_put_slot() - Release a reference to a slot
301  * @slot: The keyslot to release the reference of.
302  *
303  * Context: Any context.
304  */
blk_ksm_put_slot(struct blk_ksm_keyslot * slot)305 void blk_ksm_put_slot(struct blk_ksm_keyslot *slot)
306 {
307 	struct blk_keyslot_manager *ksm;
308 	unsigned long flags;
309 
310 	if (!slot)
311 		return;
312 
313 	ksm = slot->ksm;
314 
315 	if (atomic_dec_and_lock_irqsave(&slot->slot_refs,
316 					&ksm->idle_slots_lock, flags)) {
317 		list_add_tail(&slot->idle_slot_node, &ksm->idle_slots);
318 		spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
319 		wake_up(&ksm->idle_slots_wait_queue);
320 	}
321 }
322 
323 /**
324  * blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is
325  *				    supported by a ksm.
326  * @ksm: The keyslot manager to check
327  * @cfg: The crypto configuration to check for.
328  *
329  * Checks for crypto_mode/data unit size/dun bytes support.
330  *
331  * Return: Whether or not this ksm supports the specified crypto config.
332  */
blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager * ksm,const struct blk_crypto_config * cfg)333 bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm,
334 				  const struct blk_crypto_config *cfg)
335 {
336 	if (!ksm)
337 		return false;
338 	if (!(ksm->crypto_modes_supported[cfg->crypto_mode] &
339 	      cfg->data_unit_size))
340 		return false;
341 	if (ksm->max_dun_bytes_supported < cfg->dun_bytes)
342 		return false;
343 	if (cfg->is_hw_wrapped) {
344 		if (!(ksm->features & BLK_CRYPTO_FEATURE_WRAPPED_KEYS))
345 			return false;
346 	} else {
347 		if (!(ksm->features & BLK_CRYPTO_FEATURE_STANDARD_KEYS))
348 			return false;
349 	}
350 	return true;
351 }
352 
353 /**
354  * blk_ksm_evict_key() - Evict a key from the lower layer device.
355  * @ksm: The keyslot manager to evict from
356  * @key: The key to evict
357  *
358  * Find the keyslot that the specified key was programmed into, and evict that
359  * slot from the lower layer device. The slot must not be in use by any
360  * in-flight IO when this function is called.
361  *
362  * Context: Process context. Takes and releases ksm->lock.
363  * Return: 0 on success or if there's no keyslot with the specified key, -EBUSY
364  *	   if the keyslot is still in use, or another -errno value on other
365  *	   error.
366  */
blk_ksm_evict_key(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key)367 int blk_ksm_evict_key(struct blk_keyslot_manager *ksm,
368 		      const struct blk_crypto_key *key)
369 {
370 	struct blk_ksm_keyslot *slot;
371 	int err = 0;
372 
373 	if (blk_ksm_is_passthrough(ksm)) {
374 		if (ksm->ksm_ll_ops.keyslot_evict) {
375 			blk_ksm_hw_enter(ksm);
376 			err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1);
377 			blk_ksm_hw_exit(ksm);
378 			return err;
379 		}
380 		return 0;
381 	}
382 
383 	blk_ksm_hw_enter(ksm);
384 	slot = blk_ksm_find_keyslot(ksm, key);
385 	if (!slot)
386 		goto out_unlock;
387 
388 	if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) {
389 		err = -EBUSY;
390 		goto out_unlock;
391 	}
392 	err = ksm->ksm_ll_ops.keyslot_evict(ksm, key,
393 					    blk_ksm_get_slot_idx(slot));
394 	if (err)
395 		goto out_unlock;
396 
397 	hlist_del(&slot->hash_node);
398 	slot->key = NULL;
399 	err = 0;
400 out_unlock:
401 	blk_ksm_hw_exit(ksm);
402 	return err;
403 }
404 
405 /**
406  * blk_ksm_reprogram_all_keys() - Re-program all keyslots.
407  * @ksm: The keyslot manager
408  *
409  * Re-program all keyslots that are supposed to have a key programmed.  This is
410  * intended only for use by drivers for hardware that loses its keys on reset.
411  *
412  * Context: Process context. Takes and releases ksm->lock.
413  */
blk_ksm_reprogram_all_keys(struct blk_keyslot_manager * ksm)414 void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm)
415 {
416 	unsigned int slot;
417 
418 	if (blk_ksm_is_passthrough(ksm))
419 		return;
420 
421 	/* This is for device initialization, so don't resume the device */
422 	down_write(&ksm->lock);
423 	for (slot = 0; slot < ksm->num_slots; slot++) {
424 		const struct blk_crypto_key *key = ksm->slots[slot].key;
425 		int err;
426 
427 		if (!key)
428 			continue;
429 
430 		err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
431 		WARN_ON(err);
432 	}
433 	up_write(&ksm->lock);
434 }
435 EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys);
436 
blk_ksm_destroy(struct blk_keyslot_manager * ksm)437 void blk_ksm_destroy(struct blk_keyslot_manager *ksm)
438 {
439 	if (!ksm)
440 		return;
441 	kvfree(ksm->slot_hashtable);
442 	kvfree_sensitive(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots);
443 	memzero_explicit(ksm, sizeof(*ksm));
444 }
445 EXPORT_SYMBOL_GPL(blk_ksm_destroy);
446 
blk_ksm_register(struct blk_keyslot_manager * ksm,struct request_queue * q)447 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q)
448 {
449 	if (blk_integrity_queue_supports_integrity(q)) {
450 		pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n");
451 		return false;
452 	}
453 	q->ksm = ksm;
454 	return true;
455 }
456 EXPORT_SYMBOL_GPL(blk_ksm_register);
457 
blk_ksm_unregister(struct request_queue * q)458 void blk_ksm_unregister(struct request_queue *q)
459 {
460 	q->ksm = NULL;
461 }
462 
463 /**
464  * blk_ksm_derive_raw_secret() - Derive software secret from wrapped key
465  * @ksm: The keyslot manager
466  * @wrapped_key: The wrapped key
467  * @wrapped_key_size: Size of the wrapped key in bytes
468  * @secret: (output) the software secret
469  * @secret_size: (output) the number of secret bytes to derive
470  *
471  * Given a hardware-wrapped key, ask the hardware to derive a secret which
472  * software can use for cryptographic tasks other than inline encryption.  The
473  * derived secret is guaranteed to be cryptographically isolated from the key
474  * with which any inline encryption with this wrapped key would actually be
475  * done.  I.e., both will be derived from the unwrapped key.
476  *
477  * Return: 0 on success, -EOPNOTSUPP if hardware-wrapped keys are unsupported,
478  *	   or another -errno code.
479  */
blk_ksm_derive_raw_secret(struct blk_keyslot_manager * ksm,const u8 * wrapped_key,unsigned int wrapped_key_size,u8 * secret,unsigned int secret_size)480 int blk_ksm_derive_raw_secret(struct blk_keyslot_manager *ksm,
481 			      const u8 *wrapped_key,
482 			      unsigned int wrapped_key_size,
483 			      u8 *secret, unsigned int secret_size)
484 {
485 	int err;
486 
487 	if (ksm->ksm_ll_ops.derive_raw_secret) {
488 		blk_ksm_hw_enter(ksm);
489 		err = ksm->ksm_ll_ops.derive_raw_secret(ksm, wrapped_key,
490 							wrapped_key_size,
491 							secret, secret_size);
492 		blk_ksm_hw_exit(ksm);
493 	} else {
494 		err = -EOPNOTSUPP;
495 	}
496 
497 	return err;
498 }
499 EXPORT_SYMBOL_GPL(blk_ksm_derive_raw_secret);
500 
501 /**
502  * blk_ksm_intersect_modes() - restrict supported modes by child device
503  * @parent: The keyslot manager for parent device
504  * @child: The keyslot manager for child device, or NULL
505  *
506  * Clear any crypto mode support bits in @parent that aren't set in @child.
507  * If @child is NULL, then all parent bits are cleared.
508  *
509  * Only use this when setting up the keyslot manager for a layered device,
510  * before it's been exposed yet.
511  */
blk_ksm_intersect_modes(struct blk_keyslot_manager * parent,const struct blk_keyslot_manager * child)512 void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent,
513 			     const struct blk_keyslot_manager *child)
514 {
515 	if (child) {
516 		unsigned int i;
517 
518 		parent->max_dun_bytes_supported =
519 			min(parent->max_dun_bytes_supported,
520 			    child->max_dun_bytes_supported);
521 		for (i = 0; i < ARRAY_SIZE(child->crypto_modes_supported);
522 		     i++) {
523 			parent->crypto_modes_supported[i] &=
524 				child->crypto_modes_supported[i];
525 		}
526 		parent->features &= child->features;
527 	} else {
528 		parent->max_dun_bytes_supported = 0;
529 		memset(parent->crypto_modes_supported, 0,
530 		       sizeof(parent->crypto_modes_supported));
531 		parent->features = 0;
532 	}
533 }
534 EXPORT_SYMBOL_GPL(blk_ksm_intersect_modes);
535 
536 /**
537  * blk_ksm_is_superset() - Check if a KSM supports a superset of crypto modes
538  *			   and DUN bytes that another KSM supports. Here,
539  *			   "superset" refers to the mathematical meaning of the
540  *			   word - i.e. if two KSMs have the *same* capabilities,
541  *			   they *are* considered supersets of each other.
542  * @ksm_superset: The KSM that we want to verify is a superset
543  * @ksm_subset: The KSM that we want to verify is a subset
544  *
545  * Return: True if @ksm_superset supports a superset of the crypto modes and DUN
546  *	   bytes that @ksm_subset supports.
547  */
blk_ksm_is_superset(struct blk_keyslot_manager * ksm_superset,struct blk_keyslot_manager * ksm_subset)548 bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset,
549 			 struct blk_keyslot_manager *ksm_subset)
550 {
551 	int i;
552 
553 	if (!ksm_subset)
554 		return true;
555 
556 	if (!ksm_superset)
557 		return false;
558 
559 	for (i = 0; i < ARRAY_SIZE(ksm_superset->crypto_modes_supported); i++) {
560 		if (ksm_subset->crypto_modes_supported[i] &
561 		    (~ksm_superset->crypto_modes_supported[i])) {
562 			return false;
563 		}
564 	}
565 
566 	if (ksm_subset->max_dun_bytes_supported >
567 	    ksm_superset->max_dun_bytes_supported) {
568 		return false;
569 	}
570 
571 	if (ksm_subset->features & ~ksm_superset->features)
572 		return false;
573 
574 	return true;
575 }
576 EXPORT_SYMBOL_GPL(blk_ksm_is_superset);
577 
578 /**
579  * blk_ksm_update_capabilities() - Update the restrictions of a KSM to those of
580  *				   another KSM
581  * @target_ksm: The KSM whose restrictions to update.
582  * @reference_ksm: The KSM to whose restrictions this function will update
583  *		   @target_ksm's restrictions to.
584  *
585  * Blk-crypto requires that crypto capabilities that were
586  * advertised when a bio was created continue to be supported by the
587  * device until that bio is ended. This is turn means that a device cannot
588  * shrink its advertised crypto capabilities without any explicit
589  * synchronization with upper layers. So if there's no such explicit
590  * synchronization, @reference_ksm must support all the crypto capabilities that
591  * @target_ksm does
592  * (i.e. we need blk_ksm_is_superset(@reference_ksm, @target_ksm) == true).
593  *
594  * Note also that as long as the crypto capabilities are being expanded, the
595  * order of updates becoming visible is not important because it's alright
596  * for blk-crypto to see stale values - they only cause blk-crypto to
597  * believe that a crypto capability isn't supported when it actually is (which
598  * might result in blk-crypto-fallback being used if available, or the bio being
599  * failed).
600  */
blk_ksm_update_capabilities(struct blk_keyslot_manager * target_ksm,struct blk_keyslot_manager * reference_ksm)601 void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm,
602 				 struct blk_keyslot_manager *reference_ksm)
603 {
604 	memcpy(target_ksm->crypto_modes_supported,
605 	       reference_ksm->crypto_modes_supported,
606 	       sizeof(target_ksm->crypto_modes_supported));
607 
608 	target_ksm->max_dun_bytes_supported =
609 				reference_ksm->max_dun_bytes_supported;
610 
611 	target_ksm->features = reference_ksm->features;
612 }
613 EXPORT_SYMBOL_GPL(blk_ksm_update_capabilities);
614 
615 /**
616  * blk_ksm_init_passthrough() - Init a passthrough keyslot manager
617  * @ksm: The keyslot manager to init
618  *
619  * Initialize a passthrough keyslot manager.
620  * Called by e.g. storage drivers to set up a keyslot manager in their
621  * request_queue, when the storage driver wants to manage its keys by itself.
622  * This is useful for inline encryption hardware that doesn't have the concept
623  * of keyslots, and for layered devices.
624  */
blk_ksm_init_passthrough(struct blk_keyslot_manager * ksm)625 void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm)
626 {
627 	memset(ksm, 0, sizeof(*ksm));
628 	init_rwsem(&ksm->lock);
629 }
630 EXPORT_SYMBOL_GPL(blk_ksm_init_passthrough);
631