xref: /OK3568_Linux_fs/u-boot/include/dm/device.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * Copyright (c) 2013 Google, Inc
3  *
4  * (C) Copyright 2012
5  * Pavel Herrmann <morpheus.ibis@gmail.com>
6  * Marek Vasut <marex@denx.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13 
14 #include <dm/ofnode.h>
15 #include <dm/uclass-id.h>
16 #include <fdtdec.h>
17 #include <linker_lists.h>
18 #include <linux/compat.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/printk.h>
22 
23 struct driver_info;
24 
25 /* Driver is active (probed). Cleared when it is removed */
26 #define DM_FLAG_ACTIVATED		(1 << 0)
27 
28 /* DM is responsible for allocating and freeing platdata */
29 #define DM_FLAG_ALLOC_PDATA		(1 << 1)
30 
31 /* DM should init this device prior to relocation */
32 #define DM_FLAG_PRE_RELOC		(1 << 2)
33 
34 /* DM is responsible for allocating and freeing parent_platdata */
35 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
36 
37 /* DM is responsible for allocating and freeing uclass_platdata */
38 #define DM_FLAG_ALLOC_UCLASS_PDATA	(1 << 4)
39 
40 /* Allocate driver private data on a DMA boundary */
41 #define DM_FLAG_ALLOC_PRIV_DMA		(1 << 5)
42 
43 /* Device is bound */
44 #define DM_FLAG_BOUND			(1 << 6)
45 
46 /* Device name is allocated and should be freed on unbind() */
47 #define DM_FLAG_NAME_ALLOCED		(1 << 7)
48 
49 #define DM_FLAG_OF_PLATDATA		(1 << 8)
50 
51 /*
52  * Call driver remove function to stop currently active DMA transfers or
53  * give DMA buffers back to the HW / controller. This may be needed for
54  * some drivers to do some final stage cleanup before the OS is called
55  * (U-Boot exit)
56  */
57 #define DM_FLAG_ACTIVE_DMA		(1 << 9)
58 
59 /*
60  * Call driver remove function to do some final configuration, before
61  * U-Boot exits and the OS is started
62  */
63 #define DM_FLAG_OS_PREPARE		(1 << 10)
64 
65 /* Device is from kernel dtb */
66 #define DM_FLAG_KNRL_DTB		(1 << 31)
67 
68 /*
69  * One or multiple of these flags are passed to device_remove() so that
70  * a selective device removal as specified by the remove-stage and the
71  * driver flags can be done.
72  */
73 enum {
74 	/* Normal remove, remove all devices */
75 	DM_REMOVE_NORMAL     = 1 << 0,
76 
77 	/* Remove devices with active DMA */
78 	DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
79 
80 	/* Remove devices which need some final OS preparation steps */
81 	DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
82 
83 	/* Add more use cases here */
84 
85 	/* Remove devices with any active flag */
86 	DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
87 };
88 
89 /**
90  * struct udevice - An instance of a driver
91  *
92  * This holds information about a device, which is a driver bound to a
93  * particular port or peripheral (essentially a driver instance).
94  *
95  * A device will come into existence through a 'bind' call, either due to
96  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
97  * in the device tree (in which case of_offset is >= 0). In the latter case
98  * we translate the device tree information into platdata in a function
99  * implemented by the driver ofdata_to_platdata method (called just before the
100  * probe method if the device has a device tree node.
101  *
102  * All three of platdata, priv and uclass_priv can be allocated by the
103  * driver, or you can use the auto_alloc_size members of struct driver and
104  * struct uclass_driver to have driver model do this automatically.
105  *
106  * @driver: The driver used by this device
107  * @name: Name of device, typically the FDT node name
108  * @platdata: Configuration data for this device
109  * @parent_platdata: The parent bus's configuration data for this device
110  * @uclass_platdata: The uclass's configuration data for this device
111  * @node: Reference to device tree node for this device
112  * @driver_data: Driver data word for the entry that matched this device with
113  *		its driver
114  * @parent: Parent of this device, or NULL for the top level device
115  * @priv: Private data for this device
116  * @uclass: Pointer to uclass for this device
117  * @uclass_priv: The uclass's private data for this device
118  * @parent_priv: The parent's private data for this device
119  * @uclass_node: Used by uclass to link its devices
120  * @child_head: List of children of this device
121  * @sibling_node: Next device in list of all devices
122  * @flags: Flags for this device DM_FLAG_...
123  * @req_seq: Requested sequence number for this device (-1 = any)
124  * @seq: Allocated sequence number for this device (-1 = none). This is set up
125  * when the device is probed and will be unique within the device's uclass.
126  * @devres_head: List of memory allocations associated with this device.
127  *		When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
128  *		add to this list. Memory so-allocated will be freed
129  *		automatically when the device is removed / unbound
130  */
131 struct udevice {
132 	const struct driver *driver;
133 	const char *name;
134 	void *platdata;
135 	void *parent_platdata;
136 	void *uclass_platdata;
137 	ofnode node;
138 	ulong driver_data;
139 	struct udevice *parent;
140 	void *priv;
141 	struct uclass *uclass;
142 	void *uclass_priv;
143 	void *parent_priv;
144 	struct list_head uclass_node;
145 	struct list_head child_head;
146 	struct list_head sibling_node;
147 	uint32_t flags;
148 	int req_seq;
149 	int seq;
150 #ifdef CONFIG_DEVRES
151 	struct list_head devres_head;
152 #endif
153 };
154 
155 /* Maximum sequence number supported */
156 #define DM_MAX_SEQ	999
157 
158 /* Returns the operations for a device */
159 #define device_get_ops(dev)	(dev->driver->ops)
160 
161 /* Returns non-zero if the device is active (probed and not removed) */
162 #define device_active(dev)	((dev)->flags & DM_FLAG_ACTIVATED)
163 
dev_of_offset(const struct udevice * dev)164 static inline int dev_of_offset(const struct udevice *dev)
165 {
166 	return ofnode_to_offset(dev->node);
167 }
168 
dev_set_of_offset(struct udevice * dev,int of_offset)169 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
170 {
171 	dev->node = offset_to_ofnode(of_offset);
172 }
173 
dev_has_of_node(struct udevice * dev)174 static inline bool dev_has_of_node(struct udevice *dev)
175 {
176 	return ofnode_valid(dev->node);
177 }
178 
179 /**
180  * struct udevice_id - Lists the compatible strings supported by a driver
181  * @compatible: Compatible string
182  * @data: Data for this compatible string
183  */
184 struct udevice_id {
185 	const char *compatible;
186 	ulong data;
187 };
188 
189 #if CONFIG_IS_ENABLED(OF_CONTROL)
190 #define of_match_ptr(_ptr)	(_ptr)
191 #else
192 #define of_match_ptr(_ptr)	NULL
193 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
194 
195 /**
196  * struct driver - A driver for a feature or peripheral
197  *
198  * This holds methods for setting up a new device, and also removing it.
199  * The device needs information to set itself up - this is provided either
200  * by platdata or a device tree node (which we find by looking up
201  * matching compatible strings with of_match).
202  *
203  * Drivers all belong to a uclass, representing a class of devices of the
204  * same type. Common elements of the drivers can be implemented in the uclass,
205  * or the uclass can provide a consistent interface to the drivers within
206  * it.
207  *
208  * @name: Device name
209  * @id: Identiies the uclass we belong to
210  * @of_match: List of compatible strings to match, and any identifying data
211  * for each.
212  * @bind: Called to bind a device to its driver
213  * @probe: Called to probe a device, i.e. activate it
214  * @remove: Called to remove a device, i.e. de-activate it
215  * @unbind: Called to unbind a device from its driver
216  * @ofdata_to_platdata: Called before probe to decode device tree data
217  * @child_post_bind: Called after a new child has been bound
218  * @child_pre_probe: Called before a child device is probed. The device has
219  * memory allocated but it has not yet been probed.
220  * @child_post_remove: Called after a child device is removed. The device
221  * has memory allocated but its device_remove() method has been called.
222  * @priv_auto_alloc_size: If non-zero this is the size of the private data
223  * to be allocated in the device's ->priv pointer. If zero, then the driver
224  * is responsible for allocating any data required.
225  * @platdata_auto_alloc_size: If non-zero this is the size of the
226  * platform data to be allocated in the device's ->platdata pointer.
227  * This is typically only useful for device-tree-aware drivers (those with
228  * an of_match), since drivers which use platdata will have the data
229  * provided in the U_BOOT_DEVICE() instantiation.
230  * @per_child_auto_alloc_size: Each device can hold private data owned by
231  * its parent. If required this will be automatically allocated if this
232  * value is non-zero.
233  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
234  * its children. If non-zero this is the size of this data, to be allocated
235  * in the child's parent_platdata pointer.
236  * @ops: Driver-specific operations. This is typically a list of function
237  * pointers defined by the driver, to implement driver functions required by
238  * the uclass.
239  * @flags: driver flags - see DM_FLAGS_...
240  */
241 struct driver {
242 	char *name;
243 	enum uclass_id id;
244 	const struct udevice_id *of_match;
245 	int (*bind)(struct udevice *dev);
246 	int (*probe)(struct udevice *dev);
247 	int (*remove)(struct udevice *dev);
248 	int (*unbind)(struct udevice *dev);
249 	int (*ofdata_to_platdata)(struct udevice *dev);
250 	int (*child_post_bind)(struct udevice *dev);
251 	int (*child_pre_probe)(struct udevice *dev);
252 	int (*child_post_remove)(struct udevice *dev);
253 	int priv_auto_alloc_size;
254 	int platdata_auto_alloc_size;
255 	int per_child_auto_alloc_size;
256 	int per_child_platdata_auto_alloc_size;
257 	const void *ops;	/* driver-specific operations */
258 	uint32_t flags;
259 };
260 
261 /* Declare a new U-Boot driver */
262 #define U_BOOT_DRIVER(__name)						\
263 	ll_entry_declare(struct driver, __name, driver)
264 
265 /* Get a pointer to a given driver */
266 #define DM_GET_DRIVER(__name)						\
267 	ll_entry_get(struct driver, __name, driver)
268 
269 /**
270  * dev_get_platdata() - Get the platform data for a device
271  *
272  * This checks that dev is not NULL, but no other checks for now
273  *
274  * @dev		Device to check
275  * @return platform data, or NULL if none
276  */
277 void *dev_get_platdata(struct udevice *dev);
278 
279 /**
280  * dev_get_parent_platdata() - Get the parent platform data for a device
281  *
282  * This checks that dev is not NULL, but no other checks for now
283  *
284  * @dev		Device to check
285  * @return parent's platform data, or NULL if none
286  */
287 void *dev_get_parent_platdata(struct udevice *dev);
288 
289 /**
290  * dev_get_uclass_platdata() - Get the uclass platform data for a device
291  *
292  * This checks that dev is not NULL, but no other checks for now
293  *
294  * @dev		Device to check
295  * @return uclass's platform data, or NULL if none
296  */
297 void *dev_get_uclass_platdata(struct udevice *dev);
298 
299 /**
300  * dev_get_priv() - Get the private data for a device
301  *
302  * This checks that dev is not NULL, but no other checks for now
303  *
304  * @dev		Device to check
305  * @return private data, or NULL if none
306  */
307 void *dev_get_priv(struct udevice *dev);
308 
309 /**
310  * dev_get_parent_priv() - Get the parent private data for a device
311  *
312  * The parent private data is data stored in the device but owned by the
313  * parent. For example, a USB device may have parent data which contains
314  * information about how to talk to the device over USB.
315  *
316  * This checks that dev is not NULL, but no other checks for now
317  *
318  * @dev		Device to check
319  * @return parent data, or NULL if none
320  */
321 void *dev_get_parent_priv(struct udevice *dev);
322 
323 /**
324  * dev_get_uclass_priv() - Get the private uclass data for a device
325  *
326  * This checks that dev is not NULL, but no other checks for now
327  *
328  * @dev		Device to check
329  * @return private uclass data for this device, or NULL if none
330  */
331 void *dev_get_uclass_priv(struct udevice *dev);
332 
333 /**
334  * struct dev_get_parent() - Get the parent of a device
335  *
336  * @child:	Child to check
337  * @return parent of child, or NULL if this is the root device
338  */
339 struct udevice *dev_get_parent(struct udevice *child);
340 
341 /**
342  * dev_get_driver_data() - get the driver data used to bind a device
343  *
344  * When a device is bound using a device tree node, it matches a
345  * particular compatible string in struct udevice_id. This function
346  * returns the associated data value for that compatible string. This is
347  * the 'data' field in struct udevice_id.
348  *
349  * As an example, consider this structure:
350  * static const struct udevice_id tegra_i2c_ids[] = {
351  *	{ .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
352  *	{ .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
353  *	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
354  *	{ }
355  * };
356  *
357  * When driver model finds a driver for this it will store the 'data' value
358  * corresponding to the compatible string it matches. This function returns
359  * that value. This allows the driver to handle several variants of a device.
360  *
361  * For USB devices, this is the driver_info field in struct usb_device_id.
362  *
363  * @dev:	Device to check
364  * @return driver data (0 if none is provided)
365  */
366 ulong dev_get_driver_data(struct udevice *dev);
367 
368 /**
369  * dev_get_driver_ops() - get the device's driver's operations
370  *
371  * This checks that dev is not NULL, and returns the pointer to device's
372  * driver's operations.
373  *
374  * @dev:	Device to check
375  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
376  */
377 const void *dev_get_driver_ops(struct udevice *dev);
378 
379 /**
380  * device_get_uclass_id() - return the uclass ID of a device
381  *
382  * @dev:	Device to check
383  * @return uclass ID for the device
384  */
385 enum uclass_id device_get_uclass_id(struct udevice *dev);
386 
387 /**
388  * dev_get_uclass_name() - return the uclass name of a device
389  *
390  * This checks that dev is not NULL.
391  *
392  * @dev:	Device to check
393  * @return  pointer to the uclass name for the device
394  */
395 const char *dev_get_uclass_name(struct udevice *dev);
396 
397 /**
398  * device_get_child() - Get the child of a device by index
399  *
400  * Returns the numbered child, 0 being the first. This does not use
401  * sequence numbers, only the natural order.
402  *
403  * @dev:	Parent device to check
404  * @index:	Child index
405  * @devp:	Returns pointer to device
406  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
407  *	   to probe
408  */
409 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
410 
411 /**
412  * device_find_child_by_seq() - Find a child device based on a sequence
413  *
414  * This searches for a device with the given seq or req_seq.
415  *
416  * For seq, if an active device has this sequence it will be returned.
417  * If there is no such device then this will return -ENODEV.
418  *
419  * For req_seq, if a device (whether activated or not) has this req_seq
420  * value, that device will be returned. This is a strong indication that
421  * the device will receive that sequence when activated.
422  *
423  * @parent: Parent device
424  * @seq_or_req_seq: Sequence number to find (0=first)
425  * @find_req_seq: true to find req_seq, false to find seq
426  * @devp: Returns pointer to device (there is only one per for each seq).
427  * Set to NULL if none is found
428  * @return 0 if OK, -ve on error
429  */
430 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
431 			     bool find_req_seq, struct udevice **devp);
432 
433 /**
434  * device_get_child_by_seq() - Get a child device based on a sequence
435  *
436  * If an active device has this sequence it will be returned. If there is no
437  * such device then this will check for a device that is requesting this
438  * sequence.
439  *
440  * The device is probed to activate it ready for use.
441  *
442  * @parent: Parent device
443  * @seq: Sequence number to find (0=first)
444  * @devp: Returns pointer to device (there is only one per for each seq)
445  * Set to NULL if none is found
446  * @return 0 if OK, -ve on error
447  */
448 int device_get_child_by_seq(struct udevice *parent, int seq,
449 			    struct udevice **devp);
450 
451 /**
452  * device_find_child_by_of_offset() - Find a child device based on FDT offset
453  *
454  * Locates a child device by its device tree offset.
455  *
456  * @parent: Parent device
457  * @of_offset: Device tree offset to find
458  * @devp: Returns pointer to device if found, otherwise this is set to NULL
459  * @return 0 if OK, -ve on error
460  */
461 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
462 				   struct udevice **devp);
463 
464 /**
465  * device_get_child_by_of_offset() - Get a child device based on FDT offset
466  *
467  * Locates a child device by its device tree offset.
468  *
469  * The device is probed to activate it ready for use.
470  *
471  * @parent: Parent device
472  * @of_offset: Device tree offset to find
473  * @devp: Returns pointer to device if found, otherwise this is set to NULL
474  * @return 0 if OK, -ve on error
475  */
476 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
477 				  struct udevice **devp);
478 
479 /**
480  * device_get_global_by_of_offset() - Get a device based on FDT offset
481  *
482  * Locates a device by its device tree offset, searching globally throughout
483  * the all driver model devices.
484  *
485  * The device is probed to activate it ready for use.
486  *
487  * @of_offset: Device tree offset to find
488  * @devp: Returns pointer to device if found, otherwise this is set to NULL
489  * @return 0 if OK, -ve on error
490  */
491 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
492 
493 /**
494  * device_find_first_child() - Find the first child of a device
495  *
496  * @parent: Parent device to search
497  * @devp: Returns first child device, or NULL if none
498  * @return 0
499  */
500 int device_find_first_child(struct udevice *parent, struct udevice **devp);
501 
502 /**
503  * device_find_next_child() - Find the next child of a device
504  *
505  * @devp: Pointer to previous child device on entry. Returns pointer to next
506  *		child device, or NULL if none
507  * @return 0
508  */
509 int device_find_next_child(struct udevice **devp);
510 
511 /**
512  * device_has_children() - check if a device has any children
513  *
514  * @dev:	Device to check
515  * @return true if the device has one or more children
516  */
517 bool device_has_children(struct udevice *dev);
518 
519 /**
520  * device_has_active_children() - check if a device has any active children
521  *
522  * @dev:	Device to check
523  * @return true if the device has one or more children and at least one of
524  * them is active (probed).
525  */
526 bool device_has_active_children(struct udevice *dev);
527 
528 /**
529  * device_is_last_sibling() - check if a device is the last sibling
530  *
531  * This function can be useful for display purposes, when special action needs
532  * to be taken when displaying the last sibling. This can happen when a tree
533  * view of devices is being displayed.
534  *
535  * @dev:	Device to check
536  * @return true if there are no more siblings after this one - i.e. is it
537  * last in the list.
538  */
539 bool device_is_last_sibling(struct udevice *dev);
540 
541 /**
542  * device_set_name() - set the name of a device
543  *
544  * This must be called in the device's bind() method and no later. Normally
545  * this is unnecessary but for probed devices which don't get a useful name
546  * this function can be helpful.
547  *
548  * The name is allocated and will be freed automatically when the device is
549  * unbound.
550  *
551  * @dev:	Device to update
552  * @name:	New name (this string is allocated new memory and attached to
553  *		the device)
554  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
555  * string
556  */
557 int device_set_name(struct udevice *dev, const char *name);
558 
559 /**
560  * device_set_name_alloced() - note that a device name is allocated
561  *
562  * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
563  * unbound the name will be freed. This avoids memory leaks.
564  *
565  * @dev:	Device to update
566  */
567 void device_set_name_alloced(struct udevice *dev);
568 
569 /**
570  * device_is_compatible() - check if the device is compatible with the compat
571  *
572  * This allows to check whether the device is comaptible with the compat.
573  *
574  * @dev:	udevice pointer for which compatible needs to be verified.
575  * @compat:	Compatible string which needs to verified in the given
576  *		device
577  * @return true if OK, false if the compatible is not found
578  */
579 bool device_is_compatible(struct udevice *dev, const char *compat);
580 
581 /**
582  * of_machine_is_compatible() - check if the machine is compatible with
583  *				the compat
584  *
585  * This allows to check whether the machine is comaptible with the compat.
586  *
587  * @compat:	Compatible string which needs to verified
588  * @return true if OK, false if the compatible is not found
589  */
590 bool of_machine_is_compatible(const char *compat);
591 
592 /**
593  * device_is_on_pci_bus - Test if a device is on a PCI bus
594  *
595  * @dev:	device to test
596  * @return:	true if it is on a PCI bus, false otherwise
597  */
device_is_on_pci_bus(struct udevice * dev)598 static inline bool device_is_on_pci_bus(struct udevice *dev)
599 {
600 	return device_get_uclass_id(dev->parent) == UCLASS_PCI;
601 }
602 
603 /**
604  * device_foreach_child_safe() - iterate through child devices safely
605  *
606  * This allows the @pos child to be removed in the loop if required.
607  *
608  * @pos: struct udevice * for the current device
609  * @next: struct udevice * for the next device
610  * @parent: parent device to scan
611  */
612 #define device_foreach_child_safe(pos, next, parent)	\
613 	list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
614 
615 /**
616  * dm_scan_fdt_dev() - Bind child device in a the device tree
617  *
618  * This handles device which have sub-nodes in the device tree. It scans all
619  * sub-nodes and binds drivers for each node where a driver can be found.
620  *
621  * If this is called prior to relocation, only pre-relocation devices will be
622  * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
623  * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
624  * be bound.
625  *
626  * @dev:	Device to scan
627  * @return 0 if OK, -ve on error
628  */
629 int dm_scan_fdt_dev(struct udevice *dev);
630 
631 /* device resource management */
632 typedef void (*dr_release_t)(struct udevice *dev, void *res);
633 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
634 
635 #ifdef CONFIG_DEVRES
636 
637 #ifdef CONFIG_DEBUG_DEVRES
638 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
639 		     const char *name);
640 #define _devres_alloc(release, size, gfp) \
641 	__devres_alloc(release, size, gfp, #release)
642 #else
643 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
644 #endif
645 
646 /**
647  * devres_alloc() - Allocate device resource data
648  * @release: Release function devres will be associated with
649  * @size: Allocation size
650  * @gfp: Allocation flags
651  *
652  * Allocate devres of @size bytes.  The allocated area is associated
653  * with @release.  The returned pointer can be passed to
654  * other devres_*() functions.
655  *
656  * RETURNS:
657  * Pointer to allocated devres on success, NULL on failure.
658  */
659 #define devres_alloc(release, size, gfp) \
660 	_devres_alloc(release, size, gfp | __GFP_ZERO)
661 
662 /**
663  * devres_free() - Free device resource data
664  * @res: Pointer to devres data to free
665  *
666  * Free devres created with devres_alloc().
667  */
668 void devres_free(void *res);
669 
670 /**
671  * devres_add() - Register device resource
672  * @dev: Device to add resource to
673  * @res: Resource to register
674  *
675  * Register devres @res to @dev.  @res should have been allocated
676  * using devres_alloc().  On driver detach, the associated release
677  * function will be invoked and devres will be freed automatically.
678  */
679 void devres_add(struct udevice *dev, void *res);
680 
681 /**
682  * devres_find() - Find device resource
683  * @dev: Device to lookup resource from
684  * @release: Look for resources associated with this release function
685  * @match: Match function (optional)
686  * @match_data: Data for the match function
687  *
688  * Find the latest devres of @dev which is associated with @release
689  * and for which @match returns 1.  If @match is NULL, it's considered
690  * to match all.
691  *
692  * @return pointer to found devres, NULL if not found.
693  */
694 void *devres_find(struct udevice *dev, dr_release_t release,
695 		  dr_match_t match, void *match_data);
696 
697 /**
698  * devres_get() - Find devres, if non-existent, add one atomically
699  * @dev: Device to lookup or add devres for
700  * @new_res: Pointer to new initialized devres to add if not found
701  * @match: Match function (optional)
702  * @match_data: Data for the match function
703  *
704  * Find the latest devres of @dev which has the same release function
705  * as @new_res and for which @match return 1.  If found, @new_res is
706  * freed; otherwise, @new_res is added atomically.
707  *
708  * @return ointer to found or added devres.
709  */
710 void *devres_get(struct udevice *dev, void *new_res,
711 		 dr_match_t match, void *match_data);
712 
713 /**
714  * devres_remove() - Find a device resource and remove it
715  * @dev: Device to find resource from
716  * @release: Look for resources associated with this release function
717  * @match: Match function (optional)
718  * @match_data: Data for the match function
719  *
720  * Find the latest devres of @dev associated with @release and for
721  * which @match returns 1.  If @match is NULL, it's considered to
722  * match all.  If found, the resource is removed atomically and
723  * returned.
724  *
725  * @return ointer to removed devres on success, NULL if not found.
726  */
727 void *devres_remove(struct udevice *dev, dr_release_t release,
728 		    dr_match_t match, void *match_data);
729 
730 /**
731  * devres_destroy() - Find a device resource and destroy it
732  * @dev: Device to find resource from
733  * @release: Look for resources associated with this release function
734  * @match: Match function (optional)
735  * @match_data: Data for the match function
736  *
737  * Find the latest devres of @dev associated with @release and for
738  * which @match returns 1.  If @match is NULL, it's considered to
739  * match all.  If found, the resource is removed atomically and freed.
740  *
741  * Note that the release function for the resource will not be called,
742  * only the devres-allocated data will be freed.  The caller becomes
743  * responsible for freeing any other data.
744  *
745  * @return 0 if devres is found and freed, -ENOENT if not found.
746  */
747 int devres_destroy(struct udevice *dev, dr_release_t release,
748 		   dr_match_t match, void *match_data);
749 
750 /**
751  * devres_release() - Find a device resource and destroy it, calling release
752  * @dev: Device to find resource from
753  * @release: Look for resources associated with this release function
754  * @match: Match function (optional)
755  * @match_data: Data for the match function
756  *
757  * Find the latest devres of @dev associated with @release and for
758  * which @match returns 1.  If @match is NULL, it's considered to
759  * match all.  If found, the resource is removed atomically, the
760  * release function called and the resource freed.
761  *
762  * @return 0 if devres is found and freed, -ENOENT if not found.
763  */
764 int devres_release(struct udevice *dev, dr_release_t release,
765 		   dr_match_t match, void *match_data);
766 
767 /* managed devm_k.alloc/kfree for device drivers */
768 /**
769  * devm_kmalloc() - Resource-managed kmalloc
770  * @dev: Device to allocate memory for
771  * @size: Allocation size
772  * @gfp: Allocation gfp flags
773  *
774  * Managed kmalloc.  Memory allocated with this function is
775  * automatically freed on driver detach.  Like all other devres
776  * resources, guaranteed alignment is unsigned long long.
777  *
778  * @return pointer to allocated memory on success, NULL on failure.
779  */
780 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
devm_kzalloc(struct udevice * dev,size_t size,gfp_t gfp)781 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
782 {
783 	return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
784 }
devm_kmalloc_array(struct udevice * dev,size_t n,size_t size,gfp_t flags)785 static inline void *devm_kmalloc_array(struct udevice *dev,
786 				       size_t n, size_t size, gfp_t flags)
787 {
788 	if (size != 0 && n > SIZE_MAX / size)
789 		return NULL;
790 	return devm_kmalloc(dev, n * size, flags);
791 }
devm_kcalloc(struct udevice * dev,size_t n,size_t size,gfp_t flags)792 static inline void *devm_kcalloc(struct udevice *dev,
793 				 size_t n, size_t size, gfp_t flags)
794 {
795 	return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
796 }
797 
798 /**
799  * devm_kfree() - Resource-managed kfree
800  * @dev: Device this memory belongs to
801  * @ptr: Memory to free
802  *
803  * Free memory allocated with devm_kmalloc().
804  */
805 void devm_kfree(struct udevice *dev, void *ptr);
806 
807 #else /* ! CONFIG_DEVRES */
808 
devres_alloc(dr_release_t release,size_t size,gfp_t gfp)809 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
810 {
811 	return kzalloc(size, gfp);
812 }
813 
devres_free(void * res)814 static inline void devres_free(void *res)
815 {
816 	kfree(res);
817 }
818 
devres_add(struct udevice * dev,void * res)819 static inline void devres_add(struct udevice *dev, void *res)
820 {
821 }
822 
devres_find(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)823 static inline void *devres_find(struct udevice *dev, dr_release_t release,
824 				dr_match_t match, void *match_data)
825 {
826 	return NULL;
827 }
828 
devres_get(struct udevice * dev,void * new_res,dr_match_t match,void * match_data)829 static inline void *devres_get(struct udevice *dev, void *new_res,
830 			       dr_match_t match, void *match_data)
831 {
832 	return NULL;
833 }
834 
devres_remove(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)835 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
836 				  dr_match_t match, void *match_data)
837 {
838 	return NULL;
839 }
840 
devres_destroy(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)841 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
842 				 dr_match_t match, void *match_data)
843 {
844 	return 0;
845 }
846 
devres_release(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)847 static inline int devres_release(struct udevice *dev, dr_release_t release,
848 				 dr_match_t match, void *match_data)
849 {
850 	return 0;
851 }
852 
devm_kmalloc(struct udevice * dev,size_t size,gfp_t gfp)853 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
854 {
855 	return kmalloc(size, gfp);
856 }
857 
devm_kzalloc(struct udevice * dev,size_t size,gfp_t gfp)858 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
859 {
860 	return kzalloc(size, gfp);
861 }
862 
devm_kmaloc_array(struct udevice * dev,size_t n,size_t size,gfp_t flags)863 static inline void *devm_kmaloc_array(struct udevice *dev,
864 				      size_t n, size_t size, gfp_t flags)
865 {
866 	/* TODO: add kmalloc_array() to linux/compat.h */
867 	if (size != 0 && n > SIZE_MAX / size)
868 		return NULL;
869 	return kmalloc(n * size, flags);
870 }
871 
devm_kcalloc(struct udevice * dev,size_t n,size_t size,gfp_t flags)872 static inline void *devm_kcalloc(struct udevice *dev,
873 				 size_t n, size_t size, gfp_t flags)
874 {
875 	/* TODO: add kcalloc() to linux/compat.h */
876 	return kmalloc(n * size, flags | __GFP_ZERO);
877 }
878 
devm_kfree(struct udevice * dev,void * ptr)879 static inline void devm_kfree(struct udevice *dev, void *ptr)
880 {
881 	kfree(ptr);
882 }
883 
884 #endif /* ! CONFIG_DEVRES */
885 
886 /*
887  * REVISIT:
888  * remove the following after resolving conflicts with <linux/compat.h>
889  */
890 #ifdef dev_dbg
891 #undef dev_dbg
892 #endif
893 #ifdef dev_vdbg
894 #undef dev_vdbg
895 #endif
896 #ifdef dev_info
897 #undef dev_info
898 #endif
899 #ifdef dev_err
900 #undef dev_err
901 #endif
902 #ifdef dev_warn
903 #undef dev_warn
904 #endif
905 
906 /*
907  * REVISIT:
908  * print device name like Linux
909  */
910 #define dev_printk(dev, fmt, ...)				\
911 ({								\
912 	printk(fmt, ##__VA_ARGS__);				\
913 })
914 
915 #define __dev_printk(level, dev, fmt, ...)			\
916 ({								\
917 	if (level < CONFIG_VAL(LOGLEVEL))			\
918 		dev_printk(dev, fmt, ##__VA_ARGS__);		\
919 })
920 
921 #define dev_emerg(dev, fmt, ...) \
922 	__dev_printk(0, dev, fmt, ##__VA_ARGS__)
923 #define dev_alert(dev, fmt, ...) \
924 	__dev_printk(1, dev, fmt, ##__VA_ARGS__)
925 #define dev_crit(dev, fmt, ...) \
926 	__dev_printk(2, dev, fmt, ##__VA_ARGS__)
927 #define dev_err(dev, fmt, ...) \
928 	__dev_printk(3, dev, fmt, ##__VA_ARGS__)
929 #define dev_warn(dev, fmt, ...) \
930 	__dev_printk(4, dev, fmt, ##__VA_ARGS__)
931 #define dev_notice(dev, fmt, ...) \
932 	__dev_printk(5, dev, fmt, ##__VA_ARGS__)
933 #define dev_info(dev, fmt, ...) \
934 	__dev_printk(6, dev, fmt, ##__VA_ARGS__)
935 
936 #ifdef DEBUG
937 #define dev_dbg(dev, fmt, ...) \
938 	__dev_printk(7, dev, fmt, ##__VA_ARGS__)
939 #else
940 #define dev_dbg(dev, fmt, ...)					\
941 ({								\
942 	if (0)							\
943 		__dev_printk(7, dev, fmt, ##__VA_ARGS__);	\
944 })
945 #endif
946 
947 #ifdef VERBOSE_DEBUG
948 #define dev_vdbg	dev_dbg
949 #else
950 #define dev_vdbg(dev, fmt, ...)					\
951 ({								\
952 	if (0)							\
953 		__dev_printk(7, dev, fmt, ##__VA_ARGS__);	\
954 })
955 #endif
956 
957 #endif
958